Electronic Colloquium on Computational Complexity, Report No. 162 (2019)

The Random-Query Model and the
Memory-Bounded Coupon Collector

Ran Raz* Wei Zhan'

Abstract

We study a new model of space-bounded computation, the random-query
model. The model is based on a branching-program over input variables
Z1,...,Zn. In each time step, the branching program gets as an input a ran-
dom index i € {1,...,n}, together with the input variable z; (rather than
querying an input variable of its choice, as in the case of a standard (obliv-
ious) branching program). We motivate the new model in various ways and
study time-space tradeoff lower bounds in this model.

Our main technical result is a quadratic time-space lower bound for zero-
error computations in the random-query model, for XOR, Majority and many
other functions. More precisely, a zero-error computation is a computation
that stops with high probability and such that conditioning on the event that
the computation stopped, the output is correct with probability 1. We prove
that for any Boolean function f : {0,1}" — {0,1}, with sensitivity k, any
zero-error computation with time 7" and space S, satisfies T - (S + logn) >
Q(n-k). We note that the best time-space lower bounds for standard oblivious
branching programs are only slightly super linear and improving these bounds
is an important long-standing open problem.

To prove our results, we study a memory-bounded variant of the coupon-
collector problem that seems to us of independent interest and to the best of
our knowledge has not been studied before. We consider a zero-error version
of the coupon-collector problem. In this problem, the coupon-collector could

*Department of Computer Science, Princeton University. Research supported by the Simons
Collaboration on Algorithms and Geometry, by a Simons Investigator Award and by the National
Science Foundation grant No. CCF-1714779.

TDepartment of Computer Science, Princeton University. Research supported by the Simons
Collaboration on Algorithms and Geometry, by a Simons Investigator Award and by the National
Science Foundation grant No. CCF-1714779.

ISSN 1433-8092

explicitly choose to stop when he/she is sure with zero-error that all coupons
have already been collected. We prove that any zero-error coupon-collector
that stops with high probability in time 7', and uses space S, satisfies T'- (S +
logn) > Q(n?), where n is the number of different coupons.

1 Introduction

In this paper, we introduce a new model for studying time-space tradeoff lower
bounds for computation, the random-query model. The model is based on a branching
program. Roughly speaking, a branching program of length 7" and width 2%, over
input variables 1, ..., x,, is a directed (multi) graph with vertices arranged in 7'+ 1
layers containing at most 2° vertices each. Intuitively, each layer represents a time
step and each vertex represents a memory state of the program. In layer-0O of the
program, there is only one vertex, called the start vertex. Each leaf of the program
is labelled by an element from {0, 1} that we think of as the output of the program
on that leaf.

In a standard branching program, every non-leaf vertex v in the program is
labeled by an input variable z, and has 2 outgoing edges, labeled by 0 and 1, going
into vertices in the next layer. Intuitively, x, is the input variable read by the
vertex v. The program is called oblivious if all the vertices in the same layer read
the same input variable. Given a branching program, the input =y, ..., z, defines a
computation-path, by starting from the start vertex and following in each step the
edge labeled by the value of the corresponding input variable. The program outputs
the label of the leaf reached by the computation path.

In the random-query model, every non-leaf vertex v in the program has 2n out-
going edges, labeled by each element of {1,...,n} x {0,1} exactly once. Given such
a program and input xi,...,z,, the computation-path starts from the start vertex
and follows in each step the edge labeled by (i,x;), where i € {1,...,n} is random.
(Intuitively, the program reads a random index i € {1,...,n}, together with the
input variable x;). As before, the program outputs the label of the leaf reached by
the computation path.

1.1 Motivation

We have various motivations to study the new model. First, it seems to us an inter-
esting model in its own right. The standard model of space-bounded computation
is not always fully convincing in all settings, as it is not clear why would a machine
be able to store for free the n input variables, while at the same time have a very

restricted (typically, of size much smaller than n) additional memory. Moreover,
in various situations the random-query model seems to be the natural one to use.
Consider for example the following situation: you are at a party and you want to
know if the majority of the participants prefer coffee or tea. (Assume that you know
the number of participants in the party, that that number is odd and that you know
all participants (or they are labeled 1,...,n)). Assume that at each time step you
meet a random participant and she/he tells you their preference. How long would it
take to figure out if the majority prefers coffee or tea if your memory is bounded?
Another example may be a distributed setting where n players have one input vari-
able each and they keep sending these input variables to a central player who needs
to compute a Boolean function of all of them. However, the input variables arrive to
the central player in an arbitrary order.

Second, we study time-space lower bounds for the random-query model in or-
der to make progress in proving time-space lower bounds for standard (oblivious)
branching programs. Time-space lower bounds for branching programs have been
studied in numerous works (see for example [BNS92, A99a, A99hb, BJSO1, BSSV03]).
Currently, the best time-space lower bounds for any explicit function are only slightly
super linear and improving these lower bounds has been a very important and long
standing open problem in computational complexity. In section 5, we show that
various extensions of our results would imply such strong time-space lower bounds.
Roughly speaking, our time-space lower bounds for the random-query model are
proved for the case where the indices i1, i, i3, ... of the input variables read by the
program at time steps 1,2,3,... are mutually independent random variables, while
in order to extend these lower bounds to standard branching programs one needs to
generalize the proofs to the case where some of these indices are known to be the
same. Interestingly, the key component of our proof, Theorem 1, does apply to the
more general case where some of the indices are known to be the same. However,
the main results do not.

Third, the new model is related to several other problems that have been stud-
ied recently. First, it is related to the recent line of works on proving time-space
lower bounds for learning (see for example [S14, SVW16, R16, KRT17, MM17, R17,
MM18, BOGY18, GRT18, DS18, SSV19, GRT19]). Indeed, computing a function
f:{0,1}" — {0,1} in the random-query model is equivalent to the task of dis-
tinguishing between the following two families of distributions (which is a learning
task!): For x € {0,1}", let D, be the distribution of the random variable (i, x;),
where ¢ € {1,...,n} is uniformly distributed. The task is to distinguish between
a distribution taken from {D,},.¢(z)=0 and a distribution taken from {D,},.f(z)=1,

!Technically it is a testing task, which is easier than learning.

from a stream of independent samples. Second, the random-query model is similar
to a recently studied model of streaming complexity, where a source of i.i.d samples
of edges of a graph is considered [KMNEFT19]. In particular, [KMNFT19] studied
approximation algorithms for the maximum matching problem in that model. The
main difference from our model is that they studied the space needed for approximate
computation in the case where the number of samples is smaller than the number
of input variables, while we study time-space tradeoffs for exact computation in the
case where the number of samples may be much larger than the number of input
variables.

Finally, it turns out that in the zero-error case, the random-query model is closely
related to a memory-bounded variant of the coupon-collector problem, a problem that
seems to be of independent interest and to the best of our knowledge has not been
studied before. In our variant of the problem, the coupon collector gets a stream of
random elements from the set {1,...,n} and needs to stop when she is sure with
zero-error that all elements of {1,...,n} have already passed. The question is what
is the time 7" needed when the memory size of the coupon collector is bounded by S.

1.2 Our Results

In Theorem 2, we prove that any algorithm for the zero-error coupon-collector prob-
lem that runs in time 7" and space S satisfies T'- (S + logn) > Q(n?). This result
is essentially tight. In Theorem 3, we prove that in the random-query model, any
zero-error computation of XOR or Majority (or any other function with sensitivity
Q(n)) that runs in time 7" and space S satisfies T - (S + logn) > Q(n?). The results
for XOR and Majority are essentially tight (See Remarks 4.1 and 4.2 for the dis-
cussions on tightness). More generally, in the random-query model, any zero-error
computation of a function with sensitivity £ that runs in time 7" and space S satisfies
T-(S+logn)>Qn-k).

A very interesting open problem is to prove similar time-space lower bounds for
the random-query model in the bounded-error case, rather than the zero-error case
(Conjecture 1).

In Theorem 1, we prove time-space lower bounds for a special type of branch-
ing programs called set-labeled branching programs, in the random-query model.
Intuitively, a set-labeled branching program is a branching-program for the coupon-
collector problem, such that each vertex in the program “remembers” a set of coupons
that must have been collected if that vertex was reached.

1.3 Paper Organization

The paper is organized as follows. In section 3, we prove the tight time-space
lower bound for set-labeled branching programs, in the random-query model. In
section 4, we reduce zero-error computation tasks in the random-query model, in-
cluding the coupon-collector problem and function evaluation, to set-labeled branch-
ing programs, and hence prove tight time-space lower bounds for both problems. In
section 5, we illustrate how lower bounds in the random-query model with special
input distribution imply lower bounds for oblivious branching programs.

2 Preliminaries

For an integer n, we use [n] to denote {1,2,...,n}. For any set A and an n-tuple
x € A", we use z; to denote the i-th element of . For any x € {0,1}", let (¥ be the
vector that is the same as x but with the i-th coordinate flipped. Given a boolean
function f : {0,1}" — {0,1}, let s(f,z) be the sensitivity of f at z, that is the
number of coordinates i € [n] such that f(z)) # f(x), and let s(f) = max, s(f,z)
be the sensitivity of f.

2.1 Coupon-Collector Problem

The classical coupon-collector problem asks how large T' should be, so that a uni-
formly random T-tuple in [n]? contains every element of [n] with high probability.
Generalizing the goal to a subset A C [n], we have the following answer:

Proposition 1. Given any subset A C [n], for a uniformly random i € [n]T, the
probability that A & {i1, ... ir} is at most n(1 + log|A[)T.

The proof follows directly from the fact that the expected waiting time for every
element in A to appear is n lei‘lj_l > n(1+log|A|), and Markov’s inequality.

In this paper, we consider a zero-error version of the coupon-collector problem.
In this problem, the coupon collector could explicitly choose to stop when she is sure
with zero-error that every element in A has already been collected. The results in
this paper show that with bounded memory, the zero-error coupon-collector cannot
stop within few (say, O(nlog|A|)) turns with high probability, in contrast to the
proposition above.

2.2 Random-Query Model

In the random-query model, at each step ¢ € N a uniformly random index i; € [n] is
provided. When the problem specifies an input = € {0,1}", at each step ¢ the value
of the bit z;, € {0, 1} is also given along with the random index 7;. In this paper, we
consider two cases for the joint distribution of the indices:

Independent The indices 71,29, ... are mutually independent.

Recurring The only dependencies allowed among iy,1s,... are equalities. More
formally, there is a partition p : Z, — Z., such that ¢, = i;) for every t € Z.,
where 7,1}, ... are mutually independent and uniformly random over [n].

For the rest of the paper, we refer to the two cases as independent distribution and
recurring distributions. Notice that the independent distribution is a special case
of the recurring ones. The recurring distributions are closely related to oblivious
branching programs; see Section 5 for a detailed discussion.

2.3 Computational Models

The computational models we consider are based on branching programs. A branch-
ing program of length T and width 29 is a directed (multi) graph with vertices
arranged in 7'+ 1 layers containing at most 2° vertices each. Denote the set of
vertices in the i-th layer by £;, for ¢ = 0,1,...,T. In Ly there is only one vertex,
called the start vertex. Every vertex in L has out-degree 0, and is called a leaf. The
outgoing edges from every non-leaf vertex in £; only go to vertices in £;,1, for every
1< T.

A simple branching program is one such that every non-leaf vertex has n outgoing
edges, labeled with each element in [n] exactly once. We consider two types of simple
branching programs:

e A set-labeled branching program is a simple branching program, where every
vertex v is labeled with a set H(v) C [n], satisfying the following soundness
condition: if an edge from vertex u to vertex v is labeled with i € [n], it must
hold that H(v) C H(u) U {i}. The start vertex must be labeled with &.

e A branching program for the coupon-collector problem is a simple branching
program such that every leaf is labeled with either ‘accept’ or ‘reject’.

When the indices i1, . .. ,ir € [n] are given, the computation path in a simple branch-
ing program starts from the start vertex, and at step ¢ follows the edge labeled with
1; until reaching a leaf v, and outputs the label of v.

Given a function f : {0,1}" — {0,1}, a branching program computing f is one
such that every non-leaf vertex has 2n outgoing edges, labeled with each element
in [n] x {0,1} exactly once. Every leaf v in the program is labeled with an output
f, € {0,1,0}. When an input z € {0,1}" and the indices iy, ..., ir € [n] are given,
the computation path in the branching program starts from the start vertex, and at
step t follows the edge labeled with (i, z;,) until reaching a leaf v, and outputs fv.

In the random-query model where the indices i1, ..., ir are given according to a
specified distribution, we define the success of every type of branching program as
follows:

e We say that a set-labeled branching program succeeds on A C [n], if the prob-
ability that the output of the branching program H(v) 2O A is at least 1/2.

e For the coupon-collector problem, we say the branching program collects A C
[n] with zero-error, if the probability that the branching program outputs ‘ac-
cept’ is at least 1/2, and conditioned on outputting ‘accept’, the probability
that {iy,...,i7} 2 Ais L.

e For computing a function f, we say that the branching program computes f
with error e, if for every x € {0,1}", the probability that the output of the
branching program ﬁ, = f(x) is at least 1 — e. We say that the branching
program computes f with zero-error, if for every x € {0,1}", the probability
that the output of the branching program f, € {0,1} is at least 1/2, and the
probability that f, = 1 — f(z) is zero.

3 Lower Bounds for Set-Labeled Branching Pro-
grams

In this section, we prove the following theorem:

Theorem 1. Under the random-query model with any recurring distribution, for any
set A C [n], any set-labeled branching program of width 25 > |A| that succeeds on A
must have length at least % for sufficiently large n.?

Fix such a set-labeled branching program. We first prove an upper bound on the
probability of the computation path reaching two given vertices:

2Notice that by definition, a branching program of width 2% < |A| is also a branching program
of width |A|. Therefore for smaller widths, the theorem still holds, but with an additional log|A|
overhead on S. Theorems 2 and 3 work similarly.

Lemma 3.1. For any two vertices u,v in a set-labeled branching program, where
u € L, ve L;andi < j. Under the random-query model with any recurring
distribution,

j—i

[H (0)\H (u)]
Prlreaching u A reaching v] < ()

Proof. Let p : Z, — Z. be the partition for the recurring distribution. Let ¢ =
H{p(k) | i < k < j}|. The indices received from the random queries between layer i
and layer j are uniformly distributed over [n]*. Let G be the random variable that
represents the set of indices received between layer ¢ and layer j. By the soundness
requirement of set-labeled branching programs, if the computation path reaches u
and then v, the set G corresponding to this path must satisfy H(v) C H(u) U G.
Therefore,

Pr[reaching u A reaching v] < Pr[H(v) C H(u) UG| = Pr[H(v) \ H(u) C G].

If ¢ < |H(v)\ H(u)| then the above probability is zero. Otherwise by (over)counting
the positions where the elements of |H(v) \ H(u)| appear and the union bound we
have

F[H(v)\ Hu ¢ o HO\H)
AN HW) € 6 < G rm mwn

2\ HN\H ()]
(+)

j—i |H (v)\H (u)|
=)

Remark 3.1. For the independent distribution, the above argument yield:

IN

IA

Pr[reaching v | reaching u| < (‘7;

| H (v)\H (u)]

The weaker result in Lemma 3.1, however, holds more generally for any recurring
distribution. It is also strong enough for proving Theorem 1.

Proof for Theorem 1. Suppose the length of the set-labeled branching program is 7.
Define the weight of a vertex v as W (v) = Prreaching v]. For a set of vertices A,

let W(A) =3, c4W(v). Since the leaves are all in Ly, for every 0 <4 < T' we have
W(L;) = 1. The fact that the branching program succeeds on A C [n| translates to:

> W) =1/2. (1)
ASH ()

We divide the branching program into 14] stages, each consists of a consecutive

25
part of the layers. For every 0 < k < %, let 7 be the smallest index of a layer £;
such that kS
W) > —.
|H (v)|>2kS
By (1) we know such a layer must exist. Now the k-th stage consists of the layers
from Elk to EikJrl,l. Let

Ay ={ue Ly | |[Hw)|>2kS}, By={ue Ly 1| |H(u)| < 2kS}.

By the definitions of iy, we know that W (Ay) > kS/|A|, W(By) > 1 — kS/|A].

Now we show that every stage contains at least (n/3 — 1) layers. Suppose for
contradiction that for some k, it holds that ix,1 —ix < n/3 — 1. For any two vertices
u € By and v € Ai,1, by Lemma 3.1 we have

lpy1 — i+ 1
n

| H (v)\H (u)]
) < 3729,

Prlreaching u A reaching v] < (

Therefore, applying the union bound gives:

Pr[reaching £;, 1 A reaching £

ik+1}

< Prlreaching £;, 1 \ Bj] + Pr[reaching L;, , \ Aj41] + Pr[reaching By A reaching Ay1]
<1—-W(B)+1—W(Ag1) + Z Pr[reaching u A reaching v]

u€EBy
vEAL 41
kS (k+1)S S oS o-99
<—4+1—-——427.27.3 < 1.
Al |Al

The second last step is because there are at most 2° vertices in each layer, and the last
step is because 2° > |A|. However, since the computation path must pass through
both £;, _; and £ the probability above must be 1, which is a contradiction.

ik+1 Y

Thus we conclude that, for n large enough, i1 — i > n/3—1 > n/4. Therefore,

. o A

T > E — >

= (Zk+1 Zk) Y
0<k<|A|/28

]

4 Lower Bounds for Zero-error Computations un-
der Independent Distribution

Theorem 2. Under the random-query model with the independent distribution, for
any set A C [n|, any branching program for the coupon-collector problem of width
25 > | A| which collects A with zero-error must have length at least % for sufficiently
large n.

Proof. We show that for such a branching program, we can assign each vertex v with
a label H(v) C [n] so that the branching program is set-labeled. Let P(v) be the
collection of directed paths from the starting vertex to v. For every directed path
p let h(p) be the collection of indices labeled on the edges of p. Then we define
H(v) = Npepw)h(p)-

The starting vertex is clearly labeled with the empty set. To check the soundness,
consider an edge e from vertex u to vertex v labeled with i. For every path p € P(u),
the concatenation pe is a path in P(v), and h(pe) = h(p) U {i}. Therefore H(v) C
Nperh(pe) = H(w) U {i}.

Notice that every path from the starting vertex to a leaf corresponds to a collec-

tion of indices 71, . .., ip, that are given with probability n=7 > 0 under the indepen-
dent distribution. Since the branching program collects A with zero-error, for every
path to an ‘accept’ leaf it must holds A C {iy,...,ir}, so every ‘accept’ leaf v is now
labeled with H(v) O A. Therefore, as a set-labeled branching program it succeeds
on A. By Theorem 1 we know the length of the branching program is at least %
for sufficiently large n. O

Theorem 3. Let f : {0,1}" — {0,1} be a boolean function with sensitivity s(f).
Under the random-query model with the independent distribution, any branching pro-
gram of width 2° > n which computes f with zero-error must have length at least
n-s(f)

S

- for sufficiently large n.
<o Jor suffi y larg

Proof. Suppose there is a branching program P of width 2° and length T that
computes f with zero-error. Let x € {0,1}" be an input such that s(f) = s(f,x),

10

and let A= {i € [n] | f(z) # f(z?)}. We show below that from P, one can extract
a simple branching program P’ for the coupon-collector problem of width at most
2% and length T, which collects A with zero-error. Since |A| = s(f), by Theorem 2
we know T > %éf) for sufficiently large n.

We construct P’ inductively to simulate P on input z. For vertex v in P we use
v" to denote its corresponding vertex in P’. The start vertex v} in P’ corresponds
to the start vertex vy in P. If in P there exists an edge from u to v labeled with
(1,2;), and «’ is in P’, then add v’ to P’ (if v is not already there), and add an edge
from u' to v’ labeled with . Finally, for every leaf v’ in P’ label v' with ‘accept’ if
fu, = f(x), otherwise label v/ with ‘reject’.

First notice that under the independent distribution, the probability of reaching
a vertex v’ in P’ is exactly the same as the probability of reaching v in P with the
input . Since the probability that P outputs f(z) on input x is at least 1/2, the
probability that P’ outputs ‘accept’ is also at least 1/2.

We now show that conditioned on reaching a leaf v’ in P’ labeled with ‘accept’,
it must hold that A C {iy,...,i7}. Suppose not, then for some index i € A there is
a path p’ from the start vertex to v where no edge is labeled with i. Consider the
corresponding path p in P. On input z®, the computation follows the path p with
non-zero probability and outputs f, = f(z) # f(z™), which contradicts the zero-
error property of P. That concludes the proof that P’ collects A with zero-error. []

For the large class of functions with sensitivity €2(n), Theorem 3 provides the
quadratic time-space lower bound:

Corollary. Let f be a boolean function on n-bits with sensitivity Q(n) (For instance,
AND, XOR, Majority, s-t connectivity, etc.). Under the random-query model with
the independent distribution, any branching program of width 2° > n which computes
[with zero-error must have length Q(n?/S).

Remark 4.1. Theorem 3 is tight up to logarithmic factors, in the sense that for every
m < n, the function z; & - - - & x,, can be computed with zero-error within S space
and O(nmS~'logn) steps. We briefly sketch the algorithm here: Equally partition
[m] into O(mS™1) parts, each of size O(S). For each part P, use O(nlogn) steps
to record the values x; for all indices + € P. If any ¢« € P does not appear within
these O(nlogn) steps, output [J. Otherwise compute the partial parity @, =;, and
accumulate the partial parities.

As the lower bound in Theorem 3 is derived directly from Theorem 2 and further
from Theorem 1, variants of the above algorithm also imply that Theorems 1 and 2
are tight up to logarithmic factors.

11

Similar to the case in the coupon-collector problem, the zero-error guarantee is
crucial to Theorem 3, since for instance, the n-bit AND function can be computed
with constant error by a branching program of length O(n) and width O(1). However,
when specified to the parity function, the best trade-off seems to be still quadratic
even in the bounded-error setting. We propose the following conjecture:

Conjecture 1. Under the random-query model with the independent distribution,
any branching program of length T and width 25 which computes 1, ® - - - ® x,, with
error 1/3 must satisfy TS = Q(n?).

Remark 4.2. Besides the algorithm mentioned above, there is another essentially
different algorithm for computing parity (which actually computes the Hamming
weight) with bounded error: Equally partition [n] into O(S/logn) parts. For each
part P, record the number of steps ¢t when a pair (i, ;) such that i € P and z; = 1 is
received, and finally approximate the partial sum), , z; with the integer closest to
tn/T. By Chernoff bound, T' = O(n?S~"log®n) is enough so that the approximation
of each part is wrong with probability O(n™1).

Notice that this algorithm does not work in the zero-error setting. While the
previous algorithm corresponds directly to a set-labeled branching program, it is
not clear whether this approximation algorithm is related to set-labeled branching
programs or not.

5 Oblivious Branching Programs and Random-Query
Model

The random input model with recurring distributions is closely related to obliv-
ious branching programs. In this section, we present two potential directions to
prove strong lower bounds for oblivious branching programs, both via proving lower
bounds in the random-query model. Let SURJ,, ., : [n]™ — {0, 1} be the surjectivity
function: SURJ,, () = 1 if and only {i1,... i} = [n].

Theorem 4. For any m > 2n(logn + 1), any deterministic oblivious branching
program computing SURJ, ., 1s also a branching program for the coupon-collector
problem that collects [n| with zero-error under some recurring distribution.

Proof. Suppose at level t — 1 the oblivious branching program reads ,), for some
function p : Z, — [m]. Use p as the partition in the recurring distribution in
the random-query model, then the computation of the branching program for the
coupon-collector problem is exactly the same as in the oblivious branching program

12

with a uniformly random input i € [n]™. Proposition 1 shows that the probability
of SURJ,, (i) = 1 is at least 1/2. As the deterministic oblivious branching program
always outputs correctly, as a branching program for the coupon-collector problem
it succeeds with zero-error.]

For any function f: {0,1}" — {0,1} and m > n, let f*: [n]™ x {0,1}" — {0, 1}
be a partial function defined as follows: f*(i,y) is well-defined for i € [n]™ and
y € {0,1}™, if and only if SURJ,,,(i) = 1, and whenever i; = i, it must hold
y; = yg. When f*(i,y) is well-defined, the value of f*(i,y) is f(yj,,--.,¥;.), where
for every ¢ € [n], j, is some j € [m] such that i; = .

Theorem 5. Given any function f : {0,1}" — {0,1}. For any m > 3n(logn + 1),
iof there is a deterministic oblivious branching program computing f* of length T and
width 2° (on the inputs where f* is well-defined), then there is a branching program
of the same length and width, that computes f with error 1/3 in the random-query
model under some recurring distribution.

Proof. Add dummy levels to the oblivious branching program to double the length,
such that if originally at level ¢ the branching program reads either 7; or y;, now
it reads 7; at level 2¢ and y; at level 2¢t + 1. The oblivious branching program
now can be regarded as the one of length T' and width 2° that at each level ¢
reads a pair (i), Yp)), for some function p : Z, — [m]. Use p as the partition
in the recurring distribution. For any fixed = € {0,1}", the computation in the
random-query model on input x is exactly the same as in the oblivious branching
program with a uniformly random i € [n]™, and input y € {0, 1}™ defined as y; =
x;,. For such i and y, f*(i,y) is well-defined if and only if SURJ, (i) = 1, and
Proposition 1 indicates the probability that f*(i,y) is well-defined is at least 2/3.
Since whenever f*(i,y) is well-defined, the deterministic oblivious branching program
correctly outputs f(yj,,-..,v;,) = f(z), as a branching program under the random-
query model it computes f with error 1/3. O

As a corollary, if in the random-query model we were able to prove a time-
space lower bound that holds under any recurring distribution, either for the zero-
error coupon-collector problem, or for any bounded-error computation, we would
immediately have the same lower bound (up to logarithmic factors) on deterministic
oblivious branching programs.

13

References

[A99a] Miklds Ajtai: Determinism versus Non-Determinism for Linear Time RAMs.
STOC 1999: 632-641

[A99b] Mikl6s Ajtai: A Non-linear Time Lower Bound for Boolean Branching Pro-
grams. FOCS 1999: 60-70

[BJSO01] Paul Beame, T. S. Jayram, Michael E. Saks: Time-Space Tradeoffs for
Branching Programs. J. Comput. Syst. Sci. (JCSS) 63(4):542-572 (2001)

[BNS92| Lészlé Babai, Noam Nisan, Mario Szegedy: Multiparty Protocols, Pseudo-
random Generators for Logspace, and Time-Space Trade-Offs. J. Comput. Syst.
Sci. 45(2): 204-232 (1992)

[BOGY18] Paul Beame, Shayan Oveis Gharan, Xin Yang: Time-Space Tradeoffs
for Learning Finite Functions from Random Evaluations, with Applications to
Polynomials. COLT 2018: 843-856

[BSSV03] Paul Beame, Michael E. Saks, Xiaodong Sun, Erik Vee: Time-space trade-
off lower bounds for randomized computation of decision problems. J. ACM
(JACM) 50(2):154-195 (2003)

[DS18] Yuval Dagan, Ohad Shamir: Detecting Correlations with Little Memory and
Communication. COLT 2018: 1145-1198

[GRT18] Sumegha Garg, Ran Raz, Avishay Tal: Extractor-Based Time-Space Lower
Bounds for Learning. STOC 2018: 990-1002

[GRT19] Sumegha Garg, Ran Raz, Avishay Tal: Time-Space Lower Bounds for
Two-Pass Learning. CCC 2019: 22:1-22:39

[KMNFT19] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, Jakab
Tardos: Space Efficient Approximation to Maximum Matching Size from Uni-
form Edge Samples. CoRR abs/1907.05725 (2019)

[KRT17] Gillat Kol, Ran Raz, Avishay Tal: Time-Space Hardness of Learning Sparse
Parities. STOC 2017: 1067-1080

[MM17] Dana Moshkovitz, Michal Moshkovitz: Mixing Implies Lower Bounds for
Space Bounded Learning. COLT 2017: 1516-1566

14

[MM18] Dana Moshkovitz, Michal Moshkovitz: Entropy Samplers and Strong
Generic Lower Bounds For Space Bounded Learning. ITCS 2018: 28:1-28:20

[R16] Ran Raz: Fast Learning Requires Good Memory: A Time-Space Lower Bound
for Parity Learning. FOCS 2016: 266-275

[R17] Ran Raz: A Time-Space Lower Bound for a Large Class of Learning Problems.
FOCS 2017: 732-742

[S14] Ohad Shamir: Fundamental Limits of Online and Distributed Algorithms for
Statistical Learning and Estimation. NIPS 2014: 163-171

[SSV19] Vatsal Sharan, Aaron Sidford, Gregory Valiant: Memory-sample tradeoffs
for linear regression with small error. STOC 2019: 890-901

[SVW16] Jacob Steinhardt, Gregory Valiant, Stefan Wager: Memory, Communica-
tion, and Statistical Queries. COLT 2016: 1490-1516

15

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

