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Abstract
In this paper we show that the QBF proof checking format QRAT (Quantified Resolution Asymmetric
Tautologies) by Heule, Biere and Seidl cannot have polynomial-time strategy extraction unless
P=PSPACE. In our proof, the crucial property that makes strategy extraction PSPACE-hard for
this proof format is universal expansion, even expansion on a single variable.

While expansion reasoning used in other QBF calculi can admit polynomial time strategy
extraction, we find this is conditional on a property studied in proof complexity theory. We
show that strategy extraction on expansion based systems can only happen when the underlying
propositional calculus has the property of feasible interpolation.
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1 Introduction

Quantified Boolean logic is an extension of propositional logic in which variables may be
existentially or universally quantified. This can allow problems to be represented more
succinctly than is possible in propositional logic. Deciding the truth of a quantified Boolean
formula (QBF) is PSPACE-complete. Propositional proof systems can be lifted to the QBF
situation by the addition of rules to handle the universal quantification.

In addition to deciding whether a given QBF is true or false it is desirable that algorithms
for solving QBFs can provide verification by outputting a proof. The QRAT proof sys-
tem [13] is sufficiently strong to simulate the reasoning steps of all current QBF solvers and
preprocessors and is a candidate for a standard format for verification of solvers.

In many settings it is not simply desirable to know that a QBF is true or false but also
to find functions that witness to this. For example, QBFs may be used to model safety
verification so that if the QBF is false then the modelled system is able to reach an unsafe
state. It is important to also know how this state may be reached. If a QBF is true (resp.
false) then there must exist Skolem (resp. Herbrand) functions for the existentially (resp.
universally) quantified variables that certify this. Substituting the certifying Skolem functions
in to the original QBF yields a tautology. Equivalently, substituting Herbrand functions
results in an unsatisfiable propositional formula. The ability to efficiently extract Skolem or
Herbrand functions from the proof output by a QBF solver is called strategy extraction.

There are generally two main paradigms in QBF solving: QCDCL (Conflict Driven
Clause Learning) and QBF expansion. Both of these paradigms borrow techniques from
propositional satisfiability solving for existential variables, but they differ in how they handle
universal variables. The performance and limitations of these solvers can be analysed by
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studying proof systems that follow the solver steps. QCDCL adds the universal reduction rule,
such as in the Q-Res proof system. QBF expansion, on the other hand, adds the universal
expansion rule such as in the proof system ∀Exp+Res. Both Q-Res and ∀Exp+Res are based
on the resolution system in propositional logic.

The relationship between the two systems has been studied extensively in both QBF
theory and practice. In [15, 4] it was shown that Q-Res and ∀Exp+Res are incomparable.
However the picture becomes much more nuanced on certain fragments of QBF. Lonsing
and Egly ran experiments on QBFs which were parametrised by the number of quantifier
alternations and found better performance in the expansion based solvers on formulas with a
low number of alternations [20]. This observation was confirmed in proof complexity in [3]
where the expansion calculus ∀Exp+Res was shown to polynomially simulate the QCDCL
calculus Q-Res on bounded quantifier alternations.

As well as using the calculi Q-Res and ∀Exp+Res to compare the strengths of the two
types of QBF solvers, other properties can be studied for each of these systems. One very
important property is the aforementioned strategy extraction. Often the strategies are just
as important as whether a QBF is true or false. Many QBF proof systems with the universal
reduction rule (from QCDCL) have been studied and shown to have polynomial-time strategy
extraction using a technique from [1] and later generalised in [2, 7]. For QBF systems with
universal expansion some strategy extraction results are known using a different technique
[11, 4].

QRAT is a very different kind of proof system, not only can it simulate both the universal
reduction and expansion rules but it draws from a stronger form of propositional reasoning
than resolution. With this power it has been shown to simulate a number of different QBF
proof systems [16, 17].

Strategy extraction on a universal checking format like QRAT would have certain benefits
for the solving community. One could extract a QRAT proof from a solver and then from
that proof separately extract the Skolem/Herbrand functions that give the winning strategy.
This would avoid having to extract strategies directly from solvers while they are running
which may affect performance.

On the other hand the property of strategy extraction can actually provide a source of
weakness in QBF proof systems. In fact, a source of weakness in Q-Res is that it can always
extract strategies as bounded depth circuits. This means that QBFs with winning strategies
that can not be expressed in small bounded depth circuits necessarily have large Q-Res proofs
[4]. This is similar to the proof size lower bound technique based on feasible interpolation
[19, 21] where if a propositional proof system can extract Craig interpolants in polynomial
time then super-polynomial interpolant size lower bounds become super-polynomial proof
size lower bounds.

It was shown in [12] that Skolem functions to certify that a QBF is true can be extracted
in polynomial time from a QRAT proof. In [8] a partial result was presented showing that
Herbrand functions may be extracted from proofs in a restricted version of refutational
QRAT. Here, we show that it is not possible in general to efficiently extract Herbrand
functions certifying falsity from proofs in QRAT. This is due to QRAT providing short proofs
to formulas that have PSPACE-hard strategies. Thus we show the asymmetry between the
refutation or false QBF and proof of true QBF in the QRAT system. We demonstrate that
this is due to the presence of universal expansion steps which manifest from the powerful
reduction rules in the full QRAT proof system. [13, 17].

The universal expansion reasoning technique is present in QBF proof systems other than
QRAT, but does not always exhibit the same hardness issues that we demonstrate for QRAT
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regarding strategy extraction. For example, the proof system ∀Exp+Res [15] uses expansion,
but allows polynomial time strategy extraction [4]. In this paper we strengthen the important
connection, first explored in [5], between strategy extraction and feasible interpolation.

This paper is organised as follows: Section 2 introduces the main concepts used in this
paper. We show that strategy extraction in QRAT is PSPACE-hard in Sections 3 and 4. In
Section 5 we look at expansion based systems that do have strategy extraction. We show that
it is necessary for their underlying proof systems to have feasible interpolation. A sufficient
condition with a relationship to feasible interpolation is also shown.

2 Preliminiaries

2.1 Proof Complexity

Let Γ be an alphabet and L a language over Γ. A proof system [9] for L is a polynomial-time
computable partial function f : Γ? ⇁ Γ? with range L. The size |π| of a proof π in Γ? is
the number of characters it contains. f maps a proof to the theorem it proves (or refutes,
in the case of a refutational proof system). Soundness of f requires that rng(f) ⊆ L and
completeness that rng(f) ⊇ L.

In propositional logic a literal is a Boolean variable x or its negation ¬x. A clause is
disjunction of literals. A formula in conjunctive normal form (CNF) is a conjunction of
clauses. Let l be a literal. If l = x then l̄ = ¬x, if l = ¬x then l̄ = x. A PCNF is naturally
understood as a set of clauses, and a clause as a set of literals. Where it is convenient to
do so we will therefore use set notation C ∈ φ and l ∈ C to state that clause C appears
in the matrix of QBF Ψ = Πφ and literal l appears in clause C. It is often convenient to
notationally treat clauses as unordered disjunctions and sets simultaneously, so we can use
C ∨ l to denote the clause that contains all literals of clause C and also the literal l if it is
not already included, and D ∪E to denote the disjunction of all literals that appear in either
clause D or E. An assignment τ for formula A over n variables is a partial function from the
variables of A to {0, 1}n. For clause C, τ(C) is the result of evaluating C under assignment
τ . For formula (or circuit) A, we define A[b/x] so that all instances of variable x in A are
replaced with b ∈ {0, 1}.

2.2 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) extend propositional logic by allowing Boolean vari-
ables to be universally or existentially quantified [18]. ∀xΨ is satisfied by the same truth
assignments as Ψ[0/x] ∧ Ψ[1/x] and ∃xΨ is satisfied by the same truth assignments as
Ψ[0/x] ∨Ψ[1/x]. In a closed QBF all variables must be quantified. A QBF is in prenex form
if all quantification occurs before any propositional connectives, so a prenex QBF Ψ consists
of a prefix Π defining how each variable is quantified and a propositional part φ called the
matrix. We write Ψ = Πφ. The prefix Π has a linear structure. A PCNF is a QBF in prenex
form and with the propositional part in conjunctive normal form. We consider only closed
PCNFs.

Starting from the left we can assign each variable x a level, denoted lv(x). The first
variable has level 1. The level is incremented by 1 every time the quantifier type changes
and otherwise remains the same. It is often convenient to write quantifiers in a prefix only
when the level changes. When QBF are written in this way we can think of entire levels
quantifying blocks of variables.
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2.3 Winning Strategies
A closed prenex QBF is analogous to a game between two players where one player is
responsible for assigning values to the existentially quantified variables, and the other to the
universally quantified variables. The players make assignments according to the quantifier
prefix, so each level of the prefix corresponds to one turn in the game. The existential player
wins the game if the formula evaluates to true once all assignments have been made, the
universal player wins if the formula evaluates to false.

A strategy for the universal player on QBF Πφ is a set of rules for making the assignments
to each universal u. The rule for setting u must depend only on variables earlier than u in
Π, respecting the idea that when u is being decided the universal player cannot know what
choices will be made in future turns. If this strategy ensures the universal player always
wins games on Πφ (however the existential player makes assignments), then it is called a
winning strategy. A QBF is false if and only if the universal player has a winning strategy.
Strategies for the existential player are defined analogously. A refutational proof system is
said to admit strategy extraction if and only if it is possible to efficiently (i.e. in polynomial
time in the size of the proof) construct a circuit representing a winning strategy for the
universal player from a refutation of a QBF.

2.4 Expansion-based proof systems
Since QBF includes and extends all propositional formulas, proving (or refuting) QBFs
typically involves adapting existing propositional proof systems to deal with variables that
are now quantified.

One such approach is to take the semantic definition of the universal quantifier ∀uΨ =
Ψ[0/u]∧Ψ[1/u], this can be used as a rule to eliminate universal quantifiers. If Ψ is a QBF then
Ψ[0/u] and Ψ[1/u] each contain their own quantifiers, the variables bound by these quantifiers
would have to be renamed to avoid repeating the other’s variables. We take a convention of
putting a partial assignment in the superscript on the renaming of these variables such that
the variables ~x = {xi | i ∈ I} bound in Ψ are renamed ~x0/u = {x0/u

i | i ∈ I} in Ψ[0/u] and
~x1/u = {x1/u

i | i ∈ I} in Ψ[1/u]. Repeated expansions create a larger superscript e.g.

∀u∃x∀v∃y(¬u ∨ x ∨ v ∨ ¬y)

= ∀u∃xy0/vy1/v(¬u ∨ x ∨ 0 ∨ ¬y0/v) ∧ (¬u ∨ x ∨ 1 ∨ ¬y1/v)

= ∀u∃xy0/vy1/v(¬u ∨ x ∨ ¬y0/v)

= ∃x0/ux1/uy0/u,0/vy0/u,1/vy1/u,0/vy1/u,1/v(1 ∨ x0/u ∨ ¬y0/u,0/v) ∧ (0 ∨ x1/u ∨ ¬y1/u,0/u)

= ∃x0/ux1/uy0/u,0/vy0/u,1/vy1/u,0/vy1/u,1/v(x1/u ∨ ¬y1/u,0/u)

Note that because we started here with a prenix formula, we can maintain that throughout
the expansions. In the end, once we expand all universal variables we just get a prenex QBF
with only existential quantifiers, this is known as a full expansion. What we are left with
is a satisfiability problem. If we use a refutation system Q we can attempt to refute the
expanded formula.

In fact any for any refutational propositional proof system Q we can create a refutational
QBF proof system, (that is refutationally complete) by taking the full expansion and showing
a contradiction using propositional system Q. Such a system would easily have many
exponential lower bounds due to the explosion caused by the full expansion on a linear
number of universal variables.



L. Chew and J. Clymo XX:5

In practice we can often do better than this. The full expansion gives a large conjunction
and we may only need to use some of the conjuncts in order to prove a contradiction. This
can be tightened up further when the original QBF is a prenexed conjunction (like a PCNF),
checking whether a conjunct is in the full expansion can be decided in polynomial time. We
define this formally below.

2.4.1 Q+∀Exp0,1

We start with a propositional proof system Q and prenex QBF Πφ, where Π is the quantifier
prefix and φ is a propositional matrix in variables of Π, we treat φ as a conjunction of
formulas.

Let τ be a full assignment to all universal variables and let l be an existential literal.
We define restrictl(τ) to be the partial assignment of τ for all universal variables left of the
variable of l in the prefix. Now let us use that to define Cτ , where C is a propositional
formula in both existential and universal variables.

Cτ is the same as C except we replace every existential variable l with the annotated
variable lrestrictl(τ) and every universal variable l with its value τ(l).

I Definition 1. The refutational QBF proof system Q+∀Exp0,1 [2] allows the instantiation
of axiom Cτ , whenever C is a conjunct from the matrix and τ is an assignment to all
universal variables. A Q refutation of the conjunction of the axioms is provided, treating
differently annotated variables as different.

A Q+∀Exp0,1 proof π of QBF Φ therefore consists of a propositional Q proof of a
sub-conjunction of the full expansion, we denote this conjunction as subexpπ(Φ).

A well-known example of Q+∀Exp0,1 is when Q is propositional resolution (known as
∀Exp+Res in the literature [15]). This is the proof system that underlies the reasoning in
the competitive QBF solver RAReQS [14]. Resolution is chosen because of its use in SAT
solving.

2.5 QRAT
The QRAT proof system [13] was introduced as a universal proof checking format for QBF.
It is able to express many QBF preprocessing techniques and proof systems. QRAT works
on a PCNF QBF Πφ which is modified throughout the proof by satisfiability preserving rules.
Clauses may be added, altered or deleted depending on the current status of Πφ.

QRAT may be used either to prove that a QBF is true or to refute it. The refutational
version of QRAT uses the following rules: Asymmetric Tautology Addition (ATA), Quantified
Resolution Asymmetric Tautology Addition (QRATA), Quantified Resolution Asymmetric
Tautology Universal (QRATU), Extended Universal Reduction (EUR), and Clause Deletion.
We define only the rules that are relevant for this paper, for a full definition of the QRAT
system please refer to [13].

If C is a clause, then C̄ is the conjunction of the negation of the literals in C. Unit
propagation is a procedure on a formula φ in CNF that builds a partial assignment τ . τ is
applied to φ and then for any literal l that appears in a singleton (unit) clause in the resulting
formula the assignment satisfying l is added to τ . This is repeated until reaching fix-point,
which must happen in polynomial time in the number of clauses in φ. Unit propagation is
used extensively in QRAT for deciding whether a derivation rule may be applied. We denote
that empty clause ⊥ is derived by unit propagation applied to Πφ by Πφ `1 ⊥.
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I Definition 2 (Asymmetric Tautology Addition (ATA)). Let Πφ be a closed PCNF with prefix
Π and CNF matrix φ. Let C be a clause not in φ. Let Π′ be a prefix including the variables
of C and φ, Π is a sub-prefix of Π′ containing the variables of φ only.

Suppose Π′φ ∧ C̄ `1 ⊥. Then we can make the following inference

Πφ (ATA)
Π′φ ∧ C

I Definition 3 (Outer Clause). Let Πφ be a PCNF with closed prefix Π and CNF matrix φ.
Let C be a clause not in φ. Let Π′ be a prefix including the variables of C and φ, Π is a
sub-prefix of Π′ containing the variables of φ only.

Suppose C contains a literal l. Consider all clauses D in φ with l̄ ∈ D. The outer clause
OD of D is {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}.

I Definition 4 (Quantified Resolution Asymmetric Tautology Addition (QRATA)). Let Πφ be a
PCNF with closed prefix Π and CNF matrix φ. Let C be a clause not in φ. Let Π′ be a prefix
including the variables of C and φ, Π is a sub-prefix of Π′ containing the variables of φ only.

If C contains an existential literal l such that for every D ∈ φ with l̄ ∈ D, Πφ∧C̄∧ŌD `1 ⊥
then we can derive

Πφ (QRATA w.r.t. l)
Π′φ ∧ C

I Definition 5 (Extended Universal Reduction (EUR)). Given a clause C ∨ u with universal
literal u, consider extending C by

C := C ∪ {k ∈ D | lv(k) >Π lv(u) or k = ū} ,
where D ∈ φ is any clause with some p : lv(p) >Π lv(u), p ∈ C and p̄ ∈ D,
until we reach a fix-point denoted ε. If ū /∈ ε then we can perform the following rule.

Πφ ∧ (C ∨ u)
(EUR)

Π′φ ∧ C

We can also define a weaker version of QRAT, QRAT(UR), which uses universal reduction
instead of EUR.

I Definition 6 (Universal Reduction (UR)). Given a clause C ∨u with universal literal u such
that lv(u) > lv(x) for all existentially quantified variables x in C we can apply the following
rule.

Πφ ∧ (C ∨ u)
(UR)

Π′φ ∧ C

3 Cheating a QBF game

It is rumoured that the famous chess players Alekhine and Bogoljubov were once both
separately challenged to a game of correspondence chess by an anonymous opportunist. The
third player had deviously remembered the moves of each opponent to play Alekhine’s and
Bogoljubov’s moves against each other, effectively removing themselves from the game. The
player was guaranteed to win or draw in at least one game, and with the money odds against
them, they stood to make a profit.

We see that this devious idea can also be used in the conjunction of QBF two-player
games. We will show have these conjunctions have short QRAT proofs. We take a QBF
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and conjunct it with its negation in new variables. We interleave the prefixes so that the
existential player plays first and the universal player is able to copy the moves at the right
time. The universal player has to win on only one of the conjuncts and an easy winning
strategy is to copy the opponent’s move for the other side. The easy winning strategy is
essential for the short proofs, but despite the guaranteed win, it is PSPACE-hard to find out
which game the universal player wins prior to playing it. In the next section we add an extra
universal variable that requires the calculation of who wins in order to make the game hard.
However we see that expansion allows us to quickly return to the original easy problem.

In this chapter we will define these formulas that conjunct a QBF and its negation and
show how a short QRAT proof can be uniformly obtained.

3.1 Duality Formulas
Let Πφ(X) be a QBF where Π is a prefix binding all variables in X = {x1 . . . x2n}. Let
Π = ∀x1∃x2∀x3 . . . ∃x2n and let φ(X) be a CNF in the variables X. We also define a second
set of 2n variables X ′ = {x′1 . . . x′2n} and an alternative prefix Π′ = ∃x′1∀x′2∃x′3 . . . ∀x′2n. The
QBF Πφ(X)∧Π′¬φ(X ′) is necessarily false. However this QBF is not in PCNF, which many
proof systems require.

Firstly we will transform ¬φ(X ′) into a CNF φ̄(X ′, T ) via the use of Tseitin variables
T = {tK | K ∈ φ(X)}. We overload the ′ notation:

For literal l if l = xi then l′ = x′i and if l = ¬xi then l′ = ¬x′i.
For each clause K in φ(X) we denote the corresponding clause in φ(X ′) as K ′ so that
K ′ =

∨
l∈K l

′.

We require that φ̄(X ′, T ) is true precisely when φ(X ′) is false. We will introduce clauses
stating that variable tK is true if and only if clause K ′ is satisfied. Then φ(X ′) is false if and
only if at least one tK is false, so we will also add a clause specifying that this must hold.

φ̄(X ′, T ) contains the following clauses:
(¬tK ∨K ′) for each clause K in φ(X)
(¬l′ ∨ tK) for each literal l in K(∨

K∈φ(X) ¬tK
)

The next part is the most important- the prenexing of the QBF. We place every universal
variable to the right of its existential version. The auxiliary T variables must be placed at
the end of the prefix. Thus, from any PCNF Ψ = Πφ we generate a formula Duality(Πφ)
encoding in PCNF the claim that both Ψ and its negation are true:

Duality(Πφ) = ∃x′1∀x1∃x2∀x′2 . . . ∃x′2n−1∀x2n−1∃x2n∀x′2n∃T φ(X) ∧ φ̄(X ′, T )

3.2 Short proofs of Duality Formulas
In [6], Beyersdorff et. al showed short Frege + ∀red proofs of a family of QBFs that take an
input of a graph and state that there is a k-clique (Clique) and dually that there is no
k-clique (Co-Clique). The short proofs exploited the fact that the Co-Clique part of the
formula was structured in a similar way to the Clique part.

We generalise this approach here for short proofs of the Duality formulas. First we
will give a sketch proof of how this can be done using Frege + ∀red rules before we show
those short proofs formally in QRAT. Frege + ∀red is simply a propositional Frege system
augmented with the ∀red rule for removing universally quantified variables. ∀red allows to
substitute a Boolean value for universally quantified u in a previously derived line, provided
that lv(u) > lv(x) for all existentially quantified x in the proof line.
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The clauses in Duality(ΠΦ) state
∧
K (tK ↔ K ′),

∨
K ¬tK and

∧
K.

Recall that clause K is identical to clause K ′ with all instances of x′i replaced with xi
(for all i). From assumption

∧2n
i=1 (xi ↔ x′i) we would find a contradiction in polynomially

many Frege steps. The outline of the derivation is given below:

∨
K ¬tK

∧
K

∧
K (tK ↔ K ′)

∧2n
i=1 (xi ↔ x′i)∧

K (tK ↔ K)∧
K tK

⊥

We therefore conclude that
∨2n
i=1 ¬(xi ↔ x′i).

Now, starting from the variables quantified innermost in the prefix, we perform ∀red on
all universally quantified x′2j and x2j+1:

¬(x2n ↔ 0) ∨
2n−1∨
i=1

¬(xi ↔ x′i) = x2n ∨
2n−1∨
i=1

¬(xi ↔ x′i)

Reduction can also be done with x′2j = 1

¬(x2n ↔ 1) ∨
2n−1∨
i=1

¬(xi ↔ x′i) = ¬x2n ∨
2n−1∨
i=1

¬(xi ↔ x′i)

We can resolve these two disjunctions together and conclude
∨2n−1
i=1 ¬(xi ↔ x′i)

Now x2n−1 is the innermost universally quantified variable. The same sequence of steps
is applied for each universal variable leading to a contradiction which completes the proof.

This proof idea works for showing short proofs in QRAT. In fact these proofs have a
uniform structure.

I Theorem 7. Given a formula Duality(ΠΦ) we can in polynomial-time construct a quadratic
size QRAT(UR) refutation of Duality(ΠΦ).

Proof. Let |K| be the number of literals in clause K ∈ Φ, then |Duality(ΠΦ)| ≥ |Φ| ≥
ΣK∈Φ|K|. Recall ΠΦ has 2n variables.

Extension Variables

The refutation begins by using QRATA to introduce extension variable eqxi
for each xi ∈ X.

eqxi
is existentially quantified and is introduced to the prefix so that lv(eqxi

) > lv(xi), lv(x′i)
and lv(eqxi

) < lv(xj), lv(x′j) for all j > i (which is possible since lv(xi), lv(x′i) < lv(xj), lv(x′j)
in Duality(ΠΦ) whenever j > i). For each xi ∈ X we use QRATA to add four clauses:

(¬xi ∨ x′i ∨ ¬eqxi
)

(xi ∨ ¬x′i ∨ ¬eqxi
)

(¬xi ∨ ¬x′i ∨ eqxi
)

(xi ∨ x′i ∨ eqxi
)

Recall that adding a clause by QRATA requires that we have an existential literal l in the
new clause C such that Φ ∧ C̄ ∧ ŌD `1 ⊥ for all D with l̄ ∈ D. For the first two clauses this
is vacuously satisfied with l = ¬eqxi

since eqxi
does not appear positively anywhere in the

formula.
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To add the latter clauses we have l = eqxi
and must consider the two outer clauses

(¬xi ∨ x′i) and (xi ∨ ¬x′i). The QRATA condition is satisfied for (¬xi ∨ ¬x′i ∨ eqxi
) because

xi ∧ x′i ∧ xi ∧ ¬x′i `1 ⊥ and xi ∧ x′i ∧ ¬xi ∧ x′i `1 ⊥, and similarly for the final clause.
For each of the original 2n variables in ΠΦ we have added four clauses of constant size.

Following O(n) steps the formula has increased in length by O(n) characters.

Non Equivalence of X and X ′

The next three steps are equivalent to those in the derivation of
∨2n
i=1 ¬(xi ↔ x′i) in the

sketch proof above. By ATA we derive:
(
∨2n
i=1 ¬eqxi

∨ tK ∨ l̄) for every K ∈ Φ(X) and every l ∈ K
(
∨2n
i=1 ¬eqxi

∨ tK) for every K ∈ Φ(X)
(
∨2n
i=1 ¬eqxi

)
Each clause has O(n) literals and there are at most |Φ| clauses of each type. In O(|Φ|) proof
steps the formula has increased in length by O(n|Φ|).

Removing the Universal Variables

Finally, we want to derive (
∨j−1
i=1 ¬eqxi

) for j = 2n . . . 1 (thus j = 1 means that we have
derived the empty clause). Assuming that we already have (

∨j
i=1 ¬eqxi

) we can use ATA to
add:

(
∨j−1
i=1 ¬eqxi

∨ xj ∨ x′j)
(
∨j−1
i=1 ¬eqxi

∨ ¬xj ∨ ¬x′j)

In clauses (
∨j−1
i=1 ¬eqxi

∨ xj ∨ x′j) and (
∨j−1
i=1 ¬eqxi

∨ ¬xj ∨ ¬x′j), whichever of xj and x′j
is universally quantified is innermost by the construction of Duality(ΠΦ) and the decision of
where to introduce the variables eqxi

in the prefix. Without loss of generality, assume x′j is
universally quantified so we can use UR to derive clauses

∨j−1
i=1 ¬eqxi

∨xj and
∨j−1
i=1 ¬eqxi

∨¬xj ,
then ATA allows to add the resolvent

∨j−1
i=1 ¬eqxi

.
For each of the 2n variables from Φ there are five proof steps in this final part of the

refutation, each introducing a new clause of size O(n), and in total the formula has increased
in length by O(n2). The whole refutation therefore has size O(|Duality(ΠΦ)|2). J

4 Making strategies hard

The formulas Duality(ΠΦ) have short winning strategies for the universal player, namely
to always play so that xi = x′i. By construction one or other of Φ(X) or Φ̄(X ′, T ) will be
falsified, but which subformula is falsified depends on the existential assignments. We know
also that one of ΠΦ(X) or Π′Φ̄(X ′, T ) is false and so has a winning strategy for the universal
player. Deciding which subformula is false is PSPACE-hard and the winning strategy for
the false formula could be much more complicated than the strategy for Duality(ΠΦ). We
introduce formulas exploiting this hardness:

Select(ΠΦ) = ∀u Q ∃T (Φu(X)) ∧ (Φ̄¬u(X ′, T ))

where Φu(X) =
∧

K∈Φ(X)

(K ∨ u)

and Q = ∃x′1∀x1∃x2∀x′2 . . . ∃x′2n−1∀x2n−1∃x2n∀x′2n
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4.1 Short proofs of Select Formulas in QRAT
It was shown in [12] that satisfaction QRAT has strategy extraction, and in [8] that refuta-
tional QRAT(UR) has strategy extraction. In this section we use the formulas Select(ΠΦ) to
show that refutational QRAT does not have strategy extraction under a strong complexity
assumption.

I Theorem 8. QRAT has short uniform proofs of Select(ΠΦ) for any QBF ΠΦ.

Proof. The first step in the proof is to use Extended Universal Reduction (EUR) to remove
u from all clauses in Φu(X) and ¬u from all clauses in Φ̄¬u(X ′, T ). Using EUR to reduce
l in C requires that l̄ does not appear in ε the fix-point of the inner expansion as given in
Definition 5, in other words, there is no inner resolution path between any clauses containing
the removed literal and its negation. We can only add literals to the inner expansion from
clauses that share variables in common with the current inner expansion. However u and ¬u
appear in sections of the formula that have no other variables in common. Hence we can
always reduce u (and ¬u) in Select(ΠΦ).

Having performed these (polynomially many) EUR steps the formula is identical to
Duality(ΠΦ), which is uniformly refuted as in Theorem 7. J

I Corollary 9. Refutational QRAT does not have strategy extraction unless P = PSPACE.

Proof. If QRAT has strategy extraction we can decide the truth of closed QBF in polynomial
time - a PSPACE-complete problem.

Given a QBF ΠΦ, with Π a prefix and Φ a propositional formula in the variables of Π,
we create the formula Select(ΠΦ) and then in polynomial time we can output the proofs
as in Theorem 8. Then from the proof of Select(ΠΦ) we can extract the strategy for u. u
is outermost in the prefix, so this strategy must be constant. If the strategy sets u = 0
then all clauses in Φ̄¬u(X ′, T ) are immediately satisfied so we know that the rest of the
extracted strategy is a strategy for ΠΦ, showing that ΠΦ is false. Similarly, if the strategy
sets u = 1 then it must be the case that Φ̄¬u(X ′, T ) is false and so, by construction, ΠΦ is
true. Therefore we have a polynomial time decision procedure for an arbitrary QBF. J

In fact, the full power of EUR is not required. QRAT(UR) is capable of refuting the
formulas Duality(ΠΦ), and the initial EUR step can be replaced by universal expansion of u,
producing a formula equivalent to Duality(ΠΦ) with renamed variables. Even QBF solvers
whose underlying proof system uses universal reduction to handle universally quantified
variables often employ a preprocessing stage that includes universal expansion. Our Select(ΠΦ)
formulas show that a single initial expansion step may be sufficient to prevent strategy
extraction.

5 Relation to feasible interpolation

The results of the previous section indicate that expansion can be used to make strategy
extraction implausible. However we have seen many proof systems and solvers that admit
strategy extraction despite using universal expansion. It is clear that the other rules of the
calculus play an important role on whether or not strategy extraction is admissible.

If we wish to guarantee strategy extraction in our proof systems and solvers, it may be
important for future work to explore sufficient conditions for strategy extraction when using
expansion. In this section we instead explore a necessary condition for strategy extraction
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when using expansion and see that it is related to feasible interpolation in propositional
proof systems.

Given a true propositional implication A(~p, ~q)→ B(~p, ~r) (or, equivalently, a false conjunc-
tion A(~p, ~q)∧¬B(~p, ~r)) Craig’s interpolation theorem [10], states that there is an interpolant
C(~p) in only the joint variables ~p. Feasible interpolation is a property of proof systems.
A proof system has feasible interpolation [19, 21] if and only if there is a polynomial-time
procedure that takes a proof of A(~p, ~q)→ B(~p, ~r) as an input and extracts an interpolating
circuit C(~p).

In [5] Beyersdorff et al. lifted a version of the feasible interpolation lower bound technique
from propositional logic to QBF. In Section 5 of [5] feasible interpolation was linked to
strategy extraction by adding an extra universal variable with similarities to Section 4 and
how the Select formulas are created from the Duality formulas.

I Theorem 10. Given a propositional refutation system Q if the refutational QBF proof
system Q+∀Exp0,1 has strategy extraction then Q must have feasible interpolation (provided
refutations of Q work independently of the variable names).

Proof. Suppose Q+∀Exp0,1 has strategy extraction and we have a Q-refutation π of A(~p, ~q)∧
B(~p, ~r) with ~p, ~q, ~r disjoint sets of variables. We will show we can find an interpolant in
polynomial time.

We consider the following QBF

∃~p∀u∃~q∃~r(A(~p, ~q) ∨ u) ∧ (B(~p, ~r) ∨ ū)

We can refute this formula in Q+∀Exp0,1 using π. Expansion gives us

(A(~p, ~q0/u) ∨ 0) ∧ (B(~p, ~r0/u) ∨ 1) ∧ (A(~p, ~q1/u) ∨ 1) ∧ (B(~p, ~r1/u) ∨ 0)

but this immediately simplifies to

A(~p, ~q0/u) ∧B(~p, ~r1/u)

We can now refute this using π using ~q0/u variables instead of ~q, and using ~r1/u variables
instead of ~r. The provision here is important for this as one could make Q a pathological
proof system that disallowed steps using variables named as in ~q0/u, but allowed them named
as in ~q.

We can then extract a strategy for u as a circuit in the variables ~p. However this circuit
is also an interpolant for A(~p, ~q) ∧B(~p, ~r).

J

In regards to making sufficient conditions for strategy extraction using feasible interpola-
tion we can look at the results that have come before. We see that ∀Exp+Res has strategy
extraction. This is done by a "round-based" strategy extraction, the technique, that gives a
winning response for the universal player works by taking the outermost block of existential
and applying a restriction to the ∀Exp+Res proof on that block in correspondence to the
existential player’s moves. The universal player can then "read off", from the restricted proof,
which universal assignment to the next block of variables actually is useful in the proof. The
proof can be restricted by the universal assignment and we repeat until we end up with a
complete set of universal responses and a falsified formula.

The "reading off" of which clauses actually contribute to the proof is a weak form of
feasible interpolation. and so we can say we have strategy extraction for Q+∀Exp0,1 whenever
refutational proof system Q satisfies two conditions:
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I Theorem 11. Q+∀Exp0,1 has strategy extraction whenever:

1. Q is closed under restriction, meaning that from a refutation πof φ one can extract in
polynomial time a Q refutation πε of φ|ε for any assignment ε with |πε| ≤ |π|

2. From any refutation π in Q of A(~q)∧B(~r) where ~q, ~r share no common variables another
refutation πint of either A(~q) or B(~r) can be extracted in polynomial time with |πint| ≤ |π|.

Proof. Suppose we have a closed prenix QBF ∃X∀YΠφ where Π is a prefix in variables
Z and φ is a propositional matrix with variables in X,Y and Z. Now suppose we have a
Q+∀Exp0,1 refutation π of Πφ. This gives a Q proof π′ of subexpπ(∃X∀YΠφ), a subset of
the full expansion of Πφ using π.

We will show that under conditions 1 and 2 we have a polynomial time procedure that
takes any assignment ε to X and outputs a response µ in Y and a ΠΦ|ε,µ refutation in
Q+∀Exp0,1.

From π′, we can extract π′ε in polynomial time, using condition 1, which provides a Q
refutation of subexpπ(∃X∀YΠφ)|ε. Every conjunct Dτ |ε of subexpπ(∃X∀YΠφ)|ε is also an
axiom Cτ of ∀YΠφ|ε, because D ∈ φ means C = D|ε can be found in φ|ε. Therefore π′ε
becomes a Q+∀Exp0,1 refutation πε of ∀YΠφ|ε.

Now we find the universal response in universal variables Y . We separate Y = {y1 . . . ym}
and we can start with a response c to y1 and then find a Q+∀Exp0,1 refutation of ∀y2 . . . ymΠφ|ε,c/y1 .
We make sure the proofs do not increase in size. Then we can repeat this for each variable in
Y in turn.

Suppose we have a Q+∀Exp0,1 refutation πi of the QBF formula ∀yi . . . ymΠφ|ε,µi

where µi 1 ≤ i ≤ m is a Boolean assignment to variables {y1 . . . yi−1}. The variables
of subexpπi

(∀yi . . . ymΠφ|ε,µi
) can be partitioned into Z0/yi

= {zα | z ∈ Z,α(yi) = 0} and
Z1/yi

= {zα | z ∈ Z,α(yi) = 1}. This completely partitions the variables because yi is
leftmost in the prefix.

Conjunct C ∈ subexpπi
(Πφ)|ε,µi

cannot mix variables Z0/yi
and Z1/yi

since the axiom
rule in Definition 1 substitutes one or the other everywhere in the conjunct. Therefore
subexpπi

(∀yi . . . ymΠΦ|ε,µi) can be written as A(Z0/yi
) ∧ B(Z1/yi

) with Q refutation π′i
(based on the Q+∀Exp0,1 refutation πi).

We define a new partial assignment µi+1, which is defined as µi+1(yj) = µi(yj) for
1 ≤ j < i Now we can use condition 2 to extract from π′i a Q refutation π′i+1 of either
A(Z0/yi

) or B(Z1/yi
) in polynomial time. If it is A(Z0/yi

) then we let µi+1(yi) = 0 and if it is
B(Z1/yi

) then we let µi+1(yi) = 1. π′i+1 can be used as part of a Q+∀Exp0,1 refutation πi+1
of ∀yi+1 . . . ymΠφ|ε,µi+1 as subexpπi+1(∀yi+1 . . . ymΠφ|ε,µi+1) is equal to A(Z0/yi

) or B(Z1/yi
).

Condition 2 guarantees |π′i+1| ≤ |π′i| so |πi+1| ≤ |πi| as well.
Once we get to µm we have a complete assignment to Y and a guarantee that the

remaining QBF game on ΠΦ|ε,µm is false by the Q+∀Exp0,1 refutation πm, with |πm| < |π|.
We can repeat this procedure for every universal block and we end up with the false

proposition ⊥ and since our proof are decreasing in size in each step we guarantee this can
be done in a polynomial time procedure.

J

Note that because of Theorem 10 feasible interpolation is implied by these two conditions
(although this can be shown without Theorem 10). This extraction technique is heavily
inspired by the one used in [11], instead here we use it for expansion systems.
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Conclusion

We have answered the open question of [8] in showing that refutational QRAT does not have
strategy extraction, and have introduced a family of QBFs witnessing this fact. In showing
the connection between strategy extraction and feasible interpolation we have also formalised
one condition for strategy extraction to be present in QBF proof systems using universal
expansion. This adds to an existing awareness of the trade-off between strength of QBF
proof systems and the ability to offer explanation via winning strategies [4].
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