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Abstract

A systematic study of simultaneous optimization of constraint satisfaction problems
was initiated in [BKS15]. The simplest such problem is the simultaneous Max-Cut.
[BKK+18] gave a .878-minimum approximation algorithm for simultaneous Max-Cut
which is almost optimal assuming the Unique Games Conjecture (UGC). For a single
instance Max-Cut, [GW95] gave an αGW -approximation algorithm where αGW ≈
.87856720... which is optimal assuming the UGC.

It was left open whether one can achieve an αGW -minimum approximation algo-
rithm for simultaneous Max-Cut. We answer the question by showing that there exists
an absolute constant ε0 > 10−5 such that it is NP-hard to get an (αGW −ε0)-minimum
approximation for simultaneous Max-Cut assuming the Unique Games Conjecture.

1 Introduction

Constraint satisfaction problems (CSPs) are among the most fundamental problems in
computer science and Max-Cut is the most basic among those. In Max-Cut we are
given an undirected (weighted) graph G(V,E) on the vertex set V along with the edge set
E. We assume that the total weight of edges is 1 and denote the number of vertices by
n. The objective is to partition V into two sets S, S so as to maximize the total weight
of crossing edges i.e. having one endpoint in S and the other in S. Let us denote the cut
value corresponding to the partition (S, S) by CutG(S). Since Max-Cut is one of the
classic NP-complete problems, we resort to finding an approximate solution. The seminal
result of Goemans-Williamson [GW95] gave αGW ≈ .87856720... approximation algorithm
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for Max-Cut. The exact value of the approximation factor is given by the following
expression:

αGW := min
ρ∈[−1,0]

2 arccos(ρ)

π(1− ρ)
.

In [BKS15], the authors initiate the study of simultaneous approximation algorithms
for constraint satisfaction problems. In particular, the study of simultaneous Max-Cut
which we describe next and is the main focus of this paper. In simultaneous Max-Cut
the input consists of a collection of weighted undirected graphs G1, G2, . . . , Gk on the same
set of vertices V but with different edge weights E1, E2, . . . , Ek. The goal is to find a single
cut (S, S) which is good for each of Gi. The notion of how good the cut is needs to be
defined formally. Following are the two notions that [BKS15] considered in their paper:

1. Pareto approximation: Suppose (c1, c2, . . . , ck) ∈ [0, 1]k is such that there exists a
partition (S, S) such that CutGi(S) > ci for all i ∈ [k]. The objective is to find such
a partition. An α-Pareto approximation algorithm in this context is a polynomial
time algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a partition
(S, S) such that CutGi(S) > α · ci for all i ∈ [k].

2. Minimum approximation: This is the Pareto approximation problem when c1 =
c2 = . . . = ck. Define the optimal value of the instance to be

c = max
S⊆V

min
i∈[k]

CutGi(S).

An α-minimum approximation algorithm in this context is a polynomial time algo-
rithm which finds a cut (S, S) such that mini∈[k] CutGi(S) > α · c.

Note that an α-Pareto approximation gives an α-minimum approximation of simul-
taneous Max-Cut. For any constant k > 1, [BKS15] gave 1

2 -Pareto approximation for
simultaneous Max-Cut which was improved to .878-Pareto approximation by [BKK+18].

Theorem 1.1. (Pareto approximation algorithm of [BKK+18]) Given an instance Gi(V,Ei)
for 1 6 i 6 k and c1.c2. . . . , ck ∈ [0, 1] with a guarantee that there exists a partition (S?, S?)
such that CutGi(S

?) > ci for all i, there exists a randomized algorithm running in time
|V |poly(k) which outputs a cut (S, S) with a guarantee that CutGi(S) > .878 · ci for all i.

In terms of hardness of approximation, the Unique Games Conjecture by [Kho02]
gives the tightness of the Goemans-Williamson algorithm for approximating Max-Cut.
[KKMO07] showed that if approximating a certain optimization problem called the Unique
Games is NP-hard then it is NP-hard to approximate Max-Cut better than αGW factor.
Trivially, the Unique Games Conjecture based hardness (UG-hard henceforth) of approxi-
mating Max-Cut within a factor of (αGW + ε) implies that getting an (αGW + ε)-Pareto
approximation for simultaneous Max-Cut is also UG-hard for all constants ε > 0. As
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.878 < αGW , this leaves an intriguing question of achieving an αGW -Pareto approximation
for simultaneous Max-Cut.

We answer this question in this paper by proving that there exists an absolute constant
ε0 > 10−5 such that it is UG-hard to get an (αGW − ε0)-minimum approximation (and
hence (αGW − ε0)-Pareto approximation) for simultaneous Max-Cut, unlike the single
instance Max-Cut.

Theorem 1.2 (Main theorem). There exists an absolute constant ε0 > 10−5 such that
assuming the Unique Games Conjecture, it is NP-hard to achieve (αGW − ε0)-minimum
approximation for simultaneous Max-Cut.

One interesting feature of our reduction is that the hard instance involves only three
graphs! This should be compared with the algorithm of [BKK+18] form Theorem 1.1 which
works for any constantly many number of instances of Max-Cut. It will be interesting to
know whether one can achieve αGW -minimum approximation for the simultaneous Max-
Cut when the number of instances is two.

1.1 Organisation

We start with preliminaries in Section 2 where we formally define the simultaneous Max-
Cut problem, various distributions on the Boolean hypercube, invariance principle and the
Unique Games Conjecture. In Section 3, we present the dictatorship tests for Max-Cut
and simultaneous Max-Cut. Finally, in Section 4, we provide our reduction from the
Unique Games to the simultaneous Max-Cut.

2 Preliminaries

We first define the main problem that we study. Given an undirected weighted graph
G(V,E), the cut value of the partition (S, S) of V , denoted by CutG(S), is defined to be
the total weight of the edges whose endpoints are in different parts. The Max-Cut of a
graph G is the maximum cut value over all the partitions of V .

Definition 2.1. (Simultaneous Max-Cut) An instance of simultaneous Max-Cut is a
collection of undirected weighted graphs Gi(V,Ei), 1 6 i 6 k, on the same set of vertices.

Given an instance Gi(V,Ei), 1 6 i 6 k of simultaneous Max-Cut and (c1, c2, . . . , ck) ∈
[0, 1]k such that there exists a partition (S, S) satisfying CutGi(S) > ci for all i ∈ [k]. The
objective is to find such a partition. An α-Pareto approximation algorithm in this context
is a polynomial time algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a
partition (S, S) such that CutGi(S) > α · ci for all i ∈ [k].
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We work with the problem of finding α-minimum approximation for simultaneous Max-
Cut, which is a special case of the above problem. In this case, the optimum value is given
by:

Opt(G1, G2, . . . , Gk) := max
S⊆V

min
i∈[k]

CutGi(S).

An algorithm is called an α-minimum approximation for simultaneous Max-Cut if given
input the graphs G1, G2, . . . , Gk, it always outputs a cut (T, T ) such that

min
i∈[k]

CutGi(T ) > α ·Opt(G1, G2, . . . , Gk).

For a, b, c ∈ R>0 and a polynomial P (x1, x2, . . . , xt), we define

range
x1,...,xt∈[a,b]

{P (x1, . . . , xt) > c} := {(x1, . . . , xt) |xi ∈ [a, b] ∀i ∈ [t] and P (x1, . . . , xt)) > c}.

2.1 Analysis of Boolean functions

We will be working with functions f : {0, 1}n → R on the Boolean hypercube. For q ∈ [0, 1],
let µq be the distribution of a q-biased bit given as µq(1) = q and µq(0) = 1−q. Let µ⊗nq be
the corresponding product distribution on {0, 1}n. Let L2(µ⊗nq ) be the space of functions
f : {0, 1}n → R endowed with the distribution µ⊗nq . Also, let µq(f) := Ex∼µ⊗nq [f(x)].

Given x define the ρ-correlated copy y of x as follows:

Definition 2.2. Given ρ and x ∼ µ⊗nq we write y ∼ Nρ(x) to denote the ρ-correlated copy
of x where the distribution Nρ(x) is as follows: Independently for each i ∈ [n] , if xi = 1
then set yi = 1 with probability q+ρ(1− q), and yi = 0 otherwise. If xi = 0 then set yi = 1
with probability q − ρq, and yi = 0 otherwise.

Equivalently, first we set y = x, and then independently each coordinate of y is re-
randomized w.r.t. µq with probability (1− ρ).

We will be interested in the setting when ρ 6 0. In this case, if we want y to be
distributed according to µ⊗nq then ρ cannot be arbitrary in [−1, 0]. Specifically, for a given
q ∈ (0, 1), ρ must be in the following interval:

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

(−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2

As in [AS19], we will denote the above interval as κ(q) for any given q ∈ (0, 1). Next we
define the noise operator Tρ over the probability space L2(µ⊗nq ).

Definition 2.3. Let q ∈ (0, 1) and ρ ∈ κ(q). The noise operator Tρ : L2(µ⊗nq )→ L2(µ⊗nq )
is given as follows:

Tρf(x) = E
y∼Nρ(x)

[f(x)].
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Definition 2.4 (Influence). Let f ∈ L2(µ⊗nq ). The influence of the ith variable on f ,
denoted by Inf i(f) is defined as:

Inf i(f) = E
x∼µ⊗nq

[Varxi∼µq [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]].

The useful property of the operator Tρ is that if Var[f ] is bounded then its image under
Tρ has a bounded number of influential variables.

Lemma 2.5. Let q ∈ (0, 1) and ρ ∈ κ(q) and f ∈ L2(µ⊗nq ). Then, for any τ > 0 we have

|{i ∈ [n] | Inf i[Tρf ] > τ}| 6 Var[f ]

τe ln(1/|ρ|)
.

We have the following definition for functions whose all the influences are low (under
the map Tρ).

Definition 2.6. Let q ∈ (0, 1) and 0 < ε, δ < 1. A function f ∈ L2(µ⊗nq ) is called
(ε, δ)-quasirandom if for all i ∈ [n], we have Inf i[T1−δf ] 6 ε.

2.2 Invariance Principle

We need the following definition related to correlated spaces defined by Mossel [Mos10].

Definition 2.7. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between Ω1

and Ω2 with respect to µ us defined as

ρ(Ω1,Ω2;µ) := sup
f :Ω1→R,g:Ω2→R,
Var[f ]=Var[g]=1

Cov[f, g].

We will need the following Gaussian stability measure in our analysis:

Definition 2.8. Let φ : R→ [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter ρ, ν1, ν2 ∈ [0, 1], we define the following two
quantities:

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y > φ−1(1− ν2)]

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y 6 φ−1(ν2)]

where X and Y are two standard Gaussian variables with covariance ρ. We also define
Γρ(ν) = Γρ(ν, ν).

We are now ready to state a version of invariance principle from [Mos10] which follows
from Theorem 3.1 in [DMR09] that we need for our reduction. For variables ε1, ε2, ε3, . . .,
by ε1(ε2, ε3, . . .) we mean ε1 is a function of ε2, ε3, . . . such that ε1 → 0 as all ε2, ε3, . . .→ 0.
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Theorem 2.9 ([Mos10, DMR09]). Let (Ω1 ×Ω2, µ) be a finite correlated space, the corre-
lation between Ω1 and Ω2 with respect to µ is ρ ∈ [0, 1]. Then for any τ > 0 there exists
ε(τ) > 0, δ(τ) > 0 such that if f : Ωn

1 → [0, 1] and g : Ωn
2 → [0, 1] are two functions

satisfying

min(Inf i(T1−δf), Inf i(T1−δg)) 6 ε (1)

for all i ∈ [n], then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)] 6 Γρ(ν1, ν2) + τ

where ν1 = E[f ], ν2 = E[g].

Remark 2.10. One difference between the versions of invariance principle in Mossel [Mos10]
and Dinur et al. [DMR09] is that in [Mos10] instead of a min in (1), it was a max. This
improvement was crucial for hardness of graph coloring in [DMR09]. For our hardness
result, the difference is not important.

We will be working with correlated spaces with negative correlation. The following
corollary follows from the above theorem.

Corollary 2.11. Assume the settings in Theorem 2.9 except ρ ∈ [−1, 0) then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)].

Proof. Define f ′(x) = 1− f(−x) and let ρ′ = −ρ. We apply Theorem 2.9 to f ′, g and ρ′

E[f(x)g(y)] = E[g(y)]−E[f ′(−x)g(y)]

> ν2 − Γρ′(1− ν1, ν2)− τ
= ν2 − Γρ′(1− ν1, ν2)− Γρ′(ν1, ν2) + Γρ′(ν1, ν2)− τ

Now, Γρ′(1− ν1, ν2) + Γρ′(ν1, ν2) = Γρ′(ν2, 1− ν1) + Γρ′(ν2, ν1) = ν2. Therefore,

E[f(x)g(y)] > Γρ′(ν1, ν2)− τ
= Γρ(ν1, ν2)− τ

2.3 Unique Games

Our hardness result is based on the Unique Games Conjecture. First, we define what the
Unique Game is:
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Definition 2.12 (Unique Games). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique
Games constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), an
alphabet [L] and a permutation map πe : [L]→ [L] for every edge e ∈ E. Given a labeling
` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of
the edges.

The following is a conjecture by Khot [Kho02] which has been used to prove many tight
inapproximability results.

Conjecture 2.13 (Unique Games Conjecture[Kho02]). For every sufficiently small δ > 0
there exists L ∈ N such that the following holds. Given a an instance (U, V,E, [L], {πe}e∈E)
of Unique Games it is NP-hard to distinguish between the following two cases:

• YES case: There exist an assignment that satisfies at least (1 − δ) fraction of the
edges.

• NO case: Every assignment satisfies at most δ fraction of the edge constraints.

3 Dictatorship Tests

A function f : {0, 1}n → R is called a dictator function if f(x1, x2, . . . , xn) = xi for some
i ∈ [n]. Dictatorship tests are designed to distinguish between the cases when f is a dictator
function and f is an (ε, δ)-quasirandom function for small enough ε, δ > 0.

3.1 Dictatorship Test for Max-Cut

The αGW Unique Games hardness of Max-Cut relies on the analysis of a certain dictator-
ship test that we describe next. This will lead us to our dictatorship test for simultaneous
Max-Cut. Consider the following test:

Given f : {0, 1}n → {0, 1}

1. Select x ∈ {0, 1}n uniformly at random.

2. Select a ρ-correlated copy y of x i.e. independently for each i ∈ [n] set yi = xi w.p.
1+ρ

2 and set yi = xi w.p. 1−ρ
2 .

3. Check if f(x) 6= f(y).

We have the following completeness property of the dictatorship test, which is easy to
show.

Lemma 3.1. If f is a dictator function, then the test passes with probability 1−ρ
2 .
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The following soundness of the test relies on the “Majority of the Stablest” theorem,
which roughly states that among all the Boolean functions with all the influences low,
Majority function is the most stable under ‘positive’ perturbation.

Lemma 3.2 ([MOO05]). For ρ ∈ [−1, 0), if f is (ε, δ)-quasirandom, then the test passes

with probability at most arccos(ρ)
π + τ(ε, δ).

This dictatorship test can be composed with Unique Games [KKMO07] which gives
αGW -hardness of approximation for Max-Cut, where αGW is given by the following ex-
pression.

min
ρ∈[−1,0)

arccos(ρ)
π

1−ρ
2

= αGW = .87856720...

3.2 Dictatorship Test for simultaneous Max-Cut

In the above dictatorship test, we get a family of graphs parameterized by the quantity
ρ. This might give a way to construct multiple instances of Max-Cut, one for each
ρ ∈ (−1, 1). However, this will not work and instead we will construct instances whose
vertex set is concentrated around the q ·nth slice of the hypercube for some q ∈ (0, 1). This
will give us the family of graphs for each q ∈ (0, 1) and ρ.

Our final dictatorship test for the simultaneous Max-Cut problem will consist of three
graphs, G1 on the qnth slice, G2 on the (1 − q)nth slice and G3 will be a bipartite graph
between the qnthand (1− q)nth slice of the Boolean hypercube {0, 1}n.

Definition 3.3. (ρ-correlated µq strings) For every q ∈ [0, 1] and ρ ∈ κ(q), define A⊗nρ,q
to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n where, Aρ,q : {0, 1}2 → R>0 is
defined as follows:

Aρ,q(0, 0) = (1− q)− t
Aρ,q(0, 1) = t

Aρ,q(1, 0) = t

Aρ,q(1, 1) = q − t,

where t = (q − q2)(1− ρ). As mentioned before, ρ in the above definition must satisfy the
following property

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

(−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2

Definition 3.4. (ρ-correlated (x, y) where x ∼ µ⊗nq and y ∼ µ⊗n(1−q)) For every q ∈ [0, 1]

and ρ ∈ [−1, 1], define B⊗nρ,q to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n
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where, Bρ,q : {0, 1}2 → R>0 is defined as follows:

Bρ,q(0, 0) = t

Bρ,q(0, 1) = (1− q)− t
Bρ,q(1, 0) = q − t
Bρ,q(1, 1) = t,

where t = (q − q2)(1 + ρ). Note that ρ in the above definition must satisfy the following
property:

ρ ∈


[−1, q/(1− q)) , if q < 1/2,

(−1, 0), if q = 1/2,
[−1, (1− q)/q) , if q > 1/2

We will define a simultaneous Max-Cut instance on the vertex set {0, 1}n. The instance
consists of three weighted graphs G1, G2 and G3. We fix q? = .58, ρ1 = −1−q?

q?
and

ρ2 = 2q2?−1
2q?(1−q?) .

Graph G1: G1 is concentrated on the q?n
th slice of the hypercube. More formally, the

edge distribution of this graph is given by the distribution A⊗nρ1,q? .

Graph G2: G2 is concentrated on the (1 − q?)nth slice of the hypercube. Formally, the
edge distribution of this graph is given by the distribution A⊗nρ1,(1−q?).

Graph G3: This is roughly a bipartite graph between the q?n
th and (1− q?)nth slices of

the hypercube. The edge distribution is given by the distribution B⊗nρ2,q? .

A few remarks about the choice of parameters: We arrive at the choice of q? = .58 by
doing numerical calculations. Setting ρ1 = −1−q?

q?
is a natural choice as it is the maximum

negative correlation that the two q?-biased bits can have. Finally, ρ2 = 2q2?−1
2q?(1−q?) is chosen

such that the following is satisfied:

Pr
(xi,yi)∼Aρ1,q?

[xi 6= yi] = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi].

3.2.1 Completeness

Lemma 3.5. If f is a dictator function then the value of the cut induced by f is 2(1− q?)
for all G1, G2, G3.
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Proof. The proof is easy in this case. Suppose f is an ith dictator for some i ∈ [n]. This
induces a cut (Sf , Sf ) where Sf = {x ∈ {0, 1}n |xi = 0}. In this case, CutG1(Sf ) is
equal to the probability that (xi, yi) sampled from Aρ1,q? are not equal. This is precisely
2(q? − q2

?)(1− ρ1) which is equal to 2(1− q?) by the choice of ρ1 = −1−q?
q?

.
Similarly, CutG2(Sf ) is equal to the probability that (xi, yi) sampled from Aρ1,(1−q?)

are not equal. This is also 2(1− q?).
For G3,

CutG3(Sf ) = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi] = 1− 2(q? − q2
?)(1 + ρ2).

By the choice of ρ2 this also equals to 2(1− q?).

3.2.2 Soundness

Lemma 3.6. Let f : {0, 1}n → {0, 1} be an (ε, δ)-quasirandom function and let (Sf , Sf )
be the cut induced by f . Then

min
i∈[3]

CutGi(Sf ) 6 (αGW − 10−5) · 2(1− q?) + τ(ε, δ).

Proof. The proof is as follows:

1. We have an (ε, δ)-quasirandom function f : {0, 1}n → {0, 1}. Invariance principle
says that in order to get at least (αGW − 10−5) approximation for G1, the density of
function µq?(f) must be in some range. This essentially follows from the analysis of
Austrin et al. [AKS11, AS19]. Furthermore, the invariance principle precisely tells
us that this is similar to what approximation ratio the biased hyperplane rounding
algorithm of [BKK+18] gives us on a pair of vectors with SDP biases q? when rounded
using rounding bias µq?(f). (See [BKK+18] for the formal definitions of SDP bias
and rounding bias). More formally, if the µq?(f) = ν1 then the cut value is bounded
as follows:

CutG1(Sf ) = E
(x,y)∼A⊗nρ1,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼A⊗nρ1,q?
[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν1 − 2 E
(x,y)∼A⊗nρ1,q?

[f(x)f(y)]

6 2ν1 − 2Γρ1(ν1) + τ1(ε, δ),

where the last inequality follows from Corollary 2.11. Let us define the following
range:

R1(ε, δ) := range
ν1∈[0,1]

{
2ν1 − 2Γρ1(ν1) + τ1(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.
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R1(ε, δ) is the set of all biases µq?(f) that gives CutG1(Sf ) which is at least (αGW −
10−5) factor greater than 2(1 − q?). For a sufficiently small ε, δ > 0 and our given
values of q? and ρ1, numerical calculations show that

R1(ε, δ) ⊆ [.43676765, .56323235].

2. Same is true for G2. More formally, if the µ1−q? measure of f is ν2 then the cut value
is bounded above by 2ν2 − 2Γρ1(ν2) and we have

R2(ε, δ) := range
ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2) + τ2(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.

3. This fixes possible densities of f with respect to the µ⊗nq? and µ⊗n(1−q?) distributions.

Both these densities should lie in [.43676765, .56323235] if we want CutG1(Sf ) >
(αGW − 10−5) · 2(1− q?) and CutG2(Sf ) > (αGW − 10−5) · 2(1− q?). Now we use the
full power of the invariance principle to claim that the value of the cut given by such
an f is similar to what the biased hyperplane rounding gives us on the graph G3.

CutG3(Sf ) = E
(x,y)∼B⊗nρ2,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼B⊗nρ2,q?
[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν2 − 2 E
(x,y)∼B⊗nρ2,q?

[f(x)f(y)]

6 ν1 + ν2 − Γρ2(ν1, ν2) + τ3(ε, δ).

Here again, the last inequality follows from Corollary 2.11. By doing numerical
calculations, we show that for the following range

R(ε, δ) := range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + τ3(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
,

R(ε, δ) ∩ (R1(ε, δ)×R2(ε, δ)) = ∅ for sufficiently small ε, δ > 0.

Therefore, no matter which f we start with, if it is (ε, δ)-quasirandom for sufficiently small
ε, δ > 0, then there exists an i ∈ [3] such that the cut guaranteed by Sf on Gi is strictly
less that (αGW − 10−5) · 2(1− q?) + τ(ε, δ).
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4 Actual Reduction

In this section we give a reduction from Unique Games to the simultaneous Max-Cut
problem. Given an instance G = (U, V,E, [L], {πe}e∈E) of the Unique Games, we reduce
it to a simultaneous Max-Cut instance I on the vertex set V = V × 2[L] = {(v, x) | v ∈
V, x ∈ {0, 1}L}.

The instance will involve three weighted graphs G1(V, E1),G2(V, E2) and G3(V, E3) on
the common vertex set V. We fix the following parameters: q? = .58, ρ1 = −1−q?

q?
and ρ2 =

2q2?−1
2q?(1−q?) . For a string x ∈ {0, 1}L and a permutation π : [L] → [L], define x ◦ π ∈ {0, 1}L

such that (x ◦ π)i = xπ(i) for all i ∈ [L]. The respective edge weights are given by the
following distributions:

1. E1: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly
at random. Select (x, y) according to A⊗Lρ1,q? and output (v1, x ◦ π−1

uv1), (v2, y ◦ π−1
uv2).

2. E2: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly
at random. Select (x, y) according to A⊗Lρ1,(1−q?) and output (v1, x◦π−1

uv1), (v2, y◦π−1
uv2).

3. E3: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly
at random. Select (x, y) according to B⊗Lρ2,q? and output (v1, x ◦ π−1

uv1), (v2, y ◦ π−1
uv2).

We now prove the completeness and the soundness of the reduction.

Lemma 4.1. (Completeness) If the Unique Games instance G is (1 − η
2 )-satisfiable then

there exists a cut (S,S) such that

min
i∈[3]

CutGi(S) > 2(1− q?)− η.

Lemma 4.2. (Soundness) There exist absolute constants ε0 > 10−5 and 0 < η0 < 1 such
that for all 0 < η 6 η0 and ε(η/2), δ(η/2) from Theorem 2.9, if there exists a cut (S, S)
such that

min
i∈[3]

CutGi(S) > (αGW − ε0)(2(1− q?)− η),

then there exists an assignment to the Unique Games instance G which satisfies at least
η′ = η · ε2 ·

ε·e·ln(1−δ)
2 fraction of the constraints.

The above two lemmas along with Conjecture 2.13 show that assuming the Unique
Games Conjecture, it is NP-hard to get an α-minimum approximation for simultaneous
Max-Cut where α 6 αGW −10−5. This proves Theorem 1.2. We now prove the complete-
ness and soundness of the reduction.
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Proof of Lemma 4.1. Let σ : U ∪V → [L] be an assignment to the Unique Games instance
G which satisfies at least (1−η) fraction of the constraints. Consider the following partition
(S,S) of V where

S = {(v, x) | v ∈ V, xσ(v) = 0}.

Let us analyze the value of this cut for the graph G1:

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[(v1, x ◦ π−1
uv1), (v2, y ◦ π−1

uv2) in different parts]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[((x ◦ π−1
uv1))σ(v1) 6= (y ◦ π−1

uv2)σ(v2)]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[xπ−1
uv1

(σ(v1)) 6= yπ−1
uv2

(σ(v2))]

> (1− η) Pr
(x,y)∼A⊗Lρ1,q?

[xσ(u) 6= yσ(u)]

= (1− η) · 2(q? − q2
?)(1− ρ1)

= (1− η) · 2(1− q?)
> 2(1− q?)− η

where the first inequality uses the fact that with probability at least 1 − η, both the
constraints on the edges (u, v1) and (u, v2) are satisfied by the assignment σ. Using similar
calculations, we can show that

CutG2(S) > (1− η) · 2(q? − q2
?)(1− ρ1) > 2(1− q?)− η

CutG3(S) > (1− η) · (1− 2(q? − q2
?)(1 + ρ2)) > 2(1− q?)− η.

Thus, we have
min
i∈[3]

CutGi(S) > 2(1− q?)− η.

We now prove the main soundness lemma:

Proof of Lemma 4.2. Suppose the value of the Unique Games instance is at most η′. Let
f : V × 2[L] → {0, 1} be the indicator function of the cut (S,S). We will show that

min
i∈[3]

CutGi(S) 6 (αGW − ε0)(2(1− q?)− η).
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We start with analysing the value CutG1(S):

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[f(v1, x ◦ π−1
uv1) 6= f(v2, y ◦ π−1

uv2)]

= E
u∈U

E
v1,v2∈N(u)

E
(x,y)∼A⊗Lρ1,q?

[
1

2
−

(1− 2f(v1, x ◦ π−1
uv1))(1− 2f(v2, y ◦ π−1

uv2))

2

]
= E

u∈U
E

v1,v2∈N(u)
E

(x,y)∼A⊗Lρ1,q?

[
f(v1, x ◦ π−1

uv1) + f(v2, y ◦ π−1
uv2)− 2f(v1, x ◦ π−1

uv1)f(v2, y ◦ π−1
uv2)

]
Define fv(x) := f(v, x) for v ∈ V and fu(x) := Ev∼N(u)

[
fv(x ◦ π−1

uv )
]

for u ∈ U . Let
νuq (f) = Ex∼µ⊗Lq [fu(x)] be the q-biased measure of the function fu and νq(f) = Eu∈U [νuq (f)]

be the average q-biased measure of f . Since we sample v1, v2 ∈ N(u) independently, we
have

CutG1(S) = E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] .

We now show that the expectation in the above expression is lower bounded by the
quantity Γρ1(νuq?(f), νuq?(f))− η′

2 unless the value of the Unique Games instance is at least
η′.

Claim 4.3. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] > Γρ1(νuq?(f), νuq?(f))− η

2
.

Proof. Consider fu ∈ L2(µ⊗nq? ) and suppose the claim is not true and we have for at least
η fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] 6 Γρ1(νuq?(f), νuq?(f))− η

2
.

Then using Corollary 2.11, there exists ε(η/2), δ(η/2) > 0 such that for at least
η fraction of fu, we have that Inf i(T1−δfu) > ε for some i ∈ [L]. Since fu(x) :=

Ev∼N(u)

[
fv(x ◦ π−1

uv )
]

and Inf i is a convex function, we have

E
v∼N(u)

[
Inf i(T1−δ(fv(x ◦ π−1

uv )))
]
> ε =⇒

E
v∼N(u)

[
Infπuv(i)(T1−δfv)

]
> ε.
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Thus, if Inf i(T1−δfu) > ε, then by an averaging argument, for at least ε/2 fraction of
v ∈ N(u) we have that Infπuv(i)(T1−δfv) > ε/2. Let

Lv = {j ∈ [L] | Inf j(T1−δfv) > ε/2}.

We know that |Lv| 6 2
ε·e·ln(1−δ) using Lemma 2.5. Consider the following randomized

labeling to the Unique Games instance. For each u ∈ U , if there exists i ∈ [L] such that
Inf i(T1−δfu) > ε then assign label i to u. Otherwise, assign a random label from [L] to
u. For each v ∈ V , pick a random label from Lv if it is non-empty. If |Lv| = 0 then
pick a random label from [L]. The randomized labeling satisfies at least η · ε2 ·

1
|Lv | >

η · ε2 ·
ε·e·ln(1−δ)

2 = η′ fraction of the edges in expectation, which is a contradiction.

Let U ′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above claim,
we have

CutG1(S) = 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)]

6 2 · νq?(f)− 2

(
(1− η) E

u∈U ′

[
Γρ1(νuq?(f), νuq?(f))− η

2

]
+ η · 0

)
6 2 · νq?(f)− 2 E

u∈U ′
[Γρ1(νuq?(f), νuq?(f))] + η.

Now using the convexity of the function Γρ(x, y), we have

E
u∈U ′

[
Γρ1(νuq?(f), νuq?(f))

]
> Γρ1

(
E

u∈U ′
(νuq?(f)), E

u∈U ′
(νuq?(f))

)
> Γρ1 (νq?(f)− η, νq?(f)− η)

where the last inequality follows from
∣∣Eu∈U [νuq?(f)]−Eu∈U ′ [ν

u
q?(f)]

∣∣ 6 η and the fact that

Γρ(x, y) is an increasing function of x and y. Thus, we have

CutG1(S) 6 2 · νq?(f)− 2 · Γρ1 (νq?(f)− η, νq?(f)− η) + η

6 2 · νq?(f)− 2 · Γρ1 (νq?(f), νq?(f)) + 3η. (2)

The exact same calculation shows that

CutG2(S) 6 2 · ν(1−q?)(f)− 2 · Γρ1
(
ν(1−q?)(f), ν(1−q?)(f)

)
+ 3η. (3)

We now analyze the value of the cut given by f in G3:

CutG3(S) = E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)] .

Similar to Claim 4.3, we have,
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Claim 4.4. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼B⊗Lρ1,q?

[fu(x)fu(y)] > Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2
.

Proof. The proof is similar to the proof of Claim 4.3 once we conclude, using Corollary 2.11
that there exists ε, δ > 0 such that for at least η fraction of fu we have that Inf i(T1−δfu) > ε
for some i ∈ [L].

Let U ′′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above
claim, we have

CutG3(S) = νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)]

6 νq?(f) + ν(1−q?)(f)− 2

(
(1− η) E

u∈U ′′

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2

]
+ η · 0

)
6 νq?(f) + ν(1−q?)(f)− 2 E

u∈U

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)]
+ η.

Again, using the convexity of Γρ2 ,

CutG3(S) 6 νq?(f) + ν(1−q?)(f)− 2Γρ2
(
νq?(f)− η, ν(1−q?)(f)− η

)
+ η

6 νq?(f) + ν(1−q?)(f)− 2Γρ2
(
νq?(f), ν(1−q?)(f)

)
+ 3η (4)

Now, let us compare the solution w.r.t 2(1 − q?) − η. For the notational convenience let
ν1 = νq?(f) and ν2 = ν(1−q?)(f). Then,

CutG1(S) 6 2 · ν1 − 2Γρ1(ν1, ν1) + 3η

CutG2(S) 6 2 · ν2 − 2Γρ1(ν2, ν2) + 3η

CutG3(S) 6 ν1 + ν2 − 2Γρ2 (ν1, ν2) + 3η.

In this case, ν1, ν2 are the free parameters which come from the indicator function f of the
cut we started with. Define the following ranges:

R1(η) = range
ν1∈[0,1]

{
2ν1 − 2Γρ1(ν1, ν1) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R2(η) = range
ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R3(η) = range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
.

16



If we want to get a cut with values (αGW − 10−5) · (2(1− q?)− η) in all the graphs G1,G2

and G3 then we must have the (R1(η)×R2(η)) ∩R3(η) 6= ∅.
By performing numerical calculations, we show that there exists an absolute constant

η0 > 0 such that for all 0 < η 6 η0, (R1(η)×R2(η)) ∩R3(η) is in fact ∅. Thus, no matter
which densities ν1 = νq?(f) and ν2 = ν(1−q?)(f) we choose, there exists an i ∈ [3] such that
the value of the cut in graph Gi given by f will be less than (αGW − ε0)(2(1− q?)− η) for
some fixed constant ε0 > 10−5.

Acknowledgement : Our numerical calculations involve minor modifications of the
prover code1 written by Austrin et al. [ABG16] which uses interval arithmetic to get a
computer generated proof. We are indebted to the authors of [ABG16] for making it
available online.
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