
Capacity-Approaching Deterministic Interactive Coding

Schemes Against Adversarial Errors

Gil Cohen∗ Shahar Samocha†

October 31, 2019

Abstract

We devise a deterministic interactive coding scheme with rate 1− O(
√

ε log(1/ε))

against ε-fraction of adversarial errors. The rate we obtain is tight by a result of Kol

and Raz [KR13]. Prior to this work, deterministic coding schemes for any constant

fraction ε > 0 of adversarial errors could obtain rate no larger than 1/2. Achieving

higher rate was obtained either using probabilistic coding schemes [Hae14] or otherwise

assumed weaker error models such as binary symmetric channels [KR13, GHK+16],

erasure channels or feedback channels [GH15].

∗Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. The research leading to these

results has received funding from the Israel Science Foundation (grant number 1569/18) and from the Azrieli

Faculty Fellowship. Email: gil@tauex.tau.ac.il.
†Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. This research has received

funding from the Blavatnik Computer Science Research Fund. Email: samocha@mail.tau.ac.il.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 147 (2019)

Contents

1 Introduction 1

1.1 Related work . 3

1.2 Deterministic coding schemes and tree codes 4

1.3 Proof idea . 5

1.3.1 Tree codes: four colors suffice and are necessary 5

1.3.2 Palette-alternating tree codes . 6

1.3.3 Palette-alternating tree codes: further discussion and generalization . 8

1.3.4 Synchronization . 9

1.3.5 Clusters of failed decoding rounds . 10

1.4 Organization . 10

2 Preliminaries 10

2.1 Coding for interactive communication . 11

2.1.1 Communication protocols . 11

2.1.2 The pointer jumping game . 12

2.1.3 Resilient protocols and interactive coding schemes 12

3 Binary Tree Codes: Four Colors Suffice 12

3.1 Improving the distance . 16

4 Palette-Alternating Tree Codes 18

5 The Interactive Coding Scheme 23

5.1 The coding scheme . 24

5.2 A simpler analysis with sub-optimal rate . 26

5.3 Optimal analysis . 29

1 Introduction

Communication complexity addresses a basic question: If several parties wish to compute a

function of the information they jointly possess, how long does their conversation need to be?

In its most basic form, one considers two parties, Alice and Bob, that would like to jointly

compute a function f : {0, 1}n×{0, 1}n → {0, 1} of their respective inputs x, y ∈ {0, 1}n. The

parties can communicate over a channel, and their goal is to compute f(x, y) by exchanging

as few bits as possible.

An interactive computation as above is performed via a communication protocol π which

consists of a pair of algorithms πA and πB run by Alice and Bob, respectively. In this paper we

focus on deterministic protocols, that is, πA and πB are deterministic algorithms. Informally,

the communication is performed in rounds where the protocol dictates what is sent in each

round based on the round number, the input of the party, and the bits received so far. After

some number of rounds r = r(x, y) the protocol terminates, at which point both parties

know f(x, y). The (deterministic) communication complexity of the protocol π is given by

CC(π) = maxx,y r(x, y). The communication complexity of f , denoted by CC(f), is the

minimum of CC(π) over all protocols π that compute f .

Interactive coding schemes

One aspect that is always an issue when considering communication are errors in transmission

introduced by imperfect or compromised channels. The research field of coding for interactive

communication that addresses this issue was initiated in a sequence of seminal papers by

Schulman [Sch92, Sch93, Sch96], and is by now an active and exciting research field (see

Gelles’s excellent survey [Gel17]). There are several models one can consider. For examples,

transmitted bits can be erased (replaced with a senseless symbol ⊥) or worse–flipped–leaving

no trace to the occurred error. In this paper we focus on perhaps the most well-studied model

in which bits can be flipped. Further, we consider the most difficult setting of adversarial

errors in which any ε-fraction of the bits might be flipped.

A protocol π is said to be ε-resilient if the protocol preserves its functionality even at

the presence of ε-fraction of adversarial errors. The ε-resilient communication complexity of

f , denoted by CCε(f), is the minimum of CC(π) over all ε-resilient protocols π that compute

f . For any fixed function f it is clear that CCε(f) is non-decreasing as ε increases. In the

extreme cases CC0(f) = CC(f) whereas CC1(f) =∞, namely, CC1(f) is unbounded.

1

Channel capacity

Focusing on the channel itself, rather than on any specific function f , one can define the

channel capacity Cap : [0, 1]→ [0, 1] by

Cap(ε) = inf
f

(
CC(f)

CCε(f)

)
,

where the infimum is taken over all functions f : {0, 1}n × {0, 1}n → {0, 1} for all n ≥ 1.

Note that Cap(0) = 1 whereas Cap(1) = 0. A fundamental problem in interactive coding

theory, and the focus of this work, is the study of the channel capacity Cap(ε).

We remark that the channel capacity can be defined with respect to other models and a

huge body of work is devoted to the study of the channel capacity in our setting as well as for

other channels, most notably binary symmetric channels (BSC) in which every bit is flipped

independently with probability ε. Moreover, one needs to specify other properties of the

protocols so as to formalize the problem. For example, is the turn of speak predetermined

by the protocol or can it depend on the exchanged bits? In case of such “adaptive” protocols,

what happens if both parties send a message at the same round?

As in most works, we focus on non-adaptive protocols in which the turn of speak is fixed

in advance. For concreteness, we focus on alternating protocols where Alice speaks at even

rounds and Bob speaks at odd rounds. We made this choice mostly for convenience and

our results can be straightforwardly generalized. We also assume that the channel is binary.

This is the most difficult setting and allowing for channels over a larger alphabet, especially

one that can depend on the error parameter ε, only makes the problem of devising protocols

easier.

As mentioned, Cap(0) = 1. The first and most basic question one should ask is whether

there exists any ε > 0 for which Cap(ε) > 0, namely, can deterministic protocols tolerate

some constant fraction of adversarial errors? This fundamental question was settled in Schul-

man’s seminal work [Sch93]. Braverman and Rao [BR11] obtained a significant quantitative

improvement on ε by showing that Cap(1/8− τ) > 0 for every τ > 0.

Both in Schulman’s coding scheme as well as in Braverman-Rao’s scheme, the lower

bound obtained on Cap is some small constant and, in particular, it cannot be taken larger

than 1/2 (see Section 1.3.1). The begging question is then: Is Cap(ε) bounded above by

some universal constant ρmax < 1 for every ε > 0 or can it approach 1? Put differently, is

there an inherent blowup in communication when deterministic protocols are faced against

any constant fraction of adversarial errors or does the overhead can be made smaller as

ε→ 0? Despite all the remarkable progress on interactive coding schemes, this basic question

2

remained open, and is addressed in this work.

Theorem 1.1 (Main result). Cap(ε) ≥ 1−O(
√
ε log(1/ε)).

The bound we obtain in Theorem 1.1 is tight by a result of Kol and Raz [KR13] (see

Section 1.1). Moreover, as mentioned, prior to this work, deterministic coding schemes for

adversarial errors could only obtain rate smaller than 1/2 for any ε > 0. However, the channel

capacity is much better understood when considering the analog question in randomized

communication complexity or when considering BSC. We turn to present the most relevant

works in Section 1.1 and refer the reader to [Gel17] for a comprehensive treatment of this

huge body of work. In Section 1.2 we discuss interactive coding schemes and tree codes.

Then, in Section 1.3, we present the ideas that go into the proof of Theorem 1.1.

1.1 Related work

As mentioned, channel capacity can be defined with respect to other communication com-

plexity classes. In particular, one can consider the randomized communication complexity

of a function RC(f) and its ε-resilient analog RCε(f) against adversarial errors. Both lo-

cal randomness and shared randomness are studied in the literature. The stated results in

this section concern with local randomness. The analog problem is then to understand the

channel capacity of randomized communication complexity

RCap(ε) = inf
f

(
RC(f)

RCε(f)

)
.

There has been much work on this problem. In particular, Haeupler [Hae14] proved

that RCap(ε) = 1 − O(
√
ε log log 1/ε) if one is wise to exploit the flexibility offered by

adaptive protocols. Haeupler further obtained a slightly stronger result of 1 − O(
√
ε) for

binary symmetric channels. In general, BSC are much better understood compared to the

adversarial error model. In a tour de force result, Kol and Raz [KR13] gave a tight bound

of 1 − Θ(
√
ε log 1/ε) on the channel capacity in this setting for non-adaptive probabilistic

protocols. Their bound clearly holds for adversarial errors - rendering our result tight.

An efficient interactive coding scheme for deterministic communication achieving this bound

was obtained by Gelles et al. [GHK+16]. Further, a deterministic scheme against adversarial

errors with rate approaching 1 was obtained when the fraction of errors is bounded by 1/ log r,

r being the communication complexity of the protocol.

We stress that there are many other natural models that have been studied in the lit-

erature. For example, high-rate probabilistic protocols were obtained by Gelles and Haeu-

pler [GH15] against adversarial erasure channels (where bits are replaced by ⊥ rather than

3

being flipped) or assuming a so-called feedback channel–an error-free channel over which

arbitrary information cannot be transmitted yet the sender can learn about a corruption

using the channel. Interestingly, the rate achieved in this setting is 1−O(ε log 1/ε). Another

model that was studied allows for an adaptive number of bits to be exchanged in each round.

Efremenko, Haramaty and Kalai [EHK18] obtained a coding scheme in this setting with rate

1− Õ(4
√
ε) and a constant blowup in the round complexity.

We again stress that it is impossible to do justice with the vast body of work on inter-

active coding theory. In particular, we did not discuss the many works that aimed towards

maximizing the error parameter tolerable or that obtain efficient protocols for some constant

error parameter and rate (e.g, [BK12, BKN14, GBHS14, GH14, EGH15]). The interested

reader is again referred to [Gel17].

1.2 Deterministic coding schemes and tree codes

Resilient protocols are typically obtained by devising an interactive coding scheme which,

informally, is a compiler CSε that is parameterized by the resiliency parameter ε. Given a

protocol π, the interactive coding scheme produces an ε-resilient protocol CSε(π) = πε that

computes the same function as π. The goal is to design an interactive coding scheme with

low overhead in communication. Namely, one would like to maximize ρ(π) = CC(π)/CC(πε).

The rate of the interactive coding scheme ρ(CSε) is the infimum of ρ(π) over all protocols π.

Note that ρ(CSε) is a function only of ε and that Cap(ε) ≥ ρ(CSε).

When considering randomized protocols in which πε is allowed to use randomness, one

might hope to utilize hashing-based verifications that are performed from time to time so

as to make sure that the transmission was received correctly, and otherwise to “rewind” to

an earlier point. While absolutely non-trivial to implement, such ideas were indeed used for

devising essentially all probabilistic coding schemes [Sch92, BK12, BKN14, KR13, Hae14].

When considering deterministic coding schemes, however, the use of hashing-based tech-

niques is off the table. The powerful advantage of unpredictability that probabilistic proto-

cols can have over the adversary who controls the channel is no longer available. A priori,

it is not at all clear that in the deterministic setting in which the adversary has a complete

knowledge of the protocol, that interactive coding schemes exist.

The novel idea suggested by Schulman is to bypass the lack of randomness by using a

powerful combinatorial object called a tree code which, remarkably, even in the presence

of adversarial errors allows the parties to have, in many rounds, a correct decoding of all

messages sent so far. We turn to present the formal definition of a tree code.

4

Let T be a rooted binary tree that is endowed with an edge coloring from some ambient

color set (or alphabet) Σ. Let u, v be a pair of vertices in T with equal depth and a least

common ancestor w. Let ` be the distance, in edges, from u to w. Let pu, pv ∈ Σ` be the

sequences of colors on the path from w to u and to v, respectively. We define h(u, v) to be

the relative Hamming distance between pu and pv.

Definition 1.2 (Tree codes [Sch93]). Let T be the complete rooted infinite binary tree. The

tree T , together with an edge-coloring of T by a color set Σ is called a tree code with distance

δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. When there is

no δ > 0 for which T is a tree code with distance δ we say that T has vanishing distance.

Schulman [Sch93] proved that for every distance parameter δ < 1 tree codes with a con-

stant number of colors c = c(δ) exist. Tree codes are at the core of every known deterministic

coding scheme against adversarial errors, and so the above surprising combinatorial fact is,

in a sense, the only explanation we have for the existence of deterministic coding schemes

against adversarial errors.

1.3 Proof idea

In this section we give an informal presentation of the ideas that go into the proof of Theo-

rem 1.1.

1.3.1 Tree codes: four colors suffice and are necessary

As mentioned, every known deterministic coding scheme (e.g.,[Sch93, BR11]) is based on

tree codes. Although tree codes are used in different ways by different interactive coding

schemes, one aspect is common to all: When a party wishes to send a bit, a suitable color

from Σ is sent instead. Thus, the rate of all known deterministic protocols is bounded above

by 1/ log2 |Σ|. One is led to ask a very natural combinatorial question–what is the least

number of colors cmin for which there exists a tree code with a non-vanishing distance?

We observe next that cmin ≥ 4 and, as a result, the rate of any coding scheme that uses

a tree code instead of sending the bits in the clear cannot exceed 1/2, let alone approach

1. To see that 4 colors are necessary, consider any 3-color tree code. First, we may assume

that every two siblings are connected to their parent with edges having distinct colors as

otherwise the distance of the tree code is 0. Now, let u, v be any two vertices. Out of u, v go

four edges and so by the pigeonhole principal in every 3-coloring, two of these edges share

the same color. By the above, one of these edges goes out of u and the other goes out of v.

5

This implies that, starting from the two sons of the root, we can construct two paths of any

desired length n ≥ 1 with the same color pattern, establishing that the tree has vanishing

distance.

Based on the ideas Schulman introduced to prove the existence of tree codes with a

constant number of colors, we were able to complement the above observation and show

that cmin ≤ 4. Hence, 4 colors suffice and are necessary for a tree code with non-vanishing

distance. Furthermore, the distance turned out to be fairly high.

Theorem 1.3. There exists a 4-color tree code with distance 0.136.

As Schulman’s original proof for the existence of tree codes, Theorem 1.3 is noncon-

structive. Coming up with explicit constructions of non-vanishing distance tree codes with a

constant number of colors is one of the most challenging problems in this field [Sch94, GMS11,

Bra12, Pud16, MS14, GHK+16, CHS18, NW19]. The currently best known result [CHS18]

guarantees any designated distance δ < 1 when using (log n)Oδ(1) colors at depth n. This

paper, however, concerns with the information-theoretic aspect of the channel capacity, and

the computational aspects are left for future work.

While our proof of Theorem 1.3 closely follows Schulman’s proof, and the observation that

4 colors are necessary is easy to prove, to the best of our knowledge, this basic combinatorial

result was not known and, furthermore, we find it surprising that merely 4 colors suffice

to guarantee such a strong combinatorial structure. Still, even if 4 is a surprisingly small

number of colors, an interactive coding scheme that uses a 4-color tree code would have rate

bounded above by 1/2.

1.3.2 Palette-alternating tree codes

To save on communication, one might hope to avoid the use of the tree code “every now and

then”. However, if one sends a bit in the clear without encoding it, and that bit is flipped

by the adversary, the simulation seems doomed to fail without some way of generating

an unpredictable verification (which can be done when considering randomized schemes).

Perhaps a better idea would be to try and apply puncturing–a standard tool from classic

error correcting codes used for improving the rate of a code. However, the distance of a tree

code is far more sensitive than the distance of a standard error correcting code. In particular,

changing the color of a single edge can cause the distance to vanish. It is thus not clear how

can one “puncture” a tree code without vanish its distance.

Our key insight is to consider a variant of tree codes we call palette-alternating tree codes

in which the number of colors is allowed to depend on the depth. A good first example

6

to have in mind is a coloring that uses 4 colors in even layers and 2 colors in odd layers.

To our surprise, such palette-alternating tree codes with non-vanishing distance exist! To

calculate the rate-overhead incurred by using this palette-alternating tree code, observe that

the number of bits sent when using an (even) depth-n palette-alternating tree code is

n

2
log2 2 +

n

2
log2 4 =

3

2
n,

and so the rate incurred by the encoding is 2/3, improving upon the 1/2 rate one would

get by using the best available tree code. Note that this even beats the rate of a 3-color

tree code–had it existed–since log2 3 > 3/2. Put differently, in an amortized sense, the

palette-alternating tree code above requires only 23/2 ≈ 2.83 colors.

One can get greedy and ask whether a palette-alternating tree code that uses, say, 4

colors at layers 0, 3, 6, ... and 2 colors in the remaining layers exist. If so, one can potentially

improve the scheme’s rate to 3/4. We prove the existence of such palette alternating tree

codes. In fact, we show that one can use 4 colors as seldom as she please and 2 colors–the

bare minimum–in most layers. We turn to give a formal treatment of the above discussion.

Definition 1.4 (Palette-alternating tree codes). Let Σ0, . . . ,Σc−1 be (not necessarily dis-

tinct) sets. Let T be the complete rooted infinite binary tree. A palette-alternating tree code

is an edge-coloring of T where at layer t ∈ N the colors are taken from the set Σt (mod c).

T is said to have distance δ if for every pair of vertices u, v with equal depth it holds that

h(u, v) ≥ δ. We define the rate ρ of T to be the number satisfying

1

ρ
=

1

c

c−1∑
i=0

log2 |Σi|.

We suggest that the flexibility introduced by palette-alternating tree codes allows one

to better capture the notion of rate in the online setting. Indeed, the importance of rate is

only significant when “long” messages are being sent and so, informally, using a big palette

of colors only once in a while should not be considered as an indication of poor rate. Our

definition of rate formalizes that property. Note that we still insist on having the distance

measured in terms of worst-case–a must as we wish to replace tree codes with palette-

alternating tree codes in interactive coding schemes. It is only the rate that is being, in a

sense, amortized.

As mentioned, we prove that palette-alternating tree codes can have rate approaching

arbitrarily close to 1 while maintaining non-vanishing distance, thus bypass the 1/2 bound

proven for (standard) tree codes.

7

Theorem 1.5. For every ε > 0 there exists a palette-alternating tree code with rate 1 − ε
and distance δ = Ω(ε · log−1(1/ε)).

Observe that the distance-rate tradeoff that we prove is the same as the one obtained

by the Gilbert-Varshamov bound for standard binary error correcting codes. The proof of

Theorem 1.5 is based on a variant of the construction we use in Theorem 1.3. There, the

alphabet symbols are taken from the field of four elements, F4. The key idea in obtaining

the savings in the alphabet size is to trace the F4 field elements down to F2 in most layers.

Interestingly, we cannot afford to work over the field F3 as we crucially rely on the fact that

the characteristic of the fields is 2 as well as on the smaller field being a subfield of the larger

one.

1.3.3 Palette-alternating tree codes: further discussion and generalization

We remark that it is not clear if one can start from an arbitrary 4-color tree code and

change some of the layers to have only 2 colors (in a sense, effectively puncturing the 4-

color tree code) while maintaining non-vanishing distance. Our proof seems to have the

effect of “correlating” the colors in the 4-color layers with the paths that contain them. To

emphasize this point, note that a 2-color layer does not immediately “buy” us redundancy.

Nevertheless, the 2-color layers have the important task of making sure that the 4-color

layers do. Indeed, by switching the colors of siblings in the 2-color layers one can potentially

vanish the distance.

It is also interesting to compare palette-alternating tree codes that uses 2 colors in most

layers with some of the known probabilistic schemes [KR13, Hae14] that take the following

strategy: in most rounds simulate the protocol as is (namely, assuming no errors occur) and

only rarely verify the transcript using hash functions. It is tempting to compare the 2-color

layers in a palette-alternating tree code with the error-free part of the simulation and the

4-color layers with the verification rounds. Indeed, at the very least, both the 2-color layers

and the error-free part cost nothing in terms of rate. However, while the error-free simulation

does not carry any weight in terms of error correction, the 2-color layers do.

We end this section by proposing a more general, and arguable more natural, definition

than palette-alternating tree codes which allows for different palettes used at different layers

without being necessarily periodical. While our probabilistic construction that yields The-

orem 1.5 is a palette-alternating tree code, we believe that the more general definition is

worth presenting here. For simplicity, we identify a finite color set Σ with {1, 2, . . . , |Σ|}.

Definition 1.6 (Dynamic-Palette Tree Codes). Let c : N→ N. Let T be the complete rooted

8

infinite binary tree. A dynamic-palette tree code is an edge-coloring of T where at layer

t ∈ N the colors are taken from the set {1, 2, . . . , c(t)}. T is said to have distance δ if for

every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. We define the rate ρ of

T to be the number satisfying

1

ρ
= inf

`∈N

1

`

∑̀
i=1

log2 c(i).

1.3.4 Synchronization

Interactive coding schemes that make use of tree codes do not simply encode the bits that are

meant to be sent by the non-resilient protocol π using the tree code. These schemes also need

to implement a mechanism for making sure that both parties are, in a sense, synchronized.

Indeed, informally, the errors have the effect of causing the parties to transmit data with

respect to information that has never been sent. Without a way to synchronize, even with

no additional errors, the parties will not be able to make progress on simulating the protocol

as the information they exchange is irrelevant.

Thus, on top of the bits that the parties would have communicate without the presence

of errors, some meta data used for synchronization must be maintained and transmitted.

Both the “data bits” as well as the “sync bits” are encoded using a tree code before sent

over the channel. Thus, the rate of deterministic interactive coding schemes is determined

both by the rate of the tree code and by the overhead required for synchronization.

To obtain interactive coding schemes with rate approaching 1 we need, on top of replacing

a tree code with a palette-alternating tree code, to have a low overhead in synchronization.

There are two main obstacles for accomplishing that:

1. One must argue that not too many sync bits are needed to successfully maintain

synchronization; and

2. One needs to distinguish between sync bits and data bits which in previous works was

effectively done by sending a bit indicating the bit “type” (more precisely, a larger

alphabet was used followed by an alphabet reduction).

The first issue is fairly straightforward to handle. Indeed, it is intuitive that in a sen-

sible scheme, the amount of synchronization required is proportional to the fraction of er-

rors and this is true for both Schulman’s coding scheme [Sch93] and for Braverman-Rao’s

scheme [BR11]. The second issue requires more care. Braverman-Rao’s scheme is very dy-

namic and on any given round the bit type depends on the error pattern enforced by the

9

adversary. Although most bits are data bits, unfortunately, we were unable to argue that

their scheme can have high-rate. Luckily, we are able to devise a coding scheme based on

Schulman’s original ideas. The coding scheme obtained, however, does not approach capac-

ity, and has rate 1−Õ(3
√
ε) (see Section 5.2). Further ideas are required to prove Theorem 1.1

which we discuss next.

1.3.5 Clusters of failed decoding rounds

In order to approach capacity, we examine more closely the effect that adversarial errors have

on (palette-alternating) tree codes. Schulman’s analysis is based on bounding the number

of rounds in which decoding fails. More precisely, it was shown [Sch93] that if one encodes

using a tree code with distance δT C then at most O(ε/δT C) fraction of rounds would result in

failed decoding. We prove a structural result, refining the quantitative one, regarding where

these “bad” rounds may occur as a function of the locations of the adversarial errors. We

show that the bad rounds are, in a sense, clustered around the errors that are introduced.

We exploit this structure to obtain a tighter analysis of our protocol, and achieve the stated,

optimal, rate.

1.4 Organization

In Section 2 we give the formal definitions of protocols and interactive coding schemes,

as well as setting notation and state some known results we use. In Section 3 we prove

Theorem 1.3 which asserts that 4-color tree codes exist. While not directly applicable to

our proof of Theorem 1.1, we encourage the reader to read the proof (including Section 3.1)

as ideas from the proof will be used for proving the existence of palette-alternating tree

codes (Theorem 1.5). In Section 4 we prove Theorem 1.5. Lastly, in Section 5, we prove

Theorem 1.1 where first, in Section 5.2, we give a sub-optimal analysis.

2 Preliminaries

Unless otherwise stated, all logarithms are taken to the base 2. We denote by N the set of

natural numbers (of course, including 0), and write N1 for N\{0}. For integers a ≤ b we write

[a, b] for all integers in this interval. For an integer c ≥ 1, we let [c] = {1, 2, . . . , c}. We follow

the convention that strings are indexed starting from 1. For two strings x, y ∈ Σ1×· · ·×Σn,

we denote by ∆(x, y) their hamming distance. We make use of the following standard

inequalities regarding the binary entropy function H.

10

Lemma 2.1. For every integers 1 ≤ k ≤ n with k
n

= δ ≤ 1
2

it holds that

k∑
i=0

(
n

i

)
≤ 2H(δ)n.

Lemma 2.2. For every 0 < x < 1
2

it holds that

x

2 log2(6/x)
≤ H−1(x) ≤ x

log2(1/x)
.

2.1 Coding for interactive communication

2.1.1 Communication protocols

In this section we briefly recall some basic definitions from communication complexity. For

more details we refer the reader to [KN97, RY18]. Let T = (V,E) be a complete finite rooted

binary tree. A communication protocol π consists of:

• A function fv : {0, 1}n → {0, 1} for every internal node v in T .

• A label player(v) ∈ {A,B} for each internal node v.

• A label value(v) ∈ {0, 1} for every leaf v.

The protocol π induces a function f = f(π) : {0, 1}n × {0, 1}n → {0, 1} in the following

natural way. Given x, y ∈ {0, 1}n, for every internal node v ∈ V , if player(v) = A let

d = fv(x) and otherwise let d = fv(y). Let u be the left son of v if d = 0 and otherwise let

u be the right son of v. Thus, given x, y, from every internal node v goes out exactly one

edge ev(x, y) = (v, u(x, y)). Let E(x, y) = {ev(x, y) | v internal node} be the set of these

edges. Observe that the edge set E(x, y) induces a unique root to leaf path in T . Let v(x, y)

be that unique leaf that is reachable from the root. We define f(x, y) = value(v(x, y)). We

write depth(π) for the depth of T .

The computation above of f(x, y) can be made by two parties, Alice that holds x and

Bob that holds y, that can communicate over a channel, in the natural way. Namely, at

node v, if player(v) = A then Alice sends to Bob fv(x) wheres at a node v with player(v) = B

Bobs sends fv(y) to Alice. It is clear that the number of bits communicated is the depth of

the tree. We say that a protocol is alternating if player(v) = A if and only if v is at even

depth. From here on we focus only on alternating protocols.

11

2.1.2 The pointer jumping game

The pointer jumping game is, in a sense, a complete problem for interactive protocols. Let

T = (V,E) be a complete finite rooted binary tree. As standard, the height of the root is

defined to be 0. We partition the internal nodes of T to VA, VB, where VA contains all nodes

at even depth and VB all nodes at odd depth. We call a set of edges E of T consistent if

every internal node has exactly one outgoing edge in E. We partition E to EA, EB where EA

are the edges that leave VA and EB are the edges leaving VB. It is convenient to represent

EA and EB by functions πA : VA → {0, 1}, πB : VB → {0, 1} which for v ∈ VA, πA(v) = 0 if

and only if the edge in EA that goes out of v is to the left son of v, and similarly for πB.

Note that in any consistent set of edges E there is a unique root to leaf path. The pointer

jumping game is a function that given a consistent set of edges E returns the unique leaf

reachable from the root using the edge set E. Consider a function f : {0, 1}n × {0, 1}n →
{0, 1} and a protocol π for f . Note that for any fixed x, y deciding the value of f(x, y) is an

instance of the pointer jumping game. In that sense, the pointer jumping game is complete.

2.1.3 Resilient protocols and interactive coding schemes

A protocol π is said to be ε-resilient if on any pair x, y ∈ {0, 1}n, in the above two party

computation, both Alice and Bob compute f(x, y) correctly even if at most ε-fraction of the

communicated bits are flipped. An interactive coding scheme (coding scheme for short) is

a function CSε, parameterized by ε ∈ [0, 1], that gets as input a protocol π and outputs an

ε-resilient protocol πε = CSε(π) with f(πε) = f(π). The rate of the coding scheme CSε is

defined by

ρ(CSε) = inf
π

depth(π)

depth(πε)
.

Observe that for the purpose of devising a coding scheme CSε one may assume that the

inputs x, y are fixed. Thus, it suffices to focus on the problem of devising a coding scheme

for the pointer jumping game.

3 Binary Tree Codes: Four Colors Suffice

In this section we prove Theorem 1.3. We start by setting some notation. Let T be the

infinite complete rooted binary tree. We identify length-n paths in T that starts at the root

with length-n binary strings in the natural way. Namely, we identify left son and right son

12

with 0 and 1, respectively. Given a node v at depth n ≥ 1 we define pv ∈ {0, 1}n to be the

string that encodes the (unique) path from the root to v.

An edge-coloring of T by a color set Σ is given by a function, which for ease of readability,

we slightly abuse notation and also denote by T : {0, 1}N1 → ΣN1 , where the color of an edge

e = u→ v is T (pv)depth(v). Note that T is an online function, namely, for every x ∈ {0, 1}N1

and i ∈ N1, the value T (x)i is determined by x1, . . . , xi.

The (probabilistic) construction

Let {Ri}i∈N1 be a sequence of independent random variables, each is uniformly distributed

over F4–the field of 4 elements. Let F2 be the (unique) subfield of F4 of size 2. Define the

(random) coloring function T : FN1
2 → FN1

4 (where we identify F2 and {0, 1} in the natural

way) as follows: for every t ∈ N1

T (x)t =
t∑
i=1

Rt+1−ixi. (3.1)

Definition 3.1. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . For k = 1, . . . , `

we define the random variable

av(x, y, k) = T (pv ◦ 1 ◦ y)n+k − T (pv ◦ 0 ◦ x)n+k.

Note that av(x, y, k) is a (random) element in F4. We define the integral random variable

hv(x, y) =
∑̀
k=1

Ik,

where Ik is the indicator random variable that equals 1 when av(x, y, k) 6= 0. Note that

hv(x, y) ∈ {0, 1, . . . , `} is the Hamming distance between T (pv ◦ 0 ◦ x)[n+1,n+`] and T (pv ◦ 1 ◦
y)[n+1,n+`].

Claim 3.2. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, for every k ∈ {1, . . . , `}
it holds that

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i.

Proof. Denote the depth of v by n. Fix k ∈ {1, . . . , `}. By Equation (3.1),

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

13

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i.

Claim 3.3. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent and each is uniformly distributed over F4.

Proof. By Claim 3.2, av(x, y, k) = Rk + Lk where Lk is some F4-linear combination of

R1, . . . , Rk−1. Therefore, av(x, y, k) is independent of the joint distribution of av(x, y, 1),

. . . , av(x, y, k − 1). As this holds for every k we have that av(x, y, 1), . . . , av(x, y, `) are

independent. To conclude the proof, note that for every fixing of R1, . . . , Rk−1, av(x, y, k) =

Rk + `k for some fixed `k ∈ F4 and so av(x, y, k) is uniform over F4.

Claim 3.4. For every two vertices u, v in T and every x, y ∈ F`−12 ,

hv(x, y) = hu(x, y),

hv(x, y) = hv(0
`−1, y − x).

Proof. The first equality follows immediately by Claim 3.2 as, for every k ∈ {1, . . . , `},
the expression obtained for av(x, y, k) is independent of the choice of v. As for the second

asserted equality, again by Claim 3.2,

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk +
k−1∑
i=1

Rk−i((y − x)− 0)i

= av(0
`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4

and so y − x ∈ F`−12 . Indeed, recall that av’s second argument is a binary string and so

the equality above would have been meaningless otherwise. The above equation implies

hv(x, y) = hv(0
`−1, y − x), proving the claim.

14

Given Claim 3.4 we can simplify our notation as follows. Let r denote the root of T . For

x ∈ {0, 1}`−1 and k ∈ {1, . . . , `} we define the random variables

a(x, k) = ar(0
`, 1 ◦ x, k),

h(x) = hr(0
`−1, x).

Note that h(x) =
∑`

k=1 a(x, k).

Before proving Theorem 1.3, we establish a weaker bound on the distance of the (prob-

abilistic) construction above. In Section 3.1, we prove Theorem 1.3.

Theorem 3.5. There exists a fixing of the sequence {Ri}i such that the function T is a tree

code with distance 0.05.

Proof. First note that for every fixing of the sequence {Ri}i, T is an online function. Observe

that, for a fixing of {Ri}i, T is a tree code with distance δ if and only if for every ` ≥ 1 and

x ∈ {0, 1}`−1 it holds that h(x) ≥ δ`. Indeed, recall that by definition, T is a tree code with

distance δ if and only if for every vertex v in T , ` ≥ 1, and for every x, y ∈ {0, 1}`−1 it holds

that hv(x, y) ≥ δ`. However, by Claim 3.4, hv(x, y) = h(y − x).

For x ∈ {0, 1}`−1 denote by E(x) the event h(x) < δ`. By the above discussion, it suffices

to prove, for δ = 0.05, that

Pr

 ⋃
x∈{0,1}N

E(x)

 < 1.

To this end, by the union bound, it suffices to prove that∑
x∈{0,1}N

Pr[E(x)] < 1.

Consider any x ∈ {0, 1}`−1 with ` ≥ 1. Note that the event E(x) holds if and only if

there exists a set T ⊆ {1, . . . , `} of size |T | ≥ d(1 − δ)`e such that for every k ∈ T ,

a(x, k) = 0. By taking the union bound over all such sets T , and using that a(x, 1), . . . , a(x, `)

are independent and each is uniformly distributed over F4 (Claim 3.3), we get

Pr[E(x)] ≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e. (3.2)

By Lemma 2.1, we have that

1

`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

15

As δ < 1
2

and since the entropy function H decreases in [1
2
, 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Substitute to Equation (3.2), we get that

Pr[E(x)] ≤ 2(H(δ)−2(1−δ))`.

Thus,

∑
x∈{0,1}N

Pr[E(x)] ≤
∞∑
`=1

2`−1 · 2(H(δ)−2(1−δ))`

=
1

2

∞∑
`=1

2(H(δ)+2δ−1)`.

One can verify that for δ = 0.05 the above geometric sum is strictly smaller than 1, and the

theorem follows.

3.1 Improving the distance

We now show a method for improving the distance. We illustrate it to obtain a bound of

0.136 on the distance, which proves Theorem 1.3, though we believe that the method can be

used to push the bound further. It is fairly easy to show that the distance of a 4-color tree

code cannot be larger than 1/2. It is an interesting open problem to obtain better lower and

upper bounds.

Theorem 3.6. There exists a fixing of the sequence {Ri}i such that the function T is a tree

code with distance 0.136.

Proof. For the proof it will be convenient to consider a specific representation of F4. We

make use of the standard construction of F4 as a quotient of the polynomial ring over F2

with respect to an ideal generated by a degree 2 irreducible element as follows. Note that

t2 + t + 1 ∈ F2[t] is irreducible, and so K = F2[t]/〈t2 + t + 1〉 is a field of 4 elements which

we will take as the construction for F4. Let α be the class of t in K. In this representation,

the field F4 consists of the elements 0, 1, α, α + 1 where α2 + α + 1 = 0.

Consider the sequence {Ri}i∈N as in the beginning of the section but with the fixings

R1 = 1 and R2 = α. Observe that for every x ∈ F`−12 with ` ≥ 2 it holds that a(x, 1) = 1

and a(x, 2) = α + x1. In particular, a(x, 1), a(x, 2) are both non-zeros and so h(x) ≥ 2. Let

16

`0 ≥ 2 be an integer parameter to be chosen later on. By the above, we have that for every

x ∈ F`−12 with ` ≤ `0 it holds that
h(x)

`
≥ 2

`0
. (3.3)

For x ∈ {0, 1}`−1 denote by E1,α(x) the event h(x) < δ` with the {Ri}i∈N as defined

above, namely, R1 = 1, R2 = α and the rest of the random variables {Ri | i ≥ 3} are

independent and uniformly distributed over F4. Once we establish a bound of

Pr

 ⋃
|x|≥`0

E1,α(x)

 < 1 (3.4)

for some choice of δ then, combined with Equation (3.3), we will establish the existence of a

tree code with distance at least

min

(
2

`0
, δ

)
.

Consider any x ∈ {0, 1}`−1 with ` ≥ `0 + 1. The event E1,α(x) holds if and only if

there exists a set T ⊆ {3, . . . , `} of size |T | ≥ d(1 − δ)`e such that for every k ∈ T ,

a(x, k) = 0. By taking the union bound over all such sets T , and using that a(x, 3), . . . , a(x, `)

are independent and each is uniformly distributed over F4, we get that

Pr[E1,α(x)] ≤
(

`− 2

d(1− δ)`e

)
4−d(1−δ)`e

≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e

By Lemma 2.1, we have that

1

`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As we will choose δ < 1
2

and the entropy function H decreases in [1
2
, 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Thus,

Pr[E1,α(x)] ≤ 2(H(δ)−2(1−δ))`.

By substituting the above equation to Equation (3.4), we get that

∑
|x|≥`0

Pr[E1,α(x)] ≤
∞∑

`=`0+1

2`−1 · 2(H(δ)−2(1−δ))`.

17

Write β = 2H(δ)+2δ−1. Then, the above is bounded by

1

2

∞∑
`=`0+1

β` =
β`0+1

2(1− β)
.

Consider the real polynomial

f`0(x) = x`0+1 − 2(1− x).

We have that

f ′`0(x) = (`0 + 1)x`0 + 2

Since `0 ≥ 2, f ′`0(x) > 0 for all x ≥ 0. Further, f`0(0) = −2 and f`0(1) = 1. Thus, f`0(x)

has a single root β`0 ∈ [0, 1] (in fact, β`0 is monotone-increasing as a function of `0, and

β`0 → 1 as `0 → ∞). For a fixed choice of `0, by choosing β < β`0 and solving for δ (recall

β = 2H(δ)+2δ−1) to obtain δ`0 , we get that there exists a fixing of {Ri | i ≥ 3} such that the

obtained tree code has distance at least min(δ`0 ,
2
`0

). Thus, the obtained bound is

max
`0≥2

min

(
δ`0 ,

2

`0

)
.

One can verify that `0 = 14 maximizes the above equation to get distance larger than

0.136.

4 Palette-Alternating Tree Codes

In this section we prove Theorem 1.5. To this end we recall the definition of the (field) trace

function Tr : F4 → F2 that is given by Tr(x) = x+ x2. Observe that the trace function is an

F2-linear map whose image and kernel are F2. In particular, if X is uniform over F4, then

Tr(X) is uniform over F2.

Let ε be a given parameter and define b = d1/εe. Let {Ri}i∈N be a sequence of inde-

pendent random variables, each is uniformly distributed over F4 except that R1 is fixed to

R1 = 1. We define a palette-alternating tree code with b palette sets Σ0, . . . ,Σb−1 such that

Σ0 = F4 and Σi = F2 for i > 0. Let x ∈ FN
2 . For every k ∈ N, define

Sk(x) =
k∑
i=1

Rk+1−ixi,

where addition and multiplication are performed in F4 and, as usual, F2 is identified with

the unique subfield of two elements in F4. The coloring function is given by

T (x)k =

{
Sk(x), k ≡b 0;

Tr(Sk(x)), otherwise.

18

Theorem 4.1. The function T above is a palette-alternating tree code with rate 1 − ε and

distance δ = Ω(ε log−1(1/ε)).

Proof. First, observe that T is indeed an online function with rate larger than 1−ε. Further

Definition 3.1 can be carried over to the more general case of palette-alternating tree codes.

We turn to prove an analog to Claim 3.2.

Claim 4.2. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−12 . Then, for every

k ∈ {1, . . . , `} it holds that

av(x, y, k) =

{
Rk + Sk−1(y − x), n+ k ≡b 0;

Tr(Rk + Sk−1(y − x)), otherwise.

Proof. Fix k ∈ {1, . . . , `}. Assume first that n+ k ≡b 0. Then,

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
n+k∑
i=n+1

Rn+k+1−i(0 ◦ x)i−n

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk + Sk−1(y − x).

19

Assume now that n+ k 6≡b 0. Using that Tr is F2-linear,

T (pv ◦ 0 ◦ x)n+k = Tr

(
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

)

= Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

n+k∑
i=n+1

Tr (Rn+k+1−i) (0 ◦ x)i−n

= Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k = Tr

(
n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(1 ◦ y)i.

Thus, again by F2-linearity of Tr,

av(x, y, k) = Tr(Rk) +
k−1∑
i=1

Tr(Rk−i)(y − x)i

= Tr(Rk + Sk−1(y − x)).

Claim 4.3. Let v be a depth-n vertex and x, y ∈ F`−12 distinct. Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent. Moreover, let k ∈ [`]. If n+k ≡b 0 then av(x, y, k)

is uniformly distributed over F4 and otherwise it is uniform over F2.

Proof. By Claim 4.2, if n+k ≡b 0 then av(x, y, k) = Rk+Lk where Lk is a linear combination

of R1, . . . , Rk−1. Thus, in this case, av(x, y, k) is independent of the joint distribution of

av(x, y, 1), . . . , av(x, y, k − 1). Otherwise, namely n + k 6≡b 0, we have that av(x, y, k) =

Tr(Rk+Lk) = Tr(Rk)+Tr(Lk). Since for every fixing of Lk, av(x, y, k) is uniform over F2, we

have that av(x, y, k) is independent of the joint distribution of av(x, y, 1), . . . , av(x, y, k− 1).

As this holds for every k ∈ [`] we have that av(x, y, 1), . . . , av(x, y, `) are independent and

their marginal distributions are as stated.

Claim 4.4. Let u, v be two vertices with depth n,m, respectively such that n ≡b m. Let

x, y ∈ F`−12 . Then,

hv(x, y) = hu(x, y),

hv(x, y) = hv(0
`−1, y − x).

20

Proof. Let Ck = Rk + Sk−1(y − x). By Claim 4.2,

au(x, y, k) =

{
Ck, n+ k ≡b 0;

Tr(Ck), otherwise.

As Ck is independent of the choice of u and n ≡b m we have that au(x, y, k) is the same

random variable as av(x, y, k). Since this holds for every k, we have that hv(x, y) = hu(x, y).

We turn to prove the the second asserted equality. Assume first that k ∈ [`] is such that

n+ k ≡b 0. By Claim 4.2,

au(x, y, k) = Rk + Sk−1(y − x)

= Rk + Sk−1((y − x)− 0`−1)

= au(0
`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4

and so y − x ∈ F`−12 . Indeed, recall that av’s second argument is a binary string and so the

equality above would have been meaningless otherwise. The case n + k 6≡b 0 follows by a

similar argument and using the F2-linearity of Tr.

Given Claim 4.4, we can simplify our notation as follows. Let v0 denote the root of the

tree. For i = 1, . . . , b− 1 let vi denote the left son of vi−1. For every i ∈ {0, 1, . . . , b− 1} and

x ∈ {0, 1}`−1 we define the random variables

ai(x, k) = avi(0
`, 1 ◦ x, k),

hi(x) = hvi(0
`−1, x).

Define

δ = c1ε log−1(1/ε),

`0 = 12dε−1 log(1/ε)e,

for some constant c1 ∈ [0, 1] to be set later on. Observe that for every fixing of the sequence

{Ri}, T is a palette-alternating tree code with distance δ if and only if for every x ∈ {0, 1}`−1

and i ∈ {0, 1, . . . , b − 1} it holds that hi(x) ≥ δ`. Indeed, by definition, T is a palette-

alternating tree code with distance δ if and only if for every vertex v, ` ≥ 1, and every

distinct x, y ∈ {0, 1}`−1 it holds that hv(x, y) ≥ δ`. However, by Claim 4.4, the random

variable hv(x, y) is the same as the random variable hi(y − x) for i = depth(v) mod b.

21

For x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b − 1} denote by Ei(x) the event hi(x) < δ`. Note

that as R1 = 1 and since Tr(1) = 1 we have that hi(x) ≥ 1 for every x. Thus, for |x| < `0

we have that
h(x)

|x|+ 1
≥ 1

`0
.

Therefore, in order to prove Theorem 4.1 it suffices to prove that

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 < 1.

Indeed, this will give a bound of min
(

1
`0
, δ
)

= Ω(ε log−1(1/ε)) on the distance.

Fix x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b− 1}. Observe that Ei(x) holds if and only if there

exists a set T ⊆ [`] of size d(1 − δ)`e such that for every k ∈ T , ai(x, k) = 0. For ease of

readability we ignore the ceiling in the calculations below. Recall that ai(x, 1), . . . , ai(x, `)

are independent. Further, 1− 1
b

fraction of them are uniform over F2 whereas the remaining
1
b

fraction are uniform over F4. Note that by our choice of parameters, δ < 1/b. Thus, for

any γ ≥ 0 and a fixed T , we have that

Pr [∀k ∈ T ai(x, k) = 0] ≤ 2−(1− 1
b
−γ)`4−(1

b
−δ+γ)`

≤ 2−(1− 1
b)`4−(1

b
−δ)`

= 2−(1+ 1
b
−2δ)`.

By taking the union bound over the choice of T , and using Lemma 2.1, we get that

Pr[Ei(x)] ≤
(

`

d(1− δ)`e

)
2−(1+ 1

b
−2δ)`

≤ 2−(1+ 1
b
−2δ−H(δ))`.

By the union bound,

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 ≤ ∑
|x|≥`0

b−1∑
i=0

Pr[Ei(x)] (4.1)

≤ b ·
∞∑
`=`0

2`−1 · 2−(1+ 1
b
−2δ−H(δ))`

=
b

2
·
∞∑
`=`0

2(H(δ)+2δ− 1
b)`.

22

By taking c1 sufficiently small and using Lemma 2.2, we get that H(δ) + 2δ − 1/b ≤ −ε/3.

Therefore, Equation (4.1) is bounded above by

b ·
∞∑
`=`0

2−ε`/3 = b · 2−ε`0/3

1− 2−ε/3

≤ bε4

1− 2−ε/3

≤ 2ε3

1− 2−ε/3
,

where the penultimate inequality follows by our choice of `0 and the last inequality follows

since b = d1/εe. One can verify that the above is strictly bounded by 1 for any ε < 1/3.

5 The Interactive Coding Scheme

In this section we prove Theorem 1.1. We start by setting some notation.

Pebbles. Let T be the depth-n complete rooted binary tree on a vertex set V . Let πA, πB

be an instance of the pointer jumping game as described in Section 2.1.2. Alice is going

to maintain a “pebble” α which is to be placed at nodes of T . Similarly, Bob maintains a

pebble β. More formally, we define the function α : {−1} ∪ N → V for the location of α

at round t, and similarly define a function β. Initially, α, β are placed at the root of T by

setting α(−1) = β(−1) = root(T). Alice is also going to maintain a “guess” for the pebble

of Bob which we deonte by β̃. Similarly, Bob is going to maintain a guess α̃.

Epochs. Let c be a parameter. The protocol is divided to “epochs” where each epoch

consists of 2c+ 4 rounds. The first epoch starts from round 0 to round 2c+ 3 and is denoted

by e0 = [0, 2c + 4). The second epoch is denoted by e1 = [2c + 4, 4c + 8) and, generally,

the ith epoch consists of rounds [i(2c+ 4), (i+ 1)(2c+ 4)). Every epcoh consists of c “edge

rounds” and ends with two “sync” rounds for each party.

Transcript notations. Let T C be the palette-alternating tree code from Theorem 4.1

set with distance δT C to be set later on. Denote by TCEnc,TCDec the encoding and de-

coding functions of T C respectively where we decode to minimize the distance from the

23

received word to a codeword. For an even integer t ≥ 0 we denote by (a0, a2, . . . , at)

the bits that Alice would like to send from round 0 until round t (the actual symbols

that Alice sends are obtained by encoding these bits using a T C). Similarly, for an odd

t ≥ 1 we denote (b1, b3, . . . , bt) the bits sent by Bob. For an even integer t ≥ 0 we define

ã(t) = (ã(t)0, ã(t)2, . . . , ã(t)t) to be the bits decoded of the received transmission Bob got at

round t. Note that ã(t)i may not equal ã(t′)i for distinct times t, t′, and certainly may not

equal ai. For an odd t, we define rA(t) = (a0, b̃(t)1, a2, b̃(t)3, . . . , b̃(t)t) and similarly for an

even t, rB(t) = (ã(t)0, b1, ã(t)2, b3, . . . , ã(t)t).

Round types. Let t ≥ 0. If t is even we say that it is an Alice’s round and otherwise it

is a Bob’s round. Let t be an Alice’s round. We further partition the rounds as follows. Let

t be an Alice’s round and consider m = t mod (2c+ 4).

• If m = 2c then t is an Alice’s first bit sync round.

• If m = 2c+ 2 then t is an Alice’s second bit sync round.

• Otherwise, t is an Alice’s edge round.

Similarly, Bob’s sync rounds are when m = 2c+ 1, 2c+ 3.

5.1 The coding scheme

We present the scheme from Alice’s point of view (Bob’s scheme could be inferred easily).

Alice’s algorithm consists of R rounds, where R is a parameter to be set later on. For each

round type Alice proceeds as follows:

Alice’s edge round. Let t be an Alice’s edge round.

1. at ← πA(α(t− 1)).

2. Transmit TCEnc(a0, a2 . . . , at)t/2.

3. α(t)← son(α(t− 1), at).

Bob’s edge round. Let t be an Bob’s edge round.

1. α(t)← son(α(t− 1), b̃(t)t).

24

Alice’s first (and second) bit sync round. Let t be an Alice’s first sync round. We

denote the locations of Alice’s pebble and her guess regarding Bob’s pebble at specific rounds

in the last two epochs according to the current transcript rA(t−1). Note that the end of the

previous epoch was 2c+ 1 rounds ago. For describing the protocol, we make use of functions

pebbleA, pebbleB which given a string and an integer t compute the pebble location, of the

respective party, at rounds t in the natural way as dictated by the protocol.

• αprev(t)← pebbleA(rA(t− 1), t− 1)

• αpe(t)← pebbleA(rA(t− 1), t− (2c+ 1))

• α2pe(t)← pebbleA(rA(t− 1), t− (2c+ 4)− (2c+ 1))

• β̃prev(t)← pebbleB(rA(t− 1), t− 1)

• β̃pe(t)← pebbleB(rA(t− 1), t− (2c+ 1))

We consider the following cases according to the pebbles locations:

1. If αpe(t) = β̃pe(t) and αprev(t) = β̃prev(t) then

(a) α(t), α(t+ 1), α(t+ 2), α(t+ 3)← αprev(t)

(b) (at, at+2)← 00 (00 encodes “hold”)

(c) Transmit TCEnc(a0, a2, . . . , at)t/2

(d) In Alice’s next round simply transmit TCEnc(a0, a2, . . . , at+2)(t+2)/2.

2. If αpe(t) = β̃pe(t) and αprev(t) 6= β̃prev(t) then

(a) α(t), α(t+ 1), α(t+ 2), α(t+ 3)← αpe(t)

(b) (at, at+2)← 01 (01 encodes “revert epoch”)

(c) Transmit TCEnc(a0, a2, . . . , at)t/2

(d) In Alice’s next round simply transmit TCEnc(a0, a2, . . . , at+2)(t+2)/2.

3. Otherwise (namely, αpe(t) 6= β̃pe(t))

(a) α(t), α(t+ 1), α(t+ 2), α(t+ 3)← α2pe(t)

(b) (at, at+2)← 10 (10 encodes “revert two epochs”)

(c) Transmit TCEnc(a0, a2, . . . , at)t

25

(d) In Alice’s next round simply transmit TCEnc(a0, a2, . . . , at+2)(t+2)/2.

Note that in most rounds, TCEnc outputs a symbol over F2 which corresponds to a

single bit transmitted. At the rounds in which the symbol is an F4-element, we send the

information in two rounds and the round of the other party in between is ignored as it would

not effect the rate asymptotically.

5.2 A simpler analysis with sub-optimal rate

In this section we prove that the coding scheme from Section 5.1, when set with suitable

parameters, achieve rate 1−Õ(3
√
ε). Many of the ideas and results used in this section will be

used for the proof of Theorem 1.1, to be presented in Section 5.3, which requires additional

ideas. We assume R is an integral multiple of 2c + 4 and let k be the number of epochs,

namely, R = (2c+ 4)k.

Good rounds. We say that t ∈ [R] is good if the decoding at round r succeeds. More

precisely, when t is even, round t is good if

(a0, a2, . . . , at) = TCDec(ã(t)0, ã(t)2, . . . , ã(t)t).

Similarly, an odd t is good if

(b1, b3, . . . , bt) = TCDec(b̃(t)1, b̃(t)3, . . . , b̃(t)t).

We make use of the following lemma proved by Schulman [Sch93] (see also Section 2.1.3

in [Gel17]).

Lemma 5.1. Let T C be a palette-alternating tree code with distance δT C. Assume the channel

has at most ε-fraction errors. Then, at most

µ , 2ε/δT C

fraction of rounds are bad.

Epoch types. An epoch that begins at round t is said to start well if α(t− 1) = β(t− 1).

Note that e0 start well. We say that an epoch is good if all rounds in the epoch are good and

otherwise we call it bad. A good epoch is called a progress epoch if it is a start-well epoch

and otherwise it is called a repair epoch.

26

The three epoch types: progress, repair and bad effect the pebble movements. We turn to

analyze the structure of the epoch types. To this end, we define a language that encapsulates

this structure. This language is defined using a stack, which captures the pebble location, in

a nondeterministic manner. Formally, let a be a stack over the alphabet {P,B}. We define

the language L ⊆ {P,R,B}∗ as follows. An element s is in L if the following holds: For

t = 0, . . . , length(s)− 1

1. If st = P push st to a;

2. If st = B then do one of the following operations

(a) Push st to a;

(b) Pop the top element from a;

(c) Do not perform any operation on a.

3. Otherwise, namely st = R, the language rules dictate that either a is empty or otherwise

the top element in a must be B, and that element is then popped from a.

Claim 5.2. Let s ∈ L. For X ∈ {P,R,B} let sX = {i|si = X}. Then, | sR | ≤ | sB |.

Proof. To prove the claim, we will exhibit a one-to-one mapping ϕ : sR → sB. Assume

t ∈ sR. By Rule (3) in the defintion of the language above, at time t the top element of a

is B. Rule (2) then implies that there exists j < t such that j ∈ sB. We set ϕ(t) = j. This

mapping is one-to-one as Rule (3) orders to pop the matched B symbol from a.

We label each epoch e according to its type as follows:

• label(e) = P if e is a progress epoch;

• label(e) = R for a repair epoch; and

• label(e) = B for a bad epoch.

Lemma 5.3. Let e0, . . . , ek−1 be the epochs of the simulation. Then,

(label(e0), . . . , label(ek−1)) ∈ L.

In particular, the number of repair epochs is bounded above by the number of bad epochs.

27

Proof. We prove the lemma by induction on the epoch number. More precisely, we prove by

induction that for any t ∈ {0, . . . , k − 1}, the prefix (label(e0), . . . , label(et)) ∈ L and that

the content of the stack corresponds to the labels of the non-reverted epochs. We consider

the case that label(et) = R as the other two cases are straightforward. We will show that

if a is not empty, then the top element in a is B and that element is popped from a, and

so Rule (3) holds. Let j < t be the epoch number that corresponds to the top element in

a. By the induction hypothesis, the pebble location at the beginning of epoch t is equal to

the pebble location at the end of epoch j, namely, α((2c+ 4)(j + 1)− 1) = α((2c+ 4)t− 1).

Hence, label(ej) 6= P as progress epochs end well. Moreover, since label(et) = R, it follows

that

αpe((2c+ 4)t+ 2c) 6= βpe((2c+ 4)t+ 2c) = β̃pe((2c+ 4)t+ 2c).

According to the algorithm, at round (2c + 4)t + 2c, which is the first sync round of Alice,

Case (3) is invoked and the last two epochs will be reverted. Thus, the content of the stack

corresponds to the labels of the non-reverted epochs.

Corollary 5.4. At least 1− 2(2c+ 4)µ fraction of the epochs are progress epochs.

Proof. By Lemma 5.1, there are at most µR bad rounds. Hence, there are at most µR bad

epochs which amounts to (2c + 4)µ fraction of the epochs. Every epoch which is not bad

or repair is a progress epoch. Thus, by Lemma 5.3, at least 1 − 2(2c + 4)µ fraction of the

epochs are progress epochs.

Potential function for the progress. Recall that α(t), β(t) are the locations at round

t of the pebbles of Alice and Bob respectively. Let v(t) be the least common ancester of

α(t), β(t) in T . We define

Φ(t) = depth(v(t)).

Recall that when Φ(t) ≥ n the scheme terminates successfully.

Claim 5.5. If e = [t, t + 2c + 3] is a progress epoch, then Φ(t + 2c + 3) = Φ(t − 1) + 2c.

Otherwise, Φ(t+ 2c+ 3) ≥ Φ(t− 1)− 2c

Proof. Assume first that e is a progress epoch. In particular, e start-well and so v(t) =

α(t) = β(t). Moreover, since e is good, at all 2c edge rounds, Alice and Bob pebbles moved

jointly on the same path, hence, Φ(t+ 2c+ 3) = Φ(t− 1) + 2c.

28

We turn to prove the other part of the claim by induction on the epoch number. More

precisely, we prove by induction that for every epoch e = [t, t+2c+3) it holds that dist(α(t+

2c+ 3), α(t−1)) ≤ 2c. Observe that since the same holds for β, one has that Φ(t+ 2c+ 3) ≥
Φ(t−1)−2c. Notice that if the sync round of Alice’s protocol reaches cases (1) or (2), namely

her pebble hold or revert one epoch, then the distance is 2c and 0, respectively. In Case (3),

α(t+ 2c+ 3) = α(t− 2c− 5). By the induction hypothesis, dist(α(t− 2c− 5), α(t− 1)) ≤ 2c

and the claim follows.

By Corollary 5.4 there are at least (1−2(2c+4)µ)k progress epochs in which, by Claim 5.5,

Φ increases by 2c. In the remaining epochs Φ decreases by at most 2c. Since Φ(−1) = 0 we

have that

Φ(R) ≥ ((1− 2(2c+ 4)µ)2c+ 2(2c+ 4)µ · (−2c))k

= (1− 4(2c+ 4)µ) · 2ck

=

(
1−

(
4

2c+ 4
+ 8cµ

))
R.

By setting c to be an integer c = Θ(1/
√
µ), we get Φ(R) =

(
1−Θ(

√
µ)
)
R. By setting

R = (1 + Θ(
√
µ))n the simulation will terminates successfully within the first R rounds.

Calculating the rate. At each round of the simulation, a palette-alternating tree code

symbol is sent instead of a single bit. By Theorem 1.5, T C has rate 1− O(δT C log(1/δT C)).

Setting δT C = 3
√
ε, we get that the simulation uses(

1 +O

(√
ε

δT C

))(
1 +O

(
δT C log

(
1

δT C

)))
n =

(
1 +O

(
3
√
ε log

(
1

ε

)))
n

bits. Thus, the coding scheme rate is 1− Õ(3
√
ε) as stated.

5.3 Optimal analysis

In this section we prove Theorem 1.1. We make use of the same coding scheme from Sec-

tion 5.1. The improved analysis follows by applying a more delicate analysis of the bad

rounds locations as a function of the errors introduced by the adversary.

Let T C be a palette-alternating tree code with distance δT C. Denote by E = {e1, . . . , eεR}
the set of rounds at which the adversary has introduced errors, where 0 ≤ e1 < · · · < eεR ≤ R.

A set of consecutive errors C = {ej, . . . , ej+r−1} is called a cluster of errors (with respect to

29

T C or more precisely with respect to δT C) if

∀` ∈ [r − 1] ej+` − ej ≤
2`

δT C
.

We define the cluster interval of C by I(C) = [ej, ej + 2r/δT C]. We denote by C the set of

all clusters (with respect to E).

Claim 5.6. Let C1, C2 ∈ C with C1 ⊆ C2. Then, I(C1) ⊆ I(C2).

Proof. Let C1 = {ei, . . . , ej}, C2 = {em, . . . , ek} with m ≤ i ≤ j ≤ k. By definition, it holds

that I(C1) = [ei, ei + 2(j − i+ 1)/δT C), I(C2) = [em, em + 2(k−m+ 1)/δT C). As ei ∈ C2 we

have that ei ≤ em + 2(i−m)/δT C, and so

ei +
2(j − i+ 1)

δT C
≤ em +

2(j −m+ 1)

δT C

≤ em +
2(k −m+ 1)

δT C
,

which, together with em ≤ ei, concludes the proof.

We will be interested to study clusters on sub-intervals of [0, R] and in particular we wish

to consider clusters that are, in a sense, maximal in the sub-interval. To formalize that, let

[a, b] be a sub-interval of [0, R]. A cluster C ∈ C with C ⊆ [a, b] is called [a, b]-maximal if for

every cluster C ′ ⊆ [a, b] such that C ⊆ C ′ it holds that C ′ = C. A [0, R]-maximal cluster is

simply called maximal. We denote byM[a,b] the set of all [a, b]-maximal clusters, and byM
the set of all maximal clusters.

Claim 5.7. Every C1, C2 ∈M[a,b] are either equal or disjoint.

The proof of the above claim is straightforward. Indeed, by adapting the proof of

Claim 5.6, it follows that if false C1 ∪ C2 ∈ C in contradiction to the maximality.

Claim 5.8. Let C1, C2 ∈M[a,b] distinct. Then, I(C1) ∩ I(C2) = ∅.

Proof. By Claim 5.7 we have that C1 ∩ C2 = ∅, and so we may denote C1 = {ei, . . . , ei+j},
C2 = {em, . . . , em+n} with i+j < m. Assume toward a contradiction that I(C1)∩I(C2) 6= ∅,
and so em ∈ [ei, ei+2(j+1)/δT C). Observe that this would imply that C ′ = {ei, . . . , em} ∈ C,
which together with C ′ ⊆ [a, b], stands in contradiction to C1 ∈M[a,b].

30

Claim 5.9. ∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ ≤ 2εR

δT C
.

Proof. By Claim 5.8, and since | I(C) | = 2 |C | /δT C for every C ∈ C,∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ =
∑
M∈M

2 |M |
δT C

.

As all maximal clusters are disjoint (Claim 5.7),∑
M∈M

|M | ≤ εR,

which concludes the proof.

Lemma 5.10. Let r ∈ [0, R]. If r 6∈
⋃
C∈C
I(C) then r is a good round.

Proof. Denote by σt the palette-alternating tree code symbol that is sent at round t, and

let σ̃t be the received symbol at that round. Denote by (µ1, . . . , µr) the path on T C that

corresponds to the decoded codeword . Assume toward a contradiction that r is bad, namely,

(σ1, . . . , σr) 6= (µ1, . . . , µr). Let ` ∈ [r] be the largest integer such that µr−` 6= σr−`. As

TCDec(σ̃1, . . . , σ̃r) returns the codeword that minimizes the distance, and since µi = σi for

every i < r − `, we have that

∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) ≤ ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)). (5.1)

Since T C is a palette-alternating tree code with distance δT C,

∆((µr−`, . . . , µr), (σr−`, . . . , σr)) ≥ (`+ 1)δT C . (5.2)

Let I = E ∩ [r− `, r], i.e the set of all rounds i such that σi 6= σ̃i in the interval [r− `, r].
Denote | I | = k. As M[r−`,r] ⊆ C and by the hypothesis of the lemma, it follows that

r 6∈
⋃

C∈M[r−`,r]

I(C).

Observe that ⋃
C∈M[r−`,r]

I(C) ⊆ [r − `, r).

Claim 5.8 states that the intervals of any two maximal clusters are disjoint, hence,∑
C∈M[r−`,r]

| I(C) | ≤ `.

31

As | I(C) | = 2 |C | /δT C for every C ∈ C and since M[r−`,r] forms a partition of I, it follows

that ∑
C∈M[r−`,r]

| I(C) | = 2k

δT C
.

By the above two equations, we have that ` ≥ 2k/δT C. Substituting to Equation (5.2), we

have that ∆((µr−`, . . . , µr), (σr−`, . . . , σr)) > 2k. Since ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)) = k,

we have that ∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) > k in contradiction to Equation (5.1).

Using the above, we obtain a better bound on the fraction of bad epochs compared to

the bound established in Corollary 5.4.

Lemma 5.11. At most (4ε/δT C + ε(2c+ 4)) fraction of the epochs are bad.

Proof. Observe that for every C ∈ C there exists a maximal cluster M ∈ M such that

C ⊆M . By Claim 5.6 it then follows that I(C) ⊆ I(M), and so⋃
C∈C

I(C) =
⋃

M∈M

I(M).

Claim 5.9 implies that ∑
M∈M

| I(M) | ≤ 2εR

δT C
. (5.3)

Notice that each cluster M intersect with at most d| I(M) | /(c + 2)e bad epochs. By

Claim 5.10, if r 6∈ I(M) for every M ∈M then r is good. Hence there are at most∑
M∈M

⌈
| I(M) |
c+ 2

⌉
bad epochs. Since the maximal clusters form a partition of E , it follows that |M | ≤ εR.

This, together with Equation (5.3) yields

∑
M∈M

⌈
| I(M) |
c+ 2

⌉
≤ εR +

∑
M∈M

| I(M) |
c+ 2

≤ εR +
2εR

δT C(c+ 2)

=

(
4ε

δT C
+ ε(2c+ 4)

)
k.

So, at most (4ε/δT C + ε(2c+ 4)) fraction of the epochs are bad as stated.

32

By Lemma 5.11 there are at least (1− (8ε/δT C + 2ε(2c+ 4))) k progress epochs in which,

by Claim 5.5, Φ increases by 2c. In the remaining epochs, Φ decreases by at most 2c. Since

Φ(−1) = 0 we have that

Φ(R) ≥
((

1−
(

8ε

δT C
+ 2ε(2c+ 4)

))
2c+

(
8ε

δT C
+ 2ε(2c+ 4)

)
· (−2c)

)
k

=

(
1− 16ε

δT C
− 4ε(2c+ 4)

)
· 2ck

≥
(

1− 2

c
− 16ε

δT C
− 8cε

)
R.

By setting c to be an integer with c = Θ(1√
ε
) and δT C =

√
ε/ log(1/ε), we get that

Φ(R) ≥
(

1−Θ(
√
ε log(1/ε))

)
R.

By setting R = (1 + Θ(
√
ε log(1/ε)))n, and since T C has rate 1 − Θ(δT C log(1/δT C)) =

1−Θ(
√
ε log(1/ε)), Theorem 1.1 follows.

Acknowledgments

We wish to thank Leonard J. Schulman for many insightful discussions regarding tree codes

and interactive coding schemes.

References

[BK12] Z. Brakerski and Y. T. Kalai. Efficient interactive coding against adversarial

noise. In Proc. IEEE Symposium on Foundations of Computer Science (FOCS),

pages 160–166, 2012.

[BKN14] Z. Brakerski, Y. T. Kalai, and M. Naor. Fast interactive coding against adver-

sarial noise. Journal of the ACM (JACM), 61(6):35:1–30, 2014.

[BR11] M. Braverman and A. Rao. Towards coding for maximum errors in interactive

communication. In Proc. ACM Symposium on Theory of Computing (STOC),

pages 159–166, 2011.

[Bra12] M. Braverman. Towards deterministic tree code constructions. In Proc. ACM-

SIGACT Innovations in Theoretical Computer Science Conference (ITCS), pages

161–167, 2012.

33

[CHS18] G. Cohen, B. Haeupler, and L.J. Schulman. Explicit binary tree codes with

polylogarithmic size alphabet. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, pages 535–544. ACM, 2018.

[EGH15] K. Efremenko, R. Gelles, and B. Haeupler. Maximal noise in interactive communi-

cation over erasure channels and channels with feedback. In Proc. ACM-SIGACT

Innovations in Theoretical Computer Science Conference (ITCS), pages 11–20,

2015.

[EHK18] K. Efremenko, E. Haramaty, and Y. Kalai. Interactive coding with constant

round and communication blowup. In Electronic Colloquium on Computational

Complexity (ECCC), volume 25, page 54, 2018.

[GBHS14] M. Ghaffari, Bernhard B. Haeupler, and M. Sudan. Optimal error rates for

interactive coding i: Adaptivity and other settings. In Proceedings of the forty-

sixth annual ACM symposium on Theory of computing, pages 794–803. ACM,

2014.

[Gel17] R. Gelles. Coding for interactive communication: A survey. Foundations and

Trends in Theoretical Computer Science, 13(1-2):1–157, 2017.

[GH14] M. Ghaffari and B. Haeupler. Optimal Error Rates for Interactive Coding II:

Efficiency and List Decoding. In Proc. IEEE Symposium on Foundations of

Computer Science (FOCS), pages 394–403, 2014.

[GH15] R. Gelles and B. Haeupler. Capacity of interactive communication over erasure

channels and channels with feedback. In Proc. ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), pages 1296–1311, 2015.

[GHK+16] R. Gelles, B. Haeupler, G. Kol, N. Ron-Zewi, and A. Wigderson. Towards op-

timal deterministic coding for interactive communication. In Proc. ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1922–1936, 2016.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for in-

teractive communication. In 2011 IEEE 52nd Annual Symposium on Foundations

of Computer Science, pages 768–777. IEEE, 2011.

[Hae14] B. Haeupler. Interactive Channel Capacity Revisited. In Proc. IEEE Symposium

on Foundations of Computer Science (FOCS), pages 226–235, 2014.

34

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. In Advances in Com-

puters, volume 44, pages 331–360. Elsevier, 1997.

[KR13] G. Kol and R. Raz. Interactive channel capacity. In STOC, volume 13, pages

715–724, 2013.

[MS14] C. Moore and L. J. Schulman. Tree codes and a conjecture on exponential sums.

In Proc. ACM-SIGACT Innovations in Theoretical Computer Science Conference

(ITCS), pages 145–154, 2014.

[NW19] A. K. Narayanan and M. Weidner. On decoding cohen-haeupler-schulman tree

codes. arXiv preprint arXiv:1909.07413, 2019.

[Pud16] P. Pudlák. Linear tree codes and the problem of explicit constructions. Linear

Algebra and its Applications, 490:124–144, 2016.

[RY18] A. Rao and A. Yehudayoff. Communication complexity (early draft), 2018.

[Sch92] L. J. Schulman. Communication on noisy channels: a coding theorem for com-

putation. Proc. IEEE Symposium on Foundations of Computer Science (FOCS),

pages 724–733, 1992.

[Sch93] L. J. Schulman. Deterministic coding for interactive communication. In Proc.

ACM Symposium on Theory of Computing (STOC), pages 747–756, 1993.

[Sch94] L. J. Schulman. Postscript of 21 September 2003 to Coding for Interactive

Communication.

http://users.cms.caltech.edu/∼schulman/Papers/intercodingpostscript.txt,

1994.

[Sch96] L. J. Schulman. Coding for interactive communication. IEEE Transactions on

Information Theory, 42(6):1745–1756, 1996.

35

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

