Electronic Colloquium on Computational Complexity, Report No. 160 (2019)

Tractable Unordered 3-CNF Games

Md Lutfar Rahman Thomas Watson
Unwversity of Memphis

November 9, 2019

Abstract

The classic TQBF problem can be viewed as a game in which two players alternate turns
assigning truth values to a CNF formula’s variables in a prescribed order, and the winner is
determined by whether the CNF gets satisfied. The complexity of deciding which player has a
winning strategy in this game is well-understood: it is NL-complete for 2-CNFs and PSPACE-
complete for 3-CNFs.

We continue the study of the unordered variant of this game, in which each turn consists of
picking any remaining variable and assigning it a truth value. The complexity of deciding who
can win on a given CNF is less well-understood; prior work by the authors showed it is in L
for 2-CNF's and PSPACE-complete for 5-CNFs. We conjecture it may be efficiently solvable on
3-CNFs, and we make progress in this direction by proving the problem is in P, indeed in L, for
3-CNFs with a certain restriction, namely that each width-3 clause has at least one variable that
appears in no other clause. Another (incomparable) restriction of this problem was previously
shown to be tractable by Kutz.

1 Introduction

Two-player games play an important role in complexity theory, particularly in the study of space-
bounded computations. For example, the seminal PSPACE-complete problem TQBF—in which the
goal is to determine whether a given quantified boolean formula 3z Vag Jx3 Vg - (21, ..., 2p)
is true—can be viewed as deciding who has a winning strategy in the following two-player game:
player 1 picks a bit value to assign to x1, then player 2 assigns xo, then player 1 assigns x3, then
player 2 assigns x4, etc., with player 1 winning iff ¢ is satisfied.

Most commonly, ¢ is a conjunctive normal form (CNF) formula, which consists of a conjunction
of clauses where each clause is a disjunction of literals. A w-CNF has at most w literals in each
clause, and this width parameter w often governs the complexity of problems involving CNFs.
For 2-CNFs, TQBF is NL-complete [APT79, Cal08] (in particular, in P), while for 3-CNFs it is
PSPACE-complete [SM73]. We call the corresponding game the ordered CNF game because the
players are required to “play” the variables in a particular order prescribed in the input.

Complexity of the unordered CNF game. In contrast, many real-world games have greater
flexibility in terms of the set of moves available in each turn: the current player may be allowed
to pick any of the remaining possible moves to do. We can define a variant of TQBF, called the
unordered CNF game, which has this format: The input is again a CNF ¢, and in each turn the
current player picks a remaining (unassigned) variable and picks a bit value to assign it. The winner

ISSN 1433-8092

is determined by whether ¢ gets satisfied; we let T denote the player who wins when every clause
of p is true, and F denote the player who wins when some clause of ¢ is false. For 2-CNFs, deciding
who has a winning strategy in this game is known to be in L [RW18], while PSPACE-completeness
was shown for 11-CNFs [Sch76, Sch78], then for 6-CNFs [AO12], and then for 5-CNFs [RW18]. It
remains a mystery what happens for widths 3 and 4.

We boldly conjecture that, in stark contrast to its ordered counterpart, the unordered 3-CNF
game may actually be tractable. Progress toward confirming this conjecture can be made by con-
sidering certain restrictions on the input CNF, and showing that the game is tractable under these
restrictions. The contribution of this paper is such a result. Before stating our result, for compar-
ison we review other restrictions that have been studied.

One natural restriction is CNFs that are positive (a.k.a. monotone), meaning that all literal
occurrences are unnegated variables; in this case, the unordered CNF game is equivalent to the
so-called Maker—Breaker game (which is widely-studied in the combinatorics literature). In fact,
[Sch76, Sch78] proved that the unordered CNF game is PSPACE-complete even for positive 11-CNF's
(and a simplified proof for unbounded-width positive CNFs appears in [Bys04]). Kutz [Kut04,
Kut05] proved that for positive 3-CNFs, the unordered CNF game is tractable (in P) under an
additional restriction on the hypergraph structure of the CNF, namely that no two clauses have
more than one variable in common. This is the only previous result in the direction of confirming
our conjecture.

It would be interesting to lift either the “positive” restriction or the “only one common variable”
restriction in Kutz’s result. We prove that both can be lifted if we instead impose a different (in-
comparable) restriction on the CNF’s hypergraph structure. Specifically, we can view the variables
in a clause as nodes, which are places where the clause can “connect” to other clauses (by sharing
the variable). One difficulty in Kutz’s analysis was handling width-3 clauses that use each of their
3 nodes to connect to other clauses. By restricting this difficulty away, we are able to address both
limitations of Kutz’s result, by handling general (not positive) CNF's that can have more than one
common variable between pairs of clauses. (Our analysis does not end up resembling Kutz’s very
much, though.)

Thus our theorem can be stated as: the unordered 3-CNF game is in P, in fact in L, when each
width-3 clause has at least one “spare” variable that appears in no other clauses. In the context
of satisfiability, this restriction (each width-3 clause has a spare variable) is not very interesting
since it would reduce to 2-SAT (the width-3 clauses could automatically be satisfied). Similarly,
under this restriction, 3-TQBF would reduce to 2-TQBF since each clause with a spare variable
belonging to T (3) would get satisfied (and thus disappear), and each clause whose spare variable
belongs to F (V) would shrink to a width-2 clause. However, for the unordered 3-CNF game there
is no clear way to reduce this restricted version to a 2-CNF game, since both players can vie for
any spare variable. As we show in this paper, combinatorially characterizing the winner of such
a restricted unordered 3-CNF game turns out to be drastically more involved than for unordered
2-CNF games [RW18].

Proof outline. To prove our theorem, there are multiple cases depending on who has the first
move and who has the last move. The case where T goes first reduces to the case where F goes
first (by trying all possibilities for T’s opening move, and seeing whether any of them lead to a win
for T in the residual game where F moves first), so we focus on the latter. Our proof separately
handles the cases where F has both the first and last moves (Section 3) and where F has the first

move and T has the last move (Section 4).

The case where F has both the first and last moves (so the number of variables is odd) is
somewhat simpler to analyze. We state and prove a characterization of who has a winning strat-
egy in this case, in terms of certain features of the input formula; an efficient algorithm follows
straightforwardly from this. To obtain the characterization, we begin by identifying various types
of subformulas whose presence in the input formula would enable F to win. It is an elementary
but non-trivial case analysis to verify that in any of these subformulas, F indeed has a strategy to
ensure some clause gets falsified (Section 3.1). The more interesting part of the proof is to show
that not only do these subformulas constitute “obstacles” to T winning, but in a sense they are
the only obstacles (Section 3.2). Although it is not true that F can win iff at least one of those
subformulas exists in the original formula, we prove something just as good: F can win iff he has
an opening move that ensures at least one of those subformulas will exist in the residual formula
at the end of the first round. (A round consists of an F move followed by a T move.)

In other words, if T can fend off all the obstacles for one round, then he will be able to fend
them off for the entire game. This non-obvious fact is key to taming the combinatorial structure
of the game. The proof of this fact involves a subtle induction that modifies the game rules to
allow F to “pass” (forgo his turn) whenever he wishes—this can only make it harder for T to win,
but it is needed for the induction to go through. After a round, we can prove that for each of
the smaller components that were created in the residual formula: either we can design a direct
winning strategy for T in that component by exploiting the absence of the obstacle subformulas, or
T can fend off obstacles for one more round in that component, enabling us to apply the induction
hypothesis. Finally, to combine the “sub-strategies” for the separate components into an overall
strategy for T, we exploit the resilience of the sub-strategies against pass moves by F.

The case where F goes first and T goes last follows a similar structure but is more involved.
Some of the above argument can be recycled, but the parts that relied on F moving last need to
be changed. Now the “complete” set of obstacles is larger and more complicated. The inductive
argument for T’s winning strategy requires a more detailed analysis and uses a further modification
of the game: the new rule says that a certain subformula gets immediately removed from the game
(its variables become unplayable) whenever it is created in the residual formula. The deleted
copies of this subformula are then dealt with “outside of” the induction, to recover a proof for the
unmodified game.

Summary. One motivation for studying the unordered CNF game is that it is naturally analogous
to a variety of real-world games where the same moves are available to both players. Indeed, the
original result of Schaefer [Sch76, Sch78] has been used in many reductions to show PSPACE-
completeness of other natural games with an unordered flavor (see [RW18] for a list). At a more
fundamental level, the problem we study is very simple to define, and our result reveals new insights
about CNFs, which are among the most ubiquitous representations of boolean functions.

A potential big payoff for this research direction is to show that the general unordered 3-CNF
game is tractable. That may sound outlandish since arbitrary 3-CNF's are typically thought of as
“too unstructured” to admit efficient algorithms for interesting problems. Our result together with
the complementary result by Kutz [Kut04, Kut05] provides a glimpse into why the bold conjecture
may be true, and a plausible roadmap for proving it: by combining our techniques, which handle
negated literals and clauses that share two variables, with Kutz’s techniques, which handle clauses
without spare variables. Short of handling the general game, there are other open and interesting

special cases to which our techniques may be germane, such as the Maker—Breaker game on general
3-uniform hypergraphs.

The proof of our result reveals a novel structural property: it is impossible for F to mount a
“long-range” attack for creating a simple “obstacle” after a super-constant number of rounds—it
is a “now or never” situation for F. We conjecture the same phenomenon holds for the game on
unrestricted 3-CNF's, since we are unaware of any counterexamples. If a counterexample is found,
it might be turned into a gadget for proving hardness of the general game. Even NL-hardness
would be fundamentally interesting since our algorithm—Dbased on detecting a simple obstacle after
constantly many rounds—only uses logarithmic space. (As a side result—mnot included in this
paper—we can show that the unordered 4-CNF game is NL-hard.)

Although our requirement that every width-3 clause has a spare variable seems to be a very
strong restriction, and may not naturally show up in other contexts, we feel it is an important
stepping stone for understanding more general games. It already adds a very significant layer of
complexity over the unordered 2-CNF game, and it represents a reasonable way of suppressing some
of the difficulties posed by the hypergraph structure of 3-CNFs (which Kutz’s proof works hard to
address), en route to a more general result.

Furthermore, our proof contributes some innovative techniques for analyzing games, including:
modifying the game to facilitate an induction; our framework for showing how T can extend his
good fortune from one round to all subsequent rounds; and a method for simplifying gameplay
analysis by imagining that the moves happened in a different order.

2 Preliminaries

We define a formula as a pair (¢, X) where ¢ is a CNF and X = {x1,...,2,} contains all the
variables that appear in ¢ (and possibly more). In the unordered CNF game there are two players,
denoted T (for “true”) and F (for “false”), who alternate turns. Each turn consists of picking a
remaining (unassigned) variable from X and assigning it a value 0 or 1. The game ends when all
variables of X have been assigned, and T wins if ¢ is satisfied, and F wins if it is not. We let G (for
“game”) denote the problem of deciding which player has a winning strategy, given the formula
(p, X) and a specification of which player goes first. We let G,, denote the restriction of G to
instances where each clause has at most w literals (¢ has width w). We define a spare variable
as occurring in only one clause, and we assume without loss of generality that a spare variable
appears as a positive literal. Then we let Gi denote the restriction of Gg to instances where each
width-3 clause in ¢ has at least one spare variable.

Theorem 1. Gj is in polynomial time, in fact, in logarithmic space.

We introduce subscripts to distinguish the different patterns for “who goes first” and “who goes
last”. For a,b € {T,F}, the subscript a---b means player a goes first and player b goes last, a - - -
means a goes first, and - - - b means b goes last. Thus G;T‘,, corresponds to the game where T goes
first, which (as noted in Section 1) reduces to G;F,,, by brute-forcing T’s first move. So, we just
prove Theorem 1 for G;F,,,, which is split into the cases G;FF (F goes first and last, so n = | X|
must be odd) and G3 .. (F goes first and T goes last, so n = |X| must be even). We use the
terms move, turn, or play interchangeably to mean T or F assigning a bit value to one variable.
A round consists of two consecutive moves, and since we only need to consider F having the first

3 o

(xl) (l’l \% fQ) (.Z'l VvV T V .%'3)

Figure 1: Example clauses and their hypergraph representations

move, each round will consist of one F move followed by one T move (except in G;F__,F, the last
round will have only one move).

A subformula (¢/, X’) of a formula (¢, X) is defined as ¢’ having a subset of clauses from ¢
and X’ € X containing all the variables that appear in ¢’ (and possibly more). After a move,
the formula changes to a residual formula where the variable that got played is removed from
X, and each clause containing the variable either disappears (since it is satisfied by a true literal)
or shrinks (since a false literal might as well not be there). F wins if the residual formula has a
width-0 clause, and T wins if it has no clauses. The residual formula after a move may or may not
be a subformula of the formula before the move.

When we say F can ensure some property within k£ rounds, we formally mean that either

* the original formula has the property, or

e (3 F move) (V¥ T move) the residual formula has the property, or

e (3 F move) (V T move) (3 F move) (V T move) the residual formula has the property, or ------

* (3 F move) (¥ T move) --- (3 F move in k" round) (¥ T move in £ round) the residual
formula has the property.

Note that the property is only checked at the boundary between rounds (and not after F’s move
but before T’s move inside of a round).

A positive CNF is equivalent to a hypergraph where nodes are variables and hyperedges are
clauses. In this paper, we use a hypergraph representation of general (not necessarily positive)
CNFs. As shown in Figure 1, a clause is a hyperedge where nodes represent variables, and signs
are annotations representing variables’ literal appearances. When we omit the sign of a variable on
a diagram, it could be either + or — but it is not relevant.

Two clauses in a general CNF can share any number of same signed or opposite signed literals.
We think of a shared variable as a connection between two clauses, and we define two types of
connections:

* Pure connection: A variable that appears with the same sign in two clauses. For example,
in (x1 v a2 v x3) A (x2 v x4 v x5) there is a pure connection at x3. See Figure 2 on the left.
Another example: in (z1 v Ta v x3) A (T2 v 24 v x5) there is again a pure connection at xs.

» Mixed connection: A variable that appears with the opposite sign in two clauses. For
example, in (z1 v 22 v 23) A (T2 v x4 v x5) there is a mixed connection at 3. See Figure 2
on the right. Another example: in (z1 v To v 23) A (22 v x4 v x5) there is again a mixed
connection at xs.

A formula (¢, X) is called connected if the associated hypergraph is connected (with the signs
being irrelevant); i.e., it is possible to get from any variable to any other variable by a sequence

Pure at zo Mixed at xo

Figure 2: Clause connections

oo

Figure 3: A chain between x; and s

of clauses, each having a connection to the next. A formula is thus naturally partitioned into
connected components, each of which is a subformula. An isolated variable is one that is in X
but not in any clause of ¢, and thus forms a connected component by itself since the associated
node is incident to no hyperedges. A variable in a width-1 clause is not considered isolated.

A chain is a sequence of distinct width-3 clauses each sharing exactly one variable with the
next, and with no shared variables between two non-consecutive clauses. The length L of the chain
is the number of clauses. An arbitrary chain between z; and z9 is illustrated in Figure 3 on the
left. On the right, we show how the chain can be depicted by a thick line. If L = 0 then x; = xo.
If L = 1 then the only clause in the chain contains both x; and zs.

A cycle is like a chain with L > 2 and 1 = z2. A diamond happens when two width-3 clauses
share exactly two variables. Intuitively, a diamond is like the smallest case of a cycle, with L = 2.

3 G;,FF

We henceforth assume that in a formula (¢, X), ¢ is always a 3-CNF where each width-3 clause
has at least one spare variable.

Lemma 1. F has a winning strategy in a G;F,_F game iff F can ensure within one round at least
one of the following subformulas exists.

(1) A width-0 or width-1 clause.
(2) Two width-2 clauses sharing both variables.
(3) Two width-2 clauses and a chain (of length = 0) between them.

(4) A width-2 clause and a chain (of length = 1) between its two variables with at least one mized
connection between the chain and the width-2 clause.

(5) A width-2 clause, a cycle or diamond containing at most one width-2 clause variable, and a
chain (of length = 0) between them.

Moreover, if subformula (4) or (5) exists at the beginning of a round then F can ensure subformula
(1) or (2) or (3) exists within two more rounds.

The proof of Lemma 1 is in Section 3.1 and Section 3.2.

Corollary 1. F has a winning strategy in a G3p..p game iff F can ensure subformula (1) or (2) or
(3) exists within the first three rounds.

Proof. <: Once subformula (1) or (2)or (3)exists, applying Lemma 1 to the residual formula shows
that F has a winning strategy for the rest of the game.

=: According to Lemma 1, when F has a winning strategy, F' can ensure that at the beginning
or after the first round there exists at least one of the subformulas (1-5). If subformula (4)or (5)
exists then F can ensure that within two more rounds there exists subformula (1)or (2)or (3) by
the “moreover” part. O

Corollary 1 yields a direct approach to devise an algorithm for G;F,_F:

Try all possible sequences of 6 moves for the first 3 rounds. Check whether
(3 F move) (V T move) (3 F move) (V T move) (3 F move) (V T move):
subformula (1) or (2) or (3) exists in the residual formula.

This can be implemented in log space, because keeping track of a sequence of the first six moves
takes log space, searching for subformula (1)or (2)takes log space, and searching for subformula
(3) also takes log space since it can be expressed as an undirected s—¢ connectivity problem [Rei08,
RVO05]: for each pair of width-2 clauses, check whether there exists a chain between them. (It is
possible to design a faster algorithm by appealing to Lemma 1 and using only one round of brute
force, but we are not concerned with optimizing the running time.)

We conjecture the same algorithm (possibly with a different number of brute-force rounds)
actually solves G3 r...r; we are not aware of any counterexamples.

3.1 Right-to-left implication of Lemma 1

Suppose at least one of the subformulas (1-5) exists when it is F’s turn to play. We will handle
each subformula in separate claims. For concreteness, we illustrate the arguments using literals
with particular signs, but all the arguments work even if we negate all occurrences of any variable.

Claim 1. If subformula (1) ezists, F has a winning strategy.

Proof. If a width-0 clause exists then T has no chance to satisfy it, so F wins. If a width-1 clause
exists, say (x1), then F can play 21 = 0 and win. O

Claim 2. If subformula (2) exists, F has a winning strategy.

Proof. There are two possible ways that can happen:

e Case 1: The clauses have opposite signs for one variable (mized connection). For example,
in (x1 v 22) A (T1 v x2) only x1 has opposite signs. Then F can play x9 = 0, and whatever
the value of x1, F will win.

o Case 2: The clauses have opposite signs for both variables. For example, in (21 v z2) A (T1 v T2)
both x; and x5 have opposite signs. Since F moves last, F' can wait by playing other variables
until T has to play x1 or zo. Then F makes x1 = x2 and wins. O

- -
Pz =

%‘ﬁ? .

/|

Figure 4: Manriki (source: karatemart.com)

O OROND RO O OMONO RO

Pure Mixed

Figure 5: Subformula (3) (Claim 3)

Claim 3. If subformula (3) exists, F has a winning strategy.

Proof. We call this situation a manriki (a Japanese ninja weapon, see Figure 4). The two width-2
clauses are like two handles and the chain in the middle can be arbitrarily long. We prove this
claim by induction on the length of the chain.

Base case: The length of the chain is zero, i.e., the two handles directly share a variable. We
can assume the two handles do not share both variables since otherwise that falls under Claim 2.
There are two possible ways the handles can have one common variable:

e Case 1: Pure connection. For example, in (z1 v 22) A (22 v x3), 2 forms a pure connection.
F can play o = 0. Then whatever T does, F plays z; = 0 or 3 = 0 and wins.

o Case 2: Mized connection. For example, in (1 v x3) A (T2 v x3), x2 forms a mixed connection.
F can play 1 = 0. If T plays x3 = 1 then F plays 3 = 0 and wins. If T plays o = 0 then F
wins. If T does not play zs, F wins by playing x9 = 0.

Induction step: There are two cases depending on the type of connection at the common variable
between one of the handles and the chain:

e Case 1: Pure connection. For example, in Figure 5 on the left, x5 forms a pure connection
between handle (1 v x2) and the chain. F can play xo = 0. If T plays 1 = 1 then we have
a smaller manriki from (25 v x¢) to (x4 v 23) where F can win by the induction hypothesis.
If T plays 1 = 0 then F wins. If T does not play x; then F wins by playing z; = 0.

e Case 2: Mixed connection. For example, in Figure 5 on the right, zo forms a mixed connection
between handle (1 v x2) and the chain. F can play x; = 0. If T plays o = 1 then we have
a smaller manriki from (5 v x¢) to (z4 v z3) where F can win by the induction hypothesis.
If T plays zo = 0 then F wins. If T does not play xo then F wins by playing zo = 0.]

General Smallest

Case 1:

Case 2:

Case 3:

Figure 6: Subformula (4) (Claim 4)

Claim 4. If subformula (}) exists, F has a winning strategy.

Proof. There are three cases depending on how the width-2 clause is connected to the chain. For
example, in Figure 6, (21 v x2) is the width-2 clause and z2 is a mixed connection. In the smallest
versions, the chain (the bold line illustrated in the general versions) has length 1 for cases 1 and 2
and length 0 for case 3.

e Case 1: Pure at x1. F can play 1 = 0. If T plays x5 = 1 then in the smallest case F wins by
x3 = 0 and in the general case F wins by Claim 3 by a manriki created from x1’s left end to
xo’s right end. If T plays x5 = 0 then F wins. If T does not play xo then F wins by zo = 0.

o Case 2: Mixed at x1 but pure at x4 (the next non-spare variable on the chain). F can play
x4 = 0. If T plays 1 = 0 or 2 = 0 then F wins by o =0 or 1 = 0. If T plays 1 = 1 then
F wins by 23 = 0. If T plays xo2 = 1 then in the smallest case F wins by x5 = 0 and in the
general case F wins by a manriki created from x4’s right end to x2’s right end. If T plays x3
then in the smallest case F wins by the manriki (x5 v T2) A (22 v 21) and in the general case
F wins by a manriki created from z4’s right end to (x2 v x1). If T plays any other variable
then F wins by the manriki (z3 v T1) A (1 v x2).

* Case 3: Mized at both x1 and x4. F can play x3 = 0. In the smallest case, since F moves
last, F' can wait by playing other variables until T has to play x; or x3, and then F can win
by making x1 = x3. Now consider the general case. If T plays 21 = 0 or 2 = 0 then F wins
by xo =0 or &1 = 0. If T plays 1 = 1 then F wins by x4 = 1. If T plays 22 = 1 then F wins
by a manriki created from z9’s right end to (Z4 v Z1). If T plays x4 = 0 then F wins by a
manriki created from x4’s right end to (x2 v 7). If T plays x4 = 1 then F wins by z; = 1.
If T plays any other variable then F wins by the manriki (zo v 1) A (T1 v Z4). O

General (cycle) Smallest (diamond)

Case 1:

Case 2:

Case 3:

Case 4:

Figure 7: Subformula (5) (Claim 5)

Claim 5. If subformula (5) exists, F has a winning strategy.

Proof. We may assume the chain and the cycle/diamond have no common variable other than the
connection variable, by just considering the initial segment of the chain up to the first point where
it intersects the cycle/diamond.

There are four cases depending on how the “outer chain” (between the width-2 clause and the
cycle/diamond) and the “inner chain” (inside the cycle/diamond) are connected. For example, in
Figure 7, x; is the connection variable and C' = (« v () is the width-2 clause. The outer chain has
length > 0.

e Case 1: Three-way pure at x1. F can play 1 = 0. If the outer chain had length > 1, then this
move creates two disjoint manrikis, one inside the cycle or diamond and the other outside. T
cannot destroy two disjoint manrikis in a single move, so one manriki will remain untouched
and F wins by Claim 3. If the outer chain had length 0 (so x; is), then the width-1 clause
() takes the place of one of the two manrikis, and the same argument works.

o Case 2: Mized at 1 and pure at xo (the next non-spare variable on the same side of the cycle
as a mized connection to the outer chain). F can play xo = 0. If T plays x; = 0 then F wins

10

by z3 = 0. If T plays ;1 = 1 then F wins by a manriki created from z’s left end to C' (or
just by playing a = 0 if the outer chain had length 0). If T plays x3 then F wins by a manriki
created from z9’s lower end to C. If T plays any other variable in the cycle or diamond then
F wins by a manriki created from (x3 v x1) to C. If T plays any other variable outside the
cycle or diamond then F wins by a manriki created from (z3 v 1) to x3’s lower end.

o Case 3: Mixed from the outer chain to both sides of the cycle or diamond, and mized at xs.
F can play x3 = 0. If T plays 1 = 0 or 23 = 0 then F can win by z9 = 0 or 2y = 0. If T
plays x1 = 1 then F wins by a manriki created from x1’s left end to C' (or just by playing
a = 0 if the outer chain had length 0). If T plays x2 = 1 then F wins by a manriki created
from z9’s lower end to C. If T plays any other variable in the cycle or diamond then F wins
by a manriki created from (zy v z1) to C. If T plays any other variable outside the cycle or
diamond then F wins by Claim 4 (case 1).

e Case 4: Mized from the outer chain to only one side of the cycle or diamond, and mized at
x9 (the next non-spare variable on the same side of the cycle as a mized connection to the
outer chain). Similarly to case 3, F can play x3 = 0, and F wins if T plays x; or z2 or
another variable inside the cycle or diamond. If T plays any other variable outside the cycle
or diamond then F wins in the cycle by Claim 4 (case 2 or case 3 general) and in the diamond
by Claim 4 (case 3 smallest). O

Moreover, in all cases, there exists a subformula (1)or (2) or (3) within one round for Claim 4 and
within two rounds for Claim 5.

3.2 Left-to-right implication of Lemma 1

Definition 1. A cobweb is a formula where none of the subformulas (1-5) exist (and each width-3
clause has at least one spare variable). Note that any subformula in a cobweb is also a cobweb.

Observation 1. A cobweb has a variable that occurs in at most one clause.

Proof. 1f the cobweb has a width-3 clause then the spare variable in it occurs in only one clause.
Suppose there is no width-3 clause but there exists a width-2 clause. Then every width-2 clause
must be isolated (have no connections to other clauses) since subformula (1) does not exist and two
connected width-2 clauses would form either subformula (2)or subformula (3). So any variable in
any width-2 clause occurs only once. If there are no width-3 or width-2 clauses then the cobweb
has only isolated variables, which occur in no clauses. O

Suppose F cannot ensure that at least one of the subformulas (1-5) exists within one round. So
at the beginning the formula is a cobweb and in the first round, for every move by F there exists a
move for T such that the residual formula is again a cobweb. In other words, T can ensure that the
beginning cobweb remains a cobweb after a round. We will argue that T has a winning strategy.
The proof will be by induction on the number of variables. In order for the induction to go through,
we need to prove something stronger: “T can win even if F is allowed to use pass moves.” This
means F has the option of forgoing any turn, thus forcing T to play multiple variables in a row.
In this case it does not make sense to consider which player has the last move, so we consider the
game G§F in this section.

First we consider a special case of cobweb that we call a jellyfish.

11

Figure 8: Jellyfish (left) and T’s move on the right eye = 1 (right)

Definition 2. A jellyfish is a connected cobweb with a width-2 clause. Its eyes are the variables
in the width-2 clause.

Lemma 2. If the formula is a jellyfish then T has a winning strategy in G;F even if F can use
Pass Moves.

Proof. First we argue what a jellyfish must look like. A jellyfish does not have any width-0 or
width-1 clause because that would form subformula (7). Since a jellyfish is connected and contains
a width-2 clause (the eyes), there cannot be another width-2 clause because that would form
subformula (2) or (8). Since a jellyfish is connected there cannot be any cycle or diamond (of
width-3 clauses) containing at most one eye because that would form subformula (5) with the help
of the eyes. The two eyes can be connected by chains but those connections to the width-2 clause
must be pure because any mixed connection at the eyes would form subformula (/). All chains
connecting the two eyes must be disjoint from each other except at the eyes themselves, otherwise
it would form subformula (5)in one of three ways depending on how the two chains overlap: If the
overlaps create a diamond then the diamond is chain-connected to an eye. If the overlaps do not
have any diamond then it will create either a cycle containing an eye or a cycle chain-connected to
an eye.

In summary: A jellyfish has exactly one width-2 clause (eyes). There can be any number of
disjoint chains of length > 1 between the two eyes, and those chains must have pure connections to
the width-2 clause. Without loss of generality we assume those connections are all positive, i.e., the
eyes are positive literals in the width-2 clause and in clauses on chains connecting the eyes. There
can be arbitrary trees of width-3 clauses hanging off at any non-spare variables. Trees hanging
off of an eye can have pure or mixed connections at the eye. This characterization of jellyfish is
illustrated in Figure 8 (left).

Now we will show that T can win on such a formula like Figure 8 (left) that we call jellyfish.
The argument has two parts. In the first part, we argue that T can ensure that within one round
on a jellyfish, it looks like a forest where trees can be of two types as in Figure 9.

Definition 3. A single tree is a connected formula with only width-3 clauses where there is no
cycle or diamond (and each clause has a spare variable). A married tree is a connected formula
where two disjoint single trees got “married” by a width-2 clause with one endpoint in each of the
single trees (and these endpoints are considered roots of the single trees). A win-forest is a formula
where each connected component is either a single tree or a married tree.

In the second part, we argue that T can ensure that once a win-forest, always a win-forest after
each round. For convenience, we work on the second part first.

12

General Smallest

Single tree:
O

Married tree: O—0O

Figure 9: Single tree and married tree

Claim 6. T can ensure that a win-forest remains a win-forest after a round even if F can use pass
moves.

Proof. The argument will show that whatever F plays, whether a pass move or in a single tree or
married tree, T has a response such that each component of the residual formula is again either a
single tree or a married tree; therefore the residual formula is again a win-forest. Any move by T
or F can occur in three different scenarios as illustrated in Figure 10 (where we suppose the move is
x1 = 0). Specifically, Scenario 1 is a move on a non-spare variable, Scenario 2 is a move on a spare
variable that does not satisfy the clause, and Scenario 3 is a move on a spare variable that satisfies
the clause. (Normally we assume a spare variable is a positive literal, but to illustrate satisfying a
clause with 1 = 0 we let it be a negative literal in Scenario 3 in Figure 10.)

Suppose F played a pass move. Since a win-forest is a cobweb, there exists an isolated or spare
variable (Observation 1). T can play that isolated/spare variable to remove the isolated variable
or satisfy a clause by Scenario 3. If T plays a spare variable in a single tree then it creates two
single trees. If T plays a spare variable in a width-3 clause in a married tree then it creates one
single tree and one married tree. If T plays a spare variable in a married tree’s width-2 clause then
it creates one single tree. This preserves the win-forest property.

Suppose F played in a single tree. F’s move could occur in the three different scenarios. In
Scenario 1, F’s move can create some isolated variables (which are single trees), some other single
trees, and some married trees (in which one spouse is just a single variable). In Scenario 2, F’s
move creates one married tree. In Scenario 3, F’s move creates two single trees. In all scenarios it
still remains a win-forest after F’s move, so T can now just play as if F had used a pass move on
this win-forest, as explained in the previous paragraph.

Suppose F played in a married tree. F’s move happened in one of the two single trees that
got married. T can play the root of the other single tree (where F has not played) and satisfy
the width-2 clause. This means the two single trees get separated by T’s move and it also breaks
T’s single tree at the root by Scenario 1. On the other hand F’s move in his/her single tree also
preserves the win-forest property because, whatever F played in that single tree, it must follow one
of the three scenarios as explained in the previous paragraph. O

Claim 7. T can ensure that a jellyfish becomes a win-forest within one round even if F can use
Pass moves.

13

Before After

o oS

Scenario 1: _ + ’\Q f/\
O

Scenario 2: /\Q—Q/\

Scenario 3: NSO QUM

Figure 10: Move x; = 0 and its effect on formulas

Proof. The jellyfish can have a single tree rooted at each eye, so together with the width-2 clause
these form a married tree which is a subformula of the jellyfish. Let us call those single trees
“left-eyed spouse” and “right-eyed spouse”. There can be chains connecting the two eyes. Let us
call these chains “body-chains”.

Whatever F’s move is, it does not touch at least one of the two spouse trees. Without loss of
generality we assume F did not play in the right-eyed spouse. Then T responds by playing the
right eye to satisfy the width-2 clause. To prove the residual formula is a win-forest, we pretend
T’s move happened before F’s move, and consider the formula after T’s move but before F’s move.

The right eye move by T is shown in Figure 8 (right). The width-2 clause gets satisfied. The
right-eyed spouse can be broken into some single trees and married trees by Scenario 1. The rest of
the connections at the right eye were only pure and they all came from the body-chains. So when
the body-chains get broken at the right eye, they only create some isolated variables but no width-
2 clauses. Then the broken body-chains together with the left-eyed spouse and any other trees
hanging off the broken body-chains form one big single tree. The residual formula as illustrated in
Figure 8 (right) is now a win-forest.

Now we consider how F’s move could have affected this win-forest. If F used a pass move, then
no harm done, we already got a win-forest. If F' did not use a pass move then any move in a single
tree preserves the win-forest property (as explained in the proof of Claim 6). F’s move could not
happen in any of the current married trees since those only came from the right-eyed spouse and
F did not play there. O

Now putting it all together: If the formula is a jellyfish then T can ensure that it becomes a win-
forest within one round by Claim 7. Then after each subsequent round, T can always ensure that
the formula remains a win-forest by Claim 6. In the last round, if there exists only one remaining
variable then the only possibility is an isolated variable with no clauses since subformula (1) does
not exist. T has already won in this case. If there are two remaining variables in the last round

14

then there exists either two isolated variables where T has already won or a width-2 clause which
T can satisfy in one move. This finishes the proof of Lemma 2. O

Definition 4. A winweb is a cobweb such that T can ensure that it remains a cobweb after a
round (where F is not allowed to use pass moves).

Lemma 3. FEvery subformula of a winweb is also a winweb.

Proof. Suppose for contradiction (¢, X) is a winweb but there exists a subformula (¢’, X’) that is
not a winweb. Now (¢’, X') is a cobweb and there exists a move for F in (¢, X’) such that for
every move for T the residual formula is not a cobweb anymore, i.e., at least one of the subformulas
(1-5) exists. We claim that F’s move in (¢’, X’) must already create at least one of the subformulas
(1-5), because otherwise it would remain a cobweb where there exists an isolated or spare variable
(Observation 1) which T could safely play, and removing an isolated variable or a clause never
creates a new subformula (7-5). Now the assumption becomes: F’s move in (¢’, X’) creates at least
one of the subformulas (1-5)and then after any possible T’s move there again exists at least one
of the subformulas (1-5). F can use the same strategy in (¢, X). If T responds in X’ then there
exists at least one of the subformulas (1-5). If T responds outside X’ then it is a futile move since
there already exists at least one of the subformulas (1-5) with variables in X’. That means (¢, X)
is not a winweb since T cannot ensure that it remains a cobweb after a round. O

The following lemma proves something stronger than the left-to-right implication of Lemma 1,
because F can use pass moves.

Lemma 4. If the formula is a winweb then T has a winning strategy in G§F even if F can use
DPass Moves.

Proof. We prove this by induction on the number of variables.

Base case: The formula is a cobweb with one or two variables. In case of one variable the only
possibility is an isolated variable with no clauses since subformula (1) does not exist. T has already
won in this case. In case of two variables there exists either two isolated variables where T has
already won or a width-2 clause which T can satisfy in one move.

Induction step: The formula (p, X) is a winweb with at least three variables.

Suppose F played a pass move. There exists an isolated or spare variable since the formula is
a cobweb (Observation 1). T can play that isolated/spare variable to remove the isolated variable
or satisfy a clause. The residual formula is a subformula, which is a winweb by Lemma 3. Thus T
can win the rest of the game by the induction hypothesis.

Now suppose F did not play a pass move. By the definition of winweb, T has a response such
that the residual formula is a cobweb. Call this residual formula (¢, X’) and let (1, X1), (p2, X2),
..., (¢r, X&) be its connected components (so ¢’ = A, ¢; and X’ = | J; X;). We claim that for each
component individually, T has a winning strategy even if F can use pass moves:

o If (s, X;) has a width-2 clause then it is a jellyfish (since it is a connected cobweb) so by
Lemma 2, T can win even if F can use pass moves.

» Suppose (¢;, X;) has no width-2 clause. Then it has only width-3 clauses since subformula
(1) does not exist, and so it is a subformula of the winweb (¢, X') since no new width-3 clause
can be created during the game. By Lemma 3, (¢;, X;) is also a winweb and hence by the
induction hypothesis, T can win even if F can use pass moves.

15

We now explain how to combine T’s winning strategies for the separate components to get a
winning strategy for the rest of the game on (', X'). After F plays a variable in some X;, T
simply responds according to his winning strategy for component (y;, X;), unless F played the
last remaining variable in X;. In the latter case, or if F' played a pass move, T picks any other
component (¢;, X;) with remaining variables and continues according to his winning strategy in
that component, as if F had just played a pass move in that component. O

4 G§,F.~T

In this section, we consider the game where F has the first move but T has the last move. The
key difference is, since T moves last F cannot win in the subformula (2) case 2 that appeared in
Lemma 1 (Claim 2) because moving last was necessary for F to win. In fact, neither player has an
incentive to be the first to play in such a subformula: if T plays one of the variables first then F
can immediately win by playing the other variable, and if F plays one of the variables first then T
can immediately play the other variable so that both clauses are satisfied. Intuitively, both players
would prefer to delay playing in such a subformula until the other touches it first. Henceforth
we use the term “delay” to capture this and related situations. Specifically, subformula (4) case 3
smallest (Claim 4) and subformula (5) case 4 smallest (Claim 5) also do not yield a win for F when
T moves last, since the winning strategies relied on subformula (2) case 2 when F had the last move.
Analogous to Lemma 1, Lemma 5 will characterize when F can win a game with T moving last. In
Lemma 5 the first five subformulas are almost identical to Lemma 1, except these three excluded
cases. For convenience we give names to these excluded cases.

A mirror is two width-2 clauses sharing both variables. A delay mirror happens when both
connections are mixed. For example (21 v x2) A (Z1 v T2) and (x1 v T2) A (T1 Vv x2) are both delay
mirrors. An isolated delay mirror has no connection to any other clauses. In Lemma 1, delay
mirror appeared as subformula (2) case 2. In Lemma 5, delay mirror is excluded from subformula
(2) but reappears in subformula (6).

A pyramid is one width-2 and one width-3 clause, sharing both of the width-2 clause’s variables.
A delay pyramid happens when both connections are mixed. For example (21 v z2) A (T1 v T2 Vv x3)
and (z1 v T2) A (T1 v 22 v x3) are both delay pyramids. In Lemma 1, delay pyramid appeared
as subformula (/) case 3 smallest. In Lemma 5, delay pyramid is excluded from subformula (4) but
reappears in subformulas (6), (7),and (8).

Recall a diamond is two width-3 clauses sharing two variables. A delay diamond happens
when both connections are mixed. For example (z; v 2 v 23) A (T1 v T2 v 24) and (z1 v T v
x3) A (T1 v x2 v x4) are both delay diamonds. A double delay diamond happens when two delay
diamonds share exactly one variable. In Lemma 1, delay diamond appeared in subformula (5) case
4 smallest. In Lemma 5, delay diamond’s case is excluded from subformula (5)but reappears in
subformulas (6), (8),and (9).

In summary for Lemma 5: subformula (2)will exclude delay mirror but it reappears in sub-
formula (6); subformula (4) will exclude delay pyramid but it reappears in subformulas (6), (7), and
(8); and subformula (5) will exclude delay diamond but it reappears in subformulas (6), (8), and (9).

Lemma 5. F has a winning strategy in a G;F,,,T game iff F can ensure within one round at least
one of the following subformulas exists.

(1) A width-0 or width-1 clause.

16

Subformula (/) case 3 smallest: Subformula (5) case 4 smallest:

Figure 11: Changed cases of subformula (4) and subformula (5)

(2) Two width-2 clauses sharing both variables (excluding delay mirror).
(8) Two width-2 clauses and a chain (of length = 0) between them.

(4) A width-2 clause and a chain (of length = 1) between its two variables with at least one mized
connection between the chain and the width-2 clause (excluding delay pyramid).

(5) A width-2 clause, a cycle or diamond (excluding delay diamond) containing at most one
width-2 clause variable, and a chain (of length = 0) between them.

(6) A delay diamond sharing ezxactly one variable with either a delay mirror or a delay pyramid.

(7) A delay pyramid and between its two shared variables: either a chain of length = 3, or a chain
of length 2 with a pure connection in the middle of this chain.

(8) A delay pyramid and between its two shared variables a chain of length 2 with a mized connec-
tion in the middle of this chain, and furthermore: either another such chain, or another delay
pyramid with the same width-2 clause, or a delay diamond containing the mized connection
variable in the middle of the chain.

(9) A width-2 clause, a double delay diamond containing at most one width-2 clause variable, and
a chain (of length = 0) between them.

Moreover, if subformula (4), (5), (6), (7), (8), or (9) exists at the beginning of a round then F can
ensure subformula (1) or (2) or (3) exists within two more rounds.

The proof of Lemma 5 is in Section 4.1 and Section 4.2. Analogously to Corollary 1, we have:

Corollary 2. F has a winning strategy in a G3 p..x game iff F can ensure subformula (1) or (2) or
(3) exists within the first three rounds.

Corollary 2 yields a direct approach to devise a log-space algorithm for G;F._,T: brute force the
first three rounds and check whether subformula (1) or (2)or (3) exists in the residual formula. We
conjecture the same algorithm (possibly with a different number of brute-force rounds) actually
solves the general game Gg3r...7; we are not aware of any counterexamples.

4.1 Right-to-left implication of Lemma 5

Suppose at least one of the subformulas (1-9) exists when it is F’s turn to play. We will handle
each subformula in separate claims. For concreteness, we illustrate the arguments using literals
with particular signs, but all the arguments work even if we negate all occurrences of any variable.

17

Figure 12: Subformula (6) (Claim 8)

The proofs of Claim 1 to Claim 5 from Lemma 1 apply to subformulas (1-5) for Lemma 5 except
the excluded cases in subformulas (2), (4),and (5) (in all other cases, F’s winning strategy did not
rely on F moving last). In Figure 11, the new smallest in case 3 of subformula (/)and the new
smallest in case 4 of subformula (5) are shown.

Claim 8. If subformula (6) exists, F has a winning strategy.
Proof. There are two cases, shown in Figure 12.

e Case 1: The delay diamond shares a variable with a delay mirror. F can play x4 = 0. This
creates manrikis (z1 v x2) A (2 v x3) and (T1 v T2) A (z2 v x3). If T plays z1 or x9, F wins by
making x1 = x9. If T plays z3 = 0, F wins by x5 = 0. If T plays 23 = 1, F wins in either of
the new manrikis (z1 v x2) A (T2 v x5) or (T1 v T2) A (T2 v x5). If T plays any other variable,
F wins in either of the two existing manrikis.

e Case 2: The delay diamond shares a variable with a delay pyramid. F can play x5 = 0. This
creates a manriki (T; v To) A (g v x4). If T plays 21 = lorzg =1 or xzg =0 or 24 =0
then F wins by o = 1 or £y = 1 or 4 = 0 or o = 0. If T plays z; = 0 then F wins in
the new manriki (z3 v z2) A (22 v x4). If T plays 4 = 1 then F wins in the new manriki
(T1 v T2) A (T2 v x6). If T plays any other variable, F wins in the existing manriki. O

Claim 9. If subformula (7) exists, F has a winning strategy.

Proof. We reformulate subformula (7) with the following two cases, shown in Figure 13.

e Case 1: There is a chain of length = 2 with a pure connection somewhere in the interior of
the chain. In the figure, x4 forms a pure connection. F can play x4 = 0. This creates manrikis
from (z1 v z2) to x4’s left end, and from (x; v z2) to x4’s right end. If T plays 3 = 0 or
x9 = 0 then F wins by 29 = 0 or 1 = 0. If T plays 1 = 1 or 9 = 1 then it creates a manriki
involving x3, where F' can win. If T plays any other variable, at least one of the two existing
manrikis survives where F can win.

e Case 2: There is a chain of length = & and all its interior connections are mized. F can play
x¢ = 0. This creates two manrikis from (1 v z2) to (x4 v 5). If T plays 1 =0 or z9 = 0
or s =0 or x5 =0 then F wins by zo = 0or 1y =0 or z5 =0 or x4 = 0. If T plays z; = 1
or o = 1 or z4 = 1 or x5 = 1 then it creates another manriki, where F can win. If T plays
any other variable, at least one of the two existing manrikis survives where F can win. O

18

General Smallest

Case 1:

Case 2:

Figure 13: Subformula (7) (Claim 9)

Claim 10. If subformula (8) exists, F has a winning strategy.

Proof. There are three cases, shown in Figure 14.

* Case 1: Another such chain. We may assume these chains have pure connections to the
width-2 clause, since otherwise that would form subformula (4). We may also assume the
chains do not have the same interior connection variable as each other, since otherwise that
would form subformula (5)or (6). F can play x3 = 0. This creates two instances of subformula
(4) case 3 (new smallest). If T plays x1 or x9, F wins by making x; = x9. If T plays any other
variable, at least one instance of subformula (4) case 3 survives where F can win by Claim 4.

» Case 2: Another delay pyramid with the same width-2 clause. F can play xg = 0. This creates
a manriki (x1 v x2) A (z2 v T4). If T plays 1 = 0 or 3 = 0 or x4 = 1 then F wins by x5 =0
or 1 =0 or o = 0. If T plays x; = 1 then it creates a manriki (3 v T2) A (T2 v x7) where
F can win. If T plays zo = 1 then it creates a manriki (z3 v 1) A (Z1 v 27) where F can win.
If T plays x4 = 0 then it creates a manriki (z5 v 1) A (21 v 22) where F can win. If T plays
any other variable, F wins in the existing manriki.

o Case 3: A delay diamond containing the mized connection variable in the middle of the chain.
We may assume the delay diamond contains neither z; nor x5 since otherwise that would form
subformula (6). F can play xg = 0. This creates two manrikis from (x7 v x4) to (z1 v x2). If
T plays x1y =0or xzg =0 or x4 =0 or z7 = 0 then F wins by xo =0 or 1 = 0 or 7 = 0 or
x4 = 0. If T plays 1 = 1 then it creates a manriki from (z3 v Ta) to (z4 v x7) where F can

19

Case 1: Case 2: Case 3:

Figure 14: Subformula (8) (Claim 10)

win. If T plays xo = 1 then it creates a manriki from (z3 v T1) to (z4 v z7) where F can win.
If T plays x4 = 1 then it creates a manriki (z¢ v x2) A (22 v 21) where F can win. If T plays
x7 = 1 then it creates a manriki from (zg v T4) to (1 v x3) where F can win. If T plays any
other variable, at least one of the two existing manrikis survives where F can win. O

Claim 11. If subformula (9) exists, F has a winning strategy.

Proof. There are two cases depending on whether the width-2 clause is chain-connected to a side
(case 1) or midpoint (case 2) of the double delay diamond, shown in Figure 15.

For both cases F’s winning strategy is: F can play x4 = 0. This creates a manriki from (a v ()
to (T1 v Ta). If T plays outside the manriki then F can win the manriki. If T plays x; = 1 or
x9 = 1 then F wins by 2o = 1 or 1 = 1. If T plays z; = 0, then it creates another manriki from
(av v B) to x1’s left end (case 1) or upper end (case 2) where F can win—or if the chain had length
0 (so z is), then F can win the width-1 clause («). If T plays z2 = 0, then it creates another
manriki from (« v §) to (z1 v x3) where F can win. If T plays outside the double delay diamond
then it leaves subformula (6) case 2 where F can win by Claim 8. O

Moreover, in all cases, there exists a subformula (1) or (2)or (3) within two rounds.

4.2 Left-to-right implication of Lemma 5

Many concepts in this section are analogous to concepts from Section 3.2. To distinguish them
from the versions in Section 3.2, we generally prefix the terms with “d-” (standing for “delay”) to
emphasize that the various delay subformulas (mirrors, pyramids, diamonds) are the key difference.

Definition 5. A d-cobweb is a formula where none of the subformulas (1-9) exist (and each width-
3 clause has at least one spare variable). Note that any subformula in a d-cobweb is also a d-cobweb.

Definition 6. We say a formula is dead if it consists only of isolated delay mirrors (having no
clauses or variables beyond those involved in the delay mirrors) and live otherwise. Note that a
dead formula is a d-cobweb with an even number of variables.

20

Case 1: Case 2:

Figure 15: Subformula (9) (Claim 11)

Observation 2. If the formula is dead then T has a winning strategy in G;F,,,T.

Proof. Whenever F plays, it is in an isolated delay mirror and satisfies one of the two clauses. T
can respond by playing the other variable in the same delay mirror to satisfy the other clause. All
clauses get satisfied in this way, so T wins. O

Observation 2 says T’s goal should be to make the formula dead, since that ensures T can win.

Observation 3. A live d-cobweb has a variable that occurs in at most one clause.

Proof. 1f the d-cobweb has a width-3 clause then the spare variable in it occurs in only one clause.
Suppose there is no width-3 clause but there exists a width-2 clause. Then every width-2 clause
must be either isolated (have no connections to other clauses) or part of an isolated delay mirror,
since none of subformulas (1) or (2)or (3)exist. Since the d-cobweb is live, there must be either an
isolated width-2 clause (any variable in it occurs only once) or an isolated variable (which occurs
in no clauses). If there are no width-3 or width-2 clauses then the d-cobweb has only isolated
variables. O

To prove the left-to-right implication of Lemma 5, suppose F cannot ensure that at least one of
the subformulas (1-9) exists within one round. So at the beginning the formula is a d-cobweb and
in the first round, for every move by F there exists a move for T such that the residual formula is
again a d-cobweb. In other words, T can ensure that the beginning d-cobweb remains a d-cobweb
after a round. We will argue that T has a winning strategy. The proof will be by induction on
the number of variables. As in Section 3.2, for the induction to go through we need to allow F to
use pass moves (meaning F has the option of forgoing any turn, thus forcing T to play multiple
variables in a row). However, this means T is no longer guaranteed to have the last move, which
causes an issue with delay mirrors, where T may wish to rely on moving last in order to satisfy those
clauses. To deal with this, we consider a further modification of the game, which we call “ §F
ignoring isolated delay mirrors”: the new rule is that whenever an isolated delay mirror appears
in the residual formula (or exists at the beginning of the game), it immediately vanishes—its two
variables are no longer available to play. (An isolated delay mirror is moved to a special forbidden
“graveyard” comprising the dead part of the formula.) This means the game ends and T wins when
the residual formula is dead (it consists entirely of isolated delay mirrors, or no variables remain).
We design a winning strategy for T assuming F can use pass moves and ignoring isolated delay

21

Figure 16: A d-chain between x; and o

mirrors. At the end of this section, we will recover from this a proof of the left-to-right implication
of Lemma 5 for the unmodified G;F“,T game, using the fact that T can win the graveyard if he has
the last move, like in Observation 2.

First we consider a special case of d-cobweb that we call a d-jellyfish.

Definition 7.

o A d-jellyfish is a connected d-cobweb with a width-2 clause. Its eyes are the variables in the
width-2 clause.

e A d-chain is a sequence of distinct “links”, where each link is a width-3 clause or a delay
diamond (and each clause has a spare variable), such that: consecutive links share exactly
one variable, non-consecutive links share no variables, and no consecutive links are both delay
diamonds (i.e., no double delay diamond). An arbitrary d-chain between x1 and xo is illus-
trated in Figure 16 on the left. On the right, we show how the d-chain can be depicted by a
thick dotted line. (d-Chains play a role analogous to chains in Section 3 shown in Figure 3.)

o A d-tree is a connected formula with only width-3 clauses where there is no cycle, no non-
delay diamond, and no double delay diamond (and each clause has a spare variable). Infor-
mally a d-tree is like a tree where each path is a d-chain, so we also depict arbitrary d-trees
using thick dotted lines. The smallest case of d-tree is a single variable. (d-Trees play a role
analogous to single trees from Definition 3.)

e A d-ocean is a formula where each connected component is either a d-jellyfish or a d-tree.

Lemma 6. If the formula is a d-jellyfish then T has a winning strategy in G;F even if F' can use
pass moves, ignoring isolated delay mirrors.

Proof. The proof of the analogous Lemma 2 had a simple structure: T could ensure that a jelly-
fish became a win-forest after one round, and that a win-forest remained a win-forest after each
subsequent round. This simple structure does not work now—after many rounds there may still
be d-jellyfish in the residual formula. Instead, we will argue that T can maintain that after each
round, each connected component is either a d-jellyfish or a d-tree (i.e. the formula is a d-ocean).

First we argue what a d-jellyfish must look like. A d-jellyfish does not have any width-0 or
width-1 clause because that would form subformula (7). Now there are four cases.

e Case 1: There is another width-2 clause. The only possibility is that there are exactly two
width-2 clauses and they form a delay mirror (in particular, the eyes are uniquely determined)
because otherwise that would form subformula (2)or (3) (since a d-jellyfish is connected).
There cannot be any chain of length > 2 between the eyes because that would form subformula
(4) with at least one of the width-2 clauses, and similarly there cannot be any chain of length
1 between the eyes that does not form a delay pyramid with one of the width-2 clauses. There

22

4 . * A

. . . G . . . ’
A s a e AR s 0% e
S, sy ‘¢ v, A\ o
* . $
+) t4
e S
* -
» ok
. . [n
. . O. L)
. . D o
. -
. . ¢ R
" “Sanmnr” ”»
“*, oy
a - . LIS
an=? 0 ‘. R4 [ESEE
o - . (AR
Sagmm® .

Figure 17: d-Jellyfish

cannot be any cycle or non-delay diamond containing at most one eye, or any double delay
diamond containing at most one eye, because that would form subformula (5)or (9) (since a
d-jellyfish is connected); i.e., the part hanging off of an eye must be a d-tree. Furthermore,
there cannot be any delay diamond containing exactly one eye because that would form
subformula (6).

In summary: A d-jellyfish case 1 has one delay mirror (eyes). Both of the width-2 clauses
may participate in any number of delay pyramids. Rooted at each eye can be a d-tree, but
this d-tree must have no delay diamond touching the eye. This characterization is illustrated
in Figure 17 case 1.

In the remaining cases, there is only one width-2 clause, and we assume without loss of generality
that both eyes are positive literals in it.

e Case 2: There is only one width-2 clause, it is in a delay pyramid, and there is no chain
of length = 2 between the eyes. There cannot be any width-3 clause with one pure and one
mixed connection to the width-2 clause because that would form subformula (/). Like case
1, the part hanging off of an eye must be a d-tree and there cannot be any delay diamond
containing exactly one eye.

In summary: A d-jellyfish case 2 has one width-2 clause (eyes). This clause participates
in at least one delay pyramid, and in any number of pyramids with pure connections at both
eyes. Rooted at each eye can be a d-tree, but this d-tree must have no delay diamond touching

23

the eye. In other words, case 2 looks similar to case 1 except one of the delay mirror’s clauses
is now missing, and the presence of a delay pyramid is now mandatory. This characterization
is illustrated in Figure 17 case 2.

Case 3: There is only one width-2 clause, it is in a delay pyramid, and there is a chain of
length = 2 between the eyes. There cannot be any width-3 clause with one pure and one mixed
connection to the width-2 clause because that would form subformula (4). For any chain of
length > 2 between the eyes, it cannot have any mixed connection to the width-2 clause
because otherwise that would form subformula (/), and it cannot have length > 3 or have
length 2 with a pure connection in the middle because otherwise that would form subformula
(7); i.e., the chain must have length 2 with pure connections to the width-2 clause at both
eyes and a mixed connection in the middle. There can only be one such chain, and the width-2
clause can only be in one delay pyramid, because otherwise that would form subformula (8).
We call the mixed connection variable in this unique chain the nose. The part hanging off of
the nose must be disjoint from the parts hanging off of the eyes because otherwise that would
form subformula (5). Like cases 1 and 2, the part hanging off of an eye or off of the nose must
be a d-tree and there cannot be any delay diamond containing exactly one eye. Furthermore,
there cannot be any delay diamond containing the nose because otherwise that would form
subformula (8).

In summary: A d-jellyfish case 3 has one width-2 clause (eyes). This clause participates
in exactly one delay pyramid, and in any number of pyramids with pure connections at both
eyes. Between the eyes there is one chain of length 2, which has pure connections to the
width-2 clause and a mixed connection in the middle (nose). Rooted at each eye and at the
nose can be a d-tree, but this d-tree must have no delay diamond touching the eye or nose.
This characterization is illustrated in Figure 17 case 3 (though for clarity, this illustration
happens not to show any pyramids with pure connections to the width-2 clause).

Case 4: There is only one width-2 clause, and it is not in a delay pyramid. The two eyes can
be connected by chains (of length > 1) but those connections to the width-2 clause must be
pure because any mixed connection at the eyes would form subformula (4) or delay pyramid.
These chains may overlap but we claim that the only way these chains can overlap is by
forming d-chains between the eyes, and that these d-chains must be disjoint from each other
except at the eyes themselves. This is because supposing the claim is not true, i.e., two
distinct such chains overlap (share a non-eye variable) but are not consistent with a d-chain,
then it would form subformula (5) or (9)in one of several ways: Following the two chains from
an eye, either they form a double delay diamond chain-connected to the eye, or we consider
the first place they diverge other than delay diamonds: It either forms a non-delay diamond
chain-connected to the eye, or it opens a cycle chain-connected to the eye but not containing
the other eye, or it is part of a cycle containing the other eye but not containing the first eye.
This shows the claim. Finally, like the other cases, the part hanging off of an eye or off of
a non-spare variable on one of the d-chains must be a d-tree, but these attachments cannot
create any double delay diamond because otherwise that would form subformula (9).

In summary: A d-jellyfish case 4 has one width-2 clause (eyes). There can be any number
of disjoint d-chains of length > 1 between the two eyes (body), and those d-chains must have
only pure connections to the width-2 clause (in particular, none of them can have a delay
diamond touching an eye). There can be d-trees hanging off at any non-spare variables as
long as no double delay diamonds are present anywhere. A d-tree hanging off of an eye can

24

have pure or mixed connections at the eye and may have a delay diamond touching the eye.
This characterization is illustrated in Figure 17 case 4.

Claim 12. T can ensure that a d-ocean remains a d-ocean after a round even if F can use pass
moves, ignoring isolated delay mirrors.

Proof. The proof is similar to Claim 6 and Claim 7 except it is more involved. The argument will
show that whatever F plays, whether a pass move or in a d-tree or any case of d-jellyfish, T has
a response such that each connected component of the residual formula is again a d-tree or some
case of d-jellyfish; therefore the residual formula is again a d-ocean. Any move by T or F in a
d-tree can occur in five different scenarios as illustrated in Figure 18 (where we suppose the move
is 1 = 0). Specifically, Scenario 1 is a move on a non-spare variable, and the others are moves on
a spare variable: in Scenarios 2 and 3 the clause is not in a delay diamond while in Scenarios 4
and 5 the clause is in a delay diamond, and in Scenarios 2 and 4 the clause is not satisfied by the
move (it shrinks to a width-2 clause) while in Scenarios 3 and 5 the clause is satisfied. (Normally
we assume a spare variable is a positive literal, but to illustrate satisfying a clause with 1 = 0 we
let it be a negative literal in Scenarios 3 and 5 in Figure 18.)

» Pass move: Suppose F played a pass move. Since a d-ocean is a d-cobweb (and we may
assume it is live since the game ignores isolated delay mirrors), there exists an isolated or
spare variable (Observation 3). T can play that isolated/spare variable to remove the isolated
variable or satisfy a clause. If T plays an isolated variable then no harm in it and this preserves
the d-ocean property. If T plays a spare variable in a d-tree then satisfying the clause produces
either two smaller d-trees by Scenario 3 (not in a delay diamond) or one d-tree by Scenario
5 (in a delay diamond). Now suppose T plays a spare variable in a width-3 clause in a d-
jellyfish. Satisfying the clause can produce at most two connected components. If it is still one
connected component, this component must again be a d-jellyfish since it still has a width-2
clause and no subformula (1-9) has been created. If two connected components are produced,
one of them must have all the original d-jellyfish’s width-2 clauses (and is again a d-jellyfish
like in the one-component case) while the other must be a d-tree since it has no width-2
clause and no cycle or non-delay diamond (otherwise the original d-jellyfish would have had
subformula (5)) and no double delay diamond (otherwise the original d-jellyfish would have
had subformula (9)). Finally, suppose T plays a spare variable in a d-jellyfish’s width-2 clause,
satisfying the clause. This must produce one component, which is a d-tree: there can be no
more width-2 clauses (otherwise the original d-jellyfish would have had subformula (3)) and no
cycle, non-delay diamond, or double delay diamond (otherwise the original d-jellyfish would
have had subformula (5)or (9)). This preserves the d-ocean property.

» d-Tree: Suppose F played in a d-tree. F’s move could occur in the five different scenarios.
In Scenario 1, F’s move can create some isolated variables (which are d-trees), some other
d-trees, and some d-jellyfish case 4 (with no body d-chains and no d-tree rooted at one eye).
In Scenario 2, F’s move creates one d-jellyfish case 4 (with no body d-chains). In Scenario
3, F’s move creates two d-trees. In Scenario 4, F’s move creates one d-jellyfish case 2 (note
that no delay diamond touches either eye, since there were no double delay diamonds in the
original d-tree). In Scenario 5, F’s move creates one d-tree. In all scenarios it still remains a
d-ocean after F’s move, so T can now just play as if F had used a pass move on this d-ocean.

25

Scenario 1:

+
. . PR ﬂ LS PR 4 *%.
Scenario 2: . L WO O

. . PR % *%. PR g *%.
Scenario 3: . L NORNORK

: . Pk 4 Y *" Paak 4 % *"
Scenario 4: N L s FEL,e

: . Pk 4 Y *" Pk s % v,
Scenario 5: N L . L

Figure 18: Move x1 = 0 and its effect on d-trees

» d-Jellyfish case 1: Suppose F played in a d-jellyfish case 1.

If F played the spare variable of a pyramid then this width-3 clause disappears (it either
is satisfied or shrinks to recreate one of the delay mirror’s clauses) so the component is still a
d-jellyfish case 1, and the formula is still a d-ocean. T can play as if F had used a pass move.

If F played either eye, T can play the other eye so that all delay mirror and pyramid
clauses are now satisfied (by either F’s move or T’s move). The d-tree hanging off of either
eye gets broken and separated by Scenario 1. As explained earlier, such a move on a d-tree
results in components each of which is a d-tree or a d-jellyfish case 4, so this preserves the
d-ocean property.

If F played a spare variable in a non-pyramid clause containing an eye, then T can play
this clause’s third variable x; (not the eye or the spare variable F played) to satisfy the clause.
This breaks off part of the d-tree hanging off of the eye (namely the sub-d-tree rooted at x;)

26

which gets separated by Scenario 1 into components each of which is a d-tree or a d-jellyfish
case 4. Because the clause containing the eye was not part of a delay diamond, the rest of
the original component remains a d-jellyfish case 1 with a smaller d-tree hanging off of one
eye. This preserves the d-ocean property.

Otherwise, F played a variable x; in the d-tree hanging off of an eye, but not a spare
variable in a clause containing the eye. T can locate the d-chain from z; to the eye and play
the spare variable in the clause (on this d-chain) containing the eye, to satisfy the clause.
(This clause is unique since the d-tree had no delay diamond containing the eye.) To see
that the d-ocean property is preserved, we pretend that T’s move happened before F’s move,
and consider the formula after T’s move but before F’s move. T’s move breaks off a sub-d-
tree (containing x;) and leaves the original component as a d-jellyfish case 1, so this formula
is a d-ocean. As explained earlier, any move by F on the sub-d-tree preserves the d-ocean
property.
d-Jellyfish case 2: Suppose F played in a d-jellyfish case 2. If F played the spare variable
of a pyramid then the component becomes a d-jellyfish, either case 1 (if a delay mirror is
created) or case 2 (if there remains a delay pyramid) or case 4 (if there is no delay pyramid).
Since the formula is still a d-ocean, T can play as if F' had used a pass move. If F played any
other variable then T can use the exact same strategy explained for d-jellyfish case 1.

d-Jellyfish case 3: Suppose F played in a d-jellyfish case 3.

If F played in the d-tree hanging off of either eye or off of the nose (excluding playing the
eyes or nose themselves) then the same strategy explained for d-jellyfish case 1 works in this
situation (using the fact that these d-trees have no delay diamond touching the eye or nose).

If F played the spare variable in a pyramid with pure connections to the width-2 clause,
then this width-3 clause disappears (it either is satisfied or shrinks to recreate the width-2
clause) so the component is still a d-jellyfish case 3, and the formula is still a d-ocean. T can
play as if F had used a pass move.

The only remaining possibilities for F’s move are on the variables x1,x2, 3, T4, T5, Tg
shown in Figure 17 case 3.

If F played either eye (z1 or z2) then T can play the opposite value for the other eye (z2
or z1). Now the width-2 clause and all pyramid clauses are satisfied, and as explained earlier,
the d-trees hanging off of the eyes get broken by Scenario 1 into components each of which is
a d-tree or a d-jellyfish case 4. One of the two clauses in the body chain gets satisfied (leaving
its spare variable isolated) while the other shrinks to a width-2 clause which, together with
the nose’s d-tree, forms a d-jellyfish case 4 (where one eye has no d-tree, the other eye is the
former nose, and there are no body d-chains). The d-ocean property is preserved.

If F played the spare variable (z3) of the delay pyramid then T can play z¢ = 1. If F’s
move was r3 = 0 then after T’s move the component is a d-jellyfish case 1 where the nose
(z4) and its d-tree, as well as x5, have become part of the d-tree hanging off of the eye z;. If
F’s move was x3 = 1 then this similarly results in a d-jellyfish case 4. The d-ocean property
is preserved.

If F played the nose x4 = 0 or 4 = 1 then T can play z¢ = 1 or x5 = 1. Now both
body chain clauses are satisfied (and one of their spare variables is isolated), the component
containing the delay pyramid becomes a d-jellyfish case 2, and as explained earlier, the d-tree
hanging off of the nose gets broken by Scenario 1 into components each of which is a d-tree
or a d-jellyfish case 4. The d-ocean property is preserved.

27

If F played z5 = 0 then T can play x; = 1. This satisfies the width-2 clause and the
body chain clause containing x5, and as explained earlier, the d-tree hanging off of x; gets
broken by Scenario 1 into components each of which is a d-tree or a d-jellyfish case 4. The
rest of the component becomes a d-jellyfish case 4 with width-2 clause (x3 v T2), where the
new eye z3 has no d-tree, and the eye x2’s d-tree now includes the nose (z4) and its d-tree,
as well as xg. Similarly, if F played xg = 0 then T can play x2 = 1 and the d-ocean property
is preserved.

If F played x5 = 1 (satisfying the clause and breaking the body chain) then the component
becomes a d-jellyfish case 2 where the nose (z4) and its d-tree, as well as xg, have become
part of the d-tree hanging off of the eye x5. After that, T faces a d-ocean and T can play
as if F had used a pass move. Similarly, if F played xg = 1 then T can preserve the d-ocean
property.
d-Jellyfish case 4: Suppose F played in a d-jellyfish case 4. The strategy is analogous to
Claim 7, but instead of producing single and married trees, it now produces some d-trees,
at most one d-jellyfish case 2, and some d-jellyfish case 4. For completeness we rephrase the
argument for the current setting.

Whatever F’s move is, it does not touch at least one of the two d-trees hanging off of the
eyes. Without loss of generality we assume F did not play in the right eye’s d-tree. Then T
responds by playing the right eye to satisfy the width-2 clause. To prove the residual formula
is a d-ocean, we pretend that T’s move happened before F’s move, and consider the formula
after T’s move but before F’s move.

The right eye move by T is shown in Figure 17 (after case 4). The width-2 clause gets
satisfied. The right eye’s d-tree can be broken into some d-trees and some d-jellyfish case 4
by Scenario 1 (even though the original d-tree may have had a delay diamond touching the
eye). The rest of the connections at the right eye were only pure and they all came from
the body d-chains. So when the body d-chains get broken at the right eye, they only create
some isolated variables but no width-2 clauses. Then the broken body d-chains together with
the left eye’s d-tree and any other d-trees hanging off the broken body d-chains form one big
d-tree. The residual formula as illustrated in Figure 17 (after case 4) is now a d-ocean.

Now we consider how F’s move could have affected this d-ocean. If F used a pass move,
then no harm done, we already got a d-ocean. If F did not use a pass move then any move
in a d-tree preserves the d-ocean property (as we already know). F’s move could not happen
in any of the current d-jellyfish components since those only came from the right eye’s d-tree
and F did not play there.

This finishes the proof of Claim 12. O

Now putting it all together: If the formula is a d-jellyfish then in particular it is a d-ocean, so T
can always ensure that the residual formula is a d-ocean after each round by Claim 12. In the last
round, if there exists only one remaining playable variable (ignoring isolated delay mirrors) then
the only possibility is an isolated variable with no clauses since subformula (1) does not exist. T
has already won in this case. If there are two remaining playable variables in the last round then
either they are isolated and T has already won, or they are in an isolated width-2 clause which
T can satisfy in one move. It is also possible that there are more than two remaining playable
variables at the beginning of the last round and that the game ends due to the creation of isolated
delay mirrors—T wins in this case as well. This finishes the proof of Lemma 6. O

28

Definition 8. A d-winweb is a d-cobweb such that for every non-pass move by F, either the
residual formula is dead or there exists a move for T after which it is again a d-cobweb. (Here we
allow moves in isolated delay mirrors.)

Lemma 7. Every subformula of a d-winweb is also a d-winweb.

Proof. Suppose for contradiction (p, X) is a d-winweb but there exists a subformula (¢’, X’) that
is not a d-winweb. Now (¢, X’) is a d-cobweb and there exists a non-pass move by F in (¢, X’)
such that the residual formula is live and for every move for T the new residual formula is not
a d-cobweb, i.e., at least one of the subformulas (1-9)exists. We claim that F’s move in (¢, X’)
must already create at least one of the subformulas (1-9), because otherwise it would remain a live
d-cobweb where there exists an isolated or spare variable (Observation 3) which T could safely
play, and removing an isolated variable or a clause never creates a new subformula (7-9). Now the
assumption becomes: F’s move in (¢’, X') creates at least one of the subformulas (1-9) and then
after any possible T’s move there again exists at least one of the subformulas (1-9). F can use
the same strategy in (¢, X). The residual formula after F’s move in (¢, X) is live since it has a
subformula (7-9). If T responds in X’ then there exists at least one of the subformulas (1-9). If T
responds outside X’ then it is a futile move since there already exists at least one of the subformulas
(1-9) with variables in X’. That means (¢, X) is not a d-winweb since T cannot ensure that it
remains a d-cobweb after a round. O]

Lemma 8. If the formula is a d-winweb then T has a winning strategy in G;F even if F' can use
pass moves, ignoring isolated delay mirrors.

Proof. We prove this by induction on the number of variables.

Base case: The formula is a d-cobweb with one or two variables. In case of one variable the
only possibility is an isolated variable with no clauses since subformula (1)does not exist. T has
already won in this case. In case of two variables there exists either two isolated variables where
T has already won, or an isolated width-2 clause which T can satisfy in one move, or an isolated
delay mirror in which case T has won.

Induction step: The formula (¢, X) is a d-winweb with at least three variables. We assume
(, X) is live since otherwise T has already won.

Suppose F played a pass move. There exists an isolated or spare variable since the formula is
a live d-cobweb (Observation 3). T can play that isolated/spare variable to remove the isolated
variable or satisfy a clause. The residual formula is a subformula, which is a d-winweb by Lemma 7.
Thus T can win the rest of the game by the induction hypothesis.

Now suppose F did not play a pass move. By the definition of d-winweb, either the residual
formula is dead in which case T has won, or T has a response such that the residual formula is a
d-cobweb. T’s move cannot have been in an isolated delay mirror since then subformula (1) would
have been created. Call the residual formula after T’s move (¢’, X') and let (1, X1), (p2, X2), ...,
(¢k, Xi) be its connected components (so ¢’ = A, ¢; and X’ = |J; X;). We claim that for each
component individually, T has a winning strategy even if F' can use pass moves, ignoring isolated
delay mirrors:

o If (pi, X;) has a width-2 clause then it is a d-jellyfish (since it is a connected d-cobweb) so by
Lemma 6, T can win even if F can use pass moves, ignoring isolated delay mirrors.

29

* Suppose (¢, X;) has no width-2 clause. Then it has only width-3 clauses since subformula
(1) does not exist, and so it is a subformula of the d-winweb (¢, X) since no new width-3
clause can be created during the game. By Lemma 7, (¢;, X;) is also a d-winweb and hence
by the induction hypothesis, T can win even if F' can use pass moves, ignoring isolated delay
mirrors.

We now explain how to combine T’s winning strategies for the separate components to get a
winning strategy for the rest of the game on (¢’, X’). After F plays a variable in some X;, T simply
responds according to his winning strategy for component (p;, X;), unless there is no remaining
playable variable in X; because it has become dead. In the latter case, or if F played a pass move, T
picks any other component (y;, X;) with remaining playable variables and continues according to
his winning strategy in that component, as if F had just played a pass move in that component.[]

We are finally ready to prove the left-to-right implication of Lemma 5:

Lemma 9. In a G;F,,.T game, if F cannot ensure within one round at least one of the subformulas
(1-9) exists, then T has a winning strategy.

Proof. Our assumption is that at the beginning the formula is a d-cobweb and in the first round,
for every (non-pass) move by F there exists a move for T such that the residual formula is again
a d-cobweb. (Since there are an even number of variables, there must be a remaining variable for
T to play after F’s move in the first round.) In particular, the original formula is a d-winweb. By
Lemma 8, T has a winning strategy even if F' can use pass moves, ignoring isolated delay mirrors; in
particular, T has a winning strategy when F cannot use pass moves but still ignoring isolated delay
mirrors. To get a winning strategy in the unmodified G3..p game (not ignoring isolated delay
mirrors), T can follow the strategy for the modified game, but whenever F plays a variable in an
isolated delay mirror (necessarily satisfying one of its clauses), T immediately responds by playing
the other variable to satisfy the other clause in the delay mirror. Because T has the last move, he
will never be forced to make the first move in an isolated delay mirror—when the modified game
ends and all that remains are isolated delay mirrors, it will be F’s turn. O

Acknowledgments

This work was supported by NSF grant CCF-1657377.

References

[AO12] Lauri Ahlroth and Pekka Orponen. Unordered constraint satisfaction games. In Pro-
ceedings of the 37th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 64-75. Springer, 2012.

[APT79] Bengt Aspvall, Michael Plass, and Robert Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121—
123, 1979.

[Bys04] Jesper Byskov. Maker-maker and maker-breaker games are PSPACE-complete. Technical
Report RS-04-14, BRICS, Department of Computer Science, Aarhus University, 2004.

30

[Cal08] Chris Calabro. 2-TQBF is in P, 2008. Unpublished. URL: https://cseweb.ucsd.edu/
~ccalabro/essays/complexity_of_2tqbf.pdf.

[Kut04] Martin Kutz. The Angel Problem, Positional Games, and Digraph Roots. PhD thesis,
Freie Universitat Berlin, 2004. Chapter 2: Weak Positional Games.

[Kut05] Martin Kutz. Weak positional games on hypergraphs of rank three. In Proceedings of
the 3rd European Conference on Combinatorics, Graph Theory, and Applications (Euro-
Comb), pages 31-36. Discrete Mathematics & Theoretical Computer Science, 2005.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):17:1—
17:24, 2008.

[RV05] Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Proceedings of
the 9th International Workshop on Randomization and Computation (RANDOM), pages
436-447. Springer, 2005.

[RW18] Md Lutfar Rahman and Thomas Watson. Complexity of unordered CNF games. In Pro-
ceedings of the 29th International Symposium on Algorithms and Computation (ISAAC),
pages 9:1-9:12. Schloss Dagstuhl, 2018.

[Sch76] Thomas Schaefer. Complexity of decision problems based on finite two-person perfect-
information games. In Proceedings of the 8th Symposium on Theory of Computing
(STOC), pages 41-49. ACM, 1976.

[Sch78] Thomas Schaefer. On the complexity of some two-person perfect-information games.
Journal of Computer and System Sciences, 16(2):185-225, 1978.

[SM73] Larry Stockmeyer and Albert Meyer. Word problems requiring exponential time. In
Proceedings of the 5th Symposium on Theory of Computing (STOC), pages 1-9. ACM,
1973.

31

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf
https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf

