
Dynamic Kernels for Hitting Sets and Set Packing

Max Bannach Zacharias Heinrich Rüdiger Reischuk Till Tantau

Institute for Theoretical Computer Science,

Universität zu Lübeck

Lübeck, Germany

{bannach,zacharias.heinrich,reischuk,tantau}@tcs.uni-luebeck.de

October 31, 2019

Abstract

Computing kernels for the hitting set problem (the problem of finding a size-k set that
intersects each hyperedge of a hypergraph) is a well-studied computational problem. For
hypergraphs with m hyperedges, each of size at most d, the best algorithms can compute
kernels of size O(kd) in time O(2dm). In this paper we generalize the task to the dynamic
setting where hyperedges may be continuously added and deleted and we always have to
keep track of a hitting set kernel (including moments when no size-k hitting set exists). We
present a deterministic solution, based on a novel data structure, that needs worst-case time
O∗(3d) for updating the kernel upon hyperedge inserts and time O∗(5d) for updates upon
deletions – thus nearly matching the time O∗(2d) needed by the best static algorithm per
hyperedge. As a novel technical feature, our approach does not use the standard replace-
sunflowers-by-their-cores methodology, but introduces a generalized concept that is actually
easier to compute and that allows us to achieve a kernel size of

∑d
i=0 k

i rather than the
typical size d! · kd resulting from the Sunflower Lemma. We also show that our approach
extends to the dual problem of finding packings in hypergraphs (the problem of finding k

pairwise disjoint hyperedges), albeit with a slightly larger kernel size of
∑d

i=0 d
i(k − 1)i.

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 146 (2019)

1 Introduction

The hitting set problem is a fundamental combinatorial problem that asks, given a hypergraph,
whether there is a small vertex subset that intersects (“hits”) each hyperedge. Even special cases
of the hitting set problem are of high interest: the vertex cover problem is exactly the hitting set
problem in which all hyperedges have cardinality two. Furthermore, many interesting problems
reduce to the hitting set problem: a dominating set of a graph is just a hitting set in the
hypergraph that contains for every vertex a hyperedge that consists of the closed neighborhood
of that vertex; for any fixed graph H, the question of whether we can delete k vertices from a
graph G in order to make G an H-free graph can be reduced to the hitting set problem in which
each occurrence of H contributes a hyperedge – this problem in return generalizes problems
such as triangle-deletion and cluster-vertex-deletion [1]. The hitting set problem
also finds applications in the area of descriptive complexity, as a fragment of first-order logic
can be reduced to it [5].

Being a powerful problem, hitting-set is unsurprisingly NP-complete [17] and its parame-
terized version pk-hitting-set is W[2]-complete [10]. However, if we restrict the size of hyper-
edges to at most some constant d, the resulting problem pk-d-hitting-set lies in FPT [12] and
has polynomial kernels. In detail, there is a polynomial-time algorithm that reduces any instance
of pk-d-hitting-set to a membership-equivalent instance of size at most O(kd · d! · d2) [12]. In
this paper we generalize the task to the dynamic setting where hyperedges may be continuously
added and deleted and we always have to keep track of a hitting set kernel (including moments
when no size-k hitting set exists).

Our Results. For each fixed number d, we present a dynamic algorithm that maintains a
kernel of size O(kd) for the hitting set problem with size-d hyperedges. Formally: For fixed
d ∈ N let pk-d-hitting-set be the parametrized problem whose instances are pairs (H, k)
where H = (V,E) is a d-hypergraph (that is, |e| ≤ d holds for all e ∈ E) and k ∈ N is the
parameter, and the question is whether there is a hitting set X ⊆ V for H with |X| ≤ k (that
is, X ∩ e 6= ∅ holds for all e ∈ E). We prove:

Theorem 1.1. There is a fully dynamic kernel algorithm for pk-d-hitting-set with at most
kd+kd−1+ · · ·+k+1 hyperedges in the kernel, insertion time O∗(3d), and deletion time O∗(5d).

Some remarks are in order: First, we stress that the maximum update time O∗(5d), which
means O(5d·d`) for some fixed number `, is independent of both k and |E|. Second, the algorithm
works in the fully dynamic case where the hypergraph may switch repeatedly between having
and not having a size-k hitting set. Third, our kernel is a full kernel in the sense of [7]: It
does not just preserve a single size-k solution, but all of them. Therefore, we can use the
kernel for counting and enumeration problems as well; and we can even use the whole kernel
as approximate solution. Fourth, the kernel size is optimal insofar as pk-d-hitting-set has
no kernel of size O(kd−ε) unless coNP ⊆ NP/poly [9]. Lastly, if we feed the hyperedges of a
static hypergraph to our algorithm one-at-a-time, we compute a static hitting set kernel in time
O∗(3d · |E|). Since the currently best algorithm for that task runs in time O∗(2d · |E|) [20], the
run time of our dynamic algorithm is not very far from the best static run time.

Our main technical tool to prove Theorem 1.1 are combinatorial objects that we call flowers.
They are a generalization of sunflowers [11] with two useful properties: First, they are easy
to find and to maintain in a dynamic setting. Second, similar to the Sunflower Lemma, a
hypergraph without a flower cannot be too large. Our dynamic algorithm maintains an involved
data structure to track all flowers that are present in the given hypergraph, as well as all flowers
that are created by the cores of other flowers. In this way, the algorithm is able to dynamically
remove existing flowers (and sunflowers, too) from a given hypergraph.

This provides the kernel claimed above, but can also be adapted to other problems with a
sunflower methodology. In particular, we can (in a surprisingly simple way) adapt our algorithm

1

to produce kernels for pk-matching and the more general pk-d-set-packing problem: The
instances for this problem are also d-hypergraphs and a parameter k, but the question is whether
there is a packing P ⊆ E with |P | ≥ k (that is, e∩f = ∅must hold for any two different e, f ∈ P).

Theorem 1.2. There is a fully dynamic kernel algorithm for pk-d-set-packing with at most∑d
i=0(d(k − 1))i hyperedges in the kernel, insertion time O∗(3d), and deletion time O∗(5d).

Related Work. Parameterized complexity is a fast-growing subfield of both, complexity the-
ory and modern algorithm design. There are many textbooks that present an overview over the
many facets of this field [6, 10, 12]. A useful tool of this field is kernelization: algorithms that
reduce a given instance with a guarantee (see for instance the textbook by Fomin et al. for an
recent overview [13]). The first kernel for pk-d-hitting-set is due to Flum and Grohe [12],
and a refined version was presented by van Bevern [20]. Damaschke studied full kernels for
the problem, which are kernels that contain all small solutions [7]. There are also optimized
algorithms for specific values of d: for instance the algorithm by Buss and Goldsmith [4] for
d = 2, or by Niedermeier and Rossmanith [18] and Abu-Khzam [1] for d = 3.

Dynamic algorithms can be used in a variety of monitoring applications, for instance for
maintaining a minimum spanning tree [14] or connected components [15]. There is also a
recent trend in obtaining dynamic approximation algorithms, for instance for matching and
vertex-cover [3]. Algorithms that maintain a solution for a dynamically changing input can
also be studied with descriptive complexity, as suggested by Patnaik and Immerman [19]. A
recent break-through result in this area is that reachability is contained in DynFO [8].

Iwata and Oka where the first to combine both fields by studying a dynamic quadratic
kernel for pk-vertex-cover – the restriction of the hitting set problem to ordinary graphs [16].
However, their algorithm requires O(k2) update time and works only in the dynamic promise
model: the algorithm assumes that, at any time, there actually is a size-k vertex cover in the
input graph. The algorithm was improved by Alman, Mnich, and Williams [2] to O(k) worst
case update time and O(1) amortized update time and it works in the full dynamic model. That
paper provides a fully dynamic algorithm for pk-d-hitting-set that produces a kernel of size
d! · dd+1 · kO(d2) with an update time of (d!)d · kO(d2) [2].

Organization of This Paper. After a short introduction to dynamic algorithms, data struc-
tures, and parameterized complexity in Section 2, we first illustrate the algorithm for the spe-
cial case of pk-vertex-cover in Section 3. Then, in Section 4, we generalize the algorithm to
pk-d-hitting-set. In Section 5 we argue that with slight modifications, the same algorithm can
be used to maintain a polynomial kernel for pk-d-set-packing. Appendix A contains technical
details on the implementation of basic dynamic data structures.

2 A Framework for Parametrized Dynamic Algorithms

Our aim is to dynamically maintain small kernels for graph problems with minimal update time.
To better formalize this, we begin with the standard definition of kernels and then explain which
properties a dynamic (kernel) algorithm should have. Since we are interested in constant update
times, some remarks on standard data structures will also be of interest.

Parameterized Hypergraph Problems and Kernels. The inputs for parameterized hy-
pergraph problems are, of course, hypergraphs, which are pairs H = (V,E) consisting of a
set V of vertices of some size n = |V | and a set E of hyperedges with e ⊆ V for all e ∈ E. Let
degH(v) =

∣∣{e ∈ E | v ∈ e
}∣∣ denote the degree of v in H. For a number d ∈ N, a d-hypergraph H

has |e| ≤ d for all e ∈ E. A uniform d-hypergraph has |e| = d for all e ∈ E. In particular, a graph

2

is just a uniform 2-hypergraph. We use the notation
(
V
d

)
to denote the set { e ⊆ V | |e| = d } of

all size-d hyperedges in V and similarly let
(
V
≤d

)
= { e ⊆ V | |e| ≤ d }.

Parameterized hypegraphs problems are sets Q ⊆ Σ∗ × N, where instances (H, k) ∈ Σ∗ × N
consist of a hypergraph H and a parameter k. The pk-d-hitting-set and pk-d-set-packing
problems from the introduction are examples. Note that in both cases k is the parameter while
d is fixed; the special cases for d = 2 are exactly pk-vertex-cover and pk-matching.

A core question of parameterized complexity theory is, which parameterized problems Q
are in the class FPT of fixed-parameter tractable problems. This means that (H, k) ∈? Q can
be decided in time f(k) · (|V ||E|)O(1) for some computable function f . It is well-known that
Q ∈ FPT holds if, and only if, kernels can be computed for Q in polynomial time. Kernels of
polynomial size are of special interest:

Definition 2.1 (Polynomial Kernel). Let Q ⊆ Σ∗×N be a parameterized problem and let p be
a polynomial. A kernel for an instance (w, k) ∈ Σ∗ × N and the problem Q (and p) is another
instance (w′, k′) ∈ Σ∗ × N with |w′| ≤ p(k), k′ ≤ p(k), and (w, k) ∈ Q ⇐⇒ (w′, k′) ∈ Q.

Kernel algorithms normally ensure k′ ≤ k and in our paper we always have k′ = k. It is well-
known that for pk-d-hitting-set and pk-d-set-packing polynomial kernels can be computed
in polynomial time. The objective of this paper is to maintain such kernels in a dynamic setting.

Dynamic Hypergraphs and Dynamic Kernels. Of the many different aspects of a hy-
pergraph that could possibly change in a dynamic way, in this paper we consider as fixed and
immutable the bound d on the hyperedge sizes, the vertex set V , and also the parameter k.
Only the hyperedge set E will change dynamically and it will start out as the empty set:

Definition 2.2 (Dynamic Hypergraphs). A dynamic hypergraph consists of a fixed vertex set
V = {v1, . . . , vn} and a sequence o1, o2, o3, . . . of update operations, where each oi is either
insert(ej) or delete(ej) for a hyperedge ej ⊆ V .

The dynamic hypergraph defines a sequence of hypergraphs H0,H1, . . . in the obvious
way: Starting with the empty hypergraph H0 = (V, ∅), let Hi = (V,E(Hi−1) ∪ {ej}) for
oi = insert(ej), and Hi = (V,E(Hi−1) \ {ej}) for oi = delete(ej). Note that we may restrict
the sequences to consist only of nonredundat operations: ej 6∈ E(Hi−1) as oi is an insert, and
ej ∈ E(Hi−1) in case of a delete; these requirements can easily be checked before executing oi.

A dynamic hypergraph algorithm for a hypergraph problem gets the update sequence of
a dynamic hypergraph as input and has to output a sequence of solutions, one for each Hi.
Crucially, the solution for Hi must be generated before the next operation oi+1 is read. While
after each update we could just solve the problem from scratch for the updated Hi, we may be
able to do better by taking into account that the difference between successive graphs Hi−1 and
Hi are very small: By keeping track of an internal auxiliary data structure Ai that the algorithm
updates alongside the actual input graph, we may be able to solve the original problem very
quickly after each update. In our setting, what we wish to compute for each Hi is a kernel:

Definition 2.3 (Dynamic Kernel Algorithm). Let Q be a parameterized problem and σ a
polynomial. A dynamic kernel algorithm Algo for Q with kernel size σ(k) consists of three
methods:

1. Algo.init(n, k) gets the size n of V and the parameter k as inputs, neither of which will
change during a run of the algorithm, and must initialize an auxiliary data structure A0

and a kernel (K0, k
′) for (H0, k) and Q and σ (observe that H0 = (V, ∅) holds).

2. Algo.insert(e) gets a hyperedge e to be added to Hi−1 and must update Ai−1 and Ki−1

to Ai and Ki with, again, (Ki, k
′) being a kernel for (Hi, k) and Q and σ.

3. Algo.delete(e) removes an edge instead of adding it.

3

An efficient dynamic kernel algorithm should compute Ki (and also Ai) faster than a stan-
dard static kernel algorithm that processes a whole Hi in polynomial time with respect to the
graph size n. The best one could hope for would be the other extrem: constant time per update,
even independent of the parameter k – and this is exactly what we achieve in this paper (though
the update time does depend exponentially on d). Note that we do not count the time to create
the initial empty data structure A0, which will typically have polynomial size, but which is
essentially empty. It only depends on the size n of the vertex set V and possibly k and d.

Data Structures for Dynamic Algorithms. The sequence of auxiliary data Ai relies on
standard data structures such as objects, arrays, and maps. In addition, a novel data structure
used are relevance lists, which are lists equipped with a relevance bound ρ: the first ρ elements
in the list are said to be relevant, while the others are irrelevant. This data structure supports
insertion and deletion of elements, querying the relevance status of a given element, and querying
the last relevant element – each in O(1) time. Implementation details and a formal analysis of
these lists, and for all other data structures used, are provided in Appendix A.

3 Dynamic Vertex Cover with Constant Update Time

Our first dynamic algorithm maintains kernels of size O(k2) for the vertex cover problem with
update time O(1). It is based on a well-known static kernel for the vertex cover problem:
Buss [4] noticed that in order to cover all edges of a graph G = (V,E) with k vertices, we must
pick any vertex with more than k neighbors (let us call such vertices heavy). Once all heavy
vertices have been picked and removed, if there are still more than k2 edges, then it is easy to
see that no vertex cover of size k is possible (since light vertices can cover at most k edges).

To turn this idea into a dynamic kernel, let us first consider only insertions. Initially, new
graph edges can just be added to the kernel; but at some point some vertex v “becomes heavy.”
In the static setting one would now remove v from the graph and decrease the parameter by 1.
In the dynamic setting, however, removing v with its adjacent edges would take time O(k) rather
than O(1). Instead, we leave v and its edges in the graph, but do not add further v-edges to
the kernel once v becomes heavy. We call the first k + 1 edges relevant for the vertex and the
rest irrelevant. By putting the relevant edges of a heavy vertex in the kernel, we ensure that
this vertex still must be chosen for any vertex cover. By leaving out the irrelevant edges, we
ensures a kernel size of at most O(k2). More precisely, if the kernel size now threatens to exceed
k2 + k + 1, then any additional edges will be irrelevant for the kernel since the already inserted
edges already form a proof that no size-k vertex cover exists.

Being relevant for a vertex is a “local” property: For an edge e = {u, v}, the vertex u may
consider e to be relevant, while v may consider it to be irrelevant. An edge only “makes it
to the kernel” when it is relevant for both endpoints – then it will be called needed. It is not
obvious that this is how the case of a “disagreement” should be resolved and that this is the
right notion of “needed edges,” but Lemma 3.3 shows that it leads to a correct kernel.

A Dynamic Vertex Cover Kernel Algorithm. We now turn the sketched ideas into a
formal algorithm in the sense of Definition 2.3. The initialization sets up the auxiliary data
structures: One relevance list Lv per vertex v to keep track of the edges that are relevant for v
and one relevance list L to keep track of the edges that are relevant for the kernel:

1 method DynKernelVC.init(n, k) // V = {v1, . . . , vn} holds by definition
2 for v ∈ V do
3 Lv ← new relevance list(k + 1) // Keep track of edges relevant for a vertex
4 L ← new relevance list(k2 + k + 1) // Keep track of edges relevant for the kernel

The insert operation adds an edge to the relevance lists of both endpoints of the edge.
Furthermore, it also adds the edge to L if it is needed, which meant “relevant for both sides”.

4

5 method DynKernelVC.insert(e)
6 Lu.append(e); Lv.append(e)
7 check if needed(e)

8 function check if needed(e) // assume e = {u, v}
9 if Lu.is relevant(e) ∧ Lv.is relevant(e) then

10 L.append(e)

The delete operation for an edge e is more complex: When e = {u, v} is removed from the
lists Lu, Lv, and L, formerly irrelevant edges e′ may suddenly become relevant from the point
of view of these three lists and, thus, possibly also needed. Fortunately, we know which edge e′

may suddenly have become relevant for a list: After the removal of e, the edge e′ that is now
the last relevant edge stored in the list is the (only) one that may have become relevant – and
relevance lists keep track of the last relevant element.

11 method DynKernelVC.delete(e) // assume e = {u, v}
12 L.delete(e)
13 Lu.delete(e); Lv.delete(e)
14 check if needed(Lu.last relevant); check if needed(Lv.last relevant)

In the code, we tacitly assume that borderline cases like a delete on a non-existing edge or
inserts on already-existing edges are handled sensibly.

Correctness and Kernel Size. The relevant edges in L clearly have some properties that
we would expect of a kernel: First, there are at most k2 + k + 1 of them (for the simple reason
that L caps the number of relevant edges in line 4) – which is exactly the size that a kernel
should have. Second, it is also easy to see from the code of the algorithm that all operations
run in time O(1). Two lemmas make these observations precise, where R(L) denotes the set of
relevant edges in a list L and E(L) denotes all edges in L. We say that a dynamic algorithm
maintains an invariant if that invariant holds for its auxiliary data structure right after the init
method has been called and after every call to insert and delete:

Lemma 3.1. DynKernelVC maintains the invariant |R(L)| ≤ k2 + k + 1.

Proof. The relevance list L is setup in the init method to have at most the claimed number of
relevant elements.

Lemma 3.2. DynKernelVC.insert and DynKernelVC.delete run in time O(1).

Proof. The codes itself clearly only needs time O(1) and it calls only operations on relevance
lists, all of which also only take time O(1) by Lemma A.1, which is presented in the appendix.

Third and much less obvious, R(L) and E always have the same size-k vertex covers:

Lemma 3.3. DynKernelVC maintains the invariant that (V,R(L)) and the current graph
(V,E) have the same size-k vertex covers.

Proof. One direction is trivial since R(L) ⊆ E. For the other direction, consider a size-k vertex
cover X of R(L), that is, a set X with |X| = k and X ∩e 6= ∅ for all e ∈ R(L). We need to show
that X ∩ e 6= ∅ holds for all e ∈ E. We distinguish three cases: e ∈ R(L), e ∈ E(L)−R(L), and
e ∈ E − E(L).

Case 1: The edge is in L and is relevant. The first case is trivial: If e ∈ R(L), then by
assumption we have X ∩ e 6= ∅ as claimed.

Case 2: The edge is in L, but is irrelevant. For the second case, we need an observation:

5

Claim. The degree of vertices in (V,R(L)) is at most k + 1.

Proof. Consider any v ∈ V . All edges in R(L) that contain v must be relevant edges with respect
to Lv since the function L.append if needed only allows such edges to enter L. However, the
init method setup Lv to contain at most k + 1 relevant edges.

Using this observation, we see that the second case (e ∈ E(L) − R(L)) cannot happen: L
can only have an irrelevant edge if there are already k2 +k+1 relevant edges in R(L). However,
by the claim, each of the k many x ∈ X covers at most k + 1 edges in R(L), implying that X
covers at most k(k + 1) = k2 + k edges of R(L). In particular, contrary to the assumption, one
edge of R(L) is not covered by X.

Case 3: The edge is not even in L. For the third case, let e ∈ E−E(L), that is, let e = {u, v}
be an edge that “did not make it into the L list.” This can only happen because it was irrelevant
for Lu or Lv (or both).

Recall that when e is irrelevant for a list Lu, this means that u has more than k+1 adjacent
edges in E and, hence, u must be present in any vertex cover of the graph G = (V,E). If
all the relevant edges of u are also present in R(L), then u has exactly k + 1 neighbors in the
graph (V,R(L)) and, in particular, its vertex cover X must include u. Unfortunately, it may
happen that even though a vertex u has some irrelevant adjacent edges in E, not all relevant
edges of Lu make it into L: After all, the other endpoint v of an edge e = {u, v} may also have
irrelevant adjacent edges and e may happen to be one of them. We can now try to apply the
same argument to v; but may again find yet another edge e′ and another vertex w that causes v
to have a degree less than k + 1 in R(L). Fortunately, it turns out that after a finite number of
steps, we arrive at a vertex that must be present in X. Furthermore, starting from this vertex,
we can track back to show that eventually we must have u ∈ X. The details are as follows.

Claim. There is an ordering u1, . . . , uq of the vertices of degree at least k + 1 in E such that
for each i ∈ {1, . . . , q} there are at least k + 1 − (i− 1) edges in R(L) of the form {ui, v} with
v /∈ {u1, . . . , ui−1}.

Proof. In the current graph G, each edge e has a time te when it entered the graph and these
times define a total order on the edges in E. For each vertex v, let l(v) be the last relevant edge
of Lv, that is, the edge returned by Lv.last relevant . Order the vertices of degree at least k + 1
in E according to the following rule: For i < j we must have that tl(ui) ≤ tl(uj) (if two vertices
ui and uj happen to have the same last relevant edge, they can be ordered arbitrarily).

Consider any ui. Then all edges from ui to any vertex v /∈ {u1, . . . , ui−1} are relevant for Lv

since the last relevant edge of Lv is an edge that came later than the edge {ui, v} and, hence,
{ui, v} is relevant for Lv. However, this means that the only edges of R(Lui) that do not get
passed to L can be those of the form {ui, uj} for some j ∈ {1, . . . , i− 1}. Clearly, since Lui has
k + 1 relevant edges and only i− 1 do not get passed, we get the claim.

This claim has the implication that {u1, . . . , uq} ⊆ X. We show by induction on i that
{u1, . . . , ui} ⊆ X holds. The case i = 0 is trivial. For the inductive step from i−1 to i, consider
ui. By the claim, there are k + 1− (i− 1) edges in R(L) from ui to vertices v /∈ {u1, . . . , ui−1}.
Since by the induction hypothesis we have {u1, . . . , ui−1} ⊆ X, if we do not have ui ∈ X, then
the X−{u1, . . . , ui−1} must contain enough vertices to cover the (k+1)− (i−1) edges between
ui and vertices not in {u1, . . . , ui−1}. However, |X − {u1, . . . , ui−1}| ≤ k − (i − 1) and, thus,
this is impossible.

This concludes the third case: If e ∈ E −E(L), then one or both elements of e must be one
of the ui – and we just saw that all of them are in X. Hence, as claimed, X ∩ e 6= ∅.

Put together, we get the following special case of Theorem 1.1 (the proof contains some
further details on how R(L) is kept in memory):

6

Theorem 3.4. DynKernelVC is a dynamic kernel algorithm for pk-vertex-cover with update
time O(1) and kernel size k2 + k + 1.

Proof. Lemmas 3.1, 3.2, and 3.3 together state that at all times during a run of the algorithm
DynKernelVC the hypergraph (V,R(L)) has at most k2 + k + 1 hyperedges and has the
same size-k vertex covers as the current graph. Thus, (V,R(L)) is almost a kernel except that
R(L) is actually a linked list of edges, while a kernel should be a mathematical object whose
encoding only depends on k (encoding the lists takes something like O(k2 log n) since we need
O(log n) bits to encode a vertex number). Furthermore, the whole idea behind kernelizations
is, of course, that we should be able to perform further computations on the kernel once it has
been determined. Thus, we do not wish to spend a non-constant time like O(k2) to transform
the lists into something “usable” when we actually use the kernel to find a solution.

Fortunately, it turns out that we can keep track of a “real” kernel in the form of an adjacency
matrix still with update times O(1). We need some terminology: For a set E of edges, let⋃
E = {x | ∃e ∈ E : x ∈ e } denote the set of all vertices mentioned in any edge of E. For two

graphs G1 = (V1, E1) and G2 = (V2, E2) let us write G1 ∼ G2 if G1 and G2 are isomorphic. For
two edge sets E1 and E2, let us write E1 ∼ E2 if (

⋃
E1, E1) ∼ (

⋃
E2, E2) (so vertices that are

not involved in any edges are ignored).
Our objective is the following: We wish to dynamically keep track of a graph K = (VK , EK)

with the fixed vertex set VK = {1, . . . , 2(k2 + k + 1)} such that we always have EK ∼ R(L).
(Note that vertices not covered by EK or not by R(L) are not relevant for the isomorphism;
but they are also not relevant for the vertex cover problem.) If we can maintain such an
isomorphic graph, then K is continuously a vertex cover kernel for the current graph G in the
sense of Definition 2.3: First, trivially, K has a vertex set size of at most O(k2). Second, from
Lemma 3.3 we know that (V,R(L)) and G have the same size-k vertex covers; and in particular
(V,R(L)) has a vertex cover of size at most k if, and only if, K, with EK ∼ R(L), has one.

We now show how to modify DynKernelVC so that it keeps track of a “real” kernel K
with update times O(1). The change is that whenever an edge e enters or leaves R(L), we
update K in time O(1) such that R(L) ∼ EK still holds. To achieve this, we use the following
auxiliary data structures, all of which are initialized in the init method (in addition to the lists
Lv and L):

1. An adjacency matrix of Boolean entries storing EK ⊆
(
VK
2

)
, indicating which edges are

present in K,

2. a mapping ι that stores for each vertex of
⋃
R(L) to which vertex in VK it corresponds

(and ι(x) = ⊥ for x /∈
⋃
R(L)),

3. an array D that stores for each v ∈ VK the degree of v in K, and

4. a list Z of zero degree vertex intervals in K. Each element of the list is a pair (a, b) of
numbers from VK that stands for the interval [a, b]. The semantics is that the union of
the intervals should be exactly the set of vertices in VK that have degree 0 in K. Clearly,
we can initialize the Z with the single interval [1, 2(k2 + k + 1)] to ensure that this holds
at the beginning.

Translated to code, we get:

1 method DynKernelVC.init(n, k)
2 ... // As before in the original code of the init method
3

4 // New structures for keeping track of K:
5 EK ← new array

((
VK

2

))
6 ι ← new array({1, . . . , n})
7 D ← new array(VK)

7

8 Z ← new List
9 Z.append([1, 2(k2 + k + 1)])

Let us now see how these auxiliary data structures allow us to keep track of EK such that
EK ∼ R(L) holds when edges enter or leave R(L):

Inserting Edges. Suppose e = {u, v} is about to be added to R(L). First, we test whether
u /∈

⋃
R(L) holds (by testing whether ι[u] = ⊥ holds). In this case, consider the first interval

[a, b] in Z (such an interval must exist since there will never be more than 2(k2 +k+ 1) vertices
in R(L) and, hence, there is always a vertex of degree 0 in K when a new vertex is about to
enter

⋃
R(L)). If a = b, remove this interval from Z, otherwise replace it by [a+1, b]. We think

of this as “allocating” a and will store in ι that u gets mapped to a. Next, if v /∈
⋃
R(L) holds,

we allocate a vertex from VK for it. Then both u and v have corresponding vertices in VK and
we store an edge between them in EK and adjust the values in D accordingly: The function
check if needed inside the whole algorithm gets replaced as follows:

10 function check if needed(e) // assume e = {u, v}
11 if Lu.is relevant(e) and Lv.is relevant(e) then
12 L.append(e)
13 // New part:
14 if L.is relevant(e) then
15 allocate(u)
16 allocate(v)
17 if EK [ι[u], ι[v]] = false then
18 EK [ι[u], ι[v]] ← true
19 D[ι[u]] ← D[ι[u]] + 1
20 D[ι[v]] ← D[ι[v]] + 1

where the function allocate works as follows:

21 function allocate(u)
22 if ι[u] = ⊥ then
23 [a, b] ← first element of L
24 ι[u] ← a
25 if a = b then
26 remove first element of L
27 else
28 replace first element of L by [a + 1, b]

Observe that after the above steps, EK ∼ R(L) holds and all auxiliary data structures hold
the proper values.

Deleting Edges. Suppose e = {u, v} is about to be deleted from R(L). The code for this
case is straightforward:

29 method DynKernelVC.delete(e)
30 if L.is relevant(e) then
31 // When e ∈ R(L), remove the corresponding edge from EK :
32 EK [ι[u], ι[v]] ← false
33 D[ι[u]] ← D[ι[u]]− 1 // Adjust the degrees
34 D[ι[v]] ← D[ι[v]]− 1
35 if D[ι[u]] = 0 then Z.append([ι[u], ι[u]]) // ‘‘Free’’ the vertex ι[u]
36 if D[ι[v]] = 0 then Z.append([ι[v], ι[v]]) // ‘‘Free’’ the vertex ι[v]
37

38 ... // Now the original code of the delete method

Once more, EK ∼ R(L) holds after the updates and all auxiliary data structure have also
been updated correctly.

8

4 Dynamic Hitting Set Kernels

The hitting set problem is the natural generalization of the vertex cover problem to hypergraphs.
However, allowing larger hyperedges introduces considerable complications into the algorithmic
machinery. Nevertheless, we still seek and prove an update time that is constant. More precisely,
it is independent of |V |, |E|, and k, while it does depend on d (in fact even exponentially). Such
an exponential dependency on d seems currently unavoidable, as a direct consequence of our
dynamic algorithm is a static algorithm with running time O∗(3d · |E|), and the currently best
static algorithm with a linear dependency on |E| runs in time O∗(2d · |E|).

The first core idea of our algorithm concerns a replacement notion for the “heavy vertices”
from the previous section. For this purpose the notion of sunflowers [11] is usually used –
but, they are hard to find and manage, especially dynamically. To overcome this difficulty, we
introduce a generalization of sunflowers called b-flowers for different parameters b ∈ N that will
be easier to keep track of.

The second core idea is to recursively reduce each case d to the case d−1: For a fixed d > 2,
as in the dynamic algorithm for the vertex cover problem, we compute a set of hyperedges
relevant for the kernel (the set R(L), but now called R(Ld[∅]) in the more general case), but
additionally we dynamically keep track of an instance for pk-(d− 1)-hitting-set and merge the
dynamic kernel for this instance (which we get from the recursion) with the list of hyperedges
relevant for the kernel.

4.1 From High-Degree Vertices in Graphs to Flowers in Hypergraphs

Kernelization algorithms for pk-d-hitting-set typically rely on so-called sunflowers, as sug-
gested by Flum and Grohe [12, Section 9.1]. A sunflower in a d-hypergraph H = (V,E) is a
collection of hyperedges S ⊆ E such that there is a set c ⊆ V , called the core of the sunflower,
with x∩y = c for all distinct pairs x, y ∈ S. For example, the edges adjacent to a heavy vertex v
form a (large) sunflower with core {v}. In general, any size-k hitting set has to intersect with
the core of a sunflower with more than k edges – which means that replacing large sunflowers in
hypergraphs by their cores is a reduction rule for pk-d-hitting-set. Even better, this simple
rule is guaranteed to yield a kernel since the Erdős–Rado Sunflower Lemma [11] states that
every d-hypergraph with more than kd · d! hyperedges contains a sunflower of size k + 1.

Unfortunately, it is not easy to find sunflowers for larger d in the first place, let alone to
keep track of them in a dynamic setting with constant update times. Rather than trying to
find all sunflowers, we introduce a more general concept called b-flowers. These structures are
simpler than sunflowers and, especially, easier to find.

Definition 4.1. For a hypergraph H = (V,E) and b ∈ N, a b-flower with core c is a set F ⊆ E
such that c ⊆ e for all e ∈ F and deg(V,F)(v) ≤ b for all v ∈ V − c.

Note that a 1-flower is exactly a sunflower and, thus, b-flowers are in fact a generalization
of sunflowers. A comprehensive example can be found in Figure 1.

The following property of b-flowers will be essential for our dynamic kernelization strategy
(it implies that we can replace sufficiently large flowers by their cores):

Lemma 4.2. Let F be a b-flower with core c in H and X a size-k hitting set of H. If |F | > b ·k,
then X ∩ c 6= ∅ (“X must hit c”).

Proof. If we had X ∩ c = ∅, then each v ∈ X could hit at most b hyperedges in F since
deg(V,F)(v) ≤ b. Then F can contain at most b · |X| hyperedges, contradicting |F | > b · k.

4.2 Dynamic Hitting Set Kernels: A Recursive Approach

As previously mentioned, the core idea behind our main algorithm is to recursively reduce the
case d to d−1. To better explain this idea, we explain how the (already covered) case d = 2 can

9

a

bc

d

e f g

Figure 1: A hypergraph H = ({a, b, c, d, e, f, g}, E) in which each hyperedge e ∈ E is drawn as
a line and contains all vertices it “touches”. There is a 1-flower (a sunflower) with core {a} and
the four edges {a, c}, {a, d}, {a, g}, and either {a, b, e} or {a, b, f}; just not both as b would have
degree 2. There is a 2-flower with core {a} and six edges (all except for one that includes b).
There also is a 1-flower with core {a, b}, consisting of the three red edges. Finally there is a
3-flower with core {a} containing all edges.

be reduced to d = 1 and how this in turn can be reduced to d = 0. Following this, we present
the complete recursive algorithm, prove its correctness, and analyze its runtime.

Recall that DynKernelVC adds up to k + 1 edges per vertex v into the kernel R(L) to
ensure that v “gets hit.” In the recursive hitting set scenario we ensure this differently: When
we notice that v is “forced” into all hitting sets, we add a new hyperedge {v} to an internal
1-hypergraph exclusively managed to keep track of the forced vertices (clearly the only way
to hit {v} is to include v in the hitting set). When, later on after a deletion, we notice that
a singleton hyperedge is no longer forced, we remove it from the internal 1-hypergraph once
more. Since we have to ensure that not too many new hyperedges make it into the final kernel,
we keep track of a dynamic kernel of the internal 1-hypergraph (using a dynamic hitting set
algorithm for d = 1) and then join this kernel with R(L).

Using an internal 1-hypergraph to keep track of the forced vertices allows us to change the
relevance bounds of the algorithm: For the lists Lv these were k + 1, but since we explicitly
“force” {v} into the solution by generating a new hyperedge, it is enough to set the bound to k.
Similarly, the bound for the original list L was set to k2 + k + 1 since this constitutes a proof
that no size-k vertex cover exists. In the new setting with the relevance bound for Lv lowered
to k, we can also lower the relevance bound for L to k2: All vertices v ∈ V have a degree of
at most k in R(L) and, thus, k vertices can hit at most k2 hyperedges. If L contains more
elements, we consider the (unhittable) empty hyperedge as forced and add it to the internal
1-hypergraph.

In order to dynamically keep track of a kernel for the internal 1-hypergraph, we proceed
similarly: We simply put all its hyperedges (which have size 1 or 0) in a list (it will be called
L1[∅] in the algorithm). If the number of hyperedges in this list exceeds k, we immediately
know that no hitting set of size k exists; and we “recursively remember this” by inserting the
empty set into yet another internal 0-hypergraph – this is the recursive call to d = 0.

Managing Needed and Forced Hyperedges. In the general setting (now for arbitrary d),
we need a uniform way to keep track of lists like the Lv and L for the many different internal
hypergraphs. We do this using arrays Li for i ∈ {0, . . . , d} with domains

(
V
≤i

)
, one for each

(internal, except for i = d) i-hypergraph, where each Li[s] stores a relevance list. The list Li[s]
has relevance bound ki−|s| and we only store edges e ∈

(
V
≤i

)
with e ⊇ s in it.

The idea is that, for d = 2, the list L2[{v}] represents the list Lv of DynKernelVC and
L2[∅] represents the list L. The lists L2[{u, v}] are new and will only store a single element and
are only added to simplify the code: When an edge e = {u, v} is inserted into the 2-hypergraph,
we add it to L2[e], but more importantly also to L2[{u}] and L2[{v}]. If it is relevant for both
lists, we call it needed and then also add it to L2[∅]. If L2[s] contains an irrelevant edge, then s

10

is forced, and we insert it into L1[s]. For L1, the array that manages the internal 1-hypergraph,
we have similar rules for being needed and forced. An example of how this works is shown
in Figure 2. The next two definitions generalize the idea of needed and forced hyperedges to
arbitrary d and lie at the heart of our algorithm. The earlier rules for d = 2 are easily seen to
be special cases:

Definition 4.3 (Needed Hyperedges and the Need Invariant). A hyperedge e is needed in a list
Li[s] with s (e if e ∈ R(Li[t]) holds for all t ⊆ e with s (t. A dynamic algorithm maintains
the Need Invariant if for all e ∈

(
V
≤d

)
, all s (e, and all i ∈ {0, . . . , d}, the list Li[s] contains e

if, and only if, e is needed in it.

Definition 4.4 (Forced Hyperedges and the Force Invariant). A set of vertices s is forced
by Li[s] into Li−1[s] or just forced by Li[s] if Li[s] has an irrelevant hyperedge. A dynamic
algorithm maintains the Force Invariant if for all i ∈ {1, . . . , d} and all s ∈

(
V
<i

)
, the list Li−1[s]

contains s if, and only if, s is forced by Li[s].

We will show in Lemmas 4.10 and 4.13 that the union K =
⋃d

i=0R(Li[∅]) is the sought
kernel: Each R(Li[∅]) contains (only) those hyperedges e that have not been already been taken
care of by having forced a subset s of e into the internal (i− 1)-hypergraph.

3

L2 :

1 2 4 5

6

7

8 9

10

11

12

1314 15

16 17

18

19

6

10

14

19

L1 :

Figure 2: A hitting set instance with k = 3 and a dynamic 2-hypergraph with 16 vertices, where
the sequence of operations consists of 19 edge insertions. Edges of cardinality 2 are illustrated
by a dash, while singelton edges are illustrated by a gray dot that surrounds the corresponding
vertex. In both cases, the small number indicates the timestamp at which the edge has been
inserted. The left figure illustrates the data structure L2, which (besides other information)
stores all inserted edges. Edges {u, v} that are black in the picture are needed by both of their
endpoints and, thus, relevant in L2[{u}] and L2[{v}]. In contrast, red edges are not. The only
singelton edge (the gray dot) is needed by its vertex. Black edges that are solid are needed
by the L2-kernel and, thus, are relevant in L2[∅]. The black dotted edges are not relevant in
L2[∅]. The right figure shows the data structure L1, which encodes the 1-hypergraph of “forced
subedges.” The gray singelton edges correspond to the “forced subedges” that we move down
from L2 to L1 at the corresponding timestamp. All three gray singelton edges are relevant in
L1[∅]. The red singelton edge that is inserted at timestamp 19 is not relevant in L1[∅] and, thus,
at this timestamp an empty edge is created in L0[∅].

In the following, we develop code that ensures that the Need Invariant and the Force In-
variant hold at all times. We will show that this is the case both for an insert operation and
also for delete operations. Then we show that the invariants imply that K =

⋃d
i=0R(Li[∅]) is

a kernel for the hitting set problem. Finally, we analyze the runtimes.

11

Initializiation. The initialization creates the arrays Li and the relevance lists.

1 method DynKernelHS.init(n, k, d)
2 // Keep track of relevant edges per vertex (V = {v1, . . . , vn} holds by definition):
3 for i ∈ {0, . . . , d} do
4 Li ← new array

((
V
≤i

))
5 for s ∈

(
V
≤i

)
do

6 Li[s] ← new relevance list(ki−|s|)

A remark on the run-time of this method may be in order: Recall that we opted not to
count the time needed for the initialization since the initial data structure “typically [. . .] is
essentially empty” as we wrote. However, while creating the initially empty arrays in line 4 can,
indeed, typically be done very quickly, allocating the roughly nd (empty) lists Li[s] in the loop
in the next lines will take quite some time. In an actual implementation, we would not create
any of these lists inside the init method: Rather, only when the dynamic algorithm actually
tries to access any particular Li[s] and finds Li[s] = ⊥, a list would be created.

Lemma 4.5. The Need and Force Invariant hold after the init method has been called.

Proof. All lists are empty after the initialization.

Insertions. We view insertions as a special case of “forcing an edge,” namely as forcing it
into the lists of Ld. Adding an edge e to a list Li[e] can, of course, change the set of relevant
edges in Li[e], which means that e may also be needed in lists Li[s] for s (e. It is the job of
the method fix needs downward to add e to the necessary lists.

1 method DynKernelHS.insert(e)

2 call insert(e, d) // The hyperedges of H always get inserted into Ld

3

4 function insert(s, i)
5 if Li[s] does not already contain s then // Sanity check
6 Li[s].append(s) // Add s to the trivial list . . .
7 call fix force(s, i)
8 call fix needs downward(s, s, i)
9

10 function fix needs downward(s, p, i)
11 // Ensure that the Need Invariant holds for s with respect to all Li[s′] with s′ ⊆ p,
12 // assuming that the Need Invariant holds for s with respect to all Li[s∗] with s∗ ⊇ p:
13 for s′ (p in decreasing order of size do // Add s to all Li[s′] where s is needed
14 if not Li[s′] contains s then // Sanity check
15 if ∀v ∈ p− s′ : s ∈ R(Li[s′ ∪ {v}]) then // Is s needed for Li[s′]?
16 Li[s′].append(s) // Yes: it is relevant for all its direct and hence all its supersets
17 call fix force(s′, i)
18

19 function fix force(s, i)
20 if Li[s].has irrelevant elements then // Is s forced?
21 call insert(s, i− 1)

Example 4.6. Let us illustrate how the dynamic algorithm handles the insertion and deletion
of hyperedges. We consider a dynamic 3-hypergraph with vertex set V = {u, v, w, x, y, z} and
we assume we wish to compute a hitting set kernel for k = 2. For both operations, we present
one example in the form of a table that shows the hypergraph before the operation takes place
(marked with a ?) and the data structures after the operation was applied (marked with a †).
In order to keep things clear, the tables only contain a few selected relevance lists (left), their
relevant contents (left of the line in the middle), their irrelevant content (to the right of the
line), and finally the size of the list and its bound. We highlight the size in red if it exceeds the
bound of the list, that is, if the list contains irrelevant elements (and is, thus, forced).

12

We start with the insertion of the hyperedge e = {u, v, w}. Before this operation takes
place, there are already some hyperedges in the graph (as shown in the ?-part of the following
table), but no hyperedge is forced yet. Observe that e is not part of the graph and that the
subedge s = {u} is already at its bound. Inserting e has several effects (as shown the †-part of
the following table): (i) e is added to the list L3[e]; (ii) since e is relevant in L3[e], e is added
to the lists of {u, v}, {u,w}, and {v, w} as well; (iii) e becomes needed in L3[{u}]; (iv) since it
was already at its bound, e becomes the first irrelevant element in this list; (v) this forces {u}
into L2[{u}]; (vi) since there are no other edge in L2, the edge is obviously needed in L2[∅].

Li[s] = {R(Li[s]) E(Li[s]) \R(Li[s])} size/bound

? L3[{u, v, w}] { } 0/1
L3[{u, v}] {{u, v, x} } 1/2
L3[{v}] {{u, v, x} } 1/4
L3[{u}] {{u, v, x}, {u}, {u, x, y}, {u, z} } 4/4
L3[∅] {{u, v, x}, {u}, {u, x, y}, {u, z} } 4/8

L2[{u}] { } 0/2
L2[∅] { } 0/4

† L3[{u, v, w}] {{u, v, w} } 1/1
L3[{u, v}] {{u, v, x}{u, v, w} } 2/2
L3[{v}] {{u, v, x}{u, v, w} } 2/4
L3[{u}] {{u, v, x}, {u}, {u, x, y}, {u, z} {u, v, w}} 5/4
L3[∅] {{u, v, x}, {u}, {u, x, y}, {u, z} } 4/8

L2[{u}] {{u} } 1/2
L2[∅] {{u} } 1/4

We apply some further (not specified) insertions and deletions on the resulting graph, leading
to a situation as illustrated in the ?-part of the following table. Observe that we now have a
set of edges that force (among others) the set {u, v} in L3 and the set {u} in L2. From this
graph we delete the edge e = {u, v, w}, which triggers the following sequence of events: (i) e
gets deleted from all L3[s] with s ⊆ e; (ii) {u, v, z} becomes relevant for {u, v} in L3; (iii) since
that was the last irrelevant edge for the set {u, v}, the edge {u, v} gets deleted from the graph
represented by L2; (iv) {u, z} becomes relevant for {u} in L2; (v) as this was the last irrelevant
edge, {u} gets deleted from L1; (vi) {u, z} becomes relevant for {u} and needed for L2[∅]; (vii)
{u, v, z} is now also needed in L3[{u}] and, thus, in L3[∅] as well.

13

Li[s] = {R(Li[s]) E(Li[s]) \R(Li[s])} size/bound

? L3[{u, v}] {{u, v, y}, {u, v, w} {u, v, z}} 3/2
L3[{u, y}] {{u, y, v}, {u, y, z} {u, y, x}} 3/2
L3[{u, z}] {{u, z, v}, {u, z, r} {u, z, y}} 3/2
L3[{u}] {{u, y, v}, {u, v, w}, {u, z, r} } 3/4
L3[∅] {{u, y, v}, {u, v, w}, {u, z, r} } 3/8

L2[{u}] {{u, v}, {u, y} {u, z}} 3/2
L2[∅] {{u, v}, {u, y} } 2/4

L1[{u}] {{u} } 1/1
L1[∅] {{u} } 1/2

† L3[{u, v}] {{u, v, y}, {u, v, z} } 2/2
L3[{u, y}] {{u, y, v}, {u, y, z} {u, y, x}} 3/2
L3[{u, z}] {{u, z, v}, {u, z, r} {u, z, y}} 3/2
L3[{u}] {{u, y, v}, {u, z, r}, {u, v, z} } 3/4
L3[∅] {{u, y, v}, {u, z, r}, {u, v, z} } 3/8

L2[{u}] {{u, y}, {u, z} } 2/2
L2[∅] {{u, y}, {u, z} } 2/4

L1[{u}] { } 0/1
L1[∅] { } 0/2

This concludes the example.

The method fix needs downward is more complex than strictly necessary, but we will need
the extra flexibility for the delete method later on: For two sets of vertices s and p with s ⊇ p
and a fixed number i, let us say that the Need Invariant holds for s above p if for all s′ ⊇ p we
have s ∈ E(Li[s′]) if, and only if, s is needed for Li[s′]. Let us say that the Need Invariant holds
for s below s′ if for all s′ ⊆ p we have s ∈ E(Li[s′]) if, and only if, s is needed for Li[s′]. In the
context of the insert operation, fix needs downward always gets called with s = p, meaning that
in the following lemma the premise (“the Need Invariant holds for s above p”) is trivially true.

Lemma 4.7. Let s and p with s ⊇ p be sets of vertices and let i be fixed. Suppose the Need
Invariant holds for s above p. Then after the call fix needs downward(s, p, i) the Need Invariant
will also hold for s′ below p.

Proof. Clearly, to prove the lemma, we need to show that the code of the method ensures for
all s′ ⊆ p that if s is needed in Li[s′], it gets inserted. It is the job of line 15 to test whether
such an insertion is necessary. The line tests whether ∀v ∈ p− s′ : s ∈ R(Li[s′ ∪{v}]) holds. By
Definition 4.3 of needed hyperedges, what we are supposed to test is whether for all t ⊆ s with
s′ (t we have s ∈ R(Li[t]). However, just observe that the property of being needed is “upward
closed”: if s is needed in Li[p], it is also needed in all Li[s∗] with p ⊆ s∗ ⊆ s. This implies that
assuming we process the hyperedges s′ in descending order of size (which we do, see line 13),
s will be needed for Li[s′] if, and only if, s is needed for all the hyperedges t = s′ ∪ {v} that are
one element larger than s. This is exactly what we test.

Lemma 4.8. The Need and Force Invariant are maintained by the insert method.

Proof. For the Need Invariant, observe that whenever the fix force method adds an edge s
to Li[s] in line 6, it also calls fix needs(s, s, i) right away. By Lemma 4.7, this ensures that s is
inserted exactly into those Li[s′] for s′ ⊆ s where it is needed.

For the Force Invariant, observe that we only add elements to lists of Li, which means that

14

they can only become forced – they cannot lose this status through an addition of an edge.
However, after any insertion of s into any list of Li (namely, in lines 6 and 16) we immediately
call fix forced , which inserts s into Li−1[s] if s is forced.

Deletions. The delete operation has to check and delete an edge e from all places where it
might have been inserted to, which is just from all lists Ld[s] for s ⊆ e. However, removing
e from such a list can have two side-effects: First, it can cause Ld[s] to lose its last irrelevant
element, changing the status of e from “forced” to “not forced” and we need to “unforce” it
(remove it from Ld−1[s]), which may recursively entail new deletions. Furthermore, removing
e from Ld[s] may make a previous irrelevant hyperedge (the first irrelevant hyperedge of Ld[s])
relevant, making it the last relevant hyperedge. Then one has to fix the needs for this hyperedge
once more, which may entail new inserts and forcings, but no new deletions. In detail:

1 method DynKernelHS.delete(e)
2 call delete(e, d)
3

4 function delete(s, i)
5 if Li[s] contains s then // Sanity check
6 // Delete s and subsets of s if no longer forced
7 for s′ ⊆ s do
8 Li[s′].delete(s) // Delete e from all lists that could contain it
9 if not Li[s′].has irrelevant elements then // Has s′ now lost its forced status?

10 if |s′| < i then // Can it even be in Li−1

11 call delete(s′, i− 1)
12

13 // Restore Need Invariant for hyperedges that have suddenly become relevant
14 for s′ ⊆ s do
15 f ← Li[s′].last relevant
16 call fix needs downward(f, s′, i) // (Only) the last relevant may have changed

Lemma 4.9. The Need and Force Invariant are maintained by the delete method.

Proof. Proving the Need and Force Invariants for the delete operation is trickier than for the
insert operation since a delete can, internally, trigger insert operations – namely in line 16. For
this reason, we prove by induction on i that the Need and Force Invariants still hold for all
elements in all Lj [s′] for j ≤ i, s′ ⊂ s after a call to delete(s, i). For i = 0 this is trivial since the
only possible s is ∅ and the loop only considers s′ = ∅, deletes it from L0[∅], and does nothing
else.

For the inductive step, first consider the Need Invariant on s. The loop removes s from Li[s]
and also from all Li[s′] (the loop from line 7 executes a remove operation for each s′ ⊆ s in
the next line). This ensures the Need Invariant on s. Next, observe that removing a hyperedge
from a list Li[s′] can only reduce the number of irrelevant hyperedge, meaning that s′ can only
change its status from forced to unforced. If this happens, as tested in line 9, we recursively
remove s′ from Li−1[s′]. By the induction hypothesis, this will maintain the Need and Force
Invariants on all the Lj for j < i.

While we have now correctly accounted for the needed and the forced status of s and its
subsets s′ ⊆ s, the removal of an edge s from a list Li[s′] can have a second side-effect, besides
(possibly) unforcing s′: It can also make a previously irrelevant hyperedge relevant. This
happens when, firstly, s used to be a relevant hyperedge in Li[s′] and, secondly, there was a
(first) irrelevant hyperedge f in Li[s]. In this case, the mechanics of relevance lists automatically
change the relevance status of f from irrelevant to relevant. Note that at most one edge is deleted
from Li[s′] during a call of delete(s, i), namely s, and hence at most one hyperedge f can become
relevant per list Li[s′]. Note that more than one hyperedge can be deleted from the same list
Li−1[s′] by recursive calls during a single call of delete(s, i) – but by the induction hypothesis
the Need and Force Invariants are maintained by the calls delete(s′, i− 1).

15

When a hyperedge f becomes relevant in a list Li[s′], this may change the need status of f
in sets s′′ (s: Previously, we had f /∈ R(Li[s′]) and, hence, also f /∈ R(Li[s′′]) for all s′′ (s′.
Now, however, f might be needed in some of the lists Li[s′′] “further down.” To address this, we
call fix needs(f, s′, i) in line 16, which will ensure that the Need Invariant of f is fixed below s′

(see Lemma 4.7) provided the Need Invariant did hold for f above s′. However this was the case:
the very fact that f ∈ E(Li[s′]) used to hold shows that f was already relevant and present
everywhere above s′ (otherwise, f would not have made it into Li[s′]). Since we do not know
whether f was needed before, a sanity check is in order to prevent edges from being inserted
multiple times.

Crucially, observe that both the Need Invariant and the Force Invariant now hold for all
hyperedges whose relevance status may have changed, namely s (as shown earlier) and all f in
line 15. No other hyperedges in Li change their relevance status (and for Lj with j < i the
invariants hold by the inductive assumption).

Kernel. As stated earlier, the dynamic kernel maintained by DynKernelHS is the set K =⋃d
i=0R(Li[∅]). (As stated, K is given only indirectly via d linked lists, but one can do the same

transformations as in the proof of Theorem 3.4 to obtain a compact matrix representation.)

Correctness. We have already established that the algorithm maintains the Need Invariant
and the Force Invariant. Our objective is now to show that DynKernelHS does, indeed,
maintain a kernel at all times. We start with the size:

Lemma 4.10. DynKernelHS maintains the invariant |K| ≤ kd + kd−1 + · · ·+ k + 1.

Proof. The init-method installs a relevance bound of ki for Li[∅] for i ∈ {0, . . . , d}.

Lemma 4.13 below shows the crucial property that the current K has a hitting set of size k
if, and only if, the current hypergraph does. The proof hinges on two lemmas, which we prove
first and which show that the lists we manage are flowers:

Lemma 4.11. DynKernelHS maintains the invariant that for all i ∈ {0, . . . , d} and all
s ∈

(
V

≤i−1

)
, the set E(Li[s]) is a ki−|s|−1-flower with core s.

Proof. First, for all e ∈ E(Li[s]) we have s ⊆ e since in all places in the insert-method where
we append an edge e to a list Li[s], we have s ⊆ e (in line 6 we have e = s and in line 16
we have s (e by line 13). Second, consider a vertex v ∈ V − s. We have to show that
deg(V,E(Li[s]))(v) ≤ ki−|s|−1 (recall Definition 4.1) or, spelled out, that v lies in at most ki−|s|−1

hyperedges e ∈ E(Li[s]). By the Need Invariant, all e ∈ E(Li[s]) are needed. In particular, for
t = s∪{v} Definition 4.3 tells us e ∈ R(Li[t]). Thus, { e ∈ E(Li[s]) | v ∈ e } ⊆ R(Li[s∪{v}]) and
the latter set has a maximum size of ki−|s∪{v}| = ki−|s|−1 due to the relevance bound installed
in line 6.

Lemma 4.12. DynKernelHS maintains the invariant that for all X ∈
(
V
≤k

)
and for all

i ∈ {1, . . . , d} and all s ∈
(
V
≤i

)
, if s is forced into Li−1 and if X hits all elements of E(Li[s]),

then X hits s.

Proof. By Definition 4.4, “being forced into Li−1” means that Li[s] has an irrelevant edge. In
particular, |E(Li[s])| > ki−|s|. By Lemma 4.11, E(Li[s]) is a ki−|s|−1-flower with core s. By
Lemma 4.2, since |E(Li[s])| > ki−|s| = k · ki−|s|−1, we know that X hits s, as claimed.

Lemma 4.13. DynKernelHS maintains the invariant that H and K have the same size-k
hitting sets.

16

Proof. For the first direction, let X be a size-k hitting set of H = (V,E). For i = d, i = d− 1,
. . . , i = 1, and i = 0 we show inductively that all lists Li[s] for all s ∈

(
V
≤i

)
only contain

hyperedges that are hit by X. For i = d the claim is trivial since the lists Ld[s] contain only
edges from E, all of which are hit by X by assumption. Now assume that the claim holds
for i and consider any s ∈ Li−1[s′] for some s′ ∈

(
V

≤i−1

)
. By the Need Invariant, this can only

happen if s ∈ Li−1[s] holds. By the Force Invariant, this means that s is forced by Li[s]. By
Lemma 4.12, this means that X hits s.

Since X hits all hyperedges in all lists, it also hits all hyperedges in the kernel, which is just
a union of such lists.

For the second direction, let X be a size-k hitting set of K. Let e ∈
(
V
≤d

)
be an arbitrary

hyperedge (not necessarily in E). We show by induction on i that if e ∈ E(Li[e]), then e gets
hit by X. This will show that X hits all of H: The insert-method ensures that for all e ∈ E
we have e ∈ E(Ld[e]) and, hence, they all get hit by X.

The case i = 0 is trivial since we can only have e ∈ L0[e] for e = ∅ and L0[∅] is part of the
kernel K and all its elements get hit by assumption (actually, ∅ ∈ K means that the assumption
that X hits the kernel is never satisfied; the implication is true anyway). Next, consider a
larger i and a hyperedge e ∈ E(Li[e]).

First assume that e ∈ E(Li[s]) − R(Li[s]) holds for some s ⊆ e. Then s is forced by Li[s]
since it contains an irrelevant edge (namely e). By the Force Invariant, we know that s ∈ Li−1[s]
holds and, by the inductive assumption, that X hits s. Since s ⊆ e, X hits e as claimed.

Second assume that e /∈ E(Li[s]) − R(Li[s]) holds for all s ⊆ e. Suppose there is an s ⊆ e
with e /∈ E(Li[s]). Then there is also an s that is inclusion-maximal, meaning that for all t ⊆ e
with s (t we have e ∈ E(Li[t]) and hence also e ∈ R(Li[t]) since e /∈ E(Li[t]) − R(Li[t]).
However, by definition, this means that e is needed in Li[s] and, hence, e ∈ E(Li[s]) contrary
to the assumption. In particular, we now know that for s = ∅ we have e ∈ E(Li[s]) and, thus,
also e ∈ R(Li[s]) = R(Li[∅]) ⊆ K. Since X hits all of K, it also hits e, as claimed.

Run-Time Analysis. It remains to bound the run-times of the insert and delete operations.
We show that they depend only on d, albeit exponentially, and do not depend on k nor on |V |.

Lemma 4.14. DynKernelHS.insert(e) runs in time O∗(3d).

Proof. The call DynKernelHS.insert(e) will result in at least one call of insert(s, i): The
initial call is for s = e and i = d, but the method fix force may cause further calls for different
values. However, observe that all subsequently triggered calls have the property s (e and
i < d. Furthermore, observe that insert(s, i) returns immediately if s has already been inserted.
This allows us to assume that for each s (e and i < d at most one call of the form insert(s, i)
is made (further calls are immediately suppressed).

The following notation will be convenient: We will establish a time bound tinsert(|s|, i) on
the total time needed by a call of insert(s, i) and a time bound t∗insert(|s|, i) where we do not
count the time needed by the recursive calls (made to insert in line 21), that is, the starred time
bound is for a “stripped” version of the method where no recursive calls are made. We can later
account for the missing calls by summing up over all calls that could possibly be made (but we
count each only once, due to the above argument that subsequent calls for the same parameters
can be suppressed).

In a similar fashion, let us try to establish time bounds tfix(|s′|, i) and t∗fix(|s′|, i) on the
time needed (including or excluding the time needed by calls to insert) by a call to the method
fix needs downward(s, s′, i) (note that, indeed, these times are largely independent of s and its
size – it is the size of s′ that matters).

The starred versions are easy to bound: We have t∗insert(|s|, i) = O(1) + t∗fix(|s|, i) as we
call fix needs downward for s′ = s. We have t∗fix(|s′|, i) = O∗(2|s

′|) since the run-time is clearly
dominated by the loop in line 13, which iterates over all subsets s′′ of s′. For each of these

17

2|s
′| many sets, we run a test in line 15 that needs time O(|s′|), yielding a total run-time of

t∗fix(|s′|, i) = O(|s′|2|s′|) = O∗(2|s
′|).

For the unstarred version we account for the recursive calls by summing up over all possible
such calls:

tinsert(|s|, i) = t∗insert(|s|, i) +
∑

s′(s,j∈{|s′|,...,i−1} t
∗
insert(|s′|, j)

= t∗insert(|s|, i) +
∑|s|−1

c=0

(|s|
c

)︸︷︷︸
number of s′⊆s with |s′|=c

∑i−1
j=c t

∗
insert(c, j)

Pluggin in the bound O∗(2c) for t∗insert(c, j), we get that everything following the binomial can
be bounded by O∗((d − c)2c) = O∗(2c). This means that the main sum we need to bound is∑|s|−1

c=0

(|s|
c

)
2c ≤

∑|s|
c=0

(|s|
c

)
2c. The latter is equal to 3|s|, which yields the claim of the theorem.

For later reference, we also establish a bound on tfix(|s′|, i). The crucial observation is that
all recursive calls made inside fix needs downward(s, s′, i) are insert(s′′, j) with s′′ ⊆ s′ and
j < i. In particular, the size of s is not relevant for the number of recursive calls, but the size
of s′ is. We get:

tfix(|s′|, i) = t∗fix(|s′|, i) +
∑

s′′(s′,j∈{|s′|,...,i−1} t
∗
insert(|s′′|, j).

This has the same solution as we had earlier (only now depending on s′ rather than s), namely
tfix(|s′|, i) = O∗(3|s

′|).

Lemma 4.15. DynKernelHS.delete(e) runs in time O∗(5d).

Proof. Similar to the analysis of the insert method, let tdelete(|s|, i) denote the run-time needed
by delete(s, i) and let t∗delete(|s|, i) the time to delete excluding the time needed by the recursive
calls made to delete(s′, i − 1) inside this method. In other words, we do not count the (huge)
time actually needed in line 11, where a recursive call is made, and will once more later on
account for this time by summing over all tdelete(|s|, i); but t∗delete(|s|, i) will include the run-
time needed for the second loop, starting at line 14, where we (possibly) fix the Need Invariant
for many f (this loop does not involve any recursive calls to the delete method). Note that – as
in the insertion case – if there are multiple calls of delete(s, i) for the same s and i, we only need
to count one of them since all subsequent ones return immediately (and could be suppressed).

A call to delete(s, i) clearly spends at most time O∗(2|s|) in the first loop (starting on line 7)
if we ignore the recursive calls. For the second loop, we iterate over all s′ ⊆ s and for each of
them we call fix needs downwards(f, s′, i):

t∗delete(|s|, i) = O∗(2|s|) +
∑

s′⊆s tfix(|s′|, i).

With the bound of O∗(3|s
′|) established in the proof of Lemma 4.14 for tfix(|s′|, i), we can focus

on bounding
∑

s′⊆s 3|s
′| =

∑|s|
c=0

(|s|
c

)
3c and this is equal to 4|s|. Thus, t∗delete(|s|, i) = O∗(4|s|).

Finally, we can now bound the total run-time of the delete method by summing over all
recursive calls:

tdelete(|s|, i) = t∗delete(|s|, i) +
∑

s′⊆s,j∈{|s′|,...,i−1} t
∗
delete(|s′|, j).

Plugging in O∗(4|s
′|) for t∗delete(|s′|, j) we get that the crucial sum is∑

s′⊆s 4|s
′| =

∑|s|
c=0

(|s|
c

)
4c = 5|s|,

yielding tdelete(|s|, i) = O∗(5|s|) as claimed.

Putting it all together, we get:

Proof of Theorem 1.1. The claim follows from Lemmas 4.10, 4.13, 4.14, and 4.15.

18

5 Dynamic Set Packing Kernels

A bit surprisingly, the dynamic kernel algorithm we developed in the previous section works,
after a slight modification, also for the set packing problem, which is the “dual” of the hitting
set problem: Instead of trying to “cover” all hyperedges using as few vertices as possible, we
must now “pack” as many hyperedges as possible. These superficially quite different problems
allow similar kernel algorithms because correctness of the dynamic hitting set kernel algorithm
hinges on Lemma 4.2, which states that every size-k hitting set X must hit the core of any
b-flower F with |F | > b · k. It leads to the central idea behind the complex management of
the lists Li[s]: The lists Li[s] were all b-flowers for different values of b by construction and the
moment one of them gets larger than b · k, we stop adding hyperedge to its relevant part and
instead “switch over to the core s” by adding s to Li−1[s]. It turns out that a similar lemma
also holds for set packings:

Lemma 5.1. Let F be a b-flower with core c in a d-hypergraph H = (V,E) and |F | > b·d·(k−1).
If E ∪ {c} has a packing of size k, so does E.

Proof. Let P be the size-k packing of E∪{c}. If c /∈ P , we are done, so assume c ∈ P . For each
p ∈ P −{c}, consider the hyperedges in e ∈ F with p∩ e 6= ∅. Since p has at most d elements v
and since each v lies in at most b different hyperedges of the b-flower F , we conclude that p
intersects with at most d · b hyperedges in F . However, this means that the (k − 1) different
p /∈ P − {c} can intersect with at most (k − 1) · b · d hyperedges in F . In particular, there is a
hyperedge f ∈ F with f ∩ p = ∅ for all p ∈ P − {c}. Since F ⊆ E, we get that P − {c} ∪ {f} is
a packing of E of size k.

Keeping this lemma in mind, suppose we modify the relevance bounds of the lists Li[s] as
follows: Instead of setting them to ki−|s|, we set them to (d(k − 1))i−|s|. Then all lists are
b-flowers for a value of b such that whenever more than b · d(k − 1) hyperedges are in Li[s], the
set s gets forced into Li−1[s]. Lemma 5.1 now essentially tells us that instead of considering the
flower E(Li[s]), it suffices to consider the core s. Thus, simply by replacing line 6 inside the
init method as follows, we get a dynamic kernel algorithm for pk-d-set-packing:

6 Li[s] ← new relevance list
((
d(k − 1)

)i−|s|)
// Modified relevance bounds

Proof of Theorem 1.2. We have to show that there is an algorithm DynamicSPKernel that
is a dynamic kernel algorithm for pk-d-set-packing with at most

∑d
i=0(d(k − 1))i hyperedges

in the kernel, insertion time O∗(3d), and deletion time O∗(5d).
Clearly, the analysis of the kernel size and of the runtimes is identical to the hitting

set case. We only need to show that an analogue of Lemma 4.13 holds, which stated that
DynamicHSKernel maintains the invariant that H and K have the same size-k hitting sets.
We now have to show for H = (V,E):

Claim. DynamicHSKernel maintains the invariant that E has a size-k packing if, and only
if, K does.

Proof. We start with an observation: For every hyperedge e ∈ E there is a subset s ⊆ e with
s ∈ K. To see this, for a given e consider the smallest i such that there is an s ⊆ e with
s ∈ E(Li[s′]) for some s′ ⊆ s (such an i, s, and s′ must exist, since at least for s = s′ = e and
i = d we have the property s ∈ E(Li[s′])). If we have s ∈ R(Li[∅]), we have s ∈ K as claimed.
Otherwise, there must be an inclusion-maximal t ⊆ s′ such that s ∈ E(Li[t]) − R(Li[t]) (as
we have s /∈ R(Li[∅]), but s ∈ E(Li[s′])). But, then, t would be forced into Li−1[t] and hence
t ∈ E(Li−1[t]) would hold, violating the minimality of i.

We now prove the claim by proving two directions. The first direction is easy: Consider a
packing P of E. By the above observations, for every p ∈ P there is a set sp ∈ K with sp ⊆ p.
Then {sp | p ∈ P} is a packing of size k in K.

19

For the second direction, let P be a packing of K of size k. For a number i ∈ {0, . . . , d}
let Ai =

⋃
s∈

(V
≤i

)E(Li[s]) be the set of all hyperedges “mentioned in Li[s] for some s” and let

Bi =
⋃d

j=iAj be the “hyperedges mentioned in some Ld[s], Ld−1[s], . . . , Li[s] for some s.”

Observe that K ⊆ B0 and that E = Ad = Bd (since e ∈ Ld[e] holds for all e ∈ E and no edges
e /∈ E make it into any Ld[s]). Since P is a packing of K ⊆ B0, we know that B0 has a size-k
packing. We show by induction on i that all Bi have a size-k packing and, hence, in particular
Bd = E as claimed.

For the inductive step, let Bi−1 have a size-k packing and let P be one of these with the
minimum number of elements that do not already lie in Bi (that is, which lie only in Ai−1). If
the number is zero, P is already a size-k packing of Bi; so let p ∈ P −Bi. By the force property,
a hyperedge p can lie in Ai−1 only because it was forced, that is, because Li[s] has an irrelevant
hyperedge. This means that E(Li[s]) ⊆ Bi is a (d(k − 1))i−|s|−1-flower (by Lemma 4.11 where
we clearly just have to replace k by d(k−1)). Since |E(Li[s])| is larger than the relevance bound
of (d(k − 1))i−|s|, Lemma 5.1 tells us that there is a set f ∈ E(Li[s]) such that P − {p} ∪ {f}
is also a packing of Bi. Since f ∈ Bi, this violates the assumed minimality of P . Thus, P must
already have been a size-k packing of Bi.

6 Conclusion

We have introduced a fully dynamic algorithm that maintains a pk-d-hitting-set kernel of
size O(kd) in update time O∗(5d). Since pk-d-hitting-set has no kernel of size O(kd−ε) unless
coNP ⊆ NP/poly [9], and since the currently best static algorithm requires time O∗(2d · |E|) [20],
we have essentially settled the dynamic complexity of computing hitting set kernels. It seems
possible that the update time can be bounded even tighter with an amortized analysis.

The algorithm has the useful property that any size-k hitting set of a kernel is a size-k hitting
set of the input graph. Therefore, we can also dynamically provide the following “gap” approx-
imation: Given a dynamic hypergraph H and a number k, at any time the algorithm either
correctly concludes that there is no size-k hitting set, or provides a hitting set of size at most∑d

i=1 k
i. A natural next step would be to turn this idea into a “real” dynamic approximation

algorithm for hitting-set.

20

A Implementation Details of Data Structures

The dynamic kernel algorithms that we present in this paper internally employ different stan-
dard dynamic data structures like linked lists or small arrays that allow update operations in
time O(1). In the following, for completeness, we sketch how these basic data structures can be
implemented so that all basic operations work in constant time.

We will often store and treat mathematical entities like edges or sequences as objects in the
sense of object-oriented programming. As is customary, they are just blocks of memory storing
the object’s current attributes and the object can be referenced with a pointer to the start of
the memory block. For an object X we write X.attribute for the current value of an attribute.

By arrays we refer to the usual notion of arrays that store a value for each index number
from an immutable domain D = {1, . . . , r}. We write A[i] for the value stored at position
i ∈ D, write A[i] ← v to indicate that we store the value v (typically an object or a number)
at the ith position in A, write A[i] = ⊥ to indicate that nothing is stored at an address i,
and write newarray(D) for the operation that allocates a new, empty array with domain D.
For convenience, we also allow domains D that are not sets of numbers, but whose elements
can easily be mapped to numbers. For instance, we would also allow the domain D =

(
V
2

)
of

undirected edges since we can easily map D to
{

1, . . . ,
(
n
2

)}
. We can then write G[e]← v to store

a value v for an edge e = {u, v}. Clearly, for hypergraphs this can be generalized to D =
(
V
≤d

)
for fixed constants d since this D, too, can easily be mapped to elements of

{
1, . . . ,

∑d
i=0

(
n
i

)}
.

By storing arrays as tables of size O(r), reading from and writing to an array can be done in
time O(1) for any reasonable machine model. Unfortunately, this model of storing values is not
very memory-efficient when A[i] = ⊥ holds for most i. In this case it is better to store A as
a hash table. In practice, hash tables also allow us to read and write in time O(1). For our
purposes, we just assume in the following that in whatever way arrays are really implemented,
reading and writing from arrays can be done in time O(1).

Maps (also known as associative arrays) are similar to arrays, but may be indexed by keys k,
which can be arbitrary objects, and not just by numbers from a small domain. We still write
M [k] for the value v stored at the key k (and M [k] = ⊥ if nothing is stored) and write M [k]← v
to indicate that we store the value v for the key k, possibly replacing any previous value stored
for k. Implementing maps is normally much trickier than implementing arrays, but we will only
need and use maps that store values for a constant number of keys. In this case, even if we
implement accesses using just a linear search in a normal array, all reading and writing can be
done in time O(1).

We will use the standard data structure of doubly-linked lists a lot, which we will just refer
to as lists. We consider lists L to be objects that store pointers to the first and last cell of the
list. Each cell stores pointers to the next and the previous cell in the list plus a pointer to an
object, called the payload of the cell. For a list L, we write L.append(x) to indicate that a new
cell c gets created with x as its payload and then c is added to the list at the end (and the last
and, possibly, first cells stored in L are updated appropriately).

Quite less standard, when creating a cell c for a list L, we also store the cell c in x: We
assume that x has an attribute lists that is a map and we execute x.lists[L] ← c. In other
words, inside x, we store a back-pointer to the cell c. This allows us to perform the operation
L.delete(x) without being given the cell c: We first lookup the cell c that has x as its payload in
the map x.lists and can then easily remove the cell from the doubly-linked list in constant time.
Storing back-pointers in objects allows us to remove elements in time O(1) provided that (i) no
element is added more than once to a list (this will always be the case) and (ii) each element is
added only to a constant number of lists (this will also always be the case).

The final dynamic data structure that we will need in our algorithms is more specific to the
needs of the present paper: relevance lists. These are normal lists with a parameter ρ ∈ N in
which the first ρ elements are “more relevant” than later elements (with respect to the order of

21

the elements inside the list). Once a relevance list L for a bound ρ has been allocated by the call
new relevance list(ρ), we wish the following to hold for its elements: If there are only ρ or less
elements in L, all of them are relevant; but if there are more, all elements after the ρth element
are irrelevant. The operations we wish to support (in time O(1)) in addition to the normal list
operations append and delete are L.is relevant(x), which should return whether x is one of the
first ρ elements in L, and L.last relevant , which should return the last relevant element of the
list, respectively. For convenience, we will also use L.first irrelevant , which is the successor of
L.last relevant (and thus ⊥ if there are no irrelevant elements), and L.has irrelevant elements,
which just checks whether L.last relevant has a successor.

Note that it is not immediately clear how the two additional operations of relevance list can
be implemented in time O(1): The relevance status of an element can change when far-away
elements get added or deleted. The following lemma shows how this can be achieved:

Lemma A.1. A relevance list can be implemented such that the methods L.is relevant(x) and
L.last relevant run in time O(1).

Proof. A relevance list object L stores the immutable bound ρ as an attribute. It also stores
the length of the list using an additional attribute (just increment or decrement it as needed).
To keep track of which elements x are relevant with respect to L and which one is the last of
them, we use two kinds of “trackers”: First, we store one bit of information in each element x
as follows. In x we have, in addition to the map attribute lists mentioned earlier, another
attribute relevances. It is also a map and we set x.relevances[L] ← true for relevant x and
set x.relevances[L] ← false otherwise. Clearly, if we can keep these values up-to-date, we can
implement L.is relevant(x) simply as returning x.relevances[L]. Second, in L we store a pointer
to the last relevant element in an attribute last relevant . Once more, if we can keep this pointer
up-to-date, we can trivially access it in time O(1).

To keep the introduced trackers up to date, first consider the operation L.append(x): Before
we insert x, we check whether the length of L is at most ρ − 1. If so, after x has been
appended, it is flagged as relevant (x.relevances[L] ← true) and L.last relevant ← x; and
otherwise it is flagged as irrelevant and L.last relevant is not changed. Next, consider the
operation L.delete(x). If x is not relevant (x.relevances[L] = false), we can simply delete
it. However, if x is relevant, deleting x will make the first irrelevant element (if it exists)
relevant: before deleting x, if L.last relevant has a successor s, we set L.last relevant ← s and
s.relevances[L]← true. As a special case, if x happens to be the last relevant element and has
no successor, set L.last relevant to the predecessor of x.

Note that all operations needed to keep the trackers up-to-date can be implemented to run
in time O(1), yielding the claim.

22

References

[1] F. N. Abu-Khzam. A Kernelization Algorithm for d-Hitting Set. Journal of Computer and
System Sciences, 76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.002.

[2] J. Alman, M. Mnich, and V. Vassilevska Williams. Dynamic Parameterized Problems and
Algorithms. In Proceedings of the 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 41:1–41:16,
2017. doi:10.4230/LIPIcs.ICALP.2017.41.

[3] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic Fully Dynamic Data
Structures for Vertex Cover and Matching. In Proceedings of the 26th ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
785–804, 2015. doi:10.1137/1.9781611973730.54.

[4] J. F. Buss and J. Goldsmith. Nondeterminism Within P. SIAM Journal on Computing,
22(3):560–572, 1993. doi:10.1137/0222038.

[5] Y. Chen, J. Flum, and X. Huang. Slicewise Definability in First-Order Logic with Bounded
Quantifier Rank. In Proceedings of the 26th EACSL Annual Conference on Computer
Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, pages 19:1–19:16, 2017.
doi:10.4230/LIPIcs.CSL.2017.19.

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer Berlin Heidelberg, 2015.

[7] P. Damaschke. Parameterized Enumeration, Transversals, and Imperfect Phylogeny Re-
construction. Theoretical Computer Science, 351(3):337–350, 2006. doi:10.1016/j.tcs.

2005.10.004.

[8] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. Reachability Is in
DynFO. Journal of the ACM, 65(5):33:1–33:24, 2018. doi:10.1145/3212685.

[9] H. Dell and D. van Melkebeek. Satisfiability Allows No Nontrivial Sparsification Unless
the Polynomial-Time Hierarchy Collapses. Journal of the ACM, 61(4):23:1–23:27, 2014.
doi:10.1145/2629620.

[10] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[11] P. Erdős and R.Rado. Intersection Theorems for Systems of Sets. Journal of the London
Mathematical Society, 1(1):85–90, 1960.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006. doi:10.1007/3-540-29953-X.

[13] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Pa-
rameterized Preprocessing. Cambridge University Press, 2018.

[14] M. Henzinger and V. King. Maintaining Minimum Spanning Forests in Dynamic Graphs.
SIAM Journal on Computing, 31(2):364–374, 2001. doi:10.1137/S0097539797327209.

[15] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-Logarithmic Deterministic Fully-
Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Edge, and Biconnec-
tivity. Journal of the ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

23

http://dx.doi.org/10.1016/j.jcss.2009.09.002
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.41
http://dx.doi.org/10.1137/1.9781611973730.54
http://dx.doi.org/10.1137/0222038
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.19
http://dx.doi.org/10.1016/j.tcs.2005.10.004
http://dx.doi.org/10.1016/j.tcs.2005.10.004
http://dx.doi.org/10.1145/3212685
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1137/S0097539797327209
http://dx.doi.org/10.1145/502090.502095

[16] Y. Iwata and K. Oka. Fast Dynamic Graph Algorithms for Parameterized Problems.
In Proceedings of the 14th Scandinavian Symposium and Workshop on Algorithm The-
ory SWAT, Copenhagen, Denmark, July 2-4, 2014, pages 241–252, 2014. doi:10.1007/

978-3-319-08404-6_21.

[17] R. M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, pages 85–103, 1972. doi:
10.1007/978-1-4684-2001-2_9.

[18] R. Niedermeier and P. Rossmanith. An Efficient Fixed-Parameter Algorithm for 3-Hitting
Set. Journal of Discrete Algorithms, 1(1):89–102, 2003. doi:10.1016/S1570-8667(03)

00009-1.

[19] S. Patnaik and N. Immerman. DynFO: A Parallel, Dynamic Complexity Class. Journal of
Computer and System Sciences, 55(2):199–209, 1997. doi:10.1006/jcss.1997.1520.

[20] R. van Bevern. Towards Optimal and Expressive Kernelization for d-Hitting Set. Algorith-
mica, 70(1):129–147, September 2014. doi:10.1007/s00453-013-9774-3.

24
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/978-3-319-08404-6_21
http://dx.doi.org/10.1007/978-3-319-08404-6_21
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1016/S1570-8667(03)00009-1
http://dx.doi.org/10.1016/S1570-8667(03)00009-1
http://dx.doi.org/10.1006/jcss.1997.1520
http://dx.doi.org/10.1007/s00453-013-9774-3

