
Log-Seed Pseudorandom Generators via Iterated Restrictions

Dean Doron∗

Dept. of Computer Science
Stanford University

ddoron@stanford.edu

Pooya Hatami†

Dept. of Computer Science & Engineering
Ohio State University
pooyahat@gmail.com

William M. Hoza‡

Dept. of Computer Science
University of Texas at Austin

whoza@utexas.edu

Abstract

There are only a few known general approaches for constructing explicit pseudorandom
generators (PRGs). The “iterated restrictions” approach, pioneered by Ajtai and Wigderson

[AW89], has provided PRGs with seed length polylog n or even Õ(log n) for several restricted
models of computation. Can this approach ever achieve the optimal seed length of O(log n)?

In this work, we answer this question in the affirmative. Using the iterated restrictions
approach, we construct an explicit PRG for read-once depth-2 AC0[⊕] formulas with seed length

O(log n) + Õ(log(1/ε)).

In particular, our PRG achieves optimal seed length O(log n) with near-optimal error ε =

exp(−Ω̃(log n)). Even for constant error, the best prior PRG for this model (which includes
read-once CNFs and read-once F2-polynomials) has seed length Θ(log n · (log log n)2) [Lee19].

A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials,
a generalization of elementary symmetric polynomials. Like elementary symmetric polynomials,
subset-wise symmetric polynomials provide a way to organize the expansion of

∏m
i=1(1 + yi).

Elementary symmetric polynomials simply organize the terms by degree, i.e., they keep track of
the number of variables participating in each monomial. Subset-wise symmetric polynomials
keep track of more data: for a fixed partition of [m], they keep track of the number of variables
from each subset participating in each monomial. Our tail bound extends prior work by Gopalan
and Yehudayoff [GY14] on elementary symmetric polynomials.

∗This work was done while at UT Austin, supported by NSF Grant CCF-1705028.
†This work was done while at UT Austin and supported by a Simons Investigator Award (#409864, David

Zuckerman)
‡Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2019)

1 Introduction

The famous “L vs. BPL” problem asks whether randomness is ever truly necessary for space-efficient
computation. To prove L = BPL, it suffices to design a suitable pseudorandom generator (PRG),
i.e., an efficient algorithm that stretches a short truly random seed to a long bitstring that “looks
random”. To be more specific, the action of a small-space algorithm on its random bits can be
modeled by a read-once branching program (ROBP). Therefore, to prove L = BPL, it suffices to
design a PRG with seed length O(log n) that fools polynomial-width ROBPs.

A large and growing body of work has made significant progress toward this ambitious goal.
Most work on L vs. BPL can be broadly divided into two main approaches.

1.1 The “Seed Recycling” Approach

The “classical” approach to L vs. BPL is based on the observation that there is limited communi-
cation between the first half of an ROBP and its second half. Therefore, after using a few truly
random bits to generate the first half of a pseudorandom string, the truly random bits can be
efficiently recycled to generate the second half of the pseudorandom string. This insight is essentially
due to Nisan [Nis92].

Of the line of work that uses this approach, some highlights include PRGs for polynomial-width
ROBPs with seed length O(log2 n) [Nis92, INW94, GR14]; PRGs for constant-width “regular”
ROBPs with seed length Õ(log n) [BV10, De11, KNP11, Ste12, BRRY14]; and derandomization
techniques that go beyond the construction of PRGs [Nis94, SZ99]. More recently, this “seed
recycling” approach has been used to obtain improved generators for polynomial-width ROBPs
when the error parameter ε is very small [BCG18, HZ18].

1.2 The “Iterated Restrictions” Approach

The more “modern” approach to L vs. BPL is to design a pseudorandom generator by iterated
pseudorandom restrictions. That is, we pseudorandomly assign values to a pseudorandomly chosen
subset of the variables, and then repeat the process to assign values to all variables. Intuitively,
designing a pseudorandom restriction for some function f is easier than fooling f outright, because
designing a pseudorandom restriction amounts to fooling a “smoothed out” version of f [GMR+12],
or equivalently, designing a PRG that would fool f if some noise were added [HLV18]. This “iterated
restrictions” approach goes back to early work by Ajtai and Wigderson [AW89], but its modern
incarnation is largely due to Gopalan et al. [GMR+12].

Of the line of work that takes this approach, some highlights include PRGs for arbitrarily-ordered
ROBPs with seed length polylog n [SVW17, CHRT18, FK18]; PRGs for width-3 ROBPs with seed
length Õ(log n) [GMR+12, SVW17, MRT19]; PRGs for bounded-depth read-once formulas with seed
length Õ(log n) [GMR+12, CSV15, DHH19]; and near-optimal PRGs for combinatorial rectangles
and generalizations thereof [GMR+12, GY14, GKM15, HLV18, Lee19].

1.3 Log-Seed PRGs and Our Main Result

At two extremes, one can either try to derandomize all of BPL as efficiently as possible (e.g.
[Nis92, SZ99]), or else one can try to optimally derandomize as much of BPL as possible (e.g.
[NZ96, Rei08]). Let us adopt the second goal.

2

In some cases, the “seed recycling” approach has indeed yielded PRGs with truly optimal
seed length, at least for moderate error. For example, PRGs are known with seed length O(log n)
that fool all O(log n)-space algorithms that use only polylog(n) random bits in the first place
[AKS87, NZ96, HZ18]. For another example, PRGs for constant-width “permutation” ROBPs are
known with seed length O(log n) [De11, KNP11, Ste12].

The present work considers the question of whether the “iterated restrictions” approach can
also yield a PRG with seed length O(log n) for some interesting class of tests. At first glance, this
might seem doubtful, since after all we must pay for many pseudorandom restrictions. Nevertheless,
we answer in the affirmative, proving the following theorem.

Theorem 1.1. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once depth-2 AC0[⊕]
formulas on n input bits with seed length

O(log n) + Õ(log(1/ε)).

Specifically, the seed length of our PRG is O
(
log n+ log(1/ε) · (log log(1/ε))5

)
. One can prove

a lower bound of Ω(log n+ log(1/ε)) on the seed length of any PRG for this model.1

1.4 Read-Once Depth-2 AC0[⊕] Formulas

The class of functions that is fooled by our PRG (read-once depth-2 formulas over the basis {∧,∨,⊕},
with negations allowed at the inputs for free) is certainly of interest. It includes read-once CNFs and
read-once F2-polynomials as special cases. The problems of fooling these classes have both received
a lot of attention [DETT10, GMR+12, BN17, LV17, MRT19, Lee19]. Previously, even for read-once
CNFs, PRGs with seed length O(log n) were only known for constant error [CRS00, DETT10],
whereas our PRG maintains seed length O(log n) with near-optimal error ε = exp(−Ω̃(log n)).
Meanwhile, for read-once F2-polynomials, no PRGs with seed length O(log n) were known at all
prior to our work.

Gopalan et al. did give a PRG with near -optimal seed length Õ(log(n/ε)) for read-once CNFs,
and more generally for read-once depth-2 AC0[⊕] formulas with the property that the output gate
is not ⊕ [GMR+12]. They used their PRG to construct a near-optimal hitting set for width-3
ROBPs [GMR+12]. A subsequent line of work provided near-optimal PRGs for all read-once depth-2
AC0[⊕] formulas [LV17, MRT19, Lee19].2

Conversely, a read-once depth-2 AC0[⊕] formula can be simulated by a width-4 ROBP (after
suitably permuting the variables). The problems of designing improved PRGs for width-4 ROBPs
and for read-once AC0[⊕] formulas of any constant depth are two major frontiers in unconditional
pseudorandomness [MRT19, DHH19]. The model we study in this paper is an interesting special
case.

1.5 Overview of Our Approach

Let us focus on the problem of designing a PRG with seed length O(log n), with ε as small as
possible. For simplicity, assume the test function is a read-once F2-polynomial f = f1 ⊕ · · · ⊕ fm.

1This lower bound holds already for fooling parity functions.
2The PRGs we are referring to were designed to fool read-once F2-polynomials, but in fact they fool all of read-once

depth-2 AC0[⊕].

3

1.5.1 One Restriction

Ultimately, we wish to design a full PRG via iterated pseudorandom restrictions. To begin, we
will explain how to construct just one pseudorandom restriction that assigns values to a constant
fraction of the inputs. We use almost O(log n)-wise independence to select the subset of inputs to
keep “alive” for each coordinate, where the probability of staying alive is a constant p ≈ 1. We use
a small-bias distribution to assign values to the remaining inputs. Sampling this pseudorandom
restriction only costs O(log n) truly random bits.

We must show that our pseudorandom restriction X is correct. That is, we need to show that∣∣∣∣ EX,U [f |X(U)]− E[f]

∣∣∣∣ ≤ ε,
where U is a uniform random variable over {0, 1}n.

We will outline three different arguments for proving correctness, each of which works under
certain assumptions about f . We defer to the full proof to explain how to stitch these three
arguments together to get a general proof of correctness for any f .

Argument 1: Keeping Many Terms Alive Assume f is a homogeneous F2-polynomial of
degree w � log logn, and assume there are many terms, m ≥ 3w. (For simplicity, in this informal
discussion, we are making stronger assumptions than necessary.) Since f is the parity of all these
terms, one can show from these assumptions that f is approximately balanced, i.e., E[f] ≈ 1

2 . Under
a truly random restriction, for each term, the probability that all variables in the term remain alive
would be pw, so with high probability, the number of nonconstant terms after the restriction would
be at least m · pw ≥ (3p)w. Standard techniques suffice to derandomize this calculation, so after our
pseudorandom restriction, with high probability, there are still many terms alive – enough that the
restricted function is still approximately balanced.

Argument 2: The Forbes-Kelley Approach [FK18] Building on prior work [RSV13, HLV18,
CHRT18], Forbes and Kelley showed that a restriction based on δ-biased distributions preserves the
expectation of any arbitrary-order constant-width ROBP to within error 1/n, where log(1/δ) =
O(log n log log n) [FK18]. Our test function f can be simulated by a width-4 ROBP under some
variable order. Unfortunately, given our budget of O(log n) truly random bits, we can only afford to
sample from a (1/ poly(n))-biased distribution.

To move forward, let us turn things around a little: the analysis of Forbes and Kelley shows
that a restriction based on δ-biased distributions preserves the expectation to within error ε,
where ε = exp(−Ω(log(1/δ)/ log log(1/δ))). The point is that this latter statement holds even for
a relatively large δ, assuming the ROBP reads at most 1/ε variables. Therefore, if we assume
that our test function f only reads a few variables (say, polylog n many), then the Forbes-Kelley
approach shows that our pseudorandom restriction preserves the expectation of f to within error
ε = exp(−Ω(log n/ log log n)).

Argument 3: Subset-Wise Symmetric Polynomials Assume this time that the degree of
every term of f is in the interval [C log logn,C log n] for some appropriate constant C. Assume
also that for every w, there are at most 3w terms of degree w. For this case, we return to an older
approach based on symmetric polynomials [GMR+12, GY14, MRT19], introduced by Gopalan et

4

al. [GMR+12]. The idea is as follows. Let Z ∈ {0, 1}n indicate which variables will remain alive.
For convenience, for any {0, 1}-valued function f , let f = (−1)f . Having already sampled Z, our
remaining task is to argue that the small-bias distribution Y fools the “bias function” defined by

f̃(x) = E
U

[f(x+ Z ∧ U)].

Translating {0, 1} to {±1}, the ⊕ operation becomes multiplication, i.e., f =
∏
i fi. For independent

random variables, product and expectation can be interchanged, so the bias function of f is the

product of the bias functions of the fi-s. Define f̂i so that the bias function of fi is E[fi] · (1 + f̂i).
That way,

f̃ = E[f] ·
m∏
i=1

(1 + f̂i). (1)

The approach used in prior work [GMR+12, GY14, MRT19] is to expand Equation (1) in terms
of elementary symmetric polynomials. Recall that for y ∈ Rm, the k-th elementary symmetric
polynomial Sk(y) is defined by

Sk(y) =
∑
I⊆[m]
|I|=k

∏
i∈I

yi.

We can expand Equation (1) as

f̃ = E[f] ·
m∑
k=0

Sk(f̂1, . . . , f̂m). (2)

Therefore, the error of our pseudorandom restriction is captured by
∑m

k=1 Sk(f̂1, . . . , f̂m). Now we
can reason as follows. Pick a cutoff point k0.

• For k ≤ k0, we do a Fourier L1 calculation to show that Sk(f̂1, . . . , f̂m) has near-zero expecta-
tion even under the small-bias distribution Y .

• For k ≈ k0, we do a variance calculation to show that Sk(f̂1, . . . , f̂m) is small with high
probability under the uniform distribution, hence also under Y by the previous L1 calculation.

• Finally we invoke a tail bound [GY14], which says that if Sk0 and Sk0+1 are both small, then
the sum of all subsequent values is also small.

How should we choose the cutoff point k0? If f is a homogeneous F2-polynomial of degree w, then
we should pick k0 = Θ(logn

w). That way, k0 is small enough for the L1 calculation to work out,
because the number of monomials in Sk0(y1, . . . , ym) is(

m

k0

)
≤ mk0 ≤ 3wk0 ≤ poly(n).

But at the same time, k0 is large enough to sufficiently dampen Sk(f̂1, . . . , f̂m) for k ≈ k0. In fact,
one can show that

E[S2
k(f̂1(Y), . . . , f̂m(Y))] ≤ exp(−Ω(wk))

k!
,

5

which for k ≈ k0 is 1
poly(n)·k! . This is small enough for the tail bound to give an overall error of

1/ poly(n).
The difficulty, of course, is that f is not necessarily homogeneous, i.e., the terms of f do not

necessarily all have the same degree. To address this difficulty, following prior work, let us partition
the terms of f into Q = O(log logn) buckets based on degree, say f = F1 ⊕ F2 ⊕ · · · ⊕ FQ. For each
bucket q ∈ [Q], there is a suitable cutoff point k0, so our restriction preserves the expectation of Fq.

At this point, the approach taken by prior work has been to invoke a generic XOR lemma (see
Lemma 3.2) to argue that our restriction must also preserve the expectation of the parity of the
Fq’s, i.e., our test function f . This XOR lemma is a suitable generalization of the fact that the
Fourier L1 norm is submultiplicative. Unfortunately, invoking the XOR lemma would require us to
start with a smaller-bias distribution Y . Effectively, to invoke the XOR lemma, we would have to
pay a factor of Q in the seed length, which we cannot afford.

Therefore, we take a different approach. Our observation is that ideally, the cutoff point k0 should

guarantee that every product
∏
i∈I f̂i appearing in Sk0(f̂1, . . . , f̂m) involves Θ(log n) of the input

variables x1, . . . , xn. Intuitively, that’s why the right choice is k0 = Θ(logn
w) for degree w. When the

terms of f do not all have the same degree, the products
∏
i∈I f̂i appearing in Sk(f̂1, . . . , f̂m) do not

all involve the same number of input variables x1, . . . , xn, hence there isn’t a well-defined correct
choice of k0. This suggests that Equation (2) is simply not the best expansion of Equation (1).

These observations motivate the definition of subset-wise symmetric polynomials. We defer
to Section 2 for the precise definition, but the point is that they allow us to give a more refined
expansion of Equation (1), where instead of just keeping track of k (the number of fi-s participating
in each monomial of Sk) we keep track of a whole vector ~k giving the numbers of fi-s from each
bucket participating in each monomial of S~k. This allows us to define a norm ‖~k‖ that measures the

number of input variables x1, . . . , xn that participate in each monomial of S~k(f̂1, . . . , f̂m).
We expand Equation (1) in terms of subset-wise symmetric polynomials by summing over all

vectors ~k:
f̃ = E[f] ·

∑
~k∈NQ

S~k(f̂1, . . . , f̂m).

Now we can cut off this sum at ‖~k‖ = Θ(log n). To complete the argument, we extend known
tail bounds for elementary symmetric polynomials [GY14] to the case of subset-wise symmetric
polynomials.

1.5.2 Iterating the Restriction to Get a Full PRG

So far, we have outlined the proof that our pseudorandom restriction preserves the expectation of
the test function f . Our pseudorandom restriction costs O(log n) truly random bits. But our goal
is to design a full PRG with seed length O(log n). It seems that one restriction already uses up our
entire budget of truly random bits, so how can we afford to iterate the process?

A key insight is that if f only reads n′ variables (n′ ≤ n), then a pseudorandom restriction
for f ought to only cost O(log n′) truly random bits rather than O(log n). This intuition can be
justified using standard constructions of n′-wise small-bias distributions [NN93, AGHP92], provided
n′ ≥ log n. (A similar insight was used previously by Lee and Viola [LV17].) Let C be a constant
such that one pseudorandom restriction costs C log n′ truly random bits.

6

To simplify the discussion, assume f is homogeneous of degree w = Θ(log n). Each restriction
keeps approximately a p-fraction of variables alive. For simplicity, assume that in each term, exactly
a p-fraction of variables remain alive, i.e., assume that after i pseudorandom restrictions, the
restricted F2-polynomial is homogeneous of degree piw.

We divide into two cases. For the first case, suppose that the number of terms is always at most
exponential in the degree. Specifically, suppose the number of terms is at most 16w

′
, where w′ is

the degree at that stage. In this case, our pseudorandom restrictions get cheaper and cheaper as
we go. Quantitatively, after i restrictions, the restricted polynomial reads only n′ variables, where
n′ = piw · 16p

iw. Therefore, the cost of restriction i+ 1 is only

C log
(
piw · 16p

iw
)
≤ 5C · piw.

Therefore, if we do a total of t pseudorandom restrictions, the total cost is bounded by

t−1∑
i=0

5Cpiw.

This geometric sum is bounded by O(w) = O(log n), regardless of t. To optimize the error of our
PRG, we choose t = O(log log log n); after this many restrictions, the number of living variables is
small enough that we can stop the iteration and apply a prior near -optimal PRG by Lee [Lee19] to
finish the job.

For the second case, suppose that at some stage the number of terms is enormous compared to
the degree: the degree is w′ and the number of terms is more than 16w

′
. This setting was studied

previously by Meka, Reingold, and Tal [MRT19], who gave an optimal PRG for any function that
can be written as a parity of an enormous number of functions on small disjoint variable sets.
Therefore, in this case, we can stop doing pseudorandom restrictions, and instead fool the function
outright using the PRG by Meka et al. [MRT19].

Of course we do not know in advance which case we are in, but this difficulty can be resolved by
straightforward XORing.

2 Subset-Wise Symmetric Polynomials

In this section, we will formally define subset-wise symmetric polynomials and prove suitable tail
bounds for them. This section can be read on its own, independent of the application to PRGs. We
start by recalling known tail bounds for elementary symmetric polynomials.

2.1 Gopalan and Yehudayoff’s Bounds for Symmetric Polynomials

As a reminder, the k-th elementary symmetric polynomial is defined by

Sk(y) =
∑
I⊆[m],
|I|=k

∏
i∈I

yi.

We rely on the following tail bound by Gopalan and Yehudayoff [GY14]. As discussed in Section 1.5.1,
the bound says that if two Sk-s in a row are small, then all subsequent Sk-s are small.

7

Theorem 2.1 ([GY14]). Let y ∈ Rm, θ > 0, and ` ∈ N satisfy

S2
` (y) ≤ θ`

`!
,

S2
`+1(y) ≤ θ`+1

(`+ 1)!
.

Then for every k ≥ `,

|Sk(y)| ≤
(

64e2θ`

k

)k/2
.

The exact statement of Theorem 2.1 does not appear in Gopalan and Yehudayoff’s work [GY14],
but it follows readily from their analysis, and it was used previously by Meka et al. [MRT19,
Theorem 5.2].3

2.2 Our Tail Bounds for Subset-Wise Symmetric Polynomials

Let B = (B1, . . . , BQ) be a partition of [m], namely

[m] = B1 t · · · tBQ.

(The sets B1, . . . , BQ correspond to the “buckets” discussed in Section 1.5.1.) Throughout this paper,

let N denote the set of nonnegative integers, N = {0, 1, 2, . . . }. For a vector ~k = (~k[1], . . .~k[Q]) ∈ NQ
and y ∈ Rm, we define the following polynomial:

S~k,B(y) =
∑
I⊆[m],

∀q,|Bq∩I|=~k[q]

∏
i∈I

yi.

We name these polynomials as subset-wise symmetric polynomials, since for every q ∈ [Q], S~k(y)

when restricted to the Bq variables is a degree ~k[q] symmetric polynomial.
Throughout this section we fix B = (B1, ..., BQ) to be a partition of [m]. When the partition B

is clear from the context, we will simply write S~k instead of S~k,B. To formulate our tails bounds for
the subset-wise symmetric polynomials, we will need the following auxiliary polynomials:

R~k(y)
def
= S2

~k
(y) ·

Q∏
q=1

~k[q]!.

Given c > 1, we will assign each vector ~k ∈ NQ a weight, defined as

‖~k‖(c) =

Q∑
q=1

cq~k[q].

It is easy to verify that the above weight function is indeed a norm; however, we will not be using
this observation.

The main result of this section is a tail-bound for subset-wise symmetric polynomials. In
Lemma 2.2, the parameter A is analogous to the “cutoff point” k0 discussed in Section 1.5.1.

3The careful reader will notice a slight discrepancy between the exact constants of Theorem 2.1 on the one hand
and the statements by Gopalan and Yehudayoff [GY14] and Meka et al. [MRT19] on the other. This discrepancy
reflects a minor mistake in the original paper by Gopalan and Yehudayoff [GY14] that we have here corrected.

8

Lemma 2.2. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let Y be a

random variable taking values in Rm. Moreover, suppose for every ~k ∈ NQ with ‖~k‖(c) ≤ A,

E
Y

[
R~k(Y)

]
≤ 2−

1
8
‖~k‖(c) .

Then, except with probability 2−A/2
23

over y ∼ Y ,∑
~k∈NQ
‖~k‖(c)>A

|S~k(y)| ≤ 2−
A

1024 .

Lemma 2.2 is similar in spirit to Theorem 2.1: it says that if the “early” subset-wise symmetric
polynomials are small (with high probability), then the “late” subset-wise symmetric polynomials
are all small (with high probability).

2.3 Non-probabilistic Tail Bound

Before moving to the proof of Lemma 2.2 in the next subsection, here we first give a tail-bound
in the case when the input y satisfies some useful properties. We will later prove Lemma 2.2, by
showing that a random Y satisfies these properties with high probability. Given a vector ~k ∈ NQ,
we define the restriction of ~k to a set Q ⊆ [Q] by

~k|Q[q] =

{
~k[q] if q ∈ Q,
0 if q /∈ Q.

Our non-probabilistic tail bound goes as follows.

Lemma 2.3. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let y ∈ Rm be a

fixed vector. Suppose that for every ~k ∈ NQ, with A/105 ≤ ‖~k‖(c) ≤ A, and for every pair of disjoint
sets Q1,Q2 ⊆ [Q] satisfying

{q : ~k[q] > 1} ⊆ Q1 ∪Q2,

we have
R(~k|Q1)(y) ·R(~k|Q2)(y)4 ≤ 2−

1
32
·‖~k‖(c) .

Then, ∑
~k∈NQ
‖~k‖(c)>A

∣∣S~k(y)
∣∣ ≤ 2−

A
1024 .

Proof. For a fixed ` ∈ N and q ∈ [Q], define

S`,q =
∑
I⊆Bq
|I|=`

∏
i∈I

yi,

which is the `-th elementary symmetric polynomial applied to (yi)i∈Bq . Similarly, define

R`,q = S2
`,q(y) · `!.

9

Fix ~k with ‖~k‖(c) > A, let λ = 105 · ‖~k‖(c)/A and let ~k′ ∈ NQ be such that ~k′[q] = d~k[q]/λe.
Thus, A/105 ≤ ‖~k′‖(c) ≤ A/2. Let Q := {q ∈ Q : ~k[q] ≥ 1}, and for each q ∈ Q, let θq > 0 be the
smallest4 number satisfying

R~k′[q],q
≤ θ~k′[q]q and R~k′[q]+1,q

≤ θ~k′[q]+1
q . (3)

By Theorem 2.1, ∣∣∣S~k[q],q

∣∣∣ ≤ (64e2θq~k′[q]

~k[q]

)~k[q]/2

.

Subset-wise symmetric polynomials by design can be expressed as a product of elementary
symmetric polynomials, hence

|S~k(y)| =
Q∏
q=1

S~k[q],q
(y)

≤
∏
q∈Q

(
64e2θq~k′[q]

~k[q]

)~k[q]/2

=

∏
q∈Q

θ
~k[q]/λ
q

λ/2

·
∏
q∈Q

(
8e

√
~k′[q]/~k[q]

)~k[q]

.

By our choice of θq,

θ
~k′[q]
q = max

{
R~k′[q],q

(y), R~k′[q]+1,q
(y)

~k′[q]/(~k′[q]+1)
}
≤ max

{
R~k′[q],q

(y), R~k′[q]+1,q
(y),

√
R~k′[q]+1,q

(y)
}
.

Observe that ~k[q]/λ ∈
[
~k′[q]− 1, ~k′[q]

]
, and thus θ

~k[q]/λ
q is between θ

~k′[q]−1
q and θ

~k′[q]
q . If ~k′[q] = 1,

then θ
k′q−1
q = 1, and otherwise θ

~k′[q]−1
q is between θ

~k′[q]
q and

√
θ
~k′[q]
q . Therefore,

θ
~k[q]/λ
q ≤ max

{
θ
~k′[q]
q ,

√
θ
~k′[q]
q ,1~k′[q]=1

}
≤ max

{
R~k′[q],q

(y), R~k′[q],q
(y)1/4, R~k′[q]+1,q

(y), R~k′[q]+1,q
(y)1/4,1~k′[q]=1

}
.

For every q, choose ~k′′[q] ∈ {~k′[q], ~k′[q] + 1} such that

θ
~k[q]/λ
q ≤ max

{
R ~k′′[q],q

(y), R ~k′′[q],q
(y)1/4,1 ~k′′[q]=1

}
.

Note that ‖ ~k′′‖(c) ≥ ‖~k′‖(c) and

‖ ~k′′‖(c) ≤ ‖~k′‖(c) +

Q∑
q=1

cq ≤ ‖~k′‖(c) +
A

106
< A.

4It is possible that θq = 0 satisfies Equation (3). In this degenerate case, we must have S~k[q],q = 0. This implies

S~k(y) = 0, hence Equation (4) trivially holds.

10

Therefore, there exist disjoint sets Q1,Q2 ⊆ [Q] such that {q : ~k′′[q] > 1} ⊆ Q1 ∪Q2, and that for
every q ∈ Q,

θ
~k[q]/λ
q ≤


R ~k′′[q],q

(y) if q ∈ Q1,

R ~k′′[q],q
(y)1/4 if q ∈ Q2,

1 otherwise.

Multiplying over q ∈ Q, we get∏
q∈Q

θ
~k[q]/λ
q ≤

∏
q∈Q1

R ~k′′[q],q
(y) ·

∏
q∈Q2

R ~k′′[q],q
(y)1/4

=
(
R(~k′′|Q1)(y)4 ·R(~k′′|Q2)(y)

)1/4

≤ 2−
1

128
·‖ ~k′′‖(c)

≤ 2−
1

128
·‖~k′‖(c) .

As a result,

|S~k(y)| ≤ 2−
‖~k′‖(c)

128
·λ
2 ·
∏
q∈Q

(
8e

√
~k′[q]/~k[q]

)~k[q]

≤ 2−
‖~k′‖(c)

256
·λ ·
∏
q∈Q

(
8e
√

2/105
)~k[q]

·
(√

105/2
)λ

≤ 2−
‖~k′‖(c)

256
·λ · 28Q·λ · 4−‖~k‖1 .

≤ 2−
‖~k′‖(c)

512
·λ · 4−‖~k‖1 ≤ 2−

‖~k‖(c)
512 · 4−‖~k‖1 (4)

To see the second inequality, observe that when ~k[q] > λ, then

(
8e

√
~k′[q]/~k[q]

)~k[q]

≤ (8e
√

2/105)k[q],

and otherwise

(
8e

√
~k′[q]/~k[q]

)~k[q]

≤ (8e)λ. Summing up over all choices of ~k we get,

∑
~k∈NQ
‖~k‖(c)>A

|S~k(y)| ≤
m∑
L=1

∑
~k∈NQ

‖~k‖(c)>A,‖~k‖1=L

2−
‖~k‖(c)
512 · 4−L

≤ 2−
A
512 ·

m∑
L=1

4−L ·
∣∣∣{~k ∈ Nq : ‖~k‖1 = L

}∣∣∣
= 2−

A
512 ·

m∑
L=1

4−L ·
(
Q− 1 + L

Q− 1

)

≤ 2−
A
512 ·

m∑
L=1

4−L · 2Q−1+L

≤ 2−
A
512 · 2Q−1 ·

m∑
L=1

2−L ≤ 2−
A

1024 .

11

2.4 Probabilistic Tail Bound: Proof of Lemma 2.2

Proof. Let ~k, Q1, and Q2 be as in the statement of Lemma 2.3. Using the Cauchy-Schwarz inequality
and the concavity of (·)1/4, we get

E
[(
R~k|Q1

(Y)
)1/8

·
(
R~k|Q2

(Y)
)1/2

]
≤
(
E
[(
R~k|Q1

(Y)
)1/4

]
· E
[
R~k|Q2

(Y)
])1/2

≤
(
E
[
R~k|Q1

(Y)
]1/4
· E
[
R~k|Q2

(Y)
])1/2

≤
(

2−
1
32
·‖~k|Q1

‖(c) · 2−
1
8
·‖~k|Q2

‖(c)
)1/2

≤ 2−
1
64
·‖~k|Q1∪Q2

‖(c)

≤ 2−
1
64
·(‖~k‖(c)−(c

c−1)·cQ)

≤ 2−
1
64
·(‖~k‖(c)− A

20000)

≤ 2−
1

128
·‖~k‖(c) .

Therefore, by Markov’s inequality, except with probability at most 2−‖
~k‖(c)/256 ≤ 2−A/2560000,

we have (
R~k|Q1

(Y)
)
·
(
R~k|Q2

(Y)
)4
≤ 2−

‖~k‖(c)
32

The above analysis was done for a fixed choice of ~k, Q1, and Q2. The number of choices for such ~k
is AQ (which is subexponential in A), and the number of such Q1, Q2 is at most 3Q (which is a
polynomial in A), thus Lemma 2.2 follows by a union bound. More precisely, one can check that
since A ≥ 260Q2, then (3A)Q · 2−A/2560000 ≤ 2−A/2

23
.

3 Pseudorandomness Preliminaries

Having completed our analysis of subset-wise symmetric polynomials, we now move on to setting
the groundwork for our PRG construction and analysis.

3.1 Probability Basics

Let Un denote the uniform distribution over {0, 1}n. We will simply write U if n is clear from
context. For f : {0, 1}n → R, as a shorthand, we write E[f] to denote E[f(U)] and Var[f] to denote
Var[f(U)]. If X is a distribution over {0, 1}n, we say that X ε-fools f , or X fools f with error ε, if

|E[f(X)]− E[f]| ≤ ε.

We say that X ε-fools a family F of functions, if it ε-fools every f ∈ F .

3.2 Small Bias

A parity function is a function of the form f(x) =
⊕

i∈I xi for some set I ⊆ [n]. We say that
a random variable Y ∈ {0, 1}n is δ-biased if it δ-fools all parity functions. We say that Y is

12

n′-wise δ-biased if it δ-fools all parity functions on at most n′ bits, i.e., all parity functions with
|I| ≤ n′. There are explicit constructions of n′-wise δ-biased distributions that can be sampled with
O(log(n′/δ) + log log n) truly random bits [NN93, AGHP92].

Recall that for a function f : {0, 1}n → R with Fourier expansion f =
∑

S⊆[n] f̂(S) · χS , the L1

norm of f is defined by

L1(f) =
∑
S⊆[n]

|f̂(S)|.

This norm is subadditive (L1(f+g) ≤ L1(f)+L1(g)) and submultiplicative (L1(f ·g) ≤ L1(f)·L1(g)).
Functions with bounded L1 norm are fooled by small-bias distributions:

Claim 3.1. If f : {0, 1}n → R and Y is δ-biased, then Y fools f with error 2δ · L1(f).

We will also rely on the following “XOR lemma” for small-bias distributions.

Lemma 3.2 ([GMR+12], [MRT19]). Let 0 < δ < ε ≤ 1. Let f1, . . . , fk : {0, 1}n → [−1, 1] depend
on disjoint variable sets, and define

f(x) =
k∏
i=1

fi(x).

If every δ-biased distribution ε-fools every fi, then every δk-biased distribution fools f with error
16k · 2ε.

3.3 Limited Independence

For p ∈ [0, 1], let Bernoulli(p)⊗n denote the distribution over {0, 1}n where the bits are i.i.d. and each
bit has expectation p. For example, Un = Bernoulli(1/2)⊗n. For a set I = {i1 < i2 < · · · < i`} ⊆ [n]
and a string z ∈ {0, 1}n, we let z|I = zi1zi2 . . . zi` ∈ {0, 1}`. We say that Z ∈ {0, 1}n is γ-almost
k-wise independent with marginals p if for every set I ⊆ [n] with |I| ≤ k, the total variation distance
between Z|I and Bernoulli(p)⊗|I| is at most γ.

Claim 3.3. For every n, k, C ∈ N and γ > 0, there is an explicit γ-almost k-wise independent
distribution with marginals p = 1− 2−C that can be sampled with O(Ck + log(1/γ) + log log n) truly
random bits.

Proof. Sample Y ∈ {0, 1}Cn from a (Ck)-wise (2−Ck/2−1γ)-biased distribution. Note that as
discussed above Y can be sampled using O

(
log(2Ck/γ) + log log n

)
= O (Ck + log(1/γ) + log log n)

truly random bits. Divide Y into n blocks Y (1), . . . , Y (n) ∈ {0, 1}C , and set

Zi = 0 ⇐⇒ Y (i) = 1C .

The desired distribution is Z ∈ {0, 1}n.
To prove correctness, let f : {0, 1}n → {0, 1} be any test function depending on only k variables.

There is a function g : {0, 1}Cn → {0, 1} depending on only Ck variables such that f(Z) = g(Y).
By Claim 3.1,

|E[f(Z)]− E[f(Bernoulli(p)⊗n)]| = |E[g(Y)]− E[g]|
≤ 2−Ck/2−1 · 2γ · L1(g)

≤ γ.

13

The expectation parameter p can be “amplified” by drawing independent samples and combining
with a coordinate-wise conjunction:

Claim 3.4. Let Z be γ-almost k-wise independent with marginals p. Draw t independent samples
z(1), . . . , z(t) ∼ Z, and let Z ′ = z(1) ∧ · · · ∧ z(t). Then Z ′ is (tγ)-almost k-wise independent with
marginals pt.

Proof sketch. The proof is a simple hybrid argument. Draw t independent samples r(1), . . . , r(t) ∼
Bernoulli(p)⊗n, and let

Z(i) = z(1) ∧ · · · ∧ z(i) ∧ r(i+1) ∧ · · · ∧ r(t).

One can show by induction on i that Z(i) is (iγ)-almost k-wise independent with marginals pt.

3.4 PARITY ◦ AND Formulas

Recall that our main result (Theorem 1.1) is a PRG for read-once depth-2 AC0[⊕]. For most of the
paper, we will focus on the special case that the root gate is ⊕ and its immediate children are ∧
gates. That is, define a PARITY ◦AND formula to be a function of the form

f(x) =
m⊕
i=1

fi(x),

where each fi is a conjunction of literals, i.e., variables or their negations. We refer to f1, . . . , fm as
the terms of f . We say that the formula is read-once if each variable xi appears in at most one
term. Most of our effort will be spent fooling read-once PARITY ◦AND formulas. Note that this
is a slight generalization of read-once F2-polynomials due to the availability of ¬ gates. We will
explain in Section 5.6 why it is sufficient to focus on this special case.

The width of a term is the number of variables in the term; the width of f is the maximum
width of its terms. The length of f is m, the number of its terms.

For convenience, if f is a function taking values in {0, 1}, we let f = (−1)f . That way, if f is a
PARITY ◦AND formula,

f =
m∏
i=1

fi.

3.5 Restrictions

A restriction is a string x ∈ {0, 1, ?}n; intuitively, xi = ? means that xi has still not been assigned a
value. We define an associative composition operation on restrictions by the formula

(x ◦ x′)i =

{
xi if xi 6= ?,

x′i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by

f |x(x′) = f(x ◦ x′).

14

A restriction x can be specified by two strings y, z ∈ {0, 1}n using the following notation5. Define
Res: {0, 1}n × {0, 1}n → {0, 1, ?}n by

(Res(y, z))i =

{
? if zi = 1,

yi if zi = 0.

In words, z indicates the ? positions, and y provides the bits in the non-? positions.

3.6 Pseudorandom Restrictions

Let Y,Z be distributions over {0, 1}n, and let X = Res(Y, Z). For a function f : {0, 1}n → R, we
say that the distribution X preserves the expectation of f with error ε if

|E[f |X(U)]− E[f]| ≤ ε.

An equivalent condition is that

|E[f(Y + Z ∧ U)]− E[f]| ≤ ε,

where + denotes addition over Fn2 and ∧ denotes coordinate-wise conjunction. This second condition
is the “pseudorandomness plus noise” perspective [HLV18] (the string Z ∧ U can be thought of as a
noise vector.)

If f takes on values in {0, 1}, for each particular value z that Z might take on, we define the
bias function [GMR+12] f̃z : {0, 1}n → [−1, 1] by

f̃z(x) = E
[
f(x+ z ∧ U)

]
.

(We use f rather than f simply for convenience.) The statement that X preserves the expectation
of f with error ε is also equivalent to the condition∣∣∣∣EZ

[
E
Y

[f̃Z(Y)]− E
[
f
]]∣∣∣∣ ≤ 2ε.

When z is clear from context, we will just write f̃ instead of f̃z.
If X is a distribution over {0, 1, ?}n and t ∈ N, let X◦t denote the distribution over x ∈ {0, 1, ?}n

obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing them, x = x(1)◦· · ·◦x(t).
Suppose F is a class of Boolean functions that is closed under restriction. If X preserves the

expectation of every f ∈ F with error ε, then X◦t preserves the expectation of every f ∈ F with
error tε. Furthermore, informally, if X “has ?-probability p”, then X◦t “has ?-probability pt”. To
be precise, we can consider the case X = Res(Y,Z) where Z is γ-almost k-wise independent with
marginals p. Then the distribution of ? positions in X◦t is described by Claim 3.4.

4 Applying a Single Restriction

In this section, we prove that the expectation of a PARITY ◦ AND formula is preserved under a
suitable pseudorandom restriction. The cost of the restriction is only O(log n) truly random bits,
the error is exp(−Ω̃(log n)) (near-optimal), and the restriction assigns values to a constant fraction
of the inputs.

5With apologies, we here flip the order of the arguments to Res compared to the notation used in the authors’
prior work [DHH19].

15

4.1 Restriction Construction

Set C = 500, C = 2000C, c = 1.1, and β = 0.95, and consider the following two distributions.

• Let Y be a δ3-biased distribution over {0, 1}n for δ = min
{
n−12C , 1

2n
− 5c
c−1
−1
}

= n−12,000,000.6

• Let Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p = 1− 2−C ,
for k = 6 log n and γ = n−9.

Our restriction is Res(Y,Z), i.e., Z indicates where to put ? and Y fills in the non-? bits.

Lemma 4.1. Let f be a read-once PARITY ◦ AND formula over n variables of width at most

C log n. Then, Res(Y,Z) preserves the expectation of f to within error 2
−C logn

log logn , i.e.,

|E[f(Y + Z ∧ U)]− E[f]| ≤ 2
−C logn

log logn .

4.2 Buckets

Toward proving Lemma 4.1, we first set some preliminary notations. Recall that f is of the form

f =
m⊕
i=1

fi =
m⊕
i=1

wi∧
j=1

`ij ,

where every literal `ij is either some variable in {x1, . . . , xn} or its negation.
Set Q = dlogc(C log n)e = O(log logn). We partition the terms of f into Q buckets according to

their width. Namely, for each q ∈ [Q] we define the interval Iq = [cq−1, cq) and define Bq ⊆ [m] to
be the set of indices i such that wi ∈ Iq. Also, for q ∈ [Q] we define

Fq =
⊕
i∈Bq

fi,

so f =
⊕Q

q=1 Fq. For every q ∈ [Q] we further denote mq = |Bq|.
We divide into two cases (Section 4.3 and Section 4.4) depending on whether there exists a

bucket with substantially many terms. Lemma 4.1 will follow immediately from Lemma 4.2 and
Lemma 4.7, which cover these two cases respectively.

4.3 Case I – There Exists a Heavy Bucket

Say that bucket q ∈ [Q] is heavy if both mq > 3c
q

and mq > logC n. The first case is that there
exists a heavy bucket (i.e., there are many terms of roughly the same width, even relative to q).
In this case, we will argue that f itself is balanced and also that it stays balanced, w.h.p., after a
pseudorandom restriction.

Lemma 4.2. Let f be a read-once PARITY ◦ AND formula over n variables of width at most
C log n. Suppose there exists a heavy bucket as defined above. Then, with probability at least 1− 1

n
over (y, z) ∼ Y × Z, ∣∣E[f |Res(y,z)]− E[f]

∣∣ ≤ 1

n
.

6No attempt was made to optimize the constants.

16

Toward proving Lemma 4.2, let us define a few more auxiliary notations. Write

f = frest ⊕ Fq,

where q is a heavy bucket.

Claim 4.3. It holds that
∣∣E[f]

∣∣ ≤ 1
4n .

Proof. By the read-once property and the fact that frest is bounded,∣∣E[f]
∣∣ =

∣∣E[frest]E[Fq]
∣∣ ≤ ∣∣E[Fq]

∣∣ =
∏
i∈Bq

∣∣E[fi]
∣∣ .

Each term in Fq has width at least cq−1, so∣∣E[f]
∣∣ ≤ (1− 2 · 2−cq−1

)mq
≤ e−2·2−cq−1 ·mq .

Recalling that mq ≥ 3c
q
, we have 2−c

q−1 ≥ mγ
q for γ = log3 2c

−1
< 3

4 . Thus, using that fact that

mq ≥ logC n, ∣∣E[f]
∣∣ ≤ e−2m1−γ

q ≤ e−2 log(1−γ)C n ≤ 2− log100 n.

Next, we must analyze the bias of f after the pseudorandom restriction. Let nq be the number
of variables read by Fq. Let b = dlog3 nqe. We will group the terms of Fq into blocks, each of which
reads roughly b variables. To define this grouping, first observe that b ≥ log3mq, as each term reads
at least one variable. Recalling that cq < log3mq, we know that b > cq. Therefore, since each term
in Fq has width at most cq, we can write

Fq =
B⊕
i=1

gi,

where each block gi reads bi variables for bi ∈
[
b− 1

2c
q, b+ 1

2c
q
]
.

Let us now estimate B, the number of blocks. Since b > cq, bi ∈
[
b
2 ,

3b
2

]
. Also, mq > logC n so

b > C
2 log logn. Thus, on the one hand,

B ≥ 2nq
3b
≥ 2 · 3b

9b
,

and on the other hand,
B ≤ nq ≤ 3b.

Toward arguing that f is balanced after pseudorandom restrictions, we wish to show that with
high probability, z ∼ Z keeps many variables in many terms alive.

Definition 4.4. For z ∈ {0, 1}n and a formula f , we say f is good under z if z assigns 1 to at
least a (1− β)-fraction of the variables f reads.

Claim 4.5. For a fixed z ∈ {0, 1}n, let Xz ⊆ [B] be the set of blocks gi that are not good under z.
Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
⌈

4 log n

b

⌉
.

17

Proof. Set k0 =
⌈

4 logn
b

⌉
. Let S ⊆ [B] be some subset of cardinality k0. We first bound the probability

p that every block gi for i ∈ S is bad under z ∼ Z. For a truly random z ∼ Bernoulli(1− 2−C)⊗n,
the above probability is bounded by∏

i∈S

(
bi
βbi

)
2−Cβbi ≤

∏
i∈S

2bi2−5bi ≤
(

2−4· b
2

)|S|
≤ n−8.

Now, for every i ∈ [B], k ≥ k0bi so for z ∼ Z, we get that

p ≤ n−8 + γ ≤ 2n−8.

Thus, by the union bound, with probability at most(
B

k0

)
p ≤ 2Bk0n−8 ≤ 2

(
3b
) 4 logn

b
n−8 ≤ 2n−(2−log 3)4 ≤ n−

4
3 <

1

2n

there will be some S whose all blocks are bad. Taking the contrapositive, we infer that with
probability at least 1− 1

2n over z ∼ Z, at most k0 of the gi-s are bad under z.

Lemma 4.6. With probability at least 1− 1
n over (y, z) ∼ Y ×Z, it holds that

∣∣∣E [f |Res(y,z)

]∣∣∣ ≤ 1
2n .

Proof. Fix a good z, for which at most 4 logn
b of the gi-s are not good under it. By Claim 4.5, z is

good with probability at least 1− 1
2n . Let Balive = [B] \Xz, so

f = frest ⊕

 ⊕
i∈Balive

gi

⊕
 ⊕
i∈[B]\Balive

gi

 .

For every i ∈ Balive, set the following notations.

• For every y ∈ {0, 1}n, let gyi denote the function gi|Res(y,z).

• Let Ideadi ⊆ [n] be the literals read by gi for which z = 0. As i ∈ Balive,
∣∣Ideadi

∣∣ ≤ βbi ≤ 3β
2 b.

Note that each literal j ∈ Ideadi is set by y ∼ Y .

• Let Ialivei ⊆ [n] be the literals read by gi for which z = 1. As i ∈ Balive,
∣∣Ialivei

∣∣ ≥ (1− β)bi ≥
1−β

2 b.

Define the function hi so that hi(y) = 1 if gyi is a nonconstant function, and 0 otherwise. Namely,

hi(y) =
∧

j∈Ideadi

y′j ,

where y′j is either yj or ¬yj depending on whether yj appears positively or negatively in gi. Also,
define

S(y) =
∑

i∈Balive

hi(y),

18

where the sum is over the reals. Denote

µ = E[S(U)] =
∑

i∈Balive

2−|Ideadi |,

and note that µ ≥ |Balive| · 2−
3β
2
b. Set ∆S = S − µ. The spectral norm of the AND function is

1, and so by the sub-additivity we get that L1(∆S) ≤ 2|Balive|. Set ` = 2
⌈

C logn
2 log(2|Balive|)

⌉
. By the

sub-multiplicativity of the spectral norm we have that

L1

(
∆S`

)
≤
(

2
∣∣∣Balive

∣∣∣)` ≤ nC .
For ε = 1

2 , note that δ ≤ ε
2 · L1

(
∆S`

)−1
. By Claim 3.1, Y ε-fools the function ∆S`, so∣∣∣E [(S(Y)− µ)`

]
− E

[
(S(U)− µ)`

]∣∣∣ ≤ ε. (5)

Next, observe that ∆S(U) is the sum of zero-mean independent random variables, as the hi-s
are supported over disjoint set of variables. Set A = |Balive| · 2−4βb. By the Chernoff bound,

E
[
∆S(U)`

]
≤ E

[
∆S(U)` | ∆S(U)` ≤ A`

]
+ E

[
∆S(U)` | ∆S(U)` ≥ A`

]
· Pr

[
∆S(U)` ≥ A`

]
≤ A` +

∣∣∣Balive
∣∣∣` · Pr [∆S(U) ≥ A] ≤

∣∣∣Balive
∣∣∣` · (2−4βb` + e

− 2A2

|Balive|

)
.

Recall that b > C
2 log log n, so 3b ≥ 36 log n for a large enough n, and since B ≥ 2

9b3
b we get that

B ≥ 8 logn
b and |Balive| ≥ B − 4 logn

b ≥ B
2 . Next, we observe that

2A2

|Balive|
= 2

∣∣∣Balive
∣∣∣ 2−8βb ≥ B · 2−8βb ≥ 2

9b
2(log 3−8β)b ≥ 2b.

As b` ≤ Cb logn
logB ≤ C log n, we can conclude that 2b ≥ 4βb` and so e

− 2A2

|Balive| ≤ 2−4βb`, which implies

that E
[
∆S(U)`

]
≤ 2|Balive|` · 2−4βb`.

Using Equation (5) and the above bound yields a bound on E
[
∆S(Y)`

]
. By Markov’s inequality,

Pr
[
S(Y) <

µ

2

]
≤

E
[
(S(Y)− µ)`

]
(µ/2)`

≤ ε+ 2|Balive|` · 2−4βb`

(µ/2)`
≤

(
8
∣∣Balive

∣∣ 2−4βb

µ

)`
. (6)

Recalling that µ ≥ |Balive| · 2−
3β
2
b, Equation (6) becomes

Pr
[
S(Y) <

µ

2

]
≤
(

8 · 2(−4β+ 3β
2)b
)`
< 2−2βb` ≤ 2−

1
2
βC logn ≤ 1

2n
,

where we have used the fact that b` ≥ C logn
4 .

Overall, with probability at least 1 − 1
2n over y ∼ Y , gyi is nonconstant for at least µ

2 of the
i-s, and recall that each such gyi is over at least (1 − β)bi variables. Fix such a good y, and let
G ⊆ [Balive] be the set of nonconstant gyi -s. Again, we can write

⊕
i∈Balive

gyi =

(⊕
i∈G

gyi

)
⊕

 ⊕
i∈Balive\G

gyi

 , t1 ⊕ t2.

19

Similarly to Claim 4.3, in order to bound the bias of f |Res(Y,Z) it is sufficient to bound the bias of
t1, and so

E[t1] ≤
(

1− 2−
3b
2

)µ
2
.

Using the fact that µ ≥ 1
2B · 2

− 3β
2
b ≥ 1

9b2
(log 3− 3β

2)b > 2
301
200

b, we get

E[t1] ≤ e−2−
3b
2 2

301b
200 ≤ e− log

C
400 n ≤ 1

2n
.

Proof of Lemma 4.2. Finally, the fact that with probability at least 1 − 1
n over (y, z) ∼ Y × Z,∣∣∣f̃z(y)− E[f]

∣∣∣ ≤ 1
n , follows immediately from Claim 4.3 and Lemma 4.6.

4.4 Case II – There Are No Heavy Buckets

In this subsection, we prove that a single pseudorandom restriction preserves the expectation in the
case where there is no such a heavy Bq. Namely, for every q ∈ [Q], either mq ≤ 3c

q
or mq ≤ logC n

(or both).

Lemma 4.7. Let f be a read-once PARITY ◦AND formula over n variables in which the width of
every term is at most C log n, and in which there are no heavy buckets as described above. Then,

with probability at least 1− 1
2 · 2

−C logn
log logn over z ∼ Z it holds that∣∣∣E [f̃z(Y)

]
− E[f]

∣∣∣ ≤ 1

2
· 2−C

logn
log logn .

Toward proving Lemma 4.7, we partition the Q buckets into two sets and treat terms that fall
into each set of buckets separately. Namely, define the two sets as follows.

• A =
{
q ∈ [Q] : mq ≤ log2C n

}
. We refer to these buckets as the sparse buckets.

• B = [Q] \ A. We refer to these buckets as the well-behaved buckets.

For each set T ∈ {A,B} we denote

fT =
⊕
i∈T

Fi,

and so f = fA ⊕ fB. The next two subsections will be devoted to proving that the expectation of
each fT is preserved after a single pseudorandom restriction. In Section 4.4.3 we will combine the
two results using the XOR lemma for small-bias distributions (Lemma 3.2) to prove Lemma 4.7.

4.4.1 Handling Sparse Buckets

For the sparse buckets, we will follow the Forbes-Kelley approach [FK18] to prove the following.

Lemma 4.8. With probability at least 1− 1
4 · 2

−C logn
log logn over z ∼ Z, it holds that∣∣∣E [(f̃A)

z
(Y)
]
− E[fA]

∣∣∣ ≤ 1

4
· 2−C

logn
log logn .

20

As outlined in Section 1.5.1, Lemma 4.8 follows readily from the work by Forbes and Kelley
[FK18]. We require our restriction to work with high probability over z ∼ Z, not merely in
expectation, so we must redo some of Forbes and Kelley’s analysis. (No substantial modification is
needed.) The details follow.

Proof of Lemma 4.8. First, recall that each term in fA is of width at most C log n. There are at
most log2C n terms in each bucket, and at most Q = O(log logn) such buckets, so overall fA reads
at most n′ = log2C+2 n variables.

Note that fA can be computed by a width-4 ROBP of length n′. We follow [FK18] and

let G : {0, 1}n
′
→ R4×4 encode the transition of the branching program. Namely, perhaps after

renumbering the variables, we have G(x) = G1(x1) · . . . ·Gn′(xn′) where Gi(xi) = Ai,xi for Ai,b being

the transition matrix that corresponds to taking the bit b while at layer i. Set k0 = 8 logn
log logn , and

note that k0 ≤ k. By [FK18, Lemma 4.1], G can be written as

G = E[G] + L+
n′∑
i=1

Hi ·G>i,

where L has degree7 less than k0, Hi is of degree exactly k0, G>i is a width-4 ROBP, and Hi and
G>i are on disjoint set of variables. More specifically,

L =
∑

α∈Fn′2 ,0<|α|<k0

Ĝαχα

is the truncated Fourier expansion of G, G>i(xi+1, . . . , xn) = Gi+1(xi+1) · . . . ·Gn′(xn′), and

Hi =
∑

α∈Fn′2 ,|α|=k0,αi=1

Ĝ≤iαχα,

where G≤i(x1, . . . , xi) = G1(x1) · . . . ·Gi(xi). Let ‖ · ‖ be the Frobenius norm. By sub-additivity, we
have

E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]

∥∥∥∥] ≤ E
Z

[∥∥∥∥ E
Y,U

[L(Y + Z ∧ U)]

∥∥∥∥]+

n′∑
i=1

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] . (7)

Just as in [FK18], the low-degree term L is dealt with a δ-biased distribution. From the work of
Chattopadhyay, Hatami, Reingold, and Tal [CHRT18] we know that

L1(L) =

k0∑
k′=1

(cCHRT log n′)4k′ ≤ 2(cCHRT log n′)4k0

for some universal constant cCHRT ≥ 1. Thus, by Claim 3.1, we get that the first term of Equation (7)
is bounded by

2δ · 2(cCHRT log n′)4k0 ≤ 2−C logn · 28k0 log log logn ≤ n−
C
2 ,

7We say a function H : {0, 1}n → Rw×w having Fourier expansion
∑
α∈Fn2

Ĥαχα has degree d if Ĥα is the zero

matrix for every α with Hamming weight larger than d.

21

taking into account the fact that E[L(U)] = 0.
For each i of the second term of Equation (7), we use sub-multiplicativity and the fact that Hi

and G>i are on disjoint set of variables to get

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] ≤ E
Y,Z

[∥∥∥∥EU [Hi(Y + Z ∧ U)]

∥∥∥∥ · ∥∥∥∥EU [G>i(Y + Z ∧ U)]

∥∥∥∥] .
As G>i is a width-4 ROBP,

∥∥EU [G>i(y + z ∧ U)]
∥∥ ≤ 2 for all y ∼ Y and z ∼ Z. Continuing the

above bound, by Cauchy-Schwarz we get

E
Z

[∥∥∥∥ E
Y,U

(Hi ·G>i)[Y + Z ∧ U]

∥∥∥∥] ≤ 2

√√√√ E
Y,Z

[∥∥∥∥EU [Hi(Y + Z ∧ U)]

∥∥∥∥2
]
.

Following [FK18, Lemma 7.1]8, using the bound by Chattopadhyay et al. [CHRT18] and Parseval’s
identity [FK18, Proposition 3.1], we get

E
Y,Z

[∥∥∥∥EU [Hi(Y + Z ∧ U)]

∥∥∥∥2
]
≤
(

2−Ck0 + γ
)
·

δ ·
 ∑
α∈Fn′2

∥∥∥(Ĥi)α

∥∥∥


2

+
∑
α∈Fn′2

∥∥∥(Ĥi)α

∥∥∥2


≤
(

2−Ck0 + γ
)
·
(
δ · L2

1

(
G≤i

)
+ E

[∥∥G≤i(U)
∥∥2
])
≤ 8 · 2−Ck0 .

Overall, we get that

E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]

∥∥∥∥] ≤ n−C2 + 2n′
√

8 · 2−Ck0 ≤ 1

16
· 2−

C
4
k0 =

1

16
· 2−

2C log
log logn ,

and we can choose the encoding G so that fA(x) = G(x)1,1. Markov’s inequality completes the
proof.

4.4.2 Handling Well-Behaved Buckets

We will use our tail bounds for subset-wise symmetric polynomials to prove the following lemma.

Lemma 4.9. With probability at least 1− 1
2n over z ∼ Z, fB can be written as fB = f ′B ⊕ f ′′B, where

f ′B and f ′′B are over disjoint set of variables, and for every g ∈ {f ′B, f ′′B} it holds that

|E [g̃z(Y)]− E [g]| ≤ 1

n
.

The proof of Lemma 4.9 will follow immediately from Claim 4.12 and Lemma 4.13. Toward
proving the above lemma, let us set some preliminaries.

Claim 4.10. If q ∈ B then cq ∈ [C log logn,C log n] and mq ≤ 3c
q
.

Proof. The upper bound on cq follows immediately from the assumption in Lemma 4.7 that every term
has width at most C log n. Also, mq > log2C n since q /∈ A. Since we are at Case II, mq > log2C n
implies that mq ≤ 3c

q
. From the fact that log2C n < 3c

q
we get cq > log3(log2C n) > C log logn.

8Forbes and Kelley [FK18] take the bits of Z to have marginals p = 1
2
, but one can extend the lemma easily for

the case of a general p.

22

Recall that a term fi is good under z if the variables read by fi intersects with z in at least
1− β fraction.

Claim 4.11. For a fixed z ∈ {0, 1}n, let Xz ⊆ [m] be the set of terms in fB that are not good under
z. Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
3c

c− 1
log n.

Proof. The proof is very similar to Claim 4.5. Fix a bucket q ∈ B, set kq = 3 logn
cq and observe that

k ≥ kq. Let S ⊆ Bq be some subset of cardinally kq. We first bound the probability p that every
term fi for i ∈ S is bad under z ∼ Z.

For a truly random z ∼ Bernoulli(1− 2−C)⊗n, the above probability is bounded by∏
i∈S

(
wi
βwi

)
2−βCwi ≤

∏
i∈S

2wi2−5wi ≤
(

2−4·cq−1
)kq
≤ 2−3kqcq ≤ n−9.

For z ∼ Z, we get that
p ≤ n−9 + γ ≤ 2n−9.

Thus, with probability at most
(mq
kq

)
p over z ∼ Z there exists a set of kq terms in Bq whose all terms

are bad under z. By using Claim 4.10, we get(
mq

kq

)
p ≤ mkq

q · 2−9 logn+1 ≤ 3kqc
q+log3 2·(−9 logn+1) ≤ 3−

9
4

logn ≤ n−3.

Moreover, with probability at most |B|n−3 ≤ n−2 over z ∼ Z there exists a q ∈ B and a set of
kq terms in Bq whose all terms are bad under z. Taking the contrapositive, we infer that with
probability at least 1− n−2 ≥ 1− 1

2n over z ∼ Z, we have at most

∑
q∈B

kq ≤
Q∑
q=1

3 log n

cq
≤ 3c

c− 1
log n.

terms that are bad for z.

From here onwards, we fix a z satisfying |Xz| ≤ 3c
c−1 log n. Write

fB =
⊕

i∈C\Xz

fi ⊕
⊕
i∈Xz

fi , f ′B ⊕ f ′′B,

where C =
⋃
q∈B Bq ⊆ [m] is the set of all terms that belong to B’s buckets. Simply put, we divide

fB to the parity of exceptional terms f ′′B and non-exceptional terms f ′B for whom we will refer to as
good terms. We stress that both f ′B and f ′′B depend on z.

Claim 4.12 (Exceptional terms). ∣∣∣E [(f̃ ′′B)
z

(Y)
]
− E[f ′′B]

∣∣∣ ≤ 1

n
.

23

Proof. For brevity, let g = f ′′B. For a fixed w ∈ {0, 1}n, let gw(x) = g(x+ w). The proof will follow
from bounding the spectral norm of gw. Indeed, gw is a multiplication of at most 3c

c−1 log n terms,
each of which has spectral norm at most 3. By sub-multiplicativity,

L1 (gw) ≤ 3
3c
c−1

logn ≤ n
5c
c−1 .

Now, δ ≤ 1
2n
− 5c
c−1
−1, so by Claim 3.1 we get that |E[gw(Y)] − E[gw]| ≤ 1

n for every w ∈ {0, 1}n.
Fooling gw is sufficient to fool g̃z. To see this, note that

|E [g̃z(Y)]− E[g]| =
∣∣E[g(Y + z ∧ U)]− E[g(U + z ∧ U ′)]

∣∣
=

∣∣∣∣ E
w∼U

[E [gw(Y)]− E [gw]]

∣∣∣∣ ≤ 1

n
,

where U ′ is an independent copy of U .

Next, we prove:

Lemma 4.13 (Good terms). ∣∣∣E [(f̃ ′B)
z

(Y)
]
− E[f ′B]

∣∣∣ ≤ 1

n
.

Proof. For brevity, let g = f ′B and recall that its set of terms is given by C \Xz. Shifting the bias
function g̃ = g̃z to mean zero, recall that we define

ǧ(x) =
g̃(x)

E[g̃]
− 1.

Thus, we can write

g̃ = E[g]
∏

i∈C\Xz

(
1 + ĝi

)
= E[g]

∑
I⊆C\Xz

∏
i∈I

ĝi = E[g]
∑
~k∈NQ

∑
I⊆C\Xz ,K(I)=~k

∏
i∈I

ĝi,

where by K(I) = ~k we mean that for every q ∈ [Q], there are ~k[q] terms in I that belong to the q-th
bucket, i.e., |I ∩Bq| = ~k[q]. For simplicity, we reorder the terms of g and write g =

⊕
i∈[m′] gi for

m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that belong to the q-th bucket.
We abbreviate ~g = (ĝ1, . . . , ĝm′), and write

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Under these notations,

g̃ = E[g]
∑
~k∈NQ

S~k(~g).

Let Ig(x) be the Boolean-valued function which is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2−

A
1024 ,

where A = C log n and ‖~k‖(c) =
∑Q

q=1 c
q ·~k[q]. Section 4.4.4 will be devoted to showing that E[Ig(Y)]

is very close to 1. Namely,

24

Lemma 4.14. The following two inequalities hold.

1. E[Ig(Y)] ≥ 1− e−cIA for cI = ln 2
223

.

2. E
[
S2
~k
(~g(Y))

]
≤ 2−

1
8
‖~k‖(c).

For now, let us take Lemma 4.14 as given and continue with the proof of Lemma 4.13. We
proceed by writing

|E[g̃(Y)]− E[g̃]| ≤ |E [g̃(Y) | Ig(Y) = 1]− E[g̃]|+ 2 Pr [Ig(Y) = 0] . (8)

By Lemma 4.14, we have that Pr[Ig(Y) = 0] ≤ e−cIA. Next, observe that

|E [g̃(Y) | Ig(Y) = 1]− E[g̃]| =

∣∣∣∣∣∣∣E[g]
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣ ,
and set

∆ =

∣∣∣∣∣∣∣
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣ ,
so Equation (8) gives us

|E[g̃(Y)]− E[g̃]| ≤∆ + 2e−cIA. (9)

We bound ∆ as follows.

∆ ≤

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣+ max
y∈{0,1}n,Ig(y)=1

∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k(~g(y))
∣∣ .

By definition, the second term is at most 2−
A

1024 . The first term, call it ∆1, can be split into two
terms as follows.

∆1 =
1

Pr[Ig(Y) = 1]

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · Ig(Y)

]∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · Ig(Y)

]∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

]∣∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · (1− Ig(Y))

]∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

]∣∣∣∣∣∣∣+ 2
√
E[1− Ig(Y)]

∑
~k∈NQ,0<‖~k‖(c)≤A

√
E
[
S2
~k
(~g(Y))

]
, (10)

25

where the last inequality follows from the triangle inequality followed by Cauchy-Schwarz. By
Lemma 4.14, the second term of Equation (10), ∆1,2, is at most

∆1,2 ≤ 2 · e−cIA ·
∑

~k∈NQ,0<‖~k‖(c)≤A

√
2−

1
8
‖~k‖(c)

≤ 2 · e−cIA ·
A−1∑
w=1

∣∣∣{~k ∈ NQ : w < ‖~k‖(c) ≤ w + 1
}∣∣∣ 2− 1√

8
w

≤ 2 · e−cIA(A+ 1)Q
A∑
w=1

2
− 1√

8
w ≤ 8(A+ 1)Qe−cIA ≤ 2

2
log c

(log logn)2
e−cIA ≤ 1

8n
.

To finish bounding ∆1, it is left to bound the first term of Equation (10), denoted by ∆1,1.

Claim 4.15. ∆1,1 =
∣∣∣∑~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

]∣∣∣ ≤ 1
8n .

Proof. The proof goes by bounding the spectral norm of the function S~k(~g(x)). As for every
~k ∈ NQ with ‖~k‖(c) 6= 0, E[S~k(~g(U))] = 0, the claim will follow by using Claim 3.1, together with
sub-additivity and sub-multiplicativity. First, note that:

Claim 4.16. For every i ∈ [m], L1(ĝi) ≤ 4.

Proof. Consider the function hi = 1− gi, so L1(g̃i) ≤ L1(h̃i) + 1 and E[h̃i] = E[hi] = 1− E[gi] ≥ 1
2 .

Now, L1(ĥi) ≤ 1
E[hi]

L1(h̃i)+1 ≤ 2L1(h̃i)+1. Recalling that h̃i(x) = E[hi(x+z∧U)], we get L1(h̃i) ≤ 1

as every shift of hi is a negated conjunction of literals. Thus, L1(ĥi) ≤ 3 and L1(ĝi) ≤ 4.

Then, for every such ~k ∈ NQ,

L1

(
S~k(~g)

)
≤

∑
I⊆C\XT ,K(I)=~k

∏
i∈I

L1

(
ĝi
)
≤

∑
I⊆C\XT ,K(I)=~k

4|I|

=
∑

I⊆C\XT ,K(I)=~k

∏
q∈[Q]

4
~k[q] =

∏
q∈[Q]

(~k[q]

mq

)
4
~k[q].

Recall that Claim 4.10 tells us that mq ≤ 3c
q
, so

L1

(
S~k(~g)

)
≤
∏
q∈[Q]

3c
q(1+log3 4)~k[q] ≤ 12‖

~k‖(c) . (11)

Finally,

L1

 ∑
~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

] ≤ S · 12A ≤ 26A ≤ n6C ,

and the claim follows by observing that δ ≤ 1
16nn

6C .

26

Incorporating the above claim, we get that ∆1 = ∆1,1 + ∆1,2 ≤ 1
8n + 1

8n ≤
1

4n , which readily

gives ∆ ≤ 1
4n + 2−

A
1024 ≤ 1

2n . Plugging-it in Equation (9), we finally get

|E[g̃(Y)]− E[g̃]| ≤ 1

2n
+ 2e−cIA ≤ 1

n

and the desired result.

4.4.3 Putting It Together

Here we finally incorporate Lemma 4.8 and Lemma 4.9.

Proof of Lemma 4.7. By Lemma 4.8 and Lemma 4.9, with probability at least 1− 1
4 ·2
−C logn

log logn− 1
n ≥

1− 1
2 · 2

−C logn
log logn over z ∼ Z, we can write

f = fA ⊕ f ′B ⊕ f ′′B,

where the three functions are over disjoint set of variables, and it holds that for each T ∈ {A,B,B′},∣∣∣(f̃T)
z

(Y ′)− E
[
fT
]∣∣∣ ≤ 1

4
· 2−C

logn
log logn

for any δ-biased distribution Y ′. Using the XOR lemma for small-biased spaces (see Lemma 3.2),
taking into account that our distribution Y is in fact δ3-biased, we conclude that∣∣∣E[f̃z(Y)]− E[f]

∣∣∣ ≤ 163 · 2 · 1

4
· 2−C

logn
log logn ≤ 1

2
· 2−C

logn
log logn ,

and the lemma follows.

4.4.4 Ig Almost Always Happens

We keep using the notations of Section 4.4.2. Specifically, recall that g = f ′B =
⊕

i∈[m′] gi for

m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that belong to the q-th bucket.
Also, for ~g = (ĝ1, . . . , ĝm′),

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Recall that Ig(x) ∈ {0, 1} is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2−

A
1024 ,

where A = C log n and ‖~k‖(c) =
∑

q∈[Q] c
q · ~k[q].

Proof of Lemma 4.14. As in Section 2, we define

R~k(~g) = S2
~k
(~g) ·

∏
q∈[Q]

~k[q]!.

27

By Lemma 2.2, to prove the bound on Pr[Ig(Y) = 0] it is sufficient to prove that for every ~k ∈ NQ

with ‖~k‖(c) ≤ A we have that

E
[
R~k(~g(Y))

]
≤ 2−

1
8
‖~k‖(c) .

By now a standard course of action, we aim at bounding the spectral norm of the function R~k(~g),
together with its expectation under the uniform distribution. To this end, let us define, for q ∈ [Q]
and an integer `,

Š`,q =
∑

I⊆Bq ,|I|=`

∏
i∈I

ĝi,

so R~k(~g) =
∏
q∈[Q] Š

2
~k[q],q

~k[q]!. First, we record that:

Claim 4.17. For every i ∈ [m′], E
[
ĝi

2
]
≤ 2−(2−2β)wi.

Proof. Let Vi ⊆ [n] be the set of variables read by gi, of cardinality wi, and let `i = |Vi ∩ {j ∈ [n] : zj = 1}|
be the number of live variables read by gi. Note that

g̃i(x) = E[gi(x+ z ∧ U)] =

{
0 if there exists j ∈ Vi such that xj = zj = 0,

2−`i otherwise.

Then,

E
[
g̃i

2
]

= 2−2`i Pr
x∼U

[for every j ∈ Vi s.t. zj = 0 it holds that xj = 1] = 2−2`i2−(wi−`i) = 2−wi−`i .

Recalling that `i ≥ (1− β)wi (gi is good under z), we have E[g̃i
2] ≤ 2−(2−β)wi . Let hi = 1− gi, and

note that

E
[
ĥi

2
]

= Var
[
ĥi

]
=

Var[g̃i]

E2[hi]
≤ 4 · E

[
g̃i

2
]
≤ 4 · 2−(2−β)wi ≤ 2−(2−2β)wi .

The fact that Var[ĥi] = Var[ĝi] = E[ĝi
2
] finishes the proof.

Now,

E
[
Š2
`,q

]
=

∑
I⊆Bq ,|I|=`

∏
i∈I

E
[
ĝi

2
]
≤

∑
I⊆Bq ,|I|=`

∏
i∈I

2−(2−2β)wi

≤
∑

I⊆Bq ,|I|=`

2−(2−2β)cq` ≤
(
mq

`

)
2−(2−2β)cq` ≤ 3c

q`e`2−(2−2β)cq`

`!
≤ 1

`!
2−

cq`
4 .

Plugging it in our expression for R~k, we get

E
[
R~k(~g)

]
=
∏
q∈[Q]

E
[
Š~k[q],q

~k[q]!
]
≤
∏
q∈[Q]

2−
cq~k[q]

4 = 2−
1
4
‖~k‖(c) . (12)

Finally, let us bound L1(R~k(~g)). In Equation (11) we established the fact that L1(S~k(~g)) ≤
12‖

~k‖(c) ≤ 12A. Thus,

L1

(
R~k(~g)

)
≤ 122A

∏
q∈[Q]

~k[q]! ≤ 122Ae
∑
q∈[Q]

~k[q] ln~k[q] ≤ 122Ae(lnA)
∑
q∈[Q]

~k[q].

28

As ‖~k‖(c) =
∑

q∈[Q] c
q~k[q] ≤ A and cq ≥ C log logn (see Claim 4.10),

∑
q∈[Q]

~k[q] ≤ A
C log logn and we

get

L1

(
R~k(~g)

)
≤ 122Ae

lnA A
C log logn ≤ 122A2

C
C

logn ≤ n10C .

Note that δ ≤ 1
32n
−10C2−

A
4 . Thus, by Claim 3.1,

E
[
R~k(~g(Y))

]
≤ 2−

1
4
‖~k‖(c) + δ · n10C ≤ 2−

1
8
‖~k‖(c) ,

and we are done with bounding Pr[Ig(Y) = 0]. For the bound on E
[
S2
~k
(~g(Y))

]
, simply observe that

E
[
S2
~k
(~g(Y))

]
< E

[
R~k(~g(Y))

]
.

5 Full PRG via Iterated Restrictions

So far, we have shown how to pseudorandomly assign values to a constant fraction of the inputs of
any read-once PARITY◦AND formula using O(log n) truly random bits, preserving the expectation
of the formula to within near-optimal error. In this section, to complete the proof of Theorem 1.1,
we show how to pseudorandomly assign values to all the inputs, i.e., we give a genuine PRG.

For convenience, we make the following definitions.

Definition 5.1. Let w > 0. A w-proper formula is a read-once PARITY ◦AND formula of width
at most w and length most 28w. We say that such a formula is short if its length is at most 24w;
otherwise, we say that the formula is long.

Our main goal is to fool (C log n)-proper formulas, but along the way, we will obtain a PRG for
w-proper formulas with seed length O(w) and error exp(−Ω̃(w)), even for w substantially smaller
than log n.

5.1 Restrictions for Proper Formulas

Recall that Lemma 4.1 provides a pseudorandom restriction that uses only O(log n) truly random
bits. We now generalize this fact in two respects. First, in the case of w-proper formulas (log log n ≤
w ≤ C log n), we improve the seed length to O(w). Second, in the case of short w-proper formulas,
we argue that the restriction simplifies the formula, in the sense that it transforms it into a
(w/2)-proper formula.

Lemma 5.2. For every w, n ∈ N with w ≤ C log n, there is a distribution X over {0, 1, ?}n with
the following properties.

1. (Seed length) There is an explicit algorithm to sample from X using just O(w+ log logn) truly
random bits.

2. (Expectation preservation) If f is a w-proper formula, then X preserves the expectation of f
with error exp(−Ω(w/ logw)).

3. (Simplification) If f is a short w-proper formula, then

Pr[f |X is a (w/2)-proper formula] ≥ 1− 2−w.

29

Proof. Let n′ = 28w · w. Let Y be an n′-wise δ3-biased distribution where δ = (n′)−12C , and let Z
be γ-almost k-wise independent with marginals 1− 2−C , where k = 6 log n′ and γ = (n′)−9. Our
restriction is

X = Res(Y,Z)◦2
C+4

.

By standard constructions [NN93, AGHP92] and Claim 3.3, X can be explicitly sampled using
O(w + log log n) truly random bits.

Now, to prove expectation preservation, let f be a w-proper formula. By w-properness, there is
some set of indices I ⊆ [n], |I| ≤ n′, such that f(x) only depends on x|I . Let g : {0, 1}|I| → {0, 1}
be the w-proper formula such that f(x) = g(x|I). Since Y |I is δ3-biased and Z|I is γ-almost k-wise
independent with marginals 1−2−C , Lemma 4.1 implies that Res(Y |I , Z|I) preserves the expectation

of g with error exp(−Ω(logn′

log logn′)), which is exp(−Ω(w/ logw)). It follows that Res(Y,Z) preserves

the expectation of f with the same error. The error of X is only larger by a constant factor 2C+4,
because any restriction of a w-proper formula is trivially another w-proper formula.

Finally, to prove simplification, let f be a short w-proper formula, and let fi be a term. Since
k > w/2, by Claim 3.4, the probability that more than w/2 variables from fi are assigned ? by X is
bounded by(

w

w/2

)
·
(

(1− 2−C)2C+4·w/2 + 2C+4γ
)
≤ 2w ·

(
e−2−C ·2C+3w + 2C+4 · (n′)−9

)
< 2−5w.

The number of terms in f is at most 24w, so by the union bound, except with probability 2−w,
f |X has maximum width at most w/2. Furthermore, restricting cannot increase the number of
terms, so the number of terms is still bounded by 24w = 28(w/2). Therefore, in this case, f |X is
(w/2)-proper.

5.2 Full PRGs for Long Proper Formulas [MRT19]

The simplification clause of Lemma 5.2 only applies if f is short. If f is long, we will therefore need
a different approach. We will take a similar approach as Meka, Reingold, and Tal [MRT19]. A full
PRG for long w-proper formulas follows readily from their work.

Lemma 5.3 ([MRT19]). For every w, n ∈ N, there is an explicit (2−w)-PRG for long w-proper
formulas with seed length

O(w + log log n).

Proof sketch. In short, the PRG is one of the PRGs by Meka et al. [MRT19, full version, Lemma
6.2], except we replace every δ-biased distribution with a (·)-wise δ-biased distribution to optimize
the seed length.

In more detail, let n′ = 28w · w. Sample v ∈ {0, 1}wn from an (n′w)-wise (c−wMRT)-biased
distribution, where cMRT is a suitable constant. Think of v as n blocks of w bits. Define a set
I ⊆ [n] as follows: include i in I if and only if the i-th block of v is 1w.

Sample x(0), x(1), . . . , x(16) ∈ {0, 1}n independently from an (n′)-wise (c−wMRT)-biased distribution.
The PRG outputs the string x defined by

xi =

{
x

(0)
i if i 6∈ I⊕16
j=1 x

(j)
i if i ∈ I.

30

By standard constructions [NN93, AGHP92], the seed length of this PRG is

O(log n′ + w + log log n) = O(w + log log n).

As for correctness, let f be a long w-proper formula. Let J ⊆ [n] be the set of indices of
variables that f reads, so there is some long w-proper formula g on |J | input bits such that
f(x) = g(x|J). Let X be the distribution output by the PRG. Since |J | ≤ n′, the distribution X|J
is exactly the pseudorandom distribution designed by Meka et al. [MRT19, full version, Lemma
6.2]. Furthermore, since f is long, |J | > 24w. It follows that g is in the class of functions fooled
by Meka et al.’s pseudorandom distribution: g is an XOR of m non-constant Boolean functions
on disjoint variables, where each function is on at most w variables, with 16w < m ≤ 162w and
log log(|J |/2w) � w ≤ log |J |. Therefore, X|J fools g with error 2−w, and hence X fools f with
error 2−w.

5.3 Full PRGs for Width-O(log n) Formulas

For short proper w-formulas, to get a full PRG, we will iterate the restriction of Lemma 5.2 several
times, assigning values to more and more variables. Eventually, we’ll stop this recursive process and
use a different PRG. Specifically, for the “base case,” we’ll use a PRG by Lee [Lee19] with minor
modifications:

Lemma 5.4 ([Lee19]). For every w, n ∈ N and every ε > 0, there is an explicit ε-PRG for w-proper
formulas with seed length

O((w + log(1/ε)) · (logw + log log(1/ε))2) + poly(log log(n/ε)).

Proof sketch. In short, the PRG is one of the PRGs by Lee [Lee19, Theorem 6], except we replace
every δ-biased distribution with a (·)-wise δ-biased distribution to optimize the seed length, just
like the proofs of Lemma 5.2 and Lemma 5.3.

To give a little more detail, let n′ = 28w · w; a w-proper formula only reads n′ variables. Lee’s
PRG [Lee19, Theorem 6] is designed to fool arbitrary-order combinatorial checkerboards, i.e., parities
of functions on disjoint variable sets of size at most w. This class includes w-proper formulas as a
special case. Lee’s original PRG has seed length

O((w + log(n/ε)) · (logw + log log(n/ε))2).

After making suitable replacements, one can show that the seed length is reduced to

O((w + log(n′/ε)) · (logw + log log(n′/ε))2) + poly(log log(n/ε)).

(We omit the full proof, since it repeats much of Lee’s analysis [Lee19].) Plugging in the value of n′,
we get the claimed seed length.

We now give our full PRG for general formulas of width at most C log n. The PRG follows a
similar approach to one of the PRGs by Meka et al. [MRT19, full version, Algorithm 3]: iteratively
apply the restriction of Lemma 5.2, but at each step, XOR with the PRG of Lemma 5.3 in case the
formula is long.

31

Lemma 5.5. For every n ∈ N, there is an explicit PRG for read-once PARITY ◦AND formulas of
width at most C log n with seed length O(log n) and error

2
−Ω
(

logn

(log logn)3

)
.

Proof. Define

w0 =
log n

(log log n)2
.

We recursively define a PRG Gw for w-proper formulas, w0 ≤ w ≤ C log n, as follows.

• (Base case) If w ≤ 2w0, then Gw is the (2−w0)-PRG of Lemma 5.4 based on Lee’s work [Lee19].

• (Recursive case) If w > 2w0, sample X ∈ {0, 1, ?}n from the distribution guaranteed by
Lemma 5.2 based on the work in Section 4. Sample Y ∈ {0, 1}n using the PRG of Lemma 5.3
based on Meka et al.’s work [MRT19]. Recursively sample Gdw/2e, and set

Gw = Y ⊕ (X ◦Gdw/2e).

For the analysis, observe first that in the base case w ≤ 2w0, Gw fools w-proper formulas with
error 2−w0 . Now, for the inductive step, consider some w > 2w0. Assume Gdw/2e fools dw/2e-proper
formulas with error εdw/2e; we will show that Gw fools w-proper formulas with error εw, where

εw = εdw/2e + 2−Ω(w/ logw).

Let f be a w-proper formula, and for brevity, let G = Gdw/2e. For the first case, suppose f is
long. Any shift of f is also a long w-proper formula, so

|E[f(Gw)]− E[f]| =
∣∣∣∣ EX,G

[
E
Y

[f(Y ⊕ (X ◦G))]

]
− E[f]

∣∣∣∣
≤ E

X,G

[∣∣∣∣EY [f(Y ⊕ (X ◦G))]− E[f]

∣∣∣∣]
= E

X,G

[∣∣∣∣EY [f(Y ⊕ (X ◦G))]− E
U

[f(U ⊕ (X ◦G))]

∣∣∣∣]
≤ 2−w.

For the second case, suppose f is short. For each y ∈ {0, 1}n, define fy(x) = f(y ⊕ x), another
short w-proper formula. Fix y ∼ Y , and let E be the event that fy|X is (w/2)-proper, so whether
E occurs depends only on X. Then

|E[(fy|X)(G)]− E[f]| ≤
∣∣∣∣EX
[
E
G

[(fy|X)(G)]

∣∣∣∣ E]− E[f]

∣∣∣∣+ Pr[¬E]

≤
∣∣∣∣EX
[
E
U

[(fy|X)(U)]

∣∣∣∣ E]− E[f]

∣∣∣∣+ εdw/2e + Pr[¬E] (Induction)

≤
∣∣∣∣EX
[
E
U

[(fy|X)(U)]

]
− E[f]

∣∣∣∣+ εdw/2e + 2 Pr[¬E]

≤ 2−Ω(w/ logw) + εdw/2e + 2 Pr[¬E] (Item 2 of Lemma 5.2)

≤ 2−Ω(w/ logw) + εdw/2e + 2 · 2−w (Item 3 of Lemma 5.2).

32

Let εw be the final right-hand side, so indeed εw = εdw/2e + exp(−Ω(w/ logw)). Then

|E[f(Gw)]− E[f]| ≤ E
Y

[∣∣∣∣ EX,G[(fY |X)(G)]− E[f]

∣∣∣∣]
≤ εw.

Now, let us add up all these errors. Since w ≥ w0 always holds, we have εw ≤ εdw/2e +
exp(−Ω(w0/ logw0)). Starting at w = C log n, we only need to halve w a total of O(log log log n)
times to reach the base case w ≤ 2w0. Therefore, the total error of GC logn is bounded by

2−w0 + 2−Ω(w0/ logw0) ·O(log log log n) = 2
−Ω
(

logn

(log logn)3

)
.

Finally, let us bound the seed length of Gw. In the base case w ≤ 2w0, by our choice of w0, the
seed length sw of Gw is bounded by some value sbase ≤ O(log n). In the recursive case w > 2w0, the
seed length sw of Gw is bounded by

sw = sdw/2e +O(w + log log n) = sdw/2e +O(w).

The point is that this is essentially a geometric series. More precisely, let cseed be a constant such
that sw ≤ sdw/2e + cseed · w for all w > 2w0. Then by induction, for all w ≥ w0, we have

sw ≤ sbase + 3cseedw,

because

sw ≤ sdw/2e + cseedw

≤ sbase + 3cseeddw/2e+ cseedw (Induction)

< sbase + 3cseedw.

Therefore, we can take the desired PRG to be GC logn, because sC logn ≤ O(log n), and any read-once
PARITY ◦AND formula of width at most C log n is (C log n)-proper.

5.4 Arbitrary-Error PRGs for Width-O(log(n/ε)) Formulas

At this point, the main work of proving Theorem 1.1 is complete. We just need to address three
minor issues: small ε, large width, and formulas not of the form PARITY ◦ AND. We begin by
addressing the case of small ε. Recall that we wish to achieve seed length O(log n) + Õ(log(1/ε))
for an arbitrary error ε. This follows readily by combining the PRG of Lemma 5.5 with Lee’s PRG
(Lemma 5.4).

Lemma 5.6. For any n ∈ N, ε > 0, there is an explict ε-PRG for read-once PARITY ◦ AND
formulas of width at most C

2 log(n/ε) with seed length

O(log n+ log(1/ε) · (log log(1/ε))5).

Proof. Let ε0 be the error parameter in Lemma 5.5, so ε0 = exp(−Ω(logn
(log logn)3

)). If ε ≥ ε0, the

PRG of Lemma 5.5 works, because C
2 log(n/ε) < C log n. If ε < ε0, use Lee’s PRG [Lee19], i.e., the

ε-PRG of Lemma 5.4 for (C2 log(n/ε))-proper formulas, which has seed length

O(log(n/ε) · (log log(n/ε))2) ≤ O(log(1/ε) · (log log(1/ε))5).

(In the proof of Lemma 5.6, we could just as well have used Lee’s original PRG [Lee19, Theorem
6] instead of the slightly modified version given by Lemma 5.4.)

33

5.5 PRGs for Any Width

In this section, we eliminate the assumption that the maximum width is bounded.

Lemma 5.7. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once PARITY ◦ AND
formulas on n input bits with seed length

O
(
log n+ log(1/ε) · (log log(1/ε))5

)
.

Proof. Sample G from the (ε/3)-PRG for formulas of width C
2 log(3n/ε) guaranteed by Lemma 5.6.

Sample Y from an (ε
6n)-biased distribution. Our final PRG outputs

H
def
= G⊕ Y.

To prove that this works, let f be a read-once PARITY ◦AND formula. Write f = f ′ ⊕ f ′′, where
every term in f ′ has width at most C

2 log(3n/ε) and every term in f ′′ has width greater than
C
2 log(3n/ε).

Since any shift of a width-w read-once PARITY ◦AND formula is another width-w read-once
PARITY ◦ AND formula, H fools f ′ with error ε/3. Meanwhile, since each term f ′′i of f ′′ is a
conjunction of more than C

2 log(3n/ε) literals,

E[f ′′i] ≤
(ε

3n

)C/2
<

ε

6n
.

Furthermore, the L1 norm of any conjunction of literals is 1, and H is (ε
6n)-biased, so by Claim 3.1,

E[f ′′i (H)] < ε
3n . Therefore, by the union bound, for either distribution X ∈ {H,U},

E[f ′′(X)] < ε/3.

This allows us to bound the error of the final PRG as follows:

|E[f(H)]− E[f]| ≤
∣∣E[f(H)]− E[f ′(H)]

∣∣+
∣∣E[f ′(H)]− E[f ′]

∣∣+
∣∣E[f ′]− E[f]

∣∣
≤ E[|f(H)− f ′(H)|] +

∣∣E[f ′(H)]− E[f ′]
∣∣+ E[|f ′ − f |]

= E[f ′′(H)] +
∣∣E[f ′(H)]− E[f ′]

∣∣+ E[f ′′]

< ε/3 + ε/3 + ε/3 = ε.

5.6 Proof of Theorem 1.1

In this section, we finally complete the proof of Theorem 1.1 by showing that fooling read-once
PARITY ◦AND formulas is sufficient for fooling read-once depth-2 AC0[⊕]:

Lemma 5.8. Let X be a distribution over {0, 1}n, and let ε > 0. If X fools all read-once
PARITY ◦AND formulas with error ε, then X fools all read-once depth-2 AC0[⊕] formulas with
error 2ε.

Proof. Let f be a read-once depth-2 AC0[⊕] formula.
For the first case, suppose the output gate of f is ⊕. By merging the output gate with any

⊕ children and introducing trivial ∧ gates with fan-in 1 as necessary, we see that without loss of
generality, every child of the output gate is either ∧ or ∨. By de Morgan’s laws, it follows that

34

either f or ¬f can be computed by a read-once PARITY ◦AND formula. Either way, this implies
that X ε-fools f .

For the second case, suppose the output gate of f is ∧, say f =
∧m
i=1 fi. Using the Fourier

expansion of the m-input AND function, we get

f =
∑
I⊆[m]

(−1)|I|

2m
·
∏
i∈I

(−1)fi

=
∑
I⊆[m]

(−1)|I|

2m
·

(
1− 2 ·

⊕
i∈I

fi

)
.

By our analysis for the first case, X fools
⊕

i∈I fi with error ε. Therefore, by the triangle inequality,

|E[f(X)]− E[f]| ≤
∑
I⊆[m]

∣∣∣∣∣(−1)|I| · (−2)

2m

∣∣∣∣∣ ·
∣∣∣∣∣E
[(⊕

i∈I
fi

)
(X)

]
− E

[⊕
i∈I

fi

]∣∣∣∣∣
≤
∑
I⊆[m]

2

2m
· ε

= 2ε.

For the final case, suppose the output gate of f is ∨. By de Morgan’s laws, ¬f can be computed
by a read-once depth-2 AC0[⊕] formula with output gate ∧. By our analysis for the second case, X
fools ¬f with error 2ε, hence X fools f with the same error.

6 Directions for Further Work

Is there any setting where the iterated restrictions approach (with ω(1) iterations) can give a
pseudorandom generator (or even a hitting set generator) with truly optimal seed length O(log(n/ε))?

Suppose X,X ′, X ′′ are three independent small-bias distributions. Does X + X ′ ∧ X ′′ fool
read-once CNFs with optimal seed length O(log(n/ε))?

7 Acknowledgments

We thank David Zuckerman for very helpful discussions.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
of almost k-wise independent random variables. Random Structures & Algorithms,
3(3):289–304, 1992.

[AKS87] M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in LOGSPACE. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 132–140, New York, NY, USA, 1987. ACM.

35

[AW89] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits. Advances in Computing Research, 5(199-222):1, 1989.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error
for read-once branching programs. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 353–362, New York, NY, USA,
2018. ACM.

[BN17] Louay Bazzi and Nagi Nahas. Small-bias is not enough to hit read-once CNF. Theory
of Computing Systems, 60(2):324–345, Feb 2017.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branching
programs. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
pages 30–39, Oct 2010.

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved
pseudorandomness for unordered branching programs through local monotonicity. In
Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018),
pages 363–375, New York, NY, USA, 2018. ACM.

[CRS00] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Improved algorithms via
approximations of probability distributions. J. Comput. System Sci., 61(1):81–107, 2000.

[CSV15] Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once,
constant-depth circuits. arXiv preprint arXiv:1504.04675, 2015.

[De11] Anindya De. Pseudorandomness for permutation and regular branching programs.
In Proceedings of the 26th Annual IEEE 26th Annual Conference on Computational
Complexity (CCC 2011), pages 221–231. IEEE, 2011.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. In Approximation, randomization, and combinatorial
optimization, volume 6302 of Lecture Notes in Comput. Sci., pages 504–517. Springer,
Berlin, 2010.

[DHH19] Dean Doron, Pooya Hatami, and William M Hoza. Near-optimal pseudorandom gen-
erators for constant-depth read-once formulas. In 34th Computational Complexity
Conference (CCC 2019), 2019.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2018). IEEE, 2018.

[GKM15] Parikshit Gopalan, Daniek Kane, and Raghu Meka. Pseudorandomness via the discrete
Fourier transform. In Proceedings of the 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science (FOCS), FOCS ’15, pages 903–922, Washington, DC,
USA, 2015. IEEE Computer Society.

36

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS
2012), pages 120–129. IEEE, 2012.

[GR14] Anat Ganor and Ran Raz. Space pseudorandom generators by communication complexity
lower bounds. In LIPIcs-Leibniz International Proceedings in Informatics, volume 28.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[GY14] Parikshit Gopalan and Amir Yehudayoff. Inequalities and tail bounds for elementary
symmetric polynomial with applications. arXiv preprint arXiv:1402.3543, 2014.

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise
fools products. SIAM J. Comput., 47(2):493–523, 2018.

[HZ18] William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success
RL. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2018). IEEE, 2018.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 356–364. ACM, 1994.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators
for group products. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC 2011), pages 263–272. ACM, New York, 2011.

[Lee19] Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Amir
Shpilka, editor, 34th Computational Complexity Conference (CCC 2019), volume 137
of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:25, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[LV17] Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudoran-
dom generators for read-once polynomials. In Electronic Colloquium on Computational
Complexity (ECCC), volume 24, page 167, 2017.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Proceedings of the 51st Annual ACM Symposium on Theory of
Computing (STOC 2019), 2019. To appear.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, Mar 1994.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43 – 52, 1996.

37

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[RSV13] Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular
branching programs via Fourier analysis. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 655–670. Springer, 2013.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs without
the group theory. In Electronic Colloquium on Computational Complexity (ECCC),
volume 19, page 6, 2012.

[SVW17] Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier-
growth bounds for width-3 branching programs. Theory of Computing, 13(12):1–50,
2017.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

