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Abstract

We show that assuming the strong exponential-time hypothesis (SETH), there are no non-
trivial algorithms for the nearest codeword problem (NCP), the minimum distance problem
(MDP), or the nearest codeword problem with preprocessing (NCPP) on linear codes over any
finite field. More precisely, we show that there are no NCP, MDP, or NCPP algorithms running
in time q(1−ε)n for any constant ε > 0 for codes with qn codewords. (In the case of NCPP, we
assume non-uniform SETH.)

We also show that there are no sub-exponential-time algorithms for γ-approximate versions
of these problems for some constant γ > 1, under different versions of the exponential-time
hypothesis.
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1 Introduction

A linear code is a subspace of Fmq for some prime power q. For a given full-rank generator matrix
C ∈ Fm×nq with 1 ≤ n ≤ m, the q-ary code generated by C is

CFnq = {Cz : z ∈ Fnq } .

We call n the rank of the code, m the ambient dimension, q the alphabet size, and an element Cz
a codeword.

The nearest codeword problem for linear codes, denoted NCP, asks us to compute the minimal
(Hamming) distance between a given target vector and a codeword in a given linear code. The
closely related minimum distance problem for linear codes, denoted MDP, asks us to compute the
minimal Hamming weight of a non-zero codeword in a given linear code. NCP was proved to be
NP-complete by Berlekamp, McEliece and van Tilborg [BMvT78] in 1978, and the analogous result
for MDP came much later with the work of Vardy [Var97] in 1997.

While the last four decades have seen progress on approximation algorithms [BK02, APY09]
and heuristic algorithms [MMT11, BLP11, BJMM12] for NCP and MDP, the best known way to
solve either of these two problems exactly on worst-case codes is essentially exhaustive search over
all codewords, taking qn time. This seems to be the state of affairs also for NCP with preprocessing
(NCPP), an offline-online variant of NCP where an offline unbounded-time algorithm may first
preprocess the code in a way that helps an online algorithm to find the codeword nearest to a
given target vector. This is the starting point of our work: Are there better (exponential-time)
algorithms for these problems? In the absence of algorithms, can we demonstrate evidence for their
hardness?

In this work, we show that there are no non-trivial algorithms for NCP, MDP or NCPP unless a
popular conjecture in fine-grained complexity called the strong exponential-time hypothesis [IP99,
IPZ01] (SETH) is false. SETH postulates that for every constant ε > 0, there is a sufficiently large
k such that k-SAT on n variables does not have algorithms that run faster than 2(1−ε)n.

Theorem 1.1 (SETH-hardness of NCP(P) and MDP). For every ε > 0 and any prime power
q := q(n), there is no q(1−ε)n-time algorithm for NCP or MDP over codes with rank n and alphabet
size q unless SETH is false. The same conclusion holds for NCPP unless non-uniform SETH is
false.

At a high level, the inspiration for our proof techniques comes from the study of fine-grained
hardness of lattice problems [BGS17, AS18, ABGS19], such as the closest vector problem (CVP)
which is a lattice analogue of NCP. Our results therefore follow a long line of works (such as
[DMS03]) in which ideas from the study of lattices proved useful for codes, and vice versa.

While our results might look similar to the analogous lattice results in [BGS17, AS18, ABGS19]
and we use similar techniques, we interpret our results quite differently for two reasons.

First, there are highly non-trivial algorithms for CVP [MV10, ADS15], while Theorem 4.2 shows
that there are no non-trivial algorithms for NCP unless SETH is false. We therefore interpret our
results as a strong separation between lattices and codes. Indeed, though [BGS17] proved strong
lower bounds for CVP, they still do not quite match the known upper bounds. For example, in the
`2 norm, there is a 2n-time CVP algorithm, but [BGS17, ABGS19] only show that it is impossible
to do better than 2cn under SETH for a small constant c > 0; on the other hand, in `p norms for
p /∈ 2Z [BGS17, ABGS19] show hardness for running times better than 2n, while the best algorithm
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runs in time nO(n). Demonstrating tight hardness results for lattice problems, similar to the ones
we show in this work for codes, is an important open problem. (The situation is essentially the
same for the lattice analogue of MDP, the shortest lattice vector problem.)

Second, our results use elementary techniques (as we will describe shortly), while the analogous
results for lattices are significantly more difficult. It is this simplicity that allows us to extend
our hardness results to NCP with preprocessing. After a preliminary version of this work ap-
peared, [ABGS19] adapted our techniques to extend the fine-grained hardness results of CVP to
the preprocessing version.

We also consider fine-grained hardness of approximation of NCP and MDP. NP-hardness of
approximation for NCP is already known to within an almost polynomial n1/ log logn approximation
factor [ABSS97, DKRS03]. On the other hand, polynomial hardness of approximation for MDP to

within any constant factor assuming that NP * P and to within an almost polynomial 2log(1−ε) n

approximation factor assuming that NP * QP (quasi-polynomial time) was shown in a sequence
of works [DMS03, CW10, CW12, AK14]. Some non-trivial approximation algorithms are known for
NCP and MDP. In particular, Berman and Karpinski [BK02] show a polynomial-time O(m/ logm)-
approximation algorithm (where m is the ambient dimension of the code).

Our hardness of approximation result assumes the recently introduced gap-exponential-time
hypothesis (Gap-ETH) [Din16, MR17] which, roughly speaking, postulates that there is a constant
c > 0 such that c-approximation of Max-3-SAT on n variables cannot be computed in 2o(n) time.
Applebaum [App17] has recently shown that Gap-ETH follows from a number of other assumptions,
like exponential hardness for “smooth” 3-CNFs (CNFs that have nearly as many almost-satisfying
assignments as satisfying assignments) or the existence of locally computable and exponentially
hard one-way functions. We show:

Theorem 1.2 (Gap-ETH-hardness of NCP and MDP). For any constant prime p, there is no
2o(n)-time algorithm for γp-NCP over codes with rank n and alphabet size q = pκ for any integer
κ := κ(n) ≥ 1 unless Gap-ETH is false, where γp > 1 is a constant depending only on p. The same
conclusion holds for γ2-MDP for p = 2 unless non-uniform Gap-ETH is false.

1.1 Overview of Our Techniques

Our techniques are quite simple (perhaps surprisingly so). We first explain the binary case q = 2
and then describe how to extend our results to larger q.

The (γ-)NCP Gadget. Our reduction uses a certain gadget that is the code analogue of
the gadget from [BGS17]. Recall that a k-SAT instance is a list of k-clauses over n variables,
each of which specifies a forbidden assignment to k variables. E.g., the clause x1 ∨ x2 ∨ ¬x3

specifies that (x1, x2, x3) 6= (0, 0, 1). To represent such a clause in our NCP instance, we use as
a gadget a generator matrix C ∈ F`×n2 and target t ∈ F`2 such that the codewords {Cx : x ∈
{0, 1}n, (x1, x2, x3) 6= (0, 0, 1)} make up precisely all the closest codewords to t. I.e., the closest
codewords to t correspond to the assignments that satisfy our k-clause.

Given such a gadget, the reduction is straightforward. We simply construct such a Ci and ti for
each of the m clauses φi in the input k-SAT instance and create the NCP instance with generator
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matrix

C :=


C1

C2
...
Cm

 ∈ F`m×n2

and target t := (t1, . . . , tm) ∈ F`m2 . Notice that an assignment x ∈ {0, 1}n satisfies the input SAT
instance if and only if x simultaneously minimizes the distance ‖Cix− ti‖H for all 1 ≤ i ≤ m. I.e.,
the reduction is correct.

To construct these gadgets, we first notice that it suffices to find such a gadget C ∈ F`×k2 for
k-clauses on k variables, since we can “lift” this to C ′ ∈ F`×n2 by padding with zeros. We then

use Hadamard codes. I.e., we take C ∈ F2k×k
2 to be the matrix whose rows consist of all possible

vectors in Fk2. Notice that all non-zero codewords in this code have Hamming weight exactly 2k−1.
Therefore, all non-zero codewords are at distance exactly 2k−1 from the all-ones target vector
u := (1, . . . , 1) ∈ F2k

2 , while the codeword 0 is of course at distance 2k from u. By translating
u by any codeword c, we can find a target whose nearest codewords consist of any set of 2k − 1
codewords.

In fact, a slightly more careful analysis shows that this reduction reduces approximate Max-
k-SAT to approximate NCP. So, this same reduction yields the Gap-ETH hardness of γ-NCP
presented in Theorem 1.2.

A note for the reader familiar with [BGS17, ABGS19]: This construction has a rather mysterious
relationship with the lattice gadgets constructed in [BGS17, ABGS19]. Their constructions are far
more difficult, but they also start with the basis for a Hadamard code. Specifically, their rows are
scalar multiples (with scalars in R) of the rows of our matrix (embedded in R). Perhaps exploring
this relationship further could help to resolve some of the open questions left in [BGS17, ABGS19].

Extension to NCPP. In order to show SETH-hardness of NCP with preprocessing, we wish to
modify the above reduction so that the the code depends only on n and k, and not on the clauses
in the input k-SAT instance. (Of course, the target will still depend on the clauses.) To do this,
we construct the code C corresponding to all m∗ := 2k

(
n
k

)
possible k-clauses. For each clause, we

also find a target toff ∈ F2k
2 that is equidistant from all the codewords, as opposed to just 2k − 1

of them. (To make this work, we actually modify the gadget code slightly. See Section 4.1.) Then,
given a k-SAT instance, our target t = (t1, . . . , tm∗) encodes which clauses are actually included
in the instance. In particular, if clause i is present, then ti is chosen as we described above, but if
it is not present, then we “turn off the clause” by taking ti = toff . Notice that this preserves the
property that x ∈ Fn2 satisfies the input SAT instance if and only if x simultaneously minimizes
‖Cix− ti‖H , so that the reduction is in fact correct.

Extension to Larger q. There is nothing particularly special about F2 in the above reductions.
Indeed, by using the Hadamard code over Fq, the same reduction maps a certain q-ary variant of
k-SAT with n variables to NCP over Fq with rank n. The appropriate variant of k-SAT consists
of “clauses” over q-ary variables that specify a single forbidden assignment to k of the variables.
E.g., (x1, x2, x6) 6= (0, 3, 74) is a 3-clause.

We show that there is no non-trivial algorithm for this q-ary variant of k-SAT unless SETH
is false. Specifically, for every ε > 0, there exists a constant k ≥ 2 such that no q(1−ε)n-time
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algorithm solves this variant of k-SAT for any q = q(n) ≥ 2. (For more details, see Theorem 3.3.)
In a different context, Traxler proved a slightly weaker result, which in our terminology corresponds
to a lower bound of 2(1−ε)nblog2 qc [Tra08]. This is weaker, e.g, for constant q that is not a power of
two.

Combining this with the above reductions gives the q(1−ε)n-hardness of NCP and NCPP pre-
sented in Theorem 4.2. (Again, this reduction also maps q-ary approximate Max-k-SAT to ap-
proximate NCP, which yields the hardness of γ-NCP in Theorem 1.2. However, we are unable to
show hardness of γ-NCP for constant γ > 1 and superconstant characteristic since our variant of
Max-k-SAT is easy to approximate for superconstant q.)

Extension to MDP. We present two different reductions that extend our result to MDP. Our
first is an efficient randomized reduction from an NCP instance with rank n to an MDP instance
with rank (1 + ε)n for any constant ε > 0. This reduction is essentially that of Dumer, Micciancio,
and Sudan [DMS03] with a different choice of parameters. More specifically, the [DMS03] reduction
uses a certain gadget (called a locally dense code). We follow [DMS03] in constructing such a gadget
via Reed-Solomon codes, but we choose parameters that minimize the rank of the output instance,
while [DMS03] chose parameters that yield relatively large rank poly(n) but allow them to prove
hardness of approximation.

Unfortunately, the [DMS03] reduction is randomized, so that the above only implies hardness
under a randomized variant of SETH. (There is a deterministic variant of the reduction due to
Cheng and Wan [CW12], which we use in Appendix A to show a lower bound of q(1−ε)n/2 for
MDP. See also [Mic12, Mic14, AK14].) However, to prove our full lower bound of q(1−ε)n under
deterministic SETH, we exploit a major difference between our setting and that of [DMS03, CW12].
In particular, our reduction does not need to be efficient. So, we show how to use the method of
conditional expectations to derandomize the [DMS03] reduction in, e.g., q(1−2ε)n time, which suffices
for our purposes.

Hardness of γ-MDP. Finally, to prove Gap-ETH-hardness of γ-approximate MDP for some
constant γ > 1, we show a reduction from γ′-NCP with rank n to γ-MDP with rank Cn for some
constant C > 0. We are still able to use the high-level reduction from [DMS03] for this task, but we
require an entirely different gadget construction in order to simultaneously achieve constant-factor
approximation and linear rank simultaneously.

We construct our gadget using the remarkable codes discovered by Ashikhmin, Barg, and
Vlăduţ [ABV01], which have 2cm non-zero codewords with minimal Hamming weight. [AS18] showed
how to use lattices with the analogous property to build a similar gadget in the lattice world, and
we use the same techniques. Unfortunately, such codes are only known in characteristic two, so
this result only applies in this case.

1.2 Open Problems

We outline the two major open directions that arise from our work. The first is to show SETH-
hardness of approximation for coding problems. While we show hardness of approximating NCP
and MDP in 2o(n)-time under Gap-ETH, proving 2cn-time hardness of approximation for some
reasonable explicit constant c > 0 (perhaps even c = 1 − ε) is wide open, and will likely require
brand new techniques.
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The second is to show 2cm-time hardness of coding problems for some reasonable explicit con-
stant c > 0. I.e., we would like to show hardness as a function of the ambient dimension m and not
the rank n, as we do in this work. Using the sparsification lemma [IPZ01] and the fact that our code
constructions in some cases have constant rate (specifically, when q is constant and m = O(n)), our
reductions do yield 2cεm-hardness for some small unspecified constant cε > 0, which depends on the
parameter ε and k = k(ε) in the SETH assumption. (Our reductions for NCPP and MDP require
larger m, respectively m ≈ nk and m ≈ nCε .) Since there are non-trivial 2cm-time heuristic and
average-case algorithms for NCP, a sufficiently strong result in this direction would, in our opinion,
be rather intriguing in that it would separate the rigorous worst-case regime from the heuristic and
average-case settings.

2 Preliminaries

For a prime power q ≥ 2, we write Fq for the unique field with q elements, F∗q for the non-zero
elements of Fq, and Fq[x] for the set of polynomials in x over Fq. The characteristic of Fq is the
unique prime p such that q = pκ for some integer κ. For integer κ ≥ 1 , we recall that Fqκ is a
vector space of dimension κ over Fq, and that there is a unique field embedding of Fq into Fqκ .

Our vectors x ∈ Fmq are always column vectors, though for convenience we sometimes abuse
notation and write, e.g., x = (1, 1, 1, . . . , 1) or even x = (x1,x2) when formally we should write
x = (1, 1, 1, . . . , 1)T or x = (xT1 ,x

T
2 )T . For x ∈ Fmq , we write ‖x‖H for the Hamming weight of x

(i.e., the number of non-zero coordinates).

2.1 Codes and coding problems

For a generator matrix C ∈ Fm×nq and a target vector t ∈ Fmq , we write

dist(t, C) := min
z∈Fnq

‖Cz − t‖H

for the distance between t and the code generated by C and

λ(C) := min
z∈Fnq \{0}

‖Cz‖H

for the length of the shortest non-zero vector in the code generated by C. The kissing number of
C is the number of codewords with Hamming weight λ(C), i.e.,

|{z ∈ Fnq : ‖Cz‖H = λ(C)}| .

Definition 2.1. For an approximation factor γ ≥ 1, the γ-Nearest Codeword Problem (γ-NCP) is
defined as follows. The input is a generator matrix C ∈ Fm×nq , target t ∈ Fmq , and integer distance
0 ≤ d ≤ m. The input is a YES instance if dist(t, C) ≤ d and a NO instance if dist(t, C) > γd.

Definition 2.2. For an approximation factor γ ≥ 1, the γ-Minimum Distance Problem (γ-MDP)
is defined as follows. The input is a generator matrix C ∈ Fm×nq and integer distance 0 ≤ d ≤ m.
The input is a YES instance if λ(C) ≤ d and a NO instance if λ(C) > γd.
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In both cases, we omit the parameter γ when γ = 1. For convenience, we also define γ-MDP
for γ < 1 to be an unsolvable problem. In particular, a reduction to γ-MDP for γ < 1 is vacuous.

NCP with preprocessing (NCPP) is the variant of NCP in which we are allowed arbitrary
preprocessing on the code C (but not the target!). I.e., formally an algorithm for NCPP consists of
a pair of procedures P and Q. The algorithm solves an NCPP (C, t, d) if on input C, t, d and the
preprocessing P (C), the procedure Q returns a valid answer to the corresponding NCP problem.
The running time of such an algorithm is simply the running time of Q. (Our lower bound holds
even if P is an arbitrary function that, e.g., might not even be computable. We always assume that
the running time of Q must be at least the size of the preprocessing P (C).)

Claim 2.3. For any generator matrix C ∈ Fm×nq , target t ∈ Fmq , and integer κ ≥ 1, let C ′ ∈ Fm×nqκ

and t′ ∈ Fmqκ be obtained by applying the (unique) embedding from Fq into Fqκ coordinate-wise to C
and t respectively. Then λ(C ′) = λ(C) and dist(t′, C ′) = dist(t, C).

In particular, this embedding yields a trivial reduction from (possibly approximate) NCP over
Fq to NCP over Fqκ that preserves the rank n, ambient dimension m, and approximation factor γ;
and likewise for MDP.

Proof. This follows from the fact that a system of linear equations over Fq has a solution (or,
alternatively, a non-zero solution) if and only if the same system embedded in Fqκ has a solution
(or a non-zero solution).

More formally, let c1, . . . , cm ∈ Fnq be the rows of C and we view them as embedded in Fnqκ .
Consider a system of linear equations over z = (z1, . . . , zn) ∈ Fq given by 〈ci, z〉 = ai for all i ∈ S
for some set S ⊂ [m] and some ai ∈ Fq. Using the natural embedding of Fq into Fqκ again, we can
view this as a system of linear equations over Fqκ as well. The key observation is that this system
has a (non-zero) solution over Fq if and only if it has a (non-zero) solution over Fqκ . (One can
see this, e.g., by noting that the system may be solved via Gaussian elimination, which works by
repeatedly performing field operations on the coordinates of ci and ai and therefore never needs
elements outside of the base field Fq.)

Finally, we note that m − λ(C) is equal to the maximum size of a subset S of the rows such
that the corresponding system has a non-zero solution over Fq for ai = 0. And, m − dist(t, C) is
the maximum size of such a set S for which any solution exists for ai = ti. Similarly, m − λ(C ′)
and m − dist(t, C ′) are the maximal sizes for the corresponding sets, now allowing solutions over
Fqκ . The result follows.

Claim 2.4. For any subset V ⊆ Fn†q and N ≤ |V |/qn,

Pr
z∼Fnq ,T∼F

n†×n
q

[|{v ∈ V : Tv = z}| ≤ N ] ≤ qn|V |
(|V | − qnN)2

.

Proof. Notice that the expectation satisfies

E[|{v ∈ V : Tv = z}|] = |V |/qn ,

since Tv−z is a uniformly random element in Fnq . Furthermore, for distinct v1,v2 ∈ V , the events
Tvi = z are pairwise independent because T (v1 − v2) − z is also a uniformly random element
in Fnq , independently of Tv1 − z. Therefore, the variance satisfies Var[|{v ∈ V : Tv = z}|] =
|V |q−n(1− q−n) ≤ |V |/qn. The result follows from Chebyshev’s inequality.
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2.2 Reed-Solomon codes

For 1 ≤ n ≤ m ≤ q, a Reed-Solomon code is a code generated by a Vandermonde matrix of the
form

C =


1 z1 z2

1 · · · zn−1
1

1 z2 z2
2 · · · zn−1

2
...

...
...

. . .
...

1 zm z2
m · · · zn−1

m

 ∈ Fm×nq ,

where z1, . . . , zm ∈ Fq are distinct field elements. Equivalently, we can think of the coordinates
a = (a0, . . . , an−1) ∈ Fnq of a codeword Ca as representing a polynomial pa(x) := a0 +a1x+a2x

2 +
· · · + an−1x

n−1 ∈ Fq[x] of degree less than n over Fq. Then, the codeword Ca is the vector of
evaluations of the polynomial, Ca = (pa(z1), pa(z2), . . . , pa(zm)) ∈ Fmq .

In particular, we see that λ(C) = m − (n − 1), since (1) the polynomial p(x) = (x − z1)(x −
z2) · · · (x− zn−1) corresponds to a codeword with Hamming weight exactly m− (n− 1); and (2) no
non-zero codeword can have Hamming weight less than m− (n−1), since this would correspond to
a non-zero polynomial with degree at most m− 1 but more than m− 1 zeros. Indeed, the shortest
non-zero codewords are given by the polynomials pS,α(x) = α ·

∏
z∈S(x − z) for any α ∈ F∗q and

S ⊂ {z1, . . . , zm} with |S| = n− 1.

2.3 SAT, SETH, and Gap-ETH

Given Boolean variables x1, . . . , xn, a literal y is a variable y = xi or its negation y = ¬xi. An
assignment to these variables maps each variable to true or false. For an integer k ≥ 2, a k-clause
is a list of k literals on distinct variables, which we write as a disjunction y1 ∨ y2 ∨ · · · ∨ yk. E.g.,
x1 ∨ ¬x5 ∨ x8 is a 3-clause. A clause is satisfied by an assignment if at least one of its literals is
mapped to true by the assignment. A k-SAT formula on n variables is a list of distinct k-clauses
over these variables.

Definition 2.5. For an integer k ≥ 3, the k-SAT problem is defined as follows. The input is a
k-SAT formula Φ. It is a YES instance if there exists an assignment to the variables of Φ that
satisfies all the clauses of Φ simultaneously. It is a NO instance if no such assignment exists.

Definition 2.6. For an integer k ≥ 2, the Max-k-SAT problem is defined as follows. The input
is a k-SAT formula Φ and an integer r. It is a YES instance if there exists an assignment to the
variables of Φ that satisfies at least r of the clauses simultaneously. It is a NO instance if no such
assignment exists.

Definition 2.7. For an integer k ≥ 2 and 0 < s ≤ c ≤ 1, the (s, c)-Gap-k-SAT problem is the
promise problem defined as follows. The input is a k-SAT formula Φ with m clauses. It is a
YES instance if there exists an assignment to the variables of Φ that satisfies at least cm clauses
simultaneously. It is a NO instance if no assignment satisfies at least sm clauses simultaneously.

A simple probabilistic argument shows that (s, c)-Gap-k-SAT is trivial for s ≤ 1 − 2−k. (In
particular, if we choose an assignment at random, then the expected number of satisfied clauses is
(1− 2−k)m.)

Definition 2.8 ([IP99, IPZ01]). The Strong Exponential-Time Hypothesis (SETH) is the conjecture
that for every ε > 0, there exists an integer k ≥ 3 such that no 2(1−ε)n-time algorithm solves k-SAT.
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Randomized SETH is the analogous conjecture for randomized algorithms, and non-uniform SETH
is the same conjecture for non-uniform algorithms (i.e., circuits).

Definition 2.9 ([Din16, MR17]). The Gap-Exponential-Time Hypothesis (Gap-ETH) is the con-
jecture that there exist a constant s ∈ (0, 1) such that no 2o(n)-time algorithm solves (s, 1)-Gap-3-
SAT. (I.e., no such algorithm can distinguish satisfiable k-SAT instances from instances in which
the maximum fraction of simultaneously satisfied clauses is less than s.) Randomized Gap-ETH is
the analogous conjecture for randomized algorithms, and non-uniform Gap-ETH is the analogous
conjecture for non-uniform algorithms (i.e., circuits).

3 q-ary SAT, SETH, and Gap-ETH

In this section, we show that natural q-ary variants of SETH and Gap-ETH hold under the standard
SETH and Gap-ETH assumptions, respectively. In particular, for q-ary variables x1, . . . , xn ∈
Zq, a (q, k)-clause is simply a forbidden assignment to k distinct variables, which we write as
(xi1 , xi2 , . . . , xik) 6= (z1, . . . , zk) for zi ∈ Zq. Such a clause is satisfied if there exists at least one j
such that xij 6= zj . A (q, k)-SAT formula on n variables is a list of distinct (q, k)-clauses. Notice
that this is exactly k-SAT when q = 2. We then write (q, k)-SAT, Max-(q, k)-SAT, and (s, c)-Gap-
(q, k)-SAT for the natural q-ary analogues of k-SAT, Max-k-SAT, and (s, c)-Gap-k-SAT. In the
sequel, we will always take q to be a prime power (since we work with codes over fields), in which
case we may equivalently take our q-ary alphabet to be Fq, rather than Zq.

The next proposition shows some straight-forward reductions between (q, k)-SAT for different
values of q, from which we will show that SETH implies a strong q-ary analogue. We note that
Items 1 and 3 already appeared in [Tra08].

Proposition 3.1. For integers k, q ≥ 2 and κ ≥ 1, we have the following reductions.

1. There is a poly(m,κ, k, log q)-time (Karp) reduction that maps any (qκ, k)-SAT instance with
m clauses and n ≤ m variables to a (q, κk)-SAT instance with m clauses and κn variables.

2. There is a poly(m, qκk)-time (Karp) reduction that maps any (q, k)-SAT instance with m
clauses and n ≤ m variables to a (qκ, k)-SAT instance with dn/κe variables and at most
qκkm clauses.

3. For q′ ≥ q, there is a poly(m, (q′)k)-time (Karp) reduction that maps any (q, k)-SAT instance
with m clauses and n ≤ m variables to (q′, k)-SAT with n variables and m+ n(q′)k clauses.

Proof. We first prove Item 1. Let x1, . . . ,xn be the qκ-ary input variables to a (qκ, k)-SAT instance.
Here, we think of the xi as κ-dimensional vectors over Zq, xi = (xi,1, . . . , xi,κ) (which is why we use
bold letters). The reduction creates an instance of (q, κk)-SAT with variables xi,j over Zq as follows.
For each (qκ, k)-clause of the form (xi1 , . . . ,xik) 6= (z1, . . . ,zk) for z` = (z`,1, . . . , z`,κ) ∈ Zqκ , the
reduction creates the (q, κk)-clause given by (xij ,`)1≤j≤k,1≤`≤κ 6= (zj,`)j,`. It is clear that the
resulting (q, κk)-SAT instance is equivalent to the input instance, has the desired properties, and
can be constructed in time poly(m,κ, k, log q).

Turning to Item 2, let x1, . . . , xn be the q-ary input variables to a (q, k)-SAT instance. By
adding at most κdn/κe − n dummy variables, we may assume that n is divisible by κ. The
reduction then groups the variables into groups of size κ. I.e., let x′i,j := xκ(i−1)+j for 1 ≤ i ≤ n/κ
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and 1 ≤ j ≤ κ. Let x′i := (xi,1, . . . , xi,κ) for 1 ≤ i ≤ n/κ. And, the reduction associates with each
κ-tuple z = (z1, . . . , zκ) ∈ Zκq an arbitrary unique element in Zqκ , which by abuse of notation we
also write as z = (z1, . . . , zκ) ∈ Zqκ .

Then, for each (q, k)-clause in the input instance of the form (x′i1,j1 , . . . , x
′
ik,jk

) 6= (z1, . . . , zk), the
reduction creates a (qκ, k)-clauses of the form (x′i1 , . . . ,xik) 6= (z′1, . . . ,z

′
k) for every (z′1, . . . ,z

′
k) ∈

Fkqκ with (z′1,j1 , . . . , z
′
k,jk

) = (z1, . . . , zk). (E.g., for q = 2 and κ = 2, the (2, 2)-clause (x′1,1, x
′
2,1) 6=

(0, 0) yields the collection of (4, 2)-clauses {(x1,x2) 6= (0, 0, 0, 0), (x1,x2) 6= (0, 0, 0, 1), (x1,x2) 6=
(0, 1, 0, 0), (x1,x2) 6= (0, 1, 0, 1)}.) There are at most qκk such clauses. It is clear that the resulting
(qκ, k)-SAT instance is satisfiable if and only if the input instance is, that it has the appropriate
parameters, and that the reduction be constructed in time poly(m, qκk).

Finally, for Item 3, let x1, . . . , xn be the q-ary input variables to a (q, k)-SAT instance. Since
Zq ⊆ Zq′ , we can view the x1, . . . , xn as q′-ary variables, and we can treat each (q, k)-clause in the
input instance (xi1 , . . . , xik) 6= (z1, . . . , zk) as a (q′, k)-clause. The output instance will consist of
these clauses together with at most n(q′)k additional clauses that are equivalent to the statement
that xi 6= z for all i and all z /∈ Zq. For example, when q = 2, q′ = 3, k = 2, and n = 2, the
reduction adds the clauses (x1, x2) 6= (2, 0), (x1, x2) 6= (2, 1), (x1, x2) 6= (0, 2), (x1, x2) 6= (1, 2),
and (x1, x2) 6= (2, 2), which together are equivalent to x1 6= 2 and x2 6= 2. Again, it is clear that
the resulting (q′, k)-SAT instance has the desired properties and that the reduction runs in time
poly(m, (q′)k)

Corollary 3.2. For all integers q = q(n) ≥ 2, q′ = q′(n) ≥ 2, k ≥ 2, and κ = κ(n) ≥ 2, there
is a poly(m, qκk, q′)-time (Karp) reduction that maps any (q, k)-SAT instance with m clauses and
n ≤ m variables to (q′, dκ/ logq q

′ek)-SAT with at most qκkm+ dn/κe · qκk(q′)k clauses and at most

n/ logq q
′ + κ/ logq q

′ + n/κ+ 1

variables.

Proof. Let κ′ := dκ/ logq q
′e. By Item 2 above, there is a poly(m, qκk)-time reduction from (q, k)-

SAT with n variables and m clauses to a (qκ, k)-SAT instance with dn/κe variables and at most
qκkm clauses. Notice that (q′)κ

′ ≥ qκ. Therefore, by Item 3, there is a poly(m, (q′)κ
′k)-time

reduction from this problem to ((q′)κ
′
, k)-SAT with dn/κe variables and at most

qκkm+ dn/κe · (q′)κ′k ≤ qκkm+ dn/κe · qκk(q′)k

clauses. Finally, by Item 1, there is a poly(m,κ′, k, log q′)-time reduction from this problem to
(q′, κ′k)-SAT with κ′dn/κe variables and the same number of clauses.

The running time of the full reduction is poly(m, qκk, (q′)κ
′
), and the result follows by plugging

in κ′ := dκ/ logq q
′e.

From this, we derive the following theorem, which says that SETH implies a strong q-ary
variant of SETH for all q. Traxler proved an analogous result for ETH [Tra08]. (His reduction
yields 2(1−ε)blog2 qcn-hardness under SETH.)

Theorem 3.3. For every constant ε ∈ (0, 1/2) and every integer q = q(n) ≥ 2, there is a constant
integer k ≥ 3 such that no q(1−ε)n-time algorithm solves (q, k)-SAT with n variables, unless SETH
is false. (The same result holds for randomized algorithms and randomized SETH; and for non-
uniform algorithms and non-uniform SETH.)
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Proof. Assuming SETH, there exists a constant integer k′ ≥ 3 such that no 2(1−ε/2)n′-time algorithm
solves k′-SAT (i.e., (2, k′)-SAT) on n′ variables.

Let κ := d10 log2(q)/εe. Let k := dκ/ log2 qek′. Notice that k ≤ 20k′/ε is bounded by a constant,
independent of n and q. By Corollary 3.2, there is a reduction running in time poly(m, 2κk

′
) =

poly(m, q) from k′-SAT with n′ variables to (q, k)-SAT with at most

n := n′/ log2 q + κ/ log2 q + n′/κ+ 1 ≤ (1 + ε/5)n′/ log2 q + 1 ≤ (1 + ε/4)n′/ log2 q

variables, where the last inequality assumes that n′ is sufficiently large.
Therefore, a q(1−ε)n-time algorithm for a (q, k)-SAT on n variables would imply a q(1−ε)n +

poly(m, q) ≤ 2(1−ε/2)n′-time algorithm for k′-SAT on n′ variables, where we have assumed again
that n′ is sufficiently large. This is a contradiction, and the result follows.

We also show that Gap-ETH implies a q-ary variant of Gap-ETH for constant q ≥ 2. (We
cannot hope to prove hardness of constant-factor approximation for superconstant q, since any
(q, k)-SAT instance has an assignment that satisfies at least (1 − q−k) ·m clauses.) We first need
the following theorem due to [Din16, MR17].

Theorem 3.4. There exist constants C ≥ 2 and s ∈ (0, 1) such that no 2o(n)-time (randomized)
algorithm solves (s, 1)-Gap-3-SAT on n variables and at most Cm clauses in which each variable
appears in at most C clauses, unless Gap-ETH is false.

The following theorem shows how to make Item 3 of Proposition 3.1 work in the more delicate
setting of Gap-SAT.1

Theorem 3.5. For any 0 < s ≤ c ≤ 1, C ≥ 2, and any integer q = q(n) ≥ 2 there is a poly(m, q)-
time (Karp) reduction that maps any (s, c)-Gap-3-SAT instance with n variables and m ≤ Cn
clauses in which each variable appears in at most C clauses to a (s′, c′)-Gap-(q, 3)-SAT instance
with n variables and m+ q2(q − 2)n clauses, where

s′ :=
C − (1− s) + q2(q − 2)

C + q2(q − 2)
,

and

c′ :=
c+ q2(q − 2)/C

1 + q2(q − 2)/C
≥ c .

In particular, for every constant q ≥ 2, there exists sq ∈ (0, 1) such that no 2o(n)-time randomized
algorithm solves (sq, 1)-Gap-(3, q)-SAT on n variables, unless Gap-ETH is false. (The same result
holds for non-uniform algorithms and non-uniform Gap-ETH.)

Proof. The reduction is essentially the same as the one used to prove Item 3 in Proposition 3.1,
though the analysis is more difficult. In particular, the reduction treats the binary variables
x1, . . . , xn in the input instance as q-ary variables and each (2, 3)-clause in the input instance
(xi1 , xi2 , xi3) 6= (z1, z2, z3) with zi ∈ {0, 1} as a (q, 3)-clause. The output (s′, c)-(q, 2)-SAT instance

1It is possible to reduce the number of variables in the output instance of Theorem 3.5 to roughly n/ log2 q as in
Corollary 3.2 at the expense of a worse approximation factor. However, we do not attempt to do that here, since this
reduction is primarily interesting for constant q, and we are not concerned with such constant factors in the context
of Gap-ETH.
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consists of these clauses, and for each 1 ≤ i ≤ n an additional q2(q − 2) distinct (q, k)-clauses that
together are equivalent to the statement that xi ∈ {0, 1}. E.g., for each i < n− 1, we can add the
clauses (xi, xi+1, xi+2) 6= (z1, z2, z3) for all z1 ∈ Zq \ {0, 1} and all z2, z3 ∈ Zq, and for i = n− 1 and
i = n, we can add (xi, x1, x2) 6= (z1, z2, z3) for the same values of z1, z2, z3.

Clearly the reduction runs in the claimed time. Furthermore, if there is a boolean assignment
satisfying at least cm clauses of the input instance, then there is an assignment satisfying at least
a

cm+ q2(q − 2)n

m+ q2(q − 2)n
≥ c′

fraction of the clauses in the output instance. I.e., the output (s′, c′)-(q, k)-SAT is a YES, as needed.
Now, suppose that no boolean assignment satisfies sm clauses in the input instance. For an

assignment (z1, . . . , zn) ∈ Znq , let ` be the number of variables zi with zi /∈ {0, 1}. Let S1 be
the number of “original clauses” in the output instance satisfied by this assignment and S2 be
the number of “unoriginal clauses” satisfied by this assignment, where here by “original clauses,”
we mean the clauses that came from the original input instance. Since all variables assigned a
boolean value collectively satisfy at most sm − 1 original clauses and each variable appears in at
most C original clauses, we have S1 ≤ min{m, sm + C` − 1}. And, by construction, we have
S2 ≤ q2(q− 2)(n− `) + (q2(q− 2)− 1)` = q2(q− 2)n− `. Therefore, the fraction of satisfied clauses
is

S1 + S2

m+ q(q − 2)n
≤ min{m− `, sm+ (C − 1)`− 1}+ q2(q − 2)n

m+ q2(q − 2)n

≤ (1− (1− s)/C)m+ q(q − 2)n− 1/C

m+ q2(q − 2)n

≤ C − (1− s) + q2(q − 2)− 1/C

C + q2(q − 2)

< s′ ,

as needed, where the second inequality follows from the fact that this expression is maximized when
` = (1−s)m+1

C .

4 SETH-hardness for NCP

We will need the gadget guaranteed by the following claim. The code is the Hadamard code, whose
key property from our perspective is that all non-zero codewords are permutations of each other.
(Bonisoli proved that the Hadamard code is the only such code [Bon84], up to trivial equivalences,
even if we only ask that all non-zero codewords have the same Hamming weight.) In particular,
when z = 0, we will take t = (1, 1, . . . , 1) in Claim 4.1, so that Hamming distance to t corresponds
to the number of 1s in a codeword. (Any non-zero multiple of (1, 1, . . . , 1) would work.)

Claim 4.1. For every integer k ≥ 2 and prime power q ≥ 2, there exists a matrix C ∈ F(qk−1)×k
q

with the following property. For any z ∈ Fkq , there is a target vector t ∈ Fq
k−1
q such that

‖Cz − t‖H = qk − 1 ,
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but
‖Cz′ − t‖H = qk − qk−1 − 1

for all z′ ∈ Fkq with z′ 6= z.

Furthermore, given q, k, and z, such a C and t can be computed in time poly(qk).

Proof. Let x1, . . . , xq−1 be all non-zero elements of Fq. Let C ∈ F(qk−1)×k
q be the matrix

C :=


0 0 · · · 0 x1

0 0 · · · 0 x2
...

...
. . .

...
...

xq−1 xq−1 · · · xq−1 xq−2

xq−1 xq−1 · · · xq−1 xq−1


consisting of all possible non-zero rows in Fkq . (Row i can be viewed as the base q representation of

i, and C generates the Hadamard code.) Take t := u+Cz, where u ∈ Fq
k−1
q is the all ones vector,

u := (1, 1, . . . , 1). Clearly, this can be computed in time poly(qk) as claimed.
Furthermore,

‖Cz − t‖H = ‖u‖H = qk − 1 .

On the other hand, for z′ 6= z, we have

‖Cz′ − t‖H = ‖C(z − z′)− u‖H = qk − qk−1 − 1 ,

where we have used the fact that every non-zero codeword in this code has exactly qk−1 coordinates
equal to one.

We can now present our main reduction for NCP. The SETH-hardness of NCP in Theorem 1.1
follows from this reduction together with Theorem 3.3 (which shows that SETH implies a similar
statement for (q, k)-SAT). The Gap-ETH hardness of γ-NCP in Theorem 1.2 for constant q ≥ 2
follows from this reduction together with Theorem 3.5 (which shows that Gap-ETH implies a similar
statement for (s, c)-Gap-(q, k)-SAT for constant q). Finally, Claim 2.3 lets us extend this to any
q = pκ for constant p ≥ 2, and therefore all finite fields with constant characteristic.

Theorem 4.2. There is a poly(n,m, qk) (Karp) reduction that maps any Max-(q, k)-SAT instance
with m clauses on n ≤ m variables and value r ≤ m to an NCP instance with rank at most n,
ambient dimension (qk − 1)m, and distance (qk − 1)m− qk−1r.

In particular, for any 0 < s ≤ c ≤ 1, the reduction maps (s, c)-Gap-(q, k)-SAT to γ-GapNCP,
where

γ :=
1− s/q − q−k

1− c/q − q−k
.

Proof. The reduction takes as input (q, k)-clauses φ1, . . . , φm and an integer 0 ≤ r ≤ m and
constructs the matrix and target

Φ :=


Φ1

Φ2
...

Φm

 and t :=


t1

t2
...
tm

 ,
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with Φi ∈ F(qk−1)×n
q and ti ∈ Fq

k−1
q as follows.

For each (q, k)-clause φi = ((x`i,1 , . . . , x`i,k) 6= (zi,1, . . . , zi,k)), let zi := (zi,1, . . . , zi,k) ∈ Fkq be

the vector corresponding to the unique assignment that does not satisfy φi. Let C ∈ F(qk−1)×k
q and

ti ∈ F2k−1
q be as in Claim 4.1 with z = zi. For each j = 1, . . . k, the reduction sets the `i,jth column

of Φi to equal the jth column of C. All other columns of Φi are zero. (For example, if k = 2 and φi
is the clause (x1, x3) 6= (z1, z2), then Φi = (C1, 0, C2, 0, 0, · · · , 0), where here Cj is the jth column
of C.)

Finally, the reduction outputs the NCP instance consisting of generator matrix Φ, target t, and
distance d := (qk − 1)(m− r) + (qk − qk−1 − 1)r = (qk − 1)m− qk−1r.

It is clear that this reduction runs in time poly(n,m, qk) as claimed. To prove correctness, we
consider an assignment vector a ∈ Fnq . Notice that Φia = Czi if and only if the assignment a fails

to satisfy clause φi. Otherwise, Φia = Cz′ for some other z′ ∈ Fkq . Therefore, by Claim 4.1,

‖Φia− ti‖H =

{
qk − qk−1 − 1 a satisfies φi

qk − 1 otherwise.

It follows that
‖Φa− t‖H = (qk − 1)(m− Sa) + (qk − qk−1 − 1)Sa ,

where Sa is the number of clauses satisfied by a. So, dist(t, C) ≤ d if and only if the value of the
number of maximum number satisfiable clauses is at least r, as needed.

4.1 SETH-hardness of NCP with Preprocessing

We now sketch how to modify the above reduction to show essentially the same SETH-hardness
result for NCP with preprocessing (though not hardness of approximation). The idea is to modify
the gadget in Claim 4.1 so that we can choose a special target toff that “turns off” a clause—i.e.,
toff has the property that ‖Cz − toff‖H is the same for all assignments z. In fact, any gadget that
satisfies Claim 4.1 already implies such a gadget with at most qk times as many rows,2 but we build
one with just q times as many rows (though this does not affect our results asymptotically).

Given such a gadget, we can then construct a code whose rows consist of such gadgets for all
m = m(q, n, k) possible (q, k)-clause on n variables. Then, given a (q, k)-SAT instance consisting of
a subset of these clauses, we construct the corresponding target t = (t1, . . . , tm) by taking ti = toff

if clause i is not in the input instance and mimicking the reduction from the previous section for
the other clauses. I.e., we effectively “turn off the rows” corresponding to clauses that are not in
our input instance.

Claim 4.3. For every integer k ≥ 2 and prime power q ≥ 2, there exists a matrix C ∈ Fq(q
k−1)×k

q

and vector toff ∈ Fq(q
k−1)

q with the following property. For all z′ ∈ Fkq ,

‖Cz′ − toff‖H = (q − 1)qk−1 ,

2To see this let C, t(z) be a gadget satisfying Claim 4.1. Let C′ be the matrix consisting of qk copies of C
stacked on top of each other. Let t′(z) := (t(z), . . . , t(z)). Let toff := (t(z1), t(z2), . . . , t(zqk )), where the zi ∈ Fkq
represent all possible assignments. Then, clearly toff is equidistant from all codewords and t′(z) is equidistant from
all codewords except C′z. [ABGS19] show a slightly different way to modify gadgets like those in Claim 4.1 to the
type of gadget that we need in this section.
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and for any z ∈ Fkq , there is a target vector t ∈ Fq(q
k−1)

q such that

‖Cz − t‖H = q(qk − 1) ,

but
‖Cz′ − t‖H = q(qk − qk−1 − 1)

for all z′ ∈ Fkq with z′ 6= z.

Furthermore, given q, k, and z, such a C, t, and toff can be computed in time poly(qk).

Proof. Let x0, x1, . . . , xq−1 be all elements of Fq. Let Ĉ ∈ F(qk−1)×k
q and t̂ ∈ Fq

k−1
q be the matrix

and target from Claim 4.1. Take

C :=


Ĉ

Ĉ
...

Ĉ

 ∈ Fq(q
k−1)×k

q

to be the matrix consisting of q copies of Ĉ and similarly take t := (̂t, . . . , t̂). It is immediate from
that claim that C and t satisfy the desired properties.

Finally, take toff := (x0, x0, . . . , x0, x1, x1, . . . , x1, . . . , xq−1, xq−1, . . . , xq−1) ∈ Fq(q
k−1)

q to be the
vector consisting of qk− 1 consecutive copies of each element in Fq. Notice that, for every non-zero

z′ ∈ Fkq , the codeword Ĉz′ is a vector whose entries contain qk−1 − 1 zeros and qk−1 copies of each
non-zero field element. (The reason that there are fewer zeros is because we excluded the zero row
in Ĉ.) It follows immediately that ‖Cz′−toff‖H = (qk−qk−1)+(q−1)(qk−qk−1−1) = (q−1)(qk−1)
for non-zero z′ ∈ Fkq . Finally, for z′ = 0, we also have ‖Cz′ − toff‖H = ‖toff‖H = (q − 1)(qk − 1),
as needed.

Theorem 4.4. There is a poly(nk, qk)-time reduction that maps any Max-(q, k)-SAT instance on
n variables to an NCP instance with rank n and ambient dimension M := qk+1(qk − 1) ·

(
n
k

)
.

Furthermore, the code of the NCP instance depends only on n, q, and k (and not on the clauses of
the input SAT instance).

Proof. We write m := qk
(
n
k

)
for the total number of possible (q, k)-clauses on n variables. Notice

that M = q(qk − 1) ·m. The reduction constructs the generator matrix

Φq,k,n :=


Φ1

Φ2
...

Φm

 ∈ FM×nq

of the code for fixed n, q, and k as follows. Let φ1, . . . , φm be a list of all possible (q, k)-clauses
over n variables. The reduction constructs Φi exactly as in Theorem 4.2, using the gadget C from
Claim 4.3, rather than the gadget from Claim 4.1. I.e., it places the jth column of C in the column
of Φi corresponding to the jth variable in φi.
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Given some Max-(q, k)-SAT on n variables, consisting of some subset T ⊆ {1, . . . ,m} of the
clauses and a value 0 ≤ r ≤ |T |, the reduction constructs the target

t :=


t1

t2
...
tm

 ∈ FM×nq

as follows. If i /∈ T , then ti = toff as defined in Claim 4.3. In particular, for such i we have
‖Φia−ti‖H = (q−1)(qk−1) for all a ∈ Fnq . If i ∈ T , then the reduction computes ti corresponding
to φi as in Theorem 4.2, except using Claim 4.3 rather than Claim 4.1. In particular, we have
‖Φia − ti‖H = q(qk − 1) for any assignment a ∈ Fnq that does not satisfy φi and ‖Φia − ti‖H =

q(qk − qk−1 − 1) if a does satisfy φi. Finally, the reduction outputs the NCP instance given by
generator matrix Φ, target t, and distance d := (qk − 1)(q − 1)m− |T |+ qk(|T | − r).

The running time is clearly as claimed. Furthermore, by the analysis above, we see that for any
assignment a ∈ Fnq ,

‖Φa− t‖H = q(qk − qk−1 − 1)Sa + q(qk − 1)Ua + (q − 1)(qk − 1)(m− |T |)
= (qk − 1)(q − 1)m− |T |+ qk(|T | − Sa) ,

where Sa is the number of clauses in T satisfied by a, Ua is the number of clauses in T not satisfied
by a, and we have used the fact that Ua = |T | − Sa. In particular, dist(t, C) ≤ d if and only if
there exists an assignment satisfying at least r of the clauses in T , as needed.

5 Hardness of MDP

To prove fine-grained hardness of MDP, we first present (our interpretation of) Dumer, Micciancio,
and Sudan’s reduction from NCP to MDP [DMS03], which requires a certain type of gadget to work.
Our contribution in this section is therefore entirely in the construction of the gadgets. We first
define the gadget and then discuss our constructions. (Our gadget differs slightly from [DMS03]
in that we require all vectors to be at the same distance. The same idea is used in [AS18] in the
context of lattices and in [KM19] in a very different context.)

Definition 5.1 (Locally dense codes). For integers 1 ≤ n ≤ m and 1 ≤ M ≤ qn, we say that a
generator matrix C ∈ Fm×nq , a target t ∈ Fmq , and distance 1 ≤ d ≤ m form an M -locally dense
triple if d := dist(t, C) < λ(C), and∣∣{z ∈ Fnq : ‖Cz − t‖H = d

}∣∣ ≥M .

We will construct two different families of locally dense codes in this section. (In Appendix A, we
construct a third such code with an additional property.) Our first construction uses Reed-Solomon
codes and is quite similar to the construction in [DMS03]. The main difference is just in the setting
of parameters. We choose our parameters to minimize the rank n of the gadget code relative to M ,
achieving M = q(1−ε)n for any ε > 0. Together with Theorem 4.2, this simple change is enough to
prove essentially optimal hardness of exact MDP under randomized SETH. In contrast, [DMS03]

were content with any M = qn
Ω(1)

but focused on achieving a ratio dist(t, C)/λ(C) that is bounded
away from one, which allowed them to prove hardness of γ-MDP for constant γ > 1.
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Our second construction is based on Ashikhmin, Barg, and Vlăduţ’s codes over F2 with kissing
number that is exponential in the ambient dimension [ABV01]. (A similar idea was used to show
hardness of lattice problems in [AS18].) With this, we simultaneously achieve M = 2Ω(n) and a
ratio dist(t, C)/λ(C) < 1 − Ω(1) that is bounded away from one, over F2. I.e., up to the hidden
constants in the asymptotic notation, we achieve the best of both worlds for the case q = 2. This
allows us to prove 2Ω(n) hardness of approximation under (non-uniform) Gap-ETH for all fields of
characteristic two.

We can now present (a version of) Dumer, Micciancio, and Sudan’s reduction. (Notice that the
reduction is only meaningful if γ′ ≥ 1.)

Theorem 5.2. There is an efficient (randomized) reduction that takes as auxiliary input an M -

locally dense triple (C† ∈ Fm†×n†q , t ∈ Fn†q , d† ≤ m†) with M ≥ 10qn and reduces any γ-NCP
instance over Fq with rank n, ambient dimension m, and distance d to a γ′-MDP instance over Fq
with rank at most n† + 1, ambient dimension m+m†, and distance d+ d†, where

γ′ :=
min

{
λ(C†), γd+ d†

}
d+ d†

.

The reduction succeeds with probability at least 1− qn/M

Proof. Given as input the generator matrix for a code C ∈ Fm×nq , target vector t ∈ Fmq , distance

1 ≤ d ≤ m and an M -locally dense triple (C†, t†, d†), the reduction behaves as follows. It samples

T ∈ Fn×n†q and z′ ∈ Fnq uniformly at random and sets

C ′ :=

(
CT −t− Cz′
C† −t†

)
∈ F(m+m†)×(n†+1)

q .

The MDP instance is simply C ′ and d′ := d+ d†.
Clearly the reduction is efficient and achieves the parameters claimed in the theorem. To prove

correctness, it will be convenient to define W := {(CTz†, C†z†) : z† ∈ Fn†q } to be the subspace

generated by the first n† columns of C ′. Then, the code generated by C ′ is just W together with
W − (t + Cz′, t†)F∗q , where we write F∗q for the non-zero elements of Fq. Notice that the shortest

non-zero codeword in W has length at least λ(C†) + λ(C) > λ(C†), and the shortest codeword in
W − (t + Cz′, t†)F∗q has length at least maxα∈F∗q dist(αt, C) + dist(αt†, C†) = dist(t, C) + d†.

So, suppose dist(t, C) > γd. It follows that

λ(C ′) > min
{
λ(C†), γd+ d†

}
= γ′d′ .

I.e., the MDP instance is a NO.
On the other hand, suppose that dist(t, C) ≤ d. Then, let z ∈ Fnq be such that ‖Cz− t‖H ≤ d.

By Claim 2.4, with probability at least 1−M/qn, there exists a z† ∈ Fn†q such that ‖C†z†−t†‖H = d†

and Tz† = z + z′. Assuming that such z† exists, then (CTz†, C†z†) − (t + Cz′, t†) is a non-zero
codeword in the code generated by C ′ with weight at most d + d†. So, with probability at least
1−M/qn, the MDP instance is a YES, as needed.

The next simple corollary shows that we can “add k copies” of the gadget in order to increase
γ′ a bit. (In particular, this allows us to achieve γ′ ≥ 1, and thus a non-trivial reduction.)
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Corollary 5.3. There is an efficient (randomized) reduction that takes as auxiliary input an M -

locally dense triple (C† ∈ Fm†×n†q , t ∈ Fn†q , d† ≤ m†) with M ≥ 10qn and an integer k ≥ 1 (repre-
sented in unary) and reduces any γ-NCP instance with rank n, ambient dimension m, and distance
d to a γ′-MDP instance with rank at most n†+1, ambient dimension m+km†, and distance d+kd†,
where

γ′ :=
min

{
kλ(C†), γd+ kd†

}
d+ kd†

.

The reduction succeeds with probability at least 1− qn/M
In particular, for k ≥ d, we have γ′ ≥ 1 (since λ(C†) ≥ d† + 1 by the definition of an M -locally

dense triple).

Proof. The reduction simply constructs the new gadget

(C†)′ :=

C
†

...
C†

 ∈ Fkm
†×n†

q , (t†)′ :=

t†

...
t†

 ∈ Fkm
†

q ,

and (d†)′ := kd† and then runs the reduction from Theorem 5.2 with this new gadget.

5.1 SETH hardness via Reed-Solomon codes

We now use Reed-Solomon codes to construct locally dense triples with the key property that we
can take M = q(1−ε)n for any constant ε > 0. We first construct our gadget for sufficiently large
q > n and then use concatenation to extend this to all q.

Proposition 5.4. There is a poly(q)-time deterministic algorithm that takes as input a prime

power q ≥ 2 and integer n < q and outputs a generator matrix C ∈ F(q−1)×n
q and target t ∈ Fq−1

q

such that (C, t, d) form an M -locally dense triple, where d := q − n− 1 and M :=
(
q−1
n

)
.

Proof. Let

C :=


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xq−1 x2
q−1 · · · xn−1

q−1

 ∈ Fq−1×n
q

be a generator matrix of a Reed-Solomon code, where x1, . . . , xq−1 ∈ F∗q are all distinct non-

zero field elements. Recall that λ(C) = q − n > d. Let t := (−x−1
1 ,−x−1

2 , . . . ,−x−1
q−1) ∈ Fq−1

q .
Then, for any codeword p := (p(x1), . . . , p(xq−1)) corresponding to a polynomial p(x) ∈ Fnq with
degree less than n, the quantity (q − 1)− ‖t− p‖H is exactly the number of non-zero roots of the
polynomial xp(x) + 1. This polynomial has degree at most n and therefore has at most n roots.
So, dist(t, C) ≥ q − n− 1 = d.

Notice that any polynomial with degree at most n and with constant term one can be written
(uniquely) as xp(x) + 1 for some p(x) with deg(p) < n. In particular, for every S ⊂ {1, . . . , q − 1}
with |S| = n, there exists a (unique) p(x) with degree n− 1 satisfying

xp(x) + 1 =

∏
i∈S(x− xi)∏
i∈S(−xi)

.
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For such p(x), we have ‖t− p‖H = d. Therefore, dist(t, C) = d and there are exactly
(
q−1
n

)
vectors

p with ‖t− p‖H = d (one for each such subset S), as needed.

Corollary 5.5. There is a poly(qκ)-time deterministic algorithm that takes as input a prime
power q ≥ 2 and positive integers n and κ satisfying qκ > n and outputs a generator matrix

C ∈ Fκ(qκ−1)2×κn
q , target t ∈ Fκ(qκ−1)2

q , and distance d := κ(qκ−qκ−1)(qκ−n−1) such that (C, t, d)
form an M -locally dense triple, where M :=

(
qκ−1
n

)
.

Proof. Let Ĉ ∈ Fq
κ−1×n
qκ and t̂ ∈ Fq

κ−1
qκ be as in Proposition 5.4. Let φ : Fqκ → Fκ(qκ−1)

q be a
linear map defined as follows. Recall that the finite field Fqκ is isomorphic as an Fq-vector space
to Fκq , and let ψ : Fqκ → Fκq be an isomorphism between them (which can be found and computed
efficiently). Let x1, . . . , xqκ−1 ∈ F∗qκ be all distinct non-zero field elements. Then, let

φ(z) :=


ψ(x1z)
ψ(x2z)

...
ψ(xqκ−1z)

 ∈ Fκ(qκ−1)
q .

We extend φ to a map from Fq
κ−1
qκ to Fκ(qκ−1)2

q by letting it act coordinate-wise, and we let C ∈
Fκ(qκ−1)2×κn
q be a generator matrix of the code {φ(Ĉz) : z ∈ Fnqκ} and t := φ(̂t). (Since ψ is an

isomorphism of vector spaces, this is in fact a code.)
It is clear that C and t can be computed in poly(qκ) time. Notice that for every non-zero

z ∈ Fqκ , we have ‖φ(z)‖H = α := κ(qκ − qκ−1). (In particular, φ(z) consists of all qκ − 1 possible
non-zero vectors in Fκq . Its Hamming weight is therefore qκ times the average Hamming weight of

a vector in Fκq , which is (1− 1/q)κ.) Therefore, for z ∈ Fq
κ−1
qκ , ‖φ(z)‖H = α · ‖z‖H . It follows that

λ(C) = α · λ(Ĉ), dist(t, C) = α · dist(̂t, Ĉ), and∣∣{z ∈ Fnq : ‖Cz − t‖H = dist(t, C)}
∣∣ =

∣∣{z ∈ Fnqκ : ‖Ĉz − t̂‖H = dist(̂t, Ĉ)}
∣∣ .

The result follows from the properties of Ĉ and t̂ guaranteed by Proposition 5.4.

Corollary 5.6. For every constant ε ∈ (0, 1/2), there is a polyε(n, q)-time deterministic algorithm
that takes as input a prime power q = q(n) ≥ 2 and sufficiently large integer n and outputs a code
C ∈ Fm×nq , target t ∈ Fmq , and distance d ≥ (1− ε)(1− 1/q)m such that (C, t, d) is a q(1−ε)n-locally
dense triple, where m = polyε(n, q).

Proof. Let κ := 10d(1 + logq n)/εe and n̂ := bn/κc such that
(
qκ−1
n̂

)
≥ q(1−ε)n and

d

m
=
κ(qκ − qκ−1)(qκ − n− 1)

κ(qκ − 1)2
≥ (1− ε)(1− 1/q) .

The result then follows by Corollary 5.5.

Corollary 5.7. For every constant ε ∈ (0, 1/2) and every prime power q = q(n) ≥ 2, there is
an polyε(m, q)-time (randomized) reduction that maps any NCP instance over Fq with rank n ≥ 2
and ambient dimension m to an MDP instance over Fq with rank at most (1 + ε)n and ambient
dimension polyε(m, q).
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Proof. On input C ∈ Fm×nq , t ∈ Fmq , and 1 ≤ d ≤ m, the reduction sets n† := b(1 + ε)nc and runs

the algorithm from Corollary 5.6 to obtain (C†, t†, d†), a q(1−ε/10)n† > 10qn-locally dense triple with
rank n†. It then runs the reduction from Corollary 5.3 with k := d.

The SETH-hardness of MDP (i.e., the MDP part of Theorem 1.1) now follows immediately
from the SETH-hardness of NCP and Corollary 5.7.

5.2 Hardness of approximation via kissing codes

We now prove Gap-ETH hardness of MDP by constructing a different locally dense triple that has
λ(C) ≤ d/γ for constant γ > 1 while still achieving M ≥ 2εn for constant ε > 0. Recall that the
kissing number of a code (or, by abuse of notation, the kissing number of its generator matrix) is
the number of non-zero vectors whose length is exactly λ(C).

Our construction will use the following result of Ashikhmin, Barg, and Vlăduţ, showing the
existence of codes over F2 with kissing number exponential in the ambient dimension m [ABV01].
(In this section, we will only prove the existence of a gadget that suffices for our needs. We do not
know if it can be constructed efficiently, which is why we require a non-uniform reduction.) We
work over F2 throughout this section and then simply use Claim 2.3 to extend our hardness result
to all fields of characteristic two. (All of the unspecified constants in this section can be made
explicit.)

Theorem 5.8 ([ABV01]). There exist constants ε > 0 and δ > 0 such that for all integers m ≥ 2,
there is C ∈ Fm×n2 with kissing number at least 2εm and λ(C) ≥ δm.

The basic idea behind the next corollary is straightforward. Given a code as in Theorem 5.8,
we can sample a uniformly random target t ∈ Fm2 with low Hamming norm, ‖t‖H = δ′m < δm and
argue that the expected number of codewords at distance d := λ(C) − ‖t‖H = λ(C)/γ from t is
2ε
′m. We then “remove 0” from the code to make dist(t, C) = d. I.e., we translate t by a random

codeword, take a random low-co-dimension subcode of C, and argue that with high probability the
subcode will still contain many vectors at distance d from our new target but no closer codeword.

Corollary 5.9. There exist constants ε > 0 and γ ∈ (1, 2) such that for all sufficiently large
integers m, there exist C ∈ Fm×n2 , t ∈ Fm2 , and 0 ≤ d ≤ m that form an M -locally dense triple with
M ≥ 2εm and λ(C) ≥ γd.

Proof. Let Ĉ ∈ Fm×n̂2 generate the code guaranteed by Theorem 5.8 with kissing number at least

2ε̂m. Let t̂ ∈ Fm2 be uniformly random with Hamming norm w := λ(Ĉ)− bλ(Ĉ)/γc. Let a, ẑ ∈ Fn̂2
be uniformly random. Then, set t := t̂ + Ĉẑ, and let C ∈ Fm×n2 be the generator matrix of the
code

{Ĉz : 〈z,a〉 = 0} .
Let d := λ(Ĉ)− w = bλ(Ĉ)/γc.

We trivially have λ(C) ≥ λ(Ĉ) ≥ γd. Below, we argue that (C, t, d) is an M -locally dense triple
with non-zero probability.

Notice that, in the code generated by Ĉ, the closest codeword to t̂ is 0, and all other codewords
are at distance at least d away from t̂. Let y ∈ ĈFn̂2 be a codeword with ‖y‖H = λ(Ĉ). Then,

Pr[‖y − t̂‖H = d] =

(
λ(Ĉ)
w

)(
m
w

) .
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So, the expected number of codewords y ∈ ĈFn̂2 with ‖y − t̂‖H = d is at least

2ε̂m ·
(
λ(Ĉ)
w

)(
m
w

) ,

which for sufficiently large m and sufficiently small constants ε and γ is at least 2εm+2.3 Therefore,
there exists a choice of t̂ with at least 2εm+2 codewords y ∈ ĈFn̂2 at distance d from t̂.

Fix such t̂, and notice that there are also at least 2εm+2 codewords y ∈ ĈFn̂2 with ‖y− t‖H = d.

(Recall that we chose t := t̂ + Ĉẑ.) And, the only codeword y ∈ ĈFn̂2 satisfying ‖y − t‖H < d is

y = Ĉẑ. It follows that dist(t, C) = d if and only if 〈a, ẑ〉 6= 0. Furthermore, for any z 6= ẑ, we
have

Pr
a,ẑ

[〈a, z〉 = 0 | dist(t, C) = d] ≥ Pr
a,ẑ

[〈a, z〉 = 0 | 〈a, ẑ〉 = 1]/2 ≥ 1/4 .

Therefore, for a choice of t̂ as above, we have

E
a,ẑ

[#{z ∈ Fn2 : ‖Cz − t‖H = d} | dist(t, C) = d] ≥ 2εm .

Since this holds in expectation, there must exist C, t such that (C, t, d) is an M -locally dense triple,
as needed.

Corollary 5.10. For any constants γ > 1 and ε > 0, there is an efficient (non-uniform) reduction
that maps any γ-NCP instance over F2 with rank n, ambient dimension d, and distance d ≥ εn to
a γ′-MDP instance over F2 with rank at most αn and ambient dimension at most polyγ,ε(m) for
some constants γ′ > 1 and α > 1 depending only on γ and ε.

Proof. Simply combine Corollary 5.9 with Corollary 5.3. In particular, let ε†, γ† be the constants
guaranteed by Corollary 5.9. Let δ := γ† − 1 > 0. Let α := 1 + 1/ε†, and m† := bαnc. Then,
let (C†, t†, d†) be the M -locally dense triple guaranteed by Corollary 5.9, and notice that the
rank of C† is at most the ambient dimension m†. Also notice that for our choice of parameters
M ≥ 2ε

†m† > 10 · 2n (for n sufficiently large).
Then, Corollary 5.3 with

k :=
⌈ 2d

δd†

⌉
≤ 3αd

εδd†

guarantees a reduction with auxiliary input (C†, t†, d†) that reduces any γ-NCP instance with rank
n, ambient dimension m, and distance d ≤ m to a γ′-MDP with rank at most n† ≤ m† = bαnc and
ambient dimension m+ km† ≤ poly(d), where we may take γ′ as large as

min
{
kλ(C†), γd+ kd†

}
d+ kd†

≥ min
{ kγ†d†

d+ kd†
,
γd+ 3αd/(εδ)

d+ 3αd/(εδ)

}
≥ min

{ 2γ

γ + 1
,
εδγ + 3α

εδ + 3α

}
.

This is a constant strictly greater than one, as needed.

3By a suitable effective form of Stirling’s formula, we have(
λ(Ĉ)
w

)(
m
w

) ≥ ( bδmc
bδm−δm/γc

)(
m

dδm−δm/γe

) ≥ 2(δH(1−1/γ)−H(δ(1−1/γ)))m

poly(m)
,

where H(p) := p log2(1/p) + (1 − p) log2(1/(1 − p)) is the binary entropy function. It then suffices to note that
limγ→1 δH(1−1/γ)−H(δ(1−1/γ)) = 0. Therefore, there exists γ > 1 such that, e.g., δH(1−1/γ)−H(δ(1−1/γ)) >
−ε̂/2. We can therefore take γ to satisfy this and, e.g., ε = ε̂/4, so that for sufficiently large m, the ratio in question
is at least 2εm−ε̂m+2, as needed.
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Theorem 1.2 for q = 2 now follows immediately by combining Theorem 4.2 and Corollary 5.10.
To extend this to all q = 2`, we can simply apply Claim 2.3.

5.3 An exponential-time derandomized reduction

We now show how to derandomize the reduction from [DMS03] presented in Theorem 5.2 at the
expense of making it run in exponential time. More specifically, we show a reduction from NCP
on codes with rank n to MDP on codes with rank roughly (1 + ε)n/4 (and polynomial ambient
dimension) that runs in time roughly q3n/4 . This is enough to show a tight SETH-hardness result
for MDP, as in Theorem 1.1.

We first show a minor variant of the reduction above, complete with its own variant of the
necessary gadget. We omit the proof as it is essentially identical to that of Theorem 5.2, and quite
similar to that of Theorem A.2.

Definition 5.11. An augmented code is a generator matrix C ∈ Fm×n†q , a target t ∈ Fmq , distance

1 ≤ d ≤ m with d := dist(t, C) < λ(C), matrices T1, . . . , T` ∈ Fn×n†q , and vectors z1, . . . ,z` such
that {

Tiz
† + zi : ‖Cz† − t‖H = d

}
= Fnq .

Theorem 5.12. There is an efficient deterministic Cook reduction that takes as auxiliary input an
augmented code (C† ∈ Fm†×n†q , t ∈ Fn†q , d† ≤ m†, T1, . . . , T` ∈ Fn×n†q , z1, . . . ,z` ∈ Fnq ) and reduces
any NCP instance over Fq with rank n, ambient dimension m, and distance d to an MDP instance
over Fq with rank at most n† + 1, ambient dimension m+ dm†, and distance (d† + 1)d.

5.3.1 Constructing the gadget deterministically

Below, we show how to find an augmented code deterministically. Unfortunately, our algorithm
for finding these Ti will run in time greater than qn+n† . In Section 5.3.2, we show how to use the
algorithm anyway.

Proposition 5.13. There exists a deterministic algorithm that takes as input S ⊆ Fnq and V ⊆ Fn†q
with |V | ≥ 10n2qn and outputs T ∈ Fn×n†q and z ∈ Fnq such that |(TV +z)∩S| ≥ exp(−10n2qn/|V |)·
|S| in time |V ||S|qn†+1 · poly(n†, log q).

Proof. The algorithm uses the method of conditional expectations and constructs T and z by
finding the rows t1, . . . , tn ∈ Fn†q of T and the coordinates z1, . . . , zn ∈ Fq of z one at a time. In

particular, for i = 1, . . . , n, the algorithm behaves as follows. For each t̃ ∈ Fn†q , z̃ ∈ Fq, and s ∈ S,
let

Us,̃t,z̃
:= {v ∈ V : ∀j < i, 〈v, tj〉+ zj = sj and 〈v, t̃〉+ z̃ = si}

be the set of all v that are “compatible with” s, t̃, and z̃. Let

Et̃,z̃
:= |{s ∈ S : |Us,̃t,z̃| ≥ Ni}| ,

for some 1 ≤ Ni < Ni−1/q to be chosen later. (Et̃,z̃ is a rough approximation to the expected value

of |(TV + z)∩ S| when the first i rows of T are fixed to t1, . . . , ti−1, t̃ and the first i coordinates of
z are fixed to z1, . . . , zi−1, z̃.) The algorithm sets ti and zi so that Eti,zi is maximized. Finally, the

algorithm outputs T ∈ Fn×n†q whose rows are the ti and z := (z1, . . . , zn) ∈ Fnq .
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It is clear that the algorithm runs in time |V ||S|qn†+1 · poly(n†, log q), as claimed. Let Ei be
the maximizing value of Et̃,z̃ at the ith step. For convenience, we define E0 := |S| and N0 := |V |.
Notice that En ≥ |(TV + z) ∩ S| for the final output T and z, so that it suffices to show that the
Ei do not decay too quickly.

We claim that

Ei ≥
(

1− qNi−1

(Ni−1 − qNi)2

)
· Ei−1 . (1)

Indeed, let s ∈ S such that in step i−1 we have |Us,ti−1,zi−1 | ≥ Ni−1. Then in step i, by Claim 2.4,
we have

Pr
t̃,z̃

[|Us,̃t,z̃| < Ni] <
qNi−1

(Ni−1 − qNi)2
.

Therefore,

E
t̃,z̃

[Et̃,z̃] ≥
(

1− qNi−1

(Ni−1 − qNi)2

)
· Ei−1 ,

which implies Eq. (1).
Applying Eq. (1) for all i and recalling that E0 := |S|, we see that

En ≥ |S| ·
n∏
i=1

(
1− qNi−1

(Ni−1 − qNi)2

)
.

Finally, we simply choose values of Ni that make the above expression relatively easy to analyze.
It suffices to take Ni := |V |/qi · (n− i+ 1)/(n+ 1). Then, we have

En
|S|
≥

n∏
i=1

(
1− (n+ 1)(n− i+ 2)qi/|V |

)
≥

n∏
i=1

exp(−5n2qi/|V |) ≥ exp(−10n2qn/|V |) ,

as needed.

Corollary 5.14. There exists a deterministic algorithm that takes as input an integer n ≥ 1
and an M -locally dense triple (C† ∈ Fm†×n†q , t ∈ Fn†q , d† ≤ m†) with M > 10n2qn and outputs

T1, . . . , T` ∈ Fn×n†q and z1, . . . ,z` ∈ Fnq such that

⋃̀
i=1

(TiV + zi) = Fnq

in time qn+2n†+1 · poly(n†, log q, `), where

V := {z† ∈ Fn
†
q : ‖C†z† − t†‖H = d†}

is the set of coordinates of closest codewords to t† and

` :=
⌈ n log q + 1

logM − log(10n2qn))

⌉
.
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Proof. On input n ≥ 1 and (C† ∈ Fm†×n†q , t ∈ Fn†q , d† ≤ m†), the algorithm behaves as follows. It

first computes the set V by simply enumerating all codewords C†Fn†q . Let S1 := Fnq .
The algorithm does the following for i = 1, . . . , `. It runs the procedure from Proposition 5.13

on input Si and V , receiving as output Ti, zi. It then sets Si+1 := Si \ (TiV + zi). Finally, it
outputs T1, . . . , T` and z1, . . . ,z`.

The running time is clear. For correctness, we note that, by Proposition 5.13,

|(TiV + zi) ∩ Si| ≥ exp(−10n2qn/|V |) · |Si| .

Therefore,
|Si| ≤ (1− exp(−10n2qn/|V |)) · |Si−1| ≤ (10n2qn/|V |) · |Si−1| .

Applying this inequality for all i and recalling that S1 = Fnq , we have

|S`+1| ≤ qn(10n2qn/|V |)` < 1 .

I.e., S`+1 is empty. The result follows by noting that S`+1 = ∅ is the complement of the union⋃`
i=1(TiV + zi).

Finally, we note that we can combine the locally dense triple construction in Corollary 5.6 with
Corollary 5.14 in order to construct an augmented code.

Corollary 5.15. For every constant ε ∈ (0, 1/2), there is a deterministic algorithm that takes as
input a prime power q = q(n) ≥ 2 and sufficiently large integer n and outputs an augmented code

consisting of a generator matrix C ∈ Fm×n†q , target t ∈ Fmq , distance d := d(1− ε/10)(1− 1/q)me,
matrices T1, . . . , T` ∈ Fn×n†q , and vectors z1, . . . ,z` ∈ Fnq in time qn+2n†+1 · polyε(n

†, log q), where

` :=
⌈ 10n log q

εn log(q)− log(10n2)

⌉
,

and n† := d(1 + ε)ne.

5.3.2 Completing the reduction

To complete the reduction, we need to somehow obtain a reduction that runs in time less than
q(1−ε)n using the fact that Corollary 5.15 allows us to build an augmented code in time roughly
q3n. We do this by guessing most of the coordinates of the potential solution to our NCP instance.
E.g., for each of the q3n/4 choices for the first 3n/4 coordinates, we create an NCP instance with
rank n/4. We then use Corollary 5.15 to construct an augmented code for n′ := n/4, which we can
do in time roughly q3n′ = q3n/4. Notice that we only need to construct this gadget once, and we
can use it to reduce each of the q3n/4 NCP instances with rank n′ to an MDP instance with rank
just slightly larger than n′. In particular, this implies that a q(1−ε)n′-time algorithm for MDP on
instances with rank n′ would imply a roughly q(1−ε/4)n-time algorithm for NCP on instances with
rank n, contradicting SETH.

Theorem 5.16. For any constant ε ∈ (0, 1/2), there is a q3(1+ε)n/4 · polyε(n,m, q)-time reduction
that maps any NCP instance with rank n and ambient dimension m to q3n/4 instances of MDP
with rank d(1 + ε)n/4e+ 1 and ambient dimension polyε(n,m).
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Proof. On input an NCP instance C ∈ Fm×nq , t ∈ Fnq , and 1 ≤ d ≤ m, the reduction behaves as
follows. We assume for simplicity that n is divisible by four and sufficiently large. The reduction
first uses the procedure from Corollary 5.15 with input n/4 to find an augmented code C ∈ Fm†×n†q ,

target t ∈ Fm†q , distance d := d(1 − ε/10)(1 − 1/q)m†e, matrices T1, . . . , T` ∈ Fn/4×n
†

q , and vectors

z1, . . . ,z` ∈ Fn/4q in time qn/4+2n†+1 · polyε(n
†, log q), where ` ≤ polyε(n, log q) and n† := d(1 +

ε)n/4e.
Let Ĉ ∈ Fm×n/4q be the matrix consisting of the last n/4 columns of C. Let t1, . . . , tq3n/4 ∈ Fmq

be the targets given by ti := t − Czi, where z1, . . . ,zq3n/4 ∈ Fnq are all the distinct vectors whose

last n/4 coordinates are zero. Then, for each i = 1, . . . , q3n/4, the reduction uses the procedure from
Theorem 5.12 together with the augmented code to reduce the NCP instance given by (Ĉ, ti, d) to
an MDP instance with the desired parameters. The reduction then calls its MDP oracle on each
such MDP instance and outputs YES if the oracle ever responds YES. Otherwise, it outputs NO.

The running time of the reduction is clear. To prove correctness, fix z ∈ Fnq . Let zi ∈ Fnq be
the vector whose first 3n/4 coordinates match z and whose last n/4 coordinates are zero, and let

z′ ∈ Fn/4q be the projection of z onto its last n/4 coordinates. Then, Cz−t = Czi+Ĉz
′−t = Ĉ−ti.

It follows that dist(ti, Ĉ) ≥ dist(t, C), which implies that the reduction always correctly outputs
NO on a NO instance. Furthermore, by taking z so that ‖Cz− t‖H ≤ d, we see that the reduction
always correctly outputs YES when such a z exists. I.e., the reduction is correct as needed.
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Huck Bennett and Sasha Golovnev for helpful discussions. We also thank the anonymous reviewers
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A A deterministic reduction in the spirit of Cheng and Wan

We now modify the reduction in Theorem 5.2 to make it deterministic. To do so, we largely
follow Cheng and Wan [CW12] (who themselves follow the high-level framework of [DMS03] used
in Section 5). We first introduce a strengthening of the gadgets used in the previous section. We
will construct this gadget in essentially the same way as Cheng and Wan. The main difference is
that we focus on minimizing the rank n† relative to n, while Cheng and Wan focus on minimizing
the ratio dist(t, C)/λ(C).

Definition A.1 (Projecting codes). For integers 1 ≤ n < n† ≤ m, we say that a generator matrix

C ∈ Fm×n†q , a target t ∈ Fmq , and distance 1 ≤ d ≤ m form a n-projecting code if d = dist(t, C) <

λ(C), and if for every z ∈ Fnq , there is a z† ∈ Fn†−nq such that ‖C(z, z†)− t‖H = d.

I.e., let S be the set of z ∈ Fn†q with ‖Cz− t‖H = d from t. Then, (C, t, d) is a projecting code
if and only if π(S) = Fnq , where π is the map that projects a vector onto its first n coordinates.
The next theorem shows how such a gadget can be used to deterministically reduce NCP to MDP.

Theorem A.2. There is an efficient deterministic reduction that takes as auxiliary input an n-
projecting code (C† ∈ Fm†×n†q , t† ∈ Fm†q , 0 ≤ d† ≤ m†) and reduces any NCP instance over Fq
with rank n and ambient dimension m to an MDP instance over Fq with rank n† + 1 and ambient
dimension m(m† + 1).
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Proof. Given input t ∈ Fmq , C ∈ Fm×nq , 1 ≤ d ≤ m, and an n-projecting code (C† ∈ Fm†×n†q , t† ∈
Fm†q , 0 ≤ d† ≤ m†), the reduction first constructs the matrix

C†m :=


C†

C†

...
C†

 ∈ Fmm
†×n†

q

and target t†m := (t†, t†, . . . , t†) ∈ Fmm†q —i.e., it stacks m copies of C† and t† vertically. Notice

that (C†m, t
†
m,md†) is also an n-projecting code. Let C0 := (C, 0) ∈ Fm×n†q be the matrix C padded

with with n†−n columns of zeros. (Notice that we must have n† ≥ n, so that this definition makes
sense.) The reduction simply constructs the generator matrix

C ′ :=

(
C0 −t
C†m −t†m

)
∈ Fm(m†+1)×(n†+1)

q .

Finally, it simply calls its MDP oracle on input C ′ and d′ := d+md† and returns the result.
Clearly the reduction is efficient and achieves the parameters claimed in the theorem. To prove

correctness, it will be convenient to define W := {(C0(z, z†), C†m(z, z†)) : z ∈ Fnq , z† ∈ Fn†−nq }
to be the subspace generated by its first n† columns of C ′. Then, the code generated by C ′ is just
W ∪(W −(t, t†m)F∗q). Notice that the shortest non-zero codeword in W has length at least λ(C†m) =

mλ(C†), and the shortest codeword in W − (t, t†m)F∗q has length at least maxα∈F∗q dist(αt, C) +

dist(αt†m, C
†
m) = dist(t, C) +md†.

So, suppose dist(t, C) > d. It follows that

λ(C ′) > min
{
mλ(C†), d+md†

}
≥ d′ ,

where we have used the fact that mλ(C†) ≥ m(1+d†) ≥ d+md†. I.e., the MDP oracle must return
NO.

On the other hand, suppose that dist(t, C) ≤ d. Then, let z ∈ Fnq be such that ‖Cz− t‖H ≤ d.

By the definition of a projecting code, there exists z† ∈ Fn†−nq such that ‖C†(z, z†) − t†‖H = d†.

Then, clearly (C(z, z†), C†m(z, z†)) − (t, t†m) is a non-zero codeword in the code generated by C ′

with weight ‖Cz − t‖H +md† ≤ d′. So, the MDP oracle must return YES.

A.1 Constructing the gadget using Reed-Solomon codes and character sums

We will need a version of Weil’s character sum bound for the affine line. Recall that a character χ of
some group A is a homomorphism χ : A→ T from A to the multiplicative group of complex numbers
with norm one. For a polynomial h(x) over Fq, we write (Fq[x]/h(x))∗ for the multiplicative group
of units in Fq[x]/h(x). I.e., the elements of (Fq[x]/h(x))∗ are residue classes of polynomials that
are coprime to h(x).

Theorem A.3 (Weil’s character sum bound for the affine line, [Wan97, Theorem 2.1]). For any
polynomial h(x) ∈ Fq[x] and any non-constant character χ of (Fq[x]/h(x))∗,∣∣∣ ∑

v∈Fq , h(v)6=0

χ(x− v)
∣∣∣ ≤ (deg h− 1)

√
q .

27



From this, we derive the following result, which is a slight variant of [CW12, Theorem 2.2]. The
proof is essentially identical, but we reproduce it for completeness.

Theorem A.4. For any h(x) ∈ Fq[x] with d := deg(h) > 1, any integer g satisfying q > (g + d)2

and g > (2 + ε)d, and any element β ∈ (Fq[x]/h(x))∗, there exist distinct v1, . . . , vg ∈ Fq such that

β = (x− v1)(x− v2) · · · (x− vg) mod h(x) ,

where

ε := 20 · log d+ log(q)/d

log q − 2 log d
.

Proof. Let φ(h) := |(Fq[x]/h(x))∗| < gd denote the cardinality of (Fq[x]/h(x))∗. Let G be the group
of characters of (Fq[x]/h(x))∗, and let χ0 ∈ G be the unique constant character satisfying χ0(α) = 1
for all α ∈ (Fq[x]/h(x))∗. We recall that |G| = φ(h); for any α ∈ (Fq[x]/h(x))∗,∑

χ∈G
χ(α) =

{
φ(h) α = 1 mod h(x)

0 otherwise;

and similarly for any χ ∈ G, ∑
α∈(Fq [x]/h(x))∗

χ(α) =

{
φ(h) χ = χ0

0 otherwise.

Notice that for v ∈ Fq, x− v ∈ (Fq[x]/h(x))∗ if and only if h(v) 6= 0. Let S ⊆ Fq be the set of
all such elements, and let Sm ⊂ Sm be the set of all m-tuples (v1, . . . , vm) ∈ Sm with vi 6= vj for
i 6= j. Let Nm(β) be the number of such tuples (v1, . . . , vm) ∈ Sm with β = (x−v1)(x−v2) · · · (x−
vm) mod h(x). We wish to show that Ng(β) > 0.

Let χ(v) := χ(x− v1)χ(x− v2) · · ·χ(x− vm) for v = (v1, . . . , vm) ∈ Sm. By the above, we can
write

Ng(β) =
1

φ(h)
·
∑
v∈Sg

∑
χ∈G

χ(β−1 · (x− v1)(x− v2) · · · (x− vg))

=
1

φ(h)
·
∑
v∈Sg

∑
χ∈G

χ(β−1)χ(v)− 1

φ(h)
·
∑

v∈Sg\Sg

∑
χ∈G

χ(β−1)χ(v)

≥ 1

φ(h)
·
∑
v∈Sg

∑
χ∈G

χ(β−1)χ(v)− 1

φ(h)
·
(
g

2

)
·
∑
v∈Sg
v1=v2

∑
χ∈G

χ(β−1)χ(v)

=
|S|g −

(
g
2

)
|S|g−1

φ(h)
+

1

φ(h)
·

∑
χ∈G\{χ0}

χ(β−1)
( ∑

v∈Sg
χ(v)−

(
g

2

)
·
∑
v∈Sg
v1=v2

χ(v)
)

≥ (q − d)g−1 · q − d− g
2

qd
− max
χ 6=χ0

∣∣∣ ∑
v∈Sg

χ(v)
∣∣∣− g2 · max

χ 6=χ0

∣∣∣ ∑
v∈Sg−1

χ(v)
∣∣∣

= (q − d)g−1 · q − d− g
2

qd
− max
χ 6=χ0

∣∣∣∑
v∈S

χ(v)
∣∣∣g − g2 · max

χ 6=χ0

∣∣∣∑
v∈S

χ(v)
∣∣∣g−1

≥ (q − d)g−1 ·
q − d−

(
g
2

)
qd

−
(
1 + g2

)
· (d− 1)gqg/2 ,
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where the first inequality follows from the fact that the inner summand is non-negative and the
last inequality is Theorem A.3. The result now follows from the constraints on g, q, and d, which
imply that the above quantity is positive.

Proposition A.5. Let h(x) ∈ Fq[x] be an irreducible polynomial with d := deg(h) > 1, let
x1, . . . , xn ∈ Fq be distinct field elements, and let 1 ≤ n ≤ g be integers satisfying q > (g + n+ d)2

and g > (2 + ε)(n+ d), where

ε := 20
log(n+ d) + log(q)/(n+ d)

log q − 2 log(n+ d)

Then, for every z1, . . . , zn ∈ Fq, there exists a polynomial p(x) such that p(xi) = zi for 1 ≤ i ≤ n
and p(x)h(x)− 1 =

∏
j(x− vj) for some distinct v1, . . . , vg ∈ Fq.

Proof. We will have to treat the zi slightly differently depending on whether zih(xi) = 1. By
reordering the xi and zi, we may assume for convenience that zih(xi) 6= 1 for all i ≤ ` and
zih(xi) = 1 for all i > `, for some 0 ≤ ` ≤ n.

Let α(x) ∈ Fq[x] be the unique polynomial with degree at most n such that α(xi) = zi for all

i. Let π1(x) :=
∏`
i=1(x − xi), π2 :=

∏n
i=`+1(x − xi), and h̃(x) := h(x)π1(x). Notice that π2(x)

is relatively prime to h̃(x), so that π2(x) has an inverse modulo h̃(x), which we simply write as
π−1

2 (x). Furthermore, α(x)h(x) − 1 is relatively prime to h̃(x). (Here, we have used the fact that
α(xi)h(xi)−1 6= 0 for all i ≤ `.) Therefore, Theorem A.4 guarantees the existence of v1, . . . , vg+`−n
with

g+`−n∏
j=1

(x− vj) = π−1
2 (x) · (α(x)h(x)− 1) mod h̃(x) .

I.e., there exists a r(x) such that

π2(x)

`+d∏
j=1

(x− vj) = α(x)h(x)− 1 + r(x)h(x)π1(x) = (α(x) + r(x)π1(x))h(x)− 1 .

The result follows by taking p(x) := α(x)+r(x)π1(x), which must have degree exactly `+deg(π2) =
g.

We are now ready to show the existence of our gadget for large enough q. The existence for all
q will follow.

Corollary A.6. There exists a deterministic poly(q)-time algorithm that takes as input a suf-

ficiently large positive integer and prime power q ≥ 10n2 and outputs C ∈ Fq×n
†

q , t ∈ Fqq, and
d := q − n† − 1 that form an n-projecting code, where n† := d(2 + ε)ne with

ε := 40
log n+ log(q)/n

log q − 2 log n
.

Proof. Our code is simply a Reed-Solomon code of rank n† over Fq with an appropriate generator
matrix. Recall that codewords in such a code have the form (p(x1), p(x2), . . . , p(xq)) ∈ Fqq, where
p(x) ∈ Fq[x] is a polynomial with degree less than n† and x1, . . . , xq ∈ Fq are all distinct field
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elements. We choose our generator matrix C ∈ Fq×n
†

q so that for z = (z1, . . . , zn†) ∈ Fn†q , Cz =
(z1, z2, . . . , zn, y1, . . . , yq−n). I.e., the first n rows of C are the identity matrix. (Such a matrix C
can be computed efficiently by Gaussian elimination.) We of course have λ(C) = q − n† + 1.

Let h(x) ∈ Fq[x] be an irreducible polynomial of degree two (which can be found efficiently).
Let t := (1/h(x1), 1/h(x2), . . . , 1/h(xq)) ∈ Fqq. (Notice that h(xi) 6= 0 so that these inverses exist.)
For a codeword a ∈ Fqq corresponding to the polynomial pa(x) ∈ Fq[x], the distance ‖a − t‖H is
exactly q − g, where g is the number of distinct roots of the polynomial pa(x)h(x)− 1. Therefore,
it suffices to show that for every z ∈ Fnq , there exists a polynomial p(x) with degree less than n†

such that p(xi) = zi for 1 ≤ i ≤ n and p(x)h(x)− 1 splits completely (i.e., p(x)h(x)− 1 has n† + 1
distinct roots). This is what Proposition A.5 guarantees.

The following corollary extends the above result to all prime powers q ≥ 2 by working over a
field extension Fqκ . We omit the proof as it is essentially identical to the proof of Corollary 5.5.

Corollary A.7. There exists a deterministic poly(n̂, qκ)-time algorithm that takes as input a suf-
ficiently large integer n̂, prime power q ≥ 2, and integer κ ≥ 1 with qκ ≥ 10n̂2 and outputs
C ∈ Fm×n†q , t ∈ Fmq , and d := κ(qκ − qκ−1)(qκ − n† − 1) that form a n-projecting code, where

n := κn̂, m := κ(qκ − 1)qκ, n† := κd(2 + ε)n̂e, and

ε := 40
log n̂+ κ log(q)/n̂

κ log q − 2 log n̂
.

Corollary A.8. For any constant ε ∈ (0, 1) and any prime power q = q(n) ≥ 2, there is a
polyε(m, q)-time deterministic reduction that maps any NCP instance over Fq with rank n and
ambient dimension m to a MDP instance over Fq with rank at most (2 + ε)n and dimension at
most polyε(m, q).

Proof. By Theorem A.2, it suffices to show a deterministic polyε(m, q)-time algorithm that con-
structs an n-projecting code with rank n† ≤ (2 + ε)n.

Let κ := 100d(1 + logq(n))/εe, n̂ := dn/κe, and

ε† := 40
log n̂+ κ log(q)/n̂

κ log q − 2 log n̂
< ε/2 ,

where the inequality holds for sufficiently large n. Then, by Corollary A.7, there is a poly(n, qκ) ≤
polyε(n, q)-time deterministic algorithm that constructs an n-projecting code with rank n† :=
κd(2 + ε†)n̂e ≤ (2 + ε)n for sufficiently large n, as needed. (Formally, Corollary A.7 gives a
(κn̂)-projecting code, but κn̂ ≥ n and an n′-projecting code is also an n-projecting code for any
n′ ≥ n.)

The deterministic hardness of MDP stated in Theorem 1.1 follows immediately from Corol-
lary A.8.
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