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Abstract

We give a complete answer to the following basic question: “What is the maximal fraction
of deletions or insertions tolerable by q-ary list-decodable codes with non-vanishing information
rate?”

This question has been open even for binary codes, including the restriction to the binary
insertion-only setting, where the best known results was that a γ ≤ 0.707 fraction of insertions
is tolerable by some binary code family.

For any desired ε > 0, we construct a family of binary codes of positive rate which can be
efficiently list-decoded from any combination of γ fraction of insertions and δ fraction of deletions
as long as γ + 2δ ≤ 1 − ε. On the other hand, for any γ, δ with γ + 2δ = 1 list-decoding is
impossible. Our result thus precisely characterizes the feasibility region of binary list-decodable
codes for insertions and deletions.

We further generalize our result to codes over any finite alphabet of size q. Surprisingly, our
work reveals that the feasibility region for q > 2 is not the natural generalization of the binary
bound above. We provide tight upper and lower bounds that precisely pin down the feasibility
region, which turns out to have a (q − 1)-piece-wise linear boundary whose q corner-points lie
on a quadratic curve.

The main technical work in our results is proving the existence of code families of sufficiently
large size with good list-decoding properties for any combination of δ, γ within the claimed
feasibility region. We achieve this via an intricate analysis of codes introduced by [Bukh, Ma;
SIAM J. Discrete Math; 2014]. Finally we give a simple yet powerful concatenation scheme
for list-decodable insertion-deletion codes which transforms any such (non-efficient) code family
(with vanishing information rate) into an efficiently decodable code family with constant rate.
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1 Introduction

Error correcting codes have the ability to efficiently correct large fractions of errors while maintain-
ing a large communication rate. The fundamental trade-offs between these two conflicting desider-
ata have been intensely studied in information and coding theory. Algorithmic coding theory has
further studied what trade-offs can be achieved efficiently, i.e., with polynomial time encoding and
decoding procedures.

This paper studies insdel codes, i.e., error correcting codes with a large minimum edit distance,
which can correct synchronization errors such as insertions and deletions. While codes for Hamming
errors and the Hamming metric are quite well understood, insdel codes have largely resisted such
progress but have attracted a lot of attention recently [3, 5, 7–9,12,14, 16–19,21,25, 26]. A striking
example of a basic question that is open in the context of synchronization errors is the determination
of the maximal fraction of deletions or insertions a unique- or list-decodable binary code with non-
vanishing rate can tolerate. That is, we do not even know at what fraction of errors the rate/distance
tradeoff for insdel codes hits zero rate. These basic and intriguing questions are open even if one
just asks about the existence of codes, irrespective of computational considerations, and even when
restricted to the insertion-only setting.

In this paper we fully answer these questions for list-decodable binary codes and more generally
for codes over any alphabet of a fixed size q. Our results are efficient and work for any combination
of insertions and deletions from which list decoding is information-theoretically feasible at all.

1.1 Prior Results and Related Works

The study of codes for insertions and deletions has a long history and goes back to studies of
Levenshtein [24] in the 60s. We refer to the surveys by Sloan [31], Mercier et al. [28] and Mitzen-
macher [29] for a more extensive background, and focus here on works related to the main thrust of
this paper, namely the maximal tolerable fraction of worst-cast deletions or insertions for unique-
and list-decodable code families with non-vanishing rate. We stress that our focus is on worst-case
patterns of insdel errors subject to bounds on the fraction of insertions and the fraction of deletions
allowed. There is also a rich body of work on tackling random insdel errors, which is not the focus
of this work.

Unique Decoding. Let us first review the situation for unique decoding, where the decoder must
determine the original transmitted codeword. For unique decoding of binary codes, the maaximal
tolerable fraction of deletions is easily seen to be at most 1

2 because otherwise either all zeros or all
ones in a transmitted codeword can be deleted. (For q-ary codes, this fraction becomes 1 − 1/q.)
On the other hand, for a long time the best (existential) possibility results for unique-decodable
binary codes stemmed from analyzing random binary codes.

In the Hamming setting, random codes often achieve the best known parameters and trade-
offs, and a lot of effort then goes into finding efficient constructions and decoding algorithms for
codes that attempt to come close to the random constructions. However, the edit distance is
combinatorially intricate and even analyzing the expected edit distance of two random strings,
which is the first step in analyzing random codes, is highly non-trivial.

Lueker [27], improving upon earlier results by Danč́ık and Paterson [10, 11], proved that the
expected fractional length of the longest common subsequence between two random strings lies
between 0.788071 and 0.826280 (the exact value is still unknown). Using this one can show that
a random binary code of positive rate can tolerate between 0.23 and 0.18 fraction of deletions or
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insertions. Random codes over larger q-ary alphabets were studied by Kiwi, Loebl, and Matous̃ek
[23] leading to a 1 − Θ( 1√

q ) bound for asymptotically large q. Because random codes do not have

efficient decoding and encoding procedures these results were purely existential. Computationally
efficient binary codes of non-vanishing rate tolerating some small unspecified constant fraction of
insertions and deletions were given by Schulman and Zuckerman [30]. Guruswami and Wang [14]
gave binary codes that could correct a small constant fraction of deletions with rate approaching
1, and this was later extended to handle insertions as well [12].

In the regime of low-rate and large fraction of deletions, Bukh and Guruswami [4] gave a code
construction of q-ary that could tolerate up to a q−1

q+1 fraction of deletions, which is 1
3 for binary

codes. Note that this beats the performance of random codes. Together with H̊astad [5] they later
improved the deletion fraction to 1 − 2

q+
√
q or

√
2 − 1 ≈ 0.414 for binary codes. This remains the

best known result for unique-decodable codes and determining whether there exist binary codes
capable of correcting a fraction of deletions approaching 1

2 remains a fascinating open question.

List decoding. The situation for list-decodable codes over small alphabets is equally intriguing.
In list-decoding, one relaxes the decoding requirement from having to output the codeword that
was sent to having to produce a (polynomially) small list of codewords which includes the correct
one. The trivial limit of 1/2 fraction deletions for unique-decoding binary codes applies equally
well for list-decoding. In their paper, Guruswami and Wang [14] showed that this limit can be
approached by efficiently list-decodable binary codes. Similarly, q-ary codes list-decodable from a
deletion fraction approaching the optimal 1− 1/q bound can be constructed.

However, the situation was not well understood when insertions are also allowed. It had already
been observed by Levenshtein [24] that (at least existentially) insertions and deletions are equally
hard to correct for unique-decoding, in that if a code can correct t deletions then it can also correct
any combination of t insertions and deletions. This turns out to be not true for list-decoding.
This was demonstrated pointedly in [20], where it is shown that arbitrary large O(1) fractions
of insertions can be tolerated by list-decodable codes over sufficiently large constant alphabets,
whereas the fraction of deletions δ is clearly bounded by 1. Indeed, the fraction of insertions γ does
not even factor into the rate of these list-decodable insertion-deletion codes—this rate can approach
the optimal bound of 1−δ where δ is the deletion fraction. The result in [20], however, applies only
to sufficiently large constant alphabet sizes, and it does not shed any light on the list-decodability
of binary (or any fixed alphabet) insdel codes.

Considering a combination of insertions and deletions, the following bound is not hard to es-
tablish.

Proposition 1.1. For any integer q and any δ, γ ≥ 0 with δ
1− 1

q

+ γ
q−1 ≥ 1 there is no family of

constant rate codes of length n which are list-decodable from δn deletions and γn insertions.

For the insertion-only case, the above limits the maximum fraction of insertions to 100%, which
is twice as large as the best possible deletion fraction of 1/2.

Turning to existence/constructions of list-decodable codes for insertions, recall that the codes
of Bukh, Guruswami, H̊astad (BGH) could unique-decode (and thus also list-decode) a fraction
of 0.414 insertions (indeed any combination of insertions and deletions totaling 0.414 fraction).
Wachter-Zeh [32] recently put forward a Johnson-type bound for insdel codes. The classical Johnson
bound works in the Hamming metric, and connects unique-decoding to list-decoding (for Hamming
errors) by showing that any unique-decodable code must also be list-decodable from an even larger
fraction of corruptions. One intriguing implication of Wachter-Zeh’s Johnson bound for insdel codes
is that any unique-decodable insdel code which tolerates a 1

2 fraction of deletions (or insertions)
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would automatically also have to be (existentially) list-decodable from a 100% fraction of inser-
tions. Therefore, even if one is interested in unique-decoding, e.g., closing the above-mentioned gap
between

√
2− 1 and 1

2 , this establishes the search for maximally list-decodable binary codes from
insertions as a good and indeed necessary step towards this goal. On the other hand, proving any
non-trivial impossibility result bounding the maximal fraction of insertions of list-decodable binary
codes away from 100% would directly imply an impossibility result for unique-decoding binary
codes from a deletion fraction approaching 1

2 .

Follow-up work by Hayashi and Yasunaga [22] corrected some subtle but crucial bugs in [32]
and reproved a corrected Johnson Bound for insdel codes. They furthermore showed that the BGH
codes [5] could be list-decoded from a fraction ≈ 0.707 of insertions. Lastly, via a concatenation
scheme used in [12, 14] they furthermore made these codes efficient. A recent work of Liu, Tjuaw-
inata, and Xing [26] also provides efficiently list-decodable insertion-deletion codes and derives a
Zyablov-type bound. In summary, for the binary insertion-only setting, the largest fraction of
insertions that we knew to be list-decodable (even non-constructively) was ≈ 0.707.

1.2 Our Results

We close the above gap and show binary codes which can be list-decoded from a fraction 1 − ε
fraction of insertions, for any desired constant ε > 0. In fact, we give a single family of codes
that are list-decodable from any mixed combination of γ fraction of insertions and δ fraction of
deletions, as long as 2δ + γ ≤ 1− ε.

Theorem 1.2. For any ε ∈ (0, 1) and sufficiently large n, there exists a constant rate family of effi-
cient binary codes that are L-list decodable from any δn deletions and γn insertions in poly(n) time
as long as γ+2δ ≤ 1−ε where n denotes the block length of the code, L = Oε(exp(exp(exp(log∗ n)))),
and the code achieves a rate of exp

(
− 1
ε10

log2 1
ε

)
.

Since the computationally efficient codes from Theorem 1.2 match the bounds from Proposi-
tion 1.1 for every δ, γ, this nails down the entire feasibility region for list-decodability from insertions
and deletions for the binary case. We stress that while we get constructive results, even the ex-
istence of inefficiently list-decodable codes, that too just for the insertion-only setting, was not
known prior to this work.

In the above result, the rather weird looking bound on the list-size is inherited from results on
list-decoding from a huge number insertions over larger alphabets [20], which in turn is inherited
from the list-size bounds for the list-recoverable algebraic-geometric code constructions in [15].

We use similar construction techniques to obtain codes with positive rate over any arbitrary
alphabet size q that are list-decodable from any fraction of insertions and deletions under which
list-decoding is possible. We thus precisely identify the feasibility region for any alphabet size,
together with an efficient construction. Again, recall that the existence of such codes was not
known earlier, even for the insertion-only case.

Theorem 1.3. For any positive integer q ≥ 2, define Fq as the concave polygon defined over

vertices
(
i(i−1)
q , q−iq

)
for i = 1, · · · , q and (0, 0). (An illustration for q = 5 is presented in Fig. 1).

Fq does not include the border except the two segments [(0, 0), (q − 1, 0)) and [(0, 0), (0, 1− 1/q)).
Then, for any ε > 0 and sufficiently large n, there exists a family of q-ary codes that, as long as
(γ, δ) ∈ (1− ε)Fq, are efficiently L-list decodable from any δn deletions and γn insertions where n
denotes the block length of the code, L = O(exp(exp(exp(log∗ n)))), and the code achieves a positive
rate of exp

(
− 1
ε10

log2 1
ε

)
.

3



Figure 1: Feasibility region for q = 5.

We further show in Section 5 that for any pair of positive real numbers (γ, δ) 6∈ Fq, there exists
no infinite family of q-ary codes with rate bounded away from zero that can be list decoded from
a δ-fraction of deletions plus a γ-fraction of insertions.

1.3 Our Techniques

We achieve these results using two ingredients, each interesting in its own right. The first is a simple
new concatenation scheme for list-decodable insdel codes which can be used to boost the rate of
insdel codes. The second component, which constitutes the bulk of this work, is a technically
intricate proof of the list-decoding properties of the Bukh-Ma codes [6] which have good (edit)
distance properties but a tiny sub-constant rate. We note that these codes were the inner codes in
the “clean construction” in the BGH work on codes unique-decodable from a 1/3 insdel fraction [5].
This was driven by a property of these codes called the span, which is a stronger form of edit distance
that applies at all scales. The Bukh-Ma codes were also used by Guruswami and Li [13] in their
existence proof of codes of positive rate for correcting a fraction of oblivious deletions approaching
1. In this work, the non-trivial list-decodability property of the Bukh-Ma codes drives our result.

1.3.1 Concatenating List-Decodable Insdel Codes

Our first ingredient is a simple but powerful framework for constructing list-decodable insertion-
deletion codes via code concatenation. Recall that code concatenation which composes the encoding
of an outer code Cout with an inner code Cin whose size equals the alphabet size of Cout.

In our approach, the outer code Cout is chosen to be a list-decodable insdel code Cout over an
alphabet that is some large function of 1/ε, but which has constant rate and is capable of tolerating
a huge number of insertions. The inner code Cin is chosen to be a list-decodable insdel code over
a fixed alphabet of the desired size q, which has non-trivial list decoding properties for the desired
fraction δ, γ of deletions and insertions.

We show that even if Cin has an essentially arbitrarily bad sub-constant rate and is not efficient,
the resulting q-ary insdel code does have constant rate, and can also be efficiently list decoded from
the same fraction of insertions and deletions as Cin. For the problem considered in this paper,
this framework essentially provides efficiency of codes for free. More importantly, it reduces the
problem of finding good constant-rate insdel codes over a fixed alphabet to finding a family of good
list-decodable insdel codes with an arbitrarily large number of codewords, and a list-size bounded
by some fixed function of 1/ε.
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Our decoding procedure for concatenated list-decodable insdel codes is considerably simpler
than similar schemes introduced in earlier works [5, 12, 14, 30]. Of course, the encoding is simply
given by the standard concatenation procedure. The decoding is done by (i) list-decoding shifted
intervals of the received string using the inner code Cin, (ii) creating a single string from the symbols
in these lists, and (iii) using the list-decoding algorithm of the outer code on this string (viewed as
a version of the outer codeword with some number of deletions and insertions).

The main driving force behind why this simplistic sounding approach actually works is a ju-
dicious choice of the outer code Cout. Specifically, we use the codes due to Haeupler, Shahrasbi,
and Sudan [20] which can tolerate a very large number of insertions. This means that the many
extra symbols coming from the list-decodings of the inner code Cin and the choice of overlapping
intervals does not disrupt the decoding of the outer code.

1.4 Analyzing the List-Decoding Properties of Bukh-Ma Codes

The main technical challenge that remains is to construct or prove the existence of arbitrarily large
binary codes with optimal list decoding properties for any γ, δ (and q). For this we turn to a simple
family of codes introduced by Bukh and Ma [6], which consist of strings (0r 1r)

n
r which oscillate

between 0’s and 1’s with different frequencies. (Below we will refer to r as the period, and 1/r
should be thought of as the frequency of alternation.)

A simple argument shows that the edit distance between any two such strings with sufficiently
different periods is maximal, resulting in a tolerable fraction of errors of 1

2 for unique decoding. The
Johnson bound of [22,32] implies that this code must also be list-decodable from a full fraction 100%
of insertions. Therefore, using these codes as the inner codes in the above-mentioned concatenation
scheme resolves the list-decoding question for the insertion-only setting. (The deletion-only setting
is oddly easier as just random inner codes suffice, and was already resolved in [14].) This also
raises hope that the Bukh-Ma codes might have good list-decoding properties for other γ, δ as well.
Fortunately, this turns out to be true, though establishing this involves an intricate analysis that
constitutes the bulk of the technical work in this paper.

Theorem 1.4. For any ε > 0 and sufficiently large n, let Cn,ε be the following Bukh-Ma code:

Cn,ε =

{
(0r1r)

n
2r

∣∣∣r =

(
1

ε4

)k
, k < log1/ε4 n

}
.

For any δ, γ ≥ 0 with γ + 2δ < 1 − ε it holds that Cn,ε is list decodable from any δn deletions
and γn insertions with a list size of O

(
1
ε3

)
.

In order to prove 1.4 we first introduce a new correlation measure which expresses how close
a string is to any given frequency (or Bukh-Ma codeword) if one allows for both insertions and
deletions each weighted appropriately. Using this we want to show that it is impossible to have a
single string v which is more than ε-correlated with more than Θε(1) frequencies.

Intuitively, one might expect that each correlation can be (fractionally) attributed to a (disjoint)
part of v which would result in the maximum number of ε-close frequencies to be at most 1/ε. This,
however, turned out to be false. Instead, we use a proof technique which is somewhat reminiscent
of the one used to establish the polarization of the martingale of entropies in the analysis of polar
codes [1, 2].

In more detail, we think of recursively sub-sampling smaller and smaller nested substrings of
v, and analyze the expectation and variance of the bias between the fraction of 0’s and 1’s in
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these substrings. More precisely, we order the run lengths r1, r2, . . . that are ε-correlated with v in
decreasing order and first sample a substring v1 with r1 � |v1| � r2 from v. While the expected
zero-one bias in v1 is the same as in v, we show that the variance of this bias is an increasing

function in the correlation with (0r11r1)
n

2r1 . Intuitively, v1 cannot be too uniform on an scale of
length l if it is correlated with r1.

Put differently, in expectation the sampled substring v1 will land in a part of v which is either
(slightly) correlated to one of the long stretches of zeros in v or in a part which is correlated with
a long stretch of ones in v, resulting in at least some variance in the bias of v1. Because the scales
r2, r3, . . . are so much smaller than v1, this sub-sampling of v1 furthermore preserves the correlation
with these scales intact, at least in expectation.

Next we sample a substring v2 with r2 � |v2| � r3 within v1. Again, the bias in v2 stays the
same as the one in v1 in expectation but the sub-sampling introduces even more variance given that
v1 is still non-trivially correlated with the string with period r2. The evolution of the bias of the
strings v1, v2, . . . produced by this nested sampling procedure can now be seen as a martingale with
the same expectation but an ever increasing variance. Given that the bias is bounded in magnitude
by 1, the increase in variance cannot continue indefinitely. This limits the number of frequencies a
string v can be non-trivially correlated with, which is exactly what we were after.

Our generalization to larger q-ary alphabets follows the same high level blueprint, but is tech-
nically even more delicate. Recall that in the non-binary case, there are (q − 1) different linear
trade-offs between δ, γ depending on the exact regime they lie in.

2 Preliminaries

2.1 List-Decodable Insertion-Deletion Codes

Theorem 2.1 (Theorem 1.1 from [20]). For every δ, ε ∈ (0, 1) and constant γ > 0, there exist a
family of list-decodable insdel codes that can protect against δ-fraction of deletions and γ-fraction

of insertions and achieves a rate of 1 − δ − ε or more over an alphabet of size
(
γ+1
ε2

)O( γ+1

ε3

)
=

Oγ,ε (1). These codes are list-decodable with lists of size Lε,γ(n) = exp (exp (exp (log∗ n))), and have
polynomial time encoding and decoding complexities.

2.2 Strings, Insertions and Deletions, and Distances

In this section we provide preliminary definitions on strings, edit operations, and related notions.
We start by definition of count and bias.

Definition 2.2 (Count and Bias). We define counta(w) = |{i|w[i] = a}| as the number of appear-
ances of symbol a in string w. The bias of a binary string w is the normalized difference between
the appearances of zeros and ones in w, i.e., bias(w) = count1(w)−count0(w)

|w| . With this definition,

count0(w) = 1−bias(w)
2 |w| and count1(w) = 1+bias(w)

2 |w|.

Next, we formally define a matching between two strings.

Definition 2.3 (Matching). A matching M of size k between two strings S and S′ is defined to be
two sequences of k integer positions 0 < i1 < . . . < ik ≤ |S| and 0 < i′1 < . . . < i′k ≤ |S′| for which
S[ij ] = S′[i′j ] for all j ≤ k. The subsequence induced by a matching M is simply S[i1], . . . , S[ik].
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Every common subsequence between S and S′ implicitly corresponds to a matching and we use the
two interchangeably.

We now proceed to define the important notion of advantage.

Definition 2.4 (Advantage of a Matching). Let M be a matching between two binary strings a
and b. The advantage of the matching M is defined as

advM =
3|M | − |a| − |b|

|a|
.

Definition 2.5 (Advantage). For a given pair of strings a and b, the advantage of a to b is defined
as the advantage of the matching M that corresponds to the largest common subsequence between
them, i.e., adv(a, b) = advM=LCS(a,b). It is easy to verify that the longest common subsequence M
maximizes the advantage among all matchings from a to b.

We now make the following remark that justifies the notion of advantage as defined above. Note
that any matching between two strings a and b implies a set of insertions and deletions to convert
b to a which is, to delete all unmatched symbols in b and insert all unmatched symbols in a within
the remaining symbols.

Remark 2.6. Consider strings a and b and matching M between them. Think of a as a distorted
version of b and let δM and γM represent the fraction of deletions and insertions needed to convert
b to a as suggested by M , i.e.,

δM =
Number of unmatched symbols in b

|b|
=
|b| − |M |
|b|

,

and

γM =
Number of unmatched symbols in a

|b|
=
|a| − |M |
|b|

.

The advM function tracks the value of |b|(1− 2δM − γM ) normalized by |a| rather than |b|.

advM (a, b) =
3|M | − |a| − |b|

|a|
=

3|b|(1− δM )− |b|(1− δM + γM )− |b|
|a|

=
|b|
|a|
· (1− 2δM − γM )

We will make use of this unnatural normalization later on.

We now extend the definition of advantage to the case where the second argument is an infinite
string.

Definition 2.7 (Infinite Advantage). For a finite string a and infinite string b, the advantage of
a to b is defined as the minimum advantage that a has over all substrings of b.

adv(a, b) = min
b′=b[i,j]

adv(a, b′).

We now define a family of binary strings called Alternating Strings.

Definition 2.8 (Alternating Strings). For any positive integer r, we define the infinite alternating
string of run-length r as Ar = (0r1r)∞ and denote its prefix of length l with Ar,l = Ar[1, l].

We finish the preliminaries by the following lemma stating some properties of the notions defined
through this section.
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Lemma 2.9. The following properties hold true:

• For any pair of binary strings S1, S2 where adv(S1, S2) > 0, lengths of S1 and S2 are within

a factor of two of each other, i.e, min(|S1|, |S2|) ≥ max(|S1|,|S2|)
2 .

• For any binary string S and integer r, adv(S,Ar) ≥ −1
2

Proof. For the first part, let M = LCS(S1, S2). We have that adv(S1, S2) ≥ 0⇒ 3|M | ≥ |S1|+ |S2|,
which, as |M | ≤ min(|S1|, |S2|), implies that min(|S1|, |S2|) ≥ max(|S1|,|S2|)

2 .

For the second part, let n = |S| and assume that b ∈ {0, 1} is the most frequent bit in S and
there are m occurrences of b in S. Take a substring S′ in Ar as the smallest string that starts at
the beginning of a br block and contains the same number of bs as S. The size of S′ is no more
than 2m and the longest common subsequence between S and S′ is at least m. Therefore,

adv(S,Ar) ≥ adv(S, S′) ≥ 3|M | − |S| − |S′|
|S|

≥ 3m− 2m− 2m

n
≥ −m

n
≥ −1

2
.

3 Proof of Theorem 1.4: List-Decoding for Bukh-Ma Codes

To prove this theorem, we assume for the sake of contradiction that there exists a string v and
k > 1200

ε3
members of Cn,ε like Ar1,n, Ar2,n, · · · , Ark,n, so that each Ari,n can be converted to v

with Ii insertions and Di deletions where Ii + 2Di ≤ n(1− ε). We define the indices in a way that
r1 > r2 > · · · > rk. Given the definition of Cn,ε, ri ≥ ri+1

ε4
. We first show that, for all i = 1, 2, · · · , k,

adv(v,Ari,n) ≥ ε
2 .

Lemma 3.1. For any 1 ≤ i ≤ k, adv(v,Ari,n) ≥ ε
2 .

Proof. Let Mi denotes the matching that corresponds to the set of Ii insertions and Di deletions
that convert Ari,n to v.

Ii + 2Di ≤ n(1− ε)⇒ n− Ii − 2Di ≥ nε⇒ 1− γi − 2δi ≥ ε (1)

Note that according to Remark 2.6, adv(v,Ari,n) = n
|v| ·(1−γi−2δi). Thus, adv(v,Ari,n) ≥ n

|v|ε ≥
ε
2 .

The last step follows from the first item of Lemma 2.9.

Having Lemma 3.1, we are ready to prove Theorem 1.4. We start with defining a couple of
sequences of random variables via random sampling of nested substrings of v. We split the string
v into substrings of size l1 = r1ε

2, pick one uniformly at random and denote it by v1. We define
random variable A1 = adv(v1, Ar1) and random variable B1 = bias(v1). Similarly, we split v1 into
substrings of length l2 = r2ε

2 and pick v2 uniformly at random and define A2 = adv(v2, Ar2) and
B2 = bias(v2). Continuing this procedure, one can obtain the two sequences of random variables
A1, A2, · · · , Ak and B1, B2, · · · , Bk. We will prove the following.

Lemma 3.2. The following holds for A1, A2, · · · , Ak and B1, B2, · · · , Bk.

1. E[Bi] = bias(v)

2. E[Ai] ≥ ε
2

8



Proof. Note that one can think of vi as a substring of v that is obtained by splitting v into substrings
of length li and choosing one uniformly at random. Let U denote the set of all such substrings. We
have that

E[Bi] =
∑
v̂∈U

1

|U |
· bias(v̂) =

1

|U |
∑
v̂∈U

count1(v̂)− count0(v̂)

li
=

count1(v)− count0(v)

|U | · li
= bias(v).

A similar argument proves the second item. Take the matching Mi between v and Ari,n that
achieves the advantage adv(v,Ari,n), i.e., the largest matching between v and Ari,n. Take some
v̂ ∈ U ; v̂ is mapped to some substring in Ari,n under Mi. We call that substring of v̂, the projection
of v̂ under Mi and denote it by v̂ →Mi. We also represent the subset of Mi that appears between
v̂ and v̂ →Mi with Mi[v̂].

For a v̂ ∈ U , we define a(v̂) as the value for advantage that is yielded by the matching Mi[v̂]

between v̂ and v̂ → Mi. In other words, a(v̂) = 3|Mi[v̂]|−|v̂|−|v̂→Mi|
|v̂| . Given the definitions of

advantage and infinite advantage, we have that

a(v̂) ≤ adv(v̂, v̂ →Mi) ≤ adv(v̂, Ari).

This can be used to prove the second item as follows:

E[Ai] =
∑
v̂∈U

1

|U |
· adv(v̂, Ari) ≥

1

|U |
·
∑
v̂∈U

a(v̂)

=
1

|U |
·
∑
v̂∈U

3|Mi[v̂]| − |v̂| − |v̂ →Mi|
|v̂|

=
1

|U | · |v̂|
·
∑
v̂∈U

(3|Mi[v̂]| − |v̂| − |v̂ →Mi|)

=
1

|v|
· (3|Mi| − |v| − |Ari,n|) = adv(v,Ari,n) ≥ ε

2

where the last step follows from Lemma 3.1.

Lemma 3.3. For the sequence B1, B2, · · · , Bk, we have

Var(Bi+1) ≥ Var(Bi) +
ε3

1200
, ∀1 ≤ i < k.

Proof. To analyze the relation of Var(Bi) and Var(Bi+1), we use the law of total variance and
condition the variance of Bi+1 on vi, i.e., the substring chosen in the ith step of the stochastic
process, from which we sub sample vi+1.

Var(Bi+1) = Var (E[Bi+1|vi]) + E [Var(Bi+1|vi)]
= Var (Bi) + E [Var(Bi+1|vi)] (2)

Equation (2) comes from the fact that the average bias of substrings of length li+1 in vi is equal
to the bias of vi. Having this, we see that it suffices to show that E [Var(Bi+1|vi)] ≥ ε3/1200. We
remind the reader that vi+1 is obtained by splitting vi into substrings of length li+1 = ri+1ε

2 and
choosing one at random. We denote the set of such substrings by U . Also, there is a matching Mi

between vi and Ari+1 with advantage ε or more. Any substring of length li+1 is mapped to some
substring in Ari+1 , i.e., its projection of the substring under Mi. Note there are three different
possibilities for such projection. It is either an all zeros string, an all one string, or a string that
contains both zeros and ones. We partition U into three sets U0, U1, and Ue based on which case
the projection belongs to. (See Fig. 2)
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0, 0,⋯ , 0,1, 1,⋯ , 1, 1, 0, 0,⋯ , 0, 0, 0, 1, 1,⋯ , 1⋯

𝑣𝑖

𝐴𝑟𝑖+1

𝑙𝑖+1

⋯

𝑈0 𝑈1 𝑈𝑒

𝑀𝑖

Figure 2: Partitioning substrings of length li+1 into three sets U0, U1, Ue

We partition the sample space into three events E0, E1, and Ee based on whether vi+1 belongs
to U0, U1, or Ue respectively. We also define the random variable T over {0, 1, e} that indicates
which one of E0, E1, or Ee happens. Once again, we use the law of total variance to bound
E [Var(Bi+1|vi)].

E [Var(Bi+1|vi)] = Evi
[
VarT (E [Bi+1|vi, T ]) + ET [Var(Bi+1|vi, T )]

]
≥ Evi

[
VarT (E [Bi+1|vi, T ])

]
(3)

Note that the term VarT (E [Bi+1|vi, T ]) refers to variance of a 3-valued random variable that takes
the value Evi [Bi+1|vi, T = t] with probability Pr{T = t|vi} for t ∈ {0, 1, e}. We use three important
facts about this distribution to bound its variance from below.

First, Pr{T = e|vi} ≤ 2ε2. To see this, note that the run length of Ari+1 is ri+1 = li+1

ε2
and

the length of the projection of vi in Ari under the matching that yields the optimal adv(vi, Ari) is
no more than 2|vi| = 2li (See Lemma 2.9). Therefore, |Ue| ≤ 2li

ri+1
and consequently no more that

a 2li/ri+1

li/li+1
= 2ε2 fraction of strings in U might be mapped to a substring of Ari+1 that crosses the

border of some 0ri+1 and 1ri+1 intervals.

Secondly, for any j ∈ {0, 1}, Pr{T = j|vi} ≥
adv(vi,Ari+1 )−8ε2

8 . This can be showed as follows.

Let M j
i represent the subset of pairs of Mi with one end in Uj for j ∈ {0, 1, e} and vi →Mi represent

the substring of Ari+1 where vi is projected under Mi. Note that Pr{T = j|vi} =
|Uj |
|U | =

|Uj |·li
|vi| ≥

|Mj
i |
|vi| ≥

|Mj
i |

2|vi→Mi| . Assume for contradiction that Pr{T = j|vi} <
adv(vi,Ari+1 )−8ε2

8 for some j. Then,

|M j
i | < |vi → Mi|

adv(vi,Ari+1 )−8ε2

4 , which since |M j′

i | ≤
|vi→Mi|

2 for j′ ∈ {0, 1} and |M e
i | ≤ 2ε2|vi →

Mi|, gives that |Mi| < |vi → Mi|
(

1
2 + 2ε2 +

adv(vi,Ari+1 )−8ε2

4

)
= |vi → Mi|

(
1
2 +

adv(vi,Ari+1 )

4

)
.

However,

advMi =
3|Mi| − |vi| − |p|

|vi|
⇒ 2|Mi| − |p| ≥ |vi|advMi ⇒ |Mi| ≥ |p|

(
1

2
+

advMi

4

)
.

This contradiction implies that Pr{T = j|vi} ≥
adv(vi,Ari+1 )−8ε2

8 .

The third and final important ingredient is provided by the following lemma that we prove later
on.
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Lemma 3.4. The following holds true:∣∣∣E [Bi+1|vi, T = 0]− E [Bi+1|vi, T = 1]
∣∣∣ ≥ adv(vi, Ari+1)− 5ε2

3

To summarize, the above three properties imply that we have a three-valued random variable
where the probability for one value is minuscule and there is at least [adv(vi, Ari+1)−5ε2]/3 difference
between the other two values each occurring with adequately large probabilities. This is enough
for us to bound below the variance of such random variable. The following simple lemma abstracts
this.

Lemma 3.5. Let X be a random variable that can take values a0, a1, and a2 where Pr{X = ai} ≥ ξ
for i ∈ {0, 1}. Then, we have that Var(X) ≥ ξ

2(a0 − a1)2.

Proof. Var(X) =
∑

ai
Pr{X = ai}(ai − X̄)2 ≥ ξ

[
(a0 − X̄)2 + (a1 − X̄)2

]
≥ ξ

2(a0 − a1)2.

Applying Lemma 3.5 to our random variable gives that:

VarT (E [Bi+1|vi, T ]) ≥ 1

144

(
adv(vi, Ari+1)− 8ε2

) (
adv(vi, Ari+1)− 5ε2

)2
Note the right hand side of this inequality is negative when adv(vi, Ari+1) ≤ 8ε2. Therefore, we

define function g(x) as a function that takes value of (x−8ε2)(x−5ε2)
144 when x > 8ε2 and zero otherwise.

Note that g is a convex function. We have that

VarT (E [Bi+1|vi, T ]) ≥ g(adv(vi, Ari+1)) (4)

Plugging (4) into (3) gives that

E [Var(Bi+1|vi)] ≥ Evi
[
VarT (E [Bi+1|vi, T ])

]
≥ Evi

[
g(adv(vi, Ari+1))

]
≥ g

(
Evi
[
adv(vi, Ari+1)

])
= g(E[Ai+1]) (5)

≥ g
(ε

2

)
=

ε3

1152
+ o(ε3) (6)

where (5) follows from the Jensen inequality and (6) follows from Lemma 3.2 and the fact that g is
an increasing function. Note that the right hand side is at least ε

1200 for sufficiently small ε. This
completes the proof of Lemma 3.3 (With the exception of Lemma 3.4).

With Lemma 3.3 proved, one can easily prove Theorem 1.4.

Proof of Theorem 1.4. Since Var(Bi+1) ≥ Var(Bi) + ε3/1200, we have that

Var(Bk) ≥ Var(B1) + (k − 1)
ε3

1200
≥ (k − 1)ε3

1200
.

If k > 1200
ε3

, the above inequality implies that Var(Bk) > 1 which is impossible since Bk takes value
in [−1, 1]. This contradiction implies that the list size k ≤ 1200

ε3
.

We now proceed to the proof of Lemma 3.4.
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0, 0,⋯ , 0,1, 1,⋯ , 1, 1, 0, 0,⋯ , 0, 0, 0, 1, 1,⋯ , 1⋯
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1, 1

Padding extra 1’s to make 0𝑡1𝑡

0, 0,⋯ , 0,1, 1,⋯ , 1, 1, 0, 0,⋯ , 0, 0, 0, 1, 1,⋯ , 1⋯
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𝐴𝑟𝑖+1

𝑙𝑖+1

⋯

𝑀𝑖

1 2 3 4 5 6 7 8 k-1 k

Figure 3: Three steps of transformation in Lemma 3.4.

3.1 Proof of Lemma 3.4

Consider vi and the matching that yields the optimal advantage from vi to Ari+1 , denoted by Mi.
We denote the substring of Ari+1 that is identified by the projection of vi under Mi as p = vi →Mi.
To simplify the analysis, we perform a series of transformations on vi, Mi, and p that does not
decrease advMi except by a small quantity. Fig. 3 depicts the steps of this transformation described
below.

1. First, we delete all substrings of Ue—i.e., substrings of length li in vi whose projection contain
both zeros and ones—from vi.

2. We reorder the substrings of length li+1 in vi by shifting all U0 substrings together and all U1

substrings together. We accordingly shift the projections of these strings in p to the similar
order. This was, the remainder of Mi from step 1 will be preserved as a valid matching
between reordered strings.

3. At this point, string p consists of a stretch of zeros followed by a stretch of ones. If the length
of two stretches are not equal, we add adequate zeros or ones to the smaller stretch to make
p have the form of 0t1t.

To track the changes in advMi during this transformation, we track how |Mi|, |vi| and |p| change
throughout the three steps mentioned above.

In the first step, a total of up to |Ue|li+1 elements are removed from vi and Mi. Note that since

12



the run length of Ari+1 is ri+1, there can only be |p|
ri+1

substrings in Ue. Therefore,

|Ue|li+1 ≤
|p|li+1

ri+1
= |p|ε2 ≤ 2ε2|vi|

The second step preserves |Mi|, |vi| and |p|.
Finally, since p is a substring of Ari+1 , the third step increases |p| only by up to ri+1. Note the

run length of the Ari+1s and consequently li+1s are different by a multiplicative factor of at least
1
ε4

by the definition of the code C. Therefore, ri+1 = li+1

ε2
= li+1|vi|

ε2|vi| = li+1|vi|
ε2li

≤ ε2|vi|.

Overall, the value of the advMi = 3|M |−|p|−|vi|
|vi| can be affected by a maximum of (3−1)×2ε2|vi|+

ε2|vi| = 5ε2|vi| decrease in the numerator and ε2|vi| decrease in the denominator. Therefore, the
eventual advantage does not drop below advMi − 5ε2. Let us denote the transformed versions of vi,
p, and Mi by v̄i, p̄, and M̄i respectively. We have shown that

advM̄i
≥ advMi − 5ε2. (7)

Further, let v̄i = (v̄0
i , v̄

1
i ) so that v̄0

i and v̄1
i respectively correspond to the part of v̄i that is mapped

to 0t and 1t under M̄i. Consider the matching between v̄i and p̄ that connects as many zeros as
possible between the v̄0

i and 0t and as many ones as possible between the v̄1
i to 1t portion of p̄.

Clearly, the size of M̄i cannot exceed the size of this matching and therefore,

advM̄i
≤

3
[
min{t, count0(v̄0

i )}+ min{t, count1(v̄1
i )}
]
− |v̄i| − 2t

|v̄i|
(8)

Note that as long as t < count0(v̄0
i ) or t < count1(v̄1

i ), increasing t in the right hand side term does

not make it smaller. Therefore, the inequality (8) holds for t = maxj∈{0,1}{countj(v̄
j
i )}. Without

loss of generality, assume that count0(v̄0
i ) ≤ count1(v̄1

i ) and set t = count1(v̄1
i ). Then we have the

following.

advM̄i
≤ 3count0(v̄0

i ) + count1(v̄1
i )− |v̄i|

|v̄i|

⇒ advM̄i
≤

3
1−bias(v̄0i )

2 |v̄0
i |+

1+bias(v̄1i )
2 |v̄1

i | − (|v̄0
i |+ |v̄1

i |)
|v̄i|

⇒ 2advM̄i
|v̄i| ≤ 3(1− bias(v̄0

i ))|v̄0
i |+ (1 + bias(v̄1

i ))|v̄1
i | − 2(|v̄0

i |+ |v̄1
i |)

⇒ 2advM̄i
|v̄i| ≤

[
1− 3bias(v̄0

i )
]
|v̄0
i | −

[
1− bias(v̄1

i )
]
|v̄1
i | (9)

We claim that the above inequality leads to the fact that |bias(v̄1
i )− bias(v̄0

i )| ≥ advM̄i
/3. Assume

for contradiction that this is not the case. Therefore, replacing the term bias(v̄0
i ) with bias(v̄1

i ) in (9)
does not change the value of the right hand side by any more than |v̄i| ·advM̄i

. Same holds true with
replacing the term bias(v̄1

i ) with bias(v̄0
i ) in (9). This implies that, with b∗ = max{bias(v̄0

i ), bias(v̄
1
i )},

we have that

advM̄i
|v̄i| ≤ (1− 3b∗) · |v̄0

i | − (1− b∗) |v̄1
i |

⇒ (1− b∗) |v̄1
i | < (1− 3b∗) |v̄0

i | (10)

On the other hand, we assumed earlier (without loss of generality) that

count0(v̄0
i ) ≤ count1(v̄1

i )

⇒
(
1− bias(v̄0

i )
)
|v̄0
i | ≤

(
1 + bias(v̄1

i )
)
|v̄1
i |

⇒ (1− b∗) |v̄0
i | ≤ (1 + b∗) |v̄1

i | (11)
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Note that since |b∗| ≤ 1, (1 − b∗)2 > (1 + b∗)(1 − 3b∗) ⇒ 1−3b∗

1−b∗ < 1−b∗
1+b∗ . Multiplying the two sides

of this inequality to the sides of (11) gives that

(1− 3b∗) |v̄0
i | ≤ (1 + b∗) |v̄1

i |

which contradicts (10). Therefore, we must have

|bias(v̄1
i )− bias(v̄0

i )| ≥ advM̄i
/3.

Note that bias(v̄ji ) = E [Bi+1|vi, T = j] since bias(v̄ji ) is the average bias of all strings in Uj . There-
fore, combining with (7), we have that∣∣∣E [Bi+1|vi, T = 0]− E [Bi+1|vi, T = 1]

∣∣∣ ≥ adv(vi, Ari+1)− 5ε2

3
.

4 Proof of Theorem 1.2: Concatenated InsDel Codes

We recall that the concatenation of an inner insdel code Cin over an alphabet of size |Σin| and
an outer insdel code, Cout, over an alphabet of size |Σout| = |Cin| as a code over alphabet Σin, is
obtained by taking each codeword x ∈ Cout, encoding each symbol of x with Cin, and appending
the encoded strings together to obtain each codeword of the concatenated code.

In this section, we will show that, concatenating an inner code Cin from Theorem 1.4 that can
Lin-list decode from any γ fraction of insertions and δ fraction deletions when 2δ+γ < 1−εin along
with an appropriately chosen outer code Cout from Theorem 2.1, one can obtain an infinite family
of constant-rate insertion-deletion codes that are efficiently list-decodable from any γ fraction of
insertions and δ fraction of deletions as long as 2δ + γ < 1− ε for ε = 16

5 εin.

4.1 Construction of the Concatenated Code

We start by fixing some notation. Let Cout be able to Lout-list decode from δout fraction of deletions
and γout fraction of insertions. Further, let us indicate the block sizes of Cout and Cin with nout and
nin = dlog |Σout|e.

To construct our concatenated codes, we utilize Theorem 2.1 to obtain an efficient family of
codes Cout over alphabet Σout of size Oγout,δout(1) that is Lout-list decodable from any δout fraction of
deletions and γout fraction of insertions for appropriate parameters δout and γout that we determine
later. We then concatenate any code in Cout with an instance of the binary list-decodable codes from
Theorem 1.4, Cin, with parameter nin = dlog |Σout|e and a properly chosen εin. We will determine
appropriate values for all these parameters given ε when describing the decoding procedure in
Section 4.2. Fig. 4 shows the order of determining all parameters. We remark that the following
two properties for the utilized inner and outer codes are critical to this order of fixing parameters:

1. The alphabet size of the family of codes used as the outer code only depends on δout and γout

and is independent of the outer block size nout. (See Theorem 2.1)

2. The list size of the family of codes used as the inner code, Lin, merely depends on parameter
εin in Theorem 1.4 and is independent of the size of the code or its block length, i.e., |Cin| or
nin.
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Figure 4: The order of determining parameters in the proof of Theorem 1.2.

4.2 Decoding Procedure and Determining Parameters

We now analyze the resulting family of codes and choose the undetermined parameters along the
way of describing the decoding procedure. A pseudo-code of the decoding procedure is available in
Algorithm 1. Let C be a binary code with block length n that is obtained from the above-mentioned
concatenation. Take the codeword x ∈ C and split it into blocks of length nin. Note that each such
block corresponds to the encoding of some symbol in Σout under Cin. Let x′ be a string obtained by
applying nγ insertions and nδ deletions into x where n = ninnout and γ+2δ < 1−ε. For each block
of x, we define the error count to be the total number of insertions that have occurred in that block
plus twice the number of deleted symbols in it. Clearly, the average value of error count among all

blocks is nin(γ + 2δ) < nin(1 − ε). By a simple averaging, at least
(

1− 1−ε
1−ε/4

)
nout ≥ 3ε

4 · nout of

those blocks have an error count of nin(1− ε
4) or less. Let us call the set of all such blocks S.

Further, we partition S into smaller sets based on the number of deletions occurring in the
blocks of S. Let Si ∈ S be the subset of blocks in S for which the number of deletions is in[
nin · ε16 · (i− 1), nin · ε16 · i

)
for i = 1, 2, · · · , 8/ε1. The following two properties hold true:

1. All blocks in Si suffer from at least nin · ε16 · (i − 1) deletions. Further, they can suffer from
up to nin ·

(
1− ε

4 −
2ε
16 · (i− 1)

)
insertions. Therefore, they all appear as substrings of length

nin ·
(
2− ε

4 −
3ε
16 · (i− 1)

)
or less in x′.

2. We have that S =
⋃̇8/ε

i=1Si. By the Pigeonhole principle, for some i∗ ∈ [1, 8/ε], |Si∗ | ≥ 3ε2

32 nout.

Our decoding algorithm consists of 8/ε rounds each consisting of two phases of inner and outer
decoding. During the first phase of each round i = 1, 2, · · · , 8/ε, the algorithm uses the decoder
of the inner code on x′ to construct a string Ti over alphabet Σout and then, in the second phase,
uses the decoder of the outer code on input Ti to obtain a list Listi of size Lout. In the end, the
decoding algorithm outputs the union of all such lists

⋃
i Listi.

Description of Phase I (Inner Decoding) We now proceed to the description of the first
phase in each round i ∈ {1, 2, · · · , 8/ε}. In the construction of Ti, we aim for correctly decoding
the blocks in Si. As mentioned above, all such blocks appear in x′ in a substring of length nin ·(
2− ε

4 −
3ε
16 · (i− 1)

)
or less.

Having this observation, we run the deocoder of the inner code on substrings of x′ of form

x′
[
ninε
16 · j,

ninε
16 · (j + w)

]
for all j = 1, 2, · · · , |x′|

ninε/16 − w where

w =

⌊
nin(2− ε/4− 3ε(i− 1)/16)

ninε/16

⌋
+ 1.

One can think of such substrings as a window of size w · ninε
16 that slides in ninε

16 increments.

Note that each block B in Si appears within such window and is far from it by, say, DB deletions
and no more than nin

(
1− ε

4

)
− 2DB + ninε

16 insertions where the additional ninε
16 term in insertion

1Note that the fraction of deletions cannot exceed 1
2
assuming nin(γ + 2δ) < nin(1− ε).
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Algorithm 1 Decoder of the Concatenated Code

1: procedure Concatenated-Decoder(x′, ε, nin, nout,DecCin(·),DecCout(·))

2: Output ← ∅
3: for i ∈

{
1, 2, · · · , 8

ε

}
do . Round i

4: w ←
⌊
nin(2−ε/4−3ε(i−1)/16)

ninε/16

⌋
+ 1 . Length of the sliding window is w · ninε

16 .

5: Ti ← empty string

6: for j ∈
{

1, 2, · · · , |x′|
ninε/16 − w

}
do . Phase I: Inner Decoding

7: List← DecCin
(
x′
[
ninε
16 · j,

ninε
16 · (j + w)

])
8: Pad symbols of Σout corresponding to the elements of List to the right of Ti.

9: Output ← Output ∪ DecCout (Ti) . Phase II: Outer Decoding

10: return Output

count comes from the extra symbols around the block in the fixed sized window. As long as the
fraction of insertions plus twice the fraction of deletions that are needed to convert a block of Si
into its corresponding window does not exceed 1 − εin, the output of the inner code’s decoder for
input x′

[
ninε
16 · j,

ninε
16 · (j + w)

]
will contain the block B of Si. So, we choose εin such that

nin

(
1− ε

4

)
− 2DB +

ninε

16
+ 2DB ≤ nin(1− εin) (12)

⇔ nin(1− 3ε/16) ≤ nin(1− εin)

⇔ εin ≤
3

16
ε

Now, each element in the output list corresponds to some codeword of the inner code and,
therefore, some symbol in Σout. For each run of the decoder of the inner code, we take the
corresponding symbols of Σout and write them back-to-back in arbitrary order. Then, we append
all such strings in the increasing order of j to obtain Ti.

Description of Phase II (Outer Decoding) Note that the length of Ti is at most |x′|
ninε/16Lin ≤

2ninnout

ninε/16 Lin = nout · 32
ε Lin. Further, Ti contains symbols corresponding to all blocks of Si as a

subsequence (i.e., in the order of appearance) except possibly the ones that appear in the same
run of the inner decoder together. Since the fraction of deletions happening to each block in Si is
less than 1

2 and the size of the inner decoding sliding window is no more than 2nin, the number of
blocks of Si that can appear in the same window in the first phase is at most 4. This gives that Ti
has a common subsequence of size at least |Si|4 with the codeword of the outer code.

We mentioned earlier that for some i∗, |Si∗ | ≥ 3ε2

32 nout. Therefore, for such i∗, Ti∗ is different

from x by up to a 1− 3ε2

128 fraction of deletions and 32
ε Lin fraction of insertions. Therefore, by taking

δout = 1 − 3ε2

128 , γout = 32
ε Lin = O

(
1
ε4

)
, and using each Ti as an input to the decoder of the outer

code in the second phase, x will certainly appear in the outer output list for some Ti. (Specifically,
for i = i∗.)
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4.3 Remaining Parameters

As shown in Section 4.2, we need a list-decodable code as outer code that can list-decode from
δout = 1 − 3ε2

128 fraction of deletions and γout = 32
ε Lin = O

(
1
ε4

)
fraction of insertions. To obtain

such codes we use Theorem 2.1 with parameters γ = 32
ε Lin and ε = 3ε2

256 . This implies that the rate

of the outer code is rout = 3ε2

256 = O(ε2), it is Lout = Oε(exp(exp(exp(log∗ n)))) list-decodable, and

can be defined over an alphabet size of |Σout| = e
O
(

1
ε10

log 1
ε8

)
.

Consequently, |Cin| = log |Σout| = O
(

1
ε10

log 1
ε

)
. Note that in Theorem 1.4, the block length of

the inner code can be chosen independently of its list size as the list size only depends on εin. This
is a crucial quality in our construction since in our analysis εin and Lin are fixed first and then |Cin|
is chosen depending on the properties of the outer code.

As the decoder of the outer code is used 8
ε times in the decoding of the concatenated code, the

list size of the concatenated code will be L = 8
ε ·Lout = Oε(exp(exp(exp(log∗ n)))). The rate of the

concatenated code is

r = routrin = O

(
ε2 · log log |Cin|

nin

)
= O

(
ε2 · log log |Cin|

(1/ε4)|Cin|

)
= e
−O
(

1
ε10

log2 1
ε

)

Finally, since the outer code is efficient and the inner code is explicit and can be decoded by
brute-force in Oε(1) time, the encoding and decoding procedures run in polynomial time. This
concludes the proof of Theorem 1.2.

5 Extension to Larger Alphabets

In this section we extend the results presented so far to q-ary alphabets where q > 2.

5.1 Feasibility Region: Upper Bound

For an alphabet of size q, no positive-rate family of deletion codes can protect against 1− 1
q fraction

of errors since, with that many deletions, an adversary can simply delete all but the most frequent
symbol of any codeword. Similarly, for insertion codes, it is not possible to achieve resilience against
q − 1 fraction of errors as adversary would be able to turn any codeword x ∈ qn to (1, 2, · · · , q)n.

The findings of the previous sections on binary alphabets might suggest that the feasibility
region for list-decoding is the region mapped out by these two points, i.e., δ

1− 1
q

+ γ
q−1 < 1. However,

this conjecture turns out to be false. The following theorem provides a family of counterexamples.

Theorem 5.1. For any alphabet size q and any i = 1, 2, · · · , q − 1, no positive-rate q-ary infinite
family of insertion-deletion codes can list-decode from δ = q−i

q fraction of deletions and γ = i(i−1)
q

fraction of insertions.

Proof. Take a codeword x ∈ [q]n. With δn = q−i
q · n deletions, the adversary can delete the q − i

least frequent symbols to turn x into x′ ∈ Σ
n(1−δ)
d for some Σd = {σ1, · · · , σi} ⊆ [q]. Then, with

γn = n(1− δ)(i− 1) = n i(i−1)
q insertions, it can turn x′ into [σ1, σ2, · · · , σi]n(1−δ). Such adversary

only allows O(1) amount of information to pass to the receiver. Hence, no such family of codes can
yield a positive rate.
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Figure 5: Infeasible points inside the conjectured feasibility region. (Illustrated for q = 5)

Note that all points (γ, δ) =
(
i(i−1)
q , q−iq

)
are located on a second degree curve inside the

conjectured feasibility region δ
1− 1

q

+ γ
q−1 < 1 (see Fig. 5). Our next step is to show that the

complement of the actual feasibility region, which we will refer to as infeasibility region or F̄ , is
convex.

Theorem 5.2. The infeasibility region F̄ is convex.

Proof of Theorem 5.2 can be found in Appendix A.1. In light of Theorems 5.1 and 5.2, we
have a piece-wise linear region that contains the feasibility region. (see Fig. 1) More formally,
Theorems 5.1 and 5.2 imply the following.

Theorem 5.3. For any positive integer q > 2, define Fq as the concave polygon defined over vertices(
i(i−1)
q , q−iq

)
for i = 1, · · · , q and (0, 0). (see Fig. 1). Fq does not include the border except the

two segments [(0, 0), (q − 1, 0)) and
[
(0, 0),

(
0, 1− 1

q

))
. Then, for any pair of positive real numbers

(γ, δ) 6∈ Fq, there exists no infinite family of q-ary codes with positive rate that can correct from δ
fraction of deletions and γ fraction of insertions.

5.2 Feasibility Region: Exact Characterization

Finally, we will show that the infeasibility region is indeed equal to the region Fq described in
Theorem 5.3. The proof closely follows the steps taken for the binary case but is significantly more
technical. We first formally define q-ary Bukh-Ma codes and show they are list-decodable as long
as the error rate lies in Fq and then use the concatenation in Section 4 to obtain Theorem 1.3.

Theorem 5.4. For any integer q ≥ 2, ε > 0, and sufficiently large n, let Cqn,ε be the following
Bukh-Ma code:

Cqn,ε =

{
(0r1r · · · qr)

n
qr

∣∣∣r =

(
1

ε4

)k
, k < log1/ε4 n

}
.
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Figure 6: In the feasibility region for q = 5, the line passing through (1.2, 0.4) and (1.8, 0.3) (indicated with
red dotted line) is characterized as γ + 6δ ≤ 3.6. (Corresponding to i = 3 in Eq. (13))

For any (γ, δ) ∈ (1 − ε)Fq it holds that Cqn,ε is list decodable from any δn deletions and γn

insertions with a list size of O
(
q5

ε2

)
.

We remark that in the case of q = 2, Theorem 5.4 improves over Theorem 1.4 in terms of the
dependence of the list size on ε.

5.2.1 Proof Sketch for Theorem 5.4

To prove Theorem 5.4, we show that Bukh-Ma codes are list-decodable as long as the error rate
(γ, δ) lies beneath the line that connects a pair of consecutive non-zero vertices of Fq.

In other words, for any pair of points
(
i(i−1)
q , q−iq

)
and

(
i(i+1)
q , q−i−1

q

)
we consider the line

passing through them (see Fig. 6), i.e.,

γ + (2i)δ =
(2q − 1)i− i2

q
, i = 1, · · · , q − 1 (13)

and show that as long as γ+ (2z)δ ≤ (1− ε) (2q−1)z−z2
q for some z ∈ {1, · · · , q−1}, Bukh-Ma codes

are list-decodable. Note that the union of such areas is equal to (1− ε)Fq.
The analysis for each line follows the arguments for the binary case. Namely, we assume that

k codewords can be converted to some center string v via (γ, δ) fraction of errors. Then, using
an appropriate advantage notion and considering some coupled statistic processes obtained by
sampling substrings, we show that k is bounded above by some Oq (poly(1/ε)).

The only major difference is that the notion of bias cannot be directly used for q-ary alphabets.
In this general case, instead of keeping track of the variance of the bias, we keep track of the sum
of the variances of the frequency of the occurrence of each symbol. We show that this quantity
increases by some constant after each substring sampling (analogous to Lemma 3.3) by showing
that a positive advantage requires that the frequency of occurrence of at least one of the symbols to
be ε-different for two different values of the random variable T (analogous to Lemma 3.4). The rest
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of this section contains more formal description of generalized notions and proofs for generalized
q-ary claims.

5.3 Generalized Notation and Preliminary Lemmas

To prove Theorem 5.4, we need to generalize some of the notions and respective preliminary lemmas
for the binary case. We start with defining ith order advantage.

Definition 5.5 (ith order q-ary advantage of matching M). For a pair of positive integers i < q,
a pair of q-ary strings a and b, and a matching M between a and b, we define ith order q-ary
advantage of a to b as follows:

advq,iM (a, b) =
(2i+ 1)|M | − |a| − i+i2

q · |b|
|a|

Note that the notion of advantage utilized for the binary case is obtained for q = 2 and i = 1 in
the above definition. The notions of ith order advantage between two strings (that is independent
of a specific matching, i.e., advq,i(a, b)) and infinite ith order advantage are defined in a similar
manner to the binary case.

Remark 5.6. In the same spirit as of the binary case, advq,iM (a, b) is simply the value of

|b|
(

(2q − 1)i− i2

q
− (2i)δM − γM

)
normalized by the length of a. Indeed,

advq,iM (a, b) =
(2i+ 1)|M | − |a| − i+i2

q · |b|
|a|

=
(2i+ 1)|b|(1− δM )− |b|(1− δM + γM )− i+i2

q · |b|
|a|

=
|b|
|a|
·
[
(2i+ 1)(1− δM )− (1− δM + γM )− i+ i2

q

]
=
|b|
|a|
·
(

(2q − 1)i− i2

q
− (2i)δM − γM

)
.

Lemma 5.7. If for strings a and b, advq,i(a, b) ≥ 0, then |a| and |b| are within a q factor of each
other.

Proof. advq,i(a, b) ≥ 0 implies that for some matching M ,

advq,iM ≥ 0⇒ |a|+ i+ i2

q
· |b| ≤ (2i+ 1)|M |

⇒ q|a|+ (i+ i2) · |b| ≤ q(2i+ 1)|M | ≤ q(2i+ 1) min(|a|, |b|) (14)

Now if |a| ≤ |b|, (14) gives

q|a|+ (i+ i2)|b| ≤ q(2i+ 1)|a| ⇒ |b| ≤ 2q

i+ 1
· |a| ≤ q|a|
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and if |b| < |a|, (14) gives

q|a|+ (i+ i2)|b| ≤ q(2i+ 1)|b| ⇒ |a| ≤ 2iq + q − i− i2

q
· |b| ≤ q|b|.

Definition 5.8 (q-ary Alternating Strings). For any positive integer r, we define the infinite q-
ary alternating string of run-length r as Aqr = (1r2r · · · qr)∞ and denote its prefix of length l with
Aqr,l = Aqr[1, l].

5.4 Proof of Theorem 5.4

As mentioned before, Theorem 5.4 can be restated as follows.

Theorem 5.9 (Restatement of Theorem 5.4). For any integer q ≥ 2, ε > 0, sufficiently large n,
and any z ∈ {1, 2, · · · , q − 1}, the Bukh-Ma code Cnn,ε from Theorem 5.4 is list decodable from any

δn deletions and γn insertions with a list size O
(
q5/ε2

)
as long as γ + (2z)δ ≤ (1− ε) (2q−1)z−z2

q .

To prove this restated version, once again, we follow the steps taken for the proof of Theorem 1.4

and assume for the sake of contradiction that there exists a string v and k = Ω
(
q5

ε2

)
members of

Cqn,ε like Aqr1,n, A
q
r2,n, · · · , A

q
rk,n, so that each Aqri,n can be converted to v with Ii insertions and

Di deletions where Ii + (2z)Di ≤ (1 − ε) (2q−1)z−z2
q · n. We define the indices in a way that

r1 > r2 > · · · > rk. Given the definition of Cqn,ε, ri ≥ ri+1

ε4
.

Given Remark 5.6 and Lemma 5.7, one can make a similar argument to Lemma 3.1 to show
that for all these codewords, advq,z(v,Aqri,n) ≥ ε

q .

We define the following stochastic processes similar to the binary case. We split the string v
into substrings of size l1 = r1ε

2, pick one uniformly at random and denote it by v1. We define
random variable A1 = advq,z(v1, A

q
r1) and random variables F p1 for p = 1, 2, · · · , q as the frequency

of the occurrence of symbol p in v1. In other words,

F p1 =
countp(v1)

|v1|
.

We continue this process for j = 2, 3, · · · , k by splitting each vj−1 into substrings of length lj = rjε
2,

picking vj uniformly at random, and defining Aj = advq,z(vj , A
q
rj ) and F pj =

countp(vj)
|vj | for all

p ∈ {1, 2, · · · , q}. We then define the sequence of real numbers f1, f2, · · · , fk as follows.

fi =

q∑
p=1

Var(F pi )

This series of real numbers will play the role of Var(Bi) in the binary case.

Lemma 5.10. The following holds for A1, A2, · · · , Ak and F p1 , F
p
2 , · · · , F

p
k for all p ∈ {1, 2, · · · , q}.

1. E[F pi ] = F pi−1

2. E[Ai] ≥ ε
q
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Proof. Since vi is a substring of vi−1 chosen uniformly at random, the overall frequency of symbol
p is equal to the average frequency of its occurrence in each substrings. The second item can be
derived as in Lemma 3.2.

The next lemma mimics Lemma 3.3 for the binary case.

Lemma 5.11. For the sequence f1, f2, · · · , fk, we have that

fi+1 ≥ fi + Ω

(
ε2

q4

)
.

Using Lemma 5.11, Theorem 5.9 can be simply proved as follows.

Proof of Theorem 5.9. Note that each fi is the summation of the variance of q random variables
that take values in [0, 1]. Therefore, their value cannot exceed q. Since fi+1 ≥ fi + Ω(ε2/q4), the

total length of the series, k, may not exceed O
(
q5

ε2

)
. This implies that the list size is O

(
q5

ε2

)
.

We now present the proof of Lemma 5.11.

Proof of Lemma 5.11. To relate fi and fi+1, we utilize the law of total variance as follows:

Var(F pi+1) = Var
(
E[F pi+1|vi]

)
+ E

[
Var(F pi+1|vi)

]
= Var (F pi ) + E

[
Var(F pi+1|vi)

]
(15)

Equation (15) comes from the fact that the average frequency of symbol p in substrings of length
li+1 of vi is equal to the frequency of p in vi. Having this, we see that it suffices to show that
E
[
Var(F pi+1|vi)

]
≥ Ω

(
ε2/q4

)
. Similar to Lemma 3.3 we define Ej for j = 1, 2, · · · , q and Ee

respectively as the event that the projection of vi+1 falls inside a jri+1 in Ari+1 or a string containing
multiple symbols. We also define the random variable T out of {e, 1, 2, · · · , q} that indicates
which one of these events is realized. Once again, we use the law of total variance to bound
E
[
Var(F pi+1|vi)

]
.

E
[
Var(F pi+1|vi)

]
= Evi

[
VarT (E

[
F pi+1|vi, T

]
) + ET

[
Var(F pi+1|vi, T )

] ]
≥ Evi

[
VarT (E

[
F pi+1|vi, T

]
)
]

(16)

Combining (15) and (16) gives

Var(F pi+1) ≥ Var (F pi ) + Evi
[
VarT (E

[
F pi+1|vi, T

]
)
]

⇒
q∑
p=1

Var(F pi+1) ≥
q∑
p=1

Var (F pi ) +

q∑
p=1

Evi
[
VarT (E

[
F pi+1|vi, T

]
)
]

⇒ fi+1 ≥ fi +

q∑
p=1

Evi
[
VarT

(
E
[
F pi+1|vi, T

])]
⇒ fi+1 ≥ fi + Evi

 q∑
p=1

VarT
(
E
[
F pi+1|vi, T

]) (17)

Note that the term VarT (E
[
F pi+1|vi, T

]
) refers to the variance of a (q+1)-valued random variable

that takes the value Evi
[
F pi+1|vi, T = t

]
with probability Pr{T = t|vi} for t ∈ {e, 1, 2, · · · , q}. Once

again, we present a crucial lemma that bounds from below the sum of variances of frequencies with
respect to T assuming that the overall advantage is large enough.
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Lemma 5.12. For any realization of vi, the following holds true if advq,z(vi, Ari+1) ≥ 3qε2:

q∑
p=1

VarT
(
E
[
F pi+1|vi, T

])
≥
(
advq,z(vi, Ari+1)− 3qε2

2z + 1

)2

We defer the proof of Lemma 5.12 to Section 5.6. Using Jensen inequality, the fact that z ≤ q,
and Lemma 5.12 along with (17) give that

fi+1 ≥ fi + Evi

[(
advq,z(vi, Ari+1)− 3qε2

2z + 1

)2
]
≥ fi +

(
ε/q − 3qε2

2q + 1

)2

= fi + Ω

(
ε2

q4

)
for sufficiently small ε > 0.

5.5 Proof of Theorem 1.3

To establish Theorem 1.3, we closely follow the concatenation scheme presented in Section 4. In
the following, we provide a high-level description of the proof skipping the details mentioned in
Section 4 and highlighting the necessary extra steps.

The construction of the concatenated code is exactly as in Section 4 with the exception that
the inner code is defined over an alphabet of size q. Note that if (γ, δ) ∈ (1 − ε)Fq, then (γ, δ)
lies underneath one of the lines in the set of lines represented by (13). In other words, there exists
some z ∈ {1, 2, · · · , q − 1} for which

γ + (2z)δ ≤ (1− ε)
(

(2q − 1)z − z2

q

)
.

Similar to Section 4, we define the notion of error count for each block in the codewords of the
concatenated code as

(I + 2z ·D) · q

(2q − 1)z − z2

where D and I denote the number of deletions and insertions occurred in the block respectively. As
in Section 4 one can show that at least 3ε

4 ·nout of the blocks contain no more than
(
1− ε

4

)
nin error

count. We denote the set of all such blocks by S. Once again, we partition S into subsets S1, S2, · · ·
depending on the number of deletions occurred in the set. More precisely, we define Si ⊆ S as the set

of blocks in S that contain a number of deletions that is in the range
[
nin · ε

16q · (i− 1), nin · ε
16q · i

)
for i = 1, 2, · · · , 16q/ε. Once again, the following hold true:

1. We have that S =
⋃̇16q/ε

i=1 Si. By the Pigeonhole principle, for some i∗ ∈ [1, 16q/ε], |Si∗ | ≥
3ε2

64qnout.

2. Take some i ∈ {1, 2, · · · , 16q/ε} and some block in Si. Say D deletions have occurred in

that block. Then, the total number of insertions is at most (1 − ε/4) (2q−1)z−z2
q nin − 2zD.

Therefore, the total length of the block is

nin −D(1− ε/4)
(2q − 1)z − z2

q
nin − 2zD

= nin ·
[
1 +

(
1− ε

4

) (2q − 1)z − z2

q

]
− (2z + 1)D (18)
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which is no more than

nin ·
[
1 +

(
1− ε

4

) (2q − 1)z − z2

q
− ε

16q
(i− 1)(2z + 1)

]
(19)

Based on these observations, it is easy to verify that the decoding algorithm and analysis
as presented in Section 4 and Algorithm 1 work for the q-ary case with the following minor
modifications:

(a) Based on (19), the parameter w determining the length of the window should be

w =

nin ·
[
1 +

(
1− ε

4

) (2q−1)z−z2
q − ε

16q (i− 1)(2z + 1)
]

ninε/16

+ 1. (20)

(b) As in (12), parameter εin has to be chosen such that the error count in decoding windows
does not exceed nin(1 − εin). Note that the choice of shifting steps for the decoding
window from (20) may add up to ninε

16 additional insertions to the decoding window.
Further, there is up to nin

ε
16q uncertainty in the total length of the block from (18)

since D ∈
[
nin · ε

16q · (i− 1), nin · ε
16q · i

)
. This can also add up to nin

ε
16q (2z + 1) ≤ ε

8

insertions. Therefore, we need

nin(1− ε/4) + nin

( ε
16

+
ε

8

)
· q

(2q − 1)z − z2
≤ nin(1− εin).

Note that q
(2q−1)z−z2 ≤

q
2q−2 ≤ 1. Hence, it suffuces that 1 − ε

4 + ε
8 + ε

16 ≤ 1 − εin or

equivalently, εin ≤ ε
16 .

(c) Some modifications are necessary to the parameters of the outer code. Notably, for

alphabet size q, |Si∗ | ≥ 3ε2

64qnout and the fraction of deletions can be as high as 1 − 1
q .

This requires δout = 1− 3ε2

128q2
.

(d) Finally, note the the value of z is not know to the decoder. So the decoder has to run the
algorithm with modifications mentioned above for all possible values of z = 1, 2, · · · , q−1
and the output the union of all lists produced.

5.6 Proof of Lemma 5.12

We break down this proof into four steps. In the first step, similar to Lemma 3.4, we modify vi
and Ari+1,n into a simpler structure without significantly changing the advantage. In the second
step, we provide an upper bound for the advantage in this modified version that depends on the

local frequencies of symbols, more specifically, on what we refer to as E
[
F ji+1|vi, T = j

]
. In Step 3,

we show that these upper-bounds would yield a non-positive value on the advantage if one replaces
the local frequencies with the overall frequency of symbols in vi, i.e., F ji . In the fourth and last
step, we show that this means that the local frequencies have to significantly deviate from global
ones to attain the advantage achieved by M̄i (i.e., advq,z

M̄i
), so much that the lower-bound promised

in the lemma’s statement is achieved.
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Step 1. Modifying vi and Ari+1,n for the sake of simplicity: The proof starts with mod-
ifying vi, Ari+1,n, and the advantage-yielding matching Mi between them in a way that only
slightly changes the value of advantage taking steps identical to the one in Lemma 3.4. Simi-
lar to Lemma 3.4, we denote the projection of vi under Mi by g = vi → Mi. (See Fig. 3 for a
depiction of the steps in binary case.)

1. First, we delete all substrings of Ue–i.e., substrings of length li+1 in vi whose projection does
not entirely fall into some stretch of jri+1–from vi.

2. We reorder the substrings of length li+1 in vi by shifting all Uj substrings together and the
projections in g to preserve the remainder of Mi from step 1.

3. At this point, string g consists of a stretch of symbol 1 followed by a stretch of symbol 2, etc.
If the length of all stretches are not equal, we add adequate symbols to each stretch to make
g have the form of 1t2t · · · qt.

To track the changes in advq,zMi
during this transformation, we track how |Mi|, |vi| and |g| change

throughout the three steps mentioned above.

In the first step, a total of up to |Ue|li+1 elements are removed from vi and Mi. Note that since

the run length of Ari+1 is ri+1, there can only be |g|
ri+1

substrings in Ue. Therefore,

|Ue|li+1 ≤
|g|li+1

ri+1
= |g|ε2 ≤ 2ε2|vi|

The second step preserves |Mi|, |vi| and |g|.
Finally, since g is a substring of Ari+1 , the third step increases |g| only by up to qri+1. Note the

run length of the Ari+1s and consequently li+1s are different by a multiplicative factor of at least
1
ε4

by the definition of the code C. Therefore, qri+1 = qli+1

ε2
= qli+1|vi|

ε2|vi| = qli+1|vi|
ε2li

≤ ε2q|vi|.

Overall, the value of the advq,zMi
=

(2z+1)|M |−|vi|− z+z
2

q
·|g|

|vi| can be affected by a maximum of

2z × 2ε2|vi| + qε2|vi| = (2z + q)ε2|vi| ≤ 3qε2|vi| decrease in the numerator and ε2|vi| decrease
in the denominator. Therefore, the eventual advantage does not drop below advq,zMi

− 3qε2. Let us

denote the transformed versions of vi, g, and Mi by v̄i, ḡ, and M̄i respectively. We have shown that

advq,z
M̄i
≥ advq,zMi

− 3qε2. (21)

Step 2. Bounding Above advq,z
M̄i

with f∗: Let v̄i = (v̄1
i , v̄

2
i , · · · , v̄

q
i ) so that v̄ji corresponds to

the part of v̄i that is mapped to jt under M̄i. Further, let f∗j = E
[
F ji+1|vi, T = j

]
represent the

frequency of the occurrence of symbol j in v̄ji as a shorthand, i.e.,

f∗j =
countj(v̄

j
i )

|v̄ji |

and pj be the relative length of v̄ji , i.e.,

pj =
|v̄ji |
|v̄i|

.
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In this section, we compute an upperbound for advq,z
M̄i

that depends on f∗j s. For the sake of simplicity,
from now on we assume, without loss of generality, that

count1(v̄1
i ) ≥ count2(v̄2

i ) ≥ · · · ≥ countq(v̄
q
i )

or equivalently,
f∗1 p1 ≥ f∗2 p2 ≥ · · · ≥ f∗q pq.

Consider the matching between v̄i and p̄ that, for any j ∈ {1, 2, · · · , q} matches as many js as
possible from jt to v̄ji . This matching clearly yields the largest possible advantage between the two
that is an upperbound for the advq,z

M̄i
. Similar to the binary case, we find a t that maximizes this

advantage and use its advantage as an upper-bound for advq,z
M̄i

.

Let c be so that f∗c |v̄ci | > t ≥ f∗c+1|v̄
c+1
i | . Then, increasing t by one would increase the length of p̄

by q and increases the size of the matching by c. To see the effect of this increment on the advantage,
note that the denominator does not change and the numerator changes by c(2z+1)− z+z2

q · q. This
change in advantage is positive as long as

c(2z + 1)− (z + z2) ≥ 0

⇒ c ≥ z + z2

2z + 1
=
z

2
+

(
1

4
− 1

4(2z + 1)

)
Note that the term 1

4 −
1

4(2z+1) is always between
[
0, 1

4

]
. Hence, incrementing t increases the

advantage as long as c ≥ b z2c+ 1. This means that the highest possible advantage is derived when

t = f∗w|v̄wi | for w = b z2c + 1. With this value for t, the matching contains f∗j |v̄
j
i | edges between jt

and |v̄ji | for all j > w and t edges between jt and |v̄ji | for j ≤ w. Therefore, the size of this matching
is

tw +

q∑
j=w+1

f∗j |v̄
j
i |.

This gives yields the following advantage

(2z + 1)
[
tw +

∑q
j=w+1 f

∗
j |v̄

j
i |
]
− |v̄i| − z+z2

q · qt

|v̄i|

=
(2z + 1)

[
f∗w|v̄wi |w +

∑q
j=w+1 f

∗
j |v̄

j
i |
]
− |v̄i| − z+z2

q · qf∗w|v̄wi |

|v̄i|

= (2z + 1)

f∗wpww +

q∑
j=w+1

f∗j pj

− 1− (z + z2) · f∗wpw

=
[
(2z + 1)w − (z + z2)

]
· f∗wpw + (2z + 1)

q∑
j=w+1

f∗j pj − 1

We remind that this is an upper-bound on the advq,z
M̄i

. Next, we plug in w = b z2c + 1 into this
bound. Note that

(2z + 1)w − (z + z2) = z(2w − z) + w − z =

{
3z+2

2 If z is even
z+1

2 If z is odd
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Therefore, the have the following set of upper-bounds on the advantage

advq,z
M̄i
≤ 3z+2

2 · f∗wpw + (2z + 1)
∑q

j=w+1 f
∗
j pj − 1 If z is even (22)

advq,z
M̄i
≤ z+1

2 · f
∗
wpw + (2z + 1)

∑q
j=w+1 f

∗
j pj − 1 If z is odd (23)

Step 3. Proving Non-positivity of the Bound from Step 3 for Unit Sum Vectors: In
this step, we show that the bounds (22) and (23) on advantage that were presented in Step 2 are
necessarily non-positive for any vector (f∗1 , · · · , f∗q ) with unit sum including the vector of overall

frequencies f̄ = (f̄1, · · · , f̄q) where f̄j =
countj(v̄i)
|v̄i| = F ji . In Step 4, we use this fact to show that f∗

needs to deviate noticeably from f̄ which gives that the variance of frequencies with respect to T
is large enough, thus finishing the proof.

Proposition 5.13. Let (p1, · · · , pq) and (f∗1 , · · · , f∗q ) be two positive real vectors with unit sum that
satisfy

f∗1 p1 ≥ f∗2 p2 ≥ · · · ≥ f∗q pq.

Then, for all integers 1 ≤ z < q, the following hold for w = b z2c+ 1:

1. If z is even,

3z + 2

2
· f∗wpw + (2z + 1)

q∑
j=w+1

f∗j pj ≤ 1.

2. If z is odd,

z + 1

2
· f∗wpw + (2z + 1)

q∑
j=w+1

f∗j pj ≤ 1.

We defer the proof of Proposition 5.13 to Appendix A.2.

Step 4. Large Deviation of f∗s from f̄s and Large Variance: Here we finish the proof
assuming z is odd. The even case can be proved in the same way. Note that Proposition 5.13 gives
that for the overall frequency vector f̄ which has a unit sum,

z + 1

2
· f̄wpw + (2z + 1)

q∑
j=w+1

f̄jpj − 1 ≤ 0. (24)

However, (21) and (23) imply that for local frequency vector f∗

z + 1

2
· f∗wpw + (2z + 1)

q∑
j=w+1

f∗j pj − 1 ≥ advq,zMi
− 3qε2. (25)
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Subtracting (24) from (25) gives that

z + 1

2
· pw(f∗w − f̄w) + (2z + 1)

q∑
j=w+1

(f∗j − f̄j)pj ≥ advq,zMi
− 3qε2.

⇒ z + 1

2
· pw|f∗w − f̄w|+ (2z + 1)

q∑
j=w+1

|f∗j − f̄j |pj ≥ advq,zMi
− 3qε2.

⇒ (2z + 1)

q∑
j=w

|f∗j − f̄j |pj ≥ advq,zMi
− 3qε2.

⇒
q∑

j=w

|f∗j − f̄j |pj ≥
advq,zMi

− 3qε2

2z + 1
.

This means that there exists some j0 for which

|f∗j0 − f̄j0 |pj0 ≥
advq,zMi

− 3qε2

2z + 1
⇒ (f∗j0 − f̄j0)2pj0 ≥ (f∗j0 − f̄j0)2p2

j0 ≥

(
advq,zMi

− 3qε2

2z + 1

)2

.

Note that

q∑
p=1

VarT
(
E
[
F pi+1|vi, T

])
=

q∑
p=1

q∑
j=1

(E
[
F pi+1|vi, T = j

]
− F pi )2 Pr{T = j|vi}

≥
(
E
[
F j0i+1|vi, T = j0

]
− F j0i

)2
Pr{T = j0|vi}

= (f∗j0 − f̄j0)2pj0 ≥

(
advq,zMi

− 3qε2

2z + 1

)2

.
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A Missing Proofs

A.1 Proof of Theorem 5.2

Let p1 = (γ1, δ1) and p2 = (γ2, δ2) be in the infeasibility region and take an α in (0, 1). We prove
the infeasibility of αp1 + (1 − α)p2. For the sake of contradiction, assume that there exists an
infinite family of codes C = {C1, C2, · · · } achieving a positive rate against αp1 + (1− α)p2 fraction
of insertions and deletions. We derive contradiction by a simple time-sharing argument through
proposing an adversary that is restricted to split the message of length n into two pieces of size
n1 = αn and n2 = (1−α)n and utilizes niδi deletions and niγi insertions in the piece of size ni for
i ∈ {0, 1}.

Let us define Ci = {Ci1, Ci2, · · · } for i ∈ {1, 2} so that the code Cij is obtained from the code
Cj with block length n by only picking the corresponding piece of size ni from each codeword of
Cj . Note that the fact that Cj is list-decodable from any αp1 + (1− α)p2 insertions and deletions
and specifically from error pattern imposed by the adversary described above implies that Cij is
list-decodable from (γi, δi) insertions and deletions.

Given the assumption of infeasibility at (γi, δi), we have that |Cij | < qεni for any ε > 0. There-
fore, for any ε > 0,

|Cj | ≤ |C1
j | × |C2

j | < qε(n1+n2) = qεn.

which implies that code C does not yield a positive rate.

A.2 Proof of Proposition 5.13

To prove Proposition 5.13 we provide several observations that simplify the form of the solution
that yields the maximum value by reducing the number of important free variables.

Observation A.1. Any solution that maximizes the left-hand-side satisfies

f∗1 p1 = f∗2 p2 = · · · = f∗wpw.

We start with f∗w−1pw−1 = f∗wpw. Assume by contradiction that f∗w−1pw−1 > f∗wpw. Then,
there exists a small positive value ε for which decreasing f∗w−1 by ε and increasing f∗w by ε would
preserve f∗w−1pw−1 ≥ f∗wpw but increase the overall value of the expression. This contradicts the fact
that the solution maximizes the left-hand-side value. Similarly, if f∗w−2pw−2 > f∗w−1pw−1 = f∗wpw,
same idea executed on f∗w−2pw−2 and f∗w−1pw−1 turns the solution into one for which f∗w−2pw−2 ≥
f∗w−1pw−1 > f∗wpw which is, again, contradictory to the fact that the solution maximizes the left-
hand-size. Continuing this argument gives Observation A.1.

We next present the two following lemmas that we will prove later in Appendix A.2.1.

Lemma A.2. Let f1, · · · , fq and p1, · · · , pq be positive numbers for which
∑q

i=1 fi = F,
∑q

i=1 pi =
P and f1p1 ≥ f2p2 ≥ · · · ≥ fqpq. Then

fqpq ≤
FP

q2

and equality is attained only at fi = F
q and pi = P

q for all i ∈ {1, 2, · · · , q}.

Lemma A.3. Let f1, · · · , fq and p1, · · · , pq be positive variables with constraints
∑q

i=1 fi = F ,∑q
i=1 pi = P , f1p1 ≥ f2p2 ≥ · · · ≥ fqpq, and f1p1 ≤ m for some constant m. Then, the largest
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possible value for
∑q

i=1 fipi is:

fmax(F, P,m) =


FP if FP ≤ m
um+ (

√
FP − u

√
m)2 if FP

(u+1)2
≤ m < FP

u2
for u = 1, 2, · · · , q − 1

mq if m < FP
q2

We claim that if one fixes the two quantities f∗wpw = α and
∑w

j=1 pj = β, then using obser-
vation 1 and Lemmas A.2 and A.3, the maximum value of the two terms in the statement of the
theorem can be written in terms of α and β. Note that with f∗wpw = α, both expressions are
maximized when

∑q
j=w+1 f

∗
j pj is maximized and according to Lemma A.3, that happens when

(
∑q

i=w+1 f
∗
i )(
∑q

i=w+1 pi) = (
∑q

i=w+1 f
∗
i )(1 − β) is maximized or equivalently

∑w
i=1 f

∗
i is as small

as possible.

Now, note that for j ≤ w all f∗j pj ’s are larger than or equal to α. Then according to Lemma A.2,
(
∑w
i=1 f

∗
i )×β

w2 ≥ α⇒
∑w

i=1 f
∗
i ≥ αw2

β .

All in all, the above-mentioned observations and lemmas boil down the two parts of theorem
statement to the following:

For any α, β ∈ [0, 1] where αw2

β ≤ 1:

1. If z is even,
3z + 2

2
α+ (2z + 1)fmax

(
1− αw2

β
, 1− β, α

)
≤ 1

2. If z is odd,
z + 1

2
α+ (2z + 1)fmax

(
1− αw2

β
, 1− β, α

)
≤ 1

Note that to maximize fmax term for a given α, one needs to maximize
(

1− αw2

β

)
(1− β). This

is attained with the following choice of β =
√
αw. With this choice of β we have

fmax

(
1−
√
αw, 1−

√
αw,α

)
=



(1−
√
αw)2 if (1−

√
αw)2 ≤ α

uα+ (1− w
√
α− u

√
α)2 if (1−

√
αw)2

(u+1)2
≤ α < (1−

√
αw)2

u2

for 1 ≤ u ≤ q − w
αq if α < (1−

√
αw)2

(q−w)2

=



(1−
√
αw)2 if α ∈

[
1

(w+1)2
, 1
w2

]
uα+ (1− (w + u)

√
α)2 if α ∈

[
1

(w+u+1)2
, 1

(w+u)2

)
for 1 ≤ u ≤ q − w

αq if α < 1
q2

Note that we require that β ≤ 1 ⇒ α ≤ 1
w2 . Therefore in the second line the regions for α are

truncated at 1
w2 .

As the next step, we plug in the above description for fmax into each of the two terms and
derive a piece-wise characterization of them based on α.
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1. If z is even,

LHS =



3z+2
2 α+ (2z + 1)(1−

√
αw)2 if α ∈

[
1

(w+1)2
, 1
w2

]
3z+2

2 α+ (2z + 1)
[
uα+ (1− (u+ w)

√
α)2
]

if α ∈
[

1
(w+u+1)2

, 1
(w+u)2

)
for u = 1, 2, · · · , q − w

3z+2
2 α+ (2z + 1)αq if α < 1

q2

Note that this function is continuous. The derivative in α < 1
q2

region is positive meaning
that the function is increasing in that region.

For the region α ∈
[

1
(w+1)2

, 1
w2

]
,

∂2

∂α2

[
3z + 2

2
α+ (2z + 1)(1−

√
αw)2

]
= (z/2 + 1)(z + 1/2)α−3/2 > 0

Therefore, the function is concave in this region; giving that the maximum value in this region
is obtained either at 1

(w+1)2
or 1

w2 . Note that we can easily exclude 1
w2 as LHS function has

a value of zero there.

We now analyze the derivative for the regions of form α ∈
[

1
(w+u+1)2

, 1
(w+u)2

]
∂

∂α

[
3z + 2

2
α+ (2z + 1)

(
uα+ (1− (u+ w)

√
α)2
)]

=
3z + 2 + (4z + 2)((u+ w)2 + u)

2
− (u+ w)(2z + 1)√

α

and hence,

∂2

∂α2

[
3z + 2

2
α+ (2z + 1)

(
uα+ (1− (u+ w)

√
α)2
)]

= (u+ w)(2z + 1)α−3/2

and is always positive. Giving that within each region of form α ∈
[

1
(w+u+1)2

, 1
(w+u)2

]
the

expression is concave and attains no local maximum. The above observations along with the
fact that this piece-wise function is continuous, gives that the global maximum is necessarily
of the form α = 1

(w+u+1)2
for some u = 0, 1, 2, · · · , q − w. Note that at such point the value

of LHS is

LHS(u) =
3z + 2

2
α+ (2z + 1)

[
uα+ (1− (w + u)

√
α)2
] ∣∣∣∣∣
α= 1

(w+u+1)2

=
3z + 2

2(w + u+ 1)2
+ (2z + 1)

u+ 1

(w + u+ 1)2

=
3z + 2 + 2(2z + 1)(u+ 1)

2(w + u+ 1)2
=

7z + 4 + 2(2z + 1)u

2(w + u+ 1)2
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To find the optimum u, we take derivative with respect to u.

∂

∂u
LHS(u) = 0

⇔ 2(2z + 1)2(w + u+ 1)2 − (7z + 4 + 2(2z + 1)u)4(w + u+ 1) = 0

⇔ (2z + 1)(w + u+ 1)− (7z + 4 + 2(2z + 1)u) = 0

⇔ −u(2z + 1) + (2z + 1)(z/2 + 2)− (7z + 4) = 0

⇔ u =
(2z + 1)(z/2 + 2)− (7z + 4)

2z + 1
=
z2 + 9

2z + 2− 7z − 4

2z + 1

⇔ u =
(2z + 1)(z/2 + 2)− (7z + 4)

2z + 1
=
z2 − 5

2z − 2

2z + 1
=
z

2
− 3z + 2

2z + 1

Note that the term 3z+2
2z+1 is always between 1 and 2. Hence, the maximum is achieved either

at u = z
2 − 1 or u = z

2 − 2. We simply compute LHS(u) for both of these values to obtain
the maximum.

LHS
(z

2
− 1
)

=
7z + 4 + 2(2z + 1)(z/2− 1)

2(z + 1)2
=

2z2 + 4z + 2

2(z + 1)2
= 1

and

LHS
(z

2
− 2
)

=
7z + 4 + 2(2z + 1)(z/2− 2)

2z2
=

2z2

2z2
= 1

meaning that, indeed, the maximum achievable value for even z is 1. This finishes the proof
for even zs. The maximum value 1 can be achieved by f∗1 = · · · = f∗m = 1

m = p1 = · · · = pm
and all other values equal to zero for m = z or z + 1.

2. If z is odd,

LHS =



z+1
2 α+ (2z + 1)(1−

√
αw)2 if α ∈

[
1

(w+1)2
, 1
w2

]
z+1

2 α+ (2z + 1)
[
uα+ (1− (u+ w)

√
α)2
]

if α ∈
[

1
(w+u+1)2

, 1
(w+u)2

)
for u = 1, 2, · · · , q − w

z+1
2 α+ (2z + 1)αq if α < 1

q2

Note that this function is continuous. The derivative in α < 1
q2

region is positive meaning
that the function is increasing in that region.

Similar to the even z case, for regions α ∈
[

1
(w+1)2

, 1
w2

]
and α ∈

[
1

(w+u+1)2
, 1

(w+u)2

]
, the

second derivative is positive.

∂2

∂α2

[
z + 1

2
α+ (2z + 1)(1−

√
αw)2

]
=

(z + 1)(z + 1/2)

2
α−3/2 > 0

∂2

∂α2

[
z + 1

2
α+ (2z + 1)

(
uα+ (1− (u+ w)

√
α)2
)]

= (u+ w)(2z + 1)α−3/2

Meaning that, once again, the global maximum is attained at a point necessarily of the form
α = 1

(w+u+1)2
for some u = 0, 1, 2, · · · , q − w. Note that at such point the value of LHS is
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LHS(u) =
z + 1

2
α+ (2z + 1)

[
uα+ (1− (w + u)

√
α)2
] ∣∣∣∣∣
α= 1

(w+u+1)2

=
z + 1 + 2(2z + 1)(u+ 1)

2(w + u+ 1)2
=

5z + 3 + 2(2z + 1)u

2(w + u+ 1)2

To find the optimum u, we take derivative with respect to u.

∂

∂u
LHS(u) = 0

⇔ 2(2z + 1)2(w + u+ 1)2 − (5z + 3 + 2(2z + 1)u)4(w + u+ 1) = 0

⇔ (2z + 1)(w + u+ 1)− (5z + 3 + 2(2z + 1)u) = 0

⇔ −u(2z + 1) + (2z + 1)
z + 3

2
− (5z + 3) = 0

⇔ u =
(2z + 1)(z + 3)/2− (5z + 3)

2z + 1
=
z2 + 7

2z + 3/2− 5z − 3

2z + 1

⇔ u =
z2 − 3

2z −
3
2

2z + 1
=
z − 1

2
− z + 1

2z + 1

Note that the term z+1
2z+1 is always between 0 and 1. Hence, the maximum is achieved either at

u = z−1
2 or u = z−3

2 . We simply compute LHS(u) for both of these values to obtain the maximum.

LHS

(
z − 1

2

)
=

5z + 3 + 2(2z + 1)(z − 1)/2

2(z + 1)2
=

2z2 + 4z + 2

2(z + 1)2
=
z2 + 2z + 1

z2 + 2z + 1
= 1

and

LHS

(
z − 3

2

)
=

5z + 3 + 2(2z + 1)(z − 3)/2

2z2
=

2z2

2z2
= 1

meaning that, indeed, the maximum achievable value for odd z is 1. This finishes the proof.
The maximum value 1 in the case of odd z can be achieved by setting f∗1 = · · · = f∗m = 1

m = p1 =
· · · = pm and all other values equal to zero for m = z or z + 1.

A.2.1 Proof of Auxiliary Lemmas A.2 and A.3

Proof of Lemma A.2. We prove this by induction on q. For the base case of q = 1 correctness
is trivial. For any q > 1, we want to find the fq and pq that maximize fqpq and for which an

appropriate f1, · · · , fq−1 and p1, · · · , pq−1 exists. Note that
∑q−1

i=1 fi = 1−fq and
∑q−1

i=1 pi = 1−pq.
Therefore, by the induction hypothesis, the largest possible amount that fq−1pq−1 can take would

be
(F−fq)(P−pq)

(q−1)2
. This gives that a pair (fq, pq) are feasible in equations described in the lemma’s

statement if and only if fqpq ≤ (F−fq)(P−pq)
(q−1)2

.
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Note that

fqpq ≤
(F − fq)(P − pq)

(q − 1)2

⇒ fq

(
pq +

P − pq
(q − 1)2

)
≤ F (P − pq)

(q − 1)2

⇒ fq ≤
F (P − pq)

pq(q − 1)2 + P − pq

⇒ fqpq ≤
F (P − pq)pq

pq(q2 − 2q) + P

We know determine the maximum value of the right hand side over the choice of pq by setting
the derivative to zero.

(FP − 2Fpq)(pq(q
2 − 2q) + P )− F (P − pq)pq(q2 − 2q)

(pq(q2 − 2q) + P )2
= 0

⇒ P 2 − 2Ppq − (q2 − 2q)p2
q = 0

⇒ pq =
−2P ±

√
4P 2 + 4P 2(q2 − 2q)

2(q2 − 2q)
=
−P ±

√
P 2(q2 − 2q + 1)

q2 − 2q

=
−P ± P (q − 1)

q2 − 2q

The only positive solution is pq = P
q that yields fqpq = FP

q2
with fq = F

q . Note that by the

induction hypothesis, this is obtained only when pi =
P−pq
q−1 = P

q and fi =
F−fq
q−1 = F

q for all
i = 1, 2, · · · , q − 1.

Proof of Lemma A.3. We start with the simple observation that in any optimal solution in which
f1p1 = min(m,FP ). Assume for the sake of contradiction that this is not the case. Let j be the
smallest integer such that fjpj > 0. Clearly, either f1 > fj or p1 > pj . Without loss of generality
assume that the former holds. Then, it is easy to verify that there exists a small enough ε > 0
such that reducing fj by ε and increasing f1 by ε yields a strictly larger solution and contradicts
the optimality assumption.

Having this observation, we prove the lemma by induction over q. As the basis of the induction,
take the case where q = 2. If m ≥ PQ, then using the above-mentioned observation, setting f1 = F ,
p1 = P , and the rest of the variables to zero yields the optimal solution. Otherwise, the observation
rules that f1 and p1 must be chosen such that f1p1 = m. A straight forward calculation shows that
with the following choice of f1 and p1, f1p1 = f2p2 = m that is trivially an optimal solution.

f1 =
FP +

√
F 2P 2 − 4mFP

2P
, p1 =

FP −
√
F 2P 2 − 4mFP

2F

f2 =
FP −

√
F 2P 2 − 4mFP

2P
, p2 =

FP +
√
F 2P 2 − 4mFP

2F

For the induction step, assume that the lemma holds for q−1. Once again we use the observation
to determine f1 and p1 first. If FP ≤ m, setting f1 = F , p1 = P , and all other values to zero
gives the optimal solution. Otherwise, we have to choose f1 and p1 such that f1p1 = m. We
can use the induction hypothesis for q′ = q − 1 to set the rest of the variables with parameters
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m′ = m, F ′ = F − f1, and P ′ = P − p1. Note that fmax is actually a function of FP and
not F and P . Therefore, in the optimal solution f1 and p1 are chosen such that f1p1 = m and
(F − f1)(P − p1) = FP +m− f1P − p1F is maximized, or equivalently, f1P + p1F is minimized.

Note that f1P + p1F = f1P + mF
f1

. Hence one has to choose f1 =
√

mF
P and p1 =

√
mP
F .

With this choice for f1 and p1, F ′P ′ = FP + m − 2
√
mFP = (

√
FP −

√
m)2. Note that if

m < FP
u2
⇔ u2 < FP

m ⇔ u <
√
FP√
m

=
√
F ′P ′√
m

+ 1⇔ m < F ′P ′

(u−1)2
.

Hence, if FP
(u+1)2

≤ m < FP
u2

for some u = 2, · · · , q − 2, then F ′P ′

u2
≤ m < F ′P ′

(u−1)2
and

fmax(F, P,m) = m+ (u− 1)m+ (
√
F ′P ′ − (u− 1)

√
m)2 = um+ (

√
FP −m)2.

If FP
4 ≤ m < FP , fmax = f1p1 + f2p2 = m+ (F − f1)(P − p1) = m+ (

√
FP −

√
m)2.

Finally, if m < FP
q2
⇔ m < (

√
F ′P ′+

√
m)2

q2
⇔ m < F ′P ′

(q−1)2
and, therefore, fmax = m+m(q − 1) =

mq.
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