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Abstract

We study a new type of separations between quantum and classical communication
complexity, separations that are obtained using quantum protocols where all parties
are efficient, in the sense that they can be implemented by small quantum circuits,
with oracle access to their inputs. Our main result qualitatively matches the strongest
known separation between quantum and classical communication complexity [G16] and
is obtained using a quantum protocol where all parties are efficient. More precisely, we
give an explicit partial Boolean function f over inputs of length N , such that:

(1) f can be computed by a simultaneous-message quantum protocol with communi-
cation complexity polylog(N) (where at the beginning of the protocol Alice and
Bob also have polylog(N) entangled EPR pairs).

(2) Any classical randomized protocol for f , with any number of rounds, has com-
munication complexity at least Ω̃

(
N1/4

)
.

(3) All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can
be implemented by quantum circuits of size polylog(N) (where Alice and Bob
have oracle access to their inputs).

Items (1), (2) qualitatively match the strongest known separation between quantum
and classical communication complexity, proved by Gavinsky [G16]. Item (3) is new.
(Our result is incomparable to the one of Gavinsky. While he obtained a quantitatively
better lower bound of Ω

(
N1/2

)
in the classical case, the referee in his quantum protocol

is inefficient).
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Exponential separations of quantum and classical communication complexity have
been studied in numerous previous works, but to the best of our knowledge the effi-
ciency of the parties in the quantum protocol has not been addressed, and in most
previous separations the quantum parties seem to be inefficient. The only separations
that we know of that have efficient quantum parties are the recent separations that
are based on lifting [GPW17, CFK+19]. However, these separations seem to require
quantum protocols with at least two rounds of communication, so they imply a sepa-
ration of two-way quantum and classical communication complexity but they do not
give the stronger separations of simultaneous-message quantum communication com-
plexity vs. two-way classical communication complexity (or even one-way quantum
communication complexity vs. two-way classical communication complexity).

Our proof technique is completely new, in the context of communication complexity,
and is based on techniques from [RT19]. Our function f is based on a lift of the
forrelation problem, using xor as a gadget.

1 Introduction

Exponential separations between quantum and classical communication complexity have
been established in various models and settings. These separations give explicit examples
of partial functions that can be computed by quantum protocols with very small commu-
nication complexity, while any classical randomized protocol requires significantly higher
communication complexity. However, to the best of our knowledge, in all these works the
efficiency of the quantum players in the quantum protocol has not been addressed and in
most of these separations, the quantum players are inefficient.

Communication complexity studies the amount of communication needed to perform
computational tasks that depend on two (or more) inputs, each given to a different player.
The efficiency of the players in a communication complexity protocol is usually not addressed.
If the players need to read their entire inputs, their time complexity is at least the length
of the inputs. However, the inputs may be represented compactly by a black box and
(particularly in the quantum case) we can hope for players that can be implemented very
efficiently by small (say, poly-logarithmic size) quantum circuits, with oracle access to their
inputs.

Our main result qualitatively matches the strongest known separation between quantum
and classical communication complexity [G16] and is obtained using quantum protocols
where all players are efficient. To prove our results we use a completely different set of
techniques, based on techniques from the recent oracle separation of BQP and PH [RT19].
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1.1 Previous Work

The relative power of quantum and classical communication complexity has been studied
in numerous of works. While it is unknown whether quantum communication can offer
exponential advantage over randomized communication for total functions, a series of works
gave explicit examples of partial Boolean functions (promise problems) that have quantum
protocols with very small communication complexity, while any classical protocol requires
exponentially higher communication complexity. The history of exponential advantage of
quantum communication, that is most relevant to our work, is briefly summarized below.

Buhrman, Cleve and Wigderson gave the first (exponential) separation between zero-error
quantum communication complexity and classical deterministic communication complex-
ity [BCW98]. Raz gave the first exponential separation between two-way quantum commu-
nication complexity and two-way randomized communication complexity [R99]. Bar-Yossef
et al [BJK04] (for search problems) and Gavinsky et al [GKK+09] (for promise problems)
gave the first (exponential) separations between one-way quantum communication complex-
ity and one-way randomized communication complexity. Klartag and Regev gave the first
(exponential) separation between one-way quantum communication complexity and two-way
randomized communication complexity [KR11]. Finally, Gavinsky gave an (exponential)
separation between simultaneous-message quantum communication complexity and two-way
randomized communication complexity [G16].

We note that Gavinsky’s work is the strongest separation known today and essentially
subsumes the separations discussed above. More precisely, Gavinsky [G16] gave an explicit
partial Boolean function f over inputs of length N , such that:

1. f can be computed by a simultaneous-message quantum protocol with communica-
tion complexity polylog(N): Alice and Bob simultaneously send quantum messages of
length polylog(N) to a referee, who performs a quantum measurement on the messages
and announces the answer. (At the beginning of the protocol Alice and Bob also have
polylog(N) entangled EPR pairs).

We note that this also implies a one-way quantum protocol where Alice sends a message
of length polylog(N) qubits to Bob, who performs a measurement and announces the
answer (or vice versa).

2. Any classical randomized protocol for f has communication complexity at least Ω
(
N1/2

)
.

A drawback of Gavinsky’s separation, in the context of our work, is that the referee in
his quantum protocol is inefficient as it is required to perform O(N) quantum operations
(and this seems to be crucial in his lower bound proof).

As mentioned before, to the best of our knowledge, the efficiency of the quantum players
has not been addressed in previous works on separations of quantum and classical commu-
nication complexity. The only separations that we know of that do have efficient quantum
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parties are the separations that follow from the recent randomized query-to-communication
lifting theorems of [GPW17, CFK+19], applied to problems for which we know that quantum
decision trees offer an exponential advantage over randomized ones, such as the forrela-
tion problem of [A10, AA15]. However, lifting with the gadgets used in [GPW17, CFK+19]
seems to require quantum protocols with two rounds of communication. Thus, these theo-
rems only imply a separation of two-way quantum and classical communication complexity
and do not give the stronger separations of simultaneous-message quantum communication
complexity vs. two-way classical communication complexity (or even one-way quantum com-
munication complexity vs. two-way classical communication complexity).

1.2 Our Result

We recover Gavinsky’s state of the art separation, using entirely different techniques. While
the parameters in our bounds are weaker, our quantum protocol is efficient, in the sense that
it involves just polylog(N) amount of work by Alice, Bob and the referee, when the players
have blackbox access to their inputs. In other words, the output of the entire simultaneous
protocol can be described by a polylog(N) size quantum circuit, with oracle access to the
inputs.

More precisely, our main result gives an explicit partial Boolean function f over inputs
of length N , such that:

1. As in Gavinsky’s work, f can be computed by a simultaneous-message quantum pro-
tocol with communication complexity polylog(N): Alice and Bob simultaneously send
quantum messages of length polylog(N) to a referee, who performs a quantum mea-
surement on the messages and announces the answer. (At the beginning of the protocol
Alice and Bob also have polylog(N) entangled EPR pairs).

As before, this also implies a one-way quantum protocol where Alice sends a message
of length polylog(N) qubits to Bob, who performs a measurement and announces the
answer (or vice versa).

2. Any classical randomized protocol for f has communication complexity at least Ω̃
(
N1/4

)
.

3. All parties in the quantum protocol of Item (1) (Alice, Bob and the referee) can be
implemented by quantum circuits of size polylog(N) (where Alice and Bob have oracle
access to their input).

The problem that we define is a lift of the forrelation problem of [A10, AA15,
RT19] with xor as the gadget. Our proof technique follows the Fourier-analysis framework
of [RT19]. Our proof offers an entirely new and possibly simpler approach for communica-
tion complexity lower bounds. We believe this technique may be applicable in a broader
setting. We note that lower bounds for lifting by xor, using a Fourier-analysis approach,
were previously studied in [R95, HHL18].
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1.3 Our Communication Complexity Problem

Let N = 2n and HN be the N × N normalized Hadamard matrix. Let x = (x1, x2) be an
input where x1, x2 ∈ {−1, 1}N . The forrelation forr(x) of a vector x is defined as follows
and measures how correlated the second half is with the Hadamard transform of the first
half.

forr(x) :=
1

N
〈HN(x1)|x2〉

The communication problem for which our separation holds is a lift of the forrelation problem
of [RT19], with XOR as the gadget. Let x, y ∈ {−1, 1}2N . Alice gets x and Bob gets y and
their goal is to compute the partial function F defined by

F (x, y) :=

{
1 if forr(x · y) ≥ 1

200
· 1
lnN

−1 if forr(x · y) ≤ 1
400
· 1
lnN

Here x·y refers to the coordinate-wise product of the vectors x, y. The quantum upper bound
on F follows from the fact that the XOR of the inputs can be computed by a simultaneous-
message quantum protocol, when the players share entanglement, and the fact that forr(x)
can be estimated by a small size quantum circuit [A10, AA15, RT19].

1.4 An Overview of the Lower Bound

We briefly outline the proof of the lower bound. We use the forrelation distribution D on
{−1, 1}2N as defined by [RT19]. We define a distribution V on inputs to the communica-
tion problem, obtained by sampling z ∼ D, and x ∈ {−1, 1}2N uniformly at random, and
setting y := x · z. Alice gets x and Bob gets y. It can be shown that the distribution V
has considerable support over the yes instances of F , while the uniform distribution U on
{−1, 1}4N has large support over the no instances of F . This fact along with the following
theorem implies a lower bound on the randomized communication cost of F .

Theorem [Informal]: No deterministic protocol of cost o(N1/4) has considerable ad-
vantage in distinguishing V from U .

We now outline the proof of this theorem. Any cost c protocol induces a partition of
the input space into at most 2c rectangles. Let A × B be any rectangle, and let 1A,1B :
{−1, 1}2N → {0, 1} be the indicator functions of A and B respectively. Note that for all
distributions S on {−1, 1}2N , we have

E
z∼S,

E
x∼U2N

[1A(x)1B(x · z)] = E
z∼S

[(1A ∗ 1B)(z)]

Here, the notation f ∗ g refers to the convolution of Boolean functions f and g. This
identity implies that our goal is to show that the expectation of the function (1A∗1B)(z) over
a uniformly distributed z is close to the expectation over z ∼ D. An essential contribution
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of the works of [RT19] and [CHLT19] is the following result. For any family of functions
F that is closed under restrictions, to show that the family is fooled by the forrelation
distribution, it suffices to bound the `1-norm of the second level Fourier coefficients of the
family. More precisely, the maximum advantage of a function f ∈ F in distinguishing the

uniform distribution and D, is at most O
(

1√
N

)
times the maximum second level Fourier

mass of a function f ∈ F . Since small cost communication protocols form a family of
functions closed under restrictions, the same reasoning applies here.

We now describe how to bound the second level Fourier mass corresponding to a small
cost protocol. Let A × B be a rectangle. An important property of the convolution of two

functions f, g is that for all subsets S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S). This, along with
Cauchy-Schwarz implies that

∑
|S|=2

∣∣∣1̂A ∗ 1B(S)
∣∣∣ =

∑
|S|=2

∣∣∣1̂A(S)1̂B(S)
∣∣∣ ≤

∑
|S|=2

1̂A(S)2

1/2∑
|S|=2

1̂B(S)2

1/2

We then use a well known inequality on Fourier coefficients. It appears as ‘Level-k In-
equalities’ in Ryan Odonnell’s book [O’D14, Chapter 9.5] and it states that for a func-
tion f : {−1, 1}n → {0, 1} with expectation E[f ] = α, for any k ≤ 2 ln(1/α), we have∑
|S|=k

(
f̂(S)

)2
≤ O(α2 lnk(1/α)). For simplicity, assume that |A| = |B| = 2(n−c)/2. The

previous paragraphs and the assumption that E[1A],E[1B] = 1
2c/2

imply that the advantage

of a rectangle is at most O
(

1√
N

1
2c
c2
)
. Adding the contributions from all rectangles implies

that the advantage of a cost c protocol is at most O
(

c2√
N

)
. This implies that every protocol

of cost o(N1/4) has advantage at most o(1) in distinguishing between U and V . The bound
in the case of a general partition follows from a concavity argument. This completes the
proof overview.

We conjecture that the correct randomized communication complexity for this problem
is Ω̃(

√
N) and that the above proof technique can be strengthened to show this. One

way to do this would be to show a better bound on the Fourier coefficients of deterministic
communication protocols. In particular, it would suffice to show a bound of O(c·poly log(N))
on the second level Fourier mass of protocols with c-bits of communication.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n}. For a vector x ∈ Rn and i ∈ [n], we refer
to the i-th coordinate of x by either x(i) or xi. For a subset S ⊂ [n], let xS ∈ R|S| be
the restriction of x to coordinates in S. For vectors x, y ∈ Rn, let x · y be their point-wise
product, i.e., the vector whose i-th coordinate is xiyi. Let 〈x|y〉 be the real inner product∑

i xiyi between x and y. Let v−1 be the coordinate-wise inverse of a vector v ∈ (R \ 0)n.
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2.1 Fourier Analysis on the Boolean Hypercube

The set {−1, 1}n is referred to as the Boolean hypercube in n dimensions, or the n-dimensional
hypercube. We sometimes refer to it by {0, 1}n, using the bijection mapping (x1, . . . , xn) ∈
{0, 1}n to ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n. We also represent elements of {−1, 1}n by ele-
ments of [2n], using the bijection mapping ((−1)x1 , . . . , (−1)xn) ∈ {−1, 1}n to 1+

∑n
i=1 2i−1xi ∈

[2n]. We typically use N to denote 2n. Let In denote the n × n identity matrix. Let Un
be the uniform distribution on {−1, 1}n. Let F := {F : {−1, 1}n → R} be the set of all
functions from the n-dimensional hypercube to the real numbers. This is a real vector space
of dimension 2n. We define an inner product over this space. For every f, g,∈ F , let

〈f, g〉 := E
x∼Un

[f(x)g(x)]

For any universe U and a subset S ⊆ U , we use 1S : U → {0, 1} to refer to the indicator
function of S defined by:

1S(x) :=

{
1 if x ∈ S
0 otherwise

The set of indicator functions of singleton sets {1{a} : a ∈ {−1, 1}n} is the standard or-
thogonal basis for F . The character functions form an orthonormal basis for F . These
are functions χS : {−1, 1}n → {−1, 1} associated to every set S ⊆ [n] and are defined at
every point x ∈ {−1, 1}n by χS(x) :=

∏
i∈S xi. For a function f ∈ F , and S ⊆ [n], we

define its S-th Fourier coefficient to be f̂(S) := Ex∼Un [f(x)χS(x)]. Every f ∈ F can be

expressed as f(x) =
∑

S⊆[n] f̂(S)χS(x). For f : {−1, 1}n → R and k ∈ {0, . . . , n}, let

Lk(f) :=
∑

S⊆[n],|S|=k

∣∣∣f̂(S)
∣∣∣ refer to the level k Fourier mass of f .

Given functions f, g : {−1, 1}n → R, their convolution f ∗ g : {−1, 1}n → R is defined
as f ∗ g(x) := E

y∼Un
[f(y)g(y · x)]. A standard fact about convolution of functions is that

f̂ ∗ g(S) = f̂(S)ĝ(S) for all S ⊆ [n].

2.2 Quantum Computation

LetHm be the Hilbert space of dimension 2m defined by the complex span of the orthonormal
basis {|x〉 : x ∈ {−1, 1}m}. We sometimes express these basis elements by integers {|i〉 : i ∈
[2m]} by the same correspondence as before. An element in this space is denoted by |φ〉 and
is a unique complex combination of the vectors |x〉, where x is a bit string in {−1, 1}m. We
omit the subscript on H when it is implicit. Pure quantum states on m qubits are described
by unit vectors in Hm. We sometimes use the terms register and qubit interchangeably. Note
that we have the vector space isomorphism Hm

∼= ⊗mi=1H
(i)
1 , where each H(i)

1
∼= H1. We call

H(i)
1 the i-th register, or the i-th qubit. The evolution of a pure state can be described by

either projective or unitary transformations on Hm, a few of which we describe below.
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Figure 1: Representation of the Hadamard, the measurement and not operators. A
horizontal wire represents a register and a labeled box an operator.

•

Figure 2: Representation of the CNOT operator. The black dot represent the control register
and ⊕ represents the target register.

• Unitary operators: Unitary operators over Hm act on pure states in the natural
way. They map a pure state |φ〉 to a pure state U(|φ〉).

• Hadamard operator H: The Hadamard matrix HN is an N × N unitary matrix
acting on Hn. We let x and y in {0, 1}n index rows and columns of HN respectively.
The entries of HN are as follows.

HN(x, y) :=

{
1√
N

if
∑

i xiyi mod 2 = 0
−1√
N

otherwise

We refer to the single bit unitary operator H1 as simply H. We have the identity
H2n = H⊗n. Thus, the action of H2n on Hn can be described as the tensor product of
the actions of H on H(i)

1 for i ∈ [n].

• Controlled not: This is a two-bit unitary operator, where the first register is the
control and the second is the target. For x1, x2 ∈ {±1}, it maps |(x1, x2)〉 to |(x1,−x2)〉
if x1 = −1 and otherwise leaves it fixed.

• Clifford operator Rπ/8: This is a single qubit unitary operator given by the 2 × 2

unitary matrix

[
cos π

8
− sin π

8

sin π
8

cos π
8

]
.

• Measurement of the i-th Register: Let Mi,1 (respectively Mi,−1) be the projection
operator onto the span of {|x〉 : x(i) = 1} (respectively the span of {|x〉 : x(i) = −1}).
The measurement of the i-th register of a pure state |φ〉 is a probabilistic process which

returns the state
Mi,b|φ〉
‖Mi,b|φ〉‖

with probability ‖Mi,b |φ〉 ‖2 for b ∈ {−1, 1}. The subsequent

value of b is said to be the outcome of the measurement.

A quantum circuit Q : {−1, 1}n → {−1, 1}m of space S consists of a set of S registers,
the first n of which are initialized to |x〉, the input, while the rest are initialized to |1〉. It
further consists of a sequence of operators chosen from {H,CNOTi,j, Rπ/8,Mi} along with
a description of which register they act on. The size of a circuit is the number of operators.
The output of a circuit is defined to be the contents of the first m registers. Since we want
the output to be Boolean, we assume that the circuit measures these registers and returns
the outcome. Thus, a quantum circuit is inherently probabilistic.
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We now describe quantum circuits with query or oracle access. In this model, all registers
are initialized to |1〉 and the input x ∈ {−1, 1}n is not written into the registers. Instead,
it is compactly presented to the algorithm using a blackbox, a device which for every index
i ∈ [n], returns x(i) |i〉 when it is given |i〉 as input. More precisely, for every possible input
x ∈ {−1, 1}n, the oracle to x is the linear operator Ox : Hdlogne → Hdlogne which maps the
basis states |i〉 to xi |i〉 whenever i ∈ [n] and otherwise leaves it fixed. This indeed restricts
to a unitary operation on pure states, as its action on the basis states is described by a
diagonal {−1, 1}-matrix. This serves as the quantum analogue of a classical oracle, which
is a blackbox that returns x(i) on input i ∈ [n]. A quantum circuit with oracle access to
inputs is a quantum circuit that is allowed to use the Ox operator in addition to the usual
operators, where x is the input to the computation. The size of the circuit is the total
number of operators from {H,CNOTi,j, Rπ/8,Mi, Ox} used. We say that an algorithm is
efficient, if it is described by a circuit of size at most poly log n with oracle access to inputs.

Note that it is possible to use the oracle Ox to explicitly write down the input x into n
registers, however, this requires n oracle calls and n registers. It is often the case that this
step is unnecessary.

2.3 Classical & Quantum Communication Complexity

Let f : {−1, 1}n × {−1, 1}m → {−1, 1} be a partial Boolean function. Alice (respectively
Bob) receives a private input x ∈ {−1, 1}n (respectively y ∈ {−1, 1}m) and the players’ goal
is to compute f(x, y) if (x, y) is in the support of f , while exchanging as few bits as possible.
An input (x, y) is said to be a yes (respectively no) instance if f(x, y) = −1 (respectively
if f(x, y) = 1).

A deterministic communication protocol D proceeds in rounds, and in each round, a
player sends the other a message in {−1, 1}. A message sent by a player in a given round
is the output bit of some fixed Boolean function of their private input and the messages
they received in the previous rounds. At the end, Alice returns a bit D(x, y), the output
of the protocol. The protocol computes f if for all (x, y) in the support of f , we have
D(x, y) = f(x, y). The communication cost of the protocol is the maximum over the inputs
(x, y) in the support of f of the number of bits exchanged. We assume that the protocol
returns a bit in {−1, 1} even when run on inputs not in the support of f , this can be done by
aborting and returning 1 if the players realize that their inputs are not in the support of f .
The sequence of messages is called the transcript. For every protocol of cost at most c and
for every possible transcript in {−1, 1}c, the set of input pairs (x, y) ∈ {−1, 1}n × {−1, 1}m
that could have generated this transcript is a rectangle A × B, where A (respectively B)
is the set of Alice’s (respectively Bob’s) inputs that could have generated the transcript.
Thus, every deterministic protocol of cost at most c induces a partition of the input space
{−1, 1}n × {−1, 1}m into at most 2c rectangles.

In a bounded-error randomized protocol C, Alice and Bob have access to a shared unbiased
coin which they can toss arbitrarily many times. Based on the outcome r of the coin tosses,
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they run a deterministic protocol Dr. The protocol is said to compute f with error at
most ε if for each (x, y) in the support of f , with at least 1 − ε probability over the coin
tosses, the output of the deterministic protocol equals f(x, y). The cost is the maximum cost
of the deterministic protocols. The min-max principle states that for any partial function
f : {−1, 1}n × {−1, 1}m → {−1, 1}, there is a bounded error protocol of cost at most c
computing f with error at most ε if and only if for all distributions µ on the support of f ,
there is a deterministic protocol D of cost at most c such that E

(x,y)∼µ
D(x, y)f(x, y) ≥ 1− 2ε.

We assume ε = 1/3 by default.

In the quantum communication model, Alice and Bob have infinitely many private qubits,
the first of which are initialized to their respective inputs and the rest to |1〉. A quantum
bounded-error protocol Q consists of several rounds and in each round, a player applies a
unitary or a measurement operator to qubits they own and then sends a qubit to the other
player. The sequence of operators and the qubits they act on is fixed beforehand. At the
end of the protocol, Alice returns a bit Q(x, y), the output of the protocol. The protocol is
said to compute f if for every (x, y) in the support of f , with probability at least 2/3, the
output Q(x, y) equals f(x, y). The cost of the protocol is the maximum number of qubits
exchanged.

In communication with entanglement, the players are given the additional resource of
entangled qubits. These are 2m registers for some m ∈ N, the first half of which belong to
Alice and the second half to Bob. The registers are initialized to the state 1√

2m

∑2m

i=1 |i〉
A |i〉B.

Here, the superscript indicates to which player the register belongs. The assumption on the
initial entangled state is natural as this state is obtained by tensoring m independent copies
of the Bell state 1√

2

(
|0〉A |0〉B + |1〉A |1〉B

)
. In other words, it is as if Alice and Bob had m

independent copies of the Bell state. We say that in a protocol using 1√
2m

∑2m

i=1 |i〉
A |i〉B as

the initial state, Alice and Bob share m bits of entanglement.

In the simultaneous model of communication, Alice and Bob are not allowed to exchange
registers with each other. Instead, they are allowed one round of communication with a
referee Charlie, to whom they can only send qubits. The referee then performs some quantum
operation on the qubits he receives and returns a bit as the output. As before, a bounded-
error simultaneous protocol computes f if for all (x, y) in the support of f , with probability
at least 2/3, the referee’s output agrees with f(x, y). The cost is the total number of qubits
that Alice and Bob send the referee.

Note that in each of the above models of communication, every function f : {−1, 1}n ×
{−1, 1}m → {−1, 1} has communication cost at most n + m, since the players may simply
reveal their entire inputs. Hence, a small cost protocol is one in which the communication
cost is at most poly log(n+m).

A communication protocol is said to be efficient if it can be implemented by a small size
circuit with oracle access Ox, Oy to the inputs x, y. Protocols with small communication
cost are not necessarily efficient, as they may require computationally intensive processing
on the messages, or they may require the players to make several probes into their inputs.
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2.4 The Forrelation Distribution D

Let x ∼ D refer to a random variable x distributed according to the probability distribution
D. We use PD to refer to the probability measure associated with D and Px∼D(E(x)) to refer
to the probability of event E(x) when x ∼ D. For an event E(x), we will denote by D|E(x)
(respectively D|¬E(x)), the distribution D conditioned on the event E(x) occurring (respec-
tively, the event E(x) not occurring). Let ε ≥ 0 be a parameter, f(x) : Rn → R a function

andD a distribution on Rn. We say thatD fools f with error ε if

∣∣∣∣ E
x∼Un

[f(x)]− E
x∼D

[f(x)]

∣∣∣∣ ≤ ε.

Let N (µ, σ2) denote a Gaussian distribution of mean µ ∈ R and variance σ2 ∈ R≥0. We
will repeatedly use the following standard facts about Gaussians.

• Gaussian Concentration inequality: For X ∼ N (µ, σ2), we have P[|X−µ| ≥ a] ≤ e−
a2

2σ2 .

• The sum
∑

iXi of independent Gaussians Xi ∼ N (µi, σ
2
i ) is distributed according to

N (
∑

i µi,
∑

i σ
2
i ).

We will also use Chebyshev’s inequality and Chernoff’s bound. Chebyshev’s inequal-
ity [Wik1] implies that for a set of n pair-wise independent random variables Xi with mean

µi and variance σ2
i , we have P[|

∑n
i=1(Xi−µi)| ≥ a] ≤

∑n
i=1 σ

2
i

a2
. Chernoff’s bound [Wik2, M18]

implies that for n independent identical random variables Xi in [−1, 1] whose sum is of mean
µ and variance σ2, we have P [|

∑n
i=1Xi − µ| ≥ tσ] ≤ 2 exp(−t2/4) whenever t ≤ σ

2
.

Let x = (x1, x2) for x1, x2 ∈ {−1, 1}N . We define the forrelation of x as the correlation
between the second half x2 and the Hadamard transform of the first half x1.

forr(x) :=

〈
1√
N
HN(x1)

∣∣∣∣∣ 1√
N
x2

〉

We state the definition of the forrelation distribution, as defined in [RT19]. Fix a param-
eter ε = 1

50 lnN
. We first define an auxilliary Gaussian distribution G generated by sampling

the first half uniformly at random and letting the second half be the Hadamard transform
of the first half. More precisely,

1. Sample x1, . . . , xN ∼ N (0, ε).

2. Let y = HNx.

3. Output (x, y).

This is a Gaussian random variable in 2N dimensions of mean 0 and covariance matrix given
by

ε

[
IN HN

HN IN

]
11



Let trnc : R→ [−1, 1] be the truncation function which on input α > 1, returns 1, α < −1
returns −1 and otherwise returns α. This naturally defines a function trnc : R2N → [−1, 1]2N

obtained by truncating each coordinate. We now define a distribution D over {−1, 1}2N
generated from G by truncating the sample and then independently sampling each coordinate
as follows.

1. Sample z ∈ G.

2. For each coordinate i ∈ [2N ] independently, let z′i = 1 with probability 1+trnc(zi)
2

and

−1 with probability 1−trnc(zi)
2

.

3. Output z′.

We refer to the distribution D as the forrelation distribution. We state Claim 6.3 from [RT19]
which implies that a vector drawn from this distribution has large forrelation on expectation.
The proof is omitted.

Lemma 2.1. Let D be the forrelation distribution as defined previously. Then,

Ez∼D[forr(z)] ≥ ε

2

2.5 Multilinear Functions on D

Given a function f : {−1, 1}n → R, there is a unique multilinear polynomial f̃ : Rn → R
which agrees with f on {−1, 1}n. This polynomial is called the multilinear extension of f .
The multilinear extension of any character function χS(x) is precisely

∏
i∈S xi. The multi-

linear extension f̃ of f satisfies f̃(x) =
∑

S⊆[n] f̂(S)
∏

i∈S xi for all x ∈ Rn. We sometimes
identify f with its multilinear extension. The main content of this section is that bounded
multilinear functions have similar expectations under G and under D.

Claim 2.2. Let F : R2N → R be any multinear function F =
∑

S F̂ (S)χS. Then,

E
z′∼D

[F (z′)] = E
z∼G

[F (trnc(z))]

Proof of Claim 2.2. For any fixed z, recall that the sampling process for D involves indepen-
dently setting z′i to 1 with probability 1+trnc(z)i

2
and to −1 with the remaining probability.

Because of this and linearity of expectation, we have

E [F (z′) | z] = E
[∑

S

F̂ (S)χS(z′)
∣∣∣z] =

∑
S

F̂ (S)E[χS(z′) | z]

=
∑
S

F̂ (S)χS(E[z′|z])

=
∑
S

F̂ (S)χS(trnc(z)) = F (trnc(z))

12



This implies that Ez′∼D[F (z′)] is exactly Ez∼G[F (trnc(z))]. The following claim states
that Ez∼G[F (trnc(z))] is pretty close to Ez∼G[F (z)] for a bounded multilinear function F .
Its proof is identical to that in [RT19], so we omit it. The underlying idea is that ε is small,
so the random variable z ∼ G has an exponentially decaying norm, furthermore, bounded
multilinear functions F on {−1, 1}2N cannot grow faster than exponentially in the norm of
the argument.

Claim 2.3. Let F (z) be any multilinear polynomial mapping {−1, 1}2N to [−1, 1]. Let z0 ∈
[−1/2, 1/2]2N , p ≤ 1

2
and N > 1. Then,

Ez∼G [|F (trnc(z0 + pz))− F (z0 + pz)|] ≤ 8

N5

We remark that the bound in [RT19] is 8
N2 . The improved bound of 8

N5 in Claim 2.3
follows from our choice of ε = 1

50 lnN
, as opposed to ε = 1

24 lnN
as in [RT19].

2.6 Moments of G

In this section we state some facts about the moments of the forrelation distribution that
will be useful later. We use the following notation to refer to the moments of G.

Ĝ(S, T ) := E
(x,y)∼G

[∏
i∈S

xi
∏
j∈T

yj

]

The following claim and its proof are analogous to Claim 4.1 in [RT19].

Claim 2.4. Let S, T ⊆ [N ] and i, j ∈ [N ]. Let k1 = |S|, k2 = |T |. Then,

1. Ĝ({i}, {j}) = εN−1/2(−1)〈i,j〉.

2. Ĝ(S, T ) = 0 if k1 6= k2.

3.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ εkk!N−k/2 if k = k1 = k2.

4.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ ε|S| for all S, T .

3 The Forrelation Communication Problem

In this section we formally state the main theorems of this paper. Their proofs follow in the
successive sections.

Let ε = 1
50 lnN

be the parameter as before, defining the forrelation distribution.

13



Theorem 3.1. Consider the following distribution. A string z ∈ {−1, 1}2N is drawn from the
forrelation distribution, x ∼ U2N is drawn uniformly and y := x ·z. Alice gets x and Bob gets
y. Given any deterministic communication protocol C : {−1, 1}2N ×{−1, 1}2N → {−1, 1} of
cost c ≥ 1, its expectation when the inputs are drawn from this distribution is close to when
the inputs are drawn from the uniform distribution. That is,∣∣∣∣∣ E

x∼U2N
z∼D

[C(x, x · z)]− E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣ ≤ O

(
c2

N1/2

)

In other words, no deterministic protocol of cost o(N1/4) has considerable advantage in dis-
tinguishing the above distribution from the uniform distribution.

Definition 3.2 (The Forrelation Problem). Alice is given x ∈ {−1, 1}2N and Bob is given
y ∈ {−1, 1}2N . Their goal is to compute the partial boolean function F defined as follows.

F (x, y) =

{
−1 if forr(x · y) ≥ ε/4

1 if forr(x · y) ≤ ε/8

Theorem 3.3. The forrelation problem can be solved in the quantum simultaneous with
entanglement model with O(log3N) bits of communication, when Alice and Bob are given
access to O(log3N) bits of shared entanglement. Moreover, the protocol is efficient, as it can
be implemented by a O(log3N) size quantum circuit with oracle access to inputs.

Theorem 3.4. The randomized bounded-error interactive communication cost of the forre-
lation problem is Ω̃(N

1
4 ).

4 Proof of Theorem 3.3: Quantum Upper Bound

Our protocol will be based on three standard subroutines described in Figures 3, 4 and
5. The first is the Swap test between vectors |φ〉 and |ψ〉, which takes as input the state
1√
2
|0〉 |φ〉 + 1√

2
|1〉 |ψ〉 and outputs |1〉 with probability 1+〈φ|ψ〉

2
and |0〉 with the remaining

probability. This can be implemented by applying a Hadamard on the first bit and then
measuring it and negating the outcome. The probability associated with the outcome |1〉 is

precisely ‖|φ〉+|ψ〉‖2
4

= 1+〈φ|ψ〉
2

. The second subroutine is a controlled erase/entangle operator
E which exchanges the basis states |i〉 |i〉 and |i〉 |0〉 for every i ∈ [N ]. Its action on other
states can be arbitrary. It can be implemented as follows. For each register j ∈ [logN ],
negate the contents of the (logN + j)-th register, controlled on the contents of the j-th
register. The third subroutine is a Controlled Hadamard operator. This is a two-qubit
operator which applies H on the second register if the content of the first register is |1〉 and
otherwise does nothing. It can be implemented as shown in Figure 5.

14



H

Figure 3: The Swap test

• . . .
• . . .

. . . •

. . .

. . .

. . .

Figure 4: The E operator

• •
H = H Rπ/8 H Rπ/8

Figure 5: The Controlled Hadamard operator

4.1 Quantum Communication Protocol for Forrelation

Let m = c log3(2N) for some large enough constant c. Let M = 2m. We first observe the
following identity.

1√
M

M∑
i=1

|i〉A |i〉B =

(
1√
2N

2N∑
i=1

|i〉A |i〉B
)⊗c log2(2N)

Henceforth, we will assume that Alice and Bob have c log2(2N) independent copies of the
state 1√

2N

∑2N
i=1 |i〉

A |i〉B. Consider the following protocol based on the algorithm for forrela-

tion by Aaronson and Ambainis [AA15] and by Raz and Tal [RT19].

(1.) Let x = (x1, x2) and y = (y1, y2) be Alice’s and Bob’s inputs respectively, where
x1, x2, y1, y2 ∈ {−1, 1}N . Recall that Alice and Bob are given c log2(2N) copies of
the following maximally entangled state.

1√
2N

2N∑
i=1

|i〉A |i〉B =
1√
2N

N∑
i=1

|0i〉A |0i〉B +
1√
2N

N∑
i=1

|1i〉A |1i〉B

For each copy, Alice (respectively Bob) applies the oracle to her input Ox (respectively
Oy) to create the state

|γ〉 :=
1√
2N

N∑
i=1

|0i〉A |0i〉B x1(i)y1(i) +
1√
2N

N∑
i=1

|1i〉A |1i〉B x2(i)y2(i)

Alice and Bob simultaneously send all their copies of this state to the referee.

15



(2.) For each copy, the referee uses the E operator to create the state

1√
2

(
|0〉 |φ〉+ |1〉 |ψ〉

)
|0logN+1〉

where |φ〉 =
1√
N

N∑
i=1

|i〉x1(i)y1(i) and |ψ〉 =
1√
N

N∑
i=1

|i〉x2(i)y2(i)

Ignoring the last few blank registers, the referee has 1√
2

(
|0〉 |φ〉+ |1〉 |ψ〉

)
. The referee

first negates the content of the first register. He then performs a series of controlled
Hadamard operators where the control is always on the first register and the target
registers vary from i = 2 to logN + 1. He thus obtains:

1√
2
|1〉 ⊗HN(|φ〉) +

1√
2
|0〉 ⊗ |ψ〉

This allows the referee to perform a Swap test between HN(|φ〉) and |ψ〉. He appends
the output of the swap test to an auxilliary register.

(3.) The referee returns 1 if the fraction of 1 entries in the registers exceeds 1
2

+ 3
32
· ε and

−1 otherwise.

4.2 Correctness of the Quantum Protocol

The expected fraction of 1 entries of the swap test between HN(φ) and ψ is

1

2
+

1

2

〈
1√
N
HN

(∑
i

|i〉x1(i)y1(i)
)∣∣∣∣∣ 1√

N

∑
i

|i〉x2(i)y2(i)

〉
=

1

2
+

1

2
forr(x · y)

The promise on the inputs is that this quantity is at least 1
2

+ ε
8

for yes instances, while it is
at most 1

2
+ ε

16
for no instances. A simple application of the additive Chernoff bound implies

that if µ is the random variable describing the average of O(1/ε2) = c log2(2N) independent
trials of the test, then, for a large enough constant c, with probability at least 2/3, the
random variable is within ε/32 of its mean. This means that for yes instances, the fraction
of 1 entries in the referees register is greater than 1

2
+ ε

8
− ε

32
≥ 1

2
+ 3ε

32
with high probability,

while for no instances, it is less than 1
2

+ ε
16

+ ε
32
≤ 1

2
+ 3ε

32
with high probability. This proves

the correctness of the protocol.

4.3 Quantum Circuit for Forrelation

The above protocol can be described by a quantum circuit of small size (see Figure 6). We
first remark that the subroutines Swap, the controlled Hadamard and E are efficient, since
the first two involve O(1) single-bit operations while the E operator involves logN controlled
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|0〉 H

E

OA

E

• • . . . • Swap

|0〉 H H . . .

|0〉 H H . . .

|0〉 H . . . H

|0〉

OB
|0〉
|0〉
|0〉

Figure 6: Circuit describing one component of the quantum protocol. The output of this
component is the outcome of the Swap test. The final circuit is obtained by taking a
threshold of the outputs of O(log2N) copies of this circuit.

not operators. The initial entangled state 1√
M

∑M
i=1 |i〉

A |i〉B can be created by applying a
Hadamard gate on the first logM registers and then applying the erase operator on the
registers 1, . . . , 2 logM . Step (1.) requires one parallel oracle query to Ox and to Oy for each
of the c log2(2N) copies. Step (2.) involves a single application of the E operator, a negation
operator, O(logN) applications of the controlled Hadamard and one Swap test, for each of
the c log2(2N) copies. The entire circuit is thus composed of O(log3N) operators.

5 Proof of Theorem 3.1: Distributional Lower Bound

Let C : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol of cost at most c.
Let D : {−1, 1}2N × {−1, 1}2N → {−1, 1} be defined as follows. For x, z ∈ {−1, 1}2N ,

D(x, z) := C(x, x · z)

We will also use D(x, z) to refer to its mulilinear extension. Note that our goal is to show
that the function E

x∼U2N

[D(x, z)] of z is fooled by D. Towards this, we will prove that it is

fooled by pG for small p. This approach was first used in [CHHL18] and is analogous to
Claim 7.2 in [RT19].

Lemma 5.1. Let p ≤ 1
2N

and let C(x, y) be any deterministic protocol of cost c ≥ 1 for
the forrelation problem. As before, let D(x, z) : R2N × R2N → R refer to the multilinear
extension of C(x, x · z). Let P ∈ [−p, p]2N . Then,∣∣∣∣∣∣ E

z∼P ·G
x∼U2N

[D(x, z)]− E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣ ≤ 120εc2p2√
N

+ p4N3

17



Corollary 5.2. Under the same hypothesis as in Lemma 5.1,∣∣∣Ez∼P ·G [D(0, z)]−D(0, 0)
∣∣∣ ≤ 120εc2p2√

N
+ p4N3

Proof of Corollary 5.2 from Lemma 5.1. Since D(x, z) is a multilinear polynomial, for all
z ∈ R2N , we have Ex∼U2N

[D(x, z)] = D(0, z). This implies that

E
z∼P ·G
x∼U2N

[D(x, z)] = Ez∼P ·G [D(0, z)]

We also have Ez∼U2N
[D(0, z)] = D(0, 0). This implies that

E
z,x∼U2N

[D(x, z)] = D(0, 0)

The proof of Corollary 5.2 follows from the above two equalities and Lemma 5.1.

Proof of Lemma 5.1. We begin by observing some properties of the distribution P · G. The
sample z ∼ P · G is obtained by scaling the i-th coordinate of z′ ∼ G by Pi for each i ∈ [2N ].
This implies that for all S ⊆ [2N ],

E
z∼P ·G

[χS(z)] =

(∏
i∈S

Pi

)
E
z∼G

[χS(z)] (1)

Part (2.) of Claim 2.4 implies that the odd moments of G are zero. Equation (1) implies
that this is also true for P · G. That is, for all S ⊆ [2N ],

|S| is odd =⇒ E
z∼P ·G

[χS(z)] = 0 (2)

Part (3.) of Claim 2.4 implies that for S ⊆ [2N ], |S| = 2k, the S-th moment Ez∼GχS(z) is
at most εkk!N−k/2 in magnitude. Along with equation (1), this implies that for k ∈ N,

|S| = 2k =⇒
∣∣∣∣ E
z∼P ·G

[χS(z)]

∣∣∣∣ ≤
(∏
i∈S

Pi

)
εkk!N−k/2 ≤ p2kεkk!N−k/2 (3)

We now proceed with the proof of the lemma. Let

∆ :=

∣∣∣∣∣∣ E
z∼P ·G
x∼U2N

[D(x, z)]− E
z,x∼U2N

[D(x, z)]

∣∣∣∣∣∣
Note that this is the quantity we wish to bound in the lemma. For ease of notation, let
H : {−1, 1}2N → [−1, 1] be defined at every point z ∈ {−1, 1}2N by

H(z) := E
x∼U2N

[D(x, z)]

18



We identify H(z) with its multilinear extension. Note that by uniqueness of multilinear
extensions, the above equality holds even for z ∈ R2N . This implies that

E
z∼P ·G
x∼U2N

[D(x, z)] = E
z∼P ·G

[H(z)] and E
z,x∼U2N

[D(x, z)] = E
z∼U2N

[H(z)]

This, along with the definition of ∆ implies that

∆ =

∣∣∣∣ E
z∼P ·G

[H(z)]− E
z∼U2N

[H(z)]

∣∣∣∣
Note that H(z) =

∑
S Ĥ(S)χS(z) for all z ∈ R2N . This implies that for all distributions Z

on R2N , we have E
z∼Z

[H(z)] =
∑

S Ĥ(S) E
z∼Z

[χS(z)]. This implies that

∆ =

∣∣∣∣∣∣
∑

S⊆[2N ]

Ĥ(S)

(
E

z∼P ·G
[χS(z)]− E

z∼U2N

[χS(z)]

)∣∣∣∣∣∣
For any probability distribution, the moment corresponding to the empty set is 1 by defi-
nition. For all non empty sets S, we have E

z∼U2N

[χS(z)] = 0. Using this fact in the above

equality, along with the triangle inequality, we have

∆ =

∣∣∣∣∣∣
∑

∅6=S⊆[2N ]

Ĥ(S) E
z∼P ·G

[χS(z)]

∣∣∣∣∣∣ ≤
∑

∅6=S⊆[2N ]

∣∣∣Ĥ(S)
∣∣∣ ∣∣∣∣ E
z∼P ·G

[χS(z)]

∣∣∣∣
We use the bounds from (2) and (3) on the moments of P · G to derive the following.

∆ ≤
∑
|S|=2k
k≥1

∣∣∣Ĥ(S)
∣∣∣ p2kεkk!N−k/2

=
∑
k≥1

L2k(H)p2kεkk!N−k/2

We upper bound L2k(H) by
(
2N
2k

)
when k ≥ 2. This implies that

∆ ≤ L2(H)
εp2√
N

+
∑
k≥2

(
2N

2k

)
p2kεkk!N−k/2

≤ L2(H)
εp2√
N

+
∑
k≥2

22kN2k

(2k)!
p2kεkk!N−k/2

≤ L2(H)
εp2√
N

+
∑
k≥2

N3k/2p2k4kεk

In the summation
∑

k≥2N
3k/2p2k4kεk, we see that every successive term is smaller than the

previous by a factor of at least 1/4. This is because the assumption p ≤ 1
2N

implies that
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p2N3/2 ≤ p2N2 ≤ 1
4

and because 4ε ≤ 1. Thus, we can bound this summation by twice the
first term, which is 16p4N3ε2. This implies that

∆ ≤ L2(H)
εp2√
N

+ 32p4N3ε2

Since ε = 1
50 lnN

≤ 1
32

, we may bound 32p4N3ε2 by p4N3. This implies that

∆ ≤ L2(H)
εp2√
N

+ p4N3

The following claim provides a bound on L2(H).

Claim 5.3. Let C(x, y) : {−1, 1}2N × {−1, 1}2N → {−1, 1} be any deterministic protocol
of cost c ≥ 1, let D(x, z) : R2N × R2N → R refer to the unique multilinear extension of
C(x, x · z) and H : R2N → R be defined by H(z) = Ex∼U2N

D(x, z). Then,

L2(H) ≤ 120c2

This claim along with the preceding inequality implies that

∆ ≤ 120c2
εp2√
N

+ p4N3

This completes the proof of Lemma 5.1.

Proof of Claim 5.3. In order to bound the level-2 Fourier mass of H, we will use the following
lemma. Its statement and proof appear as ‘Level-k Inequalities’ on Page 259 of ‘Analysis of
Boolean Functions’ [O’D14].

Lemma 5.4 (Level-k Inequalities). Let F : {−1, 1}n → {0, 1} have mean E[F ] = α and let
k ∈ N be at most 2 ln(1/α). Then,

∑
|S|=k

(
F̂ (S)

)2
≤ α2

(
2e

k
ln(1/α)

)k

We now show the desired bound on L2(H). Since C is a deterministic protocol of cost
at most c, it induces a partition of the input space {−1, 1}2N × {−1, 1}2N into at most 2c

rectangles. Let P be this partition and let A×B index rectangles in P , where A (respectively
B) is the set of Alice’s (respectively Bob’s) inputs compatible with the rectangle. Let C(A×
B) ∈ {−1, 1} be the output of the protocol on inputs from a rectangle A × B ∈ P . For all
x, y ∈ {−1, 1}2N , we have

C(x, y) =
∑

A×B∈P

C(A×B)1A(x)1B(y)
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By definition, D(x, z) = C(x, x · z). This implies that

D(x, z) =
∑

A×B∈P

C(A×B)1A(x)1B(x · z)

Taking an expectation over x ∼ U2N of the above identity implies that

H(z) , E
x∼U2N

[D(x, z)] =
∑

A×B∈P

C(A×B)
(
1A ∗ 1B

)
(z)

This implies that for any S ⊆ [n], we have

Ĥ(S) =
∑

A×B∈P

C(A×B)1̂A ∗ 1B(S) =
∑

A×B∈P

C(A×B)1̂A(S)1̂B(S)

We thus obtain

L2(H) =
∑
|S|=2

∣∣∣Ĥ(S)
∣∣∣

=
∑
|S|=2

∣∣∣∣∣ ∑
A×B∈P

C(A×B)1̂A(S)1̂B(S)

∣∣∣∣∣
≤

∑
A×B∈P

∑
|S|=2

|1̂A(S)||1̂B(S)|

We apply Cauchy Schwarz to the term
∑
|S|=2 |1̂A(S)||1̂B(S)| to obtain

L2(H) ≤
∑

A×B∈P

( ∑
|S|=2

1̂A(S)2
)1/2( ∑

|S|=2

1̂B(S)2
)1/2

For ease of notation, let µ(A) = |A|
22N

denote the measure of a set A ⊆ {−1, 1}2N under U2N .
We first ensure that for each rectangle A × B ∈ P , we have µ(A) ≤ 1

e
and µ(B) ≤ 1

e
. We

may do this by adding 2 extra bits of communication for each player. For k = 2, we have
k = 2 ln(e) ≤ 2 ln 1

µ(A)
and k ≤ 2 ln 1

µ(B)
. We apply Lemma 5.4 on the indicator functions 1A

and 1B for k = 2 to obtain∑
|S|=2

(
1̂A(S)

)2
≤ µ(A)2

(
e ln(1/µ(A))

)2
and

∑
|S|=2

(
1̂B(S)

)2
≤ µ(B)2

(
e ln(1/µ(B))

)2
Substituting this in the bound for L2(H), we have

L2(H) ≤ e2
∑

A×B∈P

µ(A)µ(B) ln
1

µ(A)
ln

1

µ(B)

Let ∆ := e2
∑

A×B∈P
µ(A)µ(B) ln 1

µ(A)
ln 1

µ(B)
be the expression in the R.H.S. of the above.

Note that it suffices to upper bound ∆. Consider the case when P consists of 2c rect-
angles A × B, each of which satisfies µ(A) = µ(B) = 1

2c/2
. In this case, ∆ evaluates to
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Figure 7: Plot of the function y = x
(
ln 1

x

)2
e2
∑

A×B∈P
1
2c

( c ln 2
2

)2 = O(c2). This proves the lemma in this special case. A similar bound
holds for the general case and the proof follows from a concavity argument that we describe
now.

Since µ(A), µ(B) ≤ 1, we have the following inequality.

∆ , e2
∑

A×B∈P

µ(A)µ(B) ln
1

µ(A)
ln

1

µ(B)

≤ e2
∑

A×B∈P

µ(A)µ(B) ln
1

µ(A)µ(B)
ln

1

µ(A)µ(B)

= e2
∑

A×B∈P

µ(A×B)

(
ln

1

µ(A×B)

)2

Let f : [0,∞) → R be defined by f(p) := p ln(1/p)2. A small calculation shows that
f is a concave function in the interval [0, 0.3] (see Figure 7). Let αi ∈ [0, 0.3] for i ∈ [k].
Jensen’s inequality applied to f states that for i ∼ [k] drawn uniformly at random, we have
Ei[f(αi)] ≤ f(Ei[αi]). This implies that

k∑
i=1

αi ln(1/αi)
2 ≤

(
k∑
i=1

αi

)
ln

(
k∑k
i=1 αi

)2

We apply this inequality to the terms in ∆ by substituting αi with µ(A × B). We may do
this since the assumption that µ(A), µ(B) ≤ 1

e
implies that µ(A × B) ≤ 1

e2
≤ 0.3. This

implies that

∆ ≤ e2

( ∑
A×B∈P

µ(A×B)

)
ln

(
2c+4∑

A×B∈P µ(A×B)

)2

Since
∑

A×B∈P µ(A×B) = 1, we have

∆ ≤ e2(c+ 4)2(ln 2)2 ≤ 120c2

This completes the proof of Claim 5.3.
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We now show that an analogue of Lemma 5.1 holds for restricted protocols, similarly to
Claim 7.3 in [RT19].

Lemma 5.5. Let p ≤ 1
4N

and C(x, y) be any deterministic protocol of cost c ≥ 1 for the
forrelation problem. As before, let D(x, z) : R2N×R2N → R refer to the multilinear extension
of C(x, x · z). Let z0 ∈ [−1/2, 1/2]2N . Then,∣∣∣∣∣∣ E

z∼pG
x∼U2N

[D(x, z0 + z)]− E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣ ≤ 120εc2(2p)2√
N

+ (2p)4N3

Corollary 5.6. Under the same hypothesis as in Lemma 5.5,∣∣∣Ez∼pG[D(0, z0 + z)]−D(0, z0)
∣∣∣ ≤ 120εc2(2p)2√

N
+ (2p)4N3

Proof of Corollary 5.6 from Lemma 5.5. Since D(x, z) is a multilinear polynomial, for all
z ∈ R2N , we have Ex∼U2N

[D(x, z)] = D(0, z). This implies that for all z0 ∈ R2N ,

E
z∼pG
x∼U2N

[D(x, z0 + z)] = Ez∼pG[D(0, z0 + z)]

For all z0 ∈ R2N , since Ez∼U2N
[D(0, z0 + z)] = D(0, z0), we have

E
z,x∼U2N

[D(x, z0 + z)] = D(0, z0)

The proof of Corollary 5.6 follows from the above two equalities and Lemma 5.5.

Proof of Lemma 5.5. Similarly to the approach of [CHHL18, RT19], we will express D(x, z0+
z) as the average output of restricted protocols (C ◦ ρ)(x, x · z), on which we can use Lemma
5.1 to derive the result. These restricted protocols roughly correspond to Alice and Bob
fixing a common subset I ⊆ [2N ] of their inputs in a predetermined way and then running
the original protocol. We formalize this now.

A restriction ρ of R2N is an element of {−1, 1, ∗}2N . It defines an action ρ : R2N → R2N

in the following natural way. For any z ∈ R2N and i ∈ [2N ],

(ρ(z))(i) :=

{
ρ(i) if ρ(i) ∈ {−1, 1}
z(i) otherwise

Let sign : (R\0)→ {−1, 1} be the function which maps real numbers to their sign. Given
z0 ∈ [−1/2, 1/2]2N , let Rz0 be a distribution over restrictions of R2N defined as follows. For
each i ∈ [2N ], independently, set1:

ρ(i) :=

{
sign(z0(i)) with probability |z0(i)|
∗ with probability 1− |z0(i)|

1If z0(i) is zero, then ρ(i) = ∗ with probability 1.
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Let P ∈ R2N be such that Pi := 1
1−|z0(i)| for every i ∈ [2N ]. Note that the assumption of

z0 ∈ [−1/2, 1/2]2N ensures that P is a well defined element of [1, 2]2N . For any z ∈ R2N and
i ∈ [2N ], the expected value of the ith coordinate of ρ(z) when ρ ∼ Rz0 can be computed as
follows.

E
ρ∼Rz0

[(ρ(z))(i)] = |z0(i)|sign(z0(i)) + (1− |z0(i)|)z(i) = z0(i) +
1

Pi
z(i)

This implies that for any fixed x, z ∈ R2N and z0 ∈ [−1/2, 1/2]2N , since D is a multilinear
function, we have

E
ρ∼Rz0

[D(x, ρ(z))] = D(x, E
ρ∼Rz0

[ρ(z)]) = D(x, z0 + P−1 · z)

Replacing z with P · z in the above equality implies that

E
ρ∼Rz0

[D(x, ρ(P · z))] = D(x, z0 + z)

This equality allows us to rewrite the L.H.S. of Lemma 5.5 as follows.

∆ :=

∣∣∣∣∣∣ E
z∼pG,
x∼U2N

[D(x, z0 + z)]− E
z,x∼U2N

[D(x, z0 + z)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
z∼pP ·G,
x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))]− E
z∼P ·U2N ,
x∼U2N

E
ρ∼Rz0

[D(x, ρ(z))]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
ρ∼Rz0

 E
z∼pP ·G,
x∼U2N

[D(x, ρ(z))]− E
z∼P ·U2N ,
x∼U2N

[D(x, ρ(z))]

∣∣∣∣∣∣
For a multilinear polynomial, its expectation over a product distribution depends only on
the mean of that distribution. This allows us to replace the expectation of D(x, ρ(z)) over
z ∼ P · U2N by an expectation over z ∼ U2N . We thus obtain

∆ =

∣∣∣∣∣∣ E
ρ∼Rz0

 E
z∼pP ·G,
x∼U2N

[D(x, ρ(z))]− E
z∼U2N ,
x∼U2N

[D(x, ρ(z))]

∣∣∣∣∣∣ (4)

For any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N , we define a substitution ρu : R2N → R2N

obtained from ρ and u as follows. For any x ∈ R2N and i ∈ [2N ],

(ρu(x))(i) :=

{
u(i) if ρ(i) ∈ {−1, 1}
x(i) otherwise

This is an action on R2N which replaces the values of coordinates specified by ρ, with values
from u. For every fixed ρ, as we vary over x, u ∼ U2N the distribution of ρu(x) is exactly
U2N . This implies that for all z ∈ R2N , ρ ∈ {−1, 1, ∗}2N ,

E
x∼U2N

[D(x, ρ(z))] = E
x,u∼U2N

[D(ρu(x), ρ(z))]
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Substituting this in equation (4), we have

∆ =

∣∣∣∣∣∣ E
ρ∼Rz0

E
u∼U2N

 E
z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z,x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣
Applying Triangle Inequality on the above, we have

∆ ≤ E
ρ∼Rz0

E
u∼U2N

∣∣∣∣∣∣ E
z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z,x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣ (5)

Fix any ρ ∈ {−1, 1, ∗}2N and u ∈ {−1, 1}2N . For every x, z ∈ {−1, 1}2N , we have
D(x, z) = C(x, x · z), furthermore, ρu(x), ρ(z) ∈ {−1, 1}2N . This implies that for every
x, z ∈ {−1, 1}2N ,

D(ρu(x), ρ(z)) = C(ρu(x), ρu(x) · ρ(z)) (6)

This prompts us to define a communication protocol C ◦ ρu where Alice and Bob first
restrict their inputs and then run the original protocol C. The restriction is that for each
coordinate i ∈ [2N ] with ρi ∈ {−1, 1}, Alice overwrites her input xi with ui while Bob
overwrites his input yi with ρiui. The main property of this restricted protocol is that for
all x, z ∈ {−1, 1}2N ,

(C ◦ ρu)(x, x · z) = C(ρu(x), ρu(x) · ρ(z))

This, along with equation (6) implies that D(ρu(x), ρ(z)) is the unique multilinear extension
of (C ◦ ρu)(x, x · z). The cost of C ◦ ρu is at most that of C since Alice and Bob don’t
need to communicate to restrict their inputs. We now use Lemma 5.1 on C ◦ ρu to argue
that pP · G fools E

x∼U2N

[D(ρu(x), ρ(z))]. The conditions of the lemma are satisfied since

pP ∈ [−2p, 2p]2N , p ≤ 1
4N

, and C ◦ ρu is a protocol of cost at most c and whose multilinear
extension is D(ρu(x), ρ(z)). The lemma implies that∣∣∣∣∣∣ E

z∼pP ·G,
x∼U2N

[D(ρu(x), ρ(z))]− E
z∼U2N ,
x∼U2N

[D(ρu(x), ρ(z))]

∣∣∣∣∣∣ ≤ 120εc2(2p)2√
N

+ (2p)4N3

Substituting this in inequality (5) completes the proof of Lemma 5.5.

Proof of Theorem 3.1. Since D(x, z) is the multilinear extension of C(x, x · z) and since D
and U2N are distributions over {−1, 1}2N , we have

Ex∼U2N ,z∼D[C(x, x · z)] = Ex∼U2N ,z∼D[D(x, z)] = Ez∼D[D(0, z)]

When x ∼ U2N and y ∼ U2N are independently sampled, the distribution of (x, x · y) is U4N .
This implies that

Ex,y∼U2N
[C(x, y)] = Ex,y∼U2N

[D(x, x · y)] = D(0, 0)
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The above two equations allow us to rewrite the quantity in the L.H.S. of Theorem 3.1 as
follows.

∆ :=

∣∣∣∣∣ E
x∼U2N
z∼D

[C(x, x · z)]− E
x,y∼U2N

[C(x, y)]

∣∣∣∣∣ =
∣∣∣Ez∼D[D(0, z)]−D(0, 0)

∣∣∣
Claim 2.2 applied on the multilinear polynomial D implies that Ez∼D[D(0, z)] =

Ez∼G[D(0, trnc(z))]. Substituting this in the above equality implies that

∆ =
∣∣∣Ez∼G[D(0, trnc(z))]−D(0, 0)

∣∣∣
Let t = 16N4, p = 1√

t
= 1

4N2 . Let z(1), . . . , z(t) ∼ G be independent samples and let Z refer

to this collection of random variables. For i ∈ [t], define z≤(i) := p(z(1) + . . . + z(i)). By
convention, z≤(0) := 0. Note that for i ∈ [t], z≤(i) has a Gaussian distribution with mean
0 and covariance matrix as p2i times that of G. Thus, z≤(t) is sampled according to G.
Substituting this in the previous equality implies that

∆ =
∣∣EZ [D(0, trnc(z≤t))]−D(0, 0)

∣∣
To bound the above quantity, for each 0 ≤ i ≤ t− 1, we show a bound on

∆i :=
∣∣∣EZ [D(0, trnc(z≤(i+1)))]− EZ [D(0, trnc(z≤(i)))]

∣∣∣
Since z≤(0) = 0, the triangle inequality implies that ∆ ≤

∑t−1
i=0 ∆i.

Fix any i ∈ {0, . . . , t − 1}. We now bound ∆i. Let Ei be the event that z≤(i) /∈
[−1/2, 1/2]2N . We first observe that Ei is a low probability event. Since each z≤(i)(j) is
distributed as N (0, p2iε), where p2i ≤ 1 and ε = 1/(50 lnN), we have

P[z≤(i)(j) /∈ [−1/2, 1/2]] ≤ P[|N (0, ε)| ≥ 1/2] ≤ exp(−1/8ε) ≤ exp(−6 lnN) =
1

N6

Applying a Union bound over coordinates j ∈ [2N ], we have for each 0 ≤ i ≤ t,

P[Ei] = P[z≤(i) /∈ [−1/2, 1/2]2N ] ≤ 2N
1

N6
≤ 2

N5
(7)

When Ei does not occur, we have trnc(z≤(i)) = z≤(i) ∈ [−1/2, 1/2]2N . For every fixed
value of z≤(i) in this range, we apply Corollary 5.6 with parameters p = 1

4N2 , z0 = z≤(i) and
z = z≤(i+1) − z≤(i) = pz(i+1). Note that the conditions in the hypothesis are satisfied since
z0 ∈ [−1/2, 1/2]2N , p ≤ 1/(4N) and the random variable pz(i+1) is distributed as pG. The
corollary implies that for every z≤(i) ∈ [−1/2, 1/2]2N ,∣∣∣EZ [D(0, z≤(i+1)) | z≤(i)

]
− EZ

[
D(0, z≤(i)) | z≤(i)

] ∣∣∣ ≤ 120εc2(2p)2

N1/2
+ (2p)4N3
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Since ¬Ei implies that z≤(i) ∈ [−1/2, 1/2]2N , we have∣∣∣EZ [D(0, z≤(i+1)) | ¬Ei
]
− EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120εc2(2p)2

N1/2
+ (2p)4N3

We apply Claim 2.3 on the multilinear polynomial D(0, z) : [−1, 1]2N → [−1, 1] with the
parameters p = 1

4N2 , z0 = z≤(i) and z = z(i+1). Note that the conditions are satisfied since
z0 ∈ [1/2, 1/2]2N and p ≤ 1

2
. The claim implies that∣∣∣EZ [D(0, z≤(i+1)) | ¬Ei

]
− EZ

[
D(0, trnc(z≤(i+1))) | ¬Ei

] ∣∣∣ ≤ 8

N5

The previous two inequalities, along with the triangle inequality, imply that∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei
]
−EZ

[
D(0, z≤(i)) | ¬Ei

] ∣∣∣ ≤ 120εc2(2p)2

N1/2
+(2p)4N3 +

8

N5
(8)

Note that for every possible values of z≤(i+1) and z≤(i), the difference D(0, trnc(z≤(i+1)))−
D(0, trnc(z≤(i))) is bounded in magnitude by 2, since D(0, trnc(z)) maps R2N to [−1, 1]. This
implies that ∣∣∣EZ [D(0, trnc(z≤(i+1))) | Ei

]
− EZ

[
D(0, trnc(z≤(i))) | Ei

] ∣∣∣ ≤ 2

Thus, we have

∆i ≤ P[¬Ei] ·
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣
+ P[Ei] ·

∣∣∣EZ [D(0, trnc(z≤(i+1))) | Ei]− EZ [D(0, trnc(z≤(i))) | Ei]
∣∣∣

≤
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, trnc(z≤(i))) | ¬Ei]

∣∣∣+ 2P[Ei]

=
∣∣∣EZ [D(0, trnc(z≤(i+1))) | ¬Ei]− EZ [D(0, z≤(i)) | ¬Ei]

∣∣∣+ 2P[Ei]

≤ 120εc2(2p)2

N1/2
+ (2p)4N3 +

8

N5
+

4

N5

The equality in the fourth line follows from the fact that whenever Ei does not occur,
trnc(z≤(i)) = z≤(i) by definition. The last inequality follows from inequalities (7) and (8).
Along with the fact that t = 1

p2
= 16N4, and ε ≤ 1, this implies that

∆ ≤
t−1∑
i=0

∆i

≤ t
(120εc2(2p)2

N1/2
+ (2p)4N3 +

12

N5

)
≤ 480εc2

N1/2
+ 16p2N3 +

192

N

= O

(
c2

N1/2
+

1

N

)
= O

(
c2

N1/2

)
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The last line follows from the assumption that c ≥ 1. This completes the proof of Theorem
3.1.

6 Proof of Theorem 3.4: Randomized Lower Bound

Let C : {−1, 1}2N × {−1, 1}2N → {−1, 1} be a randomized protocol for the forrelation
problem with cost at most c and with error at most 1/3. Consider a randomized protocol
R : {−1, 1}2N × {−1, 1}2N → {−1, 1} defined by repeating C independently O(ln lnN)
times and taking the majority of the outputs. A simple application of Chernoff’s bound
implies that for yes instances, the majority of outputs of O(ln lnN) independent copies of
C, is 1 with probability at most ε

32
= O

(
1

lnN

)
. Similarly, for no instances, the majority of

outputs of O(ln lnN) independent copies of C, is −1 with probability at most ε
32

. Thus, R
solves the forrelation problem with error at most ε/32 and is of cost O(c ln lnN). Let DR

be the distribution over deterministic protocols defined by R. For any x, y ∈ {−1, 1}2N , let
R(x, y) = ED∼DR [D(x, y)] denote the average output of the protocol R on input (x, y). Note
that if (x, y) is a yes instance, we have R(x, y) ≤ −1 + ε/16, and if (x, y) is a no instance,
we have R(x, y) ≥ 1− ε/16.

Let x = (x1, x2) and y = (y1, y2) be Alice’s and Bob’s inputs to the forrelation prob-
lem respectively, where x1, x2, y1, y2 ∈ {−1, 1}N . For i, j ∈ {0, 1}logN , let 〈i | j〉F2 :=∑logN

k=1 i(k)j(k) mod 2. This denotes the inner product between i and j over F2. Recall the
definition of forr(x · y) for x, y ∈ R2N .

forr(x · y) ,

〈
1√
N
HN(x1 · y1)

∣∣∣∣∣ 1√
N
x2 · y2

〉
=

1

N
√
N

∑
i,j∈[N ]

(−1)〈i|j〉F2x1(i)y1(i)x2(j)y2(j)

We make the following series of observations.

(1.) When x and y are drawn independently from U2N , the random variable forr(x · y) has
mean zero. Furthermore, it is highly concentrated around its mean. This can be seen
as follows. The set {x1(i), x2(i), y1(i), y2(i)}i∈[N ] is a set of independent {−1, 1}-random
variables with mean 0. This implies that the set of products {x1(i)y1(i)x2(j)y2(j)}i,j∈[N ]

is a set of pairwise independent {−1, 1}-random variables with mean 0. Since forr(x ·y)
is a weighted sum of N2 variables from this set, its variance can be computed to be
at most N2

(N
√
N)2

= 1
N

. Let A denote the event that forr(x · y) ≤ ε/8. Chebyshev’s

inequality implies that

P
(x,y)∼U4N

[¬A] ≤ 64

Nε2

For N greater than a sufficiently large constant, we have 64
Nε2
≤ ε

16
. Thus,

P
(x,y)∼U4N

[A] ≥ 1− ε

16
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(2.) For every x, y ∈ {−1, 1}2N and deterministic protocol D ∼ DR, since D(x, y) ∈ {−1, 1},
we have

E
(x,y)∼U4N |¬A

[R(x, y)] ≥ −1

(3.) Whenever the event A occurs, we have forr(x · y) ≤ ε/8, by definition of A. Hence, the
distribution U4N |A is a distribution over no instances of the forrelation problem. This
implies that

E
(x,y)∼U4N |A

[R(x, y)] ≥ 1− ε

16

These observations allow us to conclude the following.

E
(x,y)∼U4N

[R(x, y)] = P[A] · E
(x,y)∼U4N |A

[R(x, y)] + P[¬A] · E
(x,y)∼U4N |¬A

[R(x, y)]

≥
(

1− ε

16

)(
1− ε

16

)
+
( ε

16

)
× (−1)

≥ 1− 3ε

16

For simplicity of notation, let V be the distribution on {−1, 1}2N × {−1, 1}2N defined
in Theorem 3.1. This distribution is obtained by sampling z ∼ D, x ∼ U2N and outputting
(x, x · z). We make a series of observations analogous to the previous case.

(1.) For (x, y) ∼ V , the distribution of x · y is D. Lemma 2.1 applied to x · y implies that

E
(x,y)∼V

[forr(x · y)] ≥ ε

2

Let B denote the event that forr(x · y) ≥ ε
4
. Markov’s inequality applied on the

[−1, 1]-random variable forr(x · y) implies that

P
(x,y)∼V

[B] ≥ ε

4

(2.) For every x, y ∈ {−1, 1}2N and deterministic protocol D ∼ DR, since D(x, y) ∈ {−1, 1},
we have

E
(x,y)∼V |¬B

[R(x, y)] ≤ 1

(3.) Whenever the event B occurs, we have forr(x · y) ≥ ε/4 by definition. Hence, the
distribution V |B is a distribution over yes instances of the forrelation problem. This
implies that

E
(x,y)∼V |B

[R(x, y)] ≤ −1 +
ε

16
≤ 0
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These observations allow us to conclude the following.

E
(x,y)∼V

[R(x, y)] = P[B] · E
(x,y)∼V |B

[R(x, y)] + P[¬B] · E
(x,y)∼V |¬B

R(x, y)

≤ 0 +
(

1− ε

4

)
× (+1)

≤ 1− ε

4

These two conclusions imply that the protocol R distinguishes V and U4N with consid-
erable advantage, that is,

E(x,y)∼V [R(x, y)]− E(x,y)∼U4N
[R(x, y)]

≥ 1− 3ε

16
−
(

1− ε

4

)
≥ ε

16

Since R(x, y) = ED∼DR [D(x, y)], this implies that

E(x,y)∼VED∼DR [D(x, y)]− E(x,y)∼U4N
ED∼DR [D(x, y)] ≥ ε

16

Fix D ∼ DR such that E(x,y)∼V [D(x, y)] − E(x,y)∼U4N
[D(x, y)] is at least the R.H.S. of the

above. For this deterministic protocol D of cost at most O(c ln lnN), we have

E(x,y)∼V [D(x, y)]− E(x,y)∼U4N
[D(x, y)] ≥ ε

16

Theorem 3.1 applied to D implies that (c ln lnN)2

N1/2 ≥ Ω(ε). Since ε = 1
50 lnN

, this implies that

c = Ω̃(N1/4). This completes the proof of Theorem 3.4.
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