
UTIME Easy-witness Lemma & Some Consequences
Anant Dhayal
University of California San Diego, La Jolla, CA, USA
adhayal@eng.ucsd.edu

Russell Impagliazzo
University of California San Diego, La Jolla, CA, USA
russell@eng.ucsd.edu

Abstract

We prove an easy-witness lemma (EWL) for unambiguous non-deterministic verfiers. We show that if
UTIME(t) ⊂ C, then for every L ∈ UTIME(t), for every UTIME(t) verifier V for L, and for every x ∈ L,
there is a certificate y satisfing V (x, y) = 1, that can be encoded as a truth-table of a C circuit.
Our technique is simple compared to the NTIME EWLs [12, 38, 26], and yields fine-grained results
in terms of the time and size parameters. It also works for all typical non-uniform circuit classes
without any additional machinery. Using this EWL we prove a Karp-Lipton [20] style theorem (KLT)
for UEXP. We show that UEXP ⊂ SIZE(poly) =⇒ UEXP = MA. We also prove similar EWL and KLT for
UEXP ∩ Co-UEXP and FewEXP.

Circuit lower bound techniques that entail natural properties of Razborov and Rudich [31] are
called natural, and are known to contradict widely believed cryptographic assumptions in the course
of proving strong lower bounds. Thus attempts have been made to understand un-natural techniques.
Natural properties satisfy three conditions: usefulness, constructiveness, and largeness. Usefulness
is unavoidable in any lower-bound technique. In [36, 29] it was shown that obtaining NEXP lower
bounds is equivalent to obtaining P-constructive (with log n advice) properties.

In this paper we consider properties that avoid largeness. We introduce a new notion called
unique properties, which is opposite to natural properties in the sense of largeness. A unique
property contains exactly one element of each input length (that is a power of 2). We show that
P-constructivity and uniqueness (opposite of largeness) both are unavoidable for certain lower bounds.
We prove, UEXP∩ Co-UEXP 6⊂ C if and only if there is a P-constructive unique property against C. We
also establish equivalences between lower bounds against UEXP (with and without advice), and the
existence of different restrictions of P-constructive unique properties that use advice.

The “derandomization (of BPP) from uniform/non-uniform lower bounds for Γ” type of results
are known for Γ = EXP, NEXP, NEXP ∩ Co-NEXP, REXP [28, 4, 16, 12, 36]. Using the above equivalences
we obtain a super-set of these results that also includes the classes UEXP, UEXP ∩ Co-UEXP, ZPEXP.

One important application of the NEXP EWL and KLT is the connection between fast (SAT and
learning) algorithms and NEXP lower bounds [38, 8, 29]. Using our UTIME EWL and KLT we derive
connections between fast unambiguous algorithms and UTIME lower bounds. Finally we show results
that generalize the lower bound frameworks – that work only for unrestricted Boolean circuits –
such that they work for any restricted typical circuit class. This will help us to get lower bounds
against any typical circuit class from fast algorithms that work for that particular class (and not for
the super-class of unrestricted Boolean circuits).

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Circuit complexity

Keywords and phrases easy-witness lemma, lower bounds, unique-properties, derandomization

Funding Work supported by the Simons Foundation and NSF grant CCF-1909634

Acknowledgements We want to thank Marco Carmosino, Sasank Mouli and Sam McGuire for useful
discussions, and for comments and corrections on the manuscript.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2019)

mailto:adhayal@eng.ucsd.edu
mailto:russell@eng.ucsd.edu

2 UTIME Easy-witness Lemma & Some Consequences

1 Introduction

We often think of algorithm design and lower bounds as being antithetical, but there have
been a series of results showing that in certain circumstances, efficient algorithms imply
circuit lower bounds [12, 38, 39, 37, 26, 19]. Unfortunately, most of these results are only
known to show circuit lower bounds or conditional lower bounds in relatively large complexity
classes such as NEXP or ENP (although [26] extends this to scaled-down versions of these
classes). This raises the question of whether similar lower bounds for other classes, ideally
deterministic or randomized classes such as EXP or BPEXP, could be obtained through improved
algorithms. Here, we consider possible extensions to the class UEXP of languages recognized
by unambiguous non-deterministic machines, and to related classes. Since UEXP lies between
EXP and NEXP, lower bounds for UEXP based on algorithms would be progress towards making
similar connections for EXP.

A key technique used to make these connections is the “easy witness technique” ([18,
12, 26]). The easy witness technique relates the circuit complexity of witnesses for non-
deterministic algorithms to the circuit or algorithmic complexity of decision problems. We
give easy witness lemmas for UEXP and related classes; these are much simpler than the
analogous results for NEXP, which needed a rather indirect argument. We then explore
consequences of these easy witness lemmas to normal forms for circuit lower bounds in these
classes, in terms of useful properties in the sense of Razborov and Rudich ([31], see also [36]).
We show how a combination of faster learning algorithms and SAT algorithms for a circuit
class would imply a circuit lower bound for UEXP.

Another application of the easy witness technique has been to prove “Karp-Lipton” style
theorems ([20]), relating the non-uniform and uniform complexities of classes. An example is
Meyer’s Theorem from [20]: EXP ⊂ P/poly =⇒ EXP = Σ2. An extension to NEXP was given
in [12], using the easy witness technique. We give analogous Karp-Lipton style results for
UEXP and related classes (Section 3).

More particularly, we derive analogous EWL and KLT for UTIME and UTIME ∩ Co-UTIME.
Our results are fine-grained in terms of the time and size parameters, and work for all typical
non-uniform circuit classes. We look at EWL as a special search to decision reduction, where
the output of the search problem is canonical in some natural way. For language L and
non-deterministic verifier V for L, we define the language

Lewl(V) = {(x, i) | ∃y [V (x, y) = 1 ∧ yi = 1 ∧ ∀(z <l.o. y) V (x, z) = 0]} (1)

where z <l.o. y stands for “z is lecigraphically smaller than y”, yi is the short-hand for the
ith bit of the string y, and the subscript ewl(V) in Lewl(V) stands for “easy-witness language
for V ”. We prove that, for L ∈ UTIME(t), and UTIME(t) verifier V for L, Lewl(V) ∈ UTIME(t).
Thus, Lewl(V) also has circuits from any class C that L has, and we get the desired EWL,
which in turn gives the desired KLT : UEXP ⊂ P/poly =⇒ UEXP = MA. Similar results for
related classes are also derived.

1.1 Useful Properties
Razborov and Rudich [31] defined the concept of natural property as a formalization of a
barrier that circuit lower bounds need to circumvent. Natural Proofs (or properties) satisfy
three conditions: they are constructive (an efficient algorithm A is embedded in them),
have largeness (A accepts a large fraction of strings), and are useful (A rejects all strings
which are truth tables of small circuits). Circuit lower bound techniques that entail natural
properties are called natural, and are known to contradict widely believed cryptographic

A. Dhayal et al. 3

assumptions in the course of proving strong lower bounds. Thus they are self-limiting, and
in order to prove stronger circuit lower bounds the techniques should be un-natural in some
sense. Unfortunately, the vast majority of known circuit lower bound techniques are natural
and can’t be applied even to low-level complexity classes such as TC0 [27, 23, 25].

Williams [36] showed, using the easy witness lemma, that any lower bound for a problem
in NEXP implies a property with two of the conditions (constructivity and usefullness) of
Razborov and Rudich, but not necessarily the third (largeness). So while natural properties
for circuit classes cannot exist if there are strong pseudo-random functions in the class, it
seems likely that dropping largeness means that such properties do exist.

Our results (Section 4): To understand properties that avoid largeness, we look at
properties that go to the extreme in the other direction. We introduce a new notion called
unique properties, those that contain exactly one function of each input length. Useful,
unique properties are implicitly proving a circuit lower bound for a specific function: the one
function that has the property, but might not explicitly spell out which function the lower
bound holds for.

We extend the proofs in [36, 29] to show that: obtaining NEXP lower-bounds is equivalent
to obtaining useful NP-unique (with logn advice) properties; and obtaining NEXP ∩ Co-NEXP
lower-bounds is equivalent to obtaining useful NP-unique (without advice) properties. The
next task is to prove equivalence with P-unique properties. So in attempt to understand
P-unique properties better, we take the next obvious step and move to UEXP lower bounds.

We show that P-constructivity and uniqueness both are unavoidable for UEXP lower bounds.
We prove, UEXP ∩ Co-UEXP 6⊂ C if and only if there is a P-unique property against C. We also
establish equivalences between lower bounds against UEXP (with and without advice), and
the existence of different restrictions of P-unique properties that use advice.

1.2 Derandomization from Lower Bounds
Apart from proving lower bounds and showing limitations of the current lower bound
techniques, another interesting line of research that has received a lot of attention is, the
study of the consequences of lower bounds in a hypothetical world where they exist. One way
in which this world is better is – non-tirivial derandomization [28, 4, 16, 12, 36, 34, 32, 15, 5]
– which otherwise seems very difficult to achieve. Lower bounds can be viewed as hardness (of
a certain class over the other), which when fed to the “hardness to randomness” connections,
results in derandomization.

The following result of [16]

EXP 6= BPP =⇒ ∀ε > 0 BPP ⊂ io-Heur-DTIME(2n
ε

) (2)

was generalized in [36] by replacing EXP with NEXP or REXP, and DTIME with NTIME or
ZPTIME (using Ko’s Theorem [22]). In the process they also proved several intermediate
results including a connection between, the non-existence of P-natural properties, and the
derandomization of ZPEXP and REXP. Generalizing this connection and other intermediate
results we get a cleaner and more general set of “lower bounds to derandomization” results.

Our results (Section 5): Generalizing the definition of ZPTIME, for C = N, R, U we define
ZCTIME(t) to be the class of languages that are accepted by CTIME(t) machines, that on
any input and any computation branch, either output the correct answer, or output ‘?’
(don’t know). With the formal definition of ZCTIME in the next section, we will also see
that ZCTIME = CTIME ∩ Co-CTIME. Even though they are equal, in the case of non-uniform
advice, ZCTIME can be used to capture more information in certain cases – for example,
when languages L and L have CTIME(t)/a algorithms A and A′ that use the same advice,

4 UTIME Easy-witness Lemma & Some Consequences

L ∈ ZCTIME(t)/a is always true but L ∈ (CTIME(t) ∩ Co-CTIME(t))/a is not (unless A and A′
complement each other on every advice string - correct or incorrect). So we need to settle
with L ∈ CTIME(t)/a ∩ Co-CTIME(t)/a, which is a loss of the information – that both the
algorithms use the same correct advice. Also, the presentation is not clean.

We show the following for C = N, R, U:
(a) CEXP 6⊂ SIZE(poly) or CEXP 6= EXP =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)/nε
(b) CEXP 6= BPP =⇒ ∀ε > 0 BPP ⊂ io-Heur-ZCTIME(2nε)/nε
(c) CEXP 6= MA =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)/nε
(d) ZCEXP 6⊂ SIZE(poly) or ZCEXP 6= EXP =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)
(e) ZCEXP 6= BPP =⇒ ∀ε > 0 BPP ⊂ io-Heur-ZCTIME(2nε)
(f) ZCEXP 6= MA =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)

To the best of our knowledge: These result were not know for C = U. For C = R only (a)
and (b) were known [36], but not the others. For C = N stronger versions of (a),(c),(d),(f)
were known [12], and (b) was known [36], but not (e).

1.3 Fast algorithms to non-uniform lower bounds
Other than proving uniform and non-uniform lower bounds researches have also shown
interest in improving upper-bounds by designing better algorithms. Ckt-SAT is the canonical
NP complete problem [7, 24] and no algorithm faster than the trivial brute-force algorithm is
known to solve Ckt-SAT. Another interesting question is, whether non-determinism helps in
solving Ckt-TAUT (a Co-NP complete problem) faster than the trivial brute-force algorithm.
Negative answer to these questions lead to the formulation of several conjectures [14, 13, 6].

In [38] they show that if we get super-polynomial savings in any non-deterministic
algorithm for Ckt-TAUT of polynomial size circuits then NEXP 6⊆ SIZE(poly). This shows that
designing fast SAT algorithms is at least as hard as proving non-uniform circuit lower bounds.

Our results (Section 6): We show that (using UTIME EWL and KLT), if unambiguous
non-determinism helps in solving Ckt-SAT, Ckt-TAUT and other related problems, in faster
than the trivial brute-force algorithms, then we get lower bounds for UTIME (with advice).
As fast algorithms (that beat brute-force with a good margin) have only been designed for
restricted classes, we give results that generalize the lower bound frameworks – that work
only for unrestricted Boolean circuits – such that they work for any restricted typical circuit
class (to get lower bounds against them). The current best algorithms for these restricted
classes are still not good enough to yield unconditional lower bounds, but its good to have
these generalizations, as progress in the restricted setting seems more likely than in the
unrestricted setting.

2 Preliminaries

Notations: We use t to denote time-constructible functions n ≤ t(n) ≤ 2O(n), Γ for uniform
complexity classes, a for advice functions 0 ≤ a(n) ≤ poly(n), s for circuit sizes (number of
wires) n ≤ s(n) ≤ 2n – unless a new range is declared during the usage. For language L we
use Ln = {x | x ∈ L ∧ |x| = n} to denote the nth-slice of L. For circuit C, we use tt(C) to
denote its truth-table, |C| to denote its size.

Uniform classes: We assume that the reader is familiar with the standard complexity
classes such as P, NP, RP, UP, BPP, ZPP, AM, MA, PH,Σ2,Π2 (see [3]) and their corresponding com-
plexity measures, DTIME, NTIME, RTIME, UTIME, BPTIME, ZPTIME. For C = D, N, R, U, BP, ZP, CE
denotes the class CTIME(2O(n)), and CEXP denotes the class ∪c≥0CTIME(2O(nc)). CTIME(t)

A. Dhayal et al. 5

denotes the class of languages accepted by CTIME machines that run in O(t) time. We assume
familiarity with SAT (satisfiability), TAUT (tautology), k-SAT, Σ2-SAT and Π2-SAT.

Circuit classes: We assume basic familiarity with Boolean circuits and their sub-classes.
We use C to denote any typical non-uniform circuit class, i.e., any class from the set
{AC0, ACC0, TC0, NC1, NC, P/poly}. All these circuit classes are of polynomial size. We use C(s)
to denote the class of O(s)-size C circuits. For truth-table tt, we use cktC(tt) to denote its
exact C circuit complexity – the minimum size of any C circuit whose truth-table is the string
tt. In the case of unrestricted Boolean circuits, instead of C(s) and cktC(tt), we use SIZE(s)
and ckt(tt).

Non-uniform classes: L ∈ Γ/a if there exists a Γ Turing machine M , and advice
sequence {an}n∈N satisfying ∀n |an| = a(n), such that for any n-length input x, x ∈ L ⇐⇒
M(x, an) = 1. For semantic classes, the machine M only needs to satisfy the semantic
promise on the advice sequence {an}n∈N (and not on all advice strings).

Heuristic classes: For uniform/non-uniform class Λ, L ∈ Heur-Λ if ∃L′ ∈ Λ, such that
for all polynomially samplable distribution D, ∀n Prx∼D,|x|=n[Ln(x) = L′n(x)] ≥ 1− 1

n .
Infinitely-often classes: For uniform/non-uniform, heuristic/non-heuristic class Λ, L ∈ io-

Λ if ∃L′ ∈ Λ, and an infinite subset S ⊂ N, such that n ∈ S =⇒ Ln = L′n.
Zero-error classes: L ∈ ZCTIME(t) if ∃M , that for input (x, y) with |x| = n and |y| = t(n)

runs in time t(n) for ∀n ∈ N, and whose output lies in {1, ?} if x ∈ L, and in {0, ?} if x 6∈ L.
Additionally, M satisfies the condition:
(a) Uniqueness for C = U: Σy:M(x,y)∈{0,1}1 = 1
(b) Largeness for C = R: Pry[M(x, y) ∈ {0, 1}] ≥ 2

3
(c) Existence for C = N: Σy:M(x,y)∈{0,1}1 ≥ 1

Note that ZRTIME = ZPTIME, and for C = N, R, U, ZCTIME(t) = CTIME(t) ∩ Co-CTIME(t)
follows by a similar argument that shows ZPTIME(t) = RTIME(t) ∩ Co-RTIME(t).

Seeds for ZCE: ZCE has seeds in C if for every ZCE predicate V , there is a k such that for
all x, there is a |x|k-size C circuit Cx such that V (x, tt(Cx)) ∈ {0, 1}.

Hitting-sets for CE: CE has l-size hitting-sets in C if for every CE predicate V , ∃k ∀n ∈ N,
there is an nk-size C circuit Cn such that tt(Cn) when partitioned into l strings {str1, . . . , strl}
of equal lengths, satisfies ∀(x : |x| = n ∧ x ∈ L) ∃(i ∈ [1, l]) V (x, stri) = 1.

Witness: A non-deterministic verifier V has witness in s-size C circuits, if for every x ∈ L,
there is a s(|x|)-size C circuit Cx, such that V (x, tt(Cx)) = 1.

Oblivious witness: Let y1, . . . , y2n denote the n-length strings arranged in the lexico-
graphical order. A non-deterministic verifier V has oblivious witness in s-size C circuits, if
∀n ∈ N, there is a s(n)-size C circuit Cn, such that tt(Cn) when partitioned into 2n strings
{str1, . . . , str2n} of equal lengths, satisfies ∀(i ∈ [1, 2n]) yi ∈ L =⇒ V (yi, stri) = 1. For i
with yi 6∈ L, stri is the all 0s string.

Circuit lower bounds: There are two types of lower bounds: (i) NEXP 6⊂ SIZE(poly), i.e., an
L ∈ NEXP satisfies ∀k L 6∈ SIZE(nk); (ii) ∀k NE 6⊂ SIZE(nk), i.e., a fix slice of NEXP (in this case
NE) has Lk for each k, such that Lk 6∈ SIZE(nk). NEXP 6⊂ SIZE(poly) ⇐⇒ ∀k NE 6⊂ SIZE(nk):
Forward direction follows from a simple padding argument, and reverse uses a complete
language for NE. Same holds for DTIME. But for ZNTIME, UTIME, ZUTIME, RTIME, ZRTIME,
BPTIME only the forward direction holds and these two lower bounds are not known to be
equivalent (due to the lack of a complete problem). In this paper we only focus on the case
(i), but our results can be easily extended to any reasonable lower bound (including (ii)).

Useful properties: We define a generalized version of the natural properties.

6 UTIME Easy-witness Lemma & Some Consequences

I Definition 1 (Useful uniform properties). A Γ algorithm A is a Γ-C property if it satisfies the
first condition (stated below) on the inputs that are powers of 2 (interpreted as truth-tables).
A is said to be useful against s-size C circuits if it satisfies the second condition.
1. a. Uniqueness for C = U: ∀n ∈ N Σx:|x|=2n∧A(x)=11 = 1

b. Largeness for C = R: ∀n ∈ N Prx:|x|=2n [A(x) = 1] ≥ 1
2n

c. Existence for C = N: ∀n ∈ N Σx:|x|=2n∧A(x)=11 ≥ 1
2. Usefulness: for infinitely many n ∈ N, ∀(x : |x| = 2n) A(x) = 1 =⇒ cktC(x) > s(n)

Note that, in the case where s is poly(n), the same algorithm A should be useful
against nk for all k. That is, for each k, there should be infinitely many n ∈ N, such that
∀(x : |x| = 2n) A(x) = 1 =⇒ cktC(x) > nk.

I Definition 2 (Useful properties that use advice). A Γ/a algorithm A is a Γ/a-C property if
it satisfies the first condition of the Definition 1 on an advice sequence {an}n∈N that satisfies
∀n |an| = a(n). A is said to be useful against s-size C circuits if it satisfies the second
condition of the Definition 1 on the advice sequence {an}n∈N. For C = U, based on how A
behaves on the advice sequences other than {an}n∈N, it is divided into the following categories:
1. Γ/a-strong-unique or Γ/a-u=1: ∀n ∈ N ∀(an : |an| ≤ a(n)) Σx:|x|=2n∧A(x)/an=11 = 1
2. Γ/a-mild-unique or Γ/a-u≤1: ∀n ∈ N ∀(an : |an| ≤ a(n)) Σx:|x|=2n∧A(x)/an=11 ≤ 1
3. Γ/a-weak-unique or Γ/a-u∗: no restriction

3 EWL and KLT for UTIME, ZUTIME, and FewTIME

We derive EWL using a specific search to decision reduction for UTIME (Section 3.1). Using
this reduction we give the EWL and KLT for UTIME (Section 3.2). We describe similar results
for ZUTIME (Section 3.3) and FewTIME (Section 3.4).

3.1 Search to decision reduction for UTIME

For L ∈ NP and verifier V for L, there is a standard PNP algorithm for the corresponding
search problem. This algorithm can be easily made into an algorithm for Lewl(V). So if
P = NP, then Lewl(V) ∈ P. For L ∈ NEXP and verifier V for L, such results are not known, i.e.,
its not known whether NEXP = EXP yields an EXP algorithm for Lewl(V). In [12] it was shown
that Lewl(V) ∈ EXP if, NEXP = AM or NEXP has witness in SIZE(poly). It has been shown that
the later condition is equivalent to NEXP = MA (due to [12, 36] and van Melkebeek), and since
MA ⊆ AM, NEXP = AM is the weakest collapse we need to put Lewl(V) in EXP.

In this section we show that for L ∈ UTIME(t) and unambiguous verifier V for L, Lewl(V) ∈
UTIME(t). We also show why it would be difficult to extend this to all ambiguous verifiers.

I Theorem 3. For L ∈ UTIME(t) and unambiguous verifier V for L, Lewl(V) ∈ UTIME(t).
Moreover if this statement is true for every non-deterministic verifier (ambiguous and
unambiguous), then ZNTIME(t) = ZUTIME(t).

Proof. Algorithm for Lewl(V) : For input (x, i), guess a certificate y and simulate V (x, y).
Accept if V accepts and the ith bit of y is 1, otherwise reject. This algorithm is correct and
unambiguous as V is unambiguous. It runs in time O(t(|x|)) ≤ O(t(|x|+ |i|)).

The moreover part : For L ∈ ZNTIME(t), let V1 and V0 be its NTIME(t) and Co-NTIME(t)
verifiers respectively. Consider the UTIME(t) language L′ = {0, 1}∗. Using V1 and V0 we
construct a verifier V ′ for L′ with the following property – if the first bit of the certificate is
i, V ′ simulates Vi using the rest of the certificate. Using a UTIME(t) algorithm A for L′ewl(V ′)
we give a UTIME(t) algorithm for L. On input x, simulate A on (x, 1). If A accepts then we

A. Dhayal et al. 7

know that x ∈ L because then there is no positive certificate for V ′ that starts with 0 (or in
other words, no positive certificate for V0). So we accept iff A accepts. Similarly, there is a
UTIME(t) algorithm for L, and thus L ∈ ZUTIME(t). J

3.2 EWL and KLT for UTIME

Using the search to decision reduction from Theorem 3 we derive EWL for unambiguous
verifiers of languages in UTIME(t). Here again we see why it might be difficult to extend this
to all ambiguous verifiers. Using the EWL we also get a KLT for UTIME.

I Theorem 4. The following statements are true for constants c and k:
(a) For time-constructible t ∈ 2O(n), UTIME(t) ⊆ C(nk) implies that all UTIME(t) verifiers

have oblivious witness in C(nk). Moreover if this statement is true for every non-
deterministic verifier (ambiguous and unambiguous) of every UTIME(t) language, then
ZNTIME(t) ⊆ DTIME(2nk+1

t).
(b) If UTIME(2nc)/a ⊆ C(nk), then UTIME(2nc)/a has oblivious witness in C(nck) for all

verifiers that are unambiguous given the correct advice.
(c) UEXP/a ⊆ SIZE(poly) =⇒ UEXP/a = MA/a.

Proof. Proof of (a): For L ∈ UTIME(t), let x ∈ L be an n-length input, and V be an
unambiguous verifier for L whose certificate length is ≤ d · t for some constant d. The
UTIME(t) algorithm of Lewl(V) from Theorem 3 puts it into C(mk) for input size m. The C
circuit for input length m = (|x|+ log t+ log d) ∈ O(n) is the oblivious witness circuit for
n-length inputs.

The moreover part: For L ∈ ZNTIME(t), construct the same verifier V ′ for the language
L′ = {0, 1}∗ as in the proof of Theorem 3. As L′ ∈ UTIME(t), V ′ will have witness in C(nk).
Now a DTIME(2nk+1

t) algorithm for L is – for n-length input x, go through all the circuits in
C(nk logn) one at a time, compute their truth-tables tt, and then compute V ′(x, tt). Due to
the way V ′ is constructed, all of its positive certificates have the same first bit. If V accepts
on any tt whose first bit is 1, then x ∈ L. Else x /∈ L.

Proof of (b): It is analogous to the proof of (a).
Proof of (c): Let L ∈ UEXP/a, and V be an unambiguous (given the correct advice)

verifier V for L that runs in time O(2nc) for some constant c. From the assumption
UEXP/a ⊆ SIZE(poly) and part (b), V has witness in SIZE(nck) for some k.

Using this we first give an EXP/a algorithm for L. On n-length input x, go through all
the circuits in SIZE(nck logn) one at a time, compute their truth-tables tt, and then compute
V (x, tt). Accept if V accepts for any tt, else reject. This is an EXP/a algorithm as simulation
of V needs the original advice.

Once we get UEXP/a = EXP/a, EXP/a ⊆ SIZE(poly) gives UEXP/a = MA/a [20]. J

3.3 EWL and KLT for ZUTIME

We extend the techniques from the previous section to give similar results for ZUTIME. Note
that EWL and KLT for ZNTIME are not known. The main difference in the proof of search to
decision reduction is: we also show Lewl(V) ∈ UTIME(t) using unambiguous verifiers of L and
L both. Then, EWL and KLT follow from a similar argument as in the previous section.

I Theorem 5. The following statements are true for constants c and k:
(a) For L ∈ ZUTIME(t) and unambiguous verifier V for L, Lewl(V) ∈ ZUTIME(t). Moreover if

this statement is true for all non-deterministic verifiers (ambiguous and unambiguous),
then ZNTIME(t) = ZUTIME(t).

8 UTIME Easy-witness Lemma & Some Consequences

(b) For time-constructible t ∈ 2O(n), if ZUTIME(t) ⊆ C(nk), then ZUTIME(t) has oblivious
witness in C(nk) for all unambiguous verifiers. Moreover if this statement is true
for all non-deterministic verifiers (ambiguous and unambiguous), then ZNTIME(t) ⊆
DTIME(2nk+1

t).
(c) If ZUTIME(2nc) ⊆ C(nk), then ZUTIME(2nc) has oblivious witness in C(nck) for all unam-

biguous verifiers.
(d) ZUEXP ⊆ SIZE(poly) =⇒ ZUEXP = MA.

Proof. Proof of (a): From the above theorem we get that Lewl(V) ∈ UTIME(t). The part
remaining to show is Lewl(V) ∈ UTIME(t). Let V ′ be an unambiguous verifier for L. For
input (x, i), guess a bit z. If z = 0, simulate V ′ on x and accept if it accepts. If z = 1, guess
a certificate y and simulate V (x, y). Accept if V accepts and the ith bit of y is 0. This is
a UTIME(t) algorithm because for any x only one of the two branches – z = 0 and z = 1 –
accepts, and they both accept unambiguously.

The moreover part: As {0, 1}∗ ∈ ZUTIME(t), the moreover part’s proof is the same as that
in Theorem 3.

Proofs of (b), (c) & (d): The proofs are analogous to the proofs of (a), (b), & (c) of the
above theorem, respectively. J

3.4 EWL and KLT for FewTIME

One variant of UTIME(t) is FewTIME(t). L ∈ FewTIME(t), if there exists a constant c and a
non-deterministic verifier V , such that the number of accepting certificates on any input is
bounded by tc. The search to decision reduction of UTIME doesn’t work here, because we
don’t know the exact number of accepting certificates (and only know an upper bound). We
get rid of this problem, by either assuming UE = Co-UE (a clever induction argument), or by
using advice (that encodes the total number of accepting certificates for all the 2n inputs).
After the search to decision reduction is obtained, arguments for the EWL and the KLT are
similar to the ones used for UTIME.

I Theorem 6. The following statements are true if UE = Co-UE:
1. FewE = UE = ZUE
2. L ∈ FewE =⇒ ∀(FewE verifier V for L) Lewl(V) ∈ UE
3. EWL : UE ⊂ C =⇒ every FewE verifier has oblivious witness in C
4. KLT : UE ⊂ SIZE(poly) =⇒ FewE ⊂ MA

Proof. Proofs of 1 & 2: For any L ∈ FewE, let V be a verifier whose number of accepting
certificates, and running time, both are bounded by 2cn, for some constant c. For p ∈ [1, 2cn]
we construct a new language Lp = {x | p ≤

∑
y V (x, y) ≤ 2cn}. Using induction we prove

that ∀pLp has 22cn(2cn− p+ 1) UTIME algorithm. Its easy to check that L2cn has 22cn UTIME
algorithm – guess 2cn distinct accepting certificates. Now assuming that L2cn , . . . , Lp+1
satisfy the induction condition we give a 22cn(2cn − p+ 1) UTIME algorithm for Lp.

Under the assumption UE = Co-UE, Lp+1 and Lp+1 both have 22cn(2cn − p) UTIME
algorithms. On input x, guess a non-deterministic bit z. If z = 1, run the UTIME algorithm
for Lp+1 on x, and accept if it accepts (since Lp+1 ⊆ Lp). If z = 0, run the UTIME algorithm
for Lp+1 on x. If it accepts, then the only way x could be in Lp is by

∑
y V (x, y) = p.

So guess p distinct accepting certificates of V on x. Accept if V accepts all of them.
This is an unambiguous algorithm because only one branch, either z = 0 or z = 1, leads
to acceptance, and both branches are unambiguous. The total time of this algorithm is
1 + 22cn(2cn − p) + p2cn ≤ 22cn(2cn − p+ 1) since p < 2cn.

A. Dhayal et al. 9

Now L, which is essentially L1, belongs to UTIME(23cn). For Lewl(V), guess p and run
the UTIME algorithms for Lp and Lp+1 on x. If both of them accept, then we know that
p is the exact number of accepting certificates of V on x. So for input (x, i) of Lewl(V),
guess p distinct accepting certificates and output the ith bit of the lexicographically smallest
certificate. This is a UTIME(23cn) algorithm.

Proof of 3: From 2, we know that for every L ∈ FewE, and every FewE verifier V for L,
Lewl(V) ∈ UE. Thus, Lewl(V) ∈ C, and V has oblivious witness in C (similar argument as in
Theorem 4).

Proof of 4: This directly from the UTIME KLT (Theorem 4). J

I Theorem 7. The following statements are true (unconditionally):
1. FewE/O(n) = UE/O(n) = ZUE/O(n)
2. L ∈ FewE/O(n) =⇒ ∀ (FewE/O(n) verifier V for L) Lewl(V) ∈ ZUE/O(n)
3. EWL : UE/O(n) ⊂ C =⇒ every FewE/O(n) verifier has oblivious witness in C
4. KLT : UE/O(n) ⊂ SIZE(poly) =⇒ FewE/O(n) ⊂ MA/O(n)

Proof. Proofs of 1 & 2: For L ∈ FewE/O(n), and FewE verifier V for L, we give a ZUE/O(n)
algorithm for L. The advice of the ZUE algorithm is – the a ∈ O(n) original advice used
by the fewe algorithm – plus extra O(n) bits to encodes the sum of the total number of
accepting certificates for V on all n length inputs, let’s call this number p. On any n length
input x, guess a set S of p pairs (c, d). Output ‘?’, if ∃(c, d) ∈ S : V (c, d)/a = 0. Output
1, if ∃d : (x, d) ∈ S. Output 0, if ∀d : (x, d) /∈ S. Its easy to check that exactly one
non-deterministic branch outputs in the set {0, 1}. So this algorithm is ZUE/O(n).

Now we give a ZUE/O(n) algorithm for Lewl(V). For input (x, i), the advice part, and
the algorithm part before the output step, are same as that for L. Output ‘?’, if ∃(c, d) ∈
S : V (c, d)/a = 0. Output 1, if the ith bit of the lexicographically smallest d such that
(x, d) ∈ S is 1. Output 0, if ∀d(x, d) /∈ S , or if the ith bit of the lexicographically smallest d
such that (x, d) ∈ S is 0. Its easy to check that this is also a ZUE/O(n) algorithm.

Proof of 3: From 2, we know that for every L ∈ FewE/O(n), and every FewE verifier V
for L, Lewl(V) ∈ UE/O(n). Thus, Lewl(V) ∈ C, and V has oblivious witness in C (similar
argument as in Theorem 4).

Proof of 4: This directly from the UTIME KLT (Theorem 4). J

4 Unique Properties vs UTIME/ZUTIME Lower Bounds

In this section we establish relationships between different types of unique properties and
lower bounds against UTIME and ZUTIME.

In all the connections we use the following connection between UP-U and P-U properties.
The proof of the Lemma 8 is along the same lines as the original connection [1, 29, 36]: an
useful NP (RP-natutal) property yields an useful P (P-natural) property.

I Lemma 8. UP/a property U can be converted into a P/a property P such that:
1. U is UP/a-U property =⇒ P is P/a-U property;
2. for u = u=1, u≤1, u∗: U is UP/a-u property =⇒ P is P/a-u property;
3. U is useful against C =⇒ P is useful against C.

Proof. Let V be the unambiguous verifier corresponding to U ’s algorithm. Let c be a
constant such that 2cn − 2n is the length of the certificates that V guesses for the inputs
of size 2n. Now we design P which satisfies the promises of the theorem statement. For
m which is not a multiple of c, among all the inputs of length 2m, P only accepts the all

10 UTIME Easy-witness Lemma & Some Consequences

0s string. For m = cn for some n, for any input xy where |x| = 2n and |y| = 2cn − 2n, P
simulates V on (x, y), and accepts if and only if V accepts. For any n ∈ N, P uses the same
advice for 2cn-size inputs, that U uses for 2n-size inputs.

Proofs of 1 & 2: The construction of P ensures this for the inputs of size 2m, where m is
not a multiple of c. For all the other input sizes this is ensured by the fact that U is a UP
property, and the behavior of U on different advice strings. For any n ∈ N, and any advice
string, the number of 2cn-size inputs P accepts, is same as the number of 2n-size inputs U
accepts.

Proof of 3: If U is useful against C, then for each k there exists an infinite subset Sk such
that for each n ∈ Sk, U(x) = 1 =⇒ cktC(x) > nk. For any x, let y be the unique certificate
such that V (x, y) = 1. Since cktC(x) > nk =⇒ cktC(xy) > nk ≥ (cn)k−1, for each k, P is
also useful against nk−1-size C circuits, and hence is useful against C. J

Main results of this section can be summarized as follows:
1. (Section 4.1) ∃ P/O(logn)-strong-unique or P-U property useful against C ⇐⇒ ZUE

doesn’t have witness in C ⇐⇒ ZUE 6⊆ C
2. (Section 4.2) ∃ P/O(logn)-mild-unique property useful against C ⇐⇒ UE doesn’t have

witness in C
3. (Section 4.3) ∃ P/O(logn)-weak-unique property useful against C ⇐⇒ UE/O(n) doesn’t

have witness in C ⇐⇒ UE/O(n) 6⊆ C
4. (Section 4.4) ∃ NP/O(logn)-strong-unique or NP-U property useful against C ⇐⇒ ZNE 6⊆
C

5. (Section 4.4) ∃ NP/O(logn)-weak-unique property useful against C ⇐⇒ NE doesn’t
have witness in C ⇐⇒ NE 6⊆ C

Note that, as the lower bounds get weaker, the properties become less restrictive (or the
constructivity goes higher).

4.1 ZUE & P/O(log n)-u=1 (or P-U) properties
I Theorem 9. The following statements are equivalent:
1. ZUE 6⊆ C
2. ZUE doesn’t have oblivious witness in C (for some unambiguous verifier)
3. ZUE doesn’t have witness in C (for some unambiguous verifier)
4. ∃ P-U (or UP-U) property useful against C(poly)
5. ∃ P/O(logn)-u=1 (or UP/O(logn)-u=1) property useful against C

Proof. (1 =⇒ 4) Let L ∈ UE ∩ Co-UE \ C, and let V0 and V1 be 2O(n)-time unambiguous
verifiers for L and L, respectively. For any n, Ln can be viewed as a function fn, where
f−1
n (1) = {x ∈ L | |x| = n}.

Now using V0 and V1 we give a UP-U property U that is useful against C. For any input y
of length 2n, U goes through all the n-length strings, one by one. If the ith bit of y is 0, it
simulates V0 on the ith n-length string (to verify its inclusion in L). If the ith bit of y is 1, it
simulates V1 on the ith n-length string (to verify its inclusion in L). U accepts if and only if
it succeeds in all 2n verifications.

Uniqueness: For n ∈ N, U unambiguously accepts the truth table corresponding to the
function fn, and rejects all the other strings. As it runs for 2O(n) time on 2n-length inputs,
it is UP-U.

Usefulness: As L 6∈ C, for each k, there are infinitely many input lengths n, such that fn
doesn’t have nk-size C circuits. Thus U is useful against C.

A. Dhayal et al. 11

(4 =⇒ 3) If 4 is true, then there is a P-unique property P useful against C. Using P we
construct an unambiguous verifier V for the UE∩ Co-UE language {0, 1}∗ such that V doesn’t
have witness in C.

For any n-length input x, V guesses a string y of length 2n and accepts if and only if P
accepts y. Since P is P-unique property useful against C, the unique accepting witnesses of
V are not in C.

(3 =⇒ 2) This is trivial.
(2 =⇒ 1) The contrapositive follows from the ZUTIME EWL (Theorem 5).
(4 ⇐⇒ 5) The forward direction is trivial. For the reverse direction, for constant c ≥ 0

and P/c logn-u=1 property P, we convert P to a P-U property P ′.
For m which is not a multiple of c+ 1, among all the inputs of length 2m, P ′ only accepts

the all 0s string. For m = (c+ 1)n for some n, for any 2m length input x1x2 . . . x2cn where
∀i |xi| = 2n, P ′ accepts – if and only if – for each i, P accepts input xi with the advice yi
(ith cn-length string in lexicographical order).

Uniqueness: The uniqueness of P ′ directly follows from the fact that P is a strict-unique
property.

Usefulness: If P is useful against C with advice sequence {an}n∈N, then for each k there
exists an infinite subset Sk such that for each n ∈ Sk, P(x, an) = 1 =⇒ cktC(x) > nk. For
any 2n-length string x and cn length string an – let y = x1 . . . xbn . . . x2cn , where bn is the
lexicographical rank of an among all the cn-length strings – such that P ′(y) = 1. Since
cktC(x) > nk =⇒ cktC(y) > nk ≥ ((c+ 1)n)k−1, for each k, P ′ is also useful against nk-size
C circuits, and hence is useful against C. J

4.2 UE & P/O(log n)-u≤1 properties
We use a fine-grained version of the techniques from [36], to prove the following two theorems.
Unfortunately, the “no oblivious witness → no witness” connection of NTIME doesn’t go
through in the case of UTIME. If we try to establish a “no oblivious witness → P/ logn
property” connection, we get a weak-unique property instead of mild-unique property. In
the next section we will see that this connection can be established in the presence of advice.

I Theorem 10. The following statements are equivalent:
1. UE doesn’t have witness in C (for some unambiguous verifier)
2. ∃ P/O(logn)-u≤1 (or UP/ logn-u≤1) property useful against C

Proof. (1 =⇒ 2) If 1 is true, then there exists L ∈ UE, and an unambiguous verifier V for
L that doesn’t have witness in C.

If the inputs are given as advice, and the certificates are given as inputs, then V becomes
a P/O(logn) property P, that is useful against C.

For P to be a u≤1 property, it should be unique with respect to the same advise that
makes it useful. At this point, all we know is that for every input length and every advise, P
accepts at most one truth-table (since V is unambiguous). The advise that makes P useful
may not be present for all input lengths. For one of these input lengths n where no such
advise is present, it is also possible that Ln is empty.

We will be done if we have an UE verifier that doesn’t have witness in C, and whose
corresponding language is non-empty for all input lengths. Consider the two modifications
of V – (i) V0, that changes its behavior on the all 0s string and always accepts them
(unambiguously) – (ii) V1 that changes its behavior on the all 1s string and always accepts
them (unambiguously). The modified languages, and the modified verifiers, are also UE. We
show that, at least one of these two modifications doesn’t have witness in C. If V0 has witness

12 UTIME Easy-witness Lemma & Some Consequences

in C, then V ’s witnesses corresponding to the all 0s strings must be the ones that were not
in C, so then V1 doesn’t have witness in C.

(2 =⇒ 1) If 3 is true, then there exists a constant c and a P/c logn-u≤1 property P that
is useful against C. Define L = {x | |x|c ∈ N ∧ ∃y P(y)/x = 1}. Let V be the verifier for L –
that rejects any input whose length is not a multiple of c – on any other input x, it guesses a
string y of length 2

|x|
c , and simulates P on y using x as advice. V is a UE verifier since P is

a mild-unique property. Clearly V doesn’t have witness in C since P is useful against C. J

I Theorem 11. UE/a 6⊆ C ⇐⇒ UE/a doesn’t have oblivious witness in C (for some verifier
that is unambiguous given the correct advice)

Proof. (¬1 =⇒ ¬2) This follows from the UTIME EWL (Theorem 4).
(¬2 =⇒ ¬1) Assume that UE/a has oblivious witness (for all verifiers that are unam-

biguous given the correct advice) in C. Let L be a UE/a language and V be an unambiguous
verifier for L that has oblivious witness in nk-size C circuits. Now we show that L ∈ C.

Using V we construct an unambiguous verifier V ′ for the UEXP/a language {0, 1}∗, such
that for n ∈ N, an oblivious witness circuit of V ′ for n-length inputs computes Ln.

For any input x ∈ L (this can be verified by brute forcing through all the nk+1-size circuits),
V ′(x, y)/a = 1 only when y is the all 1s string. For any input x /∈ L, V ′(x, y)/a = 1 only when
y is the all 0s string. Since UE/a has oblivious witness in C, by a simple padding argument
UEXP/a too has oblivious witness in C). Let {Cn}n∈N be the C circuit family encoding the
oblivious witnesses of V ′. Then, the C circuit family defined by Dn(x) = Cn(x, 1), encodes
the language L (since the first bit of the unique accepting certificate of V ′ for x is 1 – if and
only if – x ∈ L). J

4.3 UE/O(n) & P/O(log n)-u∗ properties
Arguments from Section 4.1 when extended to the advice setting, yield the following.

I Theorem 12. The following statements are equivalent for any constant k ≥ 1:
1. UE/O(nk) 6⊆ C
2. ∃ P/O(logk n)-u∗ (or UP/O(logk n)-u∗) property useful against C
3. UE/O(nk) doesn’t have witness in C

(for some verifier that is unambiguous given the correct advice)
4. UE/O(nk) doesn’t have oblivious witness in C

(for some verifier that is unambiguous given the correct advice)

Proof. (1 =⇒ 2) Let L ∈ UE/cnk \ C for some constant c, and let V be 2O(n)-time
unambiguous verifier for L. For any n, Ln can be viewed as a function fn, where f−1

n (1) =
{x ∈ L | |x| = n}.

Now using V we give a UP/(c logkm+ logm)-u∗ property U that is useful against C. For
any input y of length m = 2n, U goes through all the n-length strings, one by one. If the
ith bit of y is 0, it does nothing. If the ith bit of y is 1, it simulates V on the ith n-length
string (to verify its inclusion in L). The first c logk(2n) = cnk bits of advice is the advice
required for the simulation of V . The last log(2n) = n bits of advise encodes the number of
n-length inputs that V accepts. U accepts if and only if it succeeds in all 2n verifications
and the hamming weight of y is equal to the number encoded by the last n bits of advise.

Weak uniqueness: For each n ∈ N, U unambiguously accepts the truth table corresponding
to the function fn, and rejects all the other strings. As it runs for 2O(n) time for 2n-length
inputs, it is UP/(cnk + n)-u∗.

A. Dhayal et al. 13

Usefulness: As L 6∈ C, for each l, there are infinitely many input lengths n, such that fn
doesn’t have nl-size C circuits. Thus U is useful against C.

(2 =⇒ 3) Let c be a constant and P be a P/c logk n-u∗ property useful against C. We
construct an unambiguous verifier V for the UE/c logk n language {0, 1}∗, that doesn’t have
witness in C. For any n-length input x, guess a 2n-length string y and simulate P on y, and
accept if an only if P accepts.

Since P is useful against C, V doesn’t have witness in C. As P is unique, V is UE/cnk.
(3 =⇒ 4) This is trivial.
(4 =⇒ 1) This follows from the UTIME EWL (Theorem 4). J

4.4 ZNE (NE) & NP/O(log n)-u=1 (NP/O(log n)-u∗) properties
In [29] it was conjectured, “ZNE 6⊂ C ⇐⇒ ∃ P-N (or NP-N) property useful against C” while
only forward direction was proved. We use a fine-grained version of the proof to establish the
equivalence in the case of unique properties (first part, Theorem 13). So if this conjecture is
true, then any NP-N property has an equivalent NP-U property. We show a slightly weaker
result where this equivalence holds with O(logn) advice (second part, Theorem 13).

I Theorem 13. The following statements are true:
1. ZNE 6⊆ C ⇐⇒ ∃ NP/O(logn)-u=1 (or NP-U) property useful against C
2. NE 6⊆ C ⇐⇒ ∃ NP/O(logn)-u∗ (or NP/O(logn)-N, or P/O(logn)-N) property useful

against C ⇐⇒ NE doesn’t have witness in C ⇐⇒ NE doesn’t have oblivious witness in C

Proof. Equivalence of useful NP-U & NP/O(logn)-u=1 properties: The forward direction is
trivial. For the reverse direction, for constant c ≥ 0 and NP/c logn-u=1 property P, we
convert P to an NP-U property P ′.

For m which is not a multiple of c+ 1, among all the inputs of length 2m, P ′ only accepts
the all 0s string. For m = (c+ 1)n for some n, for any 2m length input x1x2 . . . x2cn where
∀i |xi| = 2n, P ′ accepts – if and only if – for each i, P accepts input xi with the advice yi
(ith cn-length string in lexicographical order).

Uniqueness: The uniqueness of P ′ directly follows from the fact that P is a strict-unique
property.

Usefulness: If P is useful against C with advice sequence {an}n∈N, then for each k there
exists an infinite subset Sk such that for each n ∈ Sk, P(x, an) = 1 =⇒ cktC(x) > nk. For
any 2n-length string x and cn length string an – let y = x1 . . . xbn . . . x2cn , where bn is the
lexicographical rank of an among all the cn-length strings – such that P ′(y) = 1. Since
cktC(x) > nk =⇒ cktC(y) > nk ≥ ((c+ 1)n)k−1, for each k, P ′ is also useful against nk-size
C circuits, and hence is useful against C.

Proof of 1:
(=⇒) Let L ∈ NE ∩ Co-NE \ C, and let V0 and V1 be 2O(n)-time non-deterministic

verifiers for L and L, respectively. For any n, Ln can be viewed as a function fn, where
f−1
n (1) = {x ∈ L | |x| = n}.

Now using V0 and V1 we give an NP-U property U that is useful against C. For any input
y of length 2n, U goes through all the n-length strings, one by one. If the ith bit of y is 0, it
simulates V0 on the ith n-length string (to verify its inclusion in L). If the ith bit of y is 1, it
simulates V1 on the ith n-length string (to verify its inclusion in L). U accepts if and only if
it succeeds in all 2n verifications.

Uniqueness: For n ∈ N, U accepts the truth table corresponding to the function fn, and
rejects all the other strings. As it runs for 2O(n) time on 2n-length inputs, it is NP-U.

14 UTIME Easy-witness Lemma & Some Consequences

Usefulness: As L 6∈ C, for each k, there are infinitely many input lengths n, such that fn
doesn’t have nk-size C circuits. Thus U is useful against C.

(⇐=) Let U be an NP-unique property useful against C. Using U we construct a language
in ZNE \ C by designing verifier V0 for L, and verifier V1 for L.

For any n-length input x whose lexicograhical rank (among all n-bit strings) is j, Vi (for
i ∈ {0, 1}) guesses a string y of length 2n and simulates U on it. It accepts if and only if U
accepts y, and y’s jth-bit is equal to i.

Since U is NP-unique property useful against C, for each n the 2n-length string y it accepts
is unique. Thus the languages corresponding to V0 and V1 are compliments of each other,
and for each k there are infinitely many values of n where Ln (which is represented by the
string y), doesn’t have nk-size C circuits.

Proof of 2:
We will only show that NE 6⊂ C implies the existence of an NP/ logn-u∗ property that is

useful against C. All the other implications follow from [36, 29] since an NP/ logn-u∗ property
is only a special case of an NP/ logn-N property.

Let L ∈ NE \ C, and let V be 2O(n)-time non-deterministic verifier for L, respectively. For
any n, Ln can be viewed as a function fn, where f−1

n (1) = {x ∈ L | |x| = n}.
Now using V we give an NP/ logn-u∗ property U that is useful against C. For any input

y of length 2n, U goes through all the n-length strings, one by one. If the ith bit of y is 0, it
does nothing. If the ith bit of y is 1, it simulates V on the ith n-length string (to verify its
inclusion in L). U accepts if and only if it succeeds in all 2n verifications and the hamming
weight of y (the size of Ln) is equal to the number encoded by the advice.

The proof of uniqueness and usefulness is similar to that of the first case. J

5 Mild Derandomization from Uniform/Non-uniform Lower Bounds

In this section we extend the “lower-bounds to derandomization” frame-work of [36] to get
unified results for the three one-sided error classes – NEXP, REXP and UEXP – and their zero-
error versions – ZNEXP, ZREXP, and ZUEXP. We use the following “hardness to randomness”
connection in our derandomization results.

I Theorem 14 ([34]). There is a universal constant g and a function G : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ such that, for all s and Y satisfying CC(Y) ≥ sg, and for all circuits C of size
s, |Prx∈{0,1}g log |Y | [C(G(Y, x) = 1)) − Prx∈{0,1}s [C(x) = 1]]| < 1/s. Furthermore, G is
computable in poly(|Y |) time.

As a first step towards unification, we generalize the connection between “derandomization
of ZRE (RE) through seeds (hitting-sets)” and P-R (P/ logn-R) properties [36], to NE, UE, ZNE,ZUE.
Note that, for NE, UE, ZUE one can also use the “lower bounds to easy-witness” connections.

I Lemma 15. The following statements are true for C = N, R, U:
1. ZCE doesn’t have seeds in C ⇐⇒ ∃P-C property useful against C
2. CE doesn’t have 2n-size hitting sets in C =⇒ ∃P/ logn-C property useful against C

Proof. Proof of 1: (=⇒) Let V be a ZCE predicate for L ∈ ZCE whose length of certificates
is 2cn for some constant c. For each k, let Sk be an infinite size set whose each element n
satisfies – ∃x such that |x| = n and ∀y V (x, y) ∈ {0, 1} =⇒ cktC(y) ≥ nk. Using V we
construct a P-C property P useful against C. For constant d, view any 2(c+d)n-length input
as a collection of 2dn certificates.

For C = N, U : Let d be 1. P accepts if and only if, for each i ∈ [1, 2n], V outputs 0/1
on the ith n-length input when given the ith certificate from the collection. Clearly, P

A. Dhayal et al. 15

is a P-C property. For each k, it is useful against nk-size C circuits, because for inputs
n ∈ Sk+1, it only accepts strings of length 2(c+1)n that have a substring y of length 2cn
with cktC(y) ≥ nk+1 ≥ ((c + 1)n)k (because corresponding to each n-length input, a 0/1
outputting certificate is present as a substring).

For C = R : P accepts if and only if, for each i ∈ [1, 2n], V outputs 0/1 on the ith n-length
input, for atleast one of the 2dn certificates. For carefully chosen d, P is a P-C property
because (1− (1

3)2dn)2n ≥ 1
2(c+d)n . Usefulness of P follows from a similar argument as above.

(⇐=) Let P be a P-C property useful against C. For each k, let Sk be the infinite set of
inputs where P only accepts strings str with cktC(str) ≥ nk. Using P we construct a ZCE
predicate V for Σ∗ that doesn’t have seeds in C. For n-length input x, where 2n ∈ S, guess a
string of length 2(d+1)n for some constant d. View it as a collection of 2dn strings of length
2n each.

For C = N, U : V outputs 1 if and only if P accepts all of the strings in the collection.
Clearly, V is a ZCE predicate. For each k, it doesn’t have seeds in nk-size C circuits, because for
any n with 2n ∈ Sk, any 2(d+1)n-length certificate it accepts, contains a 2n-length substring
y with cktC(y) ≥ nk.

For C = R : V outputs 1 if and only if P accepts at least one of the strings in the collection.
For carefully chosen d, V is a ZCE predicate because (1− 1

2n)2dn ≤ 1
3 . From a similar argument

as above it follows that V doesn’t have seeds in C.
Proof of 2: Let V be a CE predicate for L ∈ CE whose length of certificates is 2cn for

some constant c. For each k, let Sk be an infinite set whose each element n satisfies – V
doesn’t have 2n-size hitting sets in nk-size C circuits. Using V we construct a CP/ logn-C
property P (which we know has an equivalent P/ logn-C property) useful against C. View
any 2(c+1)n-length input as a collection of 2n certificates (or in other words, view it as a
2n-size hitting-set). Use the (c+ 1)n length advice to encode the number of n-length inputs
L has. Call it ln.

For C = N, U : Guess a 2n length string str of hamming weigth ln. P accepts if and only
if, for each i ∈ [1, 2n] where the ith bit of str is 1, V accepts the ith n-length input when
given the ith certificate from the collection. For all the other values of i, the ith certificate
from the collection should be the all 0s string. Clearly, P is a CP/ logn-C property. For each
k, it is useful against nk-size C circuits as it only accepts strings of length 2(c+1)n that are
2n-size hitting sets for V .

For C = R : P accepts if and only if, for ln-many i ∈ [1, 2n], V accepts the ith n-length input,
for atleast one of the 2n certificates. P is a P/ logn-C property because (1−(1

3)2n)2n ≥ 1
2(c+1)n .

Usefulness of P follows from a similar argument as above. J

The original connection, of which Lemma 15 can be viewed as a generalization, was used
to show: REXP 6⊂ SIZE(poly) or REXP 6= EXP =⇒ ∀ε > 0 BPP ⊂ io-ZPTIME(2nε)/nε. The
lower bounds implied the existence of useful properties, which were used to derandomize
BPP. Using Lemma 15, we get a variety of properties from a variety of lower bounds, and
thus get a variety of derandomization results.

I Theorem 16. The following statements are true for C = N, R, U:
1. CEXP 6⊂ SIZE(poly) =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)/nε
2. CEXP 6= EXP =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)/nε
3. ZCEXP 6⊂ SIZE(poly) =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)
4. ZCEXP 6= EXP =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)

Proof. Proof of 4: Let’s assume that ZCEXP 6= EXP. Then ZCE can’t have seeds in SIZE(poly),
because brute-forcing through the seeds will prove ZCEXP = EXP. Thus, there exists a P-C

16 UTIME Easy-witness Lemma & Some Consequences

property P useful against SIZE(poly) (from the above Lemma). For each c, let Sc be the
infinite set of input lengths where P only accept strings str satisfying ckt(str) ≥ nc.

For k, ε > 0 and L ∈ BPTIME(nk), set c = gk/ε (where g is the constant from Theorem
14). We give a ZCTIME(2nε) algorithm for L that works for any input length n with 2n ∈ Sc.
For n-length input x of L, let Cx be the circuit corresponding to the BP computation of L
(on x).

For C = N, U : Non-deterministically guess a string Y of length m = 2Θ(nε). Reject if
P(Y) = 0. Else we know that ckt(Y) ≥ (nε)c = ngk. Feed Y to G (from Theorem 14) as the
first input, and brute-force through the second input to compute the acceptance probability
of the circuit Cx in time 2O(nε) (within 1/s = 1/nk approximation). Finally use this value
to output accordingly.

For C = R : Instead of one, non-deterministically guess a collection of strings {Y1, . . . , Yc}
for some constant c. Reject if ∀i P(Yi) = 0. Else proceed with any Yi with P(Yi) = 1, and
do the same as above. For large enough c, this is a ZRTIME algorithm.

Proof of 2: It’s analogous to the proof of 3, except that the properties we get are P/ logn
and not P. The logn-bit advice for this property is precisely the nε-bit advice for the
ZCTIME(2nε) algorithm we get.

(4 =⇒ 3) We prove the contrapositive. Assume that ∃ε > 0 such that BPP 6⊂ io-
ZCTIME(2nε). From the Equation (2) we get EXP ⊂ SIZE(poly), and from 4 we get ZCEXP = EXP.
Thus, we get ZCEXP ⊂ SIZE(poly).

(2 =⇒ 1) The proof is analogous to the above proof. J

In [36] they got: ∃c ≥ 1 ∀ε > 0 RP ⊆ RE ∩ BPP ⊂ io-ZPTIME(2nε)/nc. We get:

I Corollary 17. For C = N, R, U : ∃c ≥ 1 ∀ε > 0 CE ∩ BPP ⊂io-ZCTIME(2nε)/nc

We also get the following generalized “uniform-separation to derandomization” results.
The idea is: we break the separations into two (Γ 6= EXP, and Γ 6= MA or Γ 6= BPP) and then
apply, Theorem 16 on the first separation, and EXP KLT [4] or Equation (2) on the second.

I Theorem 18. For C = N, R, U :
1. ZCEXP 6= MA =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)
2. ZCEXP 6= BPP =⇒ ∀ε > 0 BPP ⊂ io-Heur-ZCTIME(2nε)
3. CEXP 6= MA =⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2nε)/nε

4. CEXP 6= BPP =⇒ ∀ε > 0 BPP ⊂ io-Heur-ZCTIME(2nε)/nε

Proof.

Proof of 1 : ZCEXP 6= MA =⇒ ZCEXP 6= EXP or EXP 6= MA

=⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2n
ε

) or EXP 6⊂ SIZE(poly)
=⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2n

ε

) or ZCEXP 6⊂ SIZE(poly)
=⇒ ∀ε > 0 BPP ⊂ io-ZCTIME(2n

ε

)

where the second implication follows from the above theorem and EXP KLT, and the last
implication again uses the above theorem.

Proof of 2: Its the same as above, except – instead of EXP 6= MA we get EXP 6= BPP – and
the result follows from the Equation (2).

Proofs of 3 & 4: They are analogus to the proofs of 1 and 2, respectively. J

A. Dhayal et al. 17

6 UEXP Lower Bounds from Fast Unambiguous Algorithms

In this section we show how to get lower bounds from fast algorithms: from half-sub-
exponential algorithms combined with the UTIME KLT (Appendix A); by a generalization
of the “tight reductions to lower-bounds” connection of [38] combined with the UTIME EWL
(Section 6.1); by a generalization of the “learning to lower bounds” connection of [8] combined
with the UTIME KLT (Section 6.2). Finally, in Section 6.3 we show some generalizations of
lower bound frameworks. We use the following ‘hierarchy theorem’ and ‘tight reductions to
SAT’ in our proofs.

I Theorem 19 (Heirarchy for UTIME [10]). For any time bound t such that n ≤ t ≤ 2n, there
is a constant ε > 0 and an advice bound a ∈ O(log(t) log(log(t))) such that UTIME(t)/a 6⊆
UTIME(tε)/(a+ 1).

I Theorem 20 (Efficient local reductions [17, 33, 9]). Every language L ∈ UTIME(2n) can be
reduced to 3-USAT (uniquely satisfiable 3-SAT) instances of 2nnc-size, for some constant c.
Moreover, given an instance of L there is an nc-size C (P-uniform) circuit that, on an integer
i ∈ [2nnc] in binary as input, outputs the ith clause of the resulting 3-USAT formula.

6.1 Lower bounds from UTIME EWL

In [38] they showed: any super-polynomial savings in designing non-deterministic algorithms
for TAUT imply NEXP 6⊆ SIZE(poly). We extend this to: faster unambiguous algorithms for,
TAUT and canonization, imply UEXP lower bounds. We first formally define canonization.

Canonization : A subset S of circuits is called CAN(s,C,p), if for any s-size C circuit C,
there exists a unique circuit C ′ ∈ S with tt(C) = tt(C ′), and |C ′| ≤ p(cktC(tt(C ′))).
CAN(s,C,p) ∈ Γ/a means there is a Γ/a algorithm that decides CAN(s,C,p).

TAUT(s,C) (SAT(s,C)) denotes the TAUT (SAT) for s-size C circuits. In these definitions we
omit, the parameter s when it is poly(n), and the circuit class when C = Boolean.

Main idea: In [38] they combined the witness circuit with the reduction circuit (Theorem
20), and used a faster TAUT algorithm. We do the same except: we use UTIME EWL, and we
use canonization to unambiguously guess the witness circuit. The UTIME EWL works for any
t, and thus also yields a corollary for USUBEXP (which is the class ∩ε>0UTIME(2εn)).

I Theorem 21. For δ ≤ 1, let a, c and ε be the parameters of Theorems 19 and 20 for the
time bound t = 2δn. Then for constant k and function p(n) ≥ n, UTIME(2δn)/a 6⊂ C(nk) if
1. TAUT(p(nk+1)n+nc,C) ∈ UTIME(2εn) and CAN(nk+1,C,p) ∈ UTIME(2εn)/1;
2. TAUT(p(nk+1)n+nc,C) ∈ UTIME(2εn)/1 and CAN(nk+1,C,p) ∈ UTIME(2εn).

Proof. For L ∈ UTIME(2δn)/a and input x, let Fx be the 2nnc-size 3-SAT formula we get
by reducing from x (Theorem 20). Also, there is an nc-size (P-uniform) C circuit D with
n+ c logn input wires, that outputs the ith clause of F when given the input i ∈ [1, 2nnc].
Using the assumptions (1 or 2), we will contradict the UTIME hierarchy (Theorem 19) by
designing a UTIME(2εn)/(a+ 1) algorithm for L.

Let V be the verifier for L that first reduces input x to the 3-SAT formula Fx, and then
non-deterministically guesses a satisfying assignment for Fx. From UTIME EWL (Theorem 4)
and the assumption UTIME(2δn)/a ⊂ C(nk) we know that V has witness circuits in C(nk).
Let E be a witness circuit of this verifier for the input length |x| = n. Combining D and E
we construct a circuit C that satisfies: “C is a tautology ⇐⇒ x ∈ L”.

Construction of C: On input i, the output of D is 3n + 3c logn + 3 bits. The first
3n + 3c logn bits are the three variables of the ith clause of F . Plug these output bits to

18 UTIME Easy-witness Lemma & Some Consequences

three separate copies of E. The last three bits indicate whether the corresponding literals
are positive or negative. Use these three bits and the three output bits from the three copies
of E to compute the value of the ith clause (based on the assignment encoded by tt(E)).

Contradicting the first assumption: Non-deterministically guess a p(nk+1)-size C circuit E.
Simulate the CAN(nk+1,C,p) algorithm on E. This requires UTIME(2εn)/1. Reject if the answer
is negative. Continue if its positive, and construct C as described above. |C| ≤ p(nk+1)n+nc.
Note that, for any truth-table only one non-deterministic branch will lead to a non-rejecting
path. Now simulate the TAUT(p(nk+1)n+nc,C) algorithm on C. This requires UTIME(2εn). Note
that, C is accepted if and only if, x ∈ L, and tt(E) is the unique witness of V . This
whole process requires the advice used in the UTIME(2δn)/a algorithm for L. So we get a
UTIME(2εn)/(a+ 1) algorithm.

Contradicting the second assumption: The algorithm is exactly the same, expect that the
extra 1 bit of advice is used at an later stage of the algorithm. J

I Corollary 22. For a ∈ ω(n logn), b ∈ {0, 1} and polynomial p(n) ≥ n, USUBEXP/a 6⊂ C if
TAUTC ∈ USUBEXP/b and CAN(C,p) ∈ USUBEXP/(1− b).

6.2 Lower bound from fast learning algorithms
The two commonly studied learning models are: the Angluin’s exact learning model [2], and
the Valiant’s PAC model [35]. Fast learning algorithm in these models have been shown to
yield lower bound [8, 30, 11, 21, 29]. We now formally define UTIME exact learning.

Exact UTIME learning with membership and equivalence queries: Let s be the size of the
target concept C (the circuit to be learned). A UTIME(t) algorithm is called Learn(s,C,p),
if for any s-size C circuit C, it outputs a circuit C ′ of size at most p(s) in time at most
t(s) with tt(C) = tt(C ′), on exactly one of its non-deterministic branches, and rejects all
the other branches. The algorithm is allowed to make “membership" and “equivalence"
queries. A membership query is: “What is the value of C(x)?”. An equivalence query is: “Is
the current hypothesis (H) equal to C?”. On any positive equivalence query, it halts and
outputs the current hypothesis. On any negative query, it gets x from the oracle, such that
H(x) 6= C(x). If the output, and the equivalence queries are all C circuits, the algorithm is
called P-Learn(s,C,p) (proper learning). We omit the size parameter when s(n) = poly(n),
and the circuit class when C = Boolean.

We extend the result of [8] for this exact UTIME learning. The proof is along the same
lines except: we use the SAT and TAUT algorithms for solving the equivalence queries, and we
use them in a clever order to get the result of the query in an unambiguous fashion.

I Theorem 23. Let p ≥ n be some polynomial. Then ∀δ > 0, UEXP/nδ 6⊂ C, if ∀ε > 0,
SAT, TAUT, and Learn(C,p), belong to UTIME(2nε).

Proof. Fix a δ > 0. Then, for ε < δ′ < δ, there exists an a < nδ, such that UEXP/a 6⊆
UTIME(2nδ

′

)/(a+ 1) (Theorem 19). Starting with the assumption UEXP/a ⊂ C, we contradict
the UTIME hierarchy. UEXP/a ⊂ C implies that UEXP/a = P#P/a (using UTIME KLT). For
L ∈ UEXP/a we have a polynomial time algorithm for L that uses a amount of advice and
makes oracle queries to Permanent. Since P#P/a ⊂ C, Permanent has nc-size C circuits, for
some constant c. Using UTIME(2nε) learning algorithms, for nc-size C circuits, we learn and
compute Permanent in UTIME(2nδ

′

). This will give a UTIME(2nδ
′

)/a algorithm for L.
Algorithm for computing Permanent on input x: For i = 1 to |x|, let ci be a circuit that

computes permanent on i× i matrix. We will inductively compute ci for all |x| = n values of
i. Then we will compute cn(x) to get the final result. For i = 1 to |x|, do the following:

A. Dhayal et al. 19

1. If i = 1, let ci be the trivial circuit (that outputs the input bit itself).
2. Else, run the learning algorithm for ci and simulate the queries in the following way:

a. Membership queries: For any query y of length i, using downward self-reducibility of
permanent we can get the answer by making i queries to the circuit ci−1.

b. Equivalence queries: Let’s assume that our current hypothesis is h. We want to know
“Does there exists an input z such that h(z) 6= ci(z)?”. This is an NP query as we can
compute ci(z) in polynomial time using ci−1. Convert this query and its compliment to
SAT and TAUT instances of poly(n) size. Guess a non-deterministic bit z. If z = 0, run
the UTIME algorithm for TAUT, and in the case of acceptance output h as the ci circuit.
If z = 1, run the UTIME algorithm for SAT. If it accepts, then we actually need to give
a certificate z such that h(z) 6= ci(z). Now we make two new NP queries (search to
decision) – “Does there exists an input z starting with b such that h(z) 6= ci(z)?” – one
for b = 0, and one for b = 1. Guess answers to both the queries. Create - two poly(n)
size SAT instances, and two poly(n) size TAUT instances – by reducing these queries
and their compliments. Run the UTIME algorithms on theses queries to verify the two
guesses. At least one guess has to have a positive answer. Repeat this procedure again
after fixing the first bit of z unambiguously (fix it to 0 if possible, else fix it to 1). This
way we get a UTIME algorithm for the original equivalence query.

This algorithm puts L ∈ UTIME(2nδ
′

) as the UTIME(2nε) learning algorithm is used poly(n)
times (once for each ci), and each time it makes O(2nε) SAT and TAUT queries, each of which
can be computed in UTIME(2nε). J

6.3 Generalization of lower bound frameworks
In the above sections we saw that fast UTIME algorithms for certain C circuit related problems
(CAN, TAUT, SAT, Learn), were fed to certain frameworks to yield lower bounds for UTIME
against C. Consider the scenario where – a framework is altogether different, or is a fine-
grained version of one of the current ones – and works for Boolean circuits, but not for some
restriction C. Also consider that, the assumptions of these frameworks are satisfied for that
C, but not for unrestricted Boolean circuits. Do we get any lower bounds? In this section we
prove that this question has a positive answer.

We use a win-win type argument. We show that, either P 6⊂ C (i.e., stronger lower bounds
exist against C), or faster algorithms for C circuits imply faster algorithms for Boolean circuits
(i.e., frameworks that only work for Boolean circuits can now be used). To prove our results,
we use the following folklore lemma.

I Lemma 24. If P ⊆ C, there exists a constant c such that: for large enough n, any s-size
circuit has an equivalent sc-size C circuit.

Proof. Ckt-Eval is a problem in P whose input is a Boolean circuit C and a string x, and
the output is the output of C on x. If P ⊆ C, then there is a constant c such that Ckt-Eval
has nc-size C circuits.

Let B be a P/poly circuit of size nk, for some constant k. Let E be (n+ knk logn)c-size
circuit corresponding to the (n+ knk logn)th-slice of Ckt-Eval. Define D(x) = E(B, x). It
is easy to check that, D is a (n+ knk logn)c-size C circuit, that is equivalent to B. J

In [39], assumed fast algorithms were applied on witness circuits. To extend their
framework, they used the above lemma to show, “either P 6⊂ C, or the Boolean witnesses
have equivalent C circuits, and thus fast algorithms for C are sufficient”. Note that, unlike
our result, this approach was local to that particular framework.

20 UTIME Easy-witness Lemma & Some Consequences

I Theorem 25. Either P 6⊂ C, or ∃c ∀k:
1. CAN(C,nk) ∈ UTIME(t(n)) =⇒ CANnck ∈ UTIME(t(n))
2. CAN(C,nk) ∈ UTIME(t(n)) ∧ TAUTC ∈ UTIME(t′(n)) =⇒ TAUT ∈ UTIME((t(nck)+ t′(nck))n).
3. CAN(C,nk) ∈ UTIME(t(n)) ∧ TAUTC ∈ UTIME(t′(n)) ∧ SATC ∈ UTIME(t′′(n))

=⇒ SAT ∈ UTIME((t(nck) + t′(nck))n+ t′′(nck))
4. P-Learn(C,nk) ∈ UTIME(t(n)) ∧ TAUTC ∈ UTIME(t′(n)) ∧ SATC ∈ UTIME(t′′(n))

=⇒ CAN(C,nk) ∈ UTIME(t(n)(t′(nk) + t′′(nk))n)

Proof. If P ⊂ C, from the above lemma we know there exists a constant c such that: for each
s-size Boolean circuit B, there is an equivalent sc-size C circuit C (for large enough n).

Proof of 1: By a simple modification of an algorithm A for CAN(C,p), we obtain an
algorithm A′ for CANpc .

On input B, the algorithm A′ first checks whether B belongs to C. It rejects if the answer
is negative. If the answer is positive it simulates A on B and accepts if and only if A accepts.

Proof of 2: Let A be a UTIME(t) algorithm for CAN(C,p), A′ be a UTIME(t′) algorithm for
TAUTC . Using A and A′, we construct a UTIME algorithm A′′ for TAUT.

For input B to A′′, for each gate g of B, let Bg be the circuit corresponding to the output
wire of gate g. For the output gate o, A′′ first guesses an equivalent C circuit C ′o. To make
sure that its guess is unambiguous, it simulates A on C ′o and rejects if A rejects. Then it
simulates A′ on C ′o (to check if C ′o is a tautology) and rejects if it rejects. The only thing
left to check is that C ′o is actually equivalent to Co.

For checking the consistency of C ′o, A′′ first guesses C circuit C ′g, for each gate g. It then
simulates A on each C ′g and rejects if A rejects on any of them. Finally it simulates A′ on
C ′′g for each g, where C ′′g is the circuit that captures the tautology “C ′g = op(C ′g1

, . . . , C ′gl)”
for g = op(g1, . . . , gl). It accepts if and only if A accepts on all of them.

Proof of 3: For input B, with the same strategy as in the proof of 2, we first unambiguously
construct an C circuit C. Then, on this C we simulate a UTIME(t′′) algorithm for SATC .

Proof of 4: In a proper learning algorithm, if we have access to the circuit that we are
learning, then we can get a canonization algorithm for C (because the learning algorithm
only cares about the truth-table of the circuit that it is learning, and outputs the same
hypothesis for all the circuits that have same truth-tables). The membership queries can be
handled directly since we have the circuit with us. For the equivalence queries, in the proof
of Theorem 23 we saw that we need TAUT and SAT algorithms. Since we have the circuit with
us, and the hypothesis belongs to C, these queries can be converted into TAUTC and SATC
queries. So we get a UTIME algorithm for CAN(C,nk). J

The final (fourth) point of the above theorem shows that canonization is implied by
proper learning, tautology and satisfiability algorithms. Using that, and Corollary 22 and
Theorem 23 we can get the following new corollary.

I Corollary 26. For a ∈ ω(n logn), polynomial p(n) ≥ n, USUBEXP/a 6⊂ C if TAUTC, SATC,
and P-LearnC belong to UTIME(2no(1)).

7 Conclusions and Open Problems

The main open problem is whether there are any connections between faster algorithms and
non-uniform lower bounds possible within determinstic classes such as EXP. In almost all of
the prior connections, non-uniformity is simulated with non-determinism, by having a non-
deterministic machine guess the appropriate circuit. Can we substitute a recursive argument
for non-determinism here? Our results show that, while still allowing non-determinism, the

A. Dhayal et al. 21

form of non-determinism can be restricted. In what other ways could we get such connections
for smaller classes by restricting the use of non-determinism? Finally, the circuit model
combines two features: time and non-unformity. Can we get a finer-grained version of
easy-witness lemma by distinguishing these two parameters?

References
1 Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov com-

plexity. In Ramesh Hariharan, V. Vinay, and Madhavan Mukund, editors, FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science, pages 1–15, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

2 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. doi:
10.1007/BF00116828.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

4 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993. doi:10.1007/BF01275486.

5 Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Tighter connections between derandomization and circuit lower bounds. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 645–658, 2015.
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.645.

6 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–270,
2016. doi:10.1145/2840728.2840746.

7 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, pages 151–158, 1971. URL: http://doi.acm.org/10.1145/800157.805047, doi:
10.1145/800157.805047.

8 Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds.
J. Comput. Syst. Sci., 75(1):27–36, 2009. doi:10.1016/j.jcss.2008.07.006.

9 Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52(6):835–865, November 2005. URL: http://doi.
acm.org/10.1145/1101821.1101822, doi:10.1145/1101821.1101822.

10 Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC
’05, pages 348–355, New York, NY, USA, 2005. ACM. URL: http://doi.acm.org/10.1145/
1060590.1060642, doi:10.1145/1060590.1060642.

11 Ryan C. Harkins and John M. Hitchcock. Exact learning algorithms, betting games, and
circuit lower bounds. TOCT, 5(4):18:1–18:11, 2013. doi:10.1145/2539126.2539130.

12 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7.

13 Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6,
1999, pages 237–240, 1999. doi:10.1109/CCC.1999.766282.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In 39th Annual Symposium on Foundations of Computer Science,

https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF01275486
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.645
https://doi.org/10.1145/2840728.2840746
http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.jcss.2008.07.006
http://doi.acm.org/10.1145/1101821.1101822
http://doi.acm.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
http://doi.acm.org/10.1145/1060590.1060642
http://doi.acm.org/10.1145/1060590.1060642
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1145/2539126.2539130
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1109/CCC.1999.766282

22 UTIME Easy-witness Lemma & Some Consequences

FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages 653–663, 1998. doi:
10.1109/SFCS.1998.743516.

15 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229, 1997.
doi:10.1145/258533.258590.

16 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. doi:10.1006/jcss.2001.
1780.

17 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, pages 749–760, 2015. doi:10.1007/978-3-662-47672-7_61.

18 Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. J.
Comput. Syst. Sci., 63(2):236–252, 2001. doi:10.1006/jcss.2001.1763.

19 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

20 Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, STOC ’80, pages 302–309, New York, NY, USA, 1980. ACM. URL: http:
//doi.acm.org/10.1145/800141.804678, doi:10.1145/800141.804678.

21 Adam R. Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard functions
using learning algorithms. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 86–97, 2013. doi:10.1109/CCC.
2013.18.

22 Ker-I Ko. Some observations on the probabilistic algorithms and np-hard problems. Information
Processing Letters, 14(1):39 – 43, 1982. URL: http://www.sciencedirect.com/science/
article/pii/0020019082901399, doi:https://doi.org/10.1016/0020-0190(82)90139-9.

23 Matthias Krause and Stefan Lucks. Pseudorandom functions in tc0 and cryptographic
limitations to proving lower bounds. Comput. Complex., 10(4):297–313, May 2002. URL:
http://dx.doi.org/10.1007/s000370100002, doi:10.1007/s000370100002.

24 Leonid A. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266,
1973.

25 Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom functions,
and natural proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, pages 68–85, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

26 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018. doi:10.1145/3188745.3188910.

27 Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, March 2004. URL: http://doi.acm.org/10.1145/972639.
972643, doi:10.1145/972639.972643.

28 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

29 Igor Carboni Oliveira. Algorithms versus circuit lower bounds. CoRR, abs/1309.0249, 2013.
URL: http://arxiv.org/abs/1309.0249, arXiv:1309.0249.

30 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18.

https://doi.org/10.1109/SFCS.1998.743516
https://doi.org/10.1109/SFCS.1998.743516
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1007/978-3-662-47672-7_61
https://doi.org/10.1006/jcss.2001.1763
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
http://doi.acm.org/10.1145/800141.804678
http://doi.acm.org/10.1145/800141.804678
https://doi.org/10.1145/800141.804678
https://doi.org/10.1109/CCC.2013.18
https://doi.org/10.1109/CCC.2013.18
http://www.sciencedirect.com/science/article/pii/0020019082901399
http://www.sciencedirect.com/science/article/pii/0020019082901399
https://doi.org/https://doi.org/10.1016/0020-0190(82)90139-9
http://dx.doi.org/10.1007/s000370100002
https://doi.org/10.1007/s000370100002
https://doi.org/10.1145/3188745.3188910
http://doi.acm.org/10.1145/972639.972643
http://doi.acm.org/10.1145/972639.972643
https://doi.org/10.1145/972639.972643
https://doi.org/10.1016/S0022-0000(05)80043-1
http://arxiv.org/abs/1309.0249
http://arxiv.org/abs/1309.0249
https://doi.org/10.4230/LIPIcs.CCC.2017.18

A. Dhayal et al. 23

31 Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24 – 35, 1997. URL: http://www.sciencedirect.com/science/article/pii/
S002200009791494X, doi:https://doi.org/10.1006/jcss.1997.1494.

32 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001. doi:10.1006/jcss.2000.1730.

33 Iannis Tourlakis. Time–space tradeoffs for sat on nonuniform machines. Journal of Computer
and System Sciences, 63(2):268 – 287, 2001. URL: http://www.sciencedirect.com/science/
article/pii/S0022000001917672, doi:https://doi.org/10.1006/jcss.2001.1767.

34 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. doi:10.1016/S0022-0000(03)00046-1.

35 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

36 R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016. doi:10.1137/130938219.

37 R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory of Computing, 14(1):1–25, 2018. doi:10.4086/toc.2018.v014a017.

38 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

39 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

A UEXP Lower Bounds from Half-sub-exponential Unambiguous
Algorithms

From [38] we know: a deterministic half-sub-exponential 3-SAT algorithm imply EXP 6⊆
SIZE(poly). Two interesting algorithm design questions are: “Does faster non-deterministic
algorithms exist for TAUT/CAPP?" and “Does faster unambiguous non-deterministic algorithms
exist for SAT?". Here we show that (strong) positive answers imply UEXP lower bounds.

Main idea: UEXP/a ⊂ SIZE(poly) with UTIME KLT implies UEXP/a = Σ2/a = Π2/a = MA/a.
Then, for L ∈ UEXP/a, we unfold the quantifiers of the MA,Σ2,Π2 algorithms, and use the
faster algorithms (from the assumptions) to contradict the UTIME hierarchy.

I Theorem 27. For δ ≤ 1, let a and ε be the parameters of Theorem 19 for the time bound
t = 2δn. Let f, g, h : N→ N satisfy f(g(nk)k) ∈ O(2εn) and h(nk) ∈ O(2εn) for all constants
k. Then UTIME(2δn)/a 6⊂ SIZE(poly) if
1. 3-SAT ∈ UTIME(f)/1 and 3-TAUT ∈ NTIME(g); or
2. 3-SAT ∈ UTIME(f) and 3-TAUT ∈ NTIME(g)/1; or
3. Σ2-SAT ∈ UTIME(h)/1 (Π2-SAT ∈ UTIME(h)/1); or
4. 3-SAT ∈ UTIME(f)/1 and CAPP ∈ NTIME(g); or
5. 3-SAT ∈ UTIME(f) and CAPP ∈ NTIME(g)/1.

Proof. Starting with UTIME(2δn)/a ⊆ SIZE(poly) we get UEXP/a ⊆ SIZE(poly). From UTIME
KLT (Theorem 4) UEXP/a = MA/a. Thus UTIME(2δn)/a ⊆ Σ2/a (or Π2/a, or MA/a). For
L ∈ UTIME(2δn)/a, using any one of the above five assumptions, and any Σ2/a (or Π2/a, or
MA/a) algorithm for L, we design a UTIME(2εn)/(a + 1) algorithm for L to contradict the
UTIME hierarchy (Theorem 19).

Contradicting the first assumption: Let M be a Σ2/a machine that accepts L. Let
N be the Co-NP machine obtained by starting M at its alternation, i.e., after removing
the existential quantifier, and including the variables under it, into the input. Assuming
3-TAUT ∈ NTIME(g) we get that N has an equivalent machine N ′ that guesses g(poly(n))
bits and then runs for g(poly(n)) time. Thus M has an equivalent machine M ′ that guesses

http://www.sciencedirect.com/science/article/pii/S002200009791494X
http://www.sciencedirect.com/science/article/pii/S002200009791494X
https://doi.org/https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.2000.1730
http://www.sciencedirect.com/science/article/pii/S0022000001917672
http://www.sciencedirect.com/science/article/pii/S0022000001917672
https://doi.org/https://doi.org/10.1006/jcss.2001.1767
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1145/1968.1972
https://doi.org/10.1137/130938219
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903

24 UTIME Easy-witness Lemma & Some Consequences

poly(n) + g(poly(n)) bits and then runs for g(poly(n)) time. Note that, N,N ′,M ′ all use
the same advice as M . Now this machine M ′ can be turned into an equivalent 3-SAT
instance of poly(g(poly(n))) size. Now by the assumption 3-SAT ∈ UTIME(f)/1 we get a
UTIME(f(poly(g(poly(n)))))/(a+ 1) algorithm for L.

Contradicting the second assumption: The argument is exactly the same as that for the
first assumption, expect that the extra 1 bit of advice is now used at an earlier stage of the
algorithm.

Contradicting the third assumption: The Σ2/a (Π2/a) algorithm for L can be converted
into a Σ2-SAT (Π2-SAT) instance of poly(n) size in poly(n) time. This conversion needs
the original a bits of advice. Now a UTIME(h)/1 algorithm for Σ2-SAT (Π2-SAT) gives a
UTIME(h(poly(n)))/(a+ 1) algorithm for L.

Contradicting the fourth assumption: Let M be an MA/a machine that accepts L. Let N
be the BPP machine of Arthur (whose input also includes the non-determinism of Merlin).
Assuming CAPP ∈ NTIME(g) we get that N has an equivalent machine N ′ that guesses
g(poly(n)) bits and then runs for g(poly(n)) time. Thus M has an equivalent machine
M ′ that guesses poly(n) + g(poly(n)) bits and then runs for g(poly(n)) time. Note that,
N,N ′,M ′ all use the same advice as M . The machine M ′ can be turned into an equivalent
3-SAT instance of poly(g(poly(n))) size. By the assumption 3-SAT ∈ UTIME(f)/1 we get a
UTIME(f(poly(g(poly(n)))))/(a+ 1) algorithm for L.

Contradicting the fifth assumption: The argument is exactly the same as that for the
fourth assumption, expect that the extra 1 bit of advice is now used at an earlier stage of
the algorithm. J

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

