
A Logical Characteristic of Read-Once
Branching Programs

Stanislav Žák⋆

Institute of Computer Science of the Czech Academy of Sciences,
P.O. Box 5, 182 07 Prague 8, Czech Republic, zakknin@seznam.cz

Abstract. We present a mathematical model of the intuitive notions
such as the knowledge or the information arising at different stages of
computations on branching programs (b.p.). The model has two appro-
priate properties:
i) The ”knowledge” arising at a stage of computation in question is deriv-
able from the ”knowledge” arising at the previous stage according to the
rules of the model and according to the local arrangement of the b.p.
ii) The model confirms the intuitively well-known fact that the knowl-
edge arising at a node of a computation depends not only on it but in
some cases also on a ”mystery” information. (I. e. different computations
reaching the same node may have different knowledge(s) arisen at it.)
We prove that with respect to our model no such information exists in
read-once b.p.‘s but on the other hand in b. p.‘s which are not read-once
such information must be present. The read-once property forms a fron-
tier.
More concretely, we may see the instances of our models as a systems
S = (U,D) where U is a universe of knowledge and D are derivation
rules. We say that a b.p. P is compatible with a system S iff along each
computation in P S derives F (false) or T (true) at the end correctly
according to the label of the reached sink. This key notion modifies the
classic paradigm according to which the computational complexity is de-
fined with respect to different classes of restricted b.p.‘s (e.g. read-once
b.p.‘s, k-b.p.‘s, b.p.‘s computing in limited time etc.). Now, the restric-
tion is defined by a subset of systems and only these programs are taken
into account which are compatible with at least one of the chosen sys-
tems.
Further we may understand the sets U of knowledge(s) as a sets of ad-
missible logical formulae. More rich sets U ‘s imply the larger (= more
free) restrictions on b.p.‘s and consequently the smaller complexities
of Boolean functions are detected. More rich logical equipment implies
stronger computational effectiveness.

Key words: branching programs, computational complexity, logic

⋆ S.Ž.’s research was supported by RVO: 67985807.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 150 (2019)

1 Introduction

Let us follow a way starting with a simple intuitive question to the rich world
of questions connecting logic, complexity and combinatorics.

1.1 An informal intuition transformed to a formal model

Before the period of 45 years a young student was confronted with the definition
of Turing machine. Inspired by the intuition that at the starting configuration of
a computation the machine in question knows probably nothing and at the final
configuration the machine probably knows ”YES” or ”NO” he posed the naive
question ”And what the machine knows at the configurations in the middle of
computation?”.

In some way our paper answers this question in that sense that it presents
a model developing knowledge along the computation step-by-step which has a
reasonable properties and which is interesting for many reasons. The model is
formulated in terms of branching programs (b.p.).

In the intermediate time a model for the more simple question ”what the
branching program knows about the contents of the input bits?” was developed.
This model provided interesting results including a lower bound method for
general branching programs, interesting restrictions on branching programs and
the corresponding lower bounds [1],[2],[3],[4],[5].

Concretely an instance of our present model is a so-called deductive system
which is a pair S = (U,D) where U is a universe of knowledge (possibly a set of
logic formulae) and D is a partial mapping from P (U) to P (U) which substitutes
the deduction rules. For each branching program and for each its computation
each deductive system assigns a subset of U to each node and to each edge of
the computation. At the source the system assigns ∅ and to the next edges and
nodes step-by-step it assigns different subsets of U depending i) on D, ii) on the
subset assigned to the previous edge or node and iii) on the local arrangement.
At sinks the derived subclass of U may (sometimes) contain F or T . In case
that F (resp. T) is derived iff the label of the sink is 0 (resp. 1) we say that the
system S is compatible with the program in question.

1.2 The read-once property forms a barrier against the mystery
information

Our model confirms the intuitive evidence which is well-known to people familiar
with branching programs. It is possible that the computations reaching the same
node in b.p. have (at this node) different knowledge(s) assigned by the system.
Hence the information is not defined only by the node, these computations must
have some additional - mystery - information at this node. We prove that in
read-once branching programs no such information exists and on the other hand
in branching programs‘s which are not read-once such mystery information must
be present. The read-once property forms a frontier.

2

1.3 A new paradigm of creating restrictions on branching programs

The usual way of studying the complexity of Boolean functions was to study this
complexity with respect to the restricted classes of programs such as programs
of constant width, read-once programs, programs computing within limited time
and so on. The complexity of a function f is given by the size of the smallest
program in the class computing f . Hence the more free restrictions (= larger
classes of programs) provide the smaller complexities.

The new paradigm of creating restrictions uses the concept of compatibility.
Let us have a class S of some systems. Let P be the class of all programs which
are compatible with at least one system from S. P is our restricted class of
programs and we are able to consider the complexity of functions with respect
to it.

1.4 Logic versus complexity

This new paradigm gives us an exciting possibility to observe the links between
logic and complexity. Suppose that U ‘s are the sets of logic formulae of certain
lengths which are build up on e.g. a number objects, on a number of predicates
with certain arity and on a number of variables. (Each number characteristic
depends on the number of input bits.) If we change the number characteristics
up we obtain larger classes U‘s. Hence we obtain a larger class of restricted
branching programs and therefore we obtain smaller (=not larger) complexities
of Boolean functions. The possibility to use a richer logic equipment along each
computations of b. p. make the computation more effective - it works with smaller
(=not larger) demands on the sources. At the end of paper we introduce an
example where a richer logic equipment implies a strictly smaller demands on
sources.

Following this line we shall obtain a new insight into the world of complexity
and moreover into the world of logic, and links between them. The dynamics of
measuring complexity with respect to restrictions mentioned above will be more
rich and of course more inspiring due to its logical foundations.

1.5 New horizons of a possible future research

We can create complexity classes of Boolean functions simply by defining a set
LP of some limits on the properties of branching programs such as size, time,
shape, number of repeated tests etc. Newly we may also define a set LS of
properties of deductive logical system such that as the number of predicates and
their arities, number of objects, length and forms of logical formulae, forms of
deduction rules etc. The corresponding complexity class of Boolean functions
are those ones computed by branching programs with limits from LP which are
compatible with at least one deductive system satisfying limits from LS .

The simple fact holds that making the limits from LP or from LS or from both
more free we obtain classes at least the same or larger. The classical hierarchy
question arises about the minimal increase of limits which causes that classes are

3

strictly larger. For the limits from LS this is a very new thing. The other question
is so-called trade-off when a decrease in some limit(s) is saturated by an increase
in other limit(s). How a decrease of the size or time can be saturated by reacher
number of predicate or reacher forms of logical formulae? We may formulate a
general hypothesis: ”More logic, less complexity (= stronger effectiveness), and
vice versa”.

A new question is that one about the sensitivity on complexity for different
types of Boolean functions when we vary the logical bounds. Are there Boolean
functions which are very sensitive in complexity on the changes of some logical
bounds but sensitive on changes on other one limits are only a little? Would it be
reasonable to define classes of Boolean functions with respect to the sensitivity
to the changes of different logical bounds?

Another question arises: given a set of Boolean functions (e.g. codes of graphs
of some type) what logical equipment has the strongest impact on effectiveness
of computation?

As an marginal note we can introduce a new way of computation of partial
Boolean functions. Suppose we have a branching program P which we consider
without the labels of its sinks and further we have a deductive system S non nec-
essarily compatible with P . Let a be an input and sa be the sink of P reached by
a. If F ∈ VS,P (a, sa) and T /∈ VS,P (a, sa) then fS,P (a) =df 0. If T ∈ VS,P (a, sa)
and F /∈ VS,P (a, sa) then fS,P (a) =df 1. Otherwise fS,P (a) is undefined. How is
the relation between the impact by P and that by S on the final form of fS,P ?

We are able to formutate many questions connecting complexity, logic and
combinatorics within the lines mentioned above and similar ones. And what
about the corresponding answers?

2 Technical Preliminaries

By a branching program (b.p.) P (over binary inputs of length n) we mean a
finite, oriented, acyclic graph with one source (in-degree = 0) where all nodes
have out-degree = 2 (so-called branching or inner nodes) or out-degree = 0 (so-
called sinks). The branching nodes are labeled by variables xi, i = 1, ..., n, one
out-going edge is labeled by 0 and the other by 1, the sinks are labeled by 0 or
by 1. If a node v is labeled by xi we say that xi is tested at v. For an input
a = a1...an ∈ {0, 1}n by the computation on a (comp(a)) we mean the sequence
of nodes (and edges) starting at the source of P and ending in a sink. In the
sequence, for each i, 1 ≤ i ≤ n, at any node with label xi the next node is
pointed by the edge with label ai. By the length of a computation we mean the
number of its inner nodes.
For a node v ∈ comp(a) we say that a reaches v. If a and b reach v and im-
mediately below v they reach different nodes we say that comp(a) and comp(b)
diverge at v (or shortly a and b diverge at v). Similarly for more than two in-
puts. If comp(a) has a common part with a path p in P we say that a follows
p (in this part). P computes function fP which on each a ∈ {0, 1}n outputs the

4

label of the sink reached by a. We say that P computes in time t(n) if its each
computation is of the length at most t(n).
A special case of b.p. with in-degree = 1 in each node (with exception of the
source) is called decision tree. Another well-known class of restricted b.p.s are
so-called read-once branching programs in which along each computation each
variable is tested at most once. Read-once b.p.s compute in time n, of course.
By a distribution we mean any mapping D of a subset of {0, 1}n to (the set
of nodes of) P with the property that for each a D(a) is a node of comp(a)
(D(a) ∈ comp(a)). The class of the distribution at node v is the set of all a‘s
mapped to v. (Similarly, we can work with distribution to edges.)

Let v be a node of P . By the tree Tv unfolded in v according to P we mean
the decision tree the branches of which are given by the paths in P starting at v
and ending at sinks. Let A be a set of some (not necessarily all) inputs reaching
v. By the tree Tv,A unfolded in v according to P with respect to A we mean
the decision tree which results from tree Tv after application of the following
operations:

a) From Tv we omit all branches which are not followed by any input from
A.

b) Each edge pointing to a node with out-degree = 1 (after a)) is repointed
to its successor.

By the tree T
c)
v,A we mean a tree which results from not only a),b) but also

from the next operation c)

c) at each leaf l of Tv,A reached by the set of inputs Bl ⊆ A , |Bl| > 1 a
subtree Tl is added which totally splits Bl and which tests variables in some
ordering ϕ.

Similarly we can define the trees Te,A, T
c)
e,A for any edge e.

By the size of P we mean the number of its nodes. By the complexity of a
Boolean function f we mean the size of the minimal b.p.s computing f . It is a
well-known fact that superpolynomial lower bound on the size of b.p.s implies
superlogarithmic lower bound for space complexity of Turing machines [6].

3 Deductive systems

Definition 1. By a deductive system we mean a pair (U,D)

where U is a set (a universe of knowledge) which must contain also the ele-
ments F and T and the elements o01, ..., o

0
n, o

1
1, ..., o

1
n.

D is a partial mapping from P (U) to P (U) which satisfies the next conditions:

i) If D is defined on A ⊆ U then A ⊆ D(A) and moreover D is defined also
on D(A) and D(A) = D(D(A)).

ii) If D is defined on A,B subsets of U and A ⊆ B then D(A) ⊆ D(B).

iii) If for an i o0i ∈ A and o1i ∈ A (and D is defined on A) then D(A) = U .
Similarly for F ∈ A and T ∈ A.

5

iv) For i = 1, ..., n and j = 0, 1 and A ⊆ U , D is defined on A, if oji /∈ A

then oji /∈ D(A) (except of case iii)).

Let P be a branching program, S = (U,D) be a deductive system and a ∈
{0, 1}n be an input. To each w - a node or an edge of comp(a) - S assigns a set
VS,P (a,w) which is a subset of U . The process of assigning starts in the source
of program in question, VS,P (a, sourceP) =df ∅.

Let a be an input and let v be a node of comp(a) with two outgoing edges e0,
e1 (labeled by 0, 1, resp.) testing a bit i. Let VS,P (a, v) be given. Let moreover
e0 ∈ comp(a). Then we define VS,P (a, e0) = D(VS,P (a, v) ∪ {o0i }) (we assume
that D is defined). Similarly for e1 and {o1i }.

Let us have an edge e ∈ comp(a) ending in a node v. Let VS,P (a, e) be given.
We define VS,P (a, v) as a subset of VS,P (a, e).

We proceed as follows. Let Me be the set of all inputs reaching e and Mv be
the set of all inputs reaching v. Let us take the trees Te,Me a Tv,Mv .

Let Aa,e be the set of all ”answers” along the branch of Te,Me followed by a,
i.e. the set of all oai

i such that xi is tested on this branch. Similarly we define
Aa,v as the set of all ”answers” along the branch of Tv,Mv followed by a. Clearly,
Aa,e ⊆ Aa,v (since Me ⊆ Mv).

VS,P (a, v) will be the minimal subset V of VS,P (a, e) such that for each
G ∈ {F, T} if G ∈ D(VS,P (a, e) ∪ Aa,e) then G ∈ D(V ∪ Aa,v). It is easy to
see that D(VS,P (a, e) itself fulfils this axiom, hence the existence of V is en-
sured. From the minimality of V it follows that V ∩Aa,v = ∅.

(We see that there is an ambiguity in the definitions of V . We did not elimi-
nate the possibility of more than one minimal sets and we choose it arbitrarily.
Though this ambiguity the definition and proof machinery works well.)

3.1 Compatible systems

Definition 2. Let S = (U,D) be a deductive system. We say that S is a non-
conflict system iff for each input a = a1...an ∈ {0, 1}n the set D({oai

i |i = 1...n})
never contains both F, T .

In the next definition we introduce the basic notion of our paper.

Definition 3. Let P be a branching program and let S be a nonconflict deductive
system. We say that P and S are (mutually) compatible if for each input a
reaching the sink sa in P T (F , resp.) is derived in VS(a, sa) iff the label of sa
is 1 (0, resp.).

We intuitively consider the compatible systems as entities which give us to
understand how the programs compute (think) or how their inherent logics work.

6

4 Read-Once Branching Programs and the mystery
information

Given a program P and a deductive system S we see that along any computation
in P , S assigns the sets V ⊆ U to each node and to each edge. In principle, at
any w - a node or an edge - the sets V assigned to w may be different for other
different computations also reaching w. In other words the memory arising at
a node (or an edge) along a computation is not given by the reached node (or
the reached edge) only but it is given also by some other mystery things. This is
the key message of this section. Moreover we prove that in read-once programs
there is no mystery information on one hand and on the other hand in branching
programs which are not read-once the mystery information must be present. The
read-once property forms a frontier.

Definition 4. Let P be a program, w be a node or an edge of P , and Tw be the
tree developed from w. Let S = (U,D) be a deductive system, and V1, V2 be some
subsets of U . Then we say that V1, V2 are Tw-equivalent iff for each G ∈ {F, T}
and for each branch B in Tw G ∈ D(V1 ∪AB) iff G ∈ D(V2 ∪AB) where AB is
the set of all answers along B.

This formal property of ”Tw-equivalence ” stands as the formal opposite of
the intuitive notion of equality of information.

Theorem 1. Let P be a read-once branching program and S be any deductive
system compatible with P . Let w be a node or an edge of P . Then for each inputs
a, b reaching w sets VS,P (a,w), VS,P (b, w) are Tw-equivalent.

Proof. By topdown induction. Let w be the source of P . By definition for each
input a, b VS,P (a,w) = ∅ = VS,P (b, w).

Let v be a node of P such that for all inputs a reaching v sets VS,P (a, v)
are mutually Tv-equivalent. Let e0, e1 be the edges leaving v. Let a, b be inputs
reaching e0. We want to prove that the sets VS(a, e0), VS(b, e0) are Te0-equivalent.
Let B be any branch in Te0 and G ∈ {F, T}. We see that

G ∈ D(VS,P (a, e0) ∪AB) iff
G ∈ D(D(VS,P (a, v) ∪ {o0i }) ∪AB) (where i is the bit tested at v) iff
G ∈ D(VS,P (a, v)∪AB′) (where B′ is branch in Tv consisting from e0 followed

by B) iff
G ∈ D(VS,P (b, v) ∪ AB′) (since VS,P (a, v), VS,P (b, v) are Tv-equivalent by

induction) iff
G ∈ D(VS,P (b, e0) ∪AB).
(We have used the fact that D(D(X ∪ Y) ∪ Z) is in between D(X ∪ Y ∪ Z)

and D(D(X ∪ Y ∪ Z)) which are equal. Similarly for D(D(X) ∪ Y ∪ Z).
Similarly for e1.
Let a, b be two inputs reaching v via edges ea, eb.
If ea = eb then a, b are Tea -equivalent by induction and further a, b are

Tv-equivalent since Tv = Tea by the read-once property.

7

If ea ̸= eb let us take any branch B of Tv. By the read-once property there is
an input aB such that aB follows a till v and then aB follows B till the sink. F
or T are in D(VS,P (aB , v)∪AB) if 0 or 1 is the label of the sink of B (according
to Theorem 9 in Section 7).

The same holds for a since a and aB are Tea-equivalent (by induction).
The same arguments hold for b. We obtain that F or T is in D(VS,P (a, v) ∪

AB) and in D(VS,P (b, v) ∪ AB) according to the label 0 or 1 of the sink of B.
Therefore a, b are Tv-equivalent.

2

Corollary 1. Let P be a read-once branching program and P1 be any its sub-
program. Let S be any system compatible with P1. Then for each w a node or an
edge of P1 and for each inputs a, b reaching w (in P1) the sets VS,P1(a,w) and
VS,P1(b, w) are Tw-equivalent in P1.

Proof. P1 is a read-once branching program, too. 2

Theorem 2. Let P be a not-read-once branching program which is a minimal
one. Then there are a system S and a subprogram P1 compatible with S such
that in P1 there is a node or an edge w of P1 and there are two inputs a and
b both reaching w (in P1) such that the sets VS,P1(a,w) and VS,P1(b, w) are not
Tw-equivalent in P1.

Proof. Since P is a not-read-once program then there is a computation comp(a)
which tests a variable xi (with result xi = 0 wlog) at least two times, on a node
v1 and then on v2. Between v1, v2 there is no other test on xi. Moreover wlog
comp(a) ends in the sink with label 0.

Let b be an input such that comp(b) leaves v2 by edge xi = 1.
CASE 1. Assume that b reaches both v1 and v2.
In P on a-path or on b-path from v1 to v2 there is at least one other test (from

minimality). Say, it is on comp(a) (wlog) in a node u1 and it tests a variable j,
aj = 1.

Since v2 is a test on i immediately next after v1 it must be i ̸= j.
Let P1 be a (sub)program based on inner nodes v1, u1, v2 and on three sinks

reached by inputs a, b, c where ci = 0, cj = 0.
If d is an input then vd denotes F or T according the value 0 or 1 of the label

of the sink reached by comp(d).
Now, let us create an appropriate deductive system S = (U,D). D is minimal

such that:
D({o0i }) = {o0i }, D({o1i }) = {o1i , vb}, D({o0j}) = {o0j}, D({o1j}) = {o1j},
D({o0i , o1j}) = {o0i , o1j , va}, D({o0i , o0j}) = {o0i , o0j , vc}
We see that S is a non-conflict system.
Let us introduce a notation: If some edge leads from a node u to a node v

we denote it e(u, v).
Let us verify that S is compatible with P1.
Let us derive the sets VS,P1(a,w) when w is going along comp(a) in P1 (using

the rules from Section 3).

8

We see that at the source VS,P1(a, v1) = ∅. Then VS,P1(a, e(v1, u1)) = {o0i },
VS,P1(a, u1) = ∅, VS,P1(a, e(u1, v2)) = {o1j}, VS,P1(a, v2) = {o1j} and VS(a, e(v2, sinka)) =

{o0i , o1j , va}. Hence VS,P1(a, sinka) = {va}.
For the input b: VS,P1(b, v1) = ∅, VS,P1(b, e(v1, v2)) = {o1i }, VS,P1(b, v2) = ∅

and VS,P1(b, e(v2, sink)) = {o1i , vb}. Hence VS,P1(sinkb) = {vb}.
For the input c: VS,P1(c, v1) = ∅, VS,P1(c, e(v1, u1)) = {o0i }, VS,P1(c, u1) =

{o0i }, VS,P1(c, e(u1, sinkc)) = {o0i , o0j , vc} and VS,P1(c, sinkc) = {vc}.
We see that S derives the correct values on sinks. Therefore S is compatible

with P1.
Now, let w = v2. We want to prove that VS,P1(a,w) = {o1j} and VS,P1(b, w) =

∅ are not Tw-equivalent.
Let us take the branch in Tw consisting from edge e0 outgoing w with test

i = 0. We see that D(VS,P1(a,w) ∪ {o0i }) = {o0i , o1j , va} on one hand , and on

the other hand D(VS,P1
(b, w) ∪ {o0i }) = {o0i }. Hence the sets VS,P1

(a,w) and
VS,P1(b, w) are not Tw-equivalent.

CASE 2. Taking into account CASE 1 comp(b) must leave comp(a) in a node
v0 (with test, say, j = 0) before v1 and join comp(a) again before (or in) v2 and
leaves v2 by edge xi = 1.

Further there is a computation on an input c which reach v1 and leaves it
by the edge xi = 1. Let P1 be defined on inner nodes v0, v1, v2 and on sinks for
{a, b, c}.

Now we define S = (U,D) as follows:
D({o0i , o1j}) = {o0i , o1j , va},D({o1i , o0j}) = {o1i , o0j , vb},D({o1i , o1j}) = {o1i , o1j , vc}

On other arguments D is identity, especially D({o0i , o0j}) = {o0i , o0j}.
We see that S is nonconflict.
Compatibility: On a the desired va is assigned after v1 and after v2. The

desired vb for b is assigned after v0 and after v2. And the desired vc for c is
assigned after v1.

Let w = v2. Then VS,P1(a,w) = {o1j} and VS,P1(b, w) = {o0j}. Now, let us take
a branch of Tw consisting from the edge leaving w and ending in the sink with
label 0. The sets D(VS,P1(a,w)∪{o0i }) = {o1j , o0i , va} and D(VS,P1(b, w)∪{o0i }) =
{o0i , o0j} are not {F, T}-equivalent. Hence the sets VS,P1(a,w) and VS,P1(b, w) are
not Tw-equivalent.

2

5 Complexity based on compatibility

Definition 5. Let S1 = (U1, D1) and S2 = (U2, D2) be systems. We say that
S1 is a part of S2, S1 ⊑ S2 iff U1 ⊆ U2 and moreover for each A ⊆ U1 if D1 is
defined on A then D2 is also defined on A and D1(A) ⊆ D2(A).

Lemma 1. Let P be a program and let S1, S2 be systems which are P -sound. If
and S1 is compatible with P and S1 ⊑ S2 then also S2 is compatible with P .

9

Proof. Let a be an input with fP (a) = 0. If S1 is compatible with P then
D1(VS1(a, source) ∪ Aa,source) = D1(Aa,source) must contain F because the set
of answers from the source to the sink is the maximum what is at the disposition
for deriving F along comp(a) and S1 is compatible with P .

Further also D2(Aa,source) must contain F since S1 ⊑ S2.
During the derivation along comp(a) from the source to the sink S2 must

preserve F . At the sink sa the unique possibility is that F ∈ VS2(a, sinka).
Hence S2 is compatible with P .

2

Definition 6. Let f be a Boolean function and S be a system. Then, by S-
complexity of f we mean the size of the smallest branching program P computing
f and compatible with S if such P exists (otherwise formally S-complexity equals
∞).

Theorem 3. Let f be a Boolean function and S1, S2 be systems. Let S2 be P -
sound for each P computing f compatible with S1. If S1 ⊑ S2 then S2-complexity
of f is not larger than S1-complexity of f .

Proof. It suffices to prove that each program P compatible with S1 is compatible
also with S2. This follows from the lemma above. So, the minimum for S2-
complexity is taken over the same or larger set of programs than in case of
S1-complexity. 2

The theorem confirms our intuitive idea that the branching programs which
may compute in a more complicated way (i. e. using our terminology, which are
compatible with richer deductive systems) can compute more effectively, i. e.
within a smaller complexity bound. If the internal dialogue along each compu-
tation (i. e. node-edge-node) may use more rich means then it is more effective
(= with smaller demands on memory, on complexity resp.). In the next section
we demonstrate this fact convincingly. In our example, a small increase in the
richness of deductive systems produces a dramatic drop in the need of the com-
putation source (memory).

6 More logic - less complexity: An example

For our demonstration of the basic principle of complexity based on compatibility
we use the simple classical parity function. We want to demonstrate the trade-off
between the logical bounds on one hand and the memory bounds on the other
hand. We shall construct a sequence {Si}ni=1 of systems with increasing logical
equipments, Si ⊑ Si+1 . We shall prove that the corresponding Si-complexities of
the parity function are decreasing. In informal words: More logic less complexity
(and viceversa) or more logic more effectiveness.

For i = 1...n we define Si =df {Ui, Di} where Ui contains the elements F, T

and ojk, k = 1, ..., n, j = 0, 1 and moreover the elements which are formulae of

10

the type Par(o). Par are predicates oddi, eveni applicable to the sets o of input
bits of cardinality at least n− i.

Di contains the deduction rules as follows:
Rule I). For any {oj1k1

, ..., o
jn−i

kn−i
} where k1, ...kn−i is a subsequence of {1, ..., n}

and j1, ...jn−i are from {0, 1}Di derives Par({k1, ..., kn−i}) where Par = oddi or
Par = eveni according to the parity of the number of 1‘s in the chain j1, ..., jn−i.

Rule II). From {ParL(A), o
k
j } D derives ParR(A∪ {j}) where A is a set of

input bits, 0 < j < n+1 and j /∈ A, k ∈ {0, 1} ParL is oddi or eveni, and ParR
is oddi or eveni depending on ParL and k in the obvious way which is given by
the properties of the parity function.

Rule III). Moreover, in Di there are two special rules
oddi({1, ..., n})/T and eveni({1, ..., n})/F .

Theorem 4. For i ∈ {1, ..., n}, Si-complexity of the parity function is at least
2n−i−1.

Proof. Let P be any branching program computing parity function which is
compatible with Si. We want to prove that size(P) is at least 2n−i−1, this
will be sufficient. From the compatibility P and Si it follows that at the sink
of its computation each input has activated predicates F or T . Hence, during
its computation each input has activated predicates oddi or eveni on the set
{1, ..., n} (cf. Rule III).
The unique way in which an input may have activated a parity predicate on a
set of input bits of cardinality n is such that it has activated this predicate on
the set of cardinality n−1 and used Rule II. Repeatedly till the cardinality n−i.
For each input let us take into account the edge of its computation where the
predicates oddi or eveni are activated on a set of elements of type okj of size n− i
for the first time (cf. Rule I). This is the moment when the input in question
has the natural window of length n− i (see Lemma 4 in Section 8).
Now we distribute each input a to the edge of its computation where a has the
natural window of length at least n− i for the first time. The length of windows
according to this distribution is of course of length at least n − i. According
to Theorem 12 (Section 8) the number of classes of the distribution and hence
the number of edges in P is at least 2n−i. Hence, according to the fact that
out-degree of nodes in P is at most 2 we have that size(P) is at least 2n−i−1.
(Here we see how Theorem 12 works in practice.) 2

Lemma 2. For i, i = 1, ..., n, there is a program P which computes the parity
function and which is compatible with system Si such that size(P) ≤ 2n−i +
2.(i+ 1).

Proof. P starts as a decision tree of depth n − i on the first n − i bits. On the
remaining i levels P is of width 2. The nodes are arranged in two columns, one
column represents the value ”even” and the other represents the value ”odd”.
The zero-edge outgoing any node always preserves the column while the one-edge
always changes the column.

11

We see that P indeed computes the parity function and that its size is below
the desired bound. It remains to prove that P is compatible with Si. On the
level of leaves of the initial tree of depth n − i in question we have for the first
time derived the formula Par(A) where A is the set of cardinality n− i and Par
is oddi or eveni. Below in two column chain the cardinality of A is increasing
step by step, by one in each step (cf. Rule II).

On the level of sinks the cardinality of A is n, and, therefore, correct F, T
are derived here - cf. Rule III. So, P is compatible with Si. 2

Comment. The upper bound for programs compatible with Si+1 is at most
2n−i−1+2i+4. On the other hand the lower bound for programs compatible with
Si−1 is at least 2n−i which is in general more than the mentioned upper bound.
Hence the decrease of the logical equipment from Si + 1 to Si−1 considerably
decreases the computational power.

7 Some more details on programs and systems

In general the deductive system can derive predicates F, T at the end of compu-
tations which do not correspond to the labels 1, 0 of the reached sinks. This is
the reason for the next definition.

Definition 7. Let P be a program and S be a deductive system. We say that S
is P -sound iff for each sink s of P with label 0 (1, resp.) S never derives T (F ,
resp.) for the computation on any input reaching s.

Definition 8. Let f be a Boolean function and S be a system. We say that S
is f -sound iff S is P -sound for each P computing f .

Theorem 5. Let f be a Boolean function and let R be a full decision tree of
depth n computing f . Let S be an R-sound system. Then S is an f -sound system.

Proof. Let P be a program computing f and let a be an input reaching a sink
sa. The set VS(a, sa) derived in P is a subset of these one derived in R along the
branch of length n followed by a which does not contain any wrong F, T .

2

Theorem 6. Let R be a decision tree. Then there is a system S compatible with
R.

Proof. Given R we define S =df (U,D) as follows. U =df {oji |i = 1 ... n, j =
0, 1} ∪ {F, T} and D is such that for each A ⊂ U if A is the set of all answers
along any whole branch b of R or large then D(A) = A∪{F} or D(A) = A∪{T}
according to the label of the sink of b, and D(A) = A otherwise. (And for A
containing for some i both o0i and o1i D is undefined.)

We see that S is a nonconflict system. Moreover for each branch b of R and
for each input a following b at the sink s of b F ∈ VS(a, s) or T ∈ VS(a, s)
according to the label 0 or 1 of s. Hence S is compatible with R.

2

12

Corollary 2. Let f be a boolean function. Then there is a branching program
P computing f and a system S compatible with P .

Proof. As P we may choose any decision tree for f .
2

Theorem 7. Let T0, T1 be full binary decision trees of depth n computing the
same function f . Let S be a system compatible with T0. Then S is compatible
with T1, too.

Proof. Let a be an input and b0,a, b1,a be the branches in T0, T1 followed
by a. Suppose that f(a) = 0. On the last edge ep,0 of b0,a it holds F ∈
D({oa1

1 , ..., oan
n }) ⊆ VT0,S(a, ep,0)

and T /∈ D({oa1
1 , ..., oan

n }) ⊆ VT0,S(a, ep,0). (S is nonconflict.).
On the last edge ep,1 of b1,a it holds the same. Hence also on T1 S derives F

for a. S is compatible with T1.
2

Theorem 8. Let S be a system compatible with program P . Then S is fP -sound.

Proof. We want to prove that for any branching program Q computing fP S
is Q-sound. We see that S is compatible with TP developed till the depth n.
Then S is also compatible with TQ developed till the depth n according to the
theorem above. Then S is Q-sound since S deriving a false value on Q would
derive a false value on TQ, too.

2

Theorem 9. Let P be a branching program and S be a system compatible with
P . Let a be an input, w be a node or an edge, w ∈ comp(a) and let Mw be the
set of all inputs reaching w. Let Ba,w be the branch in Tw,Mw followed by a, and
Aa,w be the set of all answers along Ba,w.

Then D(VS(a,w) ∪Aa,w) contains right F or T (only).

Proof. By induction from the source of P to sinks.
I. If w is the source then VS(a, source) = ∅ and Aa,source is the set of all

answers till the leaf.
Since S is a nonconflict system in D(VS(a,w) ∪Aa,w) = D(Aa,w) there is at

most one element from F, T .
On the other hand along comp(a) S derives correct F or T and Aa,w is the

maximum what S can have at its disposition. Therefore D(VS(a,w) ∪ Aa,w)
contains right F or T (only).

II. a) Let w be an edge out-going a node v with test on i. Let by induction
D(VS(a, v) ∪Aa,v) contains right F or T (only).

D(VS(a,w)∪Aa,w) = D(D(VS(a, v)∪{oai
i })∪ (Aa,v \ {oai

i })) = D(VS(a, v)∪
Aa,v). Hence also D(VS(a,w) ∪Aa,w) contains right F or T (only).

II. b) Let w be a node in comp(a) and let e be the edge of comp(a) ending
in w. By induction D(VS(a, e) ∪Aa,e) contains right F or T (only).

13

According to the definition VS(a,w) is a minimal subset V of VS(a, e) such
that if F (T , resp.) is in D(VS(a, e)∪Aa,e) then F (T , resp.) is in D(V ∪Aa,w).
From compatibility of S (especially from fact that S is nonconflict) it follows
that in D(V ∪Aa,w) there is exactly one of the elements F , T .

2

Theorem 10. Let S be a system compatible with a program P . Then S is com-
patible also with the tree TP developed till the depth n.

Proof. Since S is a nonconflict system S assigns at most one value F, T to each
branch of TP . On the other hand on each branch of TP defined by an input a
since TP is developed till the depth n S derives at least the same or more than
along nodes and edges of comp(a). Hence S must derive the right F or T at the
end of the branch in question. Hence S is compatible with TP .

2

8 Systems and windows

We introduce a definition which will be useful for our lower bound proof.

Definition 9. Let P be a branching program, v be its node or its edge. Let A be
a set of some (not necessarily all) inputs reaching v. From v we totally develop
the tree T c

v,A (see Section 2).
For each a ∈ A we define the window w(a, v, A) ∈ {0, 1,+} on a at v with

respect to A in such a way that w(a, v, A)i = + if and only if in T
c)
v,A there is

a test on bit i along the branch followed by a. On the other -non-crossed- bits
w(a, v, A) equals a.

The length of a window is the number of its non-crossed bits.
The window w(a, v, A) is said to be a natural one iff A is the set of all inputs

reaching v.

A very similar definition is widely commented in [8].
We use the following lemma for the proof of the next theorem.

Lemma 3. [5] Let us have r binary trees. Let l be the average length of their
branches and S be the sum of (the numbers of) their leaves. Then, l ≥ log2 S −
log2 r.

Theorem 11. Let P be a branching program and A be a set of inputs of length n
distributed in edges e1, ...er of P . Let A1, ... Ar be the classes of this distribution.
Then, log2 (2.size of P) ≥ log2 r ≥ log2 |A| − n + avelw where avelw is the
average length of windows on inputs from A each at corresponding ei with respect
to Ai, i = 1, ... r.

Proof. Let us take the classes A1, ..., Ar distributed to edges e1, ..., er. For each i,
1 ≤ i ≤ r, in ei let us totally develop the tree T c

ei,Ai
according to P . We obtain

r binary trees and we apply lemma above. Let l, S be as in lemma. We have
log2(2.size of P) ≥ log2 r ≥ log2 S − l ≥ log2 |A| − l ≥ log2 |A| − n+ avelw. 2

14

Lemma 4. Let P be a program, S be a system and a be an input. For each
node or edge w of comp(a) and for each bit i it holds that if oai

i ∈ V (a,w) then
the bit i is non-crossed in the natural window w(a,w) on a at w (symbolically
i ∈ ncw(a,w)).

Proof. By induction. Let a be an input. At the source we have VS(a, source) = ∅.
Let v be a node of comp(a) such that for each i = 1, ..., n if oai

i ∈ VS(a, v) then
i ∈ ncw(a, v). Let i0 be the bit tested at v. On the outgoing edge followed by a
the set VS(a, v) is enlarged only by one element of the type oji , concretely by o

ai0
i0

.
This enlargement is covered by enlargement of w(a, v) about the non-crossed bit
i0.

Let e be an edge of comp(a) ending in node v such that for each i = 1, ..., n
if oai

i ∈ VS(a, e) then i ∈ ncw(a, e).
We want to prove that for i = 1, ..., n if oai

i ∈ VS(a, v) then i ∈ ncw(a, v).
If oai

i ∈ VS(a, v) then oai
i ∈ V (a, e) and i ∈ ncw(a, e). Moreover, since oai

i ∈
VS(a, v) it holds that oai

i /∈ Aa,v where Aa,v is the set of all answers along the
branch of Tv,Mv followed by a till the sink . We see that this branch has no test
on i and therefore i remains a non-crossed bit, i ∈ ncw(a, v).

2

We see that windows and trees are complementary in some sense. At each
node long windows are the same as short branches in the respective tree and
vice versa.

15

References

1. Žák, S.: Information in Computation Structures. Acta polytechnica. Vol. 20, no. 4
(1983), pp. 47-54. ISSN 1210-2709

2. Žák, S.: A Subexponential Lower Bound for Branching Programs Restricted with
Regard to Some Semantic Aspects. Electronic Colloquium on Computational Com-
plexity. Report Series 1997. ECCC TR97-50. Trier, 1997, http://www.eccc.uni-
trier.de/report/1997/050

3. Jukna, S., Žák, S.: On Branching Programs with Bounded Uncertainty. Automata,
Languages and Programming. Proceedings. Berlin : Springer, 1998 - (Larsen, K.;
Skyum, S.; Winskel, G.), pp. 259-270 ISBN 3-540-64781-3. - (Lecture Notes in Com-
puter Science. 1443). [ICALP’98 International Colloquium /25./. Aalborg (DK),
13.07.1998-17.07.1998.

4. Jukna, S., Žák, S.: Some Notes on the Information Flow in Read-Once Branching
Programs. SOFSEM’2000: Theory and Practice of Informatics. Berlin : Springer,
2000 - (Hlav, V.; Jeffery, K.; Wiedermann, J.), pp. 356-364 ISBN 3-540-41348-0.
ISSN 0302-9743. - (Lecture Notes in Computer Science. 1963).

5. Jukna, S., Žák, S.: On Uncertainty versus Size in Branching Programs. Theoretical
Computer Science. 290 (2003), pp. 1851-1867.

6. Wegener, I.: Branching Programs and Binary Decisions Diagrams, SIAM Mono-
graphs on Discrete Mathematics and Applications, pp. 408, 2000.

7. Žák, S.: A Lower Bound Method for Branching Programs and Its Application.
Prague : ICS AS CR, 2012. 19 pp., Technical Report, V-1171

8. Žák, S.: Inherent Logic and Complexity. Electronic Colloquium on Computational
Complexity, Report No. 29 (2015).

16

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

