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Abstract

We give a nearly-optimal algorithm for testing uniformity of distributions supported on
{−1, 1}n, which makes Õ(

√
n/ε2) queries to a subcube conditional sampling oracle (Bhat-

tacharyya and Chakraborty (2018)). The key technical component is a natural notion of random
restriction for distributions on {−1, 1}n, and a quantitative analysis of how such a restriction
affects the mean vector of the distribution. Along the way, we consider the problem of mean
testing with independent samples and provide a nearly-optimal algorithm.
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1 Introduction
The focus of this paper is high-dimensional distribution testing. The algorithmic problem is the
following: we are granted oracle access (the type of which we will specify shortly) to a probability
distribution p on Σ = {−1, 1}n, and must distinguish with probability at least 2/3 between the case
where p is the uniform distribution, and that where p is ε-far from uniform in total variation distance.
The classical works of distribution testing [GGR96, GR00, BFR+00] study the above question in
the standard statistical setting, where the oracle provides independent samples from p. In this
case, the hallmark results are an algorithm and a matching lower bound, showing that Θ(

√
|Σ|/ε2)

independent samples are necessary and sufficient for testing uniformity [Pan08, VV14]. When
studying distributions supported on high-dimensional domains, unfortunately, this implies that the
complexity of sample-optimal algorithms scales exponentially with the dimension, effectively making
the problem intractable. To circumvent this issue, recent work has proceeded by either restricting
the class of input distributions (e.g., restricting p to be a product distribution; see Section 1.2), or
by allowing stronger oracle access. We take the latter approach, and consider an oracle access which
is particularly well-suited to the high-dimensional structure: the subcube conditional query model.

Subcube conditional query access, first suggested in [CRS15] and studied in [BC18], allows
algorithms to specify a subcube of the high-dimensional domain and request a sample from the
distribution conditioned on the sample lying in the subcube specified — equivalently, to request
samples after fixing some of their variables. The operation is akin to the notion of restriction in
the analysis of Boolean functions. Specifically, we identify the distribution by its probability mass
function p : {−1, 1}n → R+. An algorithm may then specify a subcube by a string ρ ∈ {−1, 1, ∗}n,
where ∗’s denote free variables and non-∗’s denote the values of restricted variables. Calling the
oracle on such a ρ results in a sample from the distribution p|ρ (now supported on {−1, 1}stars(ρ))
given by restricting the function p|ρ : {−1, 1}stars(ρ) → R+ and re-normalizing it, so that it represents
a distribution p|ρ.1

Our main results are two-fold: (i) We define a natural notion of random restriction for high-
dimensional distributions and analyze the behavior of the mean vector of a distribution under such
random restrictions; (ii) Leveraging this analysis, we obtain a nearly-optimal algorithm for testing
uniformity over {−1, 1}n with subcube conditioning. As we will show, subcube conditioning allows
us to go from Θ(2n/2/ε2) sample complexity to Θ̃(

√
n/ε2): that is, with subcube conditional queries,

testing uniformity over arbitrary distributions is no harder than that over the much more restricted
class of product ones.

Theorem 1.1 (Main Result: Uniformity Testing). There exists an algorithm which, given subcube
conditional query access to a distribution p supported on {−1, 1}n and a distance parameter ε ∈ (0, 1),
makes Õ(

√
n/ε2) queries and can distinguish with probability at least 2/3 between the case when p is

uniform, and when p is ε-far from uniform in total variation distance.

Along the way, we study the mean testing problem, a natural variant of uniformity testing for
high-dimensional distributions, and obtain a nearly-optimal bound for this question in the standard
sampling model.

Product Distributions and Mean Distance. The simplest class of distributions on {−1, 1}n
is arguably the class of product distributions, where all coordinates are independent. This setting

1When conditioning on a subcube with zero support, one may consider models where the oracle returns a uniform
sample [CFGM16] or outputs “error” [CRS15]. We note that our algorithm will never run into this scenario.
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was studied in [CDKS17], and is particularly nice to analyze due to the relation between the total
variation distance between distributions and the `2 distance between their mean vectors. Specifically,
let p be a product distribution supported on {−1, 1}n, and µ(p) ∈ [−1, 1]n be its mean vector,

µ(p) = E
x∼p

[x] ∈ [−1, 1]n.

It is not hard to show that if p is ε-far from uniform in total variation distance, then ‖µ(p)‖2 & ε.
Hence, for product distributions, large total variation distance to uniformity implies large mean
vector in `2 norm. Given this fact, Canonne, Diakonikolas, Kane, and Stewart [CDKS17] design
an algorithm based on estimating the norm of the mean vector, and show that O(

√
n/ε2) many

samples from product distributions suffice to test uniformity.2
However, the relationship observed between distance to uniformity in total variation and mean

distance (i.e., the `2 norm of the mean vector) for product distributions is not true in general. A
simple example is the uniform distribution supported on just two vectors {x,−x}, which is very far
from uniform yet has mean vector 0. Towards relating these two notions for general distributions,
we define our notion of random restriction.

Random Restrictions. For any σ ∈ [0, 1], we write Sσ for the distribution supported on subsets
of [n] given by letting S ∼ Sσ include each index i ∈ S independently with probability σ. Given
any distribution p supported on {−1, 1}n, let Dσ(p) be the distribution, supported on {−1, 1, ∗}n,
of random restrictions of p. In order to sample a random restriction ρ ∼ Dσ(p), we sample a set
S ∼ Sσ and a sample x ∼ p; then, we let ρi be set according to:

ρi =
{
∗ if i ∈ S
xi if i /∈ S

. (1)

For any ρ ∈ {−1, 1, ∗}n, we denote by p|ρ the distribution on {−1, 1}stars(ρ) given by xstars(ρ) where
x is drawn from p conditioned on every i /∈ stars(ρ) being set to ρi. This defines the restriction of a
distribution p. Another operation on distributions we will consider is that of projection; for any set
S ⊂ [n], we write S = [n] \ S, and the distribution pS supported on {−1, 1}S is given by letting
y ∼ pS be y = xS for x ∼ p.

Let dTV(p,U) denote the total variation distance between p and the uniform distribution of the
same dimension. At a high level, our main technical result shows that the mean distance of random
restrictions is implied by total variation distance of random projections.

Theorem 1.2 (Informal version; see Theorem 1.5). Let p be any distribution over {−1, 1}n. Then,

E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖2

]
≥ σ · E

S∼Sσ

[
dTV(pS,U)

]
. (2)

Although the above differs from Theorem 1.5 in certain respects (the inequality in Theorem 1.5
incurs additional poly-logarithmic factors as well as a small additive error), (2) captures the key
relationship between the total variation distance and the mean distance that we leverage, and will
provide intuition for the introduction.

2In fact, they consider the more general problem of identity testing of product distributions, where they obtain
analogous results.

2



Mean Testing. The above discussion naturally leads to the following problem, which we refer to as
mean testing. Given sample access to a distribution p supported on {−1, 1}n, we seek to distinguish
with probability at least 2/3 between the case where p is uniform and that where p has a large mean
vector, i.e., ‖µ(p)‖2 ≥ ε

√
n. When p is assumed to be a product distribution, [CDKS17, DDK18]

showed that for ε ≤ 1/
√
n the sample complexity of the problem is Θ(1/(ε2√n)).3 The idea is that

the empirical mean of a product distribution will have norm concentrated around its true value, and
thus it suffices to look at this empirical estimate. In our case, however, additional care is needed, as
there can be arbitrary correlations between coordinates of a sample and this concentration does not
hold in general. Nevertheless, we present an algorithm for mean testing which is optimal up to a
triply-logarithmic small loss in the sample complexity.

Theorem 1.3 (Mean Testing). There exists an algorithm which given

O

(
max

{ 1
ε2√n

,
1
ε

}
· log log logn

)
i.i.d. samples from an arbitrary distribution p on {−1, 1}n and a parameter ε ∈ (0, 1] can distinguish
with probability at least 2/3 between (i) p is the uniform distribution, and (ii) ‖µ(p)‖2 ≥ ε

√
n.

Moreover, as detailed in Section 4.1, the above immediately implies a similar sample complexity
for Gaussian mean testing, where one is given i.i.d. samples from a multivariate normal distribution
p = G(µ,Σ) and must distinguish between p = G(0, I) and ‖µ‖2 ≥ ε

√
n.

Subcube Conditional Sampling. In view of the above, we aim to use random restrictions and
Theorem 1.3 to test uniformity with subcube conditional queries. The final technical ingredient is
the following inequality, very similar to the “chain rule” of Bhattacharyya and Chakraborty [BC18]
suited for uniformity testing on {−1, 1}n.

Lemma 1.4. Let p be a distribution supported on {−1, 1}n. Then, for any σ ∈ [0, 1],

dTV(p,U) ≤ E
S∼Sσ

[
dTV(pS,U)

]
+ E
ρ∼Dσ(p)

[
dTV(p|ρ,U)

]
.

This lemma naturally leads to a recursive approach. Given a distribution p which is ε-far from
uniform, either the total variation of random projections is large, or the total variation of random
restrictions is large. In the former case, we apply (2), which allows us to reduce the problem to
that of mean testing, and invoke Theorem 1.3. In the latter case, we take a random restriction and
recurse (but on far fewer variables).

Quantitatively, Theorem 1.1 is a quartic improvement over the result of [BC18], who proved an
upper bound of Õ(n2/ε2) for uniformity testing with subcube conditional queries. We thus show
that the complexity of the problem is not only polynomial in the dimension, but strongly sublinear;
moreover, Theorem 1.1 is tight up to poly-logarithmic factors. Indeed, as observed in [BC18],
the sample complexity lower bound of Ω(

√
n/ε2) of [CDKS17, DDK18] for testing uniformity of

product distributions carries over to subcube conditional sampling. The reason is that, for product
distributions, the coordinates are already independent, and therefore conditioning on subcubes does
not grant any additional power.

3This is implicit in [CDKS17, Theorem 4.1]. As stated, their result is suited for distinguishing between the mean
vector having norm 0 or at least ε′, where ε′ ∈ (0, 1]: we re-parameterize with ε′ = ε

√
n.
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1.1 Technical Overview

We now formally state and explain the intuition behind our main theorem, relating the distance to
uniformity of random projections to the mean distance after random restrictions.

Theorem 1.5. Let p be any distribution over {−1, 1}n and σ ∈ [0, 1]. Then,

E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖2

]
≥ σ

poly(logn) · Ω̃
(

E
S∼Sσ

[dTV(pS,U)]− 2e−min(σ,1−σ)n/10
)
.

We encourage the reader to think of applying Theorem 1.5 to a distribution p which is ε-far
from uniform, and to think of the case when the parameter σ is a small constant (or inverse of a
poly-logarithmic factor), and ES∼Sσ [dTV(pS,U)] = Θ(ε). Specifically, consider a parameter setting
where e−min(σ,1−σ)n/10 = o(ε) so that the right-hand side of the expression in Theorem 1.5 becomes
εσ/poly(logn, log(1/ε)).

The proof of Theorem 1.5 proceeds by proving a lemma (Lemma 3.1) which captures the behavior
of random restrictions with t stars versus those with t+ 1 stars. We prove a robust version of Pisier’s
inequality [Pis86], an inequality which was first studied in the geometry of Banach spaces. When
the projections pS are far from uniform in total variation, the robust version of Pisier’s inequality
will help us lower bound certain quantities of a collection of directed graphs defined using pS on the
subcube {−1, 1}S . The coordinate values of the mean vector of p|ρ will depend on whether random
vertices and directions induced from ρ are directed edges of one of the graphs in the collection.
Hence, the lower bound on expected norm of the mean vector will follow from studying structures
of directed graphs in the collection.

We first introduce the robust version of Pisier’s inequality. As a warm-up and in order to show
the usefulness of this inequality, we give an algorithm making Õ(n/ε2) queries which we refer to as
an edge tester. The reason for this name is that the algorithm samples a random restriction ρ with
exactly one star, so that the distribution p|ρ is supported on an edge of the hypercube. Then, the
algorithm tests whether p|ρ is uniform. Lastly, we provide a proof sketch for a weaker version of
Theorem 1.5 which lower bounds the expectation of ‖µ(p|ρ)‖22, rather than ‖µ(p|ρ)‖2. The weaker
inequality is insufficient for our purposes, but the proof is conceptually much simpler (since ‖ · ‖22 is
additive over coordinates and thus, we may use linearity of expectation). To prove Theorem 1.5,
attempting to lower bound ‖µ(p|ρ)‖2 reveals further challenges which necessitate additional care.

1.1.1 A Robust Pisier’s Inequality

We let H denote the set of undirected edges of the hypercube {−1, 1}n. For a function f : {−1, 1}n →
R and i ∈ [n], we write Lif(x) def= (f(x)− f(x(i)))/2. The following inequality is known as Pisier’s
inequality [Pis86]. We state it below in a way most closely to how it will be applied in this paper;
the inequality holds in much larger generality for functions f : {−1, 1}n → X over general Banach
spaces X (see, in particular, [NS02]).

Theorem 1.6 (Pisier’s inequality). Let f : {−1, 1}n → R be a function with Ex[f(x)] = 0. Then,

E
x∼{−1,1}n

[
|f(x)|

]
. logn · E

x,y∼{−1,1}n

[∣∣∣∣∣
n∑
i=1
yixiLif(x)

∣∣∣∣∣
]
.

In this paper, we will need a robust version of Pisier’s inequality in order to derive Theorem 1.5.
The notion of robustness is equivalent to the notion considered in [KMS18], who proved robust (and
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directed) versions of Talagrand’s inequality for Boolean functions, and part of our proof utilizes the
robustness of the inequality in a similar way. Specifically, we consider an arbitrary orientation of
the edges of the hypercube and sum the values of Lif(x) only when the edge {x,x(i)} is oriented
from x to x(i).

Theorem 1.7 (Robust version of Pisier’s inequality). Let f : {−1, 1}n → R be a function satisfying
Ex[|f(x)|] = 0. Let G = ({−1, 1}n, E) be any orientation of the hypercube. Then,

E
x∼{−1,1}n

[
|f(x)|

]
. logn · E

x,y∼{−1,1}n


∣∣∣∣∣∣∣∣∣

∑
i∈[n]

(x,x(i))∈E

yixiLif(x)

∣∣∣∣∣∣∣∣∣

 .
The proof follows the template of [NS02, Theorem 2], and checks that the necessary changes,

even after considering directed edges, still give the desired inequality.
Remark 1.8. We note that Talagrand [Tal93] prove that the logn factor in Pisier’s inequality
(Theorem 1.6) is unnecessary for real-valued functions, but that it is for general Banach spaces.
While one may follow Talagrand’s proof to remove the logn factor in Theorem 1.7, it is not
immediately clear whether this approach can handle arbitrary orientations.

1.1.2 Warmup: A Linear Query Algorithm

To see why Theorem 1.7 is helpful, we give a simple (albeit suboptimal) Õ(n/ε2)-query algorithm for
testing uniformity. Suppose p is a distribution supported on {−1, 1}n which is ε-far from uniform
in total variation distance. We apply Theorem 1.7 to the function f(x) def= 2n · p(x)− 1, where the
directed graph G = ({−1, 1}n, E) is given by letting

E =
{

(x, x(i)) : {x, x(i)} is an edge of {−1, 1}n, and p(x) ≥ p(x(i))
}
.

Theorem 1.7 applied on f implies that4

E
x∼{−1,1}n

[
|f(x)|

]
. logn · E

x,y∼{−1,1}n

[∣∣∣∣∣
n∑
i=1
yixi

(
f(x)− f(x(i))

)+∣∣∣∣∣
]
. (3)

Given (3), we start by applying the fact that the left-hand side of the inequality is at least 2ε.
From there, the following three (in)equalities are obtained via Khintchine’s inequality, importance
sampling, and Jensen’s inequality, respectively. (We also use the convention that 0/0 = 0.)

ε

logn . E
x∼{−1,1}n

√√√√ n∑
i=1

((
f(x)− f(x(i))

)+)2
 = E

x∼p


√√√√ n∑
i=1

(
(f(x)− f(x(i)))+

1 + f(x)

)2


≤

 E
x∼p

 n∑
i=1

(
(p(x)− p(x(i)))+

p(x)

)2
1/2

. (4)

4Our proof of Theorem 1.5 will rely on this strengthening of Pisier’s inequality for multiple reasons, as our approach
crucially uses the ability to pick any orientation of the edges. Even for this simple application one can observe that,
without the strengthening, the right-hand side of (3) would be replaced by the same expression but without the +.
The discussion below (4) and the derivation of (5) explains why having the + in the expression is crucial.
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Notice that for every x and i, either (p(x)− p(x(i)))+ = 0 or p(x) > p(x(i)) ≥ 0. First, this makes
sure that a/0 with a > 0 never occurs in (4). Additionally,

0 ≤ 1
2 ·

(p(x)− p(x(i)))+

p(x) ≤ |p(x)− p(x(i))|
p(x) + p(x(i))

, (5)

and the quantity on the right-hand side is exactly the bias on the distribution of the ith bit of a draw
of p conditioning on all i′ 6= i bits set according to x. In particular, a standard averaging/bucketing
argument shows that there exists β ≥ ε2/(n log2 n) such that

Pr
x∼p
i∼[n]

( |p(x)− p(x(i))|
p(x) + p(x(i))

)2

&
ε2

β · n log2 n log(n/ε)

 ≥ β. (6)

The above lower bound suggests the following “edge tester:” for all h ∈ {0, . . . , O(log(n/ε))}
where 2−h&ε2/(n log2 n), independently sample O(2h log(n/ε)) pairs (x, i) (x from p, and i ∼ [n]).
For each pair (x, i), we consider the distribution supported on {−1, 1} given by sampling y ∼ p
conditioned on every i′ 6= i having yi′ = xi′ , and use Õ(2−hn/ε2) queries to estimate the bias of
the conditional distribution up to error (ε · (2h/n)1/2)/polylog(n/ε) with high probability. If p
was uniform, every conditional distribution considered will be uniform; however, if p is ε-far from
uniform in total variation distance, (6) implies that some setting of h will reveal a large bias with
high probability. The query complexity of this algorithm is

O(log(n/ε))∑
h=0

O

(
2h · log

(
n

ε

))
· Õ

(
2−hn
ε2

)
= Õ

(
n

ε2

)
.

1.1.3 A Weaker Version of Theorem 1.5

In order to highlight some of the conceptual ideas involved in proving Theorem 1.5, we sketch how
one may prove the following weaker inequality, which lower bounds the expected squared `2 norm
instead of the expected `2 norm:

E
ρ∼D(t+1,p)

[
‖µ(p|ρ)‖22

]
&

1
log2 n

· t+ 1
n− t

· E
T⊂[n]
|T|=t

[
dTV(pT,U)2

]
(7)

where D(t+ 1, p) denotes the distribution over random restrictions where we enforce stars(ρ) = t+ 1
(to compare this to Theorem 1.5, one should think of σ as t/n). Specifically, we sample a random
set S ⊂ [n] of size t + 1 and x ∼ p, then, we set ρ as in (1). Consider imposing a random order
π : [t+ 1]→ S and apply linearity of expectation to re-write the left-hand side of (7) as

t+1∑
i=1

E
ρ,π

[
(µ(p|ρ)π(i))2

]
= (t+ 1) E

ρ,π
[µ(p|ρ)2

π(t+1)]. (8)

Toward lower bounding (8), consider the following way of sampling ρ and π. We first sample t
random indices π(1), . . . ,π(t) uniformly from [n] without replacement and let T = {π(1), . . .π(t)}.
Then, we sample x ∼ p. Finally, we sample π(t + 1) uniformly from the set T = [n] \ T. We
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may write S = T ∪ {π(t+ 1)} and similarly have ρ be set according to (1). Consider the function
` : {−1, 1}T → [−1,∞) which is given by

`(y) = 2|T| Pr
y∼pT

[y = y]− 1. (9)

We notice that ` has mean zero (since pT is a probability distribution), similarly to Section 1.1.2, we
orient the edges of the hypercube {−1, 1}T from the endpoint with higher value of ` to lower value
of `. Applying Theorem 1.7 to f = ` and this orientation of the hypercube edges, the left-hand side
is exactly 2dTV(pT,U). Further, we write the random variable z = xT, which is distributed exactly
as z ∼ pT, and the random variable j = π(t+ 1), which is distributed uniformly from T. We have,
similarly to (4) but with f = ` rather than p,

dTV(pT,U)
logn .

|T| · E
z∼pT
j∼T

((`(z)− `(z(j)))+

1 + `(z)

)2



1/2

. (10)

One crucial observation is that the inner value of the expectation in the right-hand side of (10) is,
up to a factor of at most 4, µ(p|ρ)2

π(t+1), where ρ uses T ∪ {j} as stars and non-star values are set
to z−j . Plugging this back into (8) gives (7).

1.2 Related Work

The seminal works of Goldreich, Goldwasser, and Ron [GGR96], Goldreich and Ron [GR00], and
Batu, Fortnow, Rubinfeld, Smith, and White [BFR+00] initiated the study of distribution testing,
viewing probability distributions as a natural application for property testing (see [Gol17] for
coverage of this much broader field). Since these works, distribution testing has enjoyed a wealth of
study, resulting in a thorough understanding of the complexity of testing many distribution properties
(see, e.g., [BFF+01, BKR04, Pan08, ADJ+11, BFRV11, Val11, ILR12, DDS+13, CDVV14, VV17,
Wag15, ADK15, BV15, DKN15, DK16, Can16, BCG17, BC17, DKW18, DGPP18], and [Rub12,
Can15b, BW18, Kam18] for recent surveys). As a result, sample-optimal algorithms are known for
a number of core problems.

However, the known sample complexity lower bounds, while sublinear, typically still involve a
polynomial dependence on the domain size, suggesting that new models are needed for studying
distribution testing on high-dimensional domains. One approach is to assume additional struc-
ture from the input distributions. Settings were studied where the distribution is known to be
monotone [RS09], a low-degree Bayesian Network [CDKS17, DP17, ABDK18], a Markov Random
Field [DDK18, GLP18, BBC+19], or having some “flat” histogram structure [DKP19].

The other approach is to allow stronger oracle access. The subcube conditional sampling model,
which is the focus of this work, is a variant of the general conditional sampling model particularly
apt for the study of high-dimensional distributions. Bhattacharyya and Chakraborty [BC18], who
initiated the systematic study of this variant, showed that for many problems of interest such as
uniformity, identity, and closeness testing, subcube conditional queries enabled one to avoid the curse
of dimensionality, and established sample complexity upper bounds polynomial in the dimension
(albeit superlinear). The conditional sampling model itself, which was introduced simultaneously
by Chakraborty, Fischer, Goldhirsh, and Matsliah [CFGM13, CFGM16], and Canonne, Ron, and
Servedio [CRS14, CRS15], allows more general queries: namely, the algorithm may specify an
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arbitrary subset of the domain and request a sample conditioned on it lying in the subset. In
many cases, the conditional sampling model circumvents sample-complexity lower bounds. Since its
introduction, there has been significant study into the complexity of testing a number of properties
of distributions under conditional samples, in both adaptive and nonadaptive settings [Can15a,
FJO+15, ACK15b, FLV17, SSJ17, BCG17, BC18, KT19]. Beyond distribution testing, this model of
conditional sampling has found applications in group testing [ACK15a], sublinear algorithms [GTZ17],
and crowdsourcing [GTZ18]. Other ways to augment the power of distribution testing algorithms
include letting the algorithm query the probability density function (PDF) or cumulative distribution
function (CDF) of the distribution [BDKR05, GMV06, RS09, CR14], or giving it probability-
revealing samples [OS18].

1.3 Notation and Prelimaries

We use boldface symbols to represent random variables, and non-boldface symbols for fixed values
(potentially realizations of these random variables) — see, e.g., ρ versus ρ. Given a set S ⊆ [n], we
let US denote the uniform distribution over {−1, 1}S . Usually, as the support of US will be clear
from the context, we will drop the subscript and simply write U . We write f(n) . g(n) if, for some
c > 0, f(n) ≤ c · g(n) for all n ≥ 0 (the & symbol is defined similarly). f(n) � g(n) if f(n) . g(n)
and f(n) & g(n). We use the notation Õ(f(n)) as O(f(n)polylog(f(n))), and Ω̃(f(n)) to denote
Ω(f(n)/(1 + |polylog(f(n))|)). The notation [k] denotes the set of integers {1, . . . , k}.

The Frobenius norm of a matrix M ∈ Rd1×d2 is

‖M‖F =

 ∑
i∈[d1]

∑
j∈[d2]

M2
ij

1/2

.

For a string x ∈ {−1, 1}n, we use x(i) to denote the string that is identical to x but with coordinate
i flipped, i.e., x(i)

j = xj for all j 6= i, and x(i)
i = −xi.

We formally define the subcube conditional query access, which was suggested in Canonne, Ron,
Servedio [CRS15] as an instance of the general conditional sampling oracle [CRS15, CFGM16], and
first explicitly studied in Bhattacharyya and Chakraborty [BC18].

Definition 1.9. A subcube conditional sampling (SCOND) oracle for a distribution p supported on
{−1, 1}n is an oracle which accepts a query subcube ρ ∈ {−1, 1, ∗}n, and outputs a sample from
the distribution x ∼ p conditioned on every i /∈ stars(ρ) having xi = ρi. We use the convention that
if the algorithm considers a restriction with zero support, the oracle outputs a uniform sample.

2 The Algorithm
We prove our theorem for uniformity testing with subcube conditioning, restated below:

Theorem 2.1. There exists an algorithm SubCondUni which, given n ≥ 1, a subcube oracle to a
distribution p over {−1, 1}n and a distance parameter ε with ε ∈ (0, 1), has the following guarantees.
The algorithm makes Õ(

√
n/ε2) many calls to the oracle and satisfies the following two conditions:

(i) If p is uniform, then the algorithm returns accept with probability at least 2/3.
(ii) If dTV(p,U) ≥ ε, then the algorithm returns reject with probability at least 2/3.
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The rest of this section is devoted to the proof of Theorem 2.1. For our convenience of working
with log(1/ε) in the proof, we assume below that ε ≤ 1/2 in the input of SubCondUni. This way
log(c/ε) can be treated as O(log(1/ε)) whenever c ≥ 1 is a fixed constant. As discussed earlier in
Section 1, SubCondUni (see Algorithm 1) is based on Theorem 1.5 and Lemma 1.4, which we now
prove.
Proof of Lemma 1.4: Fix any subset S ⊆ [n] of size t. Given u ∈ {−1, 1}S , we let p|ρ(S,u) denote
the distribution supported on {−1, 1}S given by drawing x ∼ p conditioned on xS = u. By unrolling
the definition of total variation distance, we have

2dTV(p,U) =
∑

x∈{−1,1}n
|p(x)− 1/2n|

=
∑

u∈{−1,1}S

∑
v∈{−1,1}S

∣∣∣∣Pr
x∼p

[
xS = u ∧ xS = v

]
− 1/2n

∣∣∣∣
=

∑
u∈{−1,1}S

∑
v∈{−1,1}S

∣∣∣∣ Pr
u∼p

S

[
u = u

]
· Pr
x∼p

[
xS = v | xS = u

]
− 1/2n

∣∣∣∣
≤

∑
u∈{−1,1}S

∑
v∈{−1,1}S

(∣∣∣∣pS(u) · Pr
x∼p

[
xS = v | xS = u

]
−
pS(u)

2t

∣∣∣∣+
∣∣∣∣∣pS(u)

2t − 1/2n−t

2t

∣∣∣∣∣
)

=
∑

u∈{−1,1}S
pS(u) · 2dTV

(
p|ρ(S,u),U

)
+

∑
v∈{−1,1}S

1
2t · 2dTV

(
pS ,U

)
=

∑
u∈{−1,1}S

pS(u) · 2dTV
(
p|ρ(S,u),U

)
+ 2dTV

(
pS ,U

)
.

Taking the expectation of the inequality over the choice of S ∼ Sσ yields the lemma.

Let p be a distribution over {−1, 1}n with dTV(p,U) ≥ ε. Let

σ
def= σ(ε) = 1

C0 · log4(16/ε)

where C0 > 0 is an absolute constant. (The value of C0 is only used at the end of this section, where
setting C0 = 1011 is good enough.) Let us further assume that n and ε together satisfy

e−σn/10 ≤ ε/8. (11)

Violation of (11) implies that

n = O

( 1
σ
· log

(1
ε

))
= O

(
log5

(1
ε

))
(12)

and we handle this case by applying the linear-query tester described in Section 1.1.2 with query
complexity Õ(n/ε2) = Õ(1/ε2) using (12).

For the general case with (11) satisfied, consider a distribution p with dTV(p,U) ≥ ε. Lemma 1.4
implies that either ES∼Sσ

[
dTV(pS,U)

]
≥ ε/2 or

E
ρ∼Dσ(p)

[
dTV(p|ρ,U)

]
≥ ε/2. (13)

9



Algorithm 1 SubCondUni(n, p, ε)
Require: Dimension n, oracle access to distribution p over {−1, 1}n, and parameter ε ∈ (0, 1/2]
1: StartBaseCase . Base case: violation of (11)
2: if n and ε violate (11) then
3: Run the linear tester described in Section 1.1.2 and return the same answer
4: EndBaseCase
5: StartMainCase . General case: (11) satisfied
6: Let L = L(n, ε) = Õ(

√
n/ε) be as defined in (15) to simplify (14)

7: for j = 1, 2, . . . , dlog 2Le do . Test (14), via bucketing
8: Sample sj = 8L log(2L) · 2−j restrictions from Dσ(p)
9: for every restriction ρ sampled with |stars(ρ)| > 0 do

10: Run TestMean(|stars(ρ)|, p|ρ, 2−j) for r = O(log(n/ε)) times
11: return reject if the majority of calls return reject
12: for j = 1, 2, . . . , dlog(4/ε)e do . Test the second part of (13), recursively
13: Sample s′j = (32/ε) log(4/ε) · 2−j restrictions from Dσ(p)
14: for each restriction ρ sampled satisfying 0 < |stars(ρ)| ≤ 2σn do
15: Run SubCondUni(|stars(ρ)|, p|ρ, 2−j) for t = 100 log(16/ε) times
16: return reject if the majority of calls return reject
17: EndMainCase
18: return accept

Assuming the former and using (11), we have from Theorem 1.5 that (using σ = 1/polylog(1/ε))

E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖2

/√
n
]
≥ Ω̃

(
ε√
n

)
. (14)

This naturally lends itself to a recursive approach: for the general case when n and ε satisfy (11),
we use TestMean from Theorem 1.3 to test (14), and recursive calls to SubCondUni to test (13).

The description of SubCondUni is given in Algorithm 1. For convenience, we let

L
def= L(n, ε) = Õ(

√
n/ε) (15)

such that the right hand side of (14) can be replaced by 1/L.
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1: We start with (i) (the completeness) and prove by induction on n that,
when p is uniform, SubCondUni(n, p, ε) returns accept with probability at least 2/3. The base
case when n = 1 is trivial since (11) is violated and we just run the linear tester. Assuming that the
statement is true for all dimensions smaller than n, we focus on the case when (11) is satisfied; the
case when it is violated is again trivial. Since p is uniform, the random restriction p|ρ is uniform
with probability one. On the other hand, note that the total number of restrictions ρ we draw in line
8 is

∑
j sj = O(L logL) = Õ(

√
n/ε2). As a result, one can set the constant hidden in the choice of r

in line 10 to be sufficiently large so that SubCondUni rejects in line 11 with probability no larger
than 1/6. Similarly, by invoking the inductive hypothesis, one can show that SubCondUni rejects
in line 16 with probability no larger than 1/6. It follows from a union bound that SubCondUni
rejects with probability at most 1/3 and this finishes the induction step.
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We now turn towards establishing (ii) (the soundness), and hereafter assume that dTV(p,U) ≥ ε.
Again we prove by induction on n that SubCondUni(n, p, ε) rejects with probability at least 2/3.
For the general case in the induction step, it follows from our discussion earlier that either (14) or
(13) holds (and in particular, the right hand side of (14) can be replaced by 1/L).

For the first case, we note that the left hand side of (14) is the expectation of a random variable
that takes values between 0 and 1 (and the right hand side can be replaced by 1/L). Thus, with a
simple bucketing argument there must exist a j ∈ [dlog 2Le] such that

Pr
ρ∼Dσ(p)

[
‖µ(p|ρ)‖2√

n
≥ 2−j

]
≥ 2j−1

Ldlog 2Le ≥
2j

4L log 2L.

It follows that one of the restrictions sampled satisfies the condition above with probability at least
1− e−2 > 5/6. When this happens, each call to TestMean in line 15 rejects with probability at
least 2/3. As a result SubCondUni rejects in line 11 with probability at least 2/3.

For the second case, again by the bucking argument, there exists a j ∈ [dlog(4/ε)e] such that

Pr
ρ∼Dσ(p)

[
dTV(p|ρ,U) ≥ 2−j

]
≥ ε2j

4dlog(4/ε)e ≥
ε2j

8 log(4/ε) .

By (11), the probability of |stars(ρ)| > 2σn is by a Chernoff bound at most e−σn/3 < (ε/8)3. Thus,

Pr
ρ∼Dσ(p)

[
dTV(p|ρ,U) ≥ 2−j and 0 < |stars(ρ)| ≤ 2σn

]
≥ ε2j

16 log(4/ε) .

Given our choice of s′j , the probability that at least one of ρ satisfies dTV(p|ρ,U) ≥ 2−j is at least
5/6. The probability that the majority of calls reject is also at least 5/6 (for this case we just need
t to be a large enough constant). Thus, SubCondUni rejects with probability at least 2/3.

Finally, we bound the query complexity of SubCondUni. Let Φ(n, ε) denote the complexity of
SubCondUni(n, p, ε). We will show by induction on n that

Φ(n, ε) ≤ C ·
√
n

ε2 · logc
(
n

ε

)
(16)

for some absolute constants C, c > 0. To fix C and c, we let C1 and c1 be two constants such that
the query complexity of the linear tester running on n and ε that violate (11) can be bounded by

C1 ·
1
ε2 · logc1

(1
ε

)
.

We also let C2 and c2 be two constants such that the query complexity of SubCondUni between
line 7 and 11 (the non-recursive part) can be bounded by

C2 ·
√
n

ε2 · logc2

(
n

ε

)
.

For this, note that the query complexity of this part is (recall that L = Õ(
√
n/ε))

dlog 2Le∑
j=1

L logL
2j · Õ

(
max

{
22j
√
n
, 2j
})
· log

(
n

ε

)
= Õ

(√
n

ε2

)
.
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We then set C def= 2 max(C1, C2) and c def= max(c1, c2).
To prove (16), the base case when n = 1 is trivial. For the induction step, the special case when

(11) is violated is also trivial. For the general case, we have (by the choice of C and c)

Φ(n, ε) ≤ C

2 ·
√
n

ε2 · logc
(
n

ε

)
+
dlog(4/ε)e∑

j=1
s′j · 100 log

(16
ε

)
· Φ
(
2σn, 2−j

)
.

Using the inductive hypothesis (and our choice of σ), each term in the second sum becomes

C · 32
ε
· log

(4
ε

)
· 100 · log

(16
ε

)
·
√

2σn · 2j · logc
(
σn2j+1

)
≤ C

32 ·
√
n

ε
· 2j · logc

(
n

ε

)
,

using C0 ≥ (322 · 100)2 · 2. We can then finish the induction by using

dlog(4/ε)e∑
j=1

2j < 2dlog(4/ε)e+1 ≤ 16
ε
.

This concludes the proof of the theorem.

3 Proof of Theorem 1.5
Let S(t) be the uniform distribution supported on all subsets of [n] of size t. Given a distribution p
supported on {−1, 1}n, we let D(t, p) be the distribution supported on restrictions {−1, 1, ∗}n given
in a similar fashion to that of Dσ(p), except we use sets of size t; we sample S ∼ S(t) and x ∼ p,
and we let ρi = ∗ if i ∈ S and xi otherwise. The bulk of the work goes into proving the following
lemma. After the statement, we show the lemma implies Theorem 1.5.

Lemma 3.1. Let p be a distribution supported on {−1, 1}n, t ∈ [n− 1], and denote

α
def= E

T∼S(t)

[
dTV(pT,U)

]
≥ 0.

Then,

E
ρ∼D(t,p)

[
‖µ(p|ρ)‖2

]
+ E
ρ∼D(t+1,p)

[
‖µ(p|ρ)‖2

]
&
t

n
· α

log2 n · log(n/α) · log(1/α)
. (17)

Proof of Theorem 1.5 assuming Lemma 3.1: We assume that 5 ≤ σn ≤ n− 5 in the proof;
otherwise the statement is trivially satisfied. Let δ = min(σ, 1− σ)/2 > 0.

For each t ∈ [n− 1], we write for the sake of this proof

αt
def= E

T∼S(t)

[
dTV(pT,U)

]
.

Notice that ρ ∼ Dσ(p) may be sampled by drawing k ∼ Bin(n, σ) and ρ ∼ D(k, p). We write βt for
the probability over k ∼ Bin(n, σ) that k = t. Let

B :=
{
t ∈ [n− 1] : t/n ∈ [σ − δ, σ + δ]

}
.
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Then, by Chernoff’s bound we have
∑
t∈B βt ≥ 1− 2e−δn/5 and thus,∑

t∈B
βt · αt ≥ E

T∼Sσ

[
dTV(pT,U)

]
− 2e−δn/5. (18)

Then, we have

2 · E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖2

]
≥
∑
t∈B

(
βt · E

ρ∼D(t,p)

[
‖µ(p|ρ)‖2

]
+ βt+1 · E

ρ∼D(t+1,p)

[
‖µ(p|ρ)‖2

])

&
∑
t∈B

βt

(
E

ρ∼D(t,p)

[
‖µ(p|ρ)‖2

]
+ E
ρ∼D(t+1,p)

[
‖µ(p|ρ)‖2

])
(19)

&
σ

log2 n
·
∑
t∈B

βt ·
αt

log(n/αt) log(1/αt)
(20)

&
σ

polylog(n) · Ω̃
(

E
T∼Sσ

[
dTV(pT,U)

]
− 2e−δn/5

)
. (21)

In (19), we used t/n ∈ [σ − δ, σ + δ], δ = min(σ, 1− σ)/2 and σ ≥ 5/n to have

βt+1
βt

= n− t
t+ 1 ·

σ

1− σ ≥
(1− σ)/2

(3σ/2) + (1/n) ·
σ

1− σ & 1.

In (20) we applied Lemma 3.1 on each t ∈ B. In (21) we applied Jensen’s inequality (as the function
f(a) = a/(log(n/a) log(1/a)) when a 6= 0 and f(0) = 0 is convex in [0, 1]); and (18).

This finishes the proof of Theorem 1.5.

3.1 Robust Pisier Inequality

In this section, we prove the robust version of Pisier’s inequality. Robustness here is equivalent to
that of [KMS18] where we will consider a function f : {−1, 1}n → R, and we will lower bound a
functional on the values of the edges of the hypercube after assigning them directions.

Formally, fix n ∈ N and let H be the undirected graph over the hypercube {−1, 1}n that
consists of undirected edges {x, x(i)} with x ∈ {−1, 1}n and i ∈ [n]. For i ∈ [n], recall that
Lif : {−1, 1}n → R is the linear operator given by

Lif(x) = f(x)− f(x(i))
2 .

Notice that in Theorem 1.6, every edge {x, x(i)} in H for a fixed value of y is counted twice in
the right-hand side; once for the endpoint x and once for the endpoint x(i). In the robust version, we
may arbitrarily choose, for each edge {x, x(i)}, whether to “charge” the edge to x or to x(i). For this
purpose, we consider an orientation G of H (so for each {x, x(i)} in H, G contains either (x, x(i)) or
(x(i), x)), and charge an edge {x, x(i)} to x if (x, x(i)) is in G and to x(i) otherwise. For convenience,
we will abuse the notation in the rest of the section to use the name of a directed graph (such as G)
to denote its edge set as well, since its vertex set is usually clear from the context. So we will write
(u, v) ∈ G if (u, v) is a directed edge in G.

We are now ready to state the robust version of Pisier’s inequality, which generalizes Theorem 1.7.
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Theorem 3.2 (Robust Pisier’s inequality). Let f : {−1, 1}n → R be a function with

E
x∼{−1,1}n

[
f(x)

]
= 0 (22)

and let G be an orientation of H. Then, for any s ∈ [1,∞) we have

(
E

x∼{−1,1}n

[∣∣∣f(x)
∣∣∣s ])1/s

. logn ·

 E
x,y∼{−1,1}n


∣∣∣∣∣∣∣∣∣

∑
i∈[n]

(x,x(i))∈G

yixiLif(x)

∣∣∣∣∣∣∣∣∣
s 


1/s

.

The proof itself follows the template of [NS02, Theorem 2] and checks that the necessary changes
still give the desired inequality. Before beginning with the proof, we recall some basic notions
of Fourier analysis on the hypercube, and define some elements which appear in the argument.
Recall that any function f : {−1, 1}n → R has a unique Fourier expansion f(x) =

∑
S⊂[n] f̂(S)χS(x),

where χS(x) =
∏
i∈S xi are the Fourier characters, and f̂(S) = Ex∼{−1,1}n [f(x)χS(x)]. For ρ > 0

and x ∈ {−1, 1}n, we let Nσ(x) be the distribution supported on {−1, 1}n given sampling y ∼ Nσ(x),
where for each i ∈ [n], we set yi = xi with probability 1−σ, and a uniform random bit with probability
σ. We denote Tρf(x) = Ey∼Nρ(x)[f(y)], and we have for every S ⊂ [n], T̂ρf(S) = ρ|S|f̂(S). In a slight
abuse of notation, we consider for any x, y ∈ {−1, 1}n and t ∈ [0, 1], the distribution Nt,1−t(x, y),
supported on {−1, 1}n, to be the distribution given by letting z ∼ Nt,1−t(x, y) have each i ∈ [n] set
to zi = xi with probability t and zi = yi otherwise. For a function g : {−1, 1}n → R and t ∈ [0, 1],
the function g : {−1, 1}n × {−1, 1}n → R is given by letting gt,1−t(x, y) = Ez∼Nt,1−t(x,y)[g(z)] =∑
S⊂[n] ĝ(S)

∏
i∈S(txi + (1− t)yi). Lastly, for any γ > 0, we let ∆γf be the linear operator given by

∆γf(x) =
∑
S⊂[n] f̂(S)|S|γχS(x).

Proof of Theorem 3.2: Let ρ = 1 − 1/(n + 1) and q ∈ [1,∞] such that 1
s + 1

q = 1. Fix the
function g : {−1, 1}n → R with ‖g‖q = 1 satisfying 〈Tρf, g〉 = ‖Tρf‖s. We have

ρn‖f‖s ≤ ‖Tρf‖s = 〈Tρf, g〉 =
∑
S⊂[n]
S 6=∅

ρ|S|f̂(S)ĝ(S)

= 1
Γ(1 + γ)

∫ ρ

0

 ∑
S⊂[n]
S 6=∅

t|S|−1|S|γ+1f̂(S)ĝ(S)

 (log(ρ/t))γ dt (23)

= 1
Γ(1 + γ)

∫ ρ

0

1
1− t E

x,y∼{−1,1}n

[
gt,1−t(x,y)

n∑
i=1
yixiLi∆γf(x)

]
(log(ρ/t))γ dt, (24)

where (23) follows from writing ρ|S| = 1
Γ(1+γ)

∫ ρ
0 t
|S|−1|S|γ+1 log(ρ/t)γdt, and (24) follows from the
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Fourier expansion of gt,1−t(x, y)
∑n
i=1 yixiLi∆γf(x). The main step is obtaining (25) below:

E
x,y∼{−1,1}n

[
gt,1−t(x,y)

n∑
i=1
yixiLi∆γf(x)

]
= 2 E

x,y∼{−1,1}n

gt,1−t(x,y)
∑
i∈[n]

(x,x(i))∈G

yixiLi∆γf(x)


(25)

≤ 2

 E
x,y∼{−1,1}n


∣∣∣∣∣∣∣∣∣

∑
i∈[n]

(x,x(i))∈G

yixiLi∆γf(x)

∣∣∣∣∣∣∣∣∣
s


1/s

,

(26)

since (26) follows from (25) by noting that ‖gt,1−t‖q ≤ 1. We may now proceed substituting (26)
into (23). For ρ = 1− 1/(n+ 1), we have that for γ approaching 0, we have

1
Γ(1 + γ)

∫ ρ

0

log(ρ/t)γ

1− t dt . logn,

so we obtain

ρn‖f‖s . logn

 E
x,y∼{−1,1}n


∣∣∣∣∣∣∣∣∣

∑
i∈[n]

(x,x(i))∈G

yixiLi∆γf(x)

∣∣∣∣∣∣∣∣∣
s


1/s

,

and the right-hand side approaches the desired quantity, while the left-hand side is independent of
γ. It thus remains to show (25). For simplicity, let hi = Li∆γf . We consider summing the edges of
H according to the orientation of the edge:

E
x,y∼{−1,1}n

[
gt,1−t(x,y)

n∑
i=1
yixihi(x)

]
(27)

= E
x∼{−1,1}n

 ∑
i∈[n]

(x,x(i))∈G

E
y∼{−1,1}n

[
yi

(
gt,1−t(x,y)hi(x)− gt,1−t(x(i),y)hi(x(i))

)]
Now, for a fixed x and i, we have

E
y∼{−1,1}n

[
yi

(
gt,1−t(x,y)hi(x)− gt,1−t(x(i),y)hi(x(i))

)]
= E
y∼{−1,1}n

[
yigt,1−t(x,y)

(
hi(x)− hi(x(i))

)]
.

This is because when expanding the terms in gt,1−t(x,y) = Ez∼Nt,1−t(x,y)[g(z)] two things may
happen. 1) Either zi = yi (for (1−t)-fraction of terms), in which case the terms in Ez∼Nt,1−t(x,y)[g(z)]
and Ez∼Nt,1−t(x(i),y)[g(z)] are the same, and these are scaled by hi(x) and −hi(x(i)), respectively.
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Or, 2) zi = x(i), in which case terms in Ez∼Nt,1−t(x,y)[g(z)] and Ez∼Nt,1−t(x(i),y)[g(z)] are scaled by
hi(x) and −hi(x(i)), respectively. However, in this case, these terms are all independent of yi, and
thus are added and subtracted for an overall contribution of zero. With these considerations, (27)
becomes

E
x,y∼{−1,1}n

[
gt,1−t(x,y)

n∑
i=1
yixihi(x)

]
= E
x,y∼{−1,1}n

 ∑
i∈[n]

(x,x(i))∈G

yigt,1−t(x,y)
(
hi(x)− hi(x(i))

)
and since hi(x)− hi(x(i)) = 2∆γLif(x), we obtain the desired bound.

3.2 Plan of the Proof of Lemma 3.1

Let t ∈ [n− 1] be the parameter in the statement of Lemma 3.1. For clarity, the rest of this section
will always use T to denote a size-t subset of [n] and S to denote a size-(t+ 1) subset of [n]. For
each size-t subset T of [n], we write α(T ) def= dTV(pT ,U). Then α = ET∼S(t)[α(T)]. We also write
H(T ) to denote the undirected graph over the hypercube {−1, 1}T that consists of undirected edges
{x, x(i)} with x ∈ {−1, 1}T and i ∈ T . Again we will abuse the notation in the rest of the section to
refer to H(T ) as its edge set as well.

The proof of Lemma 3.1 consists of two steps. For each t-subset T , we first classify undirected
edges {x, x(i)} in H(T ) into different types according its weight defined as

w
(
{x, x(i)}

) def=
∣∣pT (x)− pT (x(i))

∣∣
max

{
pT (x), pT (x(i))

} .
For each type of edges in H(T ), we describe a method in Section 3.3 to assign each edge a direction.
This then leads to a sequence of directed graphs over {−1, 1}T , one for each type of edges in H(T ),
and their union is an orientation G of H(T ) over {−1, 1}T . At the end of Section 3.3 we apply
the robust Pisier inequality (Theorem 3.2) on a shifted and scaled version of the probability mass
function of pT with the orientation G and s = 1. The result will be Lemma 3.6, which says there is
a type of edges in H(T ) such that its corresponding directed graph has

E
x∼p

T

[√
out-degree of x

]
(28)

bounded from below by a quantity that is linear in α(T ); see Lemma 3.6 for details.
In the second step, we use this family of directed graphs promised by Lemma 3.6, one for each

t-subset T , with the desired bound on (28) to finish the proof of Lemma 3.1. To this end we first
apply standard bucketing arguments in Section 3.4 to simplify the situation, by focusing on one
specific type of directed edges that makes the most significant contribution in the family. The final
connection from these directed graphs to the mean vectors of randomly restricted distributions is
made in Sections 3.5, 3.6, and 3.7. There will be two cases, depending on whether the type of edges
we consider has large or small weights. They are handled in Sections 3.6 and 3.7, respectively.

3.3 From Total Variation to Directed Graphs

Let ` be a probability distribution over {−1, 1}m with m = n− t. (Later we will identify ` as pT
for some t-subset T of [n], and {−1, 1}m as {−1, 1}T .) Let H denote the undirected graph over
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{−1, 1}m that consists of undirected edges {x, x(i)} for all x ∈ {−1, 1}m and i ∈ [m]. Looking ahead,
the purpose of this section is to construct an orientation G of H for our application of Theorem 3.2
later with s = 1 and the function f : {−1, 1}m → [−1,∞) given by:

f(y) = 2m · `(y)− 1. (29)

Note that Ey[f(y)] = 0 and the left hand side of the robust Pisier inequality is 2dTV(`,U).
For the construction of G, we start with a classification of undirected edges in H.

Definition 3.3. An undirected edge {x, x(i)} ∈ H is said to be a zero edge if `(x) = `(x(i)) (they
are called zero edges because the difference `(x)− `(x(i)) = 0).

For each nonzero edge {x, x(i)} ∈ H, we define its weight as

w({x, x(i)}) def=
∣∣`(x)− `(x(i))

∣∣
max

{
`(x), `(x(i))

} .
Note that the weight of an undirected edge is always in (0, 1]. We say a nonzero edge is uneven
if its weight is at least 2/3; otherwise, we call it an even edge (i.e., any nonzero edge with weight
smaller than 2/3). We say an even edge is at scale κ for some κ ≥ 1 if

2−κ < w
(
{x, x(i)}

)
≤ 2−κ+1.

We write H[z] to denote the set of all zero edges, H[u] to denote the set of all uneven edges, and
H[κ] for each κ ≥ 1 to denote the set of even edges at scale κ. Hence H[z], H[u] and H[κ] with κ ≥ 1
together form a partition of H; we also view them as undirected graphs over {−1, 1}m.

Next we construct a sequence of directed graphs G[z], G[u] and G[κ], κ ≥ 1, as orientations of
H[z], H[u] and H[κ], respectively. We start with G[z] and G[u]. For each zero edge {x, x(i)} ∈ H[z],
we orient it arbitrarily in G[z]. Next for each uneven edge {x, x(i)} ∈ H[u], we orient it from x to x(i)

if `(x) > `(x(i)) (note that if `(x) = `(x(i)) then it is a zero edge).
Orientations of even edges at scale κ in G[κ] are more involved. For a fixed κ ≥ 1, we consider

H[κ] as an undirected graph over {−1, 1}m. We will consider a bijection %κ : {−1, 1}m → [2m] as an
ordering of vertices in {−1, 1}m (so x is the %κ(x)-th vertex in the ordering) such that the following
property holds: For every i ∈ [2m− 1], the degree of %−1

κ (i) has the largest degree among all vertices
in the subgraph of H[κ] induced by {%−1

κ (j) : j ≥ i}. Such a bijection exists, e.g., by keeping deleting
vertices one by one and each time deleting the one with the largest degree in the remaining graph
(with tie breaking done arbitrarily). We fix such a bijection %κ and use it to orient edges in G[κ]

as follows: For each undirected {x, x(i)} ∈ H[κ], we orient it from x to x(i) if %κ(x) < %κ(x(i)) and
orient it from x(i) to x otherwise. As a result, every (x, x(i)) ∈ G[κ] has %κ(x) < %κ(x(i)).

The above orientation will effectively streamline an argument from [KMS18, Section 6]. We
record the property needed later for the orientation G[κ] of H[κ]:

Lemma 3.4. Let U be a set of vertices in {−1, 1}m and let v ∈ {−1, 1}m \ U . If the out-degree of
every vertex u ∈ U in G[κ] is bounded from above by a positive integer g, then the number of directed
edges (u, v) from a vertex u ∈ U to v in G[κ] is also at most g.

Proof: Consider the vertex with the smallest %κ(·) value in U ∪{v}. If it is v, then every undirected
{u, v} with u ∈ U , if any, in H[κ] is oriented as (v, u) in G[κ]. So the number we care about is 0.
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Otherwise, let u ∈ U be the vertex with the smallest %κ(·) value among U ∪ {v}. Then at the
time when u is picked, all vertices U ∪ {v} remain in current undirected subgraph of H[κ], denoted
by H. At this moment, the degree of u in H is exactly its out-degree in G[κ], which by assumption
is at most g. On the other hand, by the choice of u, v has degree at most g in H. Since the whole
set U remains in H, the number of undirected edges {u, v}, u ∈ U , in H[κ] is at most g. Even if all
of them are oriented towards v in G[κ], the number we care about in the lemma is at most g.

With G[z], G[u] and G[κ] ready, we finally define G to be the union of these graphs, which is an
orientation of H over {0, 1}m. Applying the robust Pisier inequality on f , G and s = 1, we have

dTV(`,U)
logn . E

x,y∼{−1,1}m


∣∣∣∣∣∣∣∣∣

∑
i∈[m]

(x,x(i))∈G

yixiLif(x)

∣∣∣∣∣∣∣∣∣

 ≤ E
x∼{−1,1}m


√√√√√

∑
i∈[m]

(x,x(i))∈G

(
Lif(x)

)2
 . (30)

The second inequality is Khintchine’s, which implies that for any vector a ∈ Rm,

E
y∼{−1,1}m

∣∣∣∣∣∣
∑
i∈[m]

yiai

∣∣∣∣∣∣
 ≤ √∑

i∈[m]
a2
i .

Letting G′ be the directed graph that contains the union of edges in G[u] and G[κ], κ ∈ Z≥0, but
not those in G[z], we can continue the inequality above to have

E
x∼{−1,1}m


√√√√√

∑
i∈[m]

(x,x(i))∈G

(
Lif(x)

)2
 = E

x∼`


√√√√√√

∑
i∈[m]

(x,x(i))∈G′

(
Lif(x)

1 + f(x)

)2

 = E
x∼`


√√√√√√

∑
i∈[m]

(x,x(i))∈G′

(
Li`(x)
`(x)

)2

 .

For the first equation we note that zero edges do not contribute anything and utilize importance
sampling, by noting that `(x) = (1 + f(x))/2m. Also note we never run into a situation of 0/0 in
the second expectation because if (x, x(i)) ∈ G′ has `(x) = 0, then either `(x(i)) = 0 and it is a zero
edge that should have been excluded from G′, or `(x(i)) > 0 and {x, x(i)} is uneven. Then by the
construction of G[u] we have (x(i), x) ∈ G instead of (x, x(i)).

The next lemma connects the sum for each x ∈ {−1, 1}m in the last expectation with its
out-degrees in the directed graphs G[u] and G[κ] constructed.

Lemma 3.5. For every x ∈ {−1, 1}m,

∑
i∈[m]

(x,x(i))∈G′

(
`(x)− `(x(i))

`(x)

)2

≤ outdeg
(
x,G[u])+

∑
κ≥1

2−2κ+6 · outdeg
(
x,G[κ]).

Proof: First note that each edge (x, x(i)) ∈ G′ is nonzero and either lies in G[u] or G[κ] for some
κ ≥ 1. If (x, x(i)) is in G[u], then by the way we orient edges in G[u], we have `(x) > `(x(i)) and this
implies that the contribution of each such edge to the sum is at most 1.
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Next assume that (x, x(i)) ∈ G[κ] for some κ ≥ 1. Since {x, x(i)} is even, we have `(x), `(x(i)) > 0
(otherwise it is either zero or uneven). Using w({x, x(i)}) < 2/3 (otherwise it is uneven), we have

max{`(x), `(x(i))}
min{`(x), `(x(i))}

≤ 3.

As a result, we have

|`(x)− `(x(i))|
`(x) ≤ w({x, x(i)}) · max{`(x), `(x(i))}

min{`(x), `(x(i))}
≤ 3w({x, x(i)}) ≤ 2−κ+3.

So the contribution of each such edge is at most 2−2κ+6 and we thus obtain the desired bound.
We are now ready to prove the main lemma of this subsection:

Lemma 3.6. Letting β = dTV(`,U), one of the following two conditions must hold:

• Either the directed graph G[u] of uneven edges satisfies:

E
x∼`

[√
outdeg(x, G[u])

]
&

β

logn

• Or, there exists a κ ∈ [O(log(n/β))] such that the directed graph G(κ) satisfies:

E
x∼`

[√
outdeg(x, G(κ))

]
&

2κ · β
logn · log(n/β) .

Proof: It follows from Lemma 3.5 that

β

logn . E
x∼`

√outdeg(x, G[u]) +
∑
κ≥1

2−2κ+2 · outdeg(x, G[κ])


≤ E
x∼`

[√
outdeg(x, G[u])

]
+
O(log(n/β))∑

κ=1
2−κ+1 · E

x∼`

[√
outdeg(x, G[κ])

]
+ o

(
β

logn

)
. (31)

In (31) we used the concavity of
√
· as well as the fact that the degrees are always bounded by n.

Lemma 3.6 then follows from (31).

3.4 Bucketing

We now start the proof of Lemma 3.1. For each t-subset T of [n], let α(T ) = dTV(pT ,U) and thus,
α = ET∼S(t)[α(T )]. For each T , we partition undirected edges in H(T ) into H[z](T ) (zero edges),
H[u](T ) (uneven edges), and H[κ](T ) (even edges at scale κ ≥ 1). We orient these edges to obtain
directed graphs G[u](T ) and G[κ](T ). We apply Lemma 3.6 on pT to conclude that one of the two
conditions holds for either G[u](T ) or one of the graphs G[κ](T ), κ ∈ [O(log(n/α(T )))].

Since α(T ) ∈ [0, 1], there exists a ζ > 0 such that with probability at least ζ over T ∼ S(t),

α(T) & α

ζ log(1/α) .

Therefore, via another bucketing argument and Lemma 3.6, there exist two cases:
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• Case 1: With probability at least ζ/2 over the draw of T ∼ S(t), we have that the directed
graph G[u](T) of uneven edges of pT over {−1, 1}T satisfies

E
x∼pT

[√
outdeg

(
x, G[u](T)

)]
&

α

ζ logn log(1/α) .

Since the out-degree is always between 0 and n, there exist two parameters d ∈ [n] and ξ > 0
such that with probability ζ/(2 logn) over the draw of T ∼ S(t), we have

Pr
x∼pT

[
d ≤ outdeg(x, G[u](T)) ≤ 2d

]
≥ ξ

and ξ satisfies
√
d · ξ & α

ζ log2 n log(1/α)
. (32)

• Case 2: There exists a parameter κ ∈ [O(log(n/α))] (using ζ ≤ 1) such that with probability
at least ζ/(2 ·O(log(n/α))) over the draw of T ∼ S(t), the directed graph G[κ](T) of even
edges at scale κ of pT over {−1, 1}T satisfies

E
x∼pT

[√
outdeg(x, G[κ](T))

]
&

α · 2κ

ζ logn log(n/α) log(1/α) .

By a bucketing argument again, there exist parameters d ∈ [n] and ξ > 0 such that with
probability at least ζ/(2 · logn ·O(log(n/α))) over the draw of T ∼ S(t), we have

Pr
x∼pT

[
d ≤ outdeg(x, G[u](T)) ≤ 2d

]
≥ ξ

and ξ satisfies
√
d · ξ & α · 2κ

ζ log2 n log(n/α) log(1/α)
. (33)

3.5 From Directed Graphs to Mean Vectors

In this section, we will show the crucial connection between analyzing the family of graphs defined in
Section 3.3 and 3.4 and mean vectors of restrictions of the distribution. Consider a fixed distribution
p supported on {−1, 1}n and let t ∈ [n− 1]. We consider the family of directed graphs G[u](T ) and
G[κ](T ), κ ≥ 1, for each t-subset T of [n].

It will be convenient to represent directed edges of these directed graphs as (y, i) ∈ {−1, 1}T ×T :
we say (y, i) is in a graph if it is the case for (y, y(i)). Let π = (π(1), . . . , π(t+ 1)) be an (ordered)
sequence of t+ 1 distinct indices from [n]. We use S(π) to denote the corresponding (t+ 1)-subset
{π(1), . . . , π(t+ 1)}. Given π and y ∈ {−1, 1}n, we define a restriction ρ(π, y) ∈ {−1, 1, ∗}n as

ρ(π, y)i =
{
∗ i = π(j) for some j ∈ [t+ 1]
yi otherwise

.

We will also consider sequences τ = (τ(1), . . . , τ(t)) of t distinct indices from [n]; its corresponding
set S(τ) and the restriction ρ(τ, y) given y ∈ {−1, 1}n are defined similarly.

We consider a slightly different but equivalent way of drawing ρ from D(t+ 1, p) and ρ′ from
D(t, p) which we will use to analyze Case 1 and Case 2 as specified in Section 3.4. We consider
sampling ρ ∼ D(t+ 1, p) according to the following procedure:
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1. First, sample a sequence of t+ 1 random indices π = (π(1), . . . ,π(t+ 1)) uniformly from [n]
without replacements (so the set S(π) can be viewed equivalently as drawn from S(t+ 1)).

2. Then, sample y ∼ p.
3. Finally, set ρ = ρ(π,y).

Similarly we consider sampling ρ′ ∼ D(t, p) according to the following procedure:

1. First, sample a sequence of t random indices τ = (τ (1), . . . , τ (t)) uniformly from [n] without
replacements (so the set S(τ ) can be viewed equivalently as drawn from S(t)).

2. Then, sample y ∼ p.
3. Finally, set ρ′ = ρ(τ ,y).

A useful observation is that for each i ∈ [t+ 1], the distribution of (π−i,y) is the same as that of
(τ ,y), where π−i denotes the t-sequence obtained from π after removing its ith entry. As a result,
ρ(π−i,y) is distributed according to D(t, p).

Next we state the lemma that gives the connection between graphs and mean vectors.

Lemma 3.7. Let π be a (t+1)-sequence of distinct elements in [n] and y ∈ {−1, 1}n. Then for every
i ∈ [t+ 1], we have∣∣∣µ(p|ρ(π,y)

)
π(i)

∣∣∣ ≥ 1
3 · 1

{(
y
S(π−i), π(i)

)
∈ G[u](S(π−i))

}
+
∑
k≥1

2−κ−1 · 1
{(
y
S(π−i), π(i)

)
∈ G[κ](S(π−i))

}
. (34)

Proof: First recall that G[u](S(π−i)) and G[κ](S(π−i)) are orientations of disjoint undirected edges.
So the right-hand side of (34) is non-zero for at most one value.

Let ` = p|ρ(π,y), T = S(π−i), z = yT and z′ = z(π(i)). Writing

a = Pr
x∼p

[
xT = z

]
and a′ = Pr

x∼p

[
xT = z′

]
,

we have |µ(`)π(i)| = |a−a′|/(a+a′). The weight w({z, z′}), defined as |a−a′|/max{a, a′}, is at most
2 · |µ(`)π(i)|. If (z, π(i)) ∈ G[u](T ) is uneven, then the weight is at least 2/3 and thus, |µ(`)π(i)| ≥ 1/3.
If (z, π(i)) ∈ G[κ](T ) for some κ, then the weight is at least 2−κ and |µ(`)π(i)| ≥ 2−κ−1.

3.6 Case 1

In this section, we prove Lemma 3.1 assuming that we are in the first case outlined in Section 3.4.
As per Section 3.5 and the first case described in Section 3.4, we consider a distribution p supported
on {−1, 1}n, a parameter t ∈ [n− 1], and we focus on the family of directed graphs G[u](T ), one for
each size-t subset T of [n]. We assume that there are parameters ζ ′, ξ, and d ≥ 1 such that with
probability at least ζ ′ over the draw of T ∼ S(t),

Pr
x∼pT

[
d ≤ outdeg(x, G(u)(T)) ≤ 2d

]
≥ ξ. (35)

Notice that we will set ζ ′ = ζ/(2 logn), so that (32) implies
√
d · ξ & α

ζ ′ log3 n log(1/α)
. (36)

In this case, we will show that (17) holds. The following definition and lemma will be useful:
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Definition 3.8. Let τ be a t-sequence of distinct indices from [n] and let y ∈ {−1, 1}n. We say the
pair (τ, y) is t-contributing if the restricted distribution p|ρ(τ,y) satisfies

∥∥∥µ(p|ρ(τ,y)
)∥∥∥

2
≥
√
d

20 , (37)

and we say (τ, y) is (t+ 1)-contributing otherwise.

Note that the definition implies that a pair is either t-contributing or (t+ 1)-contributing.

Lemma 3.9. Let π be a (t+ 1)-sequence of distinct indices from [n], and let y ∈ {−1, 1}n. If there
are d+ 1 distinct indices i1, . . . , id+1 ∈ [t+ 1] such that(

y
S(π−ik ), π(ik)

)
∈ G[u](S(π−ik)) (38)

for all k ∈ [d+ 1], then (π−ik , y) is a t-contributing pair for all k ∈ [d+ 1].

Proof: We prove the lemma for k = 1. For convenience we refer to i1 as i and i2, . . . , id+1 as
j1, . . . , jd. We show that for every j = j1, . . . , jd,

∣∣µ(p|ρ(π−i,y))π(j)
∣∣ ≥ 1/20. The lemma then follows.

To simplify notation, we R = S(π) ∪ {π(i), π(j)}. Let z = yR ∈ {−1, 1}R. Let

a1 = Pr
x∼p

[
xR = z

]
a2 = Pr

x∼p

[
xR = z(π(i))

]
a3 = Pr

x∼p

[
xR = z(π(j))

]
a4 = Pr

x∼p

[
xR = z({π(i),π(j)})

]
Notice that since (y

S(π−i), π(i)) and (y
S(π−j), π(j)) are uneven edges, we have

a1 + a3 ≥ 3 (a2 + a4) and a1 + a2 ≥ 3 (a3 + a4) . (39)

We use these two inequalities to show that∣∣∣µ(p|ρ(π−i,y))π(j)

∣∣∣ = |a1 − a3|
a1 + a3

≥ 1
20 .

Suppose first that a3 ≤ 9a1/10, then

|a1 − a3|
a1 + a3

≥ a1/10
a1 + a3

≥ 1
10 ·

1
2 ≥

1
20 .

If a3 ≥ 9a1/10, then by the second equality in (39), a2 ≥ 17a1/10 + 3a4. Furthermore, substituting
into the first inequality of (39), a1 + a3 ≥ 3(17a1/10 + 3a4) + 3a4, which implies a3 ≥ 4a1, so

|a1 − a3|
a1 + a3

≥ 3a3/4
a1 + a3

≥ 3
4 ·

1
2 ≥

1
20 .

This finishes the proof of the lemma.

Now we start to lower bound the expectation of ‖µ(p|ρ)‖2 as ρ ∼ D(t+ 1, p), or equivalently
as ρ is drawn as ρ(π,y). For this purpose we introduce an indicator random variable Xi for each
i ∈ [t+ 1]: Xi is 1 if the following event holds:(

y
S(π−i),π(i)

)
∈ G[u](S(π−i)) and (π−i,y) is (t+ 1)-contributing (40)
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On the one hand, it follows from Lemma 3.7 (and the first part of the event above) that∥∥µ(p|ρ(π,y))
∥∥

2 &
√

X1 + · · ·+ Xt+1.

On the other hand, it follows from Lemma 3.9 and the second part of (40) that X1 + · · ·+ Xt+1 is
at most d with probability 1. As a result, we have

E
π,y

[∥∥µ(p|ρ(π,y))
∥∥

2

]
& E
π,y

[
X1 + · · ·+ Xt+1

]/√
d

This simplifies the task now to bound the probability of Xi = 1. We claim that for each i ∈ [t+ 1],

Prπ,y
[
Xi = 1

]
≥
(
ζ ′ · ξ −Prπ,y

[
(π−i,y) is t-contributing

])
· d
n
, (41)

To see this is the case, we consider drawing π and y by drawing y and π−i first and then π(i). We
consider the following event F over y and π−i:

Event F: S(π−i) as T and y
S(π−i) as x satisfy (35) and (π−i,y) is (t+ 1)-contributing.

Note that it follows from our assumption at the beginning of this section that the first part of F
occurs with probability at least ζ ′ · ξ. It follows that the probability of F is at least

ζ ′ · ξ −Prπ,y
[
(π−i,y) is t-contributing

]
.

Finally, conditioning on π−i and y satisfying F, π(i) (together with π−i and y) leads to Xi = 1 if it
is one of the at least d edges of y

S(π−i) in G[u](S(π−i)). This occurs with probability at least d/n.
Continuing from (41), we note that the probability of (π−i,y) being t-contributing is the same

as (τ ,y) being t-contributing, where τ is drawn uniformly from all t-sequences of distinct indices.
Combining everything,

E
π,y

[∥∥µ(p|ρ(π,y))
∥∥

2

]
&

1√
d
· (t+ 1) ·

(
ζ ′ · ξ −Pr

τ ,y

[
(τ ,y) is t-contributing

])
· d
n
. (42)

Thus, either the probability of (τ ,y) being t-contributing is at least ζ ′ · ξ/2, in which case we have

E
ρ∼D(t,p)

[∥∥µ(p|ρ)
∥∥

2

]
= E
τ ,y

[∥∥µ(p|ρ(τ ,y))
∥∥

2

]
& ζ ′ · ξ ·

√
d &

α

log3 n log(1/α)
,

using (36) for the last inequality; or (42) is lower bounded by

1√
d
· (t+ 1) · ζ

′ · ξ
2 · d

n
&
t

n
· α

log3 n log(1/α)
,

which shows (17) holds since t ≤ n− 1.
Remark 3.10. Note that if dt/n ≥ 1, one may set the right hand side of (37) to be

√
dt/n/20 instead

of
√
d/20, and this would result in a stronger lower bound in (17) where we can replace the t/n by√

t/n. However, we do not have any control on the parameter d, which could be 1 in the worst case.
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3.7 Case 2

In this section, we prove Lemma 3.1 assuming that we are in the second case outlined in Section 3.4.
As per Section 3.5 and the second case of Section 3.4, we consider a distribution p over {−1, 1}n, a
parameter t ∈ [n− 1], and a parameter κ ∈ [O(log(n/α))]; we focus on the family of directed graphs
G[κ](T ) for each t-subset T of [n].

From Case 2 of Section 3.4, we assume there are parameters ζ ′, ξ, and d such that with probability
at least ζ ′ over the draw of T ∼ S(t), we have

Pr
x∼pT

[
d ≤ outdeg

(
x, G[κ](T)

)
≤ 2d

]
≥ ξ, (43)

where we set ζ ′ = ζ/(2 logn ·O(log(n/α))). Thus, (33) implies

√
d · ξ & α · 2κ

ζ ′ log3 n log2(n/α) log(1/α)
.

The goal is to lower bound the expectation of ‖µ(p|ρ)‖2 with ρ ∼ D(t, p) or ρ ∼ D(t+ 1, p). For
this, we consider a similar notion of bad pairs to that of Section 3.6, and start with a lemma that
will be useful to the analysis.

Definition 3.11. Let γ ≥ 1.5 We say a restriction ρ with t stars is t-contributing if∥∥∥µ(p|ρ)∥∥∥2
≥
√
γ

2κ+1 ,

and we say that ρ is (t+ 1)-contributing otherwise.

Similar to before, a restriction is either t-contributing or (t+ 1)-contributing.

Lemma 3.12. Let π be a (t+ 1)-sequence of distinct indices from [n] and let y ∈ {−1, 1}n. Suppose
that i ∈ [t + 1] is such that both restrictions ρ(π−i, y) and ρ(π−i, y(π(i))) are (t + 1)-contributing.
Then we have ∑

j∈[t+1]\{i}

(
µ
(
p|ρ(π,y)

)
π(j)

)2
<

γ

22κ+2 .

Proof: Let a be the following conditional probability:

a = Pr
x∼p

[
xπ(i) = yπ(i)

∣∣x
S(π) = y

S(π)

]
,

and notice that for all j ∈ [t+ 1] \ {i}, we have

µ
(
pρ(π,y)

)
π(j) = a · µ

(
p|ρ(π−i,y)

)
π(j) + (1− a) · µ

(
p|ρ(π−i,y(π(i)))

)
π(j).

By Jensen’s inequality,

∑
j∈[t+1]\{i}

(
µ
(
p|ρ(π,y)

)
π(j)

)2
≤

∑
j∈[t+1]\{i}

(
a ·
(
µ
(
p|ρ(π−i,y)

)
π(j)

)2
+ (1− a) ·

(
µ
(
p|ρ(π−i,y(π(i)))

)
π(j)

)2
)

5We will set γ = d at the end but would like to keep it as a parameter for the discussion in Remark 3.13.
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which less than γ/22κ+2 since ρ(π−i, y) and ρ(π−i, y(π(i))) are both (t+ 1)-contributing.
We proceed in a similar fashion to Case 1. To bound the expectation of ‖µ(p|ρ)‖2 as ρ ∼ D(t+1, p),

or equivalently as ρ is drawn as ρ(π,y), we introduce an indicator random variable Xi for each
i ∈ [t+ 1]: Xi is 1 if the following event holds:(

y
S(π−i),π(i)

)
∈ G[κ](S(π−i)) and both ρ(π−i,y) and ρ(π−i,y(π(i))) are (t+ 1)-contributing

(44)
First, it follows from Lemma 3.7 (and the first part of the event above) that∥∥∥µ(p|ρ(π,y)

)∥∥∥
2
≥ 1

2κ+1 ·
√

X1 + · · ·+ Xt+1.

But this, along with Lemma 3.12 and the second part of (44), implies that X1 + · · ·+ Xt+1 is at
most γ with probability 1. As a result, we have

E
π,y

[ ∥∥∥µ(p|ρ(π,y)
)∥∥∥

2

]
&

1
2κ+1 · E

π,y

[
X1 + · · ·+ Xt+1

]
· 1
√
γ

This reduces the task now to bounding the probability of Xi = 1.
We start with some notation. Let T be a t-subset of [n] and let z ∈ {−1, 1}T . We use ρ(z) to

denote the restriction ρ ∈ {−1, 1, ∗}n with ρi = zi for all i ∈ T and ρi = ∗ for all i ∈ T . To lower
bound the probability of Xi = 1, we define the following two disjoint subsets of {−1, 1}T for each
t-subset T :

AT =
{
z ∈ {−1, 1}T : d ≤ outdeg(z,G[κ](T )) ≤ 2d and ρ(z) is (t+ 1)-contributing

}
BT =

{
w ∈ {−1, 1}T : ρ(w) is t-contributing

}
.

Then the probability of Xi = 1 (i.e., the event described in (44)) is at least the probability of the
following event E, where we first draw a t-subset T, then z from pT, and finally draw i from T:

Event E: (z, i) ∈ G[κ](T), z ∈ AT and z(i) /∈ BT

We write the probability of E as

Pr
T,z,i

[
E
]

= Pr
T,z,i

[
(z, i) ∈ G[κ](T) ∧ z ∈ AT

]
− Pr

T,z,i

[
(z, i) ∈ G[κ](T) ∧ z ∈ AT ∧ z(i) ∈ BT

]
. (45)

The first probability on the right hand side of (45) is at least(
ζ ′ · ξ − Pr

ρ∼D(t,p)

[
ρ is t-contributing

])
· d

n− t
.

To see this we first draw T and z and impose the condition that z ∈ AT. Similar to the analysis in
Case 1, this happens with probability at least

ζ ′ · ξ −Pr
T,z

[
z ∈ BT

]
= ζ ′ · ξ − Pr

ρ∼D(t,p)

[
ρ is t-contributing

]
.
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Then we draw i and the probability we get an outgoing edge in G[κ](T) is at least d/(n− t).
The probability we subtract on the right hand side of (45) can be written as

1(n
t

) ∑
T∈P(t)

∑
z∈AT

Pr
x∼p

T

[
x = z

]
·
∑
i∈T

1
|T |
· 1
{

(z, i) ∈ G[κ](T ) ∧ z(i) ∈ BT
}

≤ 3(n
t

) · 1
n− t

∑
T∈P(t)

∑
z∈AT

∑
i∈T

Pr
x∼p

T

[
x = z(i)] · 1{(z, i) ∈ G[κ](T ) ∧ z(i) ∈ BT

}

= 3(n
t

) · 1
n− t

∑
T∈P(t)

∑
w∈BT

∑
i∈T

Pr
x∼p

T

[
x = w

]
· 1
{

(w(i), i) ∈ G[κ](T ) ∧ w(i) ∈ AT
}

= 3(n
t

) · 1
n− t

∑
T∈P(t)

∑
w∈BT

Pr
x∼p

T

[
x = w

]
·
[
number of edges from AT to w in G[κ]

]
.

where the first inequality used Prx[x = z] ≤ 3 ·Prx[x = z(i)] because each {z, z(i)} is an even edge,
and the second equation is just a change of variable. Given that every vertex in AT has out-degree
at most 2d in G[κ], we can now apply Lemma 3.4 to conclude that the number of edges from AT to
every w ∈ BT is at most 2d. As a result, the probability we subtract can be bounded from above by

3(n
t

) · 1
n− t

∑
T∈P(t)

∑
w∈BT

Pr
x∼p

T

[x = w] · 2d ≤ 6d
n− t

·Pr
T,z

[
z ∈ BT

]
.

Therefore, we have (45) that

Pr
π,y

[
Xi = 1

]
≥ Pr

T,z,k

[
E
]
≥
(
ζ ′ · ξ − 7 · Pr

ρ∼D(t,p)

[
ρ is t-contributing

])
· d

n− t
.

To conclude the proof of Lemma 3.1 for Case 2, we set γ = d. Then either we have

Pr
ρ∼D(t,p)

[
ρ is t-contributing

]
≥ ζ ′ · ξ

14 ,

which implies

E
ρ∼D(t,p)

[ ∥∥∥µ(p|ρ′)∥∥∥2

]
≥ ζ ′ · ξ

14 ·
√
d

2κ+1 &
α

log3 n log2(n/α) log(1/α)
,

or we have

E
ρ∼D(t+1,p)

[ ∥∥∥µ(p|ρ)∥∥∥2

]
&

t+ 1
2κ ·
√
d
· d

n− t
· ζ
′ · ξ
14 &

t

n
· α

log3 n log2(n/α) log(1/α)
.

Taking the sum always gives us (17).

Remark 3.13. Similar to Remark 3.10, note that if dt/n ≥ 1, one may set γ = dt/n instead of d, and
this would result in a stronger lower bound in (17) where we can replace the t/n by

√
t/n. Similarly

to Remark 3.10, we do not have control over the parameter d, which could be 1 in the worst case.
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4 Mean Testing
For any m ∈ N and any distribution p supported on {−1, 1}m, we consider X = (x(1), . . . ,x(q)),Y =
(y(1), . . . ,y(q)), a set of 2q i.i.d. samples from p, and let

X̄ def= 1
q

q∑
i=1
x(i) , Ȳ def= 1

q

q∑
i=1
y(i)

be the empirical means in Rm. Our core test statistic will take 2q i.i.d. samples from p, and compute
the expression

Z def=
〈
X̄, Ȳ

〉
. (46)

We will write µ(p) = Ex∼p[x] ∈ [−1, 1]m as the mean vector and Σ(p) ∈ Rm×m as the symmetric
matrix with Σ(p)ij = Ex∼p[xixj ] for all i, j ∈ [m].6

Lemma 4.1. The random variable Z obtained from two tuples of q samples from p satisfies

E[Z] =
〈
E[X̄],E[Ȳ]

〉
= 〈µ(p), µ(p)〉 = ‖µ(p)‖22 , (47)

Var[Z] ≤ 1
q2 ‖Σ(p)‖2F + 4

q
‖µ(p)‖22‖Σ(p)‖F . (48)

The proof of (47) follows from the fact that X̄ and Ȳ are independent, and (48) is a computation
which appears in Appendix A. We define the blowup distribution �(p) as the distribution on
{−1, 1}m2 such that, ordering [m] × [m] in the lexicographic way, �(p) is the distribution of the
vector

(xixj)(i,j)∈[m]×[m] = (x1x1,x1x2, . . . ,x1xm,x2x1,x2xm, . . . ,xmxm) (49)

when x ∼ p. For k ∈ N, we let �(k)(p) denote the distribution over {−1, 1}m2k obtained by iterating
this process k times, so that in particular �(0)(p) = p. Note that, for any k ≥ 0, a sample from
�(k)(p) can be obtained from a sample from p in time O(m2k).

Fact 4.2. For any distribution p over {−1, 1}m and k ∈ N, we have ‖µ(�(k+1)(p))‖22 = ‖Σ(�(k)(p))‖2F .

Consider the following threshold test:

Algorithm 2 ThresholdZTest(τ, S)
Require: A threshold τ > 0 and a (multi)set S = {x1, . . . , xq, y1, . . . , yq}.
1: Compute Z from the samples in S according to (46).
2: if Z > τ then return reject
3: return accept

Hereafter, for ε ∈ (0, 1], we consider the sequence (τk)k∈Z≥0 of real numbers, defined recursively as

τk
def=
{
ε2n
2 if k = 0
1

5000 · q
2τ2
k−1 if k ≥ 1

(50)

6In particular, note that due to the diagonal terms we have ‖Σ(p)‖F ≥
√
m for all p.
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In particular, writing a def= 1/5000, we have

τk = 1
aq2 ·

(
aq2ε2n

2

)2k

(51)

for k ≥ 0. We are now ready to state the main testing algorithm. The algorithm takes as input a
distribution p which is supported on {−1, 1}n, and is written with two unspecified parameters, k0
and q. The parameter k0 denotes the number of rounds and q denotes the sample complexity.

Algorithm 3 MeanTester(p, ε)
Require: A distribution p supported on {−1, 1}n.
1: For T = O(log k0), draw T sets S1, . . . ,ST of 2q′ i.i.d random samples from p, where q′ = q/(2T ).
2: for all 0 ≤ k ≤ k0 do
3: Set τk as in (50), and Nk ← 0.
4: for all 1 ≤ t ≤ T do
5: Convert the 2q′ samples from St to a (multi)set S(k)

t of samples from �(k)(p) as in (49).
6: if ThresholdZTest(τk,S

(k)
t ) returns reject then Nk ← Nk + 1.

7: if Nk > T/2 then return reject . Reject if the majority vote is reject
8: return accept . All k0 + 1 tests were successful

Theorem 4.3. Fix any k0 ∈ N. There exists an algorithm (Algorithm 3) which, given sample access
to an arbitrary distribution p on {−1, 1}n and a parameter ε ∈ (0, 1], has the following behavior:
• If p is the uniform distribution, the algorithm outputs accept with probability at least 2/3;
• If p satisfies ‖µ(p)‖2 ≥ ε

√
n, the algorithm outputs reject with probability at least 2/3.

These guarantees hold as long as

q & max

 1
ε2√n

,

( 1
ε2

) 2k0+1

2k0+2−2

 · log max(2, k0) .

The algorithm runs in time O
(
q · n2k0

)
.

In particular, by setting k0 = log logn, we obtain an algorithm for distinguishing the uniform
distribution from a distribution p on {−1, 1}n with ‖µ(p)‖2 ≥ ε

√
n which runs in time nΘ(logn) and

has sample complexity
O

(
max

{ 1
ε2√n

,
1
ε

}
· log log logn

)
.

Proof of Theorem 4.3: The proof will proceed as follows: we first show that, when p is the
uniform distribution U (the completeness case), then all k0 + 1 tests, when run on Lines 4–7 of
Algorithm 3 return accept with high probability. To do so, notice that Line 6 of Algorithm 3
considers samples from �(k)(U). Hence, we analyze the mean and variance of each �(k)(U), and
apply Chebyshev’s inequality to show that each call to Line 6 then returns accept with probability
at least 2/3.

Since we are performing a total of k0 outer loop iterations, the inner loop of T = O(log k0)
independent repetitions of the inner tester ThresholdZTest along with the majority vote ensure
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that each of the k0 tests then returns accept with probability at least 1− 1/(3k0), and therefore by
a union bound that all k0 outcomes are simultaneously accept with probability at least 2/3.

Lemma 4.4. For the uniform distribution U over {−1, 1}n and k ∈ N, we have

‖Σ(�(k)(U))‖2F ≤ 4 · 2k(n2k)2k .

Proof: Let K def= 2k+1. Since whenever x2
i = 1 for all i ∈ [n] when x ∼ U , and the xi’s are

independent and have zero-mean, we have that, for any ordered K-tuple (i1, . . . , iK) ∈ [n]K

E
x∼U

[
K∏
`=1
xi`

]
=
{

1 if each i` appears an even number of times
0 otherwise.

Therefore, ‖Σ(�(k)(U))‖2F is upper bounded by the number of ordered K-tuples of [n] in which each
index appears an even number of times. This in turn is at most

n(K − 1) · n(K − 3) · · · · · n =
(
n

2

)K/2
· K!

(K/2)! ≤
(
n

2

)K/2
· eK2 ·K

K/2 ,

which one can see as follows: from K variables, we may choose the value of the first (there are n
choices), and then pair this variables with an other one to which we assign the same value (there
are K − 1 such choices). We then recurse on the remaining K − 2 variables: this process, though
it may lead to double-counting, ensures that each value appears an even number of times in the
resulting K-tuple – as we always assign any chosen value to two variables.
Combining Fact 4.2 and Lemma 4.4, this implies

‖µ(�(k)(U))‖22 ≤ 4 · 2k−1(n2k−1)2k−1 = 2 · 2k
√

(n2k/2)2k . (52)

Lemma 4.5 (Completeness). There exists a large enough universal constant C > 0, such that for
any k ∈ N where 2k ≤ log2 n. If q ≥ C/ε2√n, then letting S = {x1, . . . ,xq,y1, . . . ,yq} be 2q i.i.d
samples from �(k)(U). Then,

Pr
S

[ThresholdZTest(τk,S) outputs accept] ≥ 2
3 . (53)

Proof: Given S, let Z be the random variable given by (46), so ThresholdZTest(τk,S) rejects
whenever Z > τk. From Lemma 4.1, (51) and (52), for all k ∈ N, E[Z] = ‖µ(�(k)(U))‖22 satisfies

‖µ(�(k)(U))‖22 ≤
τk
10 . (54)

The case of k = 0 is trivial, and the case k = 1 follows from our choice of q > C/ε2√n. As a result,
the left-hand side of (53) is at least

Pr
S

[Z > τk] ≤ Pr
S

[
|Z−E[Z]| > τk

2

]
≤ 4 Var[Z]

τ2
k

(55)

≤ 4
τ2
k

( 1
q2 ‖Σ(�(k)(U)‖2F + 4

q
‖µ(�(k)(U))‖22‖Σ(�(k)(U))‖2

)
(56)

≤ 4
τ2
k q

2 ·
τk+1
10 + 16

τ2
k q
· τk10 ·

√
τk+1
10 <

1
3 , (57)
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where we used Chebyshev’s inequality in (55), Lemma 4.1 in (56), and Fact 4.2 and τk+1 = aτ2
k q

2,
as well as (54) in (57).

Finally, note that when executing MeanTester(U , ε), the algorithm performs k0 checks in Line
6–7. By Lemma 4.5 and the fact that Line 7 outputs accept unless the majority of T = O(log k0)
iterations reject, MeanTester(U , ε) outputs accept with probability at least 2/3. For the soundness
case, the following lemma will be useful.

Lemma 4.6. Let p be a distribution supported on {−1, 1}m, satisfying
1. ‖µ(p)‖22 > 2τ , and
2. When S = {x1, . . . ,xq,y1, . . . ,yq} is set to 2q i.i.d samples from p,

Pr
S

[ThresholdZTest(τ,S) outputs accept] ≥ 1
3 .

Then ‖µ(�(p))‖22 ≥
1

482 · τ2q2.

Proof: Recall that ThresholdZTest(τ,S) outputs accept if Z ≤ τ , where Z is set according to
S by (46). Lemma 4.1 implies E[Z] = ‖µ(p)‖22 > 2τ , so

1
3 ≤ Pr

Z
[Z ≤ τ ] ≤ Pr

Z

[
|Z−E[Z]| ≥ E[Z]

2

]
≤ 4
‖µ(p)‖42

( 1
q2 ‖Σ(p)‖2F + 4

q
‖µ(p)‖22‖Σ(p)‖F

)
, (58)

where we used Chebyshev’s inequality for the last inequality. Hence, writing ‖µ(�(p))‖22 for ‖Σ(p)‖2F
by Fact 4.2. In particular, at least one of the two terms in the right-most side of (58) is at least 1/6,
and thus either ‖µ(�(p))‖22 ≥ τ2q2/6 or ‖µ(�(p))‖2 ≥ τq/48.

Lemma 4.7 (Soundness). There exists a large enough C > 0 such that setting

q ≥
(
C

ε2

) 2k0+1

2k0+2−2
,

the following holds. For any distribution p on {−1, 1}n with ‖µ(p)‖2 > ε
√
n, there is some k ∈

{0, . . . , k0} such that letting S = {x1, . . . ,xq,y1, . . . ,yq} be 2q i.i.d samples from �(k)(p),

Pr
S

[ThresholdZTest(τk,S) outputs reject] ≥ 2
3 .

Proof: Assume for the sake of contradiction that for every k ∈ {0, . . . , k0}, drawing S from �(k)(p)
satisfies ThresholdZTest(τk,S) outputs accept with probability at least 1/3. Then, by Lemma 4.6
and a simple induction using the definition of τk in (50) and the fact that a < 1/(482 · 2), every
k ∈ {0, . . . , k0 + 1} satisfies ‖µ(�(k)(p))‖22 ≥ 2τk. Furthermore, we always have ‖µ(�(k)(p))‖22 ≤ n2k ,
so by (51), we may lower bound ‖µ(�(k0+1)(p))‖22 as

2
aq2

(
aq2ε2n

2

)2k0+1

≥ q2k0+2−2(ε
√
n)2k0+2

(
a

2

)2k0+1−1
,

which contradicts the upper bound of n2k0+1 for the setting of q when C > 0 is a large enough
constant.

30



As per the foregoing discussion and Lemma 4.7, there exists a parameter 0 ≤ k ≤ k0 such that
ThresholdZTest(τk,S) returns reject with probability at least 2/3 when S is drawn from �(k)(p).
For this setting of k, the algorithm will return reject in Line 7 with probability at least 1− 1/(3T ) >
2/3. Finally, from the above analysis, the sample complexity is 2T times q′, which is set high enough
to satisfy the constraints of Lemma 4.5 and Lemma 4.7.

4.1 Application to Gaussian Mean Testing

Theorem 4.8. There exists an algorithm which, given q i.i.d. samples from an arbitrary Gaussian
distribution p on Rn and a distance parameter ε ∈ (0, 1], has the following behavior:

• If p is the standard Gaussian G(0n, In), then it outputs accept with probability at least 2/3;
• If p is some G(µ,Σ) with ‖µ‖2 > ε (and any Σ), then it outputs reject with probability at
least 2/3.

These guarantees hold as long as

q ≥ C ·
√
n

ε2 · log log logn ,

where C > 0 is an absolute constant, and the algorithm runs in time poly(q, nlogn). Moreover, any
algorithm for this task must have sample complexity Ω

(
n1/2/ε2

)
.

Proof: The idea is to reduce the above question to `2 mean testing over {−1, 1}n, and invoke The-
orem 4.3. The natural approach is, given a sample x ∈ Rn from the unknown Gaussian p, to convert
it to y ∈ {−1, 1}n by setting yi

def= sign(xi) for all i ∈ [n]. This idea, used e.g., in [CKM+19] in the
case of identity-covariance Gaussian distributions, clearly maps the standard Gaussian G(0n, In) to
the uniform distribution U on {−1, 1}n; therefore, the crux is to argue about the soundness case,
when ‖µ(p)‖2 > ε: we will obtain a distribution q on {−1, 1}n with arbitrary covariance matrix,
and need to show that ‖µ(q)‖2 & ε.

Let q denote the distribution on {−1, 1}n obtained in the above fashion from p = G(µ,Σ), and
note that the linear-time transformation maps a sample from p to a sample from q. Further, it is
easy to check that

‖µ(q)‖22 =
n∑
i=1

E
y∼q

[yi]2 =
n∑
i=1

(2 Prx∼p[ xi > 0 ]− 1)2 =
n∑
i=1

(
Erf
(

µi√
2Σii

))2

and, from a relatively straightforward analysis of the error function Erf, we get that Erf(x)2 ≥
Erf(1)2 ·min(x2, 1) > 2

3 min(x2, 1) for all x ∈ R. Therefore, we get, whenever ‖µ(p)‖2 > ε, that

‖µ(q)‖22 >
1

max1≤i≤n Σ2
ii

· ε
2

3 .

Thus, it suffices to check (with high probability, say 11/12) that (i) all Σii = Varp[xi] ≤ Ex∼p
[
x2
i

]
are at most 2, and (ii) call the mean testing algorithm (Algorithm 3) on q with parameter ε/(2

√
3n).

The first step can be done coordinate-wise (checking each Ex∼p
[
x2
i

]
by taking the empirical median,

and concluding overall by a union bound over the n estimates)7 with O(logn) samples in total;
7In more detail, for an arbitrary univariate Gaussian X ∼ G(µ, σ), testing E

[
X2] ≤ 1 vs. E

[
X2] > 2 only takes,

by considering the median, a constant number of samples (independent of µ, σ).
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the second will cost O(
√
n
ε2 · log log logn) samples and be correct with probability at least 2/3 by

the foregoing discussion, so overall the test is correct with probability at least 7/12. Repeating
independently a constant number of times and taking a majority vote then bring the success
probability to the desired 2/3.
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A Proof of Lemma 4.1
We start by computing the second moment of the statistic:

E
[
(Z(p))2

]
= E

[〈
X̄, Ȳ

〉〈
X̄, Ȳ

〉]
=

∑
1≤i,j≤m

E
[
X̄iX̄j

]
E
[
ȲiȲj

]
=

∑
1≤i,j≤m

E
[
X̄iX̄j

]2
=

m∑
i=1

E
[
X̄2
i

]2
+ 2

∑
i<j

E
[
X̄iX̄j

]2
= m

q2 + 2q − 1
q2 ‖µ(p)‖22 + (q − 1)2

q2 ‖µ(p)‖44 + 2
∑
i<j

E
[
X̄iX̄j

]2
≤ m

q2 + 2
q
‖µ(p)‖22 + ‖µ(p)‖44 + 2

∑
i<j

E
[
X̄iX̄j

]2
. (59)

The final equality follows since, for all i ∈ [m],

q2 E
[
X̄2
i

]
=

q∑
k=1

E
[
X(k)
i

2
]

+ 2
∑

1≤k<`≤q
E
[
X(k)
i X(`)

i

]
= q + q(q − 1)µ(p)2

i (60)

For any i < j, let σ(p)ij
def= Ex∼p [xixj ]. We have

E
[
X̄iX̄j

]
= 1
q2

∑
1≤k,`≤q
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i X(`)

j
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= 1
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i
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q
σ(p)ij + q − 1

q
µ(p)iµ(p)j ,

so that

2
∑
i<j
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Combining this with (47) and (59), we have

Var[Z(p)] = E
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−E [Z(p)]2 ≤ m
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(61)
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We use the Cauchy-Schwarz inequality to simplify the last term:

Var[Z(p)] ≤ m
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q
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Letting Σ(p) def= Ex∼p
[
xxT

]
, we have

Σ(p)ij =
{

1 if i = j

σ(p)ij otherwise

and thus can rewrite the above as

Var[Z(p)] ≤ 1
q2 ‖Σ(p)‖2F + 2

q
‖µ(p)‖22 + 2

q
‖µ(p)‖22

√
‖Σ(p)‖2F − Tr[Σ(p)]

≤ 1
q2 ‖Σ(p)‖2F + 2

q
‖µ(p)‖22 + 2

q
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≤ 1
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q
‖µ(p)‖22‖Σ(p)‖F ,

as desired.
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