
Approximating the Distance to Monotonicity of Boolean Functions∗

Ramesh Krishnan S. Pallavoor† Sofya Raskhodnikova† Erik Waingarten‡

Abstract

We design a nonadaptive algorithm that, given a Boolean function f : {0, 1}n → {0, 1}
which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with
high probability, is an Õ(

√
n)-approximation to the distance of f to monotonicity. Furthermore,

we show that for any constant κ > 0, approximating the distance to monotonicity up to n1/2−κ-
factor requires 2n

κ

nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive
algorithm for such approximations. This answers a question of Seshadhri (Property Testing
Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property
is closely related to tolerantly testing that property. Our lower bound stands in contrast to
standard (non-tolerant) testing of monotonicity that can be done nonadaptively with Õ(

√
n/ε2)

queries.
We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An

α-erasure-resilient tester for a desired property gets oracle access to a function that has at most
an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the
erasures can be filled in to ensure that the resulting function has the property and to reject
(with probability at least 2/3) if every completion of erasures results in a function that is ε-far
from having the property. Our method yields the same lower bounds for unateness and being
a k-junta. These lower bounds improve exponentially on the existing lower bounds for these
properties.

∗This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing.
†Department of Computer Science, Boston University. Email: rameshkp@bu.edu, sofya@bu.edu. The work of these

authors was partially supported by NSF award CCF-1909612.
‡Department of Computer Science, Columbia University. Email: eaw@cs.columbia.edu. This work is supported in

part by NSF Graduate Research Fellowship (Grant No. DGE-16-44869).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 163 (2019)

1 Introduction

Property testing [54, 39] was introduced to provide a formal model for studying algorithms for
massive datasets. For such algorithms to achieve their full potential, they have to be robust to
adversarial corruptions in the input. Tolerant property testing [50] and, equivalently1, distance
approximation, generalize the standard property testing model to allow for errors in the input.

In this work, we study the problem of approximating the distance to several properties of
Boolean functions, with the focus on monotonicity. A function f : {0, 1}n → {0, 1} is monotone
if f(x) ≤ f(y) whenever x ≺ y, i.e., xi ≤ yi for all i ∈ [n]. The (relative) distance between two
functions over {0, 1}n is the fraction of the domain points on which they differ. Given a function f
and a set P (of functions with the desired property), the distance from f to P, denoted dist(f,P),
is the distance from f to the closest function in P. Given α ∈ (0, 1/2), a function is α-far from P if
its distance from P is at least α; otherwise, it is α-close. We study randomized algorithms which,
given oracle access to a Boolean function, output an approximation of distance to monotonicity by
making only a small number of queries. Specifically, given an input function f : {0, 1}n → {0, 1}
which is promised to be at least α-far from monotone, an algorithm that achieves a c-approximation
for c > 1 should output a real number ε̂ ∈ (0, 1) that satisfies, with probability at least 2/3,

dist(f,Mono) ≤ ε̂ ≤ c · dist(f,Mono).

Our goal is to understand the best approximation ratio c that can be achieved2 in time polynomial
in the dimension n and 1/α.

Fattal and Ron [32] investigated a more general problem of approximating the distance to
monotonicity of functions on the hypergrid [t]n. They gave several algorithms which achieved an
approximation ratio O(n) in time polynomial in n and 1/α; for better approximations, they designed
an algorithm with approximation ratio n/k, for every k, but with running time exponential in k.
For the special case of the hypercube domain, an O(n)-approximation can be obtained by simply
estimating the number of decreasing edges of f , that is, edges (x, y) of the hypercube for which
x ≺ y but f(x) > f(y). This follows from early works on monotonicity testing [30, 51, 38, 36].
These early works showed that the number of decreasing edges of a Boolean function f : {0, 1}n →
{0, 1} is between dist(f,Mono) · 2n and dist(f,Mono) ·n2n. Thus, by obtaining a constant-factor
approximation to the number of violated edges, one gets an O(n)-approximation to dist(f,Mono).
Prior to this work, no nontrivial hardness results were known for this problem, other than the
corresponding lower bounds on (standard) property testing.

Our Results. All our results are on nonadaptive algorithms. An algorithm is nonadaptive if
it makes all of its queries in advance, before receiving any answers; otherwise, it is adaptive.
Nonadaptive algorithms are especially straightforward to implement and achieve maximal paral-
lelism. Additionally, every nonadaptive algorithm that approximates the distance to monotonicity
of Boolean functions can be easily converted to an algorithm for approximating the Lp-distance to
monotonicity of real-valued functions [7].

1The query complexity of tolerant testing and distance approximation are within a logarithmic factor of each
other. See [50] for a discussion of the relationship.

2An equivalent way of stating this type of results is to express the approximation guarantee in terms of both
multiplicative and additive error, but with no lower bound on the distance. Purely multiplicative approximation
would require correctly identifying inputs with the property, which generally cannot be achieved in time sublinear in
the size of the input.

1

We design a nonadaptive Õ(
√
n)-approximation algorithm for distance to monotonicity that

runs in time polynomial in the number of dimensions, n, and 1/α. Our algorithm improves on the
O(n)-approximation obtained by Fattal and Ron [32].

Theorem 1.1 (Approximation Algorithm). There is a nonadaptive (randomized) algorithm that,
given a parameter α ∈ (0, 1/2) and oracle access to a Boolean function f : {0, 1}n → {0, 1} which
is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with probability
at least 2/3, is an Õ(

√
n)-approximation to dist(f,Mono).

Our algorithm works by estimating the size of a particular class of matchings parameterized by
subsets S ⊆ [n] and consisting of decreasing edges along the directions in S. For every S, the size of
the matching, divided by 2n, is a lower bound for dist(f,Mono), because any monotone function
g : {0, 1}n → {0, 1} must disagree with f on at least one endpoint of each decreasing edge. The
important feature of this class of matchings is that the membership of a given edge in a specified
matching can be verified locally by querying f on the endpoints of the edge and their neighbors.
Finally, we use a slightly improved version of the (robust) directed isoperimetric inequality by
Khot et al. [42]. Our improvements to isoperimetric inequalities of [42] are stated in Theorems 2.7
and A.1 and proved in Appendix A. We use Theorem 2.7 to show that if f is ε-far from monotone,
then either the algorithm samples some set S ⊆ [n] where the corresponding matching has size at
least Ω̃(ε/

√
n) · 2n, or there exist ε

√
n · 2n decreasing edges (see Lemma 2.6). In the latter case, the

fact that the number of decreasing edges, divided by 2n, is an n-approximation to the distance to
monotonicity is sufficient to obtain an Õ(

√
n)-approximation for this quantity.

Remark 1.2. Let function f : {0, 1}n → {0, 1} be ε-far from monotone. For all x ∈ {0, 1}n, let
I−f (x) be the number of decreasing edges incident on x. Khot et al. [42] proved that

E
x∼{0,1}n

[√
I−f (x)

]
≥ Ω̃(ε).

(See, also, related statements in Theorems 2.7 and A.1). Hence, an algorithm that evaluates√
I−f (x) on a uniformly random x ∈ {0, 1}n would, in expectation, get at least Ω̃(ε) on inputs

f which are ε-far from monotone. The problem is in deducing an upper bound on this esti-
mate for functions which are Õ(ε/

√
n)-close to monotone. For example, consider the function

f : {0, 1}n → {0, 1} defined as follows:

f(x) =


1 if x = 0n,

0 if x = 1n,

Maj(x) otherwise,

where Maj(·) is the majority function. Then, dist(f,Mono) = 2/2n, yet

E
x∼{0,1}n

[√
I−f (x)

]
≥ n/2n.

The lower and the upper bound differ by a factor of Θ(n), precluding us from getting an Õ(
√
n)-

approximation.
Chakrabarty and Seshadhri, in a personal communication, notified us of an alternative approach

towards a O(
√
n)-approximation via estimating the size of a maximal matching of decreasing edges.

2

Results in [42, 20] imply that the size of a maximal matching is an O(
√
n)-approximation to the

distance to monotonicity, and there are sublinear time algorithms for approximating this quan-
tity [60, 48]. However, these algorithms are adaptive.

Next, we show that a slightly better approximation, specifically, with a ratio of n1/2−κ for an
arbitrarily small constant κ > 0, requires exponentially many queries in nκ for every nonadaptive
algorithm.

Theorem 1.3 (Approximation Lower Bound). Let κ > 0 be any small constant. There exist
α = poly(1/n) and ε = poly(1/n) with ε

α = Ω(n1/2−κ), for which every nonadaptive algorithm
requires more than 2n

κ
queries to f : {0, 1}n → {0, 1} to distinguish functions f that are α-close to

monotone from those that are ε-far from monotone with probability at least 2/3.

This result, in combination with Theorem 1.1, answers an open question on the problem of ap-
proximating the distance to monotonicity by Seshadhri [57] for the case of nonadaptive algorithms.
It is the first lower bound for this problem, and it rules out nonadaptive algorithms that achieve
approximations substantially better than

√
n with poly(n, 1/α) queries, demonstrating that Theo-

rem 1.1 is essentially tight. This bound is exponentially larger than the corresponding lower bound
in the standard property testing model and, in fact, than the running time of known algorithms
for testing monotonicity. We elaborate on this point in the discussion below on separation.

To obtain Theorem 1.3, we investigate a variant of the property testing model, called erasure-
resilient testing. This variant, proposed by Dixit et al. [29], is intended to study property testing
in the presence of adversarial erasures. An erased function value is denoted by ⊥. An α-erasure-
resilient ε-tester for a desired property gets oracle access to a function f : {0, 1}n → {0, 1,⊥} that
has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3)
if the erasures can be filled in to ensure that the resulting function has the property and to reject
(with probability at least 2/3) if every completion of erasures results in a function that is ε-far
from having the property. As observed in [29], the query complexity of problems in this model lies
between their complexity in the standard property testing model and the tolerant testing model.
Specifically, a (standard) ε-tester that, given a parameter ε, accepts functions with the property
and rejects functions that are ε-far from the property (with probability at least 2/3), is a special
case of an α-erasure-resilient ε-tester with α set to 0. Importantly for us, a tolerant tester that,
given α, ε ∈ (0, 1/2) with α < ε, accepts functions that are α-close and rejects functions that are
ε-far (with probability at least 2/3) can be use to get an α-erasure-resilient ε-tester. The erasure-
resilient tester can be obtained by simply filling in erasures with arbitrary values and running the
tolerant tester. We prove a lower bound for erasure-resilient monotonicity testing.

Our method yields lower bounds for two other properties of Boolean functions: unateness, a
natural generalization of monotonicity, and being a k-junta. A Boolean function f : {0, 1}n → {0, 1}
is unate if, for every variable i ∈ [n], the function is nonincreasing or nondecreasing in that variable.
A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k (out of n) variables.

We prove the following result on erasure-resilient testing which implies Theorem 1.3.

Theorem 1.4 (Erasure-Resilient Lower Bound). Let κ > 0 be a small constant. There exist α =
poly(1/n) and ε = poly(1/n) with ε

α = Ω(n1/2−κ), for which every nonadaptive α-erasure-resilient
ε-tester requires more than 2n

κ
queries to test monotonicity of functions f : {0, 1}n → {0, 1}. The

same bound holds for testing unateness and the n/2-junta property.

3

Theorem 1.4 directly implies lower bounds analogous to the one stated in Theorem 1.3 for
unateness and being an n/2-junta. Lower bounds for approximating the distance to unateness and
to being a k-junta have been investigated by Levi and Waingarten [46]. They showed that every
algorithm approximating the distance to unateness within a constant factor requires Ω̃(n) queries
and strengthened their lower bound to Ω̃(n3/2) queries for nonadaptive algorithms. They also
showed that every nonadaptive algorithm that provides a constant approximation to the distance
to being a k-junta must make Ω̃(k2) queries. Our lower bounds are exponentially larger than those
obtained by Levi and Waingarten [46] and hold for larger approximation factors.

Separation. Our lower bounds provide natural properties for which erasure-resilient property
testing (and hence, distance approximation) is exponentially harder than standard property testing
with nonadaptive algorithms. Previously, such strong separation was only known for artificially
constructed properties based on PCPs of proximity [34, 29]. For testing monotonicity of Boolean
function, the celebrated nonadaptive algorithm of Khot, Minzer and Safra [42] makes Õ(

√
n/ε2)

queries. Unateness can be tested nonadaptively with O(nε log n
ε) queries [3] whereas the property

of being a k-junta can be tested nonadaptively with Õ(k3/2/ε) queries [9]. Our lower bound shows
that, for all three properties, nonadaptive testers requires exponentially many queries when the
ratio ε/α is substantially smaller than

√
n. This stands in contrast to examples of many properties

provided in [29], for which erasure-resilient testers have essentially the same query complexity as
standard testers.

1.1 Previous Work

Testing monotonicity and unateness (first studied in [38]), as well as k-juntas (first studied in [35]),
are among the most widely investigated problems in property testing ([31, 30, 51, 45, 36, 1, 33, 41, 4,
50, 2, 8, 14, 11, 18, 19, 13, 17, 22, 21, 42, 5, 25, 49] study mononicity testing, [43, 3, 25, 26, 24] study
unateness testing, and [27, 9, 10, 15, 56, 23, 55] study k-junta testing). Nearly all the previous work
on these properties is in the standard testing model. The best bounds on the query complexity of
these problems are an Õ(

√
n)-query algorithm of [42] and lower bounds of Ω̃(

√
n) (nonadaptive)

and Ω̃(n1/3) (adaptive) [25] for monotonicity, and tight upper and lower bounds of Θ̃(n2/3) for
unateness testing [24, 25], as well as Θ(k log k) for k-junta testing [9, 55].

Beyond the (standard) property testing, the questions of erasure-resilient and tolerant testing
have also received some attention ([29, 52] study the erasure-resilient model, and [40, 50, 34, 37, 2,
44, 47, 32, 16, 7, 6, 58, 12, 46, 28] study the tolerant testing model). Specifically for monotonicity,
in [29], an erasure-resilient tester for functions on hypergrids is designed. For the special case of
the hypercube domain, it runs in time O(n/ε) and works when ε/α = Ω(n). Using the connection
between distance approximation and erasure-resilient testing, our approximation algorithm implies
an erasure-resilient tester that has a less stringent restriction on ε/α, specifically, Ω(

√
n). For

approximating the distance to k-juntas [12, 28], the best algorithm with additive error of ε makes
2k · poly(k, 1/ε) queries [28], and the best lower bound was Ω(k2) for nonadaptive algorithms [46].

2 An Approximation Algorithm for Distance to Monotonicity

This section is devoted to proving Theorem 1.1. We provide a nonadaptive algorithm that gets a
parameter α > 0 and oracle access to a function f : {0, 1}n → {0, 1} promised to be α-far from

4

monotone, makes poly(n, 1/α) queries, and returns an estimate ε̂ > 0 that satisfies, with probability
at least 2/3,

dist(f,Mono) ≤ ε̂ ≤ Õ(
√
n) · dist(f,Mono).

Our main algorithm, ApproxMono, whose performance is summarized in Lemma 2.1, distin-
guishes functions that are close to monotone from those that are far. Note that the distance from
any Boolean function to monotonicity is at most 1/2, since the constant-0 and constant-1 functions
are monotone. As a result, Theorem 1.1 follows directly from Lemma 2.1, by running the algo-
rithm ApproxMono with ε set to 1

2 ,
1
4 ,

1
8 , . . . , α appropriate number of times. (See, for example, [2,

Section 3.3] for more details on how to get an approximation algorithm from a tolerant tester.).

Lemma 2.1. There exists a nonadaptive algorithm, ApproxMono, that gets a parameter ε ∈ (0, 1/2)
and oracle access to a function f : {0, 1}n → {0, 1}, makes poly(n, 1/ε) queries and outputs “close”
or “far” as follows:

1. If dist(f,Mono) ≤ ε√
n·poly(logn) , it outputs “close” with probability at least 2/3.

2. If dist(f,Mono) ≥ ε, it outputs “far” with probability at least 2/3.

The main algorithm, ApproxMono, is described in Figure 1. The algorithm uses subroutines
Edge-Violations and Matching-Estimation, described in Figures 2 and 4, respectively. The sub-
routine Edge-Violations(δ, f) gets a parameter δ > 0 and oracle access to a function f : {0, 1}n →
{0, 1}, and returns an estimate to the fraction of decreasing edges of f up to an additive error δ.
The second subroutine, Matching-Estimation(S, δ, f), gets a parameter δ > 0, a subset S ⊆ [n]
and oracle access to a function f : {0, 1}n → {0, 1}. The goal of Matching-Estimation(S, δ, f) is
to estimate the probability, over x ∼ {0, 1}n, of an event (which we denote Capture and describe in
Definition 2.3) defined with respect to x, S and f up to an additive error δ. The high level intuition
is that, as long as the estimates of Matching-Estimation(S, δ, f) and Edge-Violations(δ, f) are
correct, we can certify a lower bound on the distance to monotonicity of f . We then prove that
if f is ε-far from monotone, either the number of decreasing edges of f is large, (and thus line 2
declares “far”), or the Matching-Estimation subroutine can verify a lower bound on the distance
to monotonicity.

Recall that an edge (x, y) in a hypercube is a pair of points x, y ∈ {0, 1}n with xi = 0 and yi = 1
for some i ∈ [n], and xj = yj for all j ∈ ([n] \ {i}). For a function f : {0, 1}n → {0, 1}, an edge
(x, y) is decreasing if f(x) > f(y), i.e., f(x) = 1 and f(y) = 0. For a dimension i ∈ [n], a point
x ∈ {0, 1}n, and a bit b ∈ {0, 1}, we use x(i→b) to denote the point in {0, 1}n whose ith coordinate is
b and the remaining coordinates are the same as in x. We use x(i) to denote the point x(i→(1−xi)),
where xi is the ith coordinate in x.

We summarize the properties of the subroutine Edge-Violations(δ, f) in Fact 2.2. It can be
easily proved by an application of the Chernoff bound.

Fact 2.2. The algorithm Edge-Violations is nonadaptive. It gets a parameter δ > 0 and oracle
access to a function f : {0, 1}n → {0, 1}, makes (10 log n)/δ2 queries, and outputs γ̂ ∈ [0, 1] which,
with probability at least 1− 1/n3, satisfies∣∣∣ Pr

x∼{0,1}n
i∼[n]

[
f(x(i→0)) > f(x(i→1))

]
− γ̂
∣∣∣ ≤ δ.

5

Subroutine ApproxMono(ε, f)

Input: A parameter ε ∈ (0, 1/2) and oracle access to a function f : {0, 1}n → {0, 1}.
Output: Either “close” or “far”.

1. Let γ̂ ← Edge-Violations(ε/(2
√
n), f) be an estimate to the fraction of decreasing

edges up to an additive error ε/(2
√
n).

2. If γ̂ ≥ 3ε/(2
√
n), output “far”.

3. For each d = 2h, where h ∈ {0, 1, . . . , log2 n}, repeat the following t =
√
n · poly(log n)/ε

times:

(a) Sample S ⊆ [n] by including each i ∈ [n] independently with probability 1/d.

(b) Let ξ̂ ← Matching-Estimation(S, 1/(4t), f) be an estimate to

Pr
x∼{0,1}n

[Capture(x,S, f) = 1]

up to an additive error 1/(4t).

(c) If ξ̂ ≥ 3/(4t), output “far”.

4. If the procedure has not yet produced an output, output “close”.

Figure 1: Description of the ApproxMono subroutine.

Subroutine Edge-Violations(δ, f)

Input: A parameter δ > 0 and oracle access to a function f : {0, 1}n → {0, 1}.
Output: A real number γ̂ ∈ [0, 1].

1. Initialize counter c← 0.

2. Set t←
⌈
10 logn
δ2

⌉
.

3. Repeat the following steps t times:

(a) Sample x ∼ {0, 1}n and i ∼ [n], both uniformly at random, and query f(x(i→0))
and f(x(i→1)).

(b) If f(x(i→0)) > f(x(i→1)), i.e., the edge (x(i→0),x(i→1)) is decreasing, update
c← c+ 1.

4. Output γ̂ = c/t.

Figure 2: Description of the Edge-Violations subroutine.

6

𝑓 𝑥 = 1 0 0 0 0 0

𝑓 𝑦 = 0

𝑆
𝑖

Figure 3: An illustration to Definition 2.3.

Definition 2.3. For a function f : {0, 1}n → {0, 1}, a subset S ⊆ [n], and a point x ∈ {0, 1}n, let
Capture(x, S, f) ∈ {0, 1} be the indicator of the following event (see Figure 3):

1. There exists an index i ∈ S such that (x, y) is a decreasing edge in f , where y = x(i).

2. For all j ∈ S \ {i}, the edge (y, y(j)) is a nondecreasing edge in f .

Given Definition 2.3, we summarize the properties of subroutine Matching-Estimation(S, δ, f)
in Fact 2.4. As Fact 2.2, it can be easily proved by an application of the Chernoff bound.

Fact 2.4. The algorithm Matching-Estimation is nonadaptive. It gets a set S ⊆ [n], a parameter
δ > 0 and oracle access to a function f : {0, 1}n → {0, 1}, makes O(|S|2 log(n/ε)/δ2) queries, and
outputs ξ̂ ∈ [0, 1] which, with probability at least 1− (ε/n)3, satisfies∣∣∣ Pr

x∼{0,1}n
[Capture(x, S, f) = 1]− ξ̂

∣∣∣ ≤ δ.
Lemma 2.1 follows from Lemmas 2.5 and 2.6.

Lemma 2.5. For a function f : {0, 1}n → {0, 1} and a set S ⊆ [n],

Pr
x∼{0,1}n

[Capture(x, S, f) = 1] ≤ 2 · dist(f,Mono).

Proof. Let X = {x ∈ {0, 1}n : Capture(x, S, f) = 1}. For each x ∈ X, let yx = x(i) for a dimension

i ∈ S be the point for which (x, yx) is decreasing and, for all j ∈ S \ {i}, the edge (yx, y
(j)
x) is

nondecreasing. Consider the set of decreasing edges of f given by EX = {{x, yx} : x ∈ X}. If x1, x2
from X are distinct, then yx1 6= yx2 , because otherwise yx1 would violate Item 2 in Definition 2.3.
Thus, EX is a matching. Each edge is added to EX at most twice (once for each endpoint), so
|EX | ≥ |X|/2. Since we have a matching of at least |X|/2 decreasing edges, at least |X|/2 values
of f must be changed to make it monotone.

Lemma 2.6. Let f : {0, 1}n → {0, 1} be ε-far from monotone, with fewer than ε
√
n · 2n decreasing

edges. Then, for some d = 2h where h ∈ {0, . . . , log2 n},

E
S⊆[n]

i∈S w.p. 1/d

[
Pr

x∼{0,1}n
[Capture(x,S, f) = 1]

]
≥ ε√

n · poly(log n)
.

7

Subroutine Matching-Estimation(S, δ, f)

Input: A set S ⊆ [n], a parameter δ > 0, and oracle access to a function f : {0, 1}n → {0, 1}.
Output: A real number ξ̂ ∈ [0, 1].

1. Initialize counter c← 0.

2. Set t←
⌈
10 log(n/ε)

δ2

⌉
.

3. Repeat the following steps t times:

(a) Sample x ∼ {0, 1}n and query f(x); for all i ∈ S, let yi = x(i) and query f(yi) and

f(y
(j)
i) for all j ∈ S \ {i}.

(b) If, for some i ∈ S, the edge (x,yi) is decreasing and, for all j ∈ S \ {i}, the edge

(yi,y
(j)
i) is nondecreasing, update c← c+ 1.

4. Output ξ̂ = c/t.

Figure 4: Description of the Matching-Estimation subroutine.

The proof of Lemma 2.6 appears in Section 2.1. We use Lemmas 2.5 and 2.6 to complete the
proof of Lemma 2.1.

Proof of Lemma 2.1. By a union bound over the invocation of Edge-Violations(ε/(2
√
n), f) and

at most t(log2 n + 1) ≤ n/ε invocations of Matching-Estimation(S, 1/(2t), f), we get that, with
probability at least 3/4, all outputs produced by these subroutines satisfy the conclusions of
Facts 2.2 and 2.4.

First, we prove the contrapositive of part 1 of Lemma 2.1. Suppose that ApproxMono(ε, f)
outputs “far”. Since the total number of edges in the hypercube {0, 1}n is n2n−1, if the output was
produced by line 2, the number of decreasing edges in f is at least (ε/

√
n)·n2n−1 = (ε

√
n/2)·2n. The

number of decreasing edges in f divided by n2n is a lower bound on the distance to monotonicity3.
Hence, dist(f,Mono) ≥ ε/(2

√
n). Otherwise, ApproxMono(ε, f) outputs “far” in line 3(c), but then

Lemma 2.5 implies dist(f,Mono) ≥ 1/(4t) = ε/(
√
n · poly(log n)), completing the proof of part 1.

Next, we prove part 2 of the Lemma 2.1. Suppose that f : {0, 1}n → {0, 1} is ε-far from
monotone. If the number of decreasing edges in f is at least ε

√
n · 2n, then line 2 outputs “far”.

Otherwise, by Lemma 2.6, there exists some d = 2h with h ∈ {0, . . . , log2 n} for which,

E
S⊆[n]

[
Pr

x∼{0,1}n
[Capture(x,S, f) = 1]

]
≥ ε√

n · poly(log n)

def
= µ, (1)

where S ⊆ [n] is sampled by including each i ∈ [n] independently with probability 1/d. Let
β ∈ (0, 1) be the probability over the draw of S ⊆ [n] that Prx∼{0,1}n [Capture(x,S, f) = 1] ≥ µ/2.

3In order to see this, suppose that f has m decreasing edges. Consider any monotone function g : {0, 1}n → {0, 1}.
Note that each point in {0, 1}n is incident on n edges of the hypercube. Hence, if f and g differ on less than m/n
points, then there are less than m edges for which f and g differ on at least one endpoint. Since f has m decreasing
edges, there exists a decreasing edge in f for which g and f agree on both endpoints of the edge, contradicting the
fact that g is monotone.

8

Then,

E
S⊆[n]

[
Pr

x∼{0,1}n
[Capture(x,S, f) = 1]

]
≤ β + (1− β) · µ

2
. (2)

Using (1) and (2), we get β ≥ µ/2. Since t =
√
n · poly(log n)/ε is high enough so that t ≥

(2/µ) · log n, we have that, with probability at least 1− 1/n, there exists some S ⊆ [n] sampled in
line 3(a) of ApproxMono(ε, f) such that Prx∼{0,1}n [Capture(x,S, f) = 1] ≥ µ/2 ≥ 1/t. When this
occurs, line 3(c) outputs “far”.

2.1 Proof of Lemma 2.6

To prove Lemma 2.6, we use the main (robust) directed isoperimetric inequality of [42] as the
starting point. We use notation from [42]. For a function f : {0, 1}n → {0, 1}, let S−f denote the set

of decreasing edges of f . Let the function I−f : {0, 1}n → {0, 1, . . . , n} map each point x ∈ {0, 1}n

to the number of decreasing edges of f incident on x. For an arbitrary coloring of S−f into red and

blue edges, col : S−f → {red,blue}, let I−f,red, I
−
f,blue : {0, 1}n → {0, . . . , n} be the functions given by:

I−f,red(x) =

{
0 if f(x) = 0;

|{{x, y} ∈ S−f : col(x, y) = red}| if f(x) = 1;

I−f,blue(x) =

{
|{{x, y} ∈ S−f : col(x, y) = blue}| if f(x) = 0;

0 if f(x) = 1.

We crucially rely on the main theorem of [42], which is stated next, with a minor improvement in
the bound. We obtain the improvement in Appendix A.

Theorem 2.7 (Close to Theorem 1.9 from [42]). Let f : {0, 1}n → {0, 1} be ε-far from monotone.
Then, for any coloring of S−f into red and blue,

E
x∼{0,1}n

[√
I−f,red(x)

]
+ E

y∼{0,1}n

[√
I−f,blue(y)

]
≥ Ω (ε) . (3)

To prove Lemma 2.6, consider a function f : {0, 1}n → {0, 1} which is ε-far from monotone with
|S−f | < ε

√
n · 2n. Consider the coloring of S−f given by:

col(x, y) =

{
red if f(x) = 1 and I−f (x) ≥ I−f (y);

blue if f(x) = 1 and I−f (x) < I−f (y).

In this coloring, each decreasing edge in f is counted in (3) towards its endpoint adjacent to a
higher number of decreasing edges. For each d = 2h, where h ∈ {0, . . . , blog2 nc}, define the subsets
of points

Hd,blue = {x ∈ {0, 1}n : d ≤ I−f (x) < 2d and f(x) = 0},
Hd,red = {x ∈ {0, 1}n : d ≤ I−f (x) < 2d and f(x) = 1}.

The sets (Hd,red, Hd,blue : d = 2h, h ∈ {0, . . . , blog2 nc}) partition the endpoints of decreasing edges.
By (3), there exist d∗ = 2h

∗
, for some h∗ ∈ {0, . . . , blog2 nc}, and a color b∗ ∈ {red,blue} such that

1

2n

∑
x∈Hd∗,b∗

√
I−f,b∗(x) ≥ Ω

(
ε

log n

)
. (4)

9

Fix such d∗ and b∗. Let
H ′d∗,b∗ = {x ∈ Hd∗,b∗ : I−f,b∗(x) > 0}

be the subset of points in Hd∗,b∗ which are endpoints of decreasing edges colored b∗. Note that (4)
still holds if the summation is changed to be over H ′d∗,b∗ instead of Hd∗,b∗ . We further partition
H ′d∗,b∗ into log2 d

∗ + 1 sets, (Hd∗,b∗,s : s = 2q, q ∈ {0, . . . , log2 d
∗}), where Hd∗,b∗,s = {x ∈ Hd∗,b∗ :

s ≤ I−f,b∗(x) < 2s}. By (4) and an argument similar to the one used in deriving (4), there exists

some s∗ = 2q
∗

for some q∗ ∈ {0, . . . , log2 d
∗} satisfying

|Hd∗,b∗,s∗ |
2n

·
√
s∗ ≥ Ω

(
ε

log n · log d∗

)
≥ Ω

(
ε

log2 n

)
, (5)

where we used the fact that d∗ ≤ n. Each x ∈ Hd∗,b∗,s∗ is an endpoint of at least d∗ decreasing edges
of f . Moreover, the sets of decreasing edges incident on different points in Hd∗,b∗,s∗ are disjoint.
Consequently, by the bound on the number of decreasing edges in the statement of Lemma 2.6,

d∗|Hd∗,b∗,s∗ | ≤ |S−f | < ε
√
n · 2n,

implying |Hd∗,b∗,s∗ |/2n < ε
√
n/d∗. Together with (5), this gives

ε
√
n

d∗
·
√
s∗ ≥ Ω

(
ε

log2 n

)
;

⇒
√
s∗

d∗
≥ Ω

(
1

√
n · log2 n

)
. (6)

Next, we show that for each x ∈ Hd∗,b∗,s∗ , the probability that Capture happens is sufficiently
large.

Claim 2.8. For each x ∈ Hd∗,b∗,s∗, the probability

Pr
S⊆[n]

i∈S w.p. 1/d∗

[Capture(x,S, f) = 1] = Ω

(
s∗

d∗

)
.

Proof. Consider the case when d∗ = 1. Then s∗ = 1. Fix an arbitrary x ∈ Hd∗,b∗,s∗ . Then

I−f (x) = I−f,b∗(x) = 1,

that is, the only edge incident on x is colored b∗. Call this edge {x, y}. Since col(x, y) = b∗, by
definition of coloring, I−f (y) ≤ I−f (x) = 1. Therefore, x and y are not endpoints of any decreasing
edges other than the edge {x, y}. Note that S = [n], since each i ∈ [n] is in S with probability
1/d∗ = 1. By Definition 2.3, Capture(x,S, f) = 1 since {x, y} is a decreasing edge along a
dimension in S, and all other edges incident on y are nondecreasing. Hence,

Pr
S=[n]

[Capture(x,S, f) = 1] = 1 = Ω

(
s∗

d∗

)
,

concluding the proof for the case d∗ = 1.
Now, consider the case when d∗ ≥ 2. For x ∈ {0, 1}n, let D−f (x) = {i ∈ [n] : {x, x(i)} ∈

S−f } denote the set of dimensions along which the edge incident on x is decreasing in f , and let

10

E−f (x) = {i ∈ D−f (x) : I−f (x) ≥ I−f (x(i))} be the set of dimensions along which the other endpoint

is adjacent to no more decreasing edges than x. For each x ∈ Hd∗,b∗,s∗ , we have |D−f (x)| < 2d∗

and |E−f (x)| ≥ s∗. If we sample S ⊆ [n] by including each index i ∈ [n] independently with
probability 1/d∗, then, for each x ∈ Hd∗,b∗,s∗ , the probability that Capture(x,S, f) = 1 is at least
the probability that there exists a unique i ∈ S such that y = x(i) satisfies {x, y} ∈ S−f with

I−f (x) ≥ I−f (y), and all other decreasing edges of f incident on y are along dimensions in [n] \ S.
Hence, for each x ∈ Hd∗,b∗,s∗ , the probability

Pr
S⊆[n]

[Capture(x,S, f) = 1] ≥
∑

i∈E−f (x)

(
Pr[i ∈ S] ·

∏
j∈(D−f (x)∪
D−f (x(i)))\{i}

Pr[j /∈ S]
)

≥ s∗ · 1

d∗
·
(

1− 1

d∗

)4d∗

= Ω

(
s∗

d∗

)
,

where we used |E−f (x)| ≥ s∗ and

|D−f (x(i))| ≤ I−f (x) = |D−f (x)| < 2d∗

to get the second inequality and (1− 1/d∗)d
∗ ≥ 1/4 for all d∗ ≥ 2 to get the final equality.

This concludes the proof of Lemma 2.6, since

E
S⊆[n]

i∈S w.p. 1/d∗

[
Pr

x∼{0,1}n
[Capture(x,S, f) = 1]

]
≥ 1

2n

∑
x∈Hd∗,b∗,s∗

Pr
S⊆[n]

i∈S w.p. 1/d∗

[Capture(x,S, f) = 1]

≥
|Hd∗,b∗,s∗ |

2n
· Ω
(
s∗

d∗

)
≥ Ω

(
ε

log2 n
·
√
s∗

d∗

)
≥ Ω

(
ε

√
n · log4 n

)
,

where we used Claim 2.8, (5) and (6) to get the second, third and fourth inequalities, respectively.

3 A Nonadaptive Lower Bound for Erasure-Resilient Testers

In this section, we prove Theorem 1.4 that gives a lower bound on the query complexity of erasure-
resilient testers of monotonicity, unateness and the k-junta property. We prove the lower bound by
constructing two distributions D+ and D− on input functions f : {0, 1}n → {0, 1,⊥} that are hard
to distinguish for any nonadaptive tester and then applying Yao’s Minimax principle [59].

Recall that ⊥ denotes an erased function value. We say that a function f : {0, 1}n → {0, 1,⊥}
is α-erased if at most an α fraction of its values are erased. If α is not specified, we call such a
function partially erased. A completion of a partially erased function f : {0, 1}n → {0, 1,⊥} is a

11

function f ′ : {0, 1}n → {0, 1} that agrees with f on all nonerased values, that is, for all x ∈ {0, 1}n,
if f(x) 6= ⊥ then f ′(x) = f(x). A partially erased function f is monotone (or, more generally, has
property P) if there exists a monotone completion of f (respectively, a completion of f that has
P). A partially erased function is ε-far from monotone (or, more generally, from having property
P) if every completion of f is ε-far from monotone (respectively, from having property P).

Proof of Theorem 1.4. We start by defining distributions D+ and D− on α-erased functions. Later,
we show that D+ is over monotone functions whereas D− is over functions that are ε-far from
monotone. Interestingly, the same distributions work to prove our lower bounds for unateness and
k-juntas: all functions in the support of D+ are unate (because they are monotone) and also n/2-
juntas. We will also show that all functions in the support of D− are ε-far from unate and ε-far
from n/2-juntas. The core of the argument is demonstrating that the two distributions are hard to
distinguish for nonadaptive testers that make too few queries.

For every x ∈ {0, 1}n, let |x| denote the Hamming weight of x, and let xS denote the vector
x ∈ {0, 1}n restricted to the dimensions in the set S ⊆ [n].

Let n be a multiple of 4. We first describe a collection of random variables used for defining
the distributions D+ and D−.

• The set M of control dimensions. The set M is a uniformly random subset of [n] of size
n/2. We use M to denote the set of remaining dimensions, [n] \M .

• The subcube partition set PM and action subcubes. For a fixed set M ⊂ [n] of
size n/2, let {0, 1}M denote the restriction of {0, 1}n to the dimensions in M . Let the set
ΨM =

{
xM ∈ {0, 1}M : |xM | = n

4

}
denote the set of all “prefixes” of x which lie in the middle

layer of the subcube {0, 1}M . The subcube partition set PM is a uniformly random subset

of ΨM of size |ΨM |/2. Each z ∈ ΨM corresponds to a subcube of the form {0, 1}M with the
vertex set comprised of points x with xM = z. All such subcubes are called action subcubes.

• The functions gM,PM . For a fixed setting of M ⊂ [n] of size n/2 and a set of action subcubes
PM ⊂ ΨM , the function gM,PM : {0, 1}n → {0, 1,⊥, 0?, 1?}:

gM,PM (x) =



0 if |xM | < n
4 ;

1 if |xM | > n
4 ;

⊥ if |xM | = n
4 and |xM | ∈

[
n
4 − n

κ, n4 + nκ
]

;

0? if xM ∈ PM and |xM | /∈
[
n
4 − n

κ, n4 + nκ
]

;

1? otherwise.

Functions from D+ and D− are sampled by first letting M ⊂ [n] be a random set of control
dimensions and then letting PM be a random subcube partition set. A function f sampled from
D+ and D− will be identical to gM ,PM

on points x ∈ {0, 1}n for which gM ,PM
(x) ∈ {0, 1,⊥}, but

differ on the remaining values (see Figures 5 and 6). Specifically, for functions in D+, the values
0? and 1? are replaced with 0 and 1, respectively. That is, f ∼ D+ is defined by sampling M and
PM , and letting:

f(x) =


gM ,PM

(x) if gM ,PM
(x) ∈ {0, 1,⊥};

0 if gM ,PM
(x) = 0?;

1 if gM ,PM
(x) = 1?.

12

|𝑥𝑀| =
𝑛

4
± 𝑛𝜅

0,1 𝑀

⊥
1

1

0,1 𝑀

⊥
0

0

…0,1 𝑀

1

0

Action subcubes

𝑥𝑀 ∈ 𝑃𝑀 𝑥𝑀 ∈ 𝑃𝑀

Figure 5: Functions f ∼ D+ defined with respect to control dimensions M and the subcube
partition set PM .

For functions in D−, the value 0? is replaced with the majority function, denoted Maj(·), evaluated
on the bits indexed by M, whereas 1? is replaced with the antimajority of those bits. That is,
f ∼ D− is defined by sampling M and PM , and letting:

f(x) =


gM ,PM

(x) if gM ,PM
(x) ∈ {0, 1,⊥};

Maj(xM) if gM ,PM
(x) = 0?;

1−Maj(xM) if gM ,PM
(x) = 1?.

Lemma 3.1. There is an α = O(1/n1−κ), for which every function in the support of the distribu-
tions D+ and D− is α-erased.

Proof. A function f : {0, 1}n → {0, 1} in the support of D+ (and D−) defined with respect to
control dimensions M and subcube partition set PM is erased in the middle 2nκ + 1 layers of
every action subcube {0, 1}M whenever xM is in the middle layer of the subcube {0, 1}M . Since
|M | = |M | = n/2, the number of points we erase is at most

(
n/2

n/4

)
·
(
n/2

n/4

)
(2nκ + 1) = O

(2n/2√
n/2

)2

nκ

 = O

(
2n

n1−κ

)
.

Thus, the fraction of erasures in the constructed functions is O(1/n1−κ).

Lemma 3.2. Every f ∼ D+ is monotone, unate, and n/2-junta whereas every f ∼ D− has distance

at least ε = Ω
(

1√
n

)
from monotonicity, unateness, and being an n/2-junta.

Proof. Consider a partially erased function f in the support of D+. For all pairs x, y with x ≺ y
for which the function values are not erased, f(x) ≤ f(y). Therefore, as shown in [36], f can be
completed to a monotone function. Thus, f is monotone and, consequently, unate. Finally, we will

13

|𝑥𝑀| =
𝑛

4
± 𝑛𝜅

0,1 𝑀

⊥
0

1

0,1 𝑀

⊥
1

0

…0,1 𝑀

1

0

Action subcubes

𝑥𝑀 ∈ 𝑃𝑀 𝑥𝑀 ∈ 𝑃𝑀

Figure 6: Functions f ∼ D− defined with respect to control dimensions M and the subcube
partition set PM .

show that f can be completed to an n/2-junta. Let M and PM be the set of control dimensions and
the subcube partition set used in defining f , respectively. Define a completion f ′ : {0, 1}n → {0, 1}
of f as follows. For all x ∈ {0, 1}n with f(x) = ⊥,

f ′(x) =

{
0 if xM ∈ PM ,
1 otherwise.

Then f ′ only depends on coordinates in M . Hence, f can be completed to an n/2-junta.
Now consider a partially erased function f in the support of D−. Let M and PM be the set

of control dimensions and the subcube partition set used in defining f , respectively. By standard
arguments (see, e.g., [36, Lemma 22]), in each action subcube {0, 1}M , there is a perfect matching
between points x on which f(x) = 1 and points y on which f(y) = 0, where each pair (x, y)
in the matching has comparable x, y. Specifically, if xM ∈ PM for this action subcube (that is,
gM,PM (x) = gM,PM (y) = 0?), then y ≺ x, and the function f is increasing on the pair (x, y) in the
subset of dimensions of M on which x and y differ. If xM /∈ PM for this action subcube (that is,
gM,PM (x) = gM,PM (y) = 1?), then x ≺ y, and the function f is decreasing on the pair (x, y) in
the dimensions on which x and y differ. This matching contains all nonerased points of the action
subcube, and in half of the action subcubes at least half of the points in the matching need to
be changed to make the function monotone. Since Θ(1/

√
n) fraction of points participates in the

action subcubes, the distance to monotonicity is Ω(1/
√
n).

Moreover, we can pair up action subcubes in which g got assigned 0? values with those in which
g got assigned 1? values. Consider the corresponding matchings for both action subcubes. Suppose
(x, y) is a matched pair in an action subcube with 0? values, and (x′, y′) is the corresponding
matched pair in the action subcube with 1? values, that is xM = x′

M
and yM = y′

M
. Then the

function f has to change on at least one of the four points x, x′, y, y′ to become unate, since a unate
function has to be consistently either nondecreasing or nonincreasing in each dimension. Therefore,
a constant fraction of all points participating in the action subcubes must be changed to make f
unate. So, the distance from f to unateness is also Ω(1/

√
n).

14

Finally, we prove that all functions f in the support of D− are ε-far from being n/2-juntas for
ε = Ω(1√

n
).

For a dimension i ∈ [n], an edge (x, y) of a hypercube {0, 1}n is called an i-pair if x and y differ
in only their i-th bits, that is, xi 6= yi, but xj = yj for all j ∈ [n] \ {i}. We say that a function f is
independent of a variable i ∈ [n] if f(x) = f(y) for all i-pairs (x, y). Observe that f is an n/2-junta
iff it is independent of n/2 variables.

Next, for each i ∈ M , we show that f is ε-far from being independent of i. Fix i ∈ M . We
construct a large set Mi of nonconstant i-edges (x, y), that is, i-edges satisfying f(x) 6= f(y). At
least one of f(x) and f(y) for each such edge has to change to make f independent of i. Since Mi

is a matching, |Mi|/2n is a lower bound on the distance from f to functions that do not depend
on variable i.

Recall that the set ΨM = {xM ∈ {0, 1}M : |xM | = n
4 }, the set of all “prefixes” of x that lie in

the middle layer of the subcube {0, 1}M . We define, for every dimension i ∈M,

Mi = {(x, y) | (x, y) is an i-edge, xM ∈ ΨM , and f(x) = xi}.

Note that xi 6= yi and, by construction of functions g in the definition of D−, we have f(y) =
g(y) = yi. Therefore, f(x) 6= f(y) for all i-edges (x, y) ∈ Mi. For each xM ∈ ΨM , more than 1/3
of the points x in the corresponding action subcube are assigned f(x) = 0, and the same holds for
f(x) = 1. Since each action subcube has 2n/2 points, the size of Mi is at least 1

3 · 2
n/2 · |ΨM | =

1
3 · 2

n/2 ·
(n/2
n/4

)
= Ω(2n√

n
). That is, the distance from f to being independent of variable i is at least

ε, where ε = Ω(1√
n

).

Thus, if we change less than an ε fraction of values of f , we cannot eliminate the dependence on
any of the n/2 variables in M . The only remaining possibility to make f an n/2-junta with fewer
than ε · 2n modifications is to eliminate the dependence on all variables in M . This can happen
only if the modified function becomes constant on all the action subcubes, which again requires
changing at least 1

3 · 2
n/2 · |ΨM | values of f . Thus, f is ε-far from the set of n/2-juntas, where

ε = Ω(1√
n

).

Next, we show that the distributions D+ and D− are hard to distinguish for nonadaptive testers.
For two distributions D1 and D2 and a constant δ, let D1 ≈δ D2 denote that the statistical distance
between D1 and D2 at most δ.

Consider a deterministic tester that makes q queries. Let a1 . . . aq(f) be the answers to the
queries on input f . Define D+-view to be the distribution on a1 . . . aq(f) when f ∼ D+. Similarly,
define D−-view. We use the version of Yao’s principle stated in [53] that asserts that to prove
a lower bound q on the worst-case query complexity of a randomized algorithm, it is enough to
give two distributions D+ and D−, on positive and negative instances, respectively, for which the
statistical distance between D+-view and D−-view is less than 1/3.

Lemma 3.3. For a deterministic tester making q ≤ 2n
κ

queries, D+-view ≈2/7 D−-view.

Proof. The key point is the following: the only way a tester can distinguish the two distributions
is by querying a pair of points x, y ∈ {0, 1}n that fall in the same action subcube, but in different
nonerased layers – one below erasures, the other above erasures. If it queries no such pair, then
its view (that is, the distribution on the answers it receives) is identical for the two cases: f ∼ D+

and f ∼ D−. Observe that any such x and y must have weights that differ by at least 2nκ + 2.
Consequently, x and y differ on at least 2nκ + 2 bits.

15

Let T = {i ∈ [n] | xi 6= yi} denote the set of all coordinates on which the points x and y differ.
Then |T | ≥ 2nκ+2. Observe that xM = yM iff T ∩M = ∅. Since M is a uniformly random subset
of [n] of size n/2, the probability

Pr
M

[T ∩M = ∅] =

(n−|T |
n/2

)(
n
n/2

) =

(n−|T |)!
(n/2)!·(n/2−|T |)!

n!
(n/2)!·(n/2)!

=
(n/2)!

(n/2− |T |)!
· (n− |T |)!

n!

=
n/2 · (n/2− 1) · · · (n/2− |T |+ 1)

n · (n− 1) · · · (n− |T |+ 1)

≤ 2−|T |.

Let BAD be the event that one of the
(
q
2

)
pairs of points the tester queries ends up in the same

action subcube, on different sides of erasures, as discussed above. Then, by a union bound,

Pr[BAD] <
q2

2
· 2−|T | ≤ 1

2
· 22nκ · 2−2nκ−2 =

1

8
.

By the discussion above, conditioned on BAD not occurring, the view of the tester is the same
for both distributions:

D+-view|BAD = D−-view|BAD.

Conditioning on BAD does not significantly change the view distributions. We use the following
claim [53, Claim 4] to formalize this statement.

Claim 3.4 ([53]). Let E be an event that happens with probability at least δ = 1 − 1/a under the
distribution D and let B denote distribution D|E. Then B ≈δ′ D where δ′ = 1/(a− 1).

Applying Claim 3.4 twice, we get

D+-view ≈1/7 D+-view|BAD = D−-view|BAD ≈1/7 D−-view.

This completes the proof of Lemma 3.3.

Theorem 1.4 follows by Yao’s Principle.

Acknowledgments. We thank Deeparnab Chakrabarty and C. Seshadhri for useful discussions
and, in particular, for mentioning an adaptive algorithm for approximating the distance to mono-
tonicity up to a factor of O(

√
n).

References

[1] Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.

[2] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to
a monotone function. Random Struct. Algorithms, 31(3):371–383, 2007.

16

[3] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Raskhod-
nikova, and C. Seshadhri. Optimal unateness testers for real-valued functions: Adaptivity
helps. In Proceedings of International Colloquium on Automata, Languages and Processing
(ICALP), pages 5:1–5:14, 2017.

[4] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidimen-
sional bin-packing problems. Inf. Comput., 196(1):42–56, 2005.

[5] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 1021–1032, 2016.

[6] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image
properties. In Proceedings of International Colloquium on Automata, Languages and Processing
(ICALP), pages 90:1–90:14, 2016.

[7] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 164–173, 2014.

[8] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

[9] Eric Blais. Improved bounds for testing juntas. In Proceedings of Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,
pages 317–330, 2008.

[10] Eric Blais. Testing juntas nearly optimally. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 151–158, 2009.

[11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communica-
tion complexity. Computational Complexity, 21(2):311–358, 2012.

[12] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing
and the connection to submodular optimization and function isomorphism. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2113–2132, 2018.

[13] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing proper-
ties of functions over hypergrid domains. In IEEE 29th Conference on Computational Com-
plexity, CCC, pages 309–320, 2014.

[14] Jop Briët, Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Monotonicity test-
ing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[15] Harry Buhrman, David Garćıa-Soriano, Arie Matsliah, and Ronald de Wolf. The non-adaptive
query complexity of testing k-parities. Chicago J. Theor. Comput. Sci., 2013, 2013.

[16] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant testers
for connectivity and diameter. In Proceedings of Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 411–424.
2013.

17

[17] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. ACM Trans.
Algorithms, 13(2):20:1–20:30, 2017.

[18] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 419–428, 2013.

[19] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014.

[20] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean functions
over the hypercube. SIAM J. Comput., 45(2):461–472, 2016.

[21] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 519–528, 2015.

[22] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In Proceedings of IEEE Symposium on Foundations of Computer Science
(FOCS), pages 286–295, 2014.

[23] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the query
complexity of non-adaptive junta testing. In 32nd Computational Complexity Conference,
CCC, pages 26:1–26:19, 2017.

[24] Xi Chen and Erik Waingarten. Testing unateness nearly optimally. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 547–558, 2019.

[25] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 523–536, 2017.

[26] Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean unateness testing with Õ(n3/4) adaptive
queries. In Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
pages 868–879, 2017.

[27] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process. Lett.,
90(6):301–305, 2004.

[28] Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable. In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS), 2019. To appear.

[29] Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-
resilient property testing. SIAM J. Comput., 47(2):295–329, 2018.

[30] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In Proceedings of Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM, pages 97–108, 1999.

18

[31] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

[32] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions.
ACM Trans. Algorithms, 6(3):52:1–52:37, 2010.

[33] Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–
116, 2004.

[34] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for Boolean properties.
Theory of Computing, 2(9):173–183, 2006.

[35] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing juntas.
J. Comput. Syst. Sci., 68(4):753–787, 2004.

[36] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 474–483, 2002.

[37] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM J.
Comput., 37(2):482–501, 2007.

[38] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000.

[39] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[40] Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Proceedings of
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, pages 306–317, 2005.

[41] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44–67, 2008.

[42] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean
isoperimetric-type theorems. SIAM J. Comput., 47(6):2238–2276, 2018.

[43] Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. In Pro-
ceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, pages 37:1–37:7, 2016.

[44] Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable codes. In
Proceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, pages 601–614. 2009.

[45] Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A, 94(2):399–
404, 2001.

[46] Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness testing via
rejection sampling of graphs. In Proceedings of Innovations in Theoretical Computer Science
(ITCS), pages 52:1–52:20, 2019.

19

[47] Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree
and general sparse graphs. ACM Trans. Algorithms, 5(2):22:1–22:28, 2009.

[48] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1123–1131, 2012.

[49] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin M. Varma. Parameterized
property testing of functions. ACM Trans. on Computation Theory, 9(4):17:1–17:19, 2018.

[50] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.

[51] Sofya Raskhodnikova. Monotonicity testing. Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 1999.

[52] Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin M. Varma. Erasures vs. errors in local
decoding and property testing. In Proceedings of Innovations in Theoretical Computer Science
(ITCS), pages 63:1–63:21, 2019.

[53] Sofya Raskhodnikova and Adam D. Smith. A note on adaptivity in testing properties
of bounded degree graphs. Electronic Colloquium on Computational Complexity (ECCC),
13(089), 2006.

[54] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[55] Mert Saglam. Near log-convexity of measured heat in (discrete) time and consequences. In
Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pages 967–978,
2018.

[56] Rocco A. Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for testing juntas. In
30th Conference on Computational Complexity, CCC, pages 264–279, 2015.

[57] C. Seshadhri. Property testing review: Open problem for February 2014: Better approxima-
tions for the distance to monotonicity. https://ptreview.sublinear.info/?p=250, Febru-
ary 2014.

[58] Roei Tell. A note on tolerant testing with one-sided error. Electronic Colloquium on Compu-
tational Complexity (ECCC), 23:32, 2016.

[59] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings of IEEE Symposium on Foundations of Computer Science
(FOCS), pages 222–227, 1977.

[60] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approxima-
tion algorithm for maximum matchings. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 225–234, 2009.

20

A Removing the Logarithmic Dependence from Isoperimetric In-
equalities in [42]

In this section, we give a sketch of the proof of slightly improved versions of the isoperimetric
inequalities of Khot et al. [42, Theorems 1.6 and 1.9]. The improved version of [42, Theorem 1.9]
is Theorem 2.7 and the improved version of [42, Theorem 1.6] is stated next.

Theorem A.1 (Close to Theorem 1.6 from [42]). Let f : {0, 1}n → {0, 1} be ε-far from monotone.
Then,

E
x∼{0,1}n

[√
I−f (x)

]
≥ Ω(ε). (7)

The statements of Theorems 1.6 and 1.9 in [42] show that the left hand sides of (3) and (7)
are at least Ω(ε

logn+log(1/ε)). We slightly modify the proof of [42] to get a stronger lower bound of

Ω(ε). Using the original, weaker inequality for our algorithm would result in an approximation to
the distance to monotonicity within a multiplicative factor of

√
n ·poly(log n, log(1/ε)). This would

mean that our algorithm is an Õ(
√
n)-approximation only if ε ≥ 1/2poly(log(n)).

To prove Theorems 2.7 and A.1, we first set up some notation. For a function f : {0, 1}n →
{0, 1}, a set S ⊆ [n], and a string z ∈ {0, 1}S , let f(·, z) : {0, 1}S → {0, 1} denote the function f

restricted to the subcube {0, 1}S and obtained from f by setting the input bits in {0, 1}S to z. For
a real number p ∈ (0, 1], let S(p) denote the distribution on subsets S ⊆ [n], where each i ∈ [n] is
included in S with probability p independently at random.

In the following proposition, used in the proof of [42, Theorem 1.6], we consider the following

experiment: We sample a subset S ∼ S(p) and a uniformly random z ∼ {0, 1}S . Then we consider
f(·, z), a random restriction of f .

Proposition A.2. For a function f : {0, 1}n → {0, 1} and a parameter p ∈ [0, 1],

E
S∼S(p)
z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
≤ E

x∼{0,1}n

[√
I−f (x)

]
.

In other words, we consider the restricted function f(·, z), and count the decreasing edges only
along dimensions in S. We improve Proposition A.2 to the following.

Proposition A.3. For a function f : {0, 1}n → {0, 1} and a parameter p ∈ [0, 1],

E
S∼S(p)
z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
≤ √p · E

x∼{0,1}n

[√
I−f (x)

]
.

Proof. Recall that for x ∈ {0, 1}n, the set D−f (x) denotes the subset of dimensions along which the

edges incident on x are decreasing in f . Note that |D−f (x)| = I−f (x) for all x ∈ {0, 1}n. Hence, we
have

E
S∼S(p)
z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z)(w)

]]
= E

S∼S(p)
x∼{0,1}n

[√
|D−f (x) ∩ S|

]

21

=
1

2n

∑
x∈{0,1}n

E
S∼S(p)

[√
|D−f (x) ∩ S|

]
≤ 1

2n

∑
x∈{0,1}n

√
E

S∼S(p)

[
|D−f (x) ∩ S|

]
=

1

2n

∑
x∈{0,1}n

√
I−f (x) · p

=
√
p · E

x∼{0,1}n

[√
I−f (x)

]
,

where we used Jensen’s inequality and the fact that the transformation φ(t) =
√
t is concave to

derive the inequality.

Similarly, we have the analogous proposition for the proof of the robust version of the Talagrand
objective (Theorem 1.9 of [42]).

Proposition A.4. For a function f : {0, 1}n → {0, 1} and a parameter p ∈ [0, 1],

E
S∼S(p)
z∼{0,1}S

[
E

w∼{0,1}S

[√
I−f(·,z),red(w)

]
+ E

u∼{0,1}S

[√
I−f(·,z),blue(u)

]]

≤ √p · E
x∼{0,1}n

[√
I−f,red(x)

]
+
√
p · E

y∼{0,1}n

[√
I−f,blue(y)

]
.

Now we are ready to complete the proof of Theorems 2.7 and A.1. Let Ψf (p) denote the expected
distance between f ′ and f where f ′ : {0, 1}n → {0, 1} is constructed from f by the following random
process:

1. Initialize f ′ to f .

2. Sample a subset S ∼ S(p), then order the elements in S according to a uniformly random
permutation.

3. For each dimension i ∈ S according to the ordering, modify f ′ by switching the function
values on the endpoints of all decreasing i-edges (from (1,0) to (0,1)).

Using Proposition A.3 and following the argument from Section 4.2.2 of [42], we conclude that
every p ∈ [0, 1] satisfies, for a constant C,

Ψf (p)−Ψf (p/2) ≤ C · √p · E
x

[√
I−f (x)

]
.

It follows from the analysis of Dodis et al. [30] that Ψf (1) ≥ ε. Also note that Ψf (0) = 0.
Therefore, by the telescoping argument for p = 1, 12 ,

1
4 . . . ,

ε ≤ Ψf (1)−Ψf (0) =

∞∑
i=0

(
Ψf (2−i)−Ψf (2−i−1)

)

22

≤ C ·
∞∑
i=0

2−i/2 · E
x

[√
I−f (x)

]
≤ 4C · E

x

[√
I−f (x)

]
,

completing the proof of Theorem A.1. Similarly, Proposition A.4 implies Theorem 2.7.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

