
Optimal Inapproximability with Universal Factor Graphs∗

Per Austrin, Jonah Brown-Cohen, and Johan Håstad

KTH Royal Institute of Technology

November 5, 2019

Abstract

The factor graph of an instance of a constraint satisfaction problem (CSP) is the bipartite
graph indicating which variables appear in each constraint. An instance of the CSP is given
by the factor graph together with a list of which predicate is applied for each constraint. We
establish that many Max-CSPs remains as hard to approximate as in the general case even when
the factor graph is fixed (depending only on the size of the instance) and known in advance.

Examples of results obtained for this restricted setting are:
1. Optimal inapproximability for Max-3-Lin and Max-3-Sat (Håstad, J. ACM 2001).
2. Approximation resistance for predicates supporting pairwise independent subgroups

(Chan, J. ACM 2016).
3. Hardness of the “(2 + ε)-Sat” problem and other Promise CSPs (Austrin et al., SIAM

J. Comput. 2017).
The main technical tool used to establish these results is a new way of folding the long code
which we call “functional folding”.

1 Introduction

Constraint Satisfaction Problems (CSPs), such as k-Lin and k-Sat, are some of the most well-studied
problems in computational complexity. Already when considered as decision problems most CSPs
are NP-complete and their maximization versions are hence NP-hard. In order to further investigate
the computational complexity of these problems it is interesting to study restricted versions.

The factor graph of an instance of a CSP is the bipartite graph that connects ui to vj iff
variable xi appears in the jth constraint. The description of the instance is completed by indicating
for each constraint which predicate is applied (in the case of e.g. Max-3-Sat this simply means
specifying which variables are negated and which appear in their positive form). It is not difficult
to find examples of factor graphs where the resulting Max-CSP instances are always easy; one
example would be that the graph has bounded treewidth as such instances can be solved efficiently
by dynamic programming. More generally, there has been extensive research on the tractability
of CSPs with “left-hand side restrictions”, i.e., restrictions on the structure of the factor graph
[DKV02, Gro07].

In this paper we are interested in the other end of the spectrum, namely to see if there is a
sequence of factor graphs, one for each length of the input, such that the underlying Max-CSP
remains hard if we restrict the instances to use these factor graphs. This general class of questions
was first systematically considered by Feige and Jozeph [FJ12] who coined the term universal factor
graphs for such sequences of factor graphs.

∗Research supported by the Approximability and Proof Complexity project funded by the Knut and Alice Wal-
lenberg Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 151 (2019)

There are several reasons for studying this setting. On a fundamental level it is interesting to
understand whether this separation into the factor graph and the predicate types applied can help
us better understand the problem. In some situations one might have many instances with the same
factor graph and it is interesting to study whether this is beneficial for a solver. This leads to the
concept of “CSPs with preprocessing”. A particularly interesting case of this is for a linear problem
such as Max-k-Lin where the factor graph determines a fixed linear subspace, the negations give a
point in space, and the problem is equivalent to finding a point in this fixed subspace that is close
to the given point. This is a decoding problem for a linear code, but note that, in this case, the
distances between the points supplied and the linear code is much larger than the minimal distance
of the code. Hence, this problem is not really a traditional decoding problem for error correcting
codes.

It is not surprising that some problems remain NP-hard in this setting. For instance, it is not
difficult to see that if some basic parameters, such as the alphabet and the number of tapes for the
involved Turing machine, are fixed then the standard proof of the Cook-Levin theorem produces an
instance that can easily be made to have a universal factor graph.

Using a different approach Feige and Jozeph [FJ12] proved that universal factor graphs exist
for the problem of deciding k-Sat. Furthermore, they also showed that the PCP Theorem can be
established in the universal factor graph setting, opening up the possibility to proving hardness
of approximation results for universal factor graphs. They went on to show that universal factor
graphs exist for the problem of approximating Max-k-Sat to within some constant factor, which for
k = 3 was 77/80 + ε. Since general Max-3-Sat is well-known to be NP-hard to approximate within
any constant larger than 7/8 + ε [Hås01] this left open the problem whether fixing the factor graph
might make Max-3-Sat easier to approximate.

In a follow-up work, Jozeph [Joz14] showed that there are universal factor graphs for every
NP-hard Boolean CSP and for every APX-hard Boolean Max-CSP, but with possibly weaker ap-
proximation gaps than in the standard setting.

1.1 Our Results

We show that the hardness ratio of Max-3-Sat as well as those of many other problems carry over
to the universal factor graph setting.

Essentially all our results are stated in the form of approximation resistance, i.e., that it is hard
to approximate a certain Max-CSP significantly better than picking an assignment at random. In
fact, in all cases but one, we prove uselessness in the sense of [AH13]. This means that it is NP-hard
to find an assignment such that when picking a random constraint, the resulting distribution of k-
tuples that are fed into the predicate deviates significantly from uniform, even under the promise
that there exists an assignment that satisfies almost all or even all of the constraints.

We show that the following problems are all approximation resistant also in the universal factor
graph setting.

1. The Max-k-Sat problem on satisfiable instances for all k ≥ 3.

2. The Max-TSA problem (each constraint is a Tri-Sum-And constraint, i.e., of the form x1 +
x2 + x3 + x4 · x5 = b (mod 2)).

3. Any predicate supporting a pairwise independent subgroup such as linear equations modulo
q and the very sparse “Hadamard predicate”.

Our proofs also give uselessness for all of these problems with the exception of Max-TSA. Approx-
imation resistance for the Hadamard predicate is of particular interest because this gives optimal
hardness of approximation for the general Max-k-CSP problem (up to a constant factor independent
of k) [Cha16].

Hardness results for Max-TSA and similar problems are somewhat related to the one-way func-
tions and pseudorandom generators proposed by Goldreich [Gol11]. For instance the Tri-Sum-And

2

predicate is one of the current standard candidate predicates for his construction, and our results
show that there is a fixed set system such that it is NP-hard to distinguish strings that are in the
image of the one-way function from strings that are at almost maximal distance from any output of
the function. Of course in a cryptographic situation one is interested in an average case results while
we are in a worst case setting. In any case we feel that our results give at least moral support to
the conjecture that the functions proposed by Goldreich are indeed good pseudorandom generators.

We also consider hardness of Promise CSPs (PCSPs) as studied in several recent works [AGH17,
BG18, BKO19]. In this setting we are given a satisfiable instance of some hard CSP (e.g. a 3-
colorable graph) and are asked to find an assignment where each constraint is replaced by a weaker
constraint (e.g. finding a c-coloring for some large c). One example of this is the “(2+ε)-Sat” problem,
in which we are given a (2k+ 1)-Sat instance where it is promised that there is an assignment that
satisfies at least k literals in every clause, and the goal is to find an assignment that satisfies at
least 1 literal in every clause. A fairly general hardness result of Brakensiek and Guruswami [BG18]
states that if all the so-called polymorphisms of a PCSP satisfy a property called “C-fixing” then
the PCSP is NP-hard. They further showed that this result is sufficient to establish a complete
dichotomy for PCSPs where all constraints are symmetric functions. We were not able to obtain this
result under universal factor graphs, but we can obtain an earlier result of Austrin et al. [AGH17],
which applies if all the polymorphisms are C-juntas and the problem allows negations of variables.
This in particular shows that the “(2 + ε)-Sat” problem remains NP-hard in the universal factor
graph setting.

Finally we also note that many typical gadget reductions carry over without modification to the
universal factor graph setting and as a consequence our optimal hardness for Max-3-Lin also implies
hardness of, e.g., 11/12-approximating Max-2-Lin and 21/22-approximating Max-2-Sat.

Our results generally apply to any domain, but to keep the notation as simple as possible in
order to focus on the main new ideas, most parts of the paper present the details only for the
Boolean case. We then briefly comment towards the end of the paper on the (minor) modifications
needed for general domains.

1.2 Overview of Proof Techniques

To establish strong hardness results in the universal factor graph framework the key is to combine
the universal factor graph property with a, at least somewhat, more modern soundness analysis
of the underlying PCPs. The results of Feige and Jozeph [FJ12] essentially used the technique
of Bellare et al. [BGS98] and was for instance unable to adapt the reductions of [Hås01]. The
main technical problem is that the used folding of the long code (called conditioning) is difficult to
combine with having a universal factor graph.

We circumvent this problem by introducing a new folding of the long code which we call “func-
tional folding”. This folding is not as powerful as conditioning but sufficient for our purposes.
Functional folding is based on the concept of “equational CSPs”. These are CSPs in which each
constraint is of the form f(xS) = b where f is a function of constant arity and xS is the values of
the variables from a small set S. Here, we demand that the only data that varies with the instance
are the right hand sides b, while f and S remain fixed. Any such CSP which is APX-hard with a
universal factor graph on satisfiable instances can be used as starting point (for concreteness we use
the Max-TSA problem). Let us, without actually describing the details of what functional folding is
(which the reader who wishes to skip ahead can find in Section 3), briefly explain what differences
it results in compared to previous results.

We follow the standard “parallel repetition + long coding” reduction paradigm underlying the
majority of strong inapproximability results. In this paradigm, the main objects in the reductions
are Boolean functions f : {0, 1}n → {0, 1} where each coordinate i ∈ [n] represents an assignment
xT to some subset T of variables of the initial equational CSP. The “conditioning” type of folding
normally employed in this setting further ensures that all of the n coordinates represent assignments
xT that actually satisfy the equations on T in the initial CSP. The key difference in our setting where
we apply functional folding instead of conditioning is that some of the coordinates now represent

3

assignments that do not satisfy the equations on T . Exactly which of the coordinates are satisfying
depends (only) on the right-hand sides b of the underlying equations. Nevertheless, the functional
folding still gives us a (weaker) guarantee (formalized in Lemma 3.4), which implies that for any
non-zero Fourier coefficient of f , at least one of the associated variables represents a satisfying
assignment.

Having only this weaker guarantee, it turns out to be possible to reprove many earlier results
in the universal factor graph setting after some modifications in the constructions and the proofs.
The most important modification is that, even in the easiest cases of proving that Max-3-Lin is
NP-hard to approximate within 1

2 + ε or that (2 + ε)-Sat is NP-hard, we need to use a smooth
parallel repetition as the starting point. This allows us to cope with the issue that only some of the
coordinates of each purported long code are satisfying assignments (i.e. feasible assignments in the
parallel repeated game).

Another difference, albeit a purely notational one, is the following. Because of the property
of functional folding that only some of the coordinates correspond to feasible assignments in the
parallel repeated game, we need to keep track for each long code of how the coordinates represent
partial assignments to the underlying equational CSP. Due to this, we cannot view the parallel
repeated game as an abstract label cover instance and in the process we lose most of the simplified
notation afforded by this “modern” view. For example we have to view the purported long codes
given to the PCP verifier as Boolean functions of Boolean functions rather than simply Boolean
functions of generic bit strings.

The fact that we need a smooth parallel repetition implies that if we look more closely at the
parameters of our results we do not get as strong results as in the general case. In the black and
white world of polynomial vs non-polynomial time we match the general results, but in more fine-
grained measures our results are weaker than the general case. Here we are referring to (i) the
question of how small ε can be as a function of n, and (ii) the question of what quantitative lower
bounds can be given on the running time assuming the Exponential Time Hypothesis. For these
questions, our results for universal factor graphs do not match the state of art for the general case.
We elaborate a bit more on this in the concluding remarks towards the end of the paper.

1.3 Organization

An outline of the paper is as follows. In Section 2 we cover some background material. In Section 3
we define our new notion of functional folding and set up the general framework for our hardness
reductions. Section 4 is devoted to the reproving the results of Håstad [Hås01] for basic problems
such as Max-3-Lin and Max-3-Sat (and also Max-TSA for which the hardness is proved in the same
way). In Section 5 we show how to adapt the results of Chan [Cha16], and in Section 6 we give
results for Promise CSPs. Then in Section 7 we discuss small extensions such as gadget reductions
and larger domains, and finally in Section 8 we round off with some remaining open questions.

2 Preliminaries

For a vector v ∈ ΣI indexed by I over some set Σ, and a vector S = (i1, . . . , ik) ∈ Ik of indices, we
write vS for the vector (vi1 , . . . , vik). For a set β of vectors we let βS = {vS |v ∈ β } (viewed as a
set and not a multiset).

For any event E(x) we let 1(E(x)) denote the function that is one exactly when E(x) is true
and zero otherwise. In a similar vein for a set β ⊆ I of indices 1β ∈ {0, 1}I is the vector that is one
exactly on the set β and zero outside this set. If β is a single index, this is a unit vector.

For an index set I of coordinates we write FI = { f : {0, 1}I → {0, 1} } for the set of all Boolean
functions on I, and for an integer n we write Fn = F[n].

When arguing about Boolean functions we let “+” denote exclusive-or. We also have addition
of real numbers but hopefully the meaning of each + is clear from the context.

4

2.1 Constraint Satisfaction Problems

We begin by introducing notation for CSPs. As this paper focuses on the case of Boolean inputs
we only give formal definitions in this special case. We expect that the reader is able to guess the
more general definitions needed for our brief discussion of larger domains in Section 7.2.

Definition 2.1. A k-ary constraint language Γ is a finite set of functions f : {0, 1}k → {0, 1}.

Different constraint languages give rise to different CSPs as formalized in the following definition.

Definition 2.2. An instance of the Max-CSP(Γ) problem is of the form I = (X,C) where X is a
set of n variables and C is a set of m constraints. Each constraint c ∈ C is a pair c = (f, S) where
S ∈ Xk (the scope of c) is a tuple of k distinct variables and f ∈ Γ (the constraint type of c). An
assignment a ∈ {0, 1}X of values to the variables satisfies the constraint c = (f, S) if f(aS) = 1.

The objective is to find an assignment to the variables satisfying as many constraints as possible.
An instance of Max-CSP(Γ) is α-satisfiable if there is an assignment that satisfies an α fraction of
the constraints.

For every Max-CSP and some approximation parameters, there is a naturally associated ap-
proximation problem, which we generally phrase as the following promise decision problem.

Definition 2.3. For parameters 0 ≤ s ≤ c ≤ 1, the problem of (c, s)-approximating Max-CSP(Γ)
is the promise problem where the goal is to distinguish between instances of Max-CSP(Γ) that are
at least c-satisfiable, and those that are at most s-satisfiable.

For example, Max-3-Lin is the problem Max-CSP(Γ) where Γ consists of the two functions
f0(x, y, z) = x+ y + z and f1(x, y, z) = x+ y + z + 1. In fact Max-3-Lin is a prototypical example
of the following important subclass of CSPs which plays a critical role in our reductions.

Definition 2.4. An equational CSP is a CSP where the constraint language Γ contains exactly two
functions: f and ¬f for some f : {0, 1}k → {0, 1}. Equivalently, an equational CSP is one where
each constraint c has the form either f(xS) = 0 or f(xS) = 1.

Definition 2.5. For a predicate f : {0, 1}k → {0, 1}, Max-CSP(f±) is the CSP where each con-
straint is of the form f(xS + b) = 1 for some scope S and vector b ∈ {0, 1}k.

We now formally define the CSPs of interest in this paper.

Definition 2.6. The Tri-Sum-And predicate fTSA : {0, 1}5 → {0, 1} is given by

fTSA(x, y, z, u, v) = x+ y + z + uv.

We write Max-TSA for the (equational) Max-CSP({fTSA,¬fTSA}) problem which is a well
known NP-hard problem.

Definition 2.7. Max-k-Sat is the Max-CSP(∨±k) problem, where ∨k : {0, 1}k → {0, 1} is the OR
function on k Boolean variables.

Definition 2.8. Max-k-Lin is the (equational) Max-CSP({+k,¬+k}) problem, where +k :
{0, 1}k → {0, 1} is the parity function on k Boolean variables.

Definition 2.9. For k of the form 2`−1 for some integer `, Hadk : {0, 1}k → {0, 1} is the predicate
where the indices are in one-to-one correspondence with the nonempty subsets of [`] and a string x
satisfies Hadk iff xα + xβ = xγ whenever α4β = γ.1

It is easy to see that an accepted x is determined by the ` singleton variables x{i} and that Hadk
accepts exactly 2` = k + 1 strings. We write Max-Hadk for the Max-CSP(Had±k) problem.

1Here α4β is the symmetric difference of the two sets α and β, i.e., the set of elements that appear in exactly one
of the two sets.

5

2.2 Factor Graphs and Preprocessing

Next we define the factor graph of a CSP.

Definition 2.10. The factor graph of an instance I = (X,C) of Max-CSP(Γ) is the bipartite graph
G = (X,Y,E), where Y = {S | (f, S) ∈ C } is the multiset of scopes of the constraints of I, and
there is an edge between a variable x ∈ X and scope S ∈ Y whenever x ∈ S.

Note that the factor graph precisely describes the scopes of the constraints of I but is independent
of the constraint types f used for each constraint. Our results are about hardness of approximation
for Max-CSPs where the factor graph is fixed in advance and the instance only consists of the
constraint types. To this end, we make the following definitions.

Definition 2.11. A family F = {Fn}n>0 of factor graphs parameterized by n is explicit if Fn can
be constructed in time poly(n).

Definition 2.12. We say that Max-CSP(Γ) is (c, s)-UFG-NP-hard if there is an explicit family
{Fn} of factor graphs and a polynomial time reduction R from 3-Sat instances I on n variables to
Max-CSP(Γ) instances R(I) having factor graph Fn such that

1. If I is satisfiable than R(I) is c-satisfiable.

2. If I is unsatisfiable then R(I) is not s-satisfiable.

We often say that a problem “has universal factor graphs” when it is UFG-NP-hard.
Remark 2.13. As a 3-Sat instance might have up to n3 clauses this definition is rather relaxed in
how it handles size parameters. In this paper this does not matter as we do not keep track of degrees
of various polynomials appearing in our proofs. If a more fine-grained theory was desired it would
be useful to introduce also a parameter m for the number of clauses in the 3-Sat formula and see
how this parameter enters into the size of the resulting factor graph family.

Our definitions here have minor technical differences with those in [FJ12]. This was done for
reasons of presentation, and it is easy to check that all of the results in both this paper and [FJ12]
hold for both (very similar) sets of definitions for universal factor graphs. In particular, it is not
difficult to see that if Max-CSP(Γ) is (c, s)-UFG-NP-hard using a family F then there is no poly(n)-
size circuit family {Cn} that (c, s)-approximates Max-CSP(Γ) on instances with factor graph Fn
unless NP ⊆ P/poly.

To prove our hardness results, we start with some problem already known to have universal
factor graphs, and then do a reduction to a CSP achieving the optimal approximation ratio. The
key difference from the standard version of such reductions is that, given two instances with the
same factor graph, our reductions must produce two instances with the same factor graphs.

Definition 2.14. A reduction R from Max-CSP(Γ) to Max-CSP(Λ) is factor graph-preserving if,
whenever two Max-CSP(Γ) instances I and I ′ have the same factor graph, then R(I) and R(I ′) also
have the same factor graph.

The key property of factor graph-preserving reductions is the following immediate fact.

Fact 2.15. If Max-CSP(Γ) is (c, s)-UFG-NP-hard and there is a factor graph-preserving polynomial
time reduction from (c, s)-approximating Max-CSP(Γ) to (c′, s′)-approximating Max-CSP(Λ), then
Max-CSP(Λ) is (c′, s′)-UFG-NP-hard.

The starting point for our reductions is the following hardness result for Max-TSA.

Theorem 2.16 ([Joz14]). There is a constant s < 1 such that Max-TSA is (1, s)-UFG-NP-hard.

6

2.3 Analysis of Boolean Functions

We use standard notation, but in a slightly non-standard set-up. As mentioned in Section 1.2 we are
mostly concerned with analysing tables which are Boolean functions of Boolean functions, rather
than functions taking generic bit strings as inputs. Of course there is no real difference between a
Boolean function f ∈ Fn and a bit string of length 2n as long as we identify {0, 1}n and [2n] but
the notation looks slightly different. Furthermore, our choice to make Boolean functions take value
in {0, 1} rather than {−1, 1} causes us to many times replace what would have been A(f) in the
latter notation by (−1)A(f) in our current notation. Let us turn to some definitions.

Definition 2.17. For α ⊆ {0, 1}n we have a character χα : Fn → {−1, 1} defined by

χα(f) = (−1)
∑

x∈α f(x).

Definition 2.18. For a Boolean function A : Fn → {0, 1} we define the Fourier coefficients by

Âα = E
f

[(−1)A(f)χα(f)].

We have the Fourier inversion formula

(−1)A(f) =
∑
α

Âαχα(f)

and Plancherel’s identity
∑

α Â
2
α = 1. The Boolean-valued function A(f) and the real-valued

function (−1)A(f) are of course just different views of the same mathematical object.

2.4 Parallel Repetition

An instance I = (X,C) of a Max-CSP can be naturally associated with a basic two-prover game.
The verifier picks a random constraint (S, f) ∈ C and a uniformly random variable xi from the
tuple xS . It sends xi to prover P1 and xS to prover P2. P1 responds with a value for xi and P2

responds with values for all the variables in xS . The verifier accepts if and only if the values given
to xi by the two provers are the same, and the value given to xS satisfies f .

If the instance I is satisfiable then the provers can win this game with probability 1 (perfect
completeness), and if I is at most (1 − δ)-satisfiable then they can win with probability at most
1− δ/k where k is the arity of each constraint and thus we preserve soundness strictly smaller than
one.

In the r-wise parallel repetition of this game the verifier chooses r random constraints which
it sends to P2 and randomly one variable from each constraint which it sends to P1. The provers
respond with values for all the variables they are sent. The verifier accepts if an only if the values
from P2 satisfy the constraints and match those sent by P1 on the common variables. The r-parallel
repeated game has perfect completeness and soundness cr for some c < 1 [Raz98].

In our reductions we need a variant called smooth parallel repetition. In this version an extra
set of t constraints are sent to both provers. Of course for this to be useful, P2 does not know which
t of its t+ r constraints are sent to P1. The verifier now also checks that it gets the same values for
the tk values requested from both provers. It is easy to see that these extra variables sent to both
provers do not increase soundness which remains at most cr.

We use smooth parallel repetition in order to ensure that for any two distinct answers, a1 and a2

sent by P2 it is unlikely that there is one answer by P1 that is accepting for both ai. This is ensured
by setting t significantly larger than r, while keeping both parameters constant independent of the
number of variables in the CSP. Let us give a formal description.

7

Definition 2.19. Given a CSP instance I = (X,C) the (r, t)-smooth parallel repetition is the
following two-prover game.

1. For j = 1, . . . , t+ r choose a constraint cj = (Sj , fj) ∈ C uniformly at random.

2. For j = 1, . . . , r choose a variable xij ∈ xSt+j uniformly at random.

3. Send (xSj)
t+r
j=1 in random order to P2, and send both (xSj)

t
j=1 and (xij)

r
j=1 to P1.

4. Receive values for the variables sent to each prover, and check that for each j the values aSj ,
given by P2 to xSj satisfy cj , and that the two values given to each of (xSj)

t
j=1 and (xij)

r
j=1

by the two provers agree.

We denote the set of variables sent to P1 by U and the set sent to P2 by W .

The smoothness property of the repeated game is quantified by the following claim.
Claim 2.20. For a fixed set of variables W sent to P2 and any set of possible answers S ⊆ {0, 1}W
from P2 in the (r, t)-smooth parallel repetition, the probability (over the choice of U conditioned
on W) that there exists two different answers a and a′ in S such that aU = a′U is at most |S|

2r
t+r .

Proof. For any two fixed elements a and a′ in S, the probability that aU = a′U is at most (k−1)r
k(t+r) ≤

r
t+r . This follows as they differ in at least one coordinate and only (k−1)r of the k(t+r) coordinates
are projected away. The claim follows by a union bound over all

(|S|
2

)
pairs of elements of S.

3 Functional Folding and Reduction Template

Most parts of our proofs are standard. We apply parallel repetition to a constraint-versus-variable
two-prover proof and then code the answers of the provers by the long code. The main novelty
is a new way of folding the long code in a factor graph-preserving way and we now describe this
mechanism.

3.1 Factor Graph-Preserving Folding of Long Codes

The full long code of a string x ∈ {0, 1}` is a table A : F` → {0, 1} indexed by the set F` of all
functions f : {0, 1}` → {0, 1}, where A(f) is supposed to take the value f(x).

When giving a long code of a string x that is supposed to satisfy some conditions, say hi(x) = bi
for i = 1, 2, . . . , r, it turns out to be essential to incorporate these conditions directly into the long
code. The idea is to divide the functions into equivalence classes such that the value on one function
in the equivalence class determines the value of all other functions in the same equivalence class. It
is then sufficient to give only one bit for each equivalence class of functions. This has, in the past,
been done in two different ways.

1. Put f and g in the same equivalence class if and only if f(x) = g(x) +
∑r

i=1 σihi(x) for some
constants σi.

2. Put f and g in the same equivalence class if f(x) = g(x) for all x that satisfy hi(x) = bi for
all i. In many situations we also allow for the possibility that f(x) = ¬g(x) for all such x.

In particular, the former method, which we call linear folding, was used by Bellare et al. [BGS98]
and the latter, which we call conditioning, by Håstad [Hås01]. The second method creates fewer
equivalence classes.

In the current situation we want the construction to be factor graph-preserving and this turns
out to be equivalent to the property that the equivalence classes do not depend on the unknown

8

negations. If each constraint comes from a CNF clause on some known set of variables S with
unknown negations then it is easy to see that not even linear folding has this property. Once we
write such a condition on the form h(xS) = b then the identity of h and hence the folding depends
on the negations.

On the other hand if we start with an equational CSP, linear folding does have the desired
property. Linear folding was sufficient in the case when the soundness analysis of the PCP protocol
used established that a table given by the prover was close in Hamming distance to a correct long
code. In most sharp inapproximability results one is not able to establish such a strong property
and in such situations linear folding is not sufficient for the analysis of the protocol. However, even
in the situation of equational CSPs it is easy to see that conditioning creates equivalence classes
that are dependent on the right hand sides and thus it seems too strong to use in our setting.

The main new technical tool of this paper is to define an intermediate type of folding that
is factor graph-preserving, but is still strong enough to be used instead of conditioning in many
situations where a PCP is analyzed using Fourier analysis and/or the Invariance principle. We
proceed to define this folding which is based on the following equivalence relation.

Definition 3.1. Let H = {h1, . . . , hr} ⊆ F`. Two functions f, g ∈ F` are H-equivalent if there
exists F : {0, 1}r → {0, 1} such that

f(x) = g(x) + F (h1(x), . . . , hr(x))

for all x ∈ {0, 1}`.

It is easy to check that this definition gives an equivalence relation, and we refer to the classes
of this relation as H-equivalence classes. Now we can define the folding of A over all functions on
the constraints.

Definition 3.2. LetA : F` → {0, 1} be a supposed long code, {hi(x) = bi}ri=1 be a set of constraints,
b = (b1, . . . , br) ∈ {0, 1}r, and H = {h1, . . . , hr}. For each class of H-equivalent functions we choose
one representative. The folding of A over all functions on H with respect to b, denoted by AH,b, is
now defined as follows. If g is the representative for an H-equivalence class containing some function
f , then we define

AH,b(f)
def
= A(g) + F (b1, b2, . . . br).

where f = g + F (h1, h2, . . . hr).

We call this folding functional folding, and it is easy to see that if AH,b is functionally folded,
then changing the choice of representative for each H equivalence class does not change the function.
Note that even if r = 0 we always fold over the function that is identically true.

Given A, we simulate queries to AH,b in the standard way. Whenever we want to read the value
of AH,b(f), we find the representative g = f + F (h1, . . . , hr) of the H-equivalence class for f , and
return the value A(g) + F (b1, b2, . . . br). Since the equivalence classes depend only on the hi and
not on the bi, we immediately have that this folding is factor graph-preserving when we start with
an equational CSP.

Fact 3.3. Let A,H and b be as above. If a PCP verifier simulates queries to AH,b by querying the
table A, then the query locations depend only on H.

While this folding is factor graph-preserving, it is not yet clear that it is actually useful in
enforcing the constraints. The next lemma shows that the folding does indeed enforce the constraints
in the sense that all non-zero Fourier coefficients correspond to sets of assignments with an odd
number of them satisfying the constraints.

Lemma 3.4. Let A : F` → {0, 1} be a supposed long code, {hi(x) = bi}ri=1 be a set of constraints,
b = (b1, . . . , br) ∈ {0, 1}r, and H = {h1, . . . , hr}. Let AH,b be A folded over all functions on H with
respect to b. If ÂH,b(α) 6= 0 then the number of x ∈ α that simultaneously satisfy hi(x) = bi for all
i is odd.

9

Proof. Let h(x) = (h1(x), . . . , hr(x)). Suppose that the number of x ∈ α that satisfy all of the
constraints hi(x) = bi is even. Recall that

ÂH,b(α) = E
f∈F`

[
(−1)AH,b(f)χα(f)

]
= E

f∈F`

[
(−1)AH,b(f)

∏
x∈α

(−1)f(x)

]
. (3.1)

Consider the function 1b : {0, 1}r → {0, 1} which is one only at the point b. Now we pair up the
functions f and f + 1b(h) in (3.1). By the folding we have

AH,b(f + 1b(h)) = AH,b(f) + 1b(b) = AH,b(f) + 1.

In particular this implies that (−1)AH,b(f+1b(h)) = −((−1)AH,b(f)). On the other hand, since the
number of x ∈ α satisfying h(x) = b is even we have∏

x∈α
(−1)f(x)+1b(h(x)) =

∏
x∈α

(−1)f(x)(−1)1b(h(x)) =
∏
x∈α

(−1)f(x)

Thus the terms corresponding to f and f+1b(h) cancel in pairs and the expectation (3.1) is zero.

Remark. By a similar argument, the number of elements in β that give any other fixed right
hand sides is even. As this is not needed in our arguments we leave the verification of this to the
reader.

Lemma 3.4 shows that if we use functional folding then for any non-zero Fourier coefficient at
least one element satisfies all the constraints. This should be compared with conditioning where all
elements in a non-zero Fourier coefficient satisfies all the constraints. On the other hand with linear
folding where we have no such guarantees and it is difficult to find an assignment that satisfies the
constraints given a non-zero Fourier coefficient.

3.2 Basic Setup of Hardness Reductions

It turns out that by using some minor modifications, the guarantee of Lemma 3.4 is sufficient to
analyze many of the classical protocols.

We follow the standard setup: start with a Max-CSP having some hardness of approximation,
apply parallel repetition to create a two-prover game with perfect completeness and arbitrarily
small soundness, and then long code the answers of the two provers and test the long codes using
constraints from the target CSP. In order to apply functional folding to the long codes, we start with
an equational CSP and in particular use the hardness of the Max-TSA problem (Theorem 2.16), and
in order to be able to use the weaker guarantee of functional folding as compared to conditioning
we use smooth parallel repetition (Definition 2.19).

As all the reductions follow the same initial steps and only the exact choice of constraints varies
from CSP to CSP, we summarize these first steps and the notation used in the following definition.

Definition 3.5 (Reduction template for Max-CSPs with universal factor graphs). Given a
Max-TSA instance I = (X,C) and parameters r and t, we construct a new set X ′ of Boolean
variables as follows.

First, form the (r, t)-smooth parallel repeated game of I as in Definition 2.19. For any set of
variables U ⊆ X that may be sent to P1, we introduce a supposed long code AU : FW → {0, 1} of
the assignment to U . We write A�

U for AU functionally folded over all constraints of I induced by
U . For a set W ⊆ X that may be sent to P2 we define BW and B�

W analogously.
The variables X ′ consist of all values of AU (f) and BW (g) over all U , W , f ∈ FU and g ∈ FW .

In the concrete reductions in the rest of the paper, a set U (resp. W) always refers to a query
to P1 (resp. P2) in the repeated game.

Note that, as per the definition of functional folding in the previous section, queries to A�
U and

B�
W are made by querying fixed entries of AU and BW (depending only on the factor graph of I)

and then possibly negating the result (depending on the right hand sides of I).

10

4 Classical Optimal Inapproximability

Using the folding introduced in the previous section we prove classical optimal inapproximability
results with universal factor graphs. The first two problems, Max-3-Sat and Max-3-Lin, were first
proven to be approximation resistant in [Hås01]. The third problem, Max-TSA, did not appear in
that original paper, but the techniques used follow the standard dictatorship testing analysis via
the Fourier transform introduced there. In each case, we start with the reduction template from
Definition 3.5 and then construct a PCP verifier for the target problem.

In the hardness results for Max-3-Sat and Max-TSA, we use the notation β⊕U to denote the
set of vectors x ∈ βU such that there is an odd number of y ∈ β with yU = x. In the notation of
[Hås01], this is the π2 operator.

4.1 Max-3-Lin

Theorem 4.1. For any ε > 0, Max-3-Lin is (1− ε, 1
2 + ε)-UFG-NP-hard.

The long code test we use is exactly the same as the original test of Håstad in [Hås01], but
as explained in Section 3, we can only access the functional foldings of the long codes, and not
condition them on the constraints of the underlying CSP.

Definition 4.2. The Max-3-Lin PCP verifier does the following:

1. Pick a random pair of sets (U,W) sent to the two provers in the parallel game.

2. Pick a uniform random function f ∈ FU and a uniform random g1 ∈ FW .

3. Define g2 ∈ FW by setting g2(y) = g1(y) + f(yU) with probability 1− ε and the negation of
this value otherwise, independently for each y ∈ {0, 1}W .

4. Accept if and only if A�
U (f) +B�

W (g1) +B�
W (g2) = 0.

The tests defined above correspond to checking three variable linear equations over F2, and so
the PCP defines a Max-3-Lin instance. Also we have immediately by Fact 3.3 that the overall
reduction from Max-TSA to Max-3-Lin given by this PCP is factor graph-preserving.

Now we analyze the completeness and soundness of the PCP.

Lemma 4.3. The completeness of the Max-3-Lin verifier in Definition 4.2 is 1− ε.

Proof. Let a be a satisfying assignment to the original Max-TSA constraints. Then we set AU (f) =
f(aU) and BW (g) = f(aW) for all subsets of variables in the two prover game. Note that BW (g) =
B�
W (g) since functional folding does not affect a true long code of a satisfying assignment. Second,

with probability 1 − ε we have A�
U (f) + B�

W (g1) + A�
W (g2) = f(aU) + g1(aW) + g2(aW) = 0 and

hence the test accepts with probability 1− ε.

We now prove soundness for the test.

Lemma 4.4. Let ε, δ > 0 and set Cε,δ
def
= (2ε)−1 log(2

δ). For r > 0 set t = r · 4
δ2
C2
ε,δ. If the

Max-3-Lin PCP verifier accepts with probability at least 1+δ
2 then there is a strategy for the provers

in the (r, t)-smooth parallel repeated game that causes the verifier to accept with probability at least
δ4

16Cε,δ
.

Proof. For notational convenience, throughout this proof we write AU and BW instead of A�
U and

B�
W , but it is important to keep in mind that all long codes are folded. Now the standard analysis

gives that if the test accepts with probability (1 + δ)/2 then

δ = E
U,W

[
E

f,g1,g2

[
(−1)AU (f)(−1)BW (g1)(−1)BW (g2)

]]
11

= E
U,W

 ∑
α,β1,β2

ÂU (α)B̂W (β1)B̂W (β2) E
f,g1,g2

[χα(f)χβ1(g1)χβ2(g2)]


= E

U,W

∑
β

ÂU (β⊕U)B̂W (β)2 E
[
χβ⊕U (f)χβ(g1 + g2)

]
= E

U,W

∑
β

ÂU (β⊕U)B̂W (β)2(1− 2ε)|β|


and an application of Cauchy-Schwartz and Plancherel gives

δ2 ≤ E
U,W

∑
β

ÂU (β⊕U)2B̂W (β)2(1− 2ε)2|β|

 . (4.1)

Note that the contribution to the inner sum from β that are larger than Cε,δ is at most δ2/4. Thus
we have

3

4
δ2 ≤ E

U,W

 ∑
|β|≤Cε,δ

ÂU (β⊕U)2B̂W (β)2

 . (4.2)

The strategies for the two provers are as follows. With probability ÂU (α)2 prover P1 outputs
a random x ∈ α, and with probability B̂W (β)2 prover P2 outputs a random y ∈ β which satisfies
all the constraints on W . By Lemma 3.4 for any β with B̂W (β) 6= 0 there are an odd number of
assignments y ∈ β satisfying the constraints on W . In particular, there is at least one assignment
y∗ ∈ β satisfying all the constraints. However, if y∗ and another assignment y ∈ β collide under
the map y→ yU , then there may be no corresponding assignment x = y∗U in β⊕U .

We now analyze the contribution to (4.2) of terms where such collisions occur. By Claim 2.20,
we have that for each fixed W and β, the probability over the choice of U of a collision is at most
|β|2 r

t+r . Let SW,β be the set of U which cause a collision. Then

∑
|β|≤Cε,δ

E
U

[
1(U ∈ SW,β)ÂU (β⊕U)2B̂W (β)2

]
≤

∑
|β|≤Cε,δ

E
U

[1(U ∈ SW,β)]

≤ C2
ε,δ

r

t+ r
≤ δ2

4
.

Combining this with (4.2) yields

δ2

2
≤ E

U,W

 ∑
|β|≤Cε,δ

1(U /∈ SW,β)ÂU (β⊕U)2B̂W (β)2

 .
Since the inner sum is non-negative and bounded by one, we have by Markov’s inequality that with
probability at least δ2

4 over the choice of U and W

δ2

4
≤

∑
|β|≤Cε,δ

1(U /∈ SW,β)ÂU (β⊕U)2B̂W (β)2.

This implies that for each such pair (U,W), with probability at least δ2

4 the following events all
occur:

12

• P2 chooses some β with |β| ≤ Cε,δ.

• P1 chooses α = β⊕U .

• U /∈ SW,β i.e. no two elements of β collide under projection to U .

If no two elements of β collide under the map y 7→ yU , then the projection y∗U of the good
assignment y∗ ∈ β satisfying all the constraints on W is also an element of β⊕U . Therefore P1

chooses y∗U with probability at least |α|−1 ≥ |β|−1 ≥ C−1
ε,δ . When this happens, the responses of P1

and P2 to U and W are accepted in the parallel repeated game. Thus, as these three events happen
for a δ2

4 fraction of all queries (U,W), the strategy of the two proves is accepted with probability
at least δ4

16C
−1
ε,δ , as desired.

The reduction can now be completed by recalling that the parallel repeated game has soundness
cr for some constant c. But by Lemma 4.4 (setting δ = 2ε) the value of the repeated game is larger
than cr for sufficiently large r, unless fewer than a 1

2 + ε fraction of equations in the Max-3-Lin
instance can be satisfied.

4.2 Max-3-Sat

As with Max-3-Lin, we can use our new folding along with a variant of the Max-3-Sat test in [Hås01]
to obtain UFG-NP-hardness. Here we do not follow exactly the same long code test as [Hås01] but
instead follow a subsequent simplified test and analysis using smooth label cover [Kho02, GK05].

Theorem 4.5. For any ε > 0, Max-3-Sat is (1, 7
8 + ε)-UFG-NP-hard.

The PCP we construct for Max-3-Sat is described below.

Definition 4.6. The Max-3-Sat PCP verifier does the following:

1. Pick a random pair of sets (U,W) sent to the two provers in the parallel game.

2. Pick a uniform random function f ∈ FU and a uniform random g1 ∈ FW .

3. Pick a function g2 ∈ W as follows. For each y ∈ {0, 1}W , if f(yU) = 0 then assign g2(y) =
g1(y) + 1. If f(yU) = 1 then with probability 1− ε assign g2(y) = g1(y) and otherwise assign
g2(y) = g1(y) + 1.

4. Accept unless A�
U (f) = B�

W (g1) = B�
W (g2) = 0.

It is easy to prove that this test has perfect completeness, and as the proof is near-identical to
that of Lemma 4.3 we omit it.

Lemma 4.7. The completeness of the Max-3-Sat verifier in Definition 4.6 is 1.

Lemma 4.8. Let δ > 0, and let 0 < ε <
(
δ
32

)2
log(16

δ)−2. Set Cε,δ = 1
ε log(16

δ). For r > 0, let
t = r · 16

δ C
2
ε,δ. If the Max-3-Sat PCP verifier accepts with probability at least 7+δ

8 then there is a
strategy for the provers in the (r, t)-smooth parallel repeated game that causes the verifier to accept
with probability at least δ4

64Cε,δ
.

Proof. As in the soundness analysis for Max-3-Lin, we write AU and BW instead of A�
U and B�

W
throughout this proof in order to keep the notation manageable. The probability that the test
accepts is given by

E
U,W

[
E

f,g1,g2

[
1− 1

8
(1 + (−1)AU (f))(1 + (−1)BW (g1))(1 + (−1)BW (g2))

]]
. (4.3)

13

Recall that the long codes AU and BW are folded over true, so E
[
(−1)AU (f)

]
= E

[
(−1)BW (gi)

]
=

0. Furthermore since f and gi are independent we have E
[
(−1)AU (f)(−1)BW (gi)

]
=

E
[
(−1)AU (f)

]
E
[
(−1)BW (gi)

]
= 0. In other words, after expanding (4.3), any non-constant term

which does not contain (−1)BW (g1)(−1)BW (g2) becomes 0, so the acceptance probability equals

7

8
− 1

8
E
U,W

[
E

f,g1,g2

[
(−1)BW (g1)(−1)BW (g2) + (−1)AU (f)(−1)BW (g1)(−1)BW (g2)

]]
≥ 7 + δ

8
(4.4)

We analyze the two terms in the above expectation one at a time.
Claim 4.9. ∣∣∣∣ EU,W

[
E

g1,g2

[
(−1)BW (g1)(−1)BW (g2)

]]∣∣∣∣ ≤ δ/4. (4.5)

Proof. For a fixed choice of U and W , writing out the Fourier expansion of the inner expectation
of this term yields:

E
g1,g2

[
(−1)BW (g1)(−1)BW (g2)

]
=
∑
β1,β2

B̂W (β1)B̂W (β2)E [χβ1(g1)χβ2(g2)]

=
∑
β

B̂W (β)2 E [χβ(g1 + g2)] , (4.6)

where we used the fact that for β1 6= β2 the expectation inside the above sum is zero. Now observe
that if yU 6= y′U , then g1(y) + g2(y) is independent of g1(y′) + g2(y′). Using this fact we have

E [χβ(g1 + g2)] = E

∏
y∈β

(−1)g1(y)+g2(y)

 =
∏
x∈βU

E

 ∏
y∈β:yU=x

(−1)g1(y)+g2(y)


Let sx be the number of y ∈ β with yU = x. The expectation over y which project to the same x
is equal to

E

 ∏
y∈β:yU=x

(−1)g1(y)+g2(y)

 =
1

2
((−1)sx + (1− 2ε)sx).

We bound such terms in two different ways depending on the size of β. First, observe that∣∣1
2((−1)sx + (1− 2ε)sx)

∣∣ ≤ 1 − ε and so |E [χβ(g1 + g2)]| ≤ (1 − ε)|βU |. Applying Claim 2.20 to
the first Cε,δ elements of β for |β| > Cε,δ, we have |βU | ≥ Cε,δ except with probability at most
r
t+rC

2
ε,δ ≤ δ/16 over the choice of U . Thus, averaging over U and W we get∣∣∣∣∣∣ EU,W
 ∑
β:|β|>Cε,δ

B̂W (β)2 E [χβ(g1 + g2)]

∣∣∣∣∣∣ ≤ E
U,W

 ∑
β:|β|>Cε,δ

B̂W (β)2(1− ε)|βU |


≤ E
W

 ∑
β:|β|>Cε,δ

B̂W (β)2
(
(1− ε)Cε,δ + δ/16

) ≤ δ

8
, (4.7)

where the last inequality used our choice of Cε,δ and Plancherel. We turn to β of size at most Cε,δ
and, again by Claim 2.20, except with probability at most r

t+r |β|
2 ≤ δ/16 over the choice of U , there

is at least one y in β that does not collide with any other y′ ∈ β. Letting x = yU we then have

14

sx = 1. For such “good” choices of U we have 1
2((−1)sx + (1 − 2ε)sx) = −ε. Thus after averaging

over U and W we have that∣∣∣∣∣∣ EU,W
 ∑
β:|β|≤Cε,δ

B̂W (β)2 E [χβ(g1 + g2)]

∣∣∣∣∣∣ ≤ ε+ δ/16 <
δ

8
. (4.8)

Adding up (4.7) and (4.8) we obtain (4.5) (via (4.6)).

We now analyze the second term.
Claim 4.10.

∣∣∣∣ EU,W
[

E
g1,g2

[
(−1)AU (f)(−1)BW (g1)(−1)BW (g2)

]]∣∣∣∣ ≤ δ

4
+ E
U,W

 ∑
|β|≤Cε,δ

ÂU (βU)2B̂W (β)2(1− ε)2|βU |

1/2

(4.9)

Proof. For a fixed choice of U and W , writing the Fourier expansion of the inner expectation yields

E
g1,g2

[
(−1)AU (f)(−1)BW (g1)(−1)BW (g2)

]
=

∑
α,β1,β2

ÂU (α)B̂W (β1)B̂W (β2)E [χα(f)χβ1(g1)χβ2(g2)]

=
∑

β,α⊆βU

ÂU (α)B̂W (β)2 E [χα(f)χβ(g1 + g2)] (4.10)

where we have used the fact that the expectation is zero unless β1 = β2 = β and α ⊆ βU . Let us
define E(α, β)

def
= E [χα(f)χβ(g1 + g2)] to denote the inner expectation above (and note that this

function depends on U and W). Next let sx be the number of y ∈ β such that yU = x. Then for
α ⊆ βU

E(α, β) =
∏
x∈α

1

2
((−1)sx − (1− 2ε)sx)

∏
x∈βU\α

1

2
((−1)sx + (1− 2ε)sx). (4.11)

Observe that this implies |E(α, β)| ≤ (1 − ε)|βU |, since every factor in the product is bounded in
magnitude by 1− ε. Further note that

∑
α⊆βU

E(α, β)2 =
∏
x∈βU

((
1

2
((−1)sx − (1− 2ε)sx)

)2

+

(
1

2
((−1)sx + (1− 2ε)sx)

)2
)

≤ (1− ε)|βU |

where the final inequality follows from the fact that each factor above has the form a2 + b2 where
both |a| and |b| are bounded by 1 − ε, and |a| + |b| = 1. Therefore each factor is bounded by
(1− ε)2 + ε2 which is at most 1− ε whenever ε ≤ 1/2.

As in Claim 4.9 we split the sum depending on the size of β. First by Cauchy-Schwarz and
Plancherel we have

∑
β:|β|≥Cε,δ

B̂W (β)2
∑
α⊆βU

ÂU (α)E(α, β) ≤
∑

β:|β|≥Cε,δ

B̂W (β)2

∑
α⊆βU

ÂU (α)2

1/2∑
α⊆βU

E(α, β)2

1/2

≤
∑

β:|β|≥Cε,δ

B̂W (β)2(1− ε)|βU | (4.12)

15

From (4.7) it follows that, when averaging over U and W , (4.12) is bounded in absolute value by
δ/8, i.e., ∣∣∣∣∣∣ EU,W

 ∑
β:|β|≥Cε,δ

B̂W (β)2
∑
α⊆βU

ÂU (α)E(α, β)

∣∣∣∣∣∣ ≤ δ/8. (4.13)

Turning to the low-degree terms where |β| ≤ Cε,δ, we apply Claim 2.20 to conclude that except
with probability r

t+r |β| ≤ δ/16 over the choice of U , there are no collisions between any y,y′ in β
under the map y 7→ yU . Letting x = yU we then have sx = 1. So restricting to such good choices of
U we have 1

2((−1)sx +(1−2ε)sx) = −ε. Since all other factors in the product in (4.11) are bounded
in magnitude by 1 we have for such “good” U that |E(α, β)| ≤ ε|βU\α|. Thus, in this case summing
over all α (βU yields

∑
|β|≤Cε,δ

B̂W (β)2
∑
α(βU

ÂU (α)E(α, β) ≤
∑
|β|≤Cε,δ

B̂W (β)2

∑
α(βU

ÂU (α)2

1/2∑
α(βU

E(α, β)2

1/2

≤
∑
|β|≤Cε,δ

B̂W (β)2

∑
α(βU

ε2|βU\α|

1/2

=
∑
|β|≤Cε,δ

B̂W (β)2
(

(1 + ε2)|βU | − 1
)1/2

≤
∑
|β|≤Cε,δ

B̂W (β)22εC
1/2
ε,δ ,

since (1 + a)b ≤ 1 + 2ab whenever 0 ≤ ab ≤ 1
32 . For the remaining at most δ/16 fraction of choices

of U where collisions occur, we simply use the previous bound
∑

α⊆βU E(α, β)2 ≤ (1 − ε)|βU | ≤ 1.
Thus averaging over U and W yields∣∣∣∣∣∣ EU,W

 ∑
|β|≤Cε,δ

∑
α(βU

ÂU (α)B̂W (β)2E(α, β)

∣∣∣∣∣∣ ≤ E
W

 ∑
|β|≤Cε,δ

B̂W (β)2
(

2εC
1/2
ε,δ + δ/16

) ≤ δ

8
. (4.14)

Finally, applying Cauchy-Schwarz and Plancherel to the sum where α = βU yields∣∣∣∣∣∣ EU,W
 ∑
|β|≤Cε,δ

ÂU (βU)B̂W (β)2E(α, β)

∣∣∣∣∣∣ ≤ E
U,W

 ∑
|β|≤Cε,δ

ÂU (βU)2B̂W (β)2(1− ε)2|βU |

1/2

(4.15)

Adding up (4.13), (4.14), and (4.15), we obtain (4.9) (via (4.10)).

Now plugging the bounds of Claim 4.9 and Claim 4.10 into (4.4), we see that

δ2

4
≤ E

U,W

 ∑
|β|≤Cε,δ

ÂU (βU)2B̂W (β)2(1− ε)2|βU |

 . (4.16)

Note this is similar to the expression we obtained for the Max-3-Lin verifier in Lemma 4.4, with
slightly different parameters. Using exactly the same strategy for the two provers with a similar
analysis, we obtain a strategy with success probability δ4

64Cε,δ
.

16

4.3 Max-TSA

Thus far we have used Max-TSA with constant, but non-optimal, soundness as the starting point
for all of our reductions. Now we also show that even obtaining any non-trivial approximation of
Max-TSAis UFG-NP-hard.

Theorem 4.11. For any ε > 0, Max-TSA is (1, 1/2 + ε)-UFG-NP-hard.

We now construct the following PCP verifier, which makes queries of the form fTSA(x) = b.

Definition 4.12. The TSA PCP verifier does the following:

1. Pick a random pair of sets (U,W) sent to the two provers in the parallel game.

2. Sample f ∈ FU and g1, g3, g4 ∈ FW all independently and uniformly at random.

3. Set g2(y) = f(yU) + g1(y) + g3(y) ∧ g4(y).

4. Accept if and only if A�
U (f) +B�

W (g1) +B�
W (g2) +BW (g3) ∧BW (g4) = 0

A subtle yet crucial point is that the queries for g3 and g4 are done in the completely unfolded
table BW (not even folded over true). In this way, the negations introduced by the folding only ever
appear on the queries for f, g1, and g2. Since these queries appear linearly in the test of the verifier,
any negations added by the folding can be added up and moved to the right hand side of the test.
Thus, the queries of the verifier are indeed all of the form fTSA(x) = 1 or fTSA(x) = 0 as desired.
As usual, Fact 3.3 implies that the reduction given by this PCP verifier is factor graph-preserving.
The fact that this PCP has completeness 1 is immediate and again the proof is near-identical to
the proof of Lemma 4.3 so we omit it.

Lemma 4.13. The PCP from Definition 4.12 has completeness 1.

Next we prove soundness.

Lemma 4.14. Let δ > 0 and set Cδ = log(2
δ). For r > 0 set t = r 4

δ2
Cδ. If the PCP verifier from

Definition 4.12 accepts with probability at least 1+δ
2 , then there is a strategy in the original parallel

game that makes the verifier accept with probability at least δ4

16Cδ
.

Proof. To emphasize the difference from the folded tables, we write CW = BW throughout this
proof for the unfolded table BW . If the verifier accepts with probability at least 1+δ

2 , then

δ = E
[
(−1)A

�
U (f)(−1)B

�
W (g1)(−1)B

�
W (g2)(−1)CW (g3)∧CW (g4)

]
= E

U,W

 ∑
α,β1,β2

Â�
U (α)B̂�

W (β1)B̂�
W (β2)E

[
χα(f)χβ1(g1)χβ2(g2)(−1)CW (g3)∧CW (g4)

]
= E

U,W

 ∑
α,β1,β2

Â�
U (α)B̂�

W (β1)B̂�
W (β2)E

[
χα(f)χβ1(g1)χβ2(f + g1 + g3 ∧ g4)(−1)CW (g3)∧CW (g4)

]
= E

U,W

∑
β

Â�
U (β⊕U)B̂�

W (β)2 E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)∧CW (g4)

] .
Our goal is now to show that the inner expectation over g3 and g4 is bounded by a function tending
to zero with |β|. First observe that

E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)∧CW (g4)

]
17

=
1

4
E

g3,g4

[
χβ(g3 ∧ g4)(1− (−1)CW (g3) − (−1)CW (g4) + (−1)CW (g3)(−1)CW (g4))

]
.

Observe that by independence of g3 and g4,

E
g3,g4

[χβ(g3 ∧ g4)] = E
g3

∏
y∈β

E
g4

[
(−1)g3(y)g4(y)

] = 2−|β|

since the product of expectations over g4 is zero unless g3 is identically zero on β. Similarly,∣∣∣∣ E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)

]∣∣∣∣ =

∣∣∣∣∣∣Eg3
(−1)CW (g3)

∏
y∈β

E
g4

[
(−1)g3(y)g4(y)

]∣∣∣∣∣∣ ≤ 2−|β|

with the same inequality holding for E
[
χβ(g3 ∧ g4)(−1)CW (g4)

]
by symmetry. Therefore we conclude

that∣∣∣∣ E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)∧CW (g4)

]∣∣∣∣ ≤ 3

4
· 2−|β| + 1

4

∣∣∣∣ E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)(−1)CW (g4)

]∣∣∣∣ .
Next we take the Fourier expansion of CW in the above expectation and get

E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)(−1)CW (g4)

]
=
∑
γ1,γ2

ĈW (γ1)ĈW (γ2) E
g3,g4

[χβ(g3 ∧ g4)χγ1(g3)χγ2(g4)] .

Any term above with γ1, γ2 not both being subsets of β has expectation zero. Furthermore, for any
choice of g4 where g4 ∧1β 6= 1γ1 , taking the expectation over g3 gives us zero, while if g4 ∧1β = 1γ1
the expectation over g3 equals 1. In the latter case, which happens with probability 2−|β| over the
choice of g4, we have χγ2(g4) = χγ2(1γ1) and thus we are left with

2−|β|
∑

γ1,γ2⊆β
ĈW (γ1)ĈW (γ2)χγ2(1γ1). (4.17)

Now observe that for any fixed γ1, ∣∣∣∣∣∣
∑
γ2⊆β

ĈW (γ2)χγ2(1γ1)

∣∣∣∣∣∣ ≤ 1,

because the sum equals the expected value of (−1)CW (g) over all g ∈ FW which agree with 1γ1 on
β. Therefore we can bound (4.17) by

2−|β|
∑
γ1⊆β
|ĈW (γ1)| ≤ 2−|β|/2

∑
γ1⊆β

ĈW (γ1)2 ≤ 2−|β|/2.

So we conclude that∣∣∣∣ E
g3,g4

[
χβ(g3 ∧ g4)(−1)CW (g3)∧CW (g4)

]∣∣∣∣ ≤ 3

4
· 2−|β| + 1

4
· 2−|β|/2 < 2−|β|/2.

Returning to our original formula for the acceptance probability we have by Cauchy-Schwartz and
Plancherel

δ2 ≤ E
U,W

∑
β

∣∣∣Â�
U (β⊕U)B̂�

W (β)22−|β|/2
∣∣∣
2 ≤ E

U,W

∑
β

Â�
U (β⊕U)2B̂�

W (β)22−|β|

 . (4.18)

This is essentially the same as the bound (4.1) we obtained in Lemma 4.4 for Max-3-Lin, except
with 2−|β| in place of (1− 2ε)2|β|. We can now use exactly the same strategies for the provers as in
that proof and succeed in the smooth parallel repeated game with probability at least δ4

16Cδ
.

18

5 Pairwise Independence and Hadamard Predicates

In this section we establish that the results of Chan [Cha16] can be obtained with a universal
factor graph. Chan showed that any predicate supporting a pairwise independent subgroup is
approximation resistant. In fact, he even showed that such predicates satisfy a strong property
called uselessness, introduced by Austrin and Håstad [AH13].

Definition 5.1. The predicate f : {0, 1}k → {0, 1} is useless for a set of functions G = {g :
{0, 1}k → R} if for every ε > 0, the following promise decision problem is NP-hard. Given a
Max-CSP(f±) instance I = (X,C), distinguish between

1. (Yes) I is (1− ε)-satisfiable.

2. (No) for every assignment and every g ∈ G and assignment a : X → {0, 1} it holds that∣∣∣∣ E
(S,b)∼C

[g(aS + b)]− E
u∼{0,1}k

[g(u)]

∣∣∣∣ ≤ ε.
If G is the set of all functions on k bits then we say simply that f is useless. If the uselessness is
established by a factor-graph preserving reduction from any problem that is UFG-NP-hard then we
say that f is UFG-useless (for G).

The main result of Chan, that we establish with a universal factor graph, can be stated as
follows.

Theorem 5.2 ([Cha16], Theorem 1.1, with a universal factor graph). Let f : Σk → {0, 1} be any
predicate that supports a pairwise independent subgroup of {0, 1}k. Then f is UFG-useless.

As the Hadamard predicates Hadk support a pairwise independent subgroup, an immediate and
often used corollary is the following.

Corollary 5.3. For any ε > 0, Max-Hadk is (1− ε, (k + 1)2−k + ε)-UFG-NP-hard.

5.1 Analytic Notation, Influences, and Noise

For the purposes of proving Chan’s result with universal factor graphs, it turns out to be more
notationally convenient to use the {−1, 1} domain for Fourier analysis. Therefore, just for this
section, we make the following notational changes. If I is a set of coordinates FI denotes the
set of functions f : {0, 1}I → {−1, 1}, and we use Fn to denote F[n] as before. All of the long
code tables A will be functions A : Fn → {−1, 1}. Finally, for α ⊆ {0, 1}n the Fourier character
χα : Fn → {−1, 1} will be given by

χα(f) =
∏
x∈α

f(x).

With this notation set up, we additionally need to define influences and the noise operator.

Definition 5.4. For a function A : Fn → R and set B ⊆ {0, 1}n of coordinates, the influence of B
is

InfB(A) =
∑

α∩B6=∅

Â(α)2.

For a single coordinate x ∈ {0, 1}n we write Infx(A) for Inf{x}(A).

Fact 5.5. InfB(A) ≤
∑

x∈B Infx(A)

19

Definition 5.6. For a noise rate 0 ≤ η ≤ 1 the noise operator T1−η maps functions A : Fn → R,
to noisy functions T1−ηA : Fn → R defined by

T1−ηA(f) = E
f̃∼1−ηf

[A(f̃)],

where f̃ ∼1−η f indicates that f̃(x) is chosen as f(x) with probability 1 − η, and as a uniformly
random bit with probability η, independently for each x ∈ {0, 1}n.
Fact 5.7. For every η > 0 and every table A : Fn → R,∑

x∈{0,1}n
Infx(T1−ηA) ≤ 1/η.

5.2 Overview

As with other results, we very much follow in the footsteps of the original proof. Given that Chan’s
proof is rather long we do not repeat the entire argument here. We only recall some crucial details
and describe how to modify them in our setting. The main difference is, not surprisingly, that
[Cha16] uses conditioning and this leads both to a simpler proof and the possibility to use simpler
notation. To keep notation here simpler, we only present the arguments for the concrete case of
Hadamard predicates, but they generalize easily.

The high level view of Chan’s proof is what can be expected. He starts with an instance of
label cover with very good soundness. To get better numerical dependencies Chan uses a different
starting point, but let us here assume that the starting point is the r-fold parallel repetition game
described in Section 2.4. He then produces a PCP whose acceptance condition is given by Hadk
and proves that whenever there is a PCP proof where some function g exceeds its expectation on
the answers to a random query, this can be used to derive successful strategies in the two-prover
game.

It turns out to be difficult to directly define a PCP where every g has small expectation. An
easier task is to define a PCP where all characters ψ : {−1, 1}k → {−1, 1} that are j-relevant for
some fixed j ∈ [k] have small expectation. In the Boolean setting, each character is simply a product
ψ(b1, . . . , bk) =

∏
i∈S bi for some S ⊆ [k], and ψ is j-relevant if j ∈ S.

We have the following theorem.
Theorem 5.8 ([Cha16], Theorem 5.4, with a universal factor graph). For every j ∈ [k], Hadk is
UFG-useless for the set of all j-relevant characters ψ : {−1, 1}k → {−1, 1}.

The proof of this theorem is the main technical part of Chan’s work, and it is also the part that
needs modifications in our setting with functional folding in lieu of conditioning. We describe these
modifications and the proof in Section 5.3 below.

When we have Theorem 5.8, we can combine it with the very powerful construction, discovered
by Chan, of taking the direct sum of instances.
Definition 5.9. Given two Max-CSP(f±) instances I = (X,C) and I ′ = (X ′, C ′), their direct sum
is defined as I⊕ I ′ = (X×X ′, C⊕C ′). For each constraint f(xS +b) = 1 in C and each constraint
f(x′S′ +b′) = 1 in C ′, we have the constraint f(x′′S}S′ +b+b′) = 1 in C ⊕C ′, where for two tuples
u = (u1, . . . , uk) and v = (v1, . . . , vk) we write u} v to denote coordinate-wise concatenation of u
and v, i.e., the tuple of pairs ((u1, v1), . . . , (uk, vk)).

As shown by Chan ([Cha16], Lemma 5.3), taking direct sum preserves uselessness for characters
(if either I or I ′ satisfies the “No” case of Definition 5.1 with respect to some character ψ then I⊕I ′
does as well). Thus, since the characters form an orthonormal basis for all functions g : {−1, 1}k →
R, taking the direct sum of the k instances arising from Theorem 5.8 and making the following
observation we obtain Theorem 5.2.
Observation 5.10. The factor graph of I⊕ I ′ depends only on the factor graphs of I and I ′, and not
on the negation patterns in I and I ′.

20

5.3 Protocol For a Single Coordinate

In this section we sketch Chan’s proof of Theorem 5.8 and the modifications needed to make it hold
with a universal factor graph.

Throughout this section, fix the value of the index j ∈ [k], and let J = [k]\{j}, i.e., all elements
except j. Let η > 0 be a small parameter to be chosen later.

Given a Max-TSA instance I we construct a new set of variables X ′ as in the reduction template
Definition 3.5, and construct the following PCP verifier.

1. Pick a random pair of sets (U,W) sent to the two provers in the parallel game.

2. Pick a uniformly random function f ∈ FU .

3. For i ∈ J and y ∈ {0, 1}W choose gi(y) uniformly at random subject to condition that the
string (gi(y))i∈J with f(yU) inserted in position j satisfies Hadk.

4. Let f̃ and g̃i be η-noisy perturbations of f and gi.

5. Accept if and only if (B�
W (g̃i))i∈J with A�

U (f̃) inserted in the jth position satisfies Hadk.

Remark 5.11. Let us briefly compare the notation used here to the notation used in Chan’s protocol.
The following table shows the notation used for the main objects.

j’th coordinate i’th coordinate for i 6= j

Chan’s notation fj f̃j gj z(j) z
(j)
t fi f̃i gi z(i) z

(i)
s

Our notation AU A�
U T1−ηA

�
U f f(x) BW B�

W T1−ηB
�
W gi gi(y)

Note in particular that while the gi’s in Chan’s protocol are the purported long codes with η-noise
applied, the gi’s in our protocol are the inputs to the purported long codes on the W side.

The completeness analysis of the above protocol is easy and is not affected by the modifications
we have made, so let us turn to the soundness analysis.

Fix some j-relevant character ψ and suppose that the expectation of ψ over the answers to the
provers deviates from its expectation (0) by at least ε, i.e.,∣∣∣∣∣ E

(U,W)

[
E

f̃ ,{g̃i}i∈J
[ψ(A�

U (f̃), {B�
W (g̃i)}i∈J)]

]∣∣∣∣∣ > ε.

By Markov’s inequality, it holds that for at least an ε/2 fraction of all query pairs (U,W), the
inner expectation is at least ε/2 in absolute value. Fix one such “good” pair (U,W) and to simplify
notation let A(f) = T1−ηA

�
U and B(g) = T1−ηB

�
W . Thus we have∣∣∣∣ E

f,{gi}i∈J
[ψ(A(f), {B(gi)}i∈J)]

∣∣∣∣ > ε/2. (5.1)

For x ∈ {0, 1}U , define B(x) to be the set of y ∈ {0, 1}W such that yU = x (in Chan’s notation,
this is the “block” B(t)). The key quantity to study is∑

x

Infx(A) InfB(x)(B), (5.2)

which measures the presence of common influences between the noised tables A and B. Using an
invariance-style proof, it is shown that when (5.1) holds then (5.2) must also be large. Concretely
we have the following theorem.

21

Theorem 5.12 ([Cha16], Theorem 6.7). In the notation above, let Z ⊆ {0, 1}U be any set of
assignments such that ∑

x 6∈Z
Infx(A) InfB(x)(B) ≤ τ,

and define AZ : FU → [0, 1] to be the part of A depending only on Z.2 Then∣∣∣∣ E
f,{gi}i∈J

[ψ(A(f), {B(gi)}i∈J)]

∣∣∣∣ ≤ ∣∣∣∣ E
f,{gi}i∈J

[ψ(AZ(f), {B(gi)}i∈J)]

∣∣∣∣+ δ(k, η, τ)

where for every fixed k and η, δ(k, η, τ) tends to 0 as τ tends to 0.

This is a theorem purely about analysis of Boolean functions and its proof relies only on the
pairwise independence of the underlying CSP and not on the structure of the parallel repeated
game, and as such it applies without modification in our setting. Chan only states the theorem
for Z = ∅ but inspection of the proof, which is based on rerandomizing one coordinate at a time,
reveals that it holds for any Z.

In Chan’s original proof, the case Z = ∅ is all that is needed, since combined with (5.1) it lets us
conclude that the tables A and B have shared influential coordinates, which can then immediately
be used in a standard way to define strategies that are accepted with constant probability in the
parallel repeated game.

In our setting it is not á priori clear that this yields a good strategy, since the functional folding
might not guarantee that any influential coordinate of A or B actually satisfies the constraints.
However, as we shall now see, it turns out that this is indeed the case, so the same strategy does
work also in our setting3.

Since A and B are tables with noise applied, it follows from Fact 5.7 and Fact 5.5 that if we let
Z be the set of assignments x such that both

Infx(A) ≥ τη/2 and InfB(x)(B) ≥ τη/2 (5.3)

then ∑
x 6∈Z

Infx(A) InfB(x)(B) ≤ τ.

Choosing τ small enough so that δ(k, η, τ) < ε/2, it follows from Theorem 5.12 and (5.1) that∣∣∣∣ E
f,{gi}i∈J

[ψ(AZ(f), {B(gi)}i∈J)]

∣∣∣∣ > 0 (5.4)

We now use the functional folding, and have the following observation.
Claim 5.13. If no x ∈ Z satisfies all equations hi(x) = bi for i = 1, . . . , t, then AZ is identically 0.

Proof. By Lemma 3.4 each non-zero Fourier coefficient of A contains an element that satisfies all
the constraints. If we rerandomize all these values then the expectation is zero.

Since ψ is a j-relevant character, the left hand side of (5.4) would be 0 if AZ was identically 0,
so it follows that there must be some x∗ ∈ Z which satisfies all equations on U .

We now define the strategies for the provers in the repeated game in a standard way: we choose
answer x for U with probability proportional to Infx(A) and, independently, analogously forW . By
Fact 5.7, x and y are chosen with probabilities at least η Infx(A) and η Infy(B), so the probability

2Equivalently, AZ(f) is the expectation of A(f) on a copy of f where all coordinates outside Z have been
rerandomized.

3Of course, there is no reason why the provers would ever output a value that does not satisfy the relevant
constraints but it is slightly easier to analyze this variant of their strategies.

22

that the good assignment x∗ is chosen and is consistent with the answer of the other prover is at
least

η Infx∗(A)
∑

y∈B(x∗)

η Infy(B) ≥ η2 Infx∗(A) InfB(x∗)(B) ≥ η4τ2/4.

Aggregating this over the ε/2 fraction of good pairs (U,W) of queries in the repeated game, we
conclude that in expectation a fraction εη4τ2/8 of all query pairs are assigned answers that are
consistent and where all constraints on U are satisfied. The only remaining issue is to establish that
the answers of the other prover often satisfy the additional constraints on W .

Fix any assignment to the variables in W which does not satisfy all constraints. By Claim 2.20
the probability, over the choice of U , that it projects to an assignment that satisfies all constraints on
this smaller set is bounded by r/(r+t). It follows that if we choose t ≥ 16rε−1η−4τ−2 then the total
expected fraction of query pairs where the assignments are consistent and satisfy the constraints
on U but not those on W is bounded by r

r+t ≤ εη4τ2/16. We conclude that in expectation the
influence-based random strategy wins the repeated game with probability at least εη4τ2/16. This
concludes the description of the modifications of the proof Chan and our proof of Theorem 5.8.

6 Promise CSPs

Functional folding can also be used to obtain hardness results for promise CSPs (PCSPs) with
universal factor graphs. We first recall the pertinent definitions.

Definition 6.1. A PCSP language is a pair (Γ,Λ) of two indexed constraint languages Γ =
{f1, . . . , ft} and Λ = {g1, . . . , gt} such that fi and gi have the same arity and fi(x) ≤ gi(x) for
all i and x.

A PCSP language has free negations, if for every k-ary constraint pair (fi, gi) and every b ∈
{0, 1}k, the constraint pair (fbi , g

b
i) is also in the language, where fb(x) = f(x + b).

An instance I of the PCSP(Γ,Λ) problem is a pair (X,C) where X is a set of variables and C
a set of constraints. Each constraint c ∈ C is a pair (i, S), for a constraint type i ∈ [t] and scope
S. We write IΓ for the induced CSP(Γ) instance where each constraint (i, S) is replaced by (fi, S)
and IΛ for the induced CSP(Λ) instance where (i, S) is replaced by (gi, S).

PCSP(Γ,Λ) is the promise decision problem where given an instance I the objective is to dis-
tinguish whether IΓ is satisfiable or IΛ is unsatisfiable.

A prototypical example of a PCSP (with free negations) is the “(2 + ε)-Sat” problem, in which
we are given a (2k+1)-CNF formula φ and the objective is to distinguish the case where there is an
assignment satisfying at least k literals in every clause of φ, from the case where φ is unsatisfiable.

Definition 2.12 of UFG-NP-hardness extends naturally to PCSP problems. To state the hardness
result for PCSPs, we also need the notion of polymorphisms, defined next.

Definition 6.2. A polymorphism of a PCSP language (Γ,Λ) is a function p : Σ` → Σ such that,
for every pair of constraint types (fi, gi) ∈ (Γ,Λ) and all x1, . . . , xn ∈ f−1

i (1) (where k is the arity
of fi and gi) it holds that

(p(x1,1, . . . , x`,1), p(x1,2, . . . , x`,2), . . . , p(x1,k, . . . , x`,k)) ∈ g−1
i (1).

A polymorphism p is folded if p(¬x) = ¬p(x) for all x ∈ {0, 1}`.

Our main hardness result of PCSPs having universal factor graphs is the following.

Theorem 6.3. Let (Γ,Λ) be a finite PCSP language with free negations, and suppose that there
exists a universal constant C = C(Γ,Λ) < ∞ such that every folded polymorphism of (Γ,Λ) is a
C-junta. Then PCSP(Γ,Λ) is UFG-NP-hard.

23

This theorem is approximately Theorem 4.7 of [AGH17]. That theorem was simplified and
generalized by Brakensiek and Guruswami [BG18] to PCSP languages where the polymorphisms
are only required to be C-fixing, a weaker condition than being a C-junta where it is only required
that setting all the C coordinates to 0 fixes the value of the function. Another difference is that the
result of Brakensiek and Guruswami does not require the PCSP language to have free negations,
which is something we require in order to be able to apply functional folding. The proof below
follows the simplified proof of Brakensiek and Guruswami very closely but there is one step where
we need the stronger condition of being a C-junta instead of just C-fixing—see Footnote 4 for further
details.

Using the fact that the polymorphisms of (2 + ε)-Sat are juntas [AGH17], we have the following
immediate corollary.

Corollary 6.4. (2 + ε)-Sat is UFG-NP-hard.

Proof of Theorem 6.3. Given a Max-TSA instance I we construct a new set of variables X ′ as in
the reduction template Definition 3.5.

For every query U (resp. W to P2) in the repeated game, we add constraints on A�
U (resp. B�

W)
forcing it to be a polymorphism of (Γ,Λ).

Furthermore, for every pair of queries U ⊆W sent to the two provers in the parallel game, and
all functions f ∈ FU , we identify the values of A�

U (f) and B�
W (f) (where we think of f ∈ FU as

a function f ∈ FW that only depends on the coordinates in U , in the obvious way). This simply
means that whenever we would have accessed A�

U (f), we instead access B�
W (f). It is clear that this

construction is factor graph-preserving.
Claim 6.5 (Completeness). If I is satisfiable then R(I)Γ is satisfiable.

The proof of completeness is immediate from the definitions and we omit it.
Claim 6.6 (Soundness). If R(I)Λ is satisfiable and t ≥ C2r then I is 1

2C -satisfiable.

Proof. Given a satisfying assignment (consisting of supposed long codes) to R(I)Λ, let αU (resp. βW)
be the set of up to C coordinates that A�

U (resp. B�
W) depends on.

The key observation, that we now proceed to establish, is that for a pair of queries U ⊆W sent
to the two provers such that |βWU | = |αU | (which, by the choice t ≥ C2r and Claim 2.20, are at least
1/2 of all query pairs), we must have βWU ⊆ αU . Indeed, suppose for contradiction that x∗ ∈ βW
but x∗U 6∈ αU . Let g ∈ FW be a function such that B�

W (g) 6= B�
W (g + 1x∗) and g(x) = 1 for all

x 6∈ βW . Because |βWU | = |αU | we can also view g as a function f ∈ FU (defined by f(x) = 1 if
y 6∈ βWU and otherwise f(x) = g(y) where y is the unique y ∈ βW such that yU = x). Then using
that x∗U 6∈ αU and the identification of values in AU and BW we have the contradiction

BW (g + 1x∗) = AU (f + 1x∗U) = AU (f) = BW (f) 6= BW (f + 1x∗) = BW (g + 1x∗)

and the key observation follows.4
By Lemma 3.4, at least one x ∈ βW satisfies all constraints in W , and the strategy for P2 in the

repeated game is to use an arbitrary such x. The strategy for P1 is to select a random assignment
x ∈ αU . Since at least half the query pairs satisfy |βWU | = |αU | and |αU | ≤ C for all U , this strategy
is accepted with probability at least 1

2C .

Combining the completeness and soundness claims, the theorem follows.
4 This argument is where we use that the polymorphisms are C-juntas as opposed to just C-fixing. In the previous

PCSP hardness results it was sufficient to establish that βWU ∩αU 6= ∅, but this is not sufficient for us. In our setting
the functional folding only guarantees that at least one x ∈ βW satisfies the equations on W (and this property is
easy to establish also for tables that are C-fixing rather than C-juntas), and we need to make sure that this specific
x projects to an element of αU . For this reason, just having non-empty intersection between βWU and αU is not
sufficient.

24

7 Miscellaneous Extensions

In this section we discuss various further extensions to our results.

7.1 More Hardness Results by Gadgets

One major method for deriving new hardness results is by a method usually referred to as “gadget
reductions”. In such a reduction from Max-CSP(Γ1) to Max-CSP(Γ1) one takes one constraint
in the source problem and produces one or several constraints in the target problem. These new
constraints contain the variables from the original problem and some new variables which are unique
to the constraint processed. A general theory for constructing optimal gadgets was introduced by
Trevisan et al. [TSSW00].

To make such a reduction factor graph-preserving one simply needs to ensure that the factor
graph of constant size obtained from a single constraint does not the depend on which constraint
from the family Γ1 was used. This is a simple property to test and turns out to be true for most
reductions. In particular, one favorite starting point of such a reduction is Max-3-Lin and if we allow
negations of variables then Γ1 is the single predicate parity. This implies that as soon as we reduce
to another Max-CSP that allows negations, the reduction is automatically factor graph-preserving.
Let us state a couple of immediate corollaries to this observation and some reductions described in
[Hås01] and constructed based on the methods of [TSSW00].

Corollary 7.1. For any ε > 0, Max-2-Lin is (3
4 − ε,

11
16 + ε)-UFG-NP-hard.

The reduction takes a single equation of the form x+ y+ z = 0 and produces 16 equations each
containing two variables from the set {x, y, z} joint with 5 new variables. If the equation is satisfied
then we can set the new variables to satisfy 12 equations while if it is not satisfied it is only possible
to satisfy 10 equations. For 2-Sat we have the following corollary.

Corollary 7.2. For any ε > 0 Max-2-Sat is (11
12 − ε,

21
24 + ε)-UFG-NP-hard.

Here the reduction takes one equation and produces 12 clauses of size two of which 11 can be
satisfied if the equation is satisfied while if it is not, the optimum is 10.

It might be instructive to see what happens to the gadget reduction from Max-3-Lin to Max-
Cut in [TSSW00]. Here each variable in the original problem corresponds to a node in the resulting
Max-Cut instance. Each equation containing x, y and z produces a set of new variables which
are connected in one of two ways depending on whether the right hand size of the equation is 0
or 1. This implies that the reduction is not factor graph-preserving. Of course, this is not very
surprising since when Max-Cut is viewed as a Max-CSP the predicate family is the single predicate
of non-equality. This implies that the factor graph uniquely defines the instance and thus it is not
an interesting problem in the current context.

7.2 Larger Domains

Several of the hardness results that we reproved with universal factor graphs are known to apply
also to CSPs with larger domains (e.g., the Max-3-Lin mod q problem). While we have chosen to
focus on Boolean CSPs throughout the paper to keep the notation as simple as possible and focus
on the core ideas, these results for larger domains can also be obtained in the universal factor graph
setting.

In particular, the approximation resistance of Max-3-Lin (Theorem 4.1) and Max-TSA (The-
orem 4.11), and the uselessness of predicates supporting pairwise independent subgroups (Theo-
rem 5.2) can be generalized to arbitrary domains. Let us briefly describe how. Here we do not
go into depth and assume to a greater extent than in other parts of the paper that the reader is
familiar with the corresponding results in the standard settings, and the Fourier transform over Zq.

For a domain of size q, the long code-based reductions from the parallel repeated game are
modified in the exact same way as one modifies the standard hardness reductions for these problems,

25

by working with q-ary long code tables AU : ZUq → Zq and BW : ZWq → Zq and doing Fourier
analysis over Znq instead of over {0, 1}n. However, we can not start from a parallel repetition of the
Max-TSA problem, but instead need to start over some system of equations over Zq. This is because
the functional folding involves taking quotients of the domain ZUq over the constraint equations of
our CSP instance and hence those constraint equations also need to be over Zq rather than Z2.

Fortunately, there are several easy ways to overcome this obstacle to obtain a starting point
that can be used and we now sketch one. Starting with a Max-3-Sat instance I, we construct the
following system of equations over Zq. For each clause xa ∨ yb ∨ zc, where x, y, and z are variables,
and a, b, c ∈ {−1, 1} indicate whether a variable appears positively or negatively, add three new
variables X, Y , Z (separately for each clause of I) and four equations

o(X,Y, Z) = 1 x ·X = a y · Y = b z · Z = c

over Zq, where the function o(X,Y, Z) is 1 if and only if at least one of X, Y , and Z equals −1. It is
easy to see that if the best assignment to I falsifies a δ fraction of clauses then the best assignment
to the system of equations falsifies a δ/4 fraction of equations.

Furthermore, the left hand sides of the equations depend only on the factor graph of I, and
the negations of I only appear as right hand sides of equations. Thus this is a factor graph-
preserving reduction establishing (1, 1 − δ)-UFG-NP-hardness for an equational5 Max-CSP over
Zq. So analogously to the Boolean case, we apply smooth parallel repetition, introduce q-ary long
codes and apply functional folding to these. We then have the following analogue over Lemma 3.4
which says that any non-zero Fourier coefficient of a functionally folded table must depend on an
assignment satisfying all the constraints.

Lemma 7.3. Let A be a supposed q-ary long code, {hi(x) = bi}ri=1 be a set of equational constraints
over Zq, b = (b1, . . . , br) ∈ {0, 1}r, and H = {h1, . . . , hr}. Let AH,b be A folded over all functions
on H with respect to b. If ÂH,b(α) 6= 0 then the sum of α(x) over the assignments x that satisfy all
r equations equals 1 mod q.

Proof. Let h(x) = (h1(x), . . . , hr(x)). Recall that

ÂH,b(α) = E
f

[
ωAH,b(f)−〈α,f〉

]
,

where ω = e2πi/q is a complex q’th root of unity and 〈α, f〉 =
∑

x α(x)f(x) is the inner product of
the functions α and f .

By the folding we have for every c ∈ Zq that

AH,b(f + c · 1b(h)) = AH,b(f) + c · 1b(b) = AH,b(f) + c.

Let z be the sum of α(x) over all x satisfying all r equations. Then

ω〈α,f+c1b(h)〉 = ω
〈α,f〉+c

∑
1b(h(x))=1 α(x)

= ω〈α,f〉+cz.

Since the distribution over f + c1b(h) over randomly chosen f and c is the same as the distribution
over f , it follows that

ÂH,b(α) = E
f,c

[
ωAH,b(f)+c−〈α,f〉−cz

]
= ÂH,b(α) · E

c

[
ωc(1−z)

]
.

The expectation over c is 0 unless z = 1, so the claim follows.

With this key property of functional folding established, it is a straightforward but tedious task
to go over the existing hardness of approximation proofs for these results and adapt them to the
universal factor graph setting in exactly the same way as done for the Boolean case in the preceding
sections.

5For an appropriate generalization of equational CSPs to the setting where we have two different types of equations
instead of just one as in Definition 2.4.

26

8 Concluding Remarks and Open Questions

We have established that many of the current best inapproximability results for various Max-CSPs
and PCSPs can be made to hold with universal factor graphs, meaning that the hardness of the
problems stem from the variable negations and not from the constraint-variable incidence structure.

Given these new hardness results one can wonder whether there are any natural situations
where preprocessing helps. As discussed in the introduction, Max-3-Lin in the universal factor
graph setting corresponds to having a fixed linear code and the input is only the vector to which
one wants to find a close point. In a similar situation, where one is given a fixed integer lattice and
asked to find close points to input vectors, preprocessing seems to help [LLS90, DRS14], but we do
not know of a corresponding result for the problem on codes.

The only natural example we are aware of where preprocessing seems to help in the CSP setting
is the example [FKO06] pointed out in [FJ12]. Here a graph structure in the the factor graph can
be used to efficiently refute random instances of 3-Sat with n1.4 clauses. In addition to this one
can come up with contrived examples, for instance by taking a Max-CSP consisting of only two
predicates, one being very sparse and hard to approximate and one being very dense. Then without
universal factor graphs this problem is very hard to approximate due to the sparse predicate, but in
the universal factor graph setting an algorithm can precompute the optimal solution to the instance
when all constraints use the sparse predicate, and then either use this assignment or a random
assignment to get a better approximation ratio.

The landscape of CSPs would certainly be more interesting if preprocessing was helpful in more
general situations, and as we mention below there are some natural problems where we currently
do not know whether preprocessing helps or not.

Let us mention some interesting avenues for potential future work.

1. From an efficiency point of view our reductions leave something to be desired. The main
source of this is our need to use smooth parallel repetition, which incurs a large polynomial
blow-up with the degree depending on ε. E.g., as a consequence our results do not rule
out approximating Max-3-Lin with factor graph preprocessing within a factor 1/2 + ε in
time exp(nε), whereas approximating Max-3-Lin without factor graph preprocessing to within
1/2 + o(1) does not even have exp(n1−o(1)) time algorithms assuming ETH [MR08].

2. All our hardness results are based on functional folding, which inherently introduces negations,
either through negated literals or through linearity as in Max-3-Lin and Max-TSA. As such,
our methods can not be used to prove hardness of problems where folding over true is not
possible, such as the Max-3-Sat problem without mixed clauses, which is known to be NP-hard
to approximate within 7/8 + ε (even on satisfiable instances) [GK05]. Does this and similar
problems remain equally hard to approximate with factor graph preprocessing?

3. It would be interesting to obtain universal factor graphs for problems whose hardness is based
on the Unique Games Conjecture (UGC), such as approximating Max-2-Lin to within a factor
0.879 [KKMO07] or Max-2-Sat to within a factor 0.941 [Aus07]. Any such result would
probably have to be based on some strengthened version of the UGC, but it is very unclear to
us even what a suitable formulation of such a strengthened UGC could be that would allow
us to perform the reduction to Max-2-Lin in a factor graph-preserving way.

References

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan Håstad, (2+ε)-sat is np-hard, SIAM
J. Comput. 46 (2017), no. 5, 1554–1573.

[AH13] Per Austrin and Johan Håstad, On the usefulness of predicates, TOCT 5 (2013), no. 1,
1:1–1:24.

27

[Aus07] Per Austrin, Balanced max 2-sat might not be the hardest, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, 2007, pp. 189–197.

[BG18] Joshua Brakensiek and Venkatesan Guruswami, Promise constraint satisfaction: Struc-
ture theory and a symmetric boolean dichotomy, Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, 2018, pp. 1782–1801.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approximability—
towards tight results., SIAM Journal on Computing 27 (1998), 804–915.

[BKO19] Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal, Algebraic approach to promise
constraint satisfaction, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., 2019,
pp. 602–613.

[Cha16] Siu On Chan, Approximation resistance from pairwise independent subgroups, Journal
of the ACM 63 (2016), 1–32.

[DKV02] Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi, Constraint satisfaction,
bounded treewidth, and finite-variable logics, Principles and Practice of Constraint Pro-
gramming - CP 2002 (Berlin, Heidelberg) (Pascal Van Hentenryck, ed.), Springer Berlin
Heidelberg, 2002, pp. 310–326.

[DRS14] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz, On the closest vector
problem with a distance guarantee, IEEE 29th Conference on Computational Complex-
ity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, 2014, pp. 98–109.

[FJ12] Uriel Feige and Shlomo Jozeph, Universal factor graphs, Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-
13, 2012, Proceedings, Part I (Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and
Roger Wattenhofer, eds.), Lecture Notes in Computer Science, vol. 7391, Springer, 2012,
pp. 339–350.

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek, Witnesses for non-satisfiability of dense
random 3cnf formulas, Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (Washington, DC, USA), FOCS ’06, IEEE Computer Society,
2006, pp. 497–508.

[GK05] Venkatesan Guruswami and Subhash Khot, Hardness of max 3sat with no mixed clauses,
20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June
2005, San Jose, CA, USA, 2005, pp. 154–162.

[Gol11] Oded Goldreich, Candidate one-way functions based on expander graphs, pp. 76–87,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Gro07] Martin Grohe, The complexity of homomorphism and constraint satisfaction problems
seen from the other side, J. ACM 54 (2007), no. 1, 1:1–1:24.

[Hås01] Johan Håstad, Some optimal inapproximability results, Journal of the ACM 48 (2001),
no. 4, 798–859.

[HKLT19] Prahladh Harsha, Subhash Khot, Euiwoong Lee, and Devanathan Thiruvenkatachari,
Improved 3LIN Hardness via Linear Label Cover, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
(Dagstuhl, Germany) (Dimitris Achlioptas and László A. Végh, eds.), vol. 145, 2019,
pp. 9:1–9:16.

28

[Joz14] Shlomo Jozeph, Universal Factor Graphs for Every NP-Hard Boolean CSP, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2014) (Dagstuhl, Germany) (Klaus Jansen, José D. P. Rolim,
Nikhil R. Devanur, and Cristopher Moore, eds.), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 28, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014,
pp. 274–283.

[Kho02] Subhash Khot, Hardness results for coloring 3 -colorable 3 -uniform hypergraphs, 43rd
Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002,
Vancouver, BC, Canada, Proceedings, 2002, pp. 23–32.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell, Optimal inap-
proximability results for MAX-CUT and other 2-variable csps?, SIAM J. Comput. 37
(2007), no. 1, 319–357.

[LLS90] J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr, Korkin-zolotarev bases and successive
minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990), no. 4, 333–348.

[MR08] Dana Moshkovitz and Ran Raz, Two-query pcp with subconstant error, J. ACM 57
(2008), no. 5, 29:1–29:29.

[Raz98] R. Raz, A parallel repetition theorem, SIAM J. on Computing 27 (1998), 763–803.

[TSSW00] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson, Gadgets, approximation and
linear programming., SIAM Journal on Computing 29 (2000), 2074–2097.

29
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

