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Abstract

We present a randomized algorithm that takes as input an undirected n-vertex graph G
with maximum degree ∆ and an integer k > 3∆, and returns a random proper k-coloring of G.
The distribution of the coloring is perfectly uniform over the set of all proper k-colorings; the
expected running time of the algorithm is poly(k, n) = Õ(n∆2 ⋅ log(k)). This improves upon a
result of Huber (STOC 1998) who obtained a polynomial time perfect sampling algorithm for
k > ∆2 + 2∆. Prior to our work, no algorithm with expected running time poly(k, n) was known
to guarantee perfectly sampling with sub-quadratic number of colors in general.

Our algorithm (like several other perfect sampling algorithms including Huber’s) is based
on the Coupling from the Past method. Inspired by the bounding chain approach, pioneered
independently by Huber (STOC 1998) and Häggström & Nelander (Scand. J. Statist., 1999), we
employ a novel bounding chain to derive our result for the graph coloring problem.

1 Introduction

A k-coloring of a graph is an assignment of colors from the set [k] = {1, 2, . . . , k} to the vertices so
that adjacent vertices are assigned different colors. We consider the problem of randomly sam-
pling colorings of a given graph. The input is a graph G and an integer k: our goal is to generate
a k-coloring uniformly at random from the set of all k-colorings of G. The problem of sampling
k-colorings has several implications in theoretical computer science and statistical mechanics. For
example, Jerrum, Valiant and Vazirani [JVV86] show that from an almost uniform sampler for
proper k-colorings of G, one can obtain a Fully Polynomial Randomized Approximation Scheme
(FPRAS) for counting the number of such colorings. In statistical mechanics, sampling proper col-
orings is central to simulation based studies of phase transitions and correlation decay (see, e.g.,
the paper of Martinelli and Olivieri [MO94]).

The problem is computationally tractable if we are allowed significantly more colors than the
maximum degree ∆ of the graph. The more colors we are allowed, the easier it appears to be to
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produce a random k-coloring. Indeed, if k is much smaller than ∆, it is NP-hard to even determine
whether a valid k-coloring exists [GJS76]. Sampling algorithms, therefore, typically require a lower
bound on k in terms of ∆ in order to guarantee efficiency. There has been a steady stream of works
that have progressively reduced the lower bound on k in terms of ∆.

Most works in this line of research focus on producing approximately uniform samples, for ap-
proximate solutions often suffice in applications. In this setting, the input to the problem consists
of an undirected graph G with n vertices and maximum degree ∆, a number k and a parameter
ε ∈ (0, 1) . The goal is to generate a k-coloring whose distribution is within ε (in total variation
distance) of the uniform distribution on the set of all k-colorings of G. Let k+(∆) be the smallest
integer k∗ such that for all integers k > k∗ there is such a sampling algorithm running in expected
time poly(k, n, log(1/ε)) for all ε > 0 (the subscript + in k+ indicates that we allow some error).
By showing that the Markov chain based on Glauber Dynamics mixes fast whenever k > 2∆,
Jerrum [Jer95] established that k+(∆) ≤ 2∆1. Similar results appeared in the statistical physics
literature (see Salas and Sokal [SS97]); also, the path coupling approach developed by Bubley
and Dyer [BD97] can be used to provide an alternative justification for Jerrum’s result. Subse-
quent works obtained better upper bounds on k+(∆). Vigoda [Vig00] provided a better analysis of
Glauber dynamics (by relating it to a different Markov chain based on flip dynamics) and concluded
that k+(∆) ≤ 11

6 ∆; recently, Chen, Delcourt, Moitra, Perarnau and Postle [CDM+19] showed that
k+(∆) ≤ ( 11

6 − δ)∆ (for a positive δ ∼ 10−4). Even better upper bounds are known for certain special
classes of graphs. For graphs with girth at least 9, Hayes and Vigoda [HV03] showed that for all
δ > 0, we have k+(∆) ≤ (1 + δ)∆ provided ∆ ≥ cδ ln n (where cδ is a constant depending on δ); for
graphs of girth at least 6 and large enough ∆, Dyer, Frieze, Hayes and Vigoda [DFHV13] showed
that k+(∆) ≤ 1.49∆; for planar graphs Hayes, Vera and Vigoda [HVV15] obtained the sub-linear
bound k+(∆) ≤ O(∆/ ln (∆)).

1.1 Perfect sampling

The algorithms described above produce samples that are only approximately uniform. The vari-
ation from uniformity can be reduced by allowing the algorithm to run longer, but it cannot be
made zero; these methods do not yield perfectly uniform samples. Apart from its independent
theoretical appeal, perfect sampling has some advantages over approximate sampling. It poten-
tially yields FPRASs with smaller expected running time [Hub98, Theorem 7], because unlike
with approximate sampling algorithms there is no need to ensure that the output distribution of
the algorithm is sufficiently close to the target distribution in total variation distance. Moreover,
perfect sampling algorithms are typically designed in such a way that the output produced when
the algorithm stops is guaranteed to be uniform. One might be unable to formally guarantee that
the expected running time is small; yet the quality of the output is never in question. In contrast,
for efficient algorithms for approximate sampling, the running time may be bounded, but in the
absence of guarantees (on the mixing time, say) the output distribution may be far away from the
target distribution, thereby rendering the output unreliable for statistical applications.

The intriguing fact that perfect sampling is in general possible using Markov chains was estab-
lished by Propp and Wilson [PW96] in a seminal work which introduced the technique of coupling
from the past (CFTP) to generate perfectly uniform samples; Levin, Peres and Wilmer [LPW17, Sec-

1Jerrum in [Jer95] mentions that the Glauber Dynamics mixes in polynomial time even when k = 2∆ and credits
Frieze for this observation: hence, we have k+(∆) ≤ 2∆ − 1.
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tion 22.1] point out that ideas that underlie CFTP can be traced back to the 1960s. This paradigm
has been applied to the problem of perfectly sampling k-colorings. However, in contrast to the
best bounds on k+(∆), which grow only linearly in ∆, the upper bounds on k for perfect sampling
are less impressive. To better describe and compare these results, let us define k0(∆) to be the
minimum integer k∗ such that there is a randomized algorithm that, given an n-vertex graph of
maximum degree ∆ and integer k > k∗, produces a perfectly uniform k-coloring of G in expected
time poly(k, n). By applying CFTP with the bounding chain approach Huber [Hub98, Hub04],
showed that k0(∆) ≤ ∆2 + 2∆2.

Another paradigm for perfect sampling, related to the Moser-Tardos framework for algorith-
mic versions of the Lovász local lemma, and also to the celebrated cycle-popping algorithm of
Wilson for sampling uniformly random spanning trees, has recently been proposed by Guo, Jer-
rum and Liu [GJL19]. However, it turns out that that when this framework is applied to the
problem of sampling k-colorings, it degenerates into usual rejection sampling: one samples a uni-
formly randomly coloring (including improper colorings), accepts if the coloring is proper, and
rejects the current coloring and repeats otherwise. The expected running time of such a procedure
is proportional to the inverse of the fraction of proper colorings among all colorings, and hence
cannot in general be bounded by a polynomial in the size of the graph. Recently, Feng, Guo and
Yin [FGY19] extending the ideas of [GJL19] showed that Huber’s result can be improved to ob-
tain an expected polynomial time perfect sampling algorithm when k ≥ ∆2 −∆ + 3; their algorithm
requires time O(n exp (exp (poly(k)))). Note that the upper bounds on k0(∆) obtained in these
works is quadratic in ∆ in contrast to the linear upper bounds for approximate sampling.

Hence the question remains: can k-colorings be efficiently and perfectly sampled when k is
a constant times ∆? It was observed that such an improvement can be obtained if one relaxes
the (expected) running time to be polynomial in only n (and not in ∆ and k). To state these re-
sults, let us define the relaxed version k̃0(∆) as follows: k̃0(∆) is the minimum integer k∗ such that
there is a randomized algorithm that, given an n-vertex graph of maximum degree ∆ and inte-
ger k > k∗, produces a perfectly uniform proper k-coloring of G in expected time poly∆,k(n) (i.e.,
the dependence on n is polynomial, but the dependence on ∆ and k can be arbitrary). A general
method for perfect sampling based on approximate counting was suggested by Jerrum, Valiant
and Vazirani [JVV86, Thm 3.3]; that is, using an efficient algorithm for deterministically approx-
imately counting the number of k-colorings, one can efficiently sample perfectly. This approach
when used together with the deterministic approximate counting algorithm of Gamarnik and Katz
[GK12], yields k̃0(∆) ≤ 2.78∆ for triangle free graphs; approximate counting algorithms in subse-
quent works due to Lu & Yin [LY13], and Liu, Sinclair & Srivastava [LSS19], yield k̃0(∆) ≤ 2.58∆
and k̃0(∆) ≤ 2∆, respectively. The running time of these algorithms has the form O(n f (k,∆)) (for
instance in [LSS19] the exponent contains an exp (∆) term). Another point to be noted is that these
deterministic approximate counters are based on decay of correlations or the so-called ‘polynomial
interpolation’ method of Barvinok [Bar16], which are not as simple as the Markov chain based al-
gorithms (e.g., the CFTP based algorithms of Huber and in this paper). For instance, the MC
based algorithms offer an appealing combinatorial explanation of the number of colors required

2Huber [Hub98] presents two different algorithms for sampling colorings which together imply that k0(∆) ≤

min (∆2
+ 2∆, ∆ ln n

ln ln n); however, the analysis of the algorithm which gives k0(∆) ≤
∆ ln n
ln ln n seems incomplete (the algo-

rithm actually shows that k0(∆) ≤ r∆, where r is the smallest natural number such that rr
> n; the journal version of

the paper [Hub04] does not include this algorithm); an alternative algorithm based on similar ideas and achieving the
same bound is described in detail in the preliminary version of this work: see arXiv:1909.10323v1.
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for ‘mixing’ to take place unlike the other methods. In any case, none of these algorithms yield
truly linear bounds on k0(∆).

1.2 Our contribution

Theorem 1.1 (Main result). k0(∆) ≤ 3∆. In particular, there is a randomized algorithm which we call
PERFECTSAMPLER (Algorithm 1), based on CFTP that given an n-vertex graph G = (V, E) of maximum
degree ∆ and k > 3∆, returns a uniformly random k-coloring of G. The algorithm uses fair independent
unbiased coin tosses (with probability 1/2 for head and tail), and stops in expected time O((n log2 n) ⋅
(∆2 log ∆ log k)).

Our result is based on Coupling From the Past (CFTP). In the rest of this section, we briefly
review CFTP as it is applied to the problem of k-coloring, and describe its efficient implementation
using the Bounding Chain method roughly along the lines of Huber [Hub98, Hub04]. We then
describe the key ideas that allow us to improve the upper bound on k0(∆) to 3∆.

Consider the standard Markov chain for k-coloring that evolves based on the Glauber Dynam-
ics: in each step a random vertex v is chosen and its color is replaced by a uniformly chosen color
not currently used by any of its neighbors. The standard CFTP algorithm [PW96] based on this
Markov chain, assumes that we generate a sequence of random variables, (v−1, σ−1), (v−2, σ−2), . . . ,
where vi is a random vertex in V(G) and σi is a random permutation of the set of colors [k], cho-
sen uniformly and independently. For i = −1,−2, . . ., let Ui be the operation on k-colorings that
performs the following update based on the pair (vi, σi). Given a proper k-coloring χ ∶ V → [k]
and the pair (vi, σi), let Ui(χ) be the coloring χ′ defined as follows: χ′(vi) is the first color in σi
that is not in χ(N(vi)) and for vertices w ≠ vi, χ′(w) = χ(w). Note that Ui maps proper k-colorings
to proper k-colorings. The CFTP algorithm is based on the following principle. Let t be an inte-
ger such that U−1 ○U−2 ○⋯ ○Ut is a constant function, that is, this sequence of updates applied to
every proper k-coloring results in the same coloring, say χf . The algorithm outputs χf . Note that
this output does not depend on the choice of t. For example, we could run through i = −1,−2, . . .
until the first index t when U−1 ○U−2 ○⋯ ○Ut becomes a constant function, and output the unique
k-coloring in its image. It is well known that if k > ∆+1, then with probability 1 such a t <∞ exists,
and χf is uniformly distributed in the set of all colorings.

The randomized algorithm as stated above is not efficient. The number of starting states for the
chains grows exponentially with n, and the time taken to keep track of the updates on each will
be prohibitively large. To keep the computation tractable, Huber employs the Bounding Chain
(BC) Method (pioneered by him in the context of coloring and also independently by Häggström
& Nelander [HN99]). In the Bounding Chain method, instead of precisely keeping track of the
various states that are reached after each update operation, we maintain an upper bound: a list of
states, which contains all the states that could potentially be reached. In fact, this upper bound for
the state reached after update Uj−1 has been applied will have the special form: ∏v∈G Lj(v), where
Lj(v) ⊆ [k]. That is, when simulating the actions of successive updates Uj−1, . . . , Ut, we do not
explicitly maintain the colors across vertices, but rather just a list Lj(v) that includes all colors that
vertex v can take in any k-coloring reached by performing these updates starting from any initial
k-coloring. Note in particular, that our choice of t will be good if we can ensure that ∣L0(v)∣ = 1
for all vertices v; for, then we know that U−1 ○U−2 ○⋯ ○Ut is a constant function (on the space of
k-colorings), and χf is the unique coloring in∏v L0(v).

We are now in a position to give a high-level description of Huber’s BC method [Hub98,
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Hub04]. After a short initial phase of updates which act as warm-up, Huber maintains the invari-
ant that ∣Lj(v)∣ ≤ ∆ + 1 for all vertices v. To measure progress towards the goal that ∣L0(v)∣ = 1 for
all vertices v, let us define Wj to be the number of vertices v such that ∣Lj(v)∣ = 1. Hence, we want
W0 = n. Now, suppose that at time j we have the update operation Uj given by (vj, σj). Consider
Lj such that ∣Lj(v)∣ ≤ ∆ + 1 and let SLj(v) be the union of colors present in the lists of neighbors
of v. Then, Huber sets Lj+1(v) = {σ(1)} if σ(1) ∉ SLj(v); otherwise Lj+1(v) = {σ(1), . . . , σ(∆ + 1)}.
For all w ≠ v, Lj+1(w) = Lj(w). Notice that if χ ∈ ∏w∈G Lj(w) then Uj(χ) ∈ ∏w∈G Lj+1(w) as v defi-
nitely finds an available color in {σ(1), . . . , σ(∆ + 1)} and hence (Uj(χ))(v) ∈ {σ(1), . . . , σ(∆ + 1)}.
Hence, we make progress (towards our goal of W0 = n) whenever σ(1) ∉ SLj(v) and suffer a loss
otherwise. To be able to have a non-trivial probability of making progress we need that k > ∣SLj(v)∣
(∣SLj(v)∣ can potentially be as large as ∑w∈N(vj) ∣Lj(w)∣ which in turn can be ∆ × (∆ + 1)) and this
is ensured by having k > ∆2 +∆. However, Wj evolves as a random walk on {0, . . . , n} (with n as
absorbing state) and to have sufficient drift to the right we require an extra margin of ∆ in k and
hence Huber assumes k > ∆2 + 2∆. It then follows that in expected time poly(n, k) one can find the
starting time t so that ∣L0(v)∣ = 1 for all vertices v and hence U−1 ○U−2 ○⋯ ○Ut is a constant func-
tion. We omit the detailed analysis of Huber’s method, but note that for this method to succeed,
k must be larger than the product of the maximum degree (∆) and the upper bound on the size of
Lj(v) that we can ensure plus an extra margin of ∆; this implementation, therefore, yields only a
quadratic bound on k0(∆).

We improve upon this using a better implementation of the Bounding Chain Method. After a
short initial warm-up phase of updates (which we formally call the collapsing phase), the set of
colors Li(v) in our implementation will be of size at most two; this will allow us to ensure perfect
sampling as long as k > 3∆. The correctness of our algorithm will still rely on the Markov chain
based on Glauber Dynamics described earlier. However, we depart substantially from earlier
works in designing our updates that implement the Glauber Dynamics. Recall that a sequence of
random update operations U−1, U−2, . . . , need to be designed in the CFTP algorithm. In Huber’s
approach the Ui’s were independently and identically distributed (based on independent choices
of the pairs (vi, σi)). Our new update operations will not be chosen independently but will have
a rather special distribution. This distribution is designed keeping in view our goal of restricting
the bounding lists Lt(v) to size at most two, and is best understood in the context of the evolution
of these lists in our implementation of the Bounding Chain Method, which we describe in the
subsequent sections. For now, we outline the main properties of this distribution. For 0 > i > j, let
U[i, j] ∶= (Ui, Ui−1, . . . , Uj) and let U(i, j) ∶= Ui ○Ui−1 ○ ⋯ ○Uj. (Note U[i, j] refers to the sequence
(or array) of random choices that describe the i − j + 1 update functions while U(i, j) refers to the
composed update function.)

Lemma 1.2. Let G be an n-vertex graph with maximum degree ∆. Let k > 3∆. Then, there is a positive
integer T which is poly(k, n), a joint distribution D for T updates, U[−1,−T], and a predicate Φ on the
support of D, satisfying the following conditions. (T = 2n ln n(k −∆)/(k − 3∆)+ ∣E(G)∣+ n where ∣E(G)∣
is the number of edges in G.)

(a) A sample with distributionD can be generated and the predicate Φ can be computed in time poly(n, k);
further, each update instruction Ui is efficient, i.e., given a k-coloring χ, Ui(χ) can be computed in
time poly(k, n);

(b) If Z is a uniformly generated proper k-coloring of G and U[−1,−T] is picked according to D inde-
pendently of Z, then U(−1,−T)(Z) is a uniformly distributed k-coloring;
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(c) If Φ(U[−1,−T]) = TRUE, then U(−1,−T) is a constant function (on the set of proper k-colorings),
that is,
∣{U(−1,−T)(χ) ∶ χ is a k-coloring}∣ = 1;

(d) PrD[Φ(U[−1,−T]) = TRUE] ≥ 1
2 .

Remark: The update operations (which act on an exponentially large set) need to be represented
succinctly for our algorithm to be efficient. Each operation will be encoded succinctly by tuples.
(For example, in the discussion above the tuple (vi, σi) can be thought of as the encoding of the
update operation Ui.) The encoding we use is described below. Thus, in part Lemma 1.2 (a), when
we need to generate a sample from D, we actually generate the sequence of T tuples correspond-
ing to the update operations. Similarly, the predicate Φ is expected to take as argument a sequence
of tuples and efficiently evaluate to TRUE or FALSE; further when Φ = TRUE we can efficiently com-
pute the (unique) image of U(−1,−T) from the tuples. We will ensure that the decoding is efficient:
given a tuple that represents an update operation U and a proper k-coloring χ, the coloring U(χ)
can be computed efficiently.

We then have the following natural randomized algorithm for perfectly sampling k-colorings.

Algorithm 1: PERFECTSAMPLER

1 for i = 0, 1, 2, . . . , do
2 Generate U[−iT − 1,−(i + 1)T] according to D ;
3 if Φ(U[−iT − 1,−(i + 1)T]) = TRUE then
4 Output the unique k-coloring in the image of U(−1,−(i + 1)T) and STOP;
5 end if
6 end for

Proof of Theorem 1.1. We wish to show that the output of the above algorithm is uniformly dis-
tributed in the set of all k-colorings. Let U[−1,−T], U[−T − 1,−2T], . . . , U[−(i − 1)T,−iT], . . . be the
random sequences that arise when the algorithm samples independently from the distribution D.
It may be that some of the later sequences are not used by the algorithm if the predicate Φ evalu-
ates to true on an earlier sequence, but we define all of them anyway for our argument. Let χ be
uniformly chosen k-coloring. Fix i ≥ 1. Then, by Lemma 1.2 (b), χi = U(−1,−iT)(χ) is uniformly
distributed. Let χ∗ be the output of the above algorithm. By Lemma 1.2 (c), χ∗ and χi are identical
whenever Φ evaluates to true on one of U[−1,−T], U[−T − 1,−2T], . . . , U[−(i− 1)T − 1,−iT], which
happens with probability at least 1− 2−i by Lemma 1.2 (d). From the duality of total variation dis-
tance and coupling, it follows that the distribution of χ∗ is within 2−i of the uniform distribution
(the distribution of χi). Since, i was arbitrary, we see that the distribution of χ∗ is uniform.

The algorithm is efficient3 because it performs at most two iterations of the for loop in expec-
tation, and sampling from D and the computation of Φ are efficient by part Lemma 1.2 (a). For a
detailed analysis of the running time refer to Section 2.4.

3Line 4 of the algorithm can be performed by taking the trivial coloring χ = 1V and then outputting U(−1,−(i +
1)T)(χ); however, in our implementation of the updates the condition Φ(U[−iT − 1,−(i + 1)T]) = TRUE will be vali-
dated by producing the unique coloring χ in the image of U(−iT − 1,−(i + 1)T); so for Line 4 we output U(−1,−iT)(χ).
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In other words, let i be the first index in Algorithm 1 such that we find Φ(U(−iT − 1,−(i +
1)T)) = TRUE. So, we know that ∣{U(−1,−T)(χ) ∶ χ is a k-coloring}∣ = 1. Now, we update this
unique coloring with U(−iT,−1) and output the updated coloring. The correctness of the algo-
rithm and that it runs in expected time poly(n, k) follow immediately from Lemma 1.2; in partic-
ular, this justifies Theorem 1.1 barring the expected running time. In the rest of this introduction,
we describe the distribution D and outline our proof of the lemma

Representation of update operations: Our approach is inspired by the Bounding Chain method.
To make this precise, we need a definition. By a bounding list we mean a list of the form L = (L(v) ∶
v ∈ L), where each L(v) is a set of colors. We refer to L(v) as v’s list of colors; thus L is a list of
lists. We say that a k-coloring χ is compatible with L, and write χ ∼ L, if χ(v) ∈ L(v) for all v, that
is, if χ ∈ ∏v L(v). We are now in a position to describe the representation we use. Each update
operation will be associated with a 5-tuple of the form α = (v, τ, L, L′, M), where v is a vertex,
τ ∈ [0, 1], and L and L′ are bounding lists, and M is a sequence of at most ∆ + 1 distinct colors.
We refer to the update operation associated with α as Uα. Thus, the distribution of U[−1,−T] will
be specified by providing a randomized algorithm for generating the corresponding sequence of
tuples α[−1,−T] and letting Ut = Uαt . We now describe some of the important features of this
sequence.

Fix t ∈ {−T, . . . ,−1}. Suppose α[t−1,−T] have been generated. Now, consider αt = (vt, τt, Lt, L′t, Mt).
We will ensure that the following conditions hold.

[C1] The random vertex vt is independent of α[t − 1,−T]. In Huber’s chain, vt was actually uni-
formly distributed; we will not be able to ensure that; in fact, some of our vertices will be
determined by the index t (the current time step); for example, v−T will be a fixed vertex of
the graph, not a random vertex.

[C2] The distribution of αt will implement the Glauber Dynamics at vertex vt in the following
sense. Condition on α[t − 1,−T] and vt (the first component of αt). Fix a coloring χ in the
image of U(−T, t−1) (note that this operator is determined completely by α[t−1,−T], which
we have conditioned on). Now, we require that χ′ = Ut(χ) has the following distribution:
χ′(w) = χ(w), for all w ≠ vt and χ′(vt) is uniformly distributed in the set of colors [k] ∖
χ(N(vt)). If this condition is satisfied, then we say that αt satisfies GLAUBER DYNAMICS(χ, vt).
Note that this will ensure Lemma 1.2 (b).

[C3] The lists Lt impose a certain restriction on the domain of Ut: Ut will be defined only on
colorings χ ∼ Lt. Thus Lt represents a precondition for Ut to be applicable. Similarly, L′t
represents a postcondition: if χ ∼ Lt, then Ut(χ) ∼ L′t. We will, therefore, have in our sequence
that L′t = Lt+1. Also, L−T will be ([k])V . If the above discipline concerning preconditions and
post-conditions is maintained, then for the image of U(−T,−1) to be a singleton, it is enough
that ∣L′−1(v)∣ = ∣L0(v)∣ = 1 for all v ∈ V. Indeed, our predicate Φ will verify this by examining
α−1; to establish Lemma 1.2(d), we will show that this condition holds with probability at
least 1

2 .

The key ideas: We discussed above some of the conditions that our random sequence of tuples
α[−1,−T] will satisfy. We now informally describe how αt is translated or decoded to obtain Ut
and how α[−1,−T] is generated. This informal description will differ slightly from the more formal
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one we present in Section 2; but it will let us motivate our definitions, and also throw light on how
the new method makes do with fewer colors than Huber’s method.

Initially, at time −T, each vertex’s list is [k]: that is, L−T(v) = [k] for all all v. We wish to
ensure that in the end all lists have size 1: that is, ∣L′−1(v)∣ = 1 for all v. We will achieve this in
two phases. At the end of the first phase, we will ensure that all vertices have lists of size at most
2 with probability 1. We refer to this phase as the collapse phase. The second phase, the coalesce
phase, will ensure that with probability at least 1/2, the lists of all vertices have size one. The total
number of updates in the first and second phases put together will be T. We now briefly describe
the ideas involved in the two phases.

The updates in these two phases will be generated by two primitives. (i) The first primitive
takes vertex w and a set A of at most ∆ colors and produces an update called compress update; after
this update, the list at w will have at most one element outside A. (ii) The second primitive takes
a vertex v and generates a random update called contract update; for this primitive to be used, we
must ensure that the previous updates have spruced up the neighborhood of v which is said to
have occurred when the union of colors in the lists of neighbors of v has size less than k −∆. But
whenever such an update is performed, the list of v immediately contracts to size at most two; in
fact, with significant probability it contracts to size one. We describe these primitives in detail in
the following sections. For now, let us see roughly see how they are deployed to achieve the goals
of the two phases.

Collapsing phase: The reduction in list size all the way to just two will be achieved by using
contracting updates. However, for such an update to be applied at a vertex, the total number of
colors in the union of the lists of its neighbors must be small (for us it will need to be less than
k −∆; in fact, we will ensure that it is at most 2∆). Note that our initial bounding list L−T does not
satisfy this condition; all lists have size k. We, therefore, need to first spruce up the neighborhood.
Fix an ordering of the vertices, say v1, v2, . . . , vn

4. Conceptually, the contracting phase will perform
the actions in the following sequence:

SPRUCEUP(v1), CONTRACT(v1), SPRUCEUP(v2), CONTRACT(v2),

. . . , SPRUCEUP(vn), CONTRACT(vn).

Here SPRUCEUP(vi) is a composite update operation. It consists of several updates that compress
the lists at the neighbors of vi using a common set Ai of ∆ colors. For example, if v1 has d1
neighbors, then SPRUCEUP(v1) will consist of d1 compress update operations, one for each of its
neighbors. It is easy to see that then the union of the lists at v1’s neighbors will have at most
2∆ colors (each of the at most ∆ neighbors will contribute at most one new color outside A1)—
the neighborhood of v1 is thus spruced up. In general, for vi the operation SPRUCEUP(vi) will
perform the compress operation on those neighbors of vi which are after vi in the ordering. Once
the neighborhood of vi has been spruced up in this fashion, a single contract update ensures that
the list size of vi contracts to two. There is one subtlety, however. After contracting the lists of
v1, . . . , vi, when we proceed to spruce up the neighborhood of vi+1, we only perturb the lists of
vertices after vi+1 (in particular, the lists of vertices before vi+1 remain unperturbed): yet we need
to ensure that the union of the lists at vi+1’s neighbors (both preceding and succeeding) will have

4There is a notational overload here: earlier we had used vi to denote the vertex chosen at time step i for the update
operation, but now we mean it to be the ith vertex in the ordering. This will be clear from the context.
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at most 2∆ colors. So we choose the set Ai+1 so that it includes at least one color from the lists
of the neighbors where a contraction has already been achieved. In Section 2.2, we describe the
collapsing phase in detail.

Coalescing phase: Suppose the collapsing phase has successfully contracted all lists to size at
most two. Our goal now is to extend the above sequence with some more randomly generated
updates so that with probability at least 1/2 the final list sizes all become one. We again use
the contract update operation described above, this time exploiting the feature that it contracts
lists to size just one with significant probability. However, while vertices with list size two can
hope to see a reduction in their list size, a vertex whose list size is already one will, with some
probability, acquire a list size of two. In this phase, we randomly pick vertices and perform a
contract update on them. Note that a contract update never results in a list of size more than
two; so, all neighborhoods stay spruced up at every point in the coalescing phase. If we track
the number Wt, which is the number of vertices with list size 1 at time t, this quantity performs a
random walk on the number line (between 0 and n, with n as absorbing)5 with a non-negligible
bias towards n. We observe that if k is large enough (k > 3∆), then with high probability this walk
will hit n within poly(n, k) steps, and helps us justify Lemma 1.2 (d). In Section 2.3, we describe
the coalescing phase in detail.

Organisation of this paper

In the following sections, we elaborate on ideas outlined above, and justify Lemma 1.2. In Sec-
tion 2.1-Section 2.3, we formally define T, the distributionD, the primitives that we use to generate
the αs at different stages of the algorithm, and the precise correspondence between the strings of
type α and the corresponding update operations of type Uα. Finally, in Section 2.4 we formally
define the predicate Φ and collate all our results from the previous sections to establish parts
(a), (b), (c) and (d) of Lemma 1.2. The running time analysis of our algorithm is also presented in
Section 2.4.

2 The distribution D and the predicate Φ

In this section, we will prove Lemma 1.2. Recall that we have a graph G = (V, E) on n vertices
and the number of colors k > 3∆. The update sequence (α−T, . . . , α−T′−1) will correspond to the
collapsing phase of our algorithm and (α−T′ , . . . , α−1) to the coalescing phase. In particular, we set
T′ = 2 k−∆

k−3∆ n ln n and T = T′ + ∣E(G)∣+ n where ∣E(G)∣ is the number of edges in G. The reasons for
these values will be clear in the following subsections.

2.1 The update α and its relation to Uα

Recall that an update operation is represented by a tuple α of the form (v, τ, L, L′, M). In the
previous section, we informally indicated the role played by each of the components of this 5-
tuple. In this section, we specify exactly how these components are generated and how they
determine the update operation Uα. As stated in the introduction, we have two types of updates,
the compress update and the contract update. The generation and decoding methods are different

5Whenever for a vertex v all its neighbors have list size 1 then the contract update applied to v produces a list of size
1 at v.
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for the two. We describe, for each type, how the corresponding α is generated and how, given
such an α, the corresponding Uα is applied to a coloring χ. Our final sequence of updates will
be obtained by generating the updates one after another according to a strategy that we describe
later.

The update operation associated with α = (v, τ, L, L′, M) will act on colorings χ ∼ L; that is,
whenever we use α in our sequence, it will be guaranteed that the previous update operations
result in a coloring χ ∼ L. However, if each L(v) = [k] for all v, then Uα acts on all colorings.
Fix a coloring χ. The operation Uα will attempt to recolor the vertex v (leaving the colors of the
other vertices unchanged) by picking a color from the sequence M. The α we generated will have
L′(v) = M barring the order; this will ensure that Uα(χ) ∼ L′. In order to ensure that the coloring
is proper, the color chosen for v must avoid the colors used by v’s neighbors. In particular, if
∣L(w)∣ = 1 for a neighbor w of v, then the unique color in L(w) will never be a candidate color for
v. Thus, the following two sets will play a central role in our definition of Uα:

SL(v) = ⋃
w∈N(v)

L(w) and QL(v) = ⋃
w∈N(v)
∣L(w)∣=1

L(w).

In the following subsections we will consider αs of two types, depending on the size of M.

Type compress (∣M∣ = ∆ + 1): Such an α will be used to
spruce up the neighborhoods.

Type contract (∣M∣ ≤ 2): Such an α will be used in the collapsing phase to contract the list sizes to
size at most two, and again in the coalescing phase to make make all list sizes 1.

2.1.1 Compress updates

To specify the compress updates we will present two procedures: COMPRESS.GEN and
COMPRESS.DECODE. The procedure COMPRESS.GEN takes a tuple αIN = (vIN, τIN, LIN, L′IN, MIN), a
vertex v and a list A consisting of ∆ colors, and returns another tuple. This procedure is random-
ized: its output αf is a random tuple of type compress, and is the immediate successor of αIN in
our sequence of updates. The update operation corresponding to such a tuple is obtained using
procedure COMPRESS.DECODE, which takes a tuple αf (produced by COMPRESS.GEN) and a col-
oring χ ∼ L′IN, and produces another coloring, say χ′. Thus, the update operation Uαf

is the map
χ ↦ COMPRESS.DECODE[αf , χ]. The following lemma describes the relationship between the two
procedures, and their important properties.

Lemma 2.1. Let αIN = (vIN, τIN, LIN, L′IN, MIN) be an arbitrary 5-tuple, v ∈ V and A be a subset of ∆ colors.
Then,

(a) If αf = (vf , τf , Lf , L′f , Mf) is a random tuple produced by COMPRESS.GEN[αIN, v, A], then Lf = L′IN,
L′f(u) = LIN(u) for all u ≠ v, and L′f(v) has the form A ∪ {c} for some color c outside A.

(b) For all χ ∼ Lf , we have χ′ ∶= COMPRESS.DECODE[αf , χ] ∼ L′f (with probability 1).

(c) For all χ ∼ Lf , the coloring χ′ has the same distribution as GLAUBER DYNAMICS(χ, v), that is,
χ′(w) = χ(w), for all w ≠ v, and χ′(v) is uniformly distributed6 in the set of colors [k]∖ χ(N(v)).

6Note that the randomness in χ′(v) arises from the random choices made in generating αf using
COMPRESS.GEN[αIN, v, A].
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(d) Except for copying of the list L′IN, the expected running time of COMPRESS.GEN is O(∆ log k +
log n). The time needed to update a k-coloring χ using COMPRESS.DECODE is O(∆(log ∆ log k +
log n)).

To prove this lemma, we need to specify COMPRESS.GEN and COMPRESS.DECODE. Before
presenting the code and the proof of the lemma, we present the idea behind them. Given αIN, v
and A, we somehow want to update the color of vertex v. The precise color to assign to v will need
to depend on the current coloring χ, in particular, on χ(N(v)). If all we wanted was to restrict the
size L′f(v), we could just insist that v’s color be confined to a random subset of size ∆ + 1; that is,
COMPRESS.GEN would specify a random sequence of ∆+1 distinct colors and once χ is known, we
would replace χ(v) by the first color in this list not currently used by any neighbor of v. However,
as explained in the introduction, we wish to ensure that the lists of different vertices overlap with
A. So we actually generate a random permutation of the input set A, say σ and append to it at
the end a random color c1 chosen from [k] ∖ A; thus αf has the form (vf , τf , Lf , L′f , (σ, c1)); here τf
will be chosen uniformly from [0, 1]; its role will become clear soon. This simple procedure is our
COMPRESS.GEN. Now, once such an αf has been specified, to update χ(v), we have a choice: either
we pick c1 or one of the colors from A. If c1 is an invalid option (it is being used by a neighbor of
v), then we have no choice but to pick a color from A (there must be one available!). Now, c1 will
be a valid option with probability (k− ∣χ(N(v))∪A∣)/(k−∆), whereas such a color should actually
be used to replace χ(v) with probability (k − ∣χ(N(v)) ∪ A∣)/(k − ∣χ(N(v))∣). So whenever c1 is a
valid option, we replace χ(v) by c1 with probability (k−∆)/(k− ∣χ(N(v))∣) and with the remaining
probability we use the first valid color from σ. To implement this acceptance sampling we pick
a random number τf ∈ [0, 1] and accept c1 if it is at least the threshold 1 − (k −∆)/(k − ∣χ(N(v))∣).
This is all that COMPRESS.DECODE does. We now present the code (which may be skipped) that
implements what we discussed above and formally prove Lemma 2.1.

Proof of Lemma 2.1. Part (a) is clear from the procedure of COMPRESS.GEN. We update Lf as L′IN

and L′f differs from L′IN only at the vertex v where L′f(v) = A ∪ {c1}.
For part (b) consider any χ ∼ L′IN = Lf . Note that during COMPRESS.GEN we set L′f(v) = A∪{c1}

and Mf as (σ, c1) and during COMPRESS.DECODE we update the color of χ′(v) from within Mf and
for all w ≠ v we copy the color of χ. This proves part (b).

For part (c) we remind ourselves that the process GLAUBER DYNAMICS(χ, v) requires χ′(v) to
be uniformly distributed on the set [k]∖χ(N(v)). Notice that c1 = M[∆+1] is a uniformly random
choice of color over [k] ∖ A and hence whenever c1 is chosen for χ′(v) by COMPRESS.DECODE

we know its distribution will be uniform over k ∖ (A ∪ χ(N(v))). Also, whenever we choose
a color from M[1, ∆] = σ in COMPRESS.DECODE, where σ is a uniformly random permutation
of A, to update at χ′(v) we know that its distribution is uniform over A ∖ χ(N(v)). Hence, to
prove part (c), it suffices to show that c1 is chosen with probability k−∣A∪χ(N(v))∣

k−χ(N(v)) . From Line 8 in
COMPRESS.DECODE we have:

Pr[χ′(v) = c1] = Pr[c1 ∉ χ(N(v))]×Pr[τ ≥ pχ(v)]

= (k − ∣χ(N(v))∪ A∣)
(k −∆)

× k −∆
k − ∣χ(N(v))∣

= (k − ∣χ(N(v))∪ A∣)
(k − ∣χ(N(v))∣)

.
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Algorithm 2: COMPRESS: generation and decoding

1 Function gen():
Input : αIN = (vIN, τIN, LIN, L′IN, MIN), v ∈ V and A ⊆ [k] with ∣A∣ = ∆

Output: αf = (vf , τf , Lf , L′f , Mf)
2 τf

R←Ð [0, 1] ; σ
R←Ð SA; c1

R←Ð [k]∖ A ;

3 L′f ← L′IN ;

4 L′f(v)← A ∪ {c1}; Mf ← (σ, c1) ; // Appending c1 at the end of σ

5 return αf = (v, τf , L′IN, L′f , Mf)
6 Function decode():

Input : α = (v, τ, L, L′, M) and a coloring χ ∼ L

Output: χ′ ∼ L′

7 χ′ ← χ;

8 pχ(v)← 1− k−∆
k−∣χ(N(v))∣ ;

9 if c1 ∉ χ(N(v)) and τ ≥ pχ(v) then

10 χ′(v)← M[∆ + 1] ; // M has the form (σ, c1) where σ is list of ∆ colors.

11 else

12 χ′(v)← first color in the list M[1, ∆] that is not in χ(N(v)) ; // If c1 ∈ χ(N(v))
13 // then such a color is always available as ∣χ(N(v))∣ ≤ ∆.

14 end if

15 return χ′
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To prove part (d) note that for COMPRESS.GEN the operations with non-trivial running time
are:

• Pick τf uniformly from [0, 1] to compare with pχ which is a fraction whose denominator may
be represented with at most O(log k) bits.

• Pick σ uar from SA.

• Pick c1 uar from [k]∖ A.

• Updating L′f(v) and Mf .

With access to fair coins the first, second and the third operations require expected time O(∆ log k).
The fourth operation requires expected time O(∆ log k + log n). Hence the expected running time
of COMPRESS.GEN is O(∆ log k+ log n). For COMPRESS.DECODE, notice that the If clause in Line 9-
Line 14 takes time O(∆(log k + log n)). The Else clause finds the first color in M[1 ∶ ∆] which is not
in χ(N(v)): we implement this by first sorting the colors in χ(N(v)) and then doing a binary
search in the sorted list, sequentially for every color in M[1 ∶ ∆]. Thus we conclude that the
running time of COMPRESS.DECODE is O(∆(log ∆ log k + log n)).

2.1.2 Contract updates

In this section we describe the tuples α of the type contract which reduce the list size at some
vertex to ≤ 2, and with significant probability, make the list size 1. This type of updates will be
applied both in the collapsing and the coalescing phase. As in Section 2.1.1, we will present two
procedures: CONTRACT.GEN and CONTRACT.DECODE. The procedure CONTRACT.GEN takes as
input a tuple αIN = (vIN, τIN, LIN, L′IN,
MIN) and a vertex v with the promise that ∣SL′IN

(v)∣ < k − ∆, and returns a random tuple αf of
type contract. The update operation corresponding to such a tuple is obtained using proce-
dure CONTRACT.DECODE, which takes a tuple αf (produced by CONTRACT.GEN) and a color-
ing χ ∼ L′IN, and produces another coloring, say χ′. Thus, the update operation Uαf

is the map
χ ↦ CONTRACT.DECODE[αf , χ]. The following lemma describes the relationship between the two
procedures, and their important properties.

Lemma 2.2. Let αIN = (vIN, τIN, LIN, L′IN, MIN) be an arbitrary 5-tuple and v ∈ V. Suppose ∣SLIN(v)∣ < k−∆
and that αf = (vf , τf , Lf , L′f , Mf) is a tuple produced by CONTRACT.GEN[αIN, v]. Then

(a) Let L = L′IN. Then Lf = L, L′f(u) = L(u) for all u ≠ v, and with probability pL = 1− ∣SL(v)∣−∣QL(v)∣
k−∆ we

have ∣L′f(v)∣ = 1. With the remaining probability we have ∣L′f(v)∣ = 2.

(b) For all χ ∼ Lf , we have χ′ ∶= CONTRACT.DECODE[αf , χ] ∼ L′f (with probability 1).

(c) For all χ ∼ Lf , the coloring χ′ has the same distribution as GLAUBER DYNAMICS(χ, v).

(d) Except for copying of the list L′IN the expected running time of CONTRACT.GEN is O(∆(log k +
log n)). The time needed to update a k-coloring χ using CONTRACT.DECODE is O(∆(log n +
log k)).
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Algorithm 3: CONTRACT: generation and decoding

1 Function gen():
Input : αIN = (vIN, τIN, LIN, L′IN, MIN), v ∈ V with ∣SLIN(v)∣ < k −∆
Output: αf = (vf , τf , Lf , L′f , Mf)

2 L ← L′IN; τf
R←Ð [0, 1];

3 c1
R←Ð [k]∖ SL(v); c2

R←Ð SL(v)∖QL(v) ;
4 pL ← 1− (∣SL(v)∣− ∣QL(v)∣) / (k −∆) ; // ∣SL(v)∣ < k −∆ ensures pL ∈ [0, 1]
5 if τ ≤ pL then
6 L′f(v)← {c1}; Mf ← (c1);
7 else
8 L′f(v)← {c1, c2}; Mf ← (c1, c2);
9 end if

10 return αf = (v, τf , L′IN, L′f , Mf)
11 Function decode():

Input : α = (v, τ, L, L′, M), χ ∼ L′ with ∣SL(v)∣ < k −∆,
M[1] ∉ SL(v) and M[2] ∈ SL(v) or M[2] = ∅

Output: χ′ ∼ L′

12 χ′ ← χ;

13 pχ ← 1− ∣SL(v)∣−∣QL(v)∣
k−∣χ(N(v))∣ ; // ∣SL(v)∣ < k −∆ ≤ k − ∣χ(N(v))∣ ensures pχ ∈ [0, 1]

14 if τ ≤ pχ or M[2] ∈ χ(N(v)) then
15 χ′f(v)← M[1];
16 else
17 χ′f(v)← M[2];
18 end if
19 return χ′
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We now describe the ideas behind CONTRACT.GEN and CONTRACT.DECODE. Consider αIN =
(vIN, τIN, LIN, L′IN, MIN) and let L = L′IN. Also consider a vertex v ∈ V and a coloring χ ∼ L. We
wish to produce αf = (vf , τf , Lf , L′f , Mf) with L′f(v) of size at most 2 (with some probability of it
being of size 1) and a coloring χ′ such that χ′ ∼ L′f , and χ′ should be distributed according to
GLAUBER DYNAMICS(χ, v). For now let us focus on producing L′f(v) of size 2. Hence, without
knowing χ(N(v)) ∶= χ(N(v)) we need to produce two colors L′f(v) = {c1, c2} such that by choosing
one of them (based on the coloring χ), we may ensure that χ′(v) is distributed uniformly over
[k] ∖ χ(N(v)). Notice that since χ ∼ L we have QL(v) ⊆ χ(N(v)) ⊆ SL(v). An initial attempt is
to sample a color c1 ∉ SL(v) uar and insist that the update operation set χ′(v) = c1 (no matter
what χ is). While this is a valid choice of color at v it is not necessarily distributed uniformly over
[k] ∖ χ(N(v)), because such an update places no mass on colors in SL(v) ∖ χ(N(v)). To remedy
this situation we sample another color c2 from SL(v)∖QL(v) uar and allow the update to choose
between c1 and c2 depending on χ. In particular, we prescribe the update at v as follows. Let
τf be chosen from [0, 1] uar and let pχ be a threshold in [0, 1]: if τf ≤ pχ or c2 ∈ χ(N(v)) then
χ′(v) = c1; else χ′(v) = c2. Now, it is a matter of calculation to arrange for an appropriate value
of pχ such that χ′(v) is uniform over [k]∖ χ(N(v)). A direct calculation (see proof of Lemma 2.2)
shows that pχ = 1 − ∣SL(v)∣−∣QL(v)∣

k−∣χ(N(v))∣ . To ensure that with significant probability L′f has size 1, we
provide a threshold pL such that always pL ≤ pχ. Thus, whenever τf ≤ pL we set L′f = {c1}. We
let pL ∶= 1 − ∣SL(v)∣−∣QL(v)∣

k−∣∆∣ . The assumption ∣SL(v)∣ < k − ∆ implies that pχ ≥ pL > 0. Note that the
threshold pχ is computed after the actual coloring χ is available for update. Algorithm 3 (which
may be skipped) is the code implementing the above ideas along with a proof of Lemma 2.2.

Proof of Lemma 2.2. Let L = L′IN. Note that QL(v) ⊆
χ(N(v)) ⊆ SL(v) as χ ∼ L. Also, pL at Line 4 is at most pχ at Line 13 in Algorithm 3. To prove
part (a), observe that line 2 directly implies Lf = L. It is also evident that throughout the execution
of the algorithm, L′f(u) is never updated, for all u ≠ v, after the execution of line 2. This proves
that L′f(u) = L(u) for all u ≠ v. Finally, we note that τf is distributed uniformly at random in [0, 1]
and L′f(v) is singleton iff τf ≤ pL. Thus L′f(v) is a singleton with probability exactly pL. The claim
follows by noting the value of pL in line 4.

To prove part (b), note from CONTRACT.GEN that the set Mf (disregarding the ordering) is
actually the same as the set L′f(v) (Line 5-9). Also, we see from CONTRACT.DECODE that χ′f(v)
is always contained within Mf . For all w ≠ v, CONTRACT.DECODE sets χ′f(w) to χ(w). By the
hypothesis of the Lemma, ∀w ∈ V, χ(w) ∈ Lf(w). Finally, since CONTRACT.GEN sets L′f(w) to L(w)
for all w ≠ v, we conclude that the part (b) of the claim is true.

To prove part (c), we first note that the random process GLAUBER DYNAMICS(χ, v) recolors
the vertex v with a color chosen uar from the set [k]∖ χ(N(v)), while retaining the color of every
other vertex. Observe that:

(i) The distribution of χ′(v) (induced by Algorithm 3), is a convex combination of two uniform
distributions : one supported on the set [k]∖SL(v) (when χ′(v) = c1) and the other supported
on the set SL(v)∖ χ(N(v)) (when χ′ = c2).

(ii) χ′(v) = c1 iff either τ ≤ pχ or c2 ∈ χ(N(v)). Hence,

Pr[χ′(v) = c1] = pχ + (1− pχ) ⋅ (
∣χ(N(v))∣− ∣QL(v)∣
∣SL(v)∣− ∣QL(v)∣

).
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Observation (i) implies that if Pr[χ′(v) = c1] turns out to be of the form k−∣SL(v)∣
k−∣χ(N(v))∣ , it would

imply that the distribution of χ′(v) is indeed uniform on the set [k]∖ χ(N(v)). Referring to CON-
TRACT.DECODE and solving for Pr[χ′(v) = c1] by substituting pχ in observation [b], we verify that
this is indeed true. This proves part (c).

To prove part (d), notice that in CONTRACT.GEN, the only operations with non-trivial running
time consist of :

• Pick τf uniformly from [0, 1] to compare with pL which is a fraction whose denominator may
be represented with at most O(log k) bits

• Pick c1 uniformly from [k]∖ SL(v)

• Pick c2 uniformly from SL(v)∖QL(v)

• Updating the list L′f(v) and Mf .

With access to fair coins the expected running time of CONTRACT.GEN is O(∆(log k + log n)).
For the running time of CONTRACT.DECODE, recall that we only update the color at the vertex v:
the checking and update together take time O(∆(log k + log n)) which concludes the proof.

2.2 Collapsing phase

The collapsing phase will run for T − T′ steps from time t = −T to t = −T′. The goal of this phase
is to bring the list size at every vertex to at most 2. During the collapsing phase we will generate
a sequence (α−T, . . . , α−T′−1). Once the corresponding updates are applied, the list sizes of all the
vertices will be brought down to at most two. As mentioned in the introduction, this reduction
in list size will be achieved by updates of type contract; each such update will be preceded by
a sequence of updates that spruce up the neighbourhood of the vertex whose list we wish to
contract. To spruce up the neighborhood (recall that this happens when the union of the lists
of the neighbors has size less than k − ∆ ), we will repeatedly use compression; recall that the
COMPRESS primitive accepts a set of colors A of size ∆ and ensures that, after the update is applied,
the list of the updated vertex has at most one color outside A. While doing so, we must ensure
that the lists of vertices that have already been collapsed are not disturbed. Let V = {v1, . . . , vn},
N>(vi) ∶= {vj ∈ N(v) ∣ j > i} and N<(vi) ∶= {vj ∈ N(v) ∣ j < i}. To spruce up the neighborhood
of vi, we will compress the lists of vertices in N>(vi) and not in N<(vi). Yet we need to ensure
that the entire neighborhood, i.e., N<(vi) ∪ N>(vi) is spruced up; so the set for sprucing up the
neighborhood of vi, A will be chosen such that it includes at least one element from the list of each
w ∈ N<(vi). The following code implements this.

Lemma 2.3. Let α[−1,−∣N>(vi)∣] be the output of the algorithm SPRUCEUP[αIN, i] and let α[−1] =
(v, τ, L′, L′′, M). Then, (a) for w /∈ N>(vi): L′′(w) = L′(w); (b) ⋃w∈N(vi) ∣L(w)∣ ≤ 2∆.

Proof. Part (a) is true because the list of no vertex outside {vi} ∪ N>(vi) is perturbed by the algo-
rithm. Part (b) follows as the at most ∆ neighbors of vi can each contribute to the union at most
one color outside the set A .

By successively sprucing up the neighborhood and contracting the lists of all vertices in V, we
complete the collapsing phase. The following code implements this formally; here we adopt the
notation, that if α is a sequence of update tuples, then α[LAST] is the tuple in this list corresponding
to the latest update.
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Algorithm 4: SPRUCEUP

Input : αIN = (vIN, τIN, LIN, L′IN, MIN), i ∈ [n]
1 Promise: for all j < i: ∣L′IN(vj)∣ ≤ 2

Output: α[−1,−∣N>(vi)∣]
2 t ← −∣N>(vi)∣; L ← L′IN ;

3 Pick a ∆-element subset A of [k] that intersects every set in {L(w) ∶ w ∈ N<(vi)};

4 for w ∈ N>(vi) do

5 αt ← COMPRESS.GEN[αt−1, w, A];
6 t ← t + 1;

7 end for

8 return α[−1,−∣N>(vi)∣]

Algorithm 5: COLLAPSE

Output: α[−1,−(T − T′)]
1 αLAST ← (v1, 0, [k]V , [k]V , ()) ;

2 α ← empty ;

3 for i = 1, 2, . . . , n do

4 α ← SPRUCEUP[αLAST, i] ○ α;

5 αLAST ← CONTRACT.GEN[α[LAST], vi];
6 α ← αLAST ○ α;

7 end for

8 return α
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Lemma 2.4. The collapsing phase lasts for T − T′ = ∣E(G)∣ + n steps. Let α[−1,−(T − T′)] be the output
of COMPRESS[] and let α−1 = (v, τ, L′, L′′, M). Then, for all w ∈ V we have ∣L′′(w)∣ ≤ 2.

Proof. When vi is chosen for update, only vi and those of its neighbors which succeed it in the
ordering are updated. Hence, the edges joining v to these neighbors are counted only this one
time with the update. Thus, we set T − T′ = ∣E(G)∣+ n, where E(G) is the edge set of the graph G.
The remaining part of the claim is obvious based on previous lemmas.

2.3 Coalescence phase

The collapsing phase produces a random sequence of updates, say α, at the end of which the
lists of all vertices have size at most two. We now propose to follow this up by a another se-
quence (β−1, . . . , β−T′) and ensure that ∣L0(v)∣ = 1 for all v ∈ V, with probability at least 1/2.
As stated in the introduction, this is achieved by applying contracting updates T′ times at ver-
tices chosen uniformly at randomly. More precisely, let w[−1,−T′] = (w−T′ , w−T′+1, . . . , w−1) be
chosen uniformly from VT′ : the random sequence β[−1,−T′] is obtained using the random pro-
cess β[−T′] ← CONTRACT.GEN[α[LAST], w−T′], and β[−i + 1] ← CONTRACT.GEN[β[−i], wi+1], for
i = −T′,−T′ + 1, . . . ,−2. Note that after the collapsing phase all the neighborhoods are spruced up
(since each list is of size at most 2), and thus further application of the contract updates leaves all
the neighborhoods spruced up, which is the case for the entirety of the coalescence phase.

Algorithm 6: COALESCENCE

Input : αin = (vIN, τIN, LIN, L′IN, MIN)
1 Promise: for all v ∈ V: ∣L′IN(v)∣ ≤ 2

Output: β[−1,−T′]
2 α−T′−1 ← αIN;

3 for t = −T′, . . . ,−1 do

4 v
R←Ð V;

5 βt ← CONTRACT.GEN[αt−1, v]

6 end for

7 return β[−1,−T′]

Recall that after the collapsing updates, the list sizes have a significant probability reducing to
1 from 2; this is progress. However, it can also be the case that when an update is performed at a
vertex with list size 1, its list size become 2.
Lemma 2.2 shows that if the vertex has many neighbors with singleton lists, then it has a greater
chance of acquiring a singleton list; in particular, if all its neighbors have list size 1, then it defi-
nitely acquires a singleton list after the update. To track our progress, we define Wt ∶= {v ∣ ∣Lt(v)∣ =
1} (earlier we had defined Wt to be the number of vertices of list size 1). Then, ∣Wt∣ performs a
random walk on [0, n]. Lemma 2.5 establishes that this walk has a drift towards n, and that this
walk reaches the absorbing state n with probability at least 1/2.
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Lemma 2.5. Assume k > 3∆ and let T′ = 2 k−∆
k−3∆ n ln n. Suppose the last update of the collapse phase has the

form α[LAST] = (vn, τ, L, L′, M) such that ∣L′(v)∣ ≤ 2, for all v ∈ V. Let β[−1,−T′] be the random sequence
of updates generated by the above process for the coalescence phase, starting from α[LAST]. Suppose β[−1]
has the form (., ., ., L0, .). Then, with probability at least 1/2, we have for all v ∈ V ∶ ∣L0(v)∣ = 1.

To prove this we will require the following claim.

Claim 2.6 ([Hub98, Theorem 4]). Suppose that Xt is a random walk on {0, 1, . . . , n} where 0 is a reflecting
state and n is an absorbing state. Further ∣Xt+1 −Xt∣ ≤ 1, and E[Xt+1 −Xt ∣ Xt = i] ≥ κi > 0 for all Xt < n.
Let ei is the expected number of times the walk hits the state i. Then

n
∑
i=0

ei ≤
n
∑
i=0

1
κi

.

Proof of Lemma 2.5. For t = −T′, . . . ,−1, 0, let Wt ∶= {v ∶ ∣Lt(v)∣ = 1}, let Xt = ∣Wt∣ and δt = Xt+1 −Xt.
Note that Xt is a random variable based on the random choice of β. We will use Lemma 2.2 to
establish

E[Xt+1 −Xt ∣ Xt] ≥
n −Xt

n
(1− 2∆

k −∆
) . (1)

Note that the drift is positive if 2∆ < k −∆, that is, k > 3∆. Then, our lemma follows immediately
from Eq. (1), Claim 2.6 and Markov’s inequality.

It remains to establish Eq. (1). Let L be the lists at time t. We have the following.

Xt+1 −Xt = 1 iff wt (the vertex updated in step t) has list size 2 and then its list size becomes 1
after the update. By Lemma 2.2, the last event happens with probability (1 − (∣SL(w)∣ −
∣QL(w)∣)/(k −∆)).

Xt+1 −Xt = −1 iff wt has list size 1 and then its list size becomes 2 after the update. By Lemma 2.2,
this happens with probability (∣SL(w)∣− ∣QL(w)∣)/(k −∆).

Note that ∣SL(v)∣− ∣QL(v)∣ ≤ 2∣N(v)∩Wt∣, so

∑
v

∣SL(v)∣− ∣QL(v)∣ ≤ 2∣Wt∣∆. (2)

Thus,

E[Xt+1 −Xt ∣ Wt]

= 1
n

⎡⎢⎢⎢⎢⎣
∑

v/∈Wt

(1− ∣SL(v)∣− ∣QL(w)∣
k −∆

)− ∑
v∈Wt

∣SL(v)∣− ∣QL(w)∣
k −∆

⎤⎥⎥⎥⎥⎦

= 1
n
[∣Wt∣−∑

v∈V

∣SL(v)∣− ∣QL(w)∣
k −∆

]

≥ 1
n
[∣Wt∣−

2∣Wt∣∆
k −∆

]

= n −Xt

n
[1− 2∆

k −∆
] .

The claim follows from this.
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2.4 Proof of Lemma 1.2 and running time analysis of Algorithm 1

Let α[−T′ − 1,−T] be the random sequence of update tuples of length T − T′ = ∣E(G)∣+ n produced
in the collapse phase; let β[−1,−T′] be the random sequence of update tuples of length T′ produced
in the coalescence phase. Our final sequence of tuples will be α[−1, T] ∶= β[−1,−T′]○α[−T′ −1,−T],
where T ∶= ∣E(G)∣ + n + T′. Let U[−1,−T] be the sequence of updates corresponding to α[−1,−T],
obtained by applying the appropriate decode procedure to each tuple in α[−1,−T]. The predicate
Φ outputs TRUE iff ∣L0(v)∣ = 1. Let us now justify the various parts of Lemma 1.2 in order.

(a) That a sample from D can be computed efficiently is clear from the fact all sub-routines
used in the various algorithms are efficient. That each update instruction Ui can also be
computed efficiently is clear from Algorithm 2 and Algorithm 3. Also, Φ is clearly efficiently
computable justifying part (a).

(b) Notice that the vertex vt (either random or fixed) we choose to update in Ut is independent
of the evolution up till time t − 1. Further, at time t whichever sub-routine is used, faithfully
follows GLAUBER DYNAMICS at the vertex vt. Hence, U(−1,−T) takes uniform distributions
to uniform distribution justifying part (b).

(c) As mentioned above the predicate Φ outputs TRUE iff ∣L0(v)∣ = 1. We start with LT = [k]V

and maintain that if at time t there is a coloring χ ∼ Lt then Ut(χ) ∼ Lt+1. This justifies part
(c).

(d) Part (d) follows immediately from Lemma 2.5.

Finally, we justify Theorem 1.1 by analyzing the expected running time of Algorithm 1. Let i
be the first index where Φ(U[−iT − 1,−(i + 1)T]) = TRUE) and let χ = L′−iT−1 be the unique coloring
in the image of U(−iT −1,−(i+1)T). Notice that a particular block of updates U[−jT −1,−(j+1)T]
(where j < i) is processed twice by Algorithm 1: once during generation of U[−jT − 1,−(j + 1)T]
and once while computing U(−1,−iT)(χ). For applying the function U(−jT − 1,−j(T + 1)), we
need to invoke both COMPRESS.DECODE and CONTRACT.DECODE which take as input a tuple
α = (v, τ, L, L′,
M) and a coloring χ. Notice that both these procedures actually never require the lists L and
L′. Hence, during the generation of U[−1,−(i + 1)T] which corresponds to generating the se-
quence α[−1,−(i + 1)T], we implement the changes performed to the lists by COMPRESS.GEN and
CONTRACT.GEN in-place without creating new lists. Thus, during the execution of COMPRESS.GEN

and CONTRACT.GEN we skip the step of copying the lists.
To calculate the expected time needed to generate U[−jT−1,−(j+1)T] we analyze the expected

time needed to generate the updates corresponding to the two phases. The collapse phase in-
volves generating ∣E(G)∣+n updates during which we call COMPRESS.GEN ∣E(G)∣ times and CON-
TRACT.GEN n times. Recall from part (d)s of Lemma 2.1 and Lemma 2.2 that the expected running
times for both COMPRESS.GEN and CONTRACT.GEN are O(∆(log k + log n)). Hence, the expected
time needed for the collapse phase is O(n∆2(log k+ log n)). The coalescence phase involves calling
CONTRACT.GEN 2 k−∆

k−3∆ n ln n times. Hence, the expected time needed for the coalescence phase is
O((n log n)∆2(log k + log n)) and the overall expected time for generating U[−jT − 1,−(j + 1)T] is
O((n log n)∆2(log k + log n)).

To calculate the time needed to decode U(−jT −1,−(j+1)T) observe that we need to call COM-
PRESS.DECODE ∣E(G)∣ times and CONTRACT.DECODE n + 2 k−∆

k−3∆ n ln n times. Recall from part (d)s
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of Lemma 2.1 and Lemma 2.2 that the expected running times for both COMPRESS.DECODE and
CONTRACT.DECODE are O(∆(log ∆ log k + log n)). Hence, the running time of decoding U(−jT −
1,−(j + 1)T) is O((n log n)∆2(log ∆ log k + log n)).

By part (d) of Lemma 1.2 on expectation the value of j is 2 the overall expected running time
of Algorithm 1 is O((n log2 n) ⋅ (∆2 log ∆ log k)).

3 Bottleneck for achieving k > 2∆

As the coupling proofs for efficient approximate sampling of colorings work all the way to the
bound of k > 2∆, it seems natural to ask if we can obtain an efficient perfect sampler which works
with k > 2∆. In this current framework we have two primitives namely, COMPRESS and CON-
TRACT, which are the workhorses of our algorithm for k > 3∆. Now, suppose we shoot for a better
bound and work with k ≤ 3∆ (even k = 2∆ + 1). In this case we face two hurdles.

Firstly, after the application of compress updates to spruce up the neighborhood of a vertex v
we are able to guarantee that ∣SL(v)∣ ≤ 2∆: however, if k ≤ 3∆ this is not enough to meet the input
requirement for CONTRACT, i.e., ∣SL(v)∣ < k −∆.

Secondly, even if we somehow manage to apply CONTRACT we may still produce lists of size
2. Recall, that the drift analysis of ∣Wt∣ (where Wt is the number of vertices with list size 1) requires
an extra margin of ∆, over the product of the maximum degree (∆) and the bound on the list sizes
we can guarantee, in k. If k ≤ 3∆ then we do not have this margin.
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