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The most difficult tasks in computational complexity are: proving uniform/non-uniform lower bounds, design-

ing fast satisfiability/learning algorithms, and derandomizing probabilistic algorithms. Connections have been

drawn between them to study the relative hardness of these tasks: (a) Uniform to non-uniform lower bounds,

famously known as Karp-Lipton style theorems (KLT) [43]; (b) Fast algorithms to lower bounds; (c) Lower

bounds to derandomization. Such connections were initially known for the class EXP, and then later were

extended to NEXP. The key in the extension was the “easy-witness lemma (EWL) for NEXP” [31]. We extend

these connections to the intermediate class UEXP, and some related classes, by deriving similar EWLs for them.

In the ‘fast algorithms to lower bounds’ connection we also provide translation results that generalize the

lower bound frameworks for unrestricted Boolean circuits, to all typical circuit classes, in a black box fashion

(i.e. generalization only depends on the assumption set of the framework and not its working).

Circuit lower bound techniques that entail natural properties of Razborov and Rudich [61] are called

natural, and are known to contradict widely believed cryptographic assumptions in the course of proving

strong lower bounds. Thus attempts have been made to understand un-natural techniques. Natural properties

satisfy three conditions: usefulness, constructiveness, and largeness. Usefulness is implicit in any lower-bound

technique. In [57, 75] it was shown that P-constructivity is implicit in any NEXP or NEXP ∩ Co-NEXP lower

bound technique. In this paper we introduce a new notion called unique properties: properties that contain

exactly one element and thus avoid largeness. We show that P-constructivity and uniqueness are implicit in

any UEXP or UEXP ∩ Co-UEXP lower bound technique. For the case of NP-constructivity, for different lower
bound settings, we establish equivalences between: properties with arbitrary largeness and unique properties.

In the process we obtain a variety of EWLs and KLTs for NEXP ∩ Co-NEXP and related classes.

Equivalences between deterministic lower bounds and derandomization has been studied extensively in

the past. This was extended to non-deterministic circuits in [7] using an improved high-end KLT for NP/𝑝𝑜𝑙𝑦.
Using the higher Arthur-Merlin classes from [38] we generalize this KLT to general circuit classes and obtain: (i)
a wide spectrum of lower bounds vs derandomization equivalences; (ii) lower bounds for higher Arthur-Merlin

classes against general circuit classes. Our KLT extends to EXP and UEXP, but not to NEXP due to the lack of EWLs.
For the special case of NEXP ⊄ (NP∩Co-NP)/𝑝𝑜𝑙𝑦 we prove equivalence with: witness lower bound, an uniform

lower bound, and various useful properties. We extend results from [75] to show that: super-polynomial

savings in exhaustive search for certain problems imply NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. This new connection

yields an unconditional lower bound against a special restriction of non-deterministic ACC circuits.
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1 INTRODUCTION
We often think of algorithm design and lower bounds as being antithetical, but there have been

a series of results showing that in certain circumstances, efficient algorithms imply circuit lower

bounds [31, 41, 53, 73, 74, 76]. Unfortunately, most of these results are only known to show circuit

lower bounds or conditional lower bounds in relatively large complexity classes such as NEXP or
ENP (although [53] extends this to scaled-down versions of these classes). This raises the question

of whether similar lower bounds for other classes, ideally deterministic or randomized classes

such as EXP or BPEXP, could be obtained through improved algorithms. Here, we consider possible

extensions to the class UEXP of languages recognized by unambiguous non-deterministic machines,

and to related classes. Since UEXP lies between EXP and NEXP, lower bounds for UEXP based on

algorithms would be progress towards making similar connections for EXP.
A key technique used to make these connections is the “easy witness technique” [31, 40, 53]. The

easy witness technique relates the circuit complexity of witnesses for non-deterministic algorithms

to the circuit or algorithmic complexity of decision problems. We give easy witness lemmas (or EWL
for short) for UEXP and related classes; these are simpler than the analogous results for NEXP, which
needed a rather indirect argument. We then explore consequences of these EWLs to normal forms

for circuit lower bounds in these classes, in terms of useful properties in the sense of Razborov

and Rudich [61] (see also [75]). We take a detour to explore the nature of these special properties

we get, and draw some interesting conclusions. Then we show how different combinations of fast

learning and SAT algorithms for a circuit class would imply a circuit lower bound for UEXP. We also

show that: when circuit lower bounds for NEXP are replaced with circuit lower bounds for UEXP,
we get better derandomization results.

An alternate way in which we can extend this “algorithm design vs lower bounds” connection is:

by keeping the class NEXP same, but increasing the complexity of circuit classes against which we

want to obtain the lower bounds. Our next ideal choice should be non-deterministic or single-valued

non-deterministic circuits. We consider the intermediate class (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. We again take

the route of easy witness technique and prove results that are analogous to the UEXP case. Here
again, we take a detour and generalize the lower bounds vs derandomization connection to general

circuit classes and get new unconditional lower bounds against fix-polynomial general circuit

classes.

In the (NP∩Co-NP)/𝑝𝑜𝑙𝑦 extension, our results are much tighter compared to the UEXP extension.
So we use it to establish an unconditional lower bound for NEXP against an ACC analogue of

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 (with non-determinism limited to sub-polynomial). Among numerous other

results, we extend NEXP Karp-Lipton theorems for P/𝑝𝑜𝑙𝑦 and (NP∩ Co-NP)/𝑝𝑜𝑙𝑦 to ENP| | . Using this

we get better gap theorem for MA, and new gap theorems for MANP∩Co-NP and CAPP. We also establish

downward separation type results where: lower bounds for exponential classes imply lower bounds

for sub-exponential classes.

1.1 EWL and KLT for UEXP
As a first step in extending the NEXP lower bound frameworks to UEXP, we design EWLs for UEXP and
related classes. One crucial intermediate step used in many lower bound frameworks is, Karp-Lipton

style theorem [43] (or KLT for short): it relates the non-uniform and uniform complexities of classes.

An example is Meyer’s Theorem from [43]: EXP ⊂ P/poly =⇒ EXP = ΣP
2
. An extension to NEXP

was given in [31], using the easy witness technique.

Our results from Section 3: We derive analogous EWL and KLT for UTIME. Our results are
fine-grained in terms of the time and size parameters, and work for all typical non-uniform circuit

classes. We look at EWL as a special search to decision reduction, where the output of the search
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Unique Properties, Lower bounds & Derandomization 3

problem is canonical in some natural way. We prove that such special search problems for UTIME
verifiers belong to UTIME itself (for NE they belong to ENP and are complete in some sense [34]).

This gives us the desired EWL: UEXP ⊂ P/poly implies UEXP verifiers have easy-witnesses, i.e.,

witnesses encoded as truth-tables of polynomial-size circuits. This in turn gives us the desired KLT:
UEXP ⊂ P/poly =⇒ UEXP = MA. Similar results for UEXP ∩ Co-UEXP and FewEXP are also derived.

1.2 Useful properties
Before we extend the NEXP lower bound frameworks to UEXP, we discuss an important barrier that

could limit the progress of any NEXP and UEXP lower bound technique.

Razborov and Rudich [61] defined the concept of natural property as a formalization of a barrier

that circuit lower bounds need to circumvent. Natural Proofs (or properties) satisfy three conditions:

they are constructive (an efficient algorithm A is embedded in them), have largeness (A accepts

a large fraction of strings), and are useful (A rejects all strings which are truth tables of small

circuits). Circuit lower bound techniques that entail natural properties are called natural, and are

known to contradict widely believed cryptographic assumptions in the course of proving strong

lower bounds. Thus they are self-limiting, and in order to prove stronger circuit lower bounds the

techniques should be un-natural in some sense. Unfortunately, the vast majority of known circuit

lower bound techniques are natural and can’t be applied even to low-level complexity classes such

as TC0 [48, 52, 54].
Williams [75] showed, using the NEXP EWL, that any lower bound for a problem in NEXP implies

a property with two of the conditions (constructivity and usefullness) of Razborov and Rudich, but

not necessarily the third (largeness). So while natural properties for circuit classes cannot exist

if there are strong pseudo-random functions in the class, it seems likely that dropping largeness

means that such properties do exist.

Our results fromSection 4:To understand properties that avoid largeness, we look at properties
that go to the other extreme. We introduce a new notion called unique properties, those that contain

exactly one function of each input length. Useful unique properties are implicitly proving a circuit

lower bound for a specific function: the one function that has the property, but might not explicitly

spell out which function the lower bound holds for.

We extend the proofs in [57, 75] to show that: obtaining NEXP lower-bounds or lower bounds
for NEXP witnesses is equivalent to obtaining useful NP-unique properties that use log𝑛 advice;

obtaining NEXP ∩ Co-NEXP lower-bounds is equivalent to obtaining useful NP-unique properties;
and obtaining lower bounds for NEXP ∩ Co-NEXP witnesses is equivalent to obtaining useful NP
properties (which may or may not be unique).

The next obvious step is to reduce the constructivity to P. In attempt to understand P-unique
properties, we move to UEXP lower bounds. We show that P-constructivity and uniqueness both

are unavoidable for UEXP lower bounds. We prove, UEXP ∩ Co-UEXP ⊄ C if and only if there is a

P-unique property useful against C. We also establish equivalences between lower bounds against

UEXP (with and without advice), and the existence of different restrictions of P-unique properties
that use advice.

Our results from Section 5:Our results from Section 4 show that obtaining NP/log𝑛 properties

useful against polynomial size circuits, is equivalent to obtaining NP/log𝑛-unique properties useful
against polynomial size circuits. This can be viewed as some type of isolation of properties: where

properties have equivalent unique-properties. In Section 5 we extend this isolation and get rid of the

log𝑛 amount of advice on the expense of diluting the usefulness of the properties. More precisely

we show the following equivalence/translations for properties useful against fix-polynomial size

circuits:
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4 Anant Dhayal and Russell Impagliazzo

(1) Obtaining NP/𝑂 (1) useful properties of arbitrary largeness, is equivalent to obtaining NP/𝑂 (1)-
unique useful properties.

(2) Obtaining promise-NP useful properties of arbitrary largeness, is equivalent to obtaining

promise-NP-unique useful properties. Here, by promise we mean that the property is only

required to satisfy the size restrictions when its useful.

(3) Obtaining NP properties of arbitrary largeness that are useful for all input lengths, is at least

as difficult as obtaining NP-unique properties that are useful infinitely often. Note that by

default, the properties are only useful infinitely often.

These new equivalences, combined with the equivalences from Section 4 imply: various NEXP ∩
Co-NEXP lower bounds are equivalent to corresponding NEXP∩Co-NEXP witness lower bounds. The
equivalences between these lower bounds is nothing but a collection of EWLs for NEXP ∩ Co-NEXP.
Using these EWLs we also get some interesting KLTs for NEXP ∩ Co-NEXP.

To capture the case of promise properties, we define a promise version of NEXP ∩ Co-NEXP, such
that the NEXP and Co-NEXP algorithms only need to complement each other, infinitely often. We

name this class ip-(NEXP∩Co-NEXP), where ‘ip’ stands for ‘infinitely-often promise’. This is inspired

by the robustly-often promise classes defined in [18]. We also get EWL and KLT for this class. From

the various equivalences established between unique-properties and lower bounds: we infer that

the lower bounds for ip-(NEXP ∩ Co-NEXP) strictly lie between the lower bounds for NEXP and

NEXP ∩ Co-NEXP, unless new unknown collapses are proved. Later we will see that lower bounds

for this class perfectly capture the derandomization (of certain randomized classes) without advice.

1.3 Fast algorithms to non-uniform lower bounds
Now we extend the NEXP lower bound frameworks to UEXP.

Ckt-SAT is the canonical NP complete problem [21, 49]. No algorithm significantly faster than

the trivial brute-force algorithm is known to solve Ckt-SAT. One related interesting question is:

does non-determinism helps in solving Ckt-TAUT faster than brute-force? After years of effort

[59, 60], no progress in beating the brute-force strategy (significantly), lead to the formulation of

several conjectures [19, 32, 33].

In [73] it was shown that: if we get super-polynomial savings in any non-deterministic Ckt-TAUT
algorithm for polynomial size circuits, then NEXP ⊄ SIZE(𝑝𝑜𝑙𝑦). This shows that even a small

progress in SAT algorithms is at least as hard as proving non-uniform circuit lower bounds. But

to optimistic people, it gives a chance to prove lower bounds. In fact, this framework was used to

prove lower bounds for weak circuit classes by designing fast SAT algorithms for them [74–76].

Our results from Section 6: We discuss possible extensions of the framework from [73], to

yield UEXP lower bounds. We show similar extensions for the “learning vs lower bounds” framework

of [24]. We use the UTIME EWL and KLT in our extensions.

Our extensions are weak in the sense that they demand fast algorithms that beat brute-force

with a better margin than what was required in the NEXP case. As such algorithms have been

designed, or seem plausible in the near future, only for restricted classes, we give results that

generalize the lower bound frameworks. We provide translation results that generalize the lower

bound frameworks for unrestricted Boolean circuits, to all typical circuit classes, in a black box

fashion. That is, generalization only depends on the assumption set of the framework and not its

working.
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1.4 Unconditional lower bounds from KLTs
Before we extend the NEXP lower bound framework to (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, we design KLT for

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 and higher circuit classes. In this section we take a detour, and use these KLTs
to prove some unconditional lower bounds against general circuit classes.

Proving lower bounds for nonuniform circuits remains one of the most difficult tasks in com-

putational complexity. Proving super polynomial lower bounds for NP would separate NP from P
and BPP. Proving fix-polynomial lower bounds for NP would separate NEXP form BPP. Currently we

don’t even have super-linear lower bounds for NP.
We have fix-polynomial lower bounds against higher classes. This work was started by Kannan in

1982 [42]. He used the low-end KLT, NP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ PH = ΣP
2
∩ ΠP

2
[43], to prove fix-polynomial

lower bounds for ΣP
2
∩ΠP

2
. New lower bounds were proved using new low-end KLTs [13, 16, 44, 51, 71].

The improvements made along the inclusion chain, NP ⊆ PNP| | ⊆ PNP ⊆ SP
2
⊆ ZPPNP ⊆ ΣP

2
∩ ΠP

2
,

stopped at SP
2
in [16] (based on an observation by Sengupta). Fix-polynomial lower bounds for NP

and PNP| | are equivalent [27], and fix-polynomial lower bounds for PNP are equivalent to obtaining

an improved low-end KLT [20].

Another set of inclusions is NP ⊆ MA ⊆ SP
2
, , where the relationship between MA and PNP (or PNP| | )

is not known. Santhnam [63] gave the fix-polynomial lower bound for MA/1 and prMA, using the
high-end KLT of [9]: PSPACE ⊂ P/𝑝𝑜𝑙𝑦 =⇒ PSPACE = MA. Fix-polynomial lower bounds for NP
imply an improved high-end KLT [20].

We extend these results to general circuit classes. Lower bounds for these classes entail answers

to equally important questions. For instance, proving super-polynomial lower bounds for NEXP
(resp. ΣP

2
) against non-deterministic circuits would separate NEXP (resp. ΣP

2
) form AM. As KLTs seem

the only way of proving lower bounds, we first establish KLTs for general circuit classes. One can
find the definitions of SV non-deterministic circuits, (co-)non-deterministic circuits, adaptive/non-

adaptive SAT-oracle circuits in [64]. We also define a new class of circuits to capture the class

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦: promise SV non-deterministic circuits. We generalize these definitions further

to the polynomial hierarchy (see Section 2 for formal definitions).

For non-deterministic circuits: (i) the best known low-end KLT [17] yields fix-polynomial lower

bounds for S2 · PNP; (ii) the high-end KLT, PSPACE ⊂ NP/𝑝𝑜𝑙𝑦 =⇒ PSPACE = M(AM| |Co-NP),
where ΣP

2
⊆ M(AM| |Co-NP) ⊂ MANP ⊂ S2 · PNP, was given in [7]; and (iii) this KLT was used to show

fix-polynomial lower bounds for prM(AM| |Co-NP) in [65].

Our results from Section 7: We improve the result of [65] by replacing non-deterministic

circuits with non-adaptive SAT-oracle circuits. We need two intermediate results for this:

(1) For the case PSPACE ⊄ PNP| | /𝑝𝑜𝑙𝑦: We use Santhanam’s framework, and thus need his special

PSPACE-complete language, that was instance-checkable with same-length queries. The

‘same-length queries’ part was essential for his argument. Using the fact that this language

is non-adaptively random-self-reducible, we show that there is a fix constant 𝑐 , such that

any 𝑠 (𝑛)-size non-adaptive SAT-oracle circuit for the language has an equivalent 𝑠 (𝑛)𝑐 -size
non-deterministic circuit. We use the tools from [22] in similar fashion as used in [64]. The

size 𝑠 (𝑛)𝑐 is essential, due to the same reason ‘same-length queries’ were essential, and thus

we can’t afford 𝑠 (𝑛𝑐 )𝑐 .
(2) For the other case:We use the improved KLT, PSPACE ⊂ PNP| | /𝑝𝑜𝑙𝑦 =⇒ PSPACE = M(AM| |Co-NP).

This was implicit in [7, 23].

We generalize the KLT from [7] to higher Arthur-Merlin classes [38] and general circuit classes:

PSPACE ⊂ P
ΣP𝑖
| | /𝑝𝑜𝑙𝑦 =⇒ PSPACE = M(BP · ΣP

𝑖 | |ΠP
𝑖 ). Using this we prove lower bounds for

prM(BP · ΣP
𝑖 | |ΠP

𝑖 ) against fix-polynomial size non-adaptive ΣP
𝑖 -oracle circuits. Note that this class is
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6 Anant Dhayal and Russell Impagliazzo

contained in MAΣ
P
𝑖 and S2 · PΣ

P
𝑖 : the lowest classes against which this lower bound was known until

now.

Among some other fix-polynomial lower bounds, we also show: for constant𝑘 , prAM ⊄ (NTIME(𝑛𝑘 )∩
Co-NTIME(𝑛𝑘 ))/𝑛𝑘 . In our terminology: prAM doesn’t have fix polynomial promise SV non-deterministic

circuits. Note that, in this lower bound, the class has to have one language that beats all of the

(NTIME(𝑛𝑘 ) ∩ Co-NTIME(𝑛𝑘 ))/𝑛𝑘 algorithms. The lack of complete problems in (NTIME(𝑛𝑘 ) ∩
Co-NTIME(𝑛𝑘 )) makes this task a bit difficult.

We also improve the current state of art for super-polynomial lower bounds. MAEXP ⊄ P/𝑝𝑜𝑙𝑦 [14]

and AMEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 [72] are the best results known before this work. From our KLTs
we get: (i) MAENP∩Co-NP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, and (ii) M(AME| |Co-NE) ⊄ PNP| | /𝑝𝑜𝑙𝑦. We also extend

these lower bounds : (i) to sub-half-exponential circuit sizes; (ii) to super-half-exponential versions

of the protocols; (iii) to general circuit classes and higher Arthur-Merlin protocols.

1.5 Derandomization vs lower bounds
In this section we extend the “lower bounds to derandomization” connection of NEXP, to UEXP and

general circuit classes.

Relationship between derandomization and uniform/non-uniform lower bounds has been studied

extensively in the past [7, 9, 18, 31, 35, 36, 55, 56, 66, 69, 75]. In this section we only focus on the

lower end of this spectrum: derandomization that requires sub-exponential time.

In [35] it was shown:

EXP ≠ BPP ⇐⇒ BPP ⊂ ∩𝜖>0 io-Heur-TIME(2𝑛
𝜖 ) (1)

In [31] its NEXP version was proved:

NEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) ⇐⇒ NEXP ≠ MA ⇐⇒ MA ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖 (2)

In [75] another variant was proved:

NEXP ≠ BPP ⇐⇒ BPP ⊂ ∩𝜖>0 io-Heur-NTIME(2𝑛
𝜖 )/𝑛𝜖 (3)

In [75] this was also extended to REXP lower bounds:

REXP ≠ BPP ⇐⇒ BPP ⊂ ∩𝜖>0 io-Heur-ZPTIME(2𝑛
𝜖 )/𝑛𝜖 (4)

In [7], an extension to non-deterministic circuits was given:

Σ2EXP ⊄ NP/𝑝𝑜𝑙𝑦 ⇐⇒ prAM ⊂ ∩𝜖>0 io-Σ2TIME(2𝑛
𝜖 )/𝑛𝜖 (5)

Our results from Section 8: We extend equations (2,3,4) to UTIME and ZUTIME using results

from the Sections 3 and 4 (lower bounds vs unique properties). Unfortunately, we only get the

“lower bounds to derandomization” connection and not the reverse connection. It is due to the lack

of complete languages and strong hierarchies. For the case of REXP this problem was circumvented

by using the relationship NEXP ≠ BPP ⇐⇒ REXP ≠ BPP (due to NP ⊆ BPP ⇐⇒ NP = RP [47]).
We use our general high-end KLT and extend this equivalence to: lower bounds against general

circuit classes vs derandomization of higher Arthur-Merlin classes. We also extend equation (2) to

lower bounds against (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 and other related circuit classes, and generalize all these

relations too. In [18] equation (2) was extended to a tighter equivalence: NE ∩ Co-NE lower bounds

vs derandomization without advice. We extend this tighter connection as well: to non-deterministic

and higher circuit classes. For this, we use the promise class ip-(NE ∩ Co-NE).
Graph non-isomorphism is in AM. In [1] it was shown that the complement of Boolean isomor-

phism is in BP · ΣP
2
. Boolean isomorphism is the problem of deciding whether the input pair of

Boolean circuits is isomorphic or not (upto renaming of the inputs). In [38], apart from other results

on higher Arthur-Merlin classes, they also showed that non-Boolean isomorphism for ΣP
𝑖 -oracle
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circuits is in BP · ΣP
𝑖+2 = AMΣ

P
𝑖+1 . So our general connection can also be thought of as: Boolean

non-isomorphism for ΣP
𝑖 -oracle circuits have non-deterministic sub-exponential proofs (verifiable

with ΣP
𝑖+2 oracles), unless PH collapses.

Finally, we combine these connections with the unconditional fix-polynomial lower bounds that

we established in the Section 7, to yield downward separation type results where: lower bounds for

exponential classes imply lower bounds for sub-exponential classes.

1.6 The special case of (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
Now we extend the NEXP lower bound frameworks to (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, and also prove some

other interesting results.

For the special case of (NP∩ Co-NP)/𝑝𝑜𝑙𝑦, we are able to prove an EWL. In the case of P/𝑝𝑜𝑙𝑦, EWL
was used to extend the high-end KLT (for PSPACE and EXP) to NEXP. For the case of (NP∩Co-NP)/𝑝𝑜𝑙𝑦,
we already have a KLT for NEXP, in which it collapses to AM [72]. Now from [31], we get an EWL using
the fact that NEXP search problems are contained in EXP, which is contained in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.
For more complex classes, such as NP/𝑝𝑜𝑙𝑦 or PNP/𝑝𝑜𝑙𝑦, the extensions to NEXP are not easy to

obtain, because KLT for PSPACE collapses it to higher classes than AM. The hard-witnesses can’t
derandomize these higher classes in NSUBEXP or NE, which was essential for the arguments used in

[31].

Our results from Section 9:We use the EWL for (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 to establish equivalences

between: (i) various witness lower bounds for NEXP, (ii) various properties against (NP∩Co-NP)/𝑝𝑜𝑙𝑦,
(iii) NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, (iv) NEXP ⊄ MANP∩Co-NP, and (v) derandomization of prBPPNP∩Co-NP

and prMANP∩Co-NP. We use the PSPACE KLT of [17] to extend the NEXP KLT of [72] to MANP∩Co-NP, which
is essential for our results (we also argue MANP∩Co-NP ⊆ AM).

We also extend the results to ENP| | . Specifically, we give E
NP
| | KLTs (and their converses) for P/𝑝𝑜𝑙𝑦

and (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.
We also replicate the NEXP∩Co-NEXP vs P/𝑝𝑜𝑙𝑦 results to: NEXP∩Co-NEXP vs (NP∩Co-NP)/𝑝𝑜𝑙𝑦.
Using the EWL we extend the “algorithm design vs lower bounds” connection of [73] to (NP ∩

Co-NP)/𝑝𝑜𝑙𝑦. We show that: super polynomial savings in non-deterministic, tautology or CAPP
algorithms, for (NP ∩ Co-NP)-oracle circuits, imply NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.
Note that, for any 𝐴 ∈ NP ∩ Co-NP, TAUT (or CAPP) for poly-size 𝐴-oracle circuits has a trivial

algorithm that runs in non-deterministic 𝑝𝑜𝑙𝑦 (𝑛)2𝑛-time: for all 2
𝑛
inputs, non-deterministically

guess the answers to all the oracle queries, and guess their certificates (for 𝐴 for any positive

answer, for 𝐴 for any negative answer).

Our assumption is weak in the sense that, we assume fast algorithm for harder problems. But,

we get a stronger consequence.

We also extend our results to fast tautology algorithms for determinsitic circuits. Here by fast we

mean, non-deterministic sub-exponential. In fact: (i) our algorithm only needs to work infinitely

often, (ii) can be heuristic (i.e. works for high fraction of inputs on any poly-sampleable distribution),

and (iii) is allowed to use sub-polynomial advice.

From the previous sections, we know that:

(1) CAPP ∈ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖 ⇐⇒ NEXP ⊄ P/𝑝𝑜𝑙𝑦

(2) CAPPNP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖 ⇐⇒ NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦

Our result can be seen as an improvement of (2), as we are replacing the (NP ∩ Co-NP)-oracle
circuits with deterministic circuits, but we are also replacing CAPP by TAUT. From (1), this indicates

that TAUT is a harder problem than CAPP, as same (or less) improvement in TAUT algorithms yield

stronger circuit lower bounds. From (2), this indicates that fast TAUT algorithm implies fast (or

faster) CAPP algorithm for a more complex circuit class.
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8 Anant Dhayal and Russell Impagliazzo

Such evidence was also implicit in [73]:

(1) TAUT ∈ NTIME(2𝑛/𝑠𝑝 (𝑛)) =⇒ CAPP ∈ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖

(2) TAUT ∈ ∩𝜖>0 io-Heur-NTIME(2𝑛
𝜖 )/𝑛𝜖 =⇒ CAPP ∈ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖

Here 𝑠𝑝 is any super-polynomial function. Our result is a strict improvement to (2), and (1) doesn’t

give the same message because: the implied CAPP algorithm is much faster, but it is weaker in the

sense that, it uses sub-polynomial advice and works only infinitely often.

As a side product of our arguments, we also get gap theorems for MANP∩Co-NP and CAPPNP∩Co-NP,
and an improved gap theorem for MA. The arguments are analogous to the ones given in [31, 73].

We also use the fast ACC algorithm from [74] to prove an unconditional lower bound: NEXP is not
contained in the ACC analogue of (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 (with sub-polynomial non-determinism). We

also show that: an extension to ACC analogue of SV non-deterministic circuits (with sub-polynomial

non-determinism), will also imply an extension to ACC analogue of non-deterministic circuits (with

sub-polynomial non-determinism).

2 PRELIMINARIES
Basic notations: Unless a new range is declared during the usage, we use 𝑡 for time-constructible

functions 𝑛 ≤ 𝑡 (𝑛) ≤ 2
𝑛𝑂 (1)

, 𝑎 for advice functions 0 ≤ 𝑎(𝑛) ≤ 𝑝𝑜𝑙𝑦 (𝑛), 𝑠 for circuit sizes (number

of wires) 𝑛 ≤ 𝑠 (𝑛) ≤ 2
𝑛
. For language 𝐿 we use 𝐿𝑛 = {𝑥 | 𝑥 ∈ 𝐿 ∧ |𝑥 | = 𝑛} to denote the 𝑛𝑡ℎ-slice of

𝐿 (or the characteristic function of 𝐿 on 𝑛-length inputs). For circuit 𝐶 , we use 𝑡𝑡 (𝐶) to denote its

truth-table, and |𝐶 | to denote its size.

Uniform classes:We assume that the reader is familiar with the standard complexity classes

such as P, NP, RP, UP, BPP, ZPP, MA, AM, MAM, ΣP
𝑖 ,Π

P
𝑖 , PH (see [5]) and their corresponding complexity

measures, DTIME, NTIME, RTIME, UTIME, BPTIME, ZPTIME, MATIME, AMTIME, Σ𝑖TIME, Π𝑖TIME. For the
special cases of ΣP

𝑖 ,Π
P
𝑖 , we omit the superscript P and simply write Σ𝑖 ,Π𝑖 . For C = D, N, R, U, BP, ZP,

MA, AM, Σ𝑖 ,Π𝑖 : CTIME(𝑡) denotes the class of languages accepted by CTIMEmachines that run in𝑂 (𝑡)
time. CE, CEXP, CSUBE, CSUBEXP, denote the classes∪𝑐≥0CTIME(2𝑐𝑛),∪𝑐≥0CTIME(2𝑛

𝑐 ),∩𝑐≥0CTIME(2𝑐𝑛),
∩𝑐≥0CTIME(2𝑛

𝑐 ) respectively. We assume familiarity with Ckt-SAT (circuit satisfiability), Ckt-TAUT
(circuit tautology), k-SAT, k-TAUT, CNF-SAT, DNF-TAUT, Σ𝑖 -SAT and Π𝑖 -SAT.

Zero-error classes: We extend the concept of zero-error class to non-deterministic and un-

ambiguous classes. We do this for the sake of clarity in certain arguments, and specially for

distinguishing between certain non-uniform classes.

𝐿 ∈ ZCTIME(𝑡) if there exists a Turing machine 𝑀 , that for input (𝑥,𝑦) with |𝑥 | = 𝑛 and

|𝑦 | = 𝑐 · 𝑡 (𝑛) for some constant 𝑐 , runs in time 𝑐 · 𝑡 (𝑛) for ∀𝑛 ∈ N, and whose output lies in {1, ?}
if 𝑥 ∈ 𝐿, and in {0, ?} if 𝑥 ∉ 𝐿. Additionally, the quantity Σ𝑦:𝑀 (𝑥,𝑦) ∈{0,1}1 is equal to: 1 for C = U

(uniqueness), ≥ 1

2
× 2

𝑐 ·𝑡 (𝑛)
for C = R (largeness), ≥ 1 for C = N (existence). The verifier/predicate

corresponding to𝑀 is called zero-error non-deterministic. For the special cases of C = U and C = R,
its called zero-error unambiguous and zero-error randomized respectively.

Remark : ZRTIME = ZPTIME, and for C = N, R, U, ZCTIME(𝑡) = CTIME(𝑡) ∩ Co-CTIME(𝑡) follows
by a similar argument that shows ZPTIME(𝑡) = RTIME(𝑡) ∩ Co-RTIME(𝑡).

Circuit classes:We assume basic familiarity with Boolean circuits and their sub-classes. We use

C to denote any typical non-uniform circuit class, i.e., any class from the set {AC0, ACC0, TC0, NC1, NC,
P/𝑝𝑜𝑙𝑦}. All these circuit classes are of polynomial size. We use C(𝑠) to denote the class of 𝑂 (𝑠)-
size C circuits. For truth-table 𝑡𝑡 , we use 𝑐𝑘𝑡C (𝑡𝑡) to denote its exact C circuit complexity, i.e.

the minimum size of any C circuit 𝐶 whose truth-table (when concatenated to make the string

𝐶 (00 . . . 0) . . .𝐶 (11 . . . 1)) is 𝑡𝑡 . In the case of unrestricted Boolean circuits, instead of C(𝑠) and
𝑐𝑘𝑡C (𝑡𝑡), we use SIZE(𝑠) and 𝑐𝑘𝑡 (𝑡𝑡) respectively.
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Non-uniform classes: 𝐿 ∈ Γ/𝑎 if there exists an advice-taking Γ Turing Machine𝑀 , and advice

sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: 𝑥 ∈ 𝐿 ⇐⇒ 𝑀 (𝑥)/𝑎 |𝑥 | = 1. For semantic

classes, the machine𝑀 only needs to satisfy the semantic promise on the correct advice sequence

{𝑎𝑛}𝑛∈N (and not on all advice sequences). Below we define an exception for C = N, R, U (points (1)

and (3) also hold for Σ𝑖TIME ∩ Π𝑖TIME):

(1) 𝐿 ∈ (CTIME(𝑡) ∩ Co-CTIME(𝑡))/𝑎: If there are NTIME(𝑡) Turing Machines 𝑀 and 𝑀 ′
, and

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: (i) 𝑥 ∈ 𝐿 ⇐⇒ 𝑀 (𝑥)/𝑎 |𝑥 | = 1;

(ii) both𝑀 and𝑀 ′
satisfy the semantic promise on {𝑎𝑛}𝑛∈N (for C = N there is no promise);

and (iii) both accept complement languages. For the other advice sequences,𝑀 and𝑀 ′
are not

required to satisfy the semantic promise, but are required to accept complement languages.

(2) 𝐿 ∈ ZCTIME(𝑡)/𝑎: It’s the same as (1), except that in the “other advice sequences” part,𝑀 and

𝑀 ′
are not required to accept complement languages. That is, both𝑀 and𝑀 ′

are required

to accept complement languages just for some correct advice sequence, and simultaneously

satisfy the semantic promise. Equivalently, there is a ZCTIME(𝑡) Turing Machines 𝑁 , and

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: 𝑥 ∈ 𝐿 ⇐⇒ 𝑁 (𝑥)/𝑎 |𝑥 | = 1;

and 𝑁 satisfy the semantic promise. For other advice sequences 𝑁 might: (i) fail to provide

uniqueness/largeness/existence; (ii) for some input, output both 0 and 1 (on different non-

deterministic branches); or (iii) for some input, output just ‘?’ (on all non-deterministic

branches).

(3) 𝐿 ∈ CTIME(𝑡)/𝑎∩Co-CTIME(𝑡)/𝑎: It’s further relaxed than (2). We need two advice sequences

{𝑎𝑛}𝑛∈N and {𝑏𝑛}𝑛∈N, satisfying ∀𝑛 |𝑏𝑛 | = 𝑏 (𝑛) and ∀𝑛 |𝑏𝑛 | = 𝑏 (𝑛) (these sequences need
not be the same). 𝑀 satisfy the semantic promise on {𝑎𝑛}𝑛∈N and accept 𝐿. 𝑀 ′

satisfy the

semantic promise on {𝑏𝑛}𝑛∈N and accept 𝐿. There are no other conditions.

Remark: 𝐿 ∈ ZCTIME(𝑡)/𝑎 is equivalent to 𝐿 having CTIME(𝑡)/𝑎 and Co-CTIME(𝑡)/𝑎 algorithms

that both use the same advice. This shows:

CTIME(𝑡) ∩ Co-CTIME(𝑡))/𝑎 ⊆ ZCTIME(𝑡)/𝑎 ⊆ CTIME(𝑡)/𝑎 ∩ Co-CTIME(𝑡)/𝑎 ⊆ ZCTIME(𝑡)/2𝑎
So the difference between ZCTIME(𝑡)/𝑎 and CTIME(𝑡)/𝑎 ∩ Co-CTIME(𝑡)/𝑎 only matters when the

amount of advice is precise.

Heuristic classes: For uniform/non-uniform class Λ, 𝐿 ∈ 𝐻𝑒𝑢𝑟 -Λ if ∃𝐿′ ∈ Λ, such that for all

polynomially samplable distributions D, ∀𝑛 𝑃𝑟𝑥∼D, |𝑥 |=𝑛 [𝐿𝑛 (𝑥) = 𝐿′
𝑛 (𝑥)] ≥ 1 − 1

𝑛
.

Infinitely-often classes: For uniform/non-uniform, heuristic/non-heuristic class Λ, 𝐿 ∈ io-Λ if

∃𝐿′ ∈ Λ, and an infinite subset 𝑆 ⊂ N, such that 𝑛 ∈ 𝑆 =⇒ 𝐿𝑛 = 𝐿′
𝑛 .

Variety of witness complexities for CTIME:We define different ways of measuring complexity

of witnesses for non-determinstic verifiers. We will later see that lower-bounds based on these

measures are not always the same (see Table1).

(1) Witnesses: A non-deterministic verifier 𝑉 for 𝐿, has witnesses in 𝑠-size C circuits, if for

every 𝑥 ∈ 𝐿, there is an 𝑠 ( |𝑥 |)-size C circuit𝐶𝑥 , such that𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥 )) = 1. If𝑉 uses 𝑎 amount

of advice, then we say that 𝑉 /𝑎 has witnesses in 𝑠-size C circuits, if for some correct advice

sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), for every 𝑥 ∈ 𝐿, there is an 𝑠 ( |𝑥 |)-size C circuit

𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥 ))/𝑎 |𝑥 | = 1.

(2) Hitting-sets for witnesses (all witnesses in one): A non-deterministic verifier 𝑉 for 𝐿

has 𝑙-size hitting-sets in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 𝑙 strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟𝑙 } of equal lengths, satisfies
∀(𝑥 : |𝑥 | = 𝑛 ∧ 𝑥 ∈ 𝐿) ∃(𝑖 ∈ [1, 𝑙]) 𝑉 (𝑥, 𝑠𝑡𝑟𝑖 ) = 1. The default value of 𝑙 is 2𝑛 . If𝑉 uses advice,

hitting-sets are defined analogous to witnesses in the advice setting.

(3) Oblivious witnesses (ordered hitting-sets for witnesses): Let 𝑦1, . . . , 𝑦2𝑛 denote the 𝑛-

length strings arranged in the lexicographical order. A non-deterministic verifier 𝑉 for 𝐿

, Vol. 1, No. 1, Article . Publication date: May 2020.



10 Anant Dhayal and Russell Impagliazzo

has oblivious witnesses in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 2
𝑛
strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟2𝑛 } of equal lengths, satisfies

∀(𝑖 ∈ [1, 2𝑛]) 𝑦𝑖 ∈ 𝐿 =⇒ 𝑉 (𝑦𝑖 , 𝑠𝑡𝑟𝑖 ) = 1. For 𝑖 with 𝑦𝑖 ∉ 𝐿, 𝑠𝑡𝑟𝑖 is the all 0s string. If 𝑉 uses

advice, oblivious witnesses are defined analogous to the witnesses in advice setting.

We use CTIME(𝑡)/𝑎 ⊂𝑤 C(𝑠) to say that, any CTIME(𝑡) verifier, for some correct advice sequence,

has witnesses in C(𝑠) circuits. CTIME(𝑡)/𝑎 ⊄𝑤 C(𝑠) means that, there is a CTIME(𝑡) verifier that:
for any correct advice sequence, doesn’t have witness in C(𝑠) circuits infinitely often. ⊂ℎ𝑤 (⊄ℎ𝑤)

and ⊂𝑜𝑤 (⊄𝑜𝑤) are defined similarly for “hitting-sets for witnesses” and “oblivious witnesses”

respectively.

Variety of seed complexities for ZCTIME:Any language in ZCTIME has two, a CTIME algorithm
and a Co-CTIME algorithm deciding it. So instead of witnesses, we define a stronger notion: seeds,

which is nothing but a technical way of combining witnesses from the two algorithms.

(1) Seeds: A zero-error non-deterministic verifier 𝑉 for 𝐿 has seeds in 𝑠-size C circuits, if for

every 𝑥 , there is an 𝑠 ( |𝑥 |)-size C circuit 𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥 )) ∈ {0, 1}. If 𝑉 uses 𝑎

amount of advice, then we say that 𝑉 /𝑎 has seeds in 𝑠-size C circuits, if for some correct

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), for every 𝑥 , there is an 𝑠 ( |𝑥 |)-size C
circuit 𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥 ))/𝑎 |𝑥 | ∈ {0, 1}.

(2) Hitting-sets for seeds (all seeds in one): A zero-error non-deterministic verifier 𝑉 for

𝐿 has 𝑙-size hitting-sets in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 𝑙 strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟𝑙 } of equal lengths, satisfies
∀(𝑥 : |𝑥 | = 𝑛) ∃(𝑖 ∈ [1, 𝑙]) 𝑉 (𝑥, 𝑠𝑡𝑟𝑖 ) ∈ {0, 1}. The default value of 𝑙 is 2𝑛 . If 𝑉 uses advice,

hitting-sets are defined analogous to seeds in the advice setting.

(3) Oblivious seeds (ordered hitting-sets for seeds): Let 𝑦1, . . . , 𝑦2𝑛 denote the 𝑛-length

strings arranged in the lexicographical order. A zero-error non-deterministic verifier 𝑉

for 𝐿 has oblivious seeds in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 2
𝑛
strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟2𝑛 } of equal lengths, satisfies

∀(𝑖 ∈ [1, 2𝑛]) 𝑉 (𝑦𝑖 , 𝑠𝑡𝑟𝑖 ) ∈ {0, 1}. If 𝑉 uses advice, oblivious seeds are defined analogous to

seeds in the advice setting.

We use ZCTIME(𝑡)/𝑎 ⊂𝑤 C(𝑠) to say that, any ZCTIME(𝑡) verifier, for some correct advice

sequence, has seeds in 𝑠-size C circuits. ZCTIME(𝑡)/𝑎 ⊄𝑤 C(𝑠) means that, there is a ZCTIME(𝑡)
verifier that: for any correct advice sequence, doesn’t have seeds in 𝑠-size C circuits infinitely

often. ⊂ℎ𝑠 (⊄ℎ𝑠 ) and ⊂𝑜𝑠 (⊄𝑜𝑠 ) are defined similarly for “hitting-sets for seeds” and “oblivious seeds”

respectively.

Useful properties: We define a generalized version of the natural properties.

Definition 2.1 (Useful uniform properties). A uniform Γ algorithmA is a Γ-C property if it satisfies
the first condition stated below, on the inputs that are powers of 2 (interpreted as truth-tables of

Boolean functions).A is said to be useful against 𝑠-size C circuits if it satisfies the second condition

stated below.

(1) Size restrictions:
(a) Uniqueness for C = U: ∀𝑛 ∈ N Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)=11 = 1

(b) Largeness for C = R: ∀𝑛 ∈ N 𝑃𝑟𝑥 : |𝑥 |=2𝑛 [A(𝑥) = 1] ≥ 1

2
𝑛

(c) Existence for C = N: ∀𝑛 ∈ N Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)=11 ≥ 1

(2) Usefulness: for infinitely many 𝑛 ∈ N, ∀(𝑥 : |𝑥 | = 2
𝑛) A(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑠 (𝑛)

Note that, in the case where 𝑠 is 𝑝𝑜𝑙𝑦 (𝑛), a single algorithm A should be useful against 𝑛𝑘 -

size C circuits for all 𝑘 . That is, for each 𝑘 , there should be infinitely many 𝑛 ∈ N, such that

∀(𝑥 : |𝑥 | = 2
𝑛) A(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 .
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Definition 2.2 (Useful properties that use advice). A Γ/𝑎 algorithm A is a Γ/𝑎-C property if it

satisfies the first condition of Definition 2.1 on an advice sequence {𝑎𝑛}𝑛∈N that satisfies ∀𝑛 |𝑎𝑛 | =
𝑎(𝑛). A is said to be useful against 𝑠-size C circuits if it satisfies the second condition of Definition

2.1 on the same advice sequence {𝑎𝑛}𝑛∈N. For C = U, based on how A behaves on the advice

sequences other than {𝑎𝑛}𝑛∈N, it has two special categories:

(1) Γ/𝑎-strong-unique or Γ/𝑎-𝑢=1: ∀𝑛 ∈ N ∀(𝑏𝑛 : |𝑏𝑛 | ≤ 𝑎(𝑛)) Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)/𝑏𝑛=11 = 1

(2) Γ/𝑎-mild-unique or Γ/𝑎-𝑢≤1: ∀𝑛 ∈ N ∀(𝑏𝑛 : |𝑏𝑛 | ≤ 𝑎(𝑛)) Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)/𝑏𝑛=11 ≤ 1

Definition 2.3 (Promise useful properties). A Γ/𝑎 algorithmA is a Γ/𝑎-prC property useful against
𝑠-size C circuits if there is an advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛) such that: for

infinitely many 𝑛 ∈ N, A satisfies the first and second conditions of Definition 2.1. Informally,

the only condition property satisfies is: it is simultaneously non-trivial/large/unique and useful

for infinitely many input lengths, and no conditions for the other input lengths (property is even

allowed to be empty).

For ⊓ ∈ {N, R, U, 𝑢=1, 𝑢≤1, prN, prR, prU}, we use Γ/𝑎-⊓ ⊄𝑡𝑡 C to say that there is a Γ/𝑎-⊓ property

useful against C(𝑠) circuits. In other words, there is a Γ/𝑎 algorithm, whose set of accepting inputs

satisfies the size restrictions of ⊓, and on infinitely many input lengths 2
𝑛
, algorithm accepts no

truth-tables 𝑡𝑡 with 𝑐𝑘𝑡C (𝑡𝑡) ≤ 𝑠 (𝑛).
For ⊓ ∈ {N, R, U, 𝑢=1, 𝑢≤1} we use Γ/𝑎-⊓ ⊄𝑡𝑡 io-C to denote properties that are useful on all but

finitely many input lengths (i.e., there is a point after which the property is always useful).

Circuit lower bounds for complexity classes:The following three types of NEXP lower bounds
are equivalent: (i) NEXP ⊄ SIZE(𝑝𝑜𝑙𝑦), i.e., an 𝐿 ∈ NEXP satisfies ∀𝑘 𝐿 ∉ SIZE(𝑛𝑘 ); (ii) NE ⊄

SIZE(𝑝𝑜𝑙𝑦); (iii) ∀𝑘 NE ⊄ SIZE(𝑛𝑘 ), i.e., a fix slice of NEXP (in this case NE) has 𝐿𝑘 for each 𝑘 , such

that 𝐿𝑘 ∉ SIZE(𝑛𝑘 ). The equivalence of first two follows from a simple padding argument. Third

is again implied by the first using a padding argument. The third implies the first two using a

complete language for NE (under linear-time reductions).

The equivalence holds for the three analogous lower bounds for EXP, Σ𝑖EXP and Π𝑖EXP too. In
fact, it holds for any exponential time/polynomial space syntactic class, but not for semantic classes.

Due to the lack of any complete problem, the third lower bound is not known to imply the first

two. Important examples of semantic classes are: ZNEXP, UEXP, ZUEXP, REXP, ZREXP, BPEXP and

Σ𝑖EXP ∩ Π𝑖EXP.
We say NEXP ⊄ io-SIZE(𝑠) if there is an 𝐿 ∈ NEXP that satisfies 𝐿 ∉ io-SIZE(𝑠): 𝐿 doesn’t have

SIZE(𝑠) circuits on all but finitely many input lengths (i.e., there is a point after which the language

slices always have high circuit complexity). Similar lower bounds are defined for other classes.

BP quantifier: For any syntactic class Γ, we say 𝐿 is in BP · Γ, if there is a polynomial 𝑝 and a

language 𝐿′ ∈ Γ such that,

𝑥 ∈ 𝐿 =⇒ 𝑃𝑟𝑟 ∈{0,1}𝑝 (𝑛) [(𝑥, 𝑟 ) ∈ 𝐿′] ≥ 2/3
𝑥 ∉ 𝐿 =⇒ 𝑃𝑟𝑟 ∈{0,1}𝑝 (𝑛) [(𝑥, 𝑟 ) ∈ 𝐿′] ≤ 1/3

The R, Co-R, and ZP quantifiers are defined in similar fashion.

Promise problems: A promise problem Π = (Π𝑌 ,Π𝑁 ) is a pair of disjoint sets Π𝑌 and Π𝑁 . In

the special case where Π𝑌 ∪ Π𝑁 = {0, 1}∗, Π is also a language. We say that a language 𝐿 agrees

with Π if:

𝑥 ∈ Π𝑌 =⇒ 𝑥 ∈ 𝐿

𝑥 ∈ Π𝑁 =⇒ 𝑥 ∉ 𝐿

Infinitely-often promise classes: For semantic classΛ, a promise problem 𝐿 is in the class ip-Λ
if: (i) the set of promise inputs include an infinite subset 𝑆 ⊆ N of input lengths (contains the entire
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12 Anant Dhayal and Russell Impagliazzo

𝑛𝑡ℎ-slice for any 𝑛 ∈ 𝑆 , and nothing from the other slices); (ii) there exists a Turing machine𝑀 such

that: for 𝑛 ∈ 𝑆 and for 𝑛-length input 𝑥 ,𝑀 is a Λ-type machine on 𝑥 , and𝑀 (𝑥) = 1 ⇐⇒ 𝐿(𝑥) = 1.

Remark: An infinitely-often promise class is different from an infinitely-often class in the sense

that: the Turing machine 𝑀 should be of Λ-type for all input lengths. For example, io-MA is the

class of languages that match any MA language for infinitely many input lengths. But, ip-MA is the
class of languages that have an MA algorithm for infinitely many input lengths, and for all the other

input lengths the algorithm is not required to satisfy the semantic promise of MA.
Special ip-classes:We say that 𝐿 ∈ ip-ZNE or 𝐿 ∈ ip-(NE ∩ Co-NE) if there is an infinite subset

𝑆 ⊆ N, 𝐿1 ∈ NE and 𝐿2 ∈ NE such that: for 𝑛 ∈ 𝑆 and 𝑛-length input 𝑥 , 𝐿(𝑥) = 1 ⇐⇒ 𝐿1 (𝑥) =
1 ⇐⇒ 𝐿2 (𝑥) = 0. We define the classes ip-(Σ𝑖E ∩ Π𝑖E) and ip-(MA ∩ Co-MA) similarly (for the

MA case, the MA protocols for 𝐿1 and 𝐿2 are not required to satisfy the semantic promise on inputs

lengths not in the set 𝑆).

Upper and lower bounds for ip-classes: We say that ip-Λ ⊂ C(𝑠) if any 𝐿 ∈ ip-Λ, has C(𝑠)
circuits for inputs lengths where the promise is met. We say that ip-Λ ⊄ C(𝑠) if there is an 𝐿 ∈
ip-Λ, that for infinite subset of promise input lengths (where the promise is met) does not have

C(𝑠) circuits.
The upper and lower bounds for the ip-Λ seeds / hitting-sets for seeds / oblivious-seeds are

defined in the similar fashion.

Oracle and advice for MA, AM and MAM protocols: MA𝑂/𝑎 (resp. AM𝑂/𝑎, MAM𝑂/𝑎) is the class of
languages with standard Merlin-Arthur (resp. Arthur-Merlin, Merlin-Arthur-Merlin) protocols

where Arthur has access to an oracle𝑂 and 𝑎 amount of non-uniform advice in the final verification

step. The protocols only need to satisfy the semantic promise on a correct advice sequence.

Generalization of AM: For 𝑖 ≥ 0, Π = (Π𝑌 ,Π𝑁 ) is in prAM𝑖 (promise AM𝑖 ), if there is a polynomial

𝑝 and a language 𝐿 ∈ Σ𝑖 , such that:

𝑥 ∈ Π𝑌 =⇒ 𝑃𝑟𝑟 ∈{0,1}𝑝 (𝑛) [(𝑥, 𝑟 ) ∈ 𝐿] ≥ 2/3
𝑥 ∈ Π𝑁 =⇒ 𝑃𝑟𝑟 ∈{0,1}𝑝 (𝑛) [(𝑥, 𝑟 ) ∈ 𝐿] ≤ 1/3

AM𝑖 consists of problems in prAM𝑖 that are languages. We use AM𝑖TIME to denote the corresponding

complexity measure. AM𝑖 = BP · Σ𝑖 , and from [38, 77] we know that AM𝑖 = AMΣ𝑖−1 = BP · NPΣ𝑖−1 =

Co-R · NPΣ𝑖−1 ⊆ Co-RPΣ𝑖 ⊆ BPPΣ𝑖 . Two special cases are: AM0 = BPP and AM1 = AM.
Generalization of MA: For 𝑖 ≥ 1, Π = (Π𝑌 ,Π𝑁 ) is in prMA𝑖 (promise MA𝑖 ), if there is a Ψ =

(Ψ𝑌 ,Ψ𝑁 ) in prAM𝑖−1, a Γ ∈ Π𝑖−1, and a polynomial 𝑝 , such that:

𝑥 ∈ Π𝑌 =⇒ ∃(𝑦 ∈ {0, 1}𝑝 (𝑛) ) [(𝑥,𝑦) ∈ 𝜓𝑌 ∧ (𝑥,𝑦) ∈ Γ]
𝑥 ∈ Π𝑁 =⇒ ∀(𝑦 ∈ {0, 1}𝑝 (𝑛) ) [(𝑥,𝑦) ∈ 𝜓𝑁 ∨ (𝑥,𝑦) ∉ Γ]

MA𝑖 consists of problems in prMA𝑖 that are languages. We use MA𝑖TIME to denote the corresponding

complexity measure. Borrowing notation from [7] we define MA𝑖 = M(AM𝑖−1 | |Π𝑖−1), where the symbol

“| |” stands for the “logical and” operation. One special case is: MA1 = MA. Also, MA𝑖 ⊆ MAΣ𝑖−1 since
AM𝑖−1 ⊆ BPPΣ𝑖−1 .

Remark: Any language in MA𝑖 has a protocol where the all-powerful prover Merlin sends a

non-deterministic proof to two verifiers: (i) the usual randomized verifier Arthur (which again

interacts with Merlin), and (ii) a Π𝑖−1 verifier Henry. The two verifiers can’t communicate with

each other. In the advice setting, only Arthur uses the advice in the final verification step.

Important inclusions: For 𝑖 ≥ 1, the following inclusions follow from the definitions (and from

the fact noted in [38] that the proofs of MA ⊆ S2 ·P = PS2 ·P ⊆ ZPPNP [6, 16, 28, 62] and MA ⊆ MAM = AM
[8, 10] relativizes):
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(1)

Σ𝑖

AM𝑖−1

⊆

⊆
MA𝑖 ⊆ MAΣ𝑖−1 ⊆ AMΣ𝑖−1 = AM𝑖

⊆
⊆

Π𝑖+1

MA𝑖+1

and Σ𝑖/𝑝𝑜𝑙𝑦 = AM𝑖/𝑝𝑜𝑙𝑦

(2) Σ𝑖
⊆
⊆

PΣ𝑖| |

MA𝑖

⊆

⊆

PΣ𝑖

MAΣ𝑖−1

⊆

⊆
S2 · PΣ𝑖−1 = PS2 ·P

Σ𝑖−1 ⊆ ZPPΣ𝑖 ⊆ Σ𝑖+1 ∩ Π𝑖+1 ⊆ Σ𝑖+1

(3) (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦 ⊆ Σ𝑖/𝑝𝑜𝑙𝑦 ∩ Π𝑖/𝑝𝑜𝑙𝑦 ⊆
⊆

Σ𝑖/𝑝𝑜𝑙𝑦

Π𝑖/𝑝𝑜𝑙𝑦

⊆

⊆
PΣ𝑖| | /𝑝𝑜𝑙𝑦 ⊆ PΣ𝑖 /𝑝𝑜𝑙𝑦

The subscript “| |” in PΣ𝑖| | implies that the oracle queries are “non-adaptive” (or “parallel”).

General Circuit Classes: For any 𝑖 ≥ 1 we generalize the definitions of the circuits classes

from [64] in the most natural way, with an addition of promise single-valued non-deterministic/Σ𝑖
circuits:

(1) Σ𝑖-oracle Circuits: A Σ𝑖-oracle circuit is a Boolean circuit 𝐶 that also has special gates:

the Σ𝑖SAT-oracle gates. A Σ𝑖SAT-oracle gate outputs 1 if and only if its input is a satisfying

instance of Σ𝑖SAT. We say 𝐿 ∈ SIZEΣ𝑖 (𝑠), if for 𝑛 ∈ N, 𝐿𝑛 has 𝑂 (𝑠 (𝑛))-size Σ𝑖-oracle circuit
deciding it. The equation SIZEΣ𝑖 (𝑝𝑜𝑙𝑦) = PΣ𝑖 /𝑝𝑜𝑙𝑦 follows from the definitions.

(2) Non-adaptive Σ𝑖-oracle Circuits: A non-adaptive Σ𝑖-oracle circuit is a pair of Boolean

circuits (𝐶𝑝𝑟𝑒 ,𝐶𝑝𝑜𝑠𝑡 ). On 𝑛-length input 𝑥 , 𝐶𝑝𝑟𝑒 outputs a number of queries: 𝑞1, 𝑞2, . . . , 𝑞𝑚 .

𝐶𝑝𝑜𝑠𝑡 receives𝑚 + 1 inputs: 𝑥 , and bits 𝑎1, 𝑎2, . . . , 𝑎𝑚 where ∀𝑖 𝑎𝑖 = 1 ⇐⇒ 𝑞𝑖 ∈ Σ𝑖SAT.𝐶𝑝𝑜𝑠𝑡

outputs the final answer in a single bit. We say 𝐿 ∈ SIZEΣ𝑖| | (𝑠), if for𝑛 ∈ N, 𝐿𝑛 has𝑂 (𝑠 (𝑛))-size
non-adaptive Σ𝑖-oracle circuit deciding it. The equation SIZEΣ𝑖| | (𝑝𝑜𝑙𝑦) = PΣ𝑖| | /𝑝𝑜𝑙𝑦 follows

from the definitions.

(3) Σ𝑖 (resp. Π𝑖 ) Circuits: A Σ𝑖 (resp. Π𝑖 ) circuit is a Boolean circuit 𝐶 that receives 𝑛 + 𝑖 inputs:
𝑥 of length 𝑛, and 𝑦1, . . . , 𝑦𝑖 . The function 𝑓𝐶 : {0, 1}𝑛 → {0, 1} computed by 𝐶 satisfies:

𝑓𝐶 (𝑥) = 1 ⇐⇒ ∃𝑦1∀𝑦2 . . .𝐶 (𝑥,𝑦1, . . . , 𝑦𝑖 ) = 1(resp. ∀𝑦1∃𝑦2 . . .𝐶 (𝑥,𝑦1, . . . , 𝑦𝑖 ) = 0). We say

𝐿 ∈ Σ𝑖SIZE(𝑠) (resp. 𝐿 ∈ Π𝑖SIZE(𝑠)), if for 𝑛 ∈ N, 𝐿𝑛 has 𝑂 (𝑠 (𝑛))-size Σ𝑖 (resp. Π𝑖 ) circuit

deciding it. The equation Σ𝑖SIZE(𝑝𝑜𝑙𝑦) = Σ𝑖/𝑝𝑜𝑙𝑦 (resp. Π𝑖SIZE(𝑝𝑜𝑙𝑦) = Π𝑖/𝑝𝑜𝑙𝑦) follows
from the definitions.

(4) Single-Valued Σ𝑖 or SVΣ𝑖 Circuits: An SVΣ𝑖 circuit is a Boolean circuit 𝐶 that receives

𝑛 + 𝑖 inputs: 𝑥 of length 𝑛, and 𝑦1, . . . , 𝑦𝑖 . It has two output gates: 𝑣𝑎𝑙𝑢𝑒𝐶 and 𝑓 𝑙𝑎𝑔𝐶 . Let

𝑉𝑎𝑙𝑢𝑒𝐶 (𝑥,𝑦1) = ∀𝑦2∃𝑦3 . . . 𝑣𝑎𝑙𝑢𝑒𝐶 (𝑥,𝑦1, . . . , 𝑦𝑖 ) and 𝐹𝑙𝑎𝑔𝐶 (𝑥,𝑦1) = ∀𝑦2∃𝑦3 . . . 𝑓 𝑙𝑎𝑔𝐶 (𝑥,𝑦1, . . . , 𝑦𝑖 ).
The circuit𝐶 computes function 𝑓𝐶 : {0, 1}𝑛 → {0, 1} if it satisfies the following two promises

for any input 𝑥 : (a) ∃𝑦1 𝐹𝑙𝑎𝑔𝐶 (𝑥,𝑦1) = 1; (b)∀𝑦1 𝐹𝑙𝑎𝑔𝐶 (𝑥,𝑦1) = 1 =⇒ 𝑉𝑎𝑙𝑢𝑒𝐶 (𝑥,𝑦1) = 𝑓𝐶 (𝑥).
We say 𝐿 ∈ SVΣ𝑖SIZE(𝑠), if for 𝑛 ∈ N, 𝐿𝑛 has 𝑂 (𝑠 (𝑛)) size SVΣ𝑖 circuit deciding it. Note that,

a function has an 𝑂 (𝑠)-size SVΣ𝑖 circuit if and only if it has both, an 𝑂 (𝑠)-size Σ𝑖 circuit and
an 𝑂 (𝑠)-size Π𝑖 circuit. The equation SVΣ𝑖SIZE(𝑝𝑜𝑙𝑦) = Σ𝑖/𝑝𝑜𝑙𝑦 ∩ Π𝑖/𝑝𝑜𝑙𝑦 follows from the

definitions.

(5) Promise SVΣ𝑖 or prSVΣ𝑖 Circuits / Promise SV𝑖 or prSV𝑖 Algorithms: A linear-time al-

gorithm A is called prSV𝑖 if: on each input it outputs an SVΣ𝑖 circuit (that satisfies the two
promises for some 𝑛′

-bit function 𝑓𝑛′ for 𝑛
′ ≤ 𝑛). We say 𝐿 ∈ prSVAΣ𝑖SIZE(𝑠), if for 𝑛 ∈ N,

𝐿𝑛 has 𝑂 (𝑠 (𝑛)) size SVΣ𝑖 circuit 𝐶𝑛 deciding it. Additionally, the circuit sequence {𝐶𝑛}𝑛∈N is

produced by the prSV𝑖 algorithm A on some input sequence {𝑥𝑠 (𝑛) }𝑛∈N (where 𝑥 𝑗 is of size

𝑗 ). 𝐿 ∈ prSVΣ𝑖SIZE(𝑠) means that 𝐿 ∈ prSVAΣ𝑖SIZE(𝑠) for some prSV𝑖 algorithm A. The

equation prSVΣ𝑖SIZE(𝑝𝑜𝑙𝑦) = (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦 follows from the definitions.

, Vol. 1, No. 1, Article . Publication date: May 2020.



14 Anant Dhayal and Russell Impagliazzo

Why do we need promise algorithms to produce prSVΣ𝑖 circuits? The purpose of prSVΣ𝑖
circuits is to capture the class (Σ𝑖 ∩Π𝑖 )/𝑝𝑜𝑙𝑦. This class is weaker than the class Σ𝑖/𝑝𝑜𝑙𝑦 ∩Π𝑖/𝑝𝑜𝑙𝑦:
the class of all non-uniform SVΣ𝑖 circuits. (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦 only contains SVΣ𝑖 circuit sequences
that are produced by: some pair of Σ𝑖 and Π𝑖 algorithms that use non-uniform advice, and are

complement on each input and advice sequence. So to capture this restricted class of SVΣ𝑖 circuits,
we deal with each pair of such Σ𝑖 and Π𝑖 algorithms. A prSV𝑖 algorithm is nothing but a pair of

such algorithms.

For example: the class (NTIME(𝑛𝑘/2) ∩ Co-NTIME(𝑛𝑘/2))/𝑛𝑘 has prSV𝑖SIZE(𝑛𝑘 ) circuits, and any

language in prSV𝑖SIZE(𝑛𝑘 ) has an (NTIME(𝑛𝑘 ) ∩ Co-NTIME(𝑛𝑘 ))/𝑛𝑘 algorithm. Here the 𝑛𝑘 -size

advice is the input to the underlying prSV𝑖 algorithm. The algorithm combines the deterministic

verifiers of the NTIME(𝑛𝑘/2) and Co-NTIME(𝑛𝑘/2) predicates, and produces a circuit that captures

the (NTIME(𝑛𝑘/2) ∩ Co-NTIME(𝑛𝑘/2))-computation on that advice.

Another point of view is: to look at (Σ𝑖 ∩Π𝑖 )/𝑝𝑜𝑙𝑦 as PΣ𝑖∩Π𝑖 /𝑝𝑜𝑙𝑦. In this case, instead of dealing

with each prSV𝑖 algorithm, one can deal with each (Σ𝑖 ∩ Π𝑖 )-oracle. It is again different from the

case PΣ𝑖 /𝑝𝑜𝑙𝑦 because all of the Σ𝑖 oracles can be replaced by just one oracle, the Σ𝑖SAT oracle. In
case of (Σ𝑖 ∩ Π𝑖 )-oracles we don’t have this luxury due to the lack of complete problems.

Lower bounds and properties against prSVΣ𝑖 circuits: All notations for expressing lower

bounds and properties against a typical circuit class C extend to a general circuit class Λ in the

most natural way. We extend the measures 𝑐𝑘𝑡C (𝑡𝑡) and 𝑐𝑘𝑡 (𝑡𝑡) to define: 𝑐𝑘𝑡Σ𝑖 (𝑡𝑡) / 𝑐𝑘𝑡Π𝑖
(𝑡𝑡) /

𝑐𝑘𝑡𝑀 (𝑡𝑡) / 𝑐𝑘𝑡𝑀| | (𝑡𝑡) as the minimum size of any Σ𝑖 / Π𝑖 /𝑀-oracle circuit / non-adaptive𝑀-oracle

circuit, whose truth-table is 𝑡𝑡 . For the special oracle of Σ𝑖SAT, we use 𝑐𝑘𝑡
Σ𝑖 (𝑡𝑡) and 𝑐𝑘𝑡Σ𝑖| | (𝑡𝑡).

The promise SVΣ𝑖 circuits need special care. This is because we need to deal with each prSV𝑖
algorithm separately. For any class Γ, we define the following upper bounds and lower bounds

against prSVΣ𝑖 circuits:

• Let A be a prSV𝑖 algorithm. For any 2
𝑛
-length truth-table 𝑡𝑡 , we use 𝑐𝑘𝑡SV𝑖 (A) (𝑡𝑡) to denote

the minimum size 𝑠 (𝑛) such that: A outputs 𝐶 with 𝑡𝑡 (𝐶) = 𝑡𝑡 on an 𝑠 (𝑛)-size input. We use

𝑐𝑘𝑡prSV𝑖 (𝑡𝑡) to denote the minimum size 𝑠 (𝑛) such that: any prSV𝑖 algorithm with description

length at most log𝑛, outputs 𝐶 with 𝑡𝑡 (𝐶) = 𝑡𝑡 on an 𝑠 (𝑛)-size input.
• Γ ⊂ prSVΣ𝑖 (𝑠): For 𝐿 ∈ Γ there is a prSV𝑖 algorithm A, an input sequence {𝑥𝑠 (𝑛) }𝑛∈N, such
that ∀𝑛 ∈ N 𝑡𝑡 (A(𝑥𝑠 (𝑛) )) = 𝐿𝑛 .

• Γ ⊄ prSVΣ𝑖SIZE(𝑠): There is an 𝐿 ∈ Γ, such that for every prSV𝑖 algorithm A, there is an

infinite subset 𝑆 ⊂ N of input lengths, such that 𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) ≠ 𝐿𝑛 .

• Γ ⊄ w-prSVΣ𝑖SIZE(𝑠): For every prSV𝑖 algorithm A, there is an 𝐿A ∈ Γ, there is an infinite

subset 𝑆 ⊂ N of input lengths, such that 𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) ≠ 𝐿A
𝑛 . The

prefix ‘w’ in the circuit class stands for ‘weaker’. The lower bound is weaker in the sense

that, SVΣ𝑖 circuits produced by two different prSV𝑖 algorithms, are allowed to beaten by two

different Γ languages (infinitely-often).

• Γ ⊂𝑜𝑤/𝑜𝑠/ℎ𝑤/ℎ𝑠/𝑤/𝑠 prSVΣ𝑖SIZE(𝑠): For 𝐿 ∈ Γ and Γ verifier𝑉 for 𝐿, there is a prSV𝑖 algorithm
A, there is an input sequence {𝑥𝑠 (𝑛) }𝑛∈N such that ∀𝑛 ∈ N 𝑡𝑡 (A(𝑥𝑠 (𝑛) )) is the ‘oblivious
witness / oblivious seed / hitting-set for witnesses / hitting-set for seeds’ for 𝑉 on 𝑛-length

inputs. For the case of ‘witnesses / seeds’, ∀𝑛 ∈ N ∀𝑦 : |𝑦 | = 𝑛 there is an input 𝑥𝑠 (𝑛) such
that 𝑡𝑡 (A(𝑥𝑠 (𝑛) )} is the ‘witness / seed’ for 𝑉 on input 𝑦.

• Γ ⊄𝑜𝑤/𝑜𝑠/ℎ𝑤/ℎ𝑠 prSVΣ𝑖SIZE(𝑠): There is an 𝐿 ∈ Γ and Γ verifier 𝑉 for 𝐿, such that for

every prSV𝑖 algorithm A, there is an infinite subset 𝑆 ⊂ N of input lengths, such that

𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) is not the ‘oblivious witness / oblivious seed / hitting-set
for witnesses / hitting-set for seeds’ for 𝑉 on 𝑛-length inputs. For the case of ‘witnesses /
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seeds’, 𝑛 ∈ 𝑆 =⇒ ∃𝑦 : |𝑦 | = 𝑛 ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) is not the ‘ witness / seed’ for 𝑉 on

input 𝑦.

• Γ-N/R/U ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑠): A Γ algorithmB is called Γ-N/R/U property, if it satisfies the size
restrictions of Definition 2.1. B is useful against prSVΣ𝑖 (𝑠) circuits if for any prSV𝑖 algorithm
A, there is an infinite subset 𝑆 ⊂ N of input lengths, such that 2

𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | =
𝑠 (𝑛) B(𝑡𝑡 (A(𝑥))) = 0.

Hardness vs randomness: The process of using a function that is hard for a circuit class Λ
(i.e. requires large size of Λ circuits) to yield pseudo random generator (PRG) that fools Λ circuits

(i.e. creates a sparse subset of inputs with roughly same fraction of inputs resulting in 1) is well

known in the literature. A PRG 𝐺 creates this sparse subset by mapping a small input length to the

required larger output length (same as the input length of the circuit).

A PRG𝐺 : 𝑠 (𝑛) → 𝑛 is computable in Γmeans: the language𝐿𝐺 = {(𝑠, 𝑖, 𝑏) | the 𝑖𝑡ℎ-bit of𝐺 (𝑠) is𝑏}
is in Γ. Inputs to 𝐺 are called seeds, and their size (here 𝑠 (𝑛)) is called the seed length of 𝐺 .

A PRG 𝐺 is fooling a circuit 𝐶 means: the fraction of inputs from the 2
𝑠 (𝑛)

size image of 𝐺 that

𝐶 accepts, is same as the fraction of all the inputs that 𝐶 accepts (with error ±1/𝑛). We use the

following theorem in all our derandomization results.

Theorem 2.4. [46, 56, 64, 69] There exists a universal constant 𝑔 such that the following holds
for any class O of oracles and oracle 𝑀 , and any constants 𝜖 > 0 and 𝑑 ≥ 1: if a Boolean function
family 𝑓 = {𝑓𝑛}𝑛∈N computable in EO that satisfies ∀𝑛 ∈ N 𝑐𝑘𝑡𝑀 (𝑓 (𝑛)) ≥ 𝑛𝑔𝑑/𝜖 , then there exists a
PRG family 𝐺 = {𝐺𝑛}𝑛∈N computable in EO , such that 𝐺𝑛 : 𝑛𝜖 → 𝑛𝑑 fools 𝑛𝑑 -size 𝐵-oracle circuits.
Moreover, any subset of the following is true (simultaneously):

• if 𝑓 ∈ EO| | , then 𝐺 is computable in EO| | .

• if 𝑐𝑘𝑡𝑀| | (𝑓 (𝑛)) ≥ 𝑛𝑔𝑑/𝜖 , then 𝐺 is secure against non-adaptive𝑀-oracle circuits.
• if circuit lower bound holds infinitely often, then 𝐺 fools circuits infinitely often.

3 EWL AND KLT FOR UTIME AND RELATED CLASSES
We first give a specific search to decision reduction for UTIME (Section 3.1). Using this reduction we

give the EWL and KLT for UTIME (Section 3.2). Then we describe similar results for ZUTIME (Section

3.3) and FewTIME (Section 3.4).

3.1 Search to decision reduction for UTIME
For 𝐿 ∈ NP and verifier 𝑉 for 𝐿, there is a standard PNP algorithm for the corresponding search

problem. This algorithm implicitly decides the following language:

𝐿𝑒𝑤𝑙 (𝑉 ) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦) = 1 ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧) = 0]} (6)

where 𝑧 <𝑙 .𝑜. 𝑦 stands for “𝑧 is lecigraphically smaller than 𝑦”, and the subscript 𝑒𝑤𝑙 (𝑉 ) in 𝐿𝑒𝑤𝑙 (𝑉 )
stands for “easy-witness language for 𝑉 ”.

So if P = NP, then 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ P. For 𝐿 ∈ NEXP and verifier 𝑉 for 𝐿, such results are not known.

In particular, it is not known whether NEXP = EXP yields an EXP algorithm for the corresponding

search problem, let alone 𝐿𝑒𝑤𝑙 (𝑉 ) .
NEXP ⊂𝑤 SIZE(𝑝𝑜𝑙𝑦) yields EXP algorithms for the NEXP search problems, by a simple brute-force

argument. It is known that NEXP ⊂𝑤 SIZE(𝑝𝑜𝑙𝑦) is equivalent to NEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) [31, 75], and
to NEXP = MA [31] (reverse implication was attributed to van Melkebeek). In [31] it was also shown

that a weaker collapse, namely NEXP = AM, is sufficient to give EXP algorithms for NEXP search

problems. This is the weakest collapse known so far.

From [34] we get: ∀(𝐿 ∈ NEXP) ∀ (NEXP verifier 𝑉 for 𝐿) 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ EXP ⇐⇒ EXPNP = EXP.
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In this section we show that for 𝐿 ∈ UTIME(𝑡) and unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 ) ∈
UTIME(𝑡). UTIME(𝑡) languages also have 𝑂 (𝑡)-time verifiers that are ambiguous. We show why it

would be difficult to extend this result to all 𝑂 (𝑡)-time ambiguous verifiers for UTIME(𝑡) languages.
Theorem 3.1. For 𝐿 ∈ UTIME(𝑡) and unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ UTIME(𝑡 (𝑛)) (where

𝑛 is the input size for 𝐿 and not 𝐿𝑒𝑤𝑙 (𝑉 ) ). Moreover if this statement is true for every 𝑂 (𝑡)-time non-
deterministic verifier (ambiguous and unambiguous) for every UTIME(𝑡) language, then ZNTIME(𝑡) =
ZUTIME(𝑡).
Proof. Algorithm for 𝐿𝑒𝑤𝑙 (𝑉 ) : For input (𝑥, 𝑖), guess a certificate 𝑦 and simulate 𝑉 (𝑥,𝑦). Accept

if𝑉 accepts and the 𝑖𝑡ℎ-bit of 𝑦 is 1, otherwise reject. This algorithm is correct and unambiguous as

𝑉 is unambiguous. It runs in time 𝑂 (𝑡 ( |𝑥 |)).
The moreover part: For 𝐿 ∈ ZNTIME(𝑡), let 𝑉1 and 𝑉0 be its NTIME(𝑡) and Co-NTIME(𝑡) verifiers

respectively. Consider the UTIME(𝑡) language 𝐿′ = {0, 1}∗.
Using 𝑉1 and 𝑉0 we first construct a verifier 𝑉

′
for 𝐿′

: if the first bit of the certificate is 𝑖 , 𝑉 ′

simulates 𝑉𝑖 using the rest of the certificate.

Now using a UTIME(𝑡 (𝑛)) algorithm A for 𝐿′
𝑒𝑤𝑙 (𝑉 ′) we give a UTIME(𝑡) algorithm for 𝐿: on input

𝑥 , simulate A on (𝑥, 1). Accept iff A accepts.

If A accepts then we know that 𝑥 ∈ 𝐿 because there is no positive certificate for 𝑉 ′
that starts

with 0 (or in other words, no positive certificate for 𝑉0). If A rejects, then 𝑥 ∈ 𝐿 because there is a

positive certificate for 𝑉 ′
that starts with 0 (or in other words, a positive certificate for 𝑉0).

Similarly, there is a UTIME(𝑡) algorithm for 𝐿, and thus 𝐿 ∈ ZUTIME(𝑡). �

For the advice setting same proof goes through for the following adaptation of 𝐿𝑒𝑤𝑙 (𝑉 ) . For
non-deterministic verifier𝑉 /𝑎, that uses 𝑎 amount of advice to decide a language 𝐿, for any correct

advice sequence {𝑎𝑛}𝑛∈N:
𝐿𝑒𝑤𝑙 (𝑉 /𝑎) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦)/𝑎 |𝑥 | = 1 ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧)/𝑎 |𝑥 | = 0]} (7)

Using this adaptation we get the following stronger corollary.

Corollary 3.2. For 𝐿 ∈ UTIME(𝑡)/𝑎 and unambiguous verifier𝑉 /𝑎 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 /𝑎) ∈ UTIME(𝑡)/𝑎.

3.2 EWL and KLT for UTIME
Using the search to decision reduction from Theorem 3.1 we derive EWL for unambiguous verifiers

of languages in UTIME(𝑡). Here again we see why it might be difficult to extend this to all ambiguous

verifiers. Using the EWL we also get a KLT for UTIME.

Theorem 3.3. For time-constructible 𝑡 ∈ 2
𝑂 (𝑛) , and constants 𝑐 and 𝑘 :

(1) UTIME(𝑡) ⊂ C(𝑛𝑘 ) =⇒ UTIME(𝑡) ⊂𝑜𝑤 C(𝑛𝑘 ). Moreover if this statement is true for every𝑂 (𝑡)-
time non-deterministic verifier (ambiguous and unambiguous) for every UTIME(𝑡) language,
even just for witnesses (let alone oblivious-witnesses), then ZNTIME(𝑡) ⊆ DTIME(2𝑛𝑘+1 ).

(2) UTIME(𝑡)/𝑎 ⊆ C(𝑛𝑘 ) =⇒ UTIME(𝑡)/𝑎 ⊂𝑜𝑤 C(𝑛𝑘 ).
(3) UTIME(2𝑛𝑐 )/𝑎 ⊆ C(𝑛𝑘 ) =⇒ UTIME(2𝑛𝑐 )/𝑎 ⊂𝑜𝑤 C(𝑛𝑐𝑘 ).
(4) UEXP/𝑎 ⊆ SIZE(𝑝𝑜𝑙𝑦) =⇒ UEXP/𝑎 = MA/𝑎.
Proof. Proof of (1): For 𝐿 ∈ UTIME(𝑡), let 𝑥 ∈ 𝐿 be an 𝑛-length input, and 𝑉 be an unambiguous

verifier for 𝐿 whose certificate length is ≤ 𝑑 · 𝑡 for some constant 𝑑 . The UTIME(𝑡) algorithm
for 𝐿𝑒𝑤𝑙 (𝑉 ) from Theorem 3.1 puts it into C(𝑚𝑘 ) for input size𝑚. The C circuit for input length

𝑚 = ( |𝑥 | + log 𝑡 + log𝑑) ∈ 𝑂 (𝑛) is the oblivious witness circuit for 𝑛-length inputs.

The moreover part: For 𝐿 ∈ ZNTIME(𝑡), construct the same verifier𝑉 ′
for the language 𝐿′ = {0, 1}∗

as in the proof of Theorem 3.1. As 𝐿′ ∈ UTIME(𝑡),𝑉 ′
will have witness in C(𝑛𝑘 ). Now a DTIME(2𝑛𝑘+1 )
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algorithm for 𝐿 is: for 𝑛-length input 𝑥 , go through all the circuits in C(𝑛𝑘 log𝑛) one at a time,

compute their truth-tables 𝑡𝑡 , and then compute 𝑉 ′(𝑥, 𝑡𝑡). Due to the way 𝑉 ′
is constructed, all of

its positive certificates have the same first bit. If 𝑉 accepts on any 𝑡𝑡 whose first bit is 1, then 𝑥 ∈ 𝐿.

Else 𝑥 ∉ 𝐿.

Proofs of (2) & (3): They are analogous to the proof of (1), except that they use Corollary 3.2.

Proof of (4): Let 𝐿 ∈ UEXP/𝑎, and𝑉 /𝑎 be an unambiguous (given the correct advice) verifier𝑉 for

𝐿 that runs in time 𝑂 (2𝑛𝑐 ) for some constant 𝑐 . Since ∃𝑘 𝐿 ∈ SIZE(𝑛𝑘 ), from the proof of part (3)

we know that 𝑉 /𝑎 has witnesses in SIZE(𝑛𝑐𝑘 ) for some constant 𝑘 .

Using this we first give an EXP/𝑎 algorithm for 𝐿. On 𝑛-length input 𝑥 , go through all the circuits

in SIZE(𝑛𝑐𝑘 log𝑛) one at a time, compute their truth-tables 𝑡𝑡 , and then compute𝑉 (𝑥, 𝑡𝑡)/𝑎. Accept
if 𝑉 /𝑎 accepts for any 𝑡𝑡 , else reject. This is an EXP/𝑎 algorithm as simulation of 𝑉 /𝑎 needs the

original advice.

Once we get UEXP/𝑎 = EXP/𝑎, EXP/𝑎 ⊆ SIZE(𝑝𝑜𝑙𝑦) gives UEXP/𝑎 = MA/𝑎 [43]. �

3.3 EWL and KLT for ZUTIME
We extend the techniques from the previous section to give similar results for ZUTIME. The main

difference in the proof of our search to decision reduction is that, we adapt our definition of 𝐿𝑒𝑤𝑙 (𝑉 )
to capture seeds of zero-error non-deterministic verifiers. First let’s define this adaptation. For

zero-error non-deterministic verifier 𝑉 for language 𝐿:

𝐿𝑒𝑤𝑙 (𝑉 ) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦) ∈ {0, 1} ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧) =?]} (8)

The difference is that 𝐿𝑒𝑤𝑙 (𝑉 ) captures the lexicographically first certificate that gives the correct

answer (doesn’t matter whether the answer is 1 or 0). Once the search to decision reduction is

established, the EWL and KLT follow from similar arguments as in the previous section. Here again

we see why it might be difficult to extend these results to all ambiguous zero-error verifiers.

Theorem 3.4. For time-constructible 𝑡 ∈ 2
𝑂 (𝑛) , and constants 𝑐 and 𝑘 :

(1) For 𝐿 ∈ ZUTIME(𝑡) and zero-error unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ ZUTIME(𝑡 (𝑛))
(where 𝑛 is the input size for 𝐿). Moreover if this statement is true for all 𝑂 (𝑡)-time zero-error
non-deterministic verifiers (ambiguous and unambiguous) for every ZUTIME(𝑡) language, then
ZNTIME(𝑡) = ZUTIME(𝑡).

(2) ZUTIME(𝑡) ⊂ C(𝑛𝑘 ) =⇒ ZUTIME(𝑡) ⊂𝑜𝑠 C(𝑛𝑘 ). Moreover if this statement is true for all𝑂 (𝑡)-
time zero-error non-deterministic verifiers (ambiguous and unambiguous) for every ZUTIME(𝑡)
language, even just for seeds (let alone oblivious-seeds), then ZNTIME(𝑡) ⊆ DTIME(2𝑛𝑘+1 ).

(3) ZUTIME(2𝑛𝑐 ) ⊂ C(𝑛𝑘 ) =⇒ ZUTIME(2𝑛𝑐 ) ⊂𝑜𝑠 C(𝑛𝑐𝑘 ).
(4) ZUEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ ZUEXP = MA.

Proof. Proof of (1): Algorithm for 𝐿𝑒𝑤𝑙 (𝑉 ) : For input (𝑥, 𝑖), guess a certificate 𝑦 and simulate

𝑉 (𝑥,𝑦). Output ‘?’ is 𝑉 outputs ‘?’. Output 1 if 𝑉 outputs in {0, 1} and the 𝑖𝑡ℎ-bit of 𝑦 is 1. Output 0

if𝑉 outputs in {0, 1} and the 𝑖𝑡ℎ-bit of 𝑦 is 0. This algorithm is correct and zero-error unambiguous

as 𝑉 is zero-error unambiguous. It runs in time 𝑂 (𝑡 ( |𝑥 |)).
The moreover part: For 𝐿 ∈ ZNTIME(𝑡), let 𝑉 be its ZNTIME(𝑡) verifier. Consider the ZUTIME(𝑡)

language 𝐿′ = {0, 1}∗.
Using𝑉 we first construct a ZNTIME(𝑡) verifier𝑉 ′

for 𝐿′
:𝑉 ′

ignores the first bit of the certificate

and simulates 𝑉 using the rest of the certificate. 𝑉 ′
outputs ‘?’ if 𝑉 outputs ‘?’, it outputs 1 if 𝑉

outputs in {0, 1} and its output matches the first bit of the certificate.

Now using a ZUTIME(𝑡 (𝑛)) algorithm A for 𝐿′
𝑒𝑤𝑙 (𝑉 ′) we give a ZUTIME(𝑡) algorithm for 𝐿: on

input 𝑥 , simulate A on (𝑥, 1). Output whatever A outputs.

Proofs of (2), (3) & (4): They are analogous to the proofs in Theorem 3.3. �
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3.4 EWL and KLT for FewTIME
One other well studied variant of UTIME(𝑡) is FewTIME(𝑡), which was first defined in [2]. 𝐿 ∈
FewTIME(𝑡), if there exists a constant 𝑐 and a non-deterministic verifier 𝑉 , such that the number of

accepting certificates on any input is bounded by 𝑡𝑐 . The search to decision reduction of UTIME
doesn’t work here, because we don’t know the exact number of accepting certificates (and only

know an upper bound). We get rid of this problem by: either (i) assuming NE = ZUE (Theorem 3.5);

or (ii) using advice that encodes the total number of accepting certificates for all the inputs of that

length (Theorem 3.6). After the search to decision reduction is obtained, arguments for the EWL and

the KLT are similar to the ones used for UTIME.
Note that, in the following theorems, the collapse assumptions/results don’t directly give the

‘S-to-D’ (search to decision) reduction.

For instance: NE = ZUE only says that every FewE language has a ZUE verifier, but it doesn’t say
anything about the complexity of the language 𝐿𝑒𝑤𝑙 (𝑉 ) (from the Equation (6)) for FewE verifiers
𝑉 . This is analogous to the case: NE = E doesn’t show 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ E for NE verifiers 𝑉 (we need the

stronger collapse ENP = E [34]).

Theorem 3.5. The following statements are true if NE = ZUE :

(1) S-to-D : 𝐿 ∈ FewE =⇒ ∀(FewE verifier 𝑉 for 𝐿) 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ ZUE
(2) EWL : ZUE ⊂ C =⇒ every FewE verifier has oblivious witnesses in C
(3) KLT : ZUE ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ FewE ⊂ MA

Proof. Proof of (1): For any 𝐿 ∈ FewE, let 𝑉 be a verifier whose number of accepting certificates,

and running time, both are bounded by 2
𝑐𝑛
, for some constant 𝑐 . We construct a new language

𝐿′ = {(𝑥, 𝑝) | 1 ≤ 𝑝 ≤ ∑
𝑦 𝑉 (𝑥,𝑦) ≤ 2

𝑐𝑛}. Its easy to check that 𝐿′
has an NE algorithm: guess 𝑝

distinct accepting certificates for 𝑉 on input 𝑥 . Under the assumption NE = ZUE, 𝐿′
and 𝐿′

have UE
algorithms A and A ′

, respectively. Now we use these to design an NE algorithm for 𝐿𝑒𝑤𝑙 (𝑉 ) , which
in turn will imply a ZUE algorithm.

On input (𝑥, 𝑖), non-deterministically guess a 𝑝 ∈ [1, 2𝑐𝑛]. Run A on (𝑥, 𝑝) and A ′
on (𝑥, 𝑝 + 1).

If they give complementary results, then we known that there are exactly 𝑝 positive certificates for

𝑉 on the input 𝑥 . So we guess 𝑝 distinct certificates and if 𝑉 accepts all of them: we accept, if the

𝑖𝑡ℎ-bit of the lexicographically first certificate is 1.

Proof of (2): From (1), we know that for every 𝐿 ∈ FewE, and every FewE verifier 𝑉 for 𝐿,

𝐿𝑒𝑤𝑙 (𝑉 ) ∈ ZUE. Thus, ZUE ⊂ C =⇒ 𝐿𝑒𝑤𝑙 (𝑉 ) ∈ C, and𝑉 has oblivious witnesses in C (due to similar

arguments that were given in Theorem 3.3).

Proof of (3): This follows directly from the ZUTIME KLT (Theorem 3.4). �

Theorem 3.6. The following statements are true (unconditionally):
(1) Collapse : FewE/𝑂 (𝑛) = UE/𝑂 (𝑛) = ZUE/𝑂 (𝑛)
(2) S-to-D : 𝐿 ∈ FewE/𝑂 (𝑛) =⇒ ∀ (FewE/𝑂 (𝑛) verifier𝑉 /𝑂 (𝑛) for 𝐿) 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) ∈ ZUE/𝑂 (𝑛)
(3) EWL : ZUE/𝑂 (𝑛) ⊂ C =⇒ every FewE/𝑂 (𝑛) verifier has oblivious witness in C
(4) KLT : ZUE/𝑂 (𝑛) ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ FewE/𝑂 (𝑛) ⊂ MA/𝑂 (𝑛)

Proof. Proof of (1): For 𝐿 ∈ FewE/𝑂 (𝑛), we give a ZUE/𝑂 (𝑛) algorithm for 𝐿. Let 𝑉 be a FewE
verifier for 𝐿 that uses 𝑂 (𝑛) amount of advice. The advice of the ZUE algorithm is: the original

advice 𝑎 used by𝑉 , plus a number 𝑝 to encode the sum of the total number of accepting certificates

of 𝑉 on all 𝑛-length inputs. It’s easy to check that 𝑝 only requires extra 𝑂 (𝑛) bits. On any 𝑛-length

input 𝑥 , guess a set 𝑆 of 𝑝 pairs (𝑐, 𝑑). Output ‘?’ if ∃(𝑐, 𝑑) ∈ 𝑆 : 𝑉 (𝑐, 𝑑)/𝑎 = 0, else proceed further.

Output 1 if ∃𝑑 : (𝑥, 𝑑) ∈ 𝑆 . Else output 0. Its easy to check that exactly one non-deterministic

branch outputs in the set {0, 1}, and that the branch outputs correctly. Thus 𝐿 ∈ ZUE/𝑂 (𝑛).
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Proof of (2): Now we give a ZUE/𝑂 (𝑛) algorithm for 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) . For input (𝑥, 𝑖): the advice, and
the algorithm except the final output step, are same as that for 𝐿 on input 𝑥 , from the proof of (1).

In the final step: output ‘?’ if ∃(𝑐, 𝑑) ∈ 𝑆 : 𝑉 (𝑐, 𝑑)/𝑎 = 0, else proceed further; output 1 if the 𝑖𝑡ℎ bit

of the lexicographically smallest 𝑑 such that (𝑥, 𝑑) ∈ 𝑆 is 1; else output 0. It’s easy to check that

this is a ZUE/𝑂 (𝑛) algorithm for 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) . Thus 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) ∈ ZUE/𝑂 (𝑛).
Proof of (3): From (2), we know that for every 𝐿 ∈ FewE/𝑂 (𝑛), and every FewE/𝑂 (𝑛) verifier 𝑉

for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) ∈ UE/𝑂 (𝑛). Thus, UE ⊂ C =⇒ 𝐿𝑒𝑤𝑙 (𝑉 /𝑂 (𝑛)) ∈ C, and 𝑉 /𝑂 (𝑛) has oblivious
witnesses in C (due to similar arguments that were given in Theorem 3.3).

Proof of (4): This follows directly from the UTIME KLT (Theorem 3.3). �

4 UNIQUE PROPERTIES VS LOWER BOUNDS
In this section we establish relationships between different types of unique properties and lower

bounds against UTIME, ZUTIME, NTIME and ZNTIME. In many of our connections we use the following

connection (Lemma 4.1) between UP-U and P-U properties. The proof of this connection is along the

same lines as the original connection [3, 57, 75]: an useful NP (resp. RP-natutal) property yields an

useful P (resp. P-natural) property.

Lemma 4.1. UP/𝑎 property U can be converted into a P/𝑎 property P such that:

(1) U is UP/𝑎-U property =⇒ P is P/𝑎-U property;
(2) U is UP/𝑎-𝑢=1 property =⇒ P is P/𝑎-𝑢=1 property;
(3) U is UP/𝑎-𝑢≤1 property =⇒ P is P/𝑎-𝑢≤1 property;
(4) U is useful against C =⇒ P is useful against C.

Proof. Let 𝑉 be the unambiguous verifier corresponding toU’s algorithm. Let 𝑐 be a constant

such that 2
𝑐𝑛 − 2

𝑛
is the length of the certificates that 𝑉 guesses for the inputs of size 2

𝑛
. Now we

design P which satisfies the promises of the theorem statement. For𝑚 which is not a multiple of 𝑐 ,

among all the inputs of length 2
𝑚
, P only accepts the all 0s string. For𝑚 = 𝑐𝑛 for some 𝑛, for any

input 𝑥𝑦 where |𝑥 | = 2
𝑛
and |𝑦 | = 2

𝑐𝑛 − 2
𝑛
, P simulates 𝑉 on (𝑥,𝑦), and accepts if and only if 𝑉

accepts. For any 𝑛 ∈ N, P uses the same advice for 2
𝑐𝑛
-size inputs, that U uses for 2

𝑛
-size inputs.

Proofs of (1), (2) & (3): The construction of P ensures this for the inputs of size 2
𝑚
, where𝑚 is not

a multiple of 𝑐 . For all the other input sizes this is ensured by the fact that U is a UP property, and

the behavior of U on different advice strings. For any 𝑛 ∈ N, and any advice string, the number of

2
𝑐𝑛
-size inputs P accepts, is same as the number of 2

𝑛
-size inputsU accepts.

Proof of (4): IfU is useful against C, then for each 𝑘 there exists an infinite subset 𝑆𝑘 such that

for each 𝑛 ∈ 𝑆𝑘 ,U(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 . For any 𝑥 , let 𝑦 be the unique certificate such that

𝑉 (𝑥,𝑦) = 1. Since 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 =⇒ 𝑐𝑘𝑡C (𝑥𝑦) > 𝑛𝑘 ≥ (𝑐𝑛)𝑘−1 for each 𝑘 , P is useful against

𝑛𝑘−1-size C circuits for each 𝑘 , and hence is useful against C. �

Main results of this section are summarized in the Table 1. Lower bounds in any particular

column are all equivalent, and lower bounds from any column imply the lower bounds in the

column just below it (except the columns that are separated by double lines). Note that, as the

lower bounds get weaker, the properties become less restrictive (or the constructivity goes higher).

Note that, at any place in the Table 1 we can remove the log𝑛 advice by assigning each advice a

different input-length. But then the property no more remains a property, instead gets converted

into an useful algorithm (see [75]). An useful algorithm, unlike an useful property, accepts inputs

of all lengths and not just powers of 2. It appends zeros on the inputs that are not powers of 2, to

make it a truth-table. We stick to properties in our presentation.
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Table 1. Properties vs Lower Bounds

Type of Properties useful against C Witness LB HS LB Ob-witness LB Set LB

P/log𝑛-𝑢=1 ≡ P-U ZUE ⊄𝑠 C ZUE ⊄ℎ𝑠 C ZUE ⊄𝑜𝑠 C ZUE ⊄ C
P/log𝑛-𝑢≤1 UE ⊄𝑤 C

UE ⊄ℎ𝑤 C
UE ⊄𝑜𝑤 C UE ⊄ C

P/log𝑛-U UE/𝑛 ⊄𝑤 C UE/𝑛 ⊄ℎ𝑤 C UE/𝑛 ⊄𝑜𝑤 C UE/𝑛 ⊄ C

NP/log𝑛-𝑢=1 ≡ NP-U ZNE ⊄ C
NP-N ≡ P-N ZNE ⊄𝑠 C ZNE ⊄ℎ𝑠 C ZNE ⊄𝑜𝑠 C
NP/log𝑛-U ≡ NP/log𝑛-N ≡ P/log𝑛-N NE ⊄𝑤 C NE ⊄ℎ𝑤 C NE ⊄𝑜𝑤 C NE ⊄ C

NP-prU ip-ZNE ⊄ C
NP-prN ≡ P-prN ip-ZNE ⊄𝑠 C ip-ZNE ⊄ℎ𝑠 C ip-ZNE ⊄𝑜𝑠 C

4.1 ZUE lower bounds vs P-U properties
Theorem 4.2. [Row 1 of Table 1] The following statements are equivalent:

(1) ZUE ⊄ C
(2) ZUE ⊄𝑜𝑠 C
(3) ZUE ⊄ℎ𝑠 C
(4) ZUE ⊄𝑠 C
(5) P-U ⊄𝑡𝑡 C
(6) P/log𝑛-𝑢=1 ⊄𝑡𝑡 C

Proof. (1) =⇒ (5) Let 𝐿 ∈ ZUE \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time zero-error unambiguous verifier

for 𝐿. For any 𝑛, 𝐿𝑛 can be viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using 𝑉 we give a UP-U propertyU that is useful against C. Then the result follows from

the lemma 4.1.

For any input 𝑦 of length 2
𝑛
, U simulates 𝑉 on all the 𝑛-length strings, one by one. For each 𝑖 , it

matches the 𝑖𝑡ℎ bit of 𝑦, and the output of 𝑉 on the 𝑖𝑡ℎ 𝑛-length string.U accepts if and only if it

succeeds in all 2
𝑛
verifications.

Constructivity & uniqueness: For 𝑛 ∈ N, U unambiguously accepts the truth table of function 𝑓𝑛 ,

and rejects all the other strings. As it runs for 2
𝑂 (𝑛)

-time on 2
𝑛
-length inputs, it is UP-U (as 𝑉 is

ZUE).
Usefulness: As 𝐿 ∉ C, for each 𝑘 , there are infinitely many input lengths 𝑛, such that 𝑓𝑛 doesn’t

have 𝑛𝑘 -size C circuits. Thus U is useful against C.
(5) =⇒ (4) Let P be a P-unique property useful against C. Using P we construct a zero-error

unambiguous verifier 𝑉 for the ZUE language {0, 1}∗ such that 𝑉 doesn’t have seeds in C.
For any 𝑛-length input 𝑥 ,𝑉 guesses a string 𝑦 of length 2

𝑛
and accepts if and only if P accepts 𝑦.

Since P is P-unique property useful against C, the unique accepting witnesses of 𝑉 are not in C.
(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the ZUTIME EWL (Theorem 3.4).
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(5) ⇐⇒ (6) The forward direction is trivial. For the reverse direction, for P/log𝑛-𝑢=1 property
P, we convert P to a P-U property P ′

.

For odd𝑚, among all the inputs of length 2
𝑚
, P ′

only accepts the all 0s string. For𝑚 = 2𝑛 for

some 𝑛, for any 2
𝑚
-length input 𝑥1𝑥2 . . . 𝑥22𝑛 where ∀𝑖 |𝑥𝑖 | = 2

𝑛
, P ′

accepts if and only if for each 𝑖:

P accepts input 𝑥𝑖 with the advice 𝑦𝑖 (𝑖
𝑡ℎ 𝑛-length string in the lexicographical order).

Constructivity & uniqueness: These both follow for P ′
directly from the fact that P is a strong-

unique P-property.
Usefulness: If P is useful against C with advice sequence {𝑎𝑛}𝑛∈N, then for each 𝑘 there exists

an infinite subset 𝑆𝑘 such that for each 𝑛 ∈ 𝑆𝑘 , P(𝑥, 𝑎𝑛) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 . Among all

the 2
2𝑛
-length strings, let 𝑦 be the unique string that P ′

accepts. 𝑦 = 𝑥1 . . . 𝑥𝑏𝑛 . . . 𝑥2𝑛 , where

∀𝑖 ∈ [1, 2𝑛] |𝑥𝑖 | = 2
𝑛
, 𝑏𝑛 is the lexicographical rank of 𝑎𝑛 among all the 𝑛-length strings, and

𝑥 = 𝑥𝑏𝑛 . Since 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 =⇒ 𝑐𝑘𝑡C (𝑦) > 𝑛𝑘 ≥ (2𝑛)𝑘−1 for each 𝑘 , P ′
is useful against 𝑛𝑘−1-size

C circuits for each 𝑘 , and hence is useful against C. �

4.2 UE lower bounds vs P/log𝑛-𝑢≤1 properties
We use a fine-grained version of the techniques from [75], to prove the following two theorems:

(i) “witness lower bound ⇐⇒ P/log𝑛-𝑢≤1 useful property” and (ii) “oblivious witness lower

bound ⇐⇒ UE lower bound”. Unfortunately, the “oblivious witness lower bound =⇒ witness

lower bound” connection of NTIME doesn’t go through in the case of UTIME. If we try to establish

a “oblivious witness lower bound =⇒ P/log𝑛-𝑢≤1 useful property” connection, we don’t get a
mild-unique property, but just a unique property. In the next section we will see that this connection

can be established in the presence of advice.

Theorem 4.3. [Row 2 of Table 1] The following statements are equivalent:
(1) UE ⊄𝑤 C
(2) P/log𝑛-𝑢≤1 ⊄𝑡𝑡 C

Proof. (1) =⇒ (2) Let 𝐿′
be a UE language, and 𝑉 ′

be an unambiguous verifier for 𝐿′
that

doesn’t have witnesses in C. By a simple padding argument we can construct 𝐿 ∈ UTIME(2𝑛), and
an unambiguous verifier 𝑉 for 𝐿 with certificate length 2

𝑛
, that doesn’t have witnesses in C.

If the inputs are given as advice, and the certificates are given as inputs, then𝑉 becomes a P/log𝑛
property P, that is useful against C.
For P to be a 𝑢≤1 property, it should be unique with respect to the same advise that makes it

useful. At this point, all we know is that for every input length and every advise, P accepts at

most one truth-table (since𝑉 is unambiguous). The advise that makes P useful may not be present

for all input lengths. For some of these input lengths 𝑛 where no such advise is present, it is also

possible that 𝐿𝑛 is empty (i.e. no advice is present that makes the property non-empty).

We will be done if 𝐿 is non-empty for all input lengths. Consider the two modifications of 𝑉 : (i)

𝑉0, that changes its behavior on the all 0s strings and always accepts them (unambiguously); and

(ii) 𝑉1, that changes its behavior on the all 1s strings and always accepts them (unambiguously).

The modified languages and their corresponding verifiers are also UTIME(2𝑛), and have 2
𝑛
-length

certificates. We show that at least one of these two modifications doesn’t have witness in C. If 𝑉0
has witnesses in C, then 𝑉 ’s witnesses corresponding to the all 0s strings must be the ones that

were not in C (at least infinitely often), so then 𝑉1 doesn’t have witnesses in C (infinitely often).

(2) =⇒ (1) LetP be a P/log𝑛-𝑢≤1 property that is useful against C. Define𝐿 = {𝑥 | ∃𝑦 P(𝑦)/𝑥 =

1}. Let 𝑉 be the verifier for 𝐿, that on any 𝑛-length input 𝑥 , guesses a string 𝑦 of length 2
𝑛
, and

simulates P on 𝑦 using 𝑥 as advice. 𝑉 is a UE verifier since P is a mild-unique property. 𝑉 doesn’t

have witnesses in C since P is useful against C. �
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Theorem 4.4. [Row 4 of Table 1] The following statements are equivalent:

(1) UE/𝑎 ⊄ C
(2) UE/𝑎 ⊄𝑜𝑤 C

Proof. ¬(1) =⇒ ¬(2) This follows from the UTIME EWL (Theorem 3.3).

¬(2) =⇒ ¬(1) Assume that UE/𝑎 has oblivious witnesses (for all verifiers that are unambiguous

given the correct advice) in C. Let 𝐿 be a UE/𝑎 language and 𝑉 /𝑎 be a UE/𝑎 verifier for 𝐿. By our

assumption, 𝑉 /𝑎 has oblivious witnesses in 𝑛𝑘 -size C circuits. Now we show that 𝐿 ∈ C.
Using𝑉 /𝑎 we construct an unambiguous verifier𝑉 ′/𝑎 for the UEXP/𝑎 language {0, 1}∗ such that:

for 𝑛 ∈ N, an oblivious witness circuit for 𝑉 ′/𝑎 on 𝑛-length inputs, computes 𝐿𝑛 .

For 𝑥 ∈ 𝐿 (this can be verified by brute forcing through all the 𝑛𝑘+1-size circuits), 𝑉 ′(𝑥,𝑦)/𝑎 = 1

only when 𝑦 is the all 1s string. For 𝑥 ∉ 𝐿,𝑉 ′(𝑥,𝑦)/𝑎 = 1 only when 𝑦 is the all 0s string. Since UE/𝑎
has oblivious witnesses in C, by a simple padding argument UEXP/𝑎 too has oblivious witnesses

in C. Let {𝐶𝑛}𝑛∈N be the C circuit family encoding the oblivious witnesses of 𝑉 ′
. Then, the C

circuit family defined by 𝐷𝑛 (𝑥) = 𝐶𝑛 (𝑥, 1) encodes the language 𝐿 (since the first bit of the unique

accepting certificate of 𝑉 ′/𝑎 on input 𝑥 , dictates whether 𝑥 ∈ 𝐿 or not). �

4.3 UE/𝑛 lower bounds vs P/log𝑛-U properties
The arguments from Section 4.1, when extended to the advice setting, circumvent the problems

from Section 4.2, and yield the following theorem.

Theorem 4.5. [Row 5 of Table 1] The following statements are equivalent for any constant 𝑘 ≥ 1:

(1) UE/𝑛𝑘 ⊄ C
(2) UE/𝑛𝑘 ⊄𝑜𝑤 C
(3) UE/𝑛𝑘 ⊄ℎ𝑤 C
(4) UE/𝑛𝑘 ⊄𝑤 C
(5) P/log𝑘 𝑛-U ⊄𝑡𝑡 C

Proof. (1) =⇒ (5) Let 𝐿 ∈ UE/𝑛𝑘 \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time unambiguous verifier for 𝐿. For

any 𝑛, 𝐿𝑛 can be viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using𝑉 we give a UP/log𝑘𝑚-U propertyU that is useful against C. Then the result follows

from the lemma 4.1.

For odd𝑚, among all the inputs of length 2
𝑚
, U only accepts the all 0s string. For𝑚 = 2𝑛 for

some 𝑛, for any 2𝑚-length input 𝑦𝑧 with |𝑦 | = 2
𝑛
and |𝑧 | = 2

2𝑛 − 2
𝑛
,U goes through all the 𝑛-length

strings, one by one. If the 𝑖𝑡ℎ bit of 𝑦 is 0, it does nothing. If the 𝑖𝑡ℎ bit of 𝑦 is 1, it simulates 𝑉 on

the 𝑖𝑡ℎ 𝑛-length string in the lexicographical order (to verify its inclusion in 𝐿). The first 𝑛𝑘 bits of

advice is the advice required for the simulation of𝑉 . The rest of the log
𝑘 (22𝑛) −𝑛𝑘 = (2𝑛)𝑘 −𝑛𝑘 ≥ 𝑛

bits of advise encodes the number of 𝑛-length inputs that 𝑉 accepts. U accepts if and only if: (i) it

succeeds in all 2
𝑛
verifications; (ii) the hamming weight of 𝑦 is equal to the number encoded by the

last (2𝑛)𝑘 − 𝑛𝑘 bits of advise; and (iii) 𝑧 is an all 0s string.

Constructivity & uniqueness: For 𝑛 ∈ N, U unambiguously accepts the truth table of function

𝑓𝑛 (followed by an all 0s string of length 2
2𝑛 − 2

𝑛
), and rejects all the other strings. As it runs for

2
𝑂 (𝑛)

-time for 2
𝑛
-length inputs with 𝑛𝑘 -size advice, it is UP/log𝑘 𝑛-U (as 𝑉 is UE).

Usefulness: As 𝐿 ∉ C, for each 𝑙 , there are infinitely many input lengths 𝑛, such that 𝑓𝑛 doesn’t

have 𝑛𝑙+1-size C circuits. Corresponding to each such 𝑛, for the inputs of length 2
2𝑛
, U accepts

strings 𝑦 that doesn’t have (2𝑛)𝑙 -size C circuits because: any (2𝑛)𝑙 -size circuit 𝐶 with 𝑡𝑡 (𝐶) = 𝑦,

decides 𝐿𝑛 after we fix the first half of its input wires to 1s, and (2𝑛)𝑙 ≤ 𝑛𝑙+1.
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(5) =⇒ (4) Let P be a P/log𝑘 𝑛-U property useful against C. We construct an unambiguous

verifier 𝑉 for the UE/𝑛𝑘 language {0, 1}∗, that doesn’t have witnesses in C. For any 𝑛-length input

𝑥 , guess a 2𝑛-length string 𝑦 and simulate P on 𝑦, and accept if an only if P accepts.

Since P is useful against C, 𝑉 doesn’t have witnesses in C. As P is unique, 𝑉 is UE/𝑛𝑘 .
(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the UTIME EWL (Theorem 3.3). �

4.4 ZNE lower bounds vs NP-U properties
In [57] it was conjectured, “ZNE ⊄ C ⇐⇒ ∃ P-N (or NP-N) property useful against C” while
only forward direction was proved. We use a fine-grained version of the proof to establish the

equivalence in the case of unique properties. So if this conjecture is true, then any NP-N property
has an equivalent NP-U property.

In the Section 4.5 we establish the equivalence between: NP-N properties and lower bounds for

ZNE seeds. Since NP-U properties imply NP-N properties, this result can be viewed as an reverse-EWL
for ZNE. Moreover, if the conjuncture of [57] is true, then we also get an EWL for ZNE.
In the Section 4.6 we show an equivalence between NP-N and NP-U properties, when they are

allowed to use log𝑛 amount of advice. This equivalence uses the EWL for NE. In the Section 5 we

reduce this advice to 𝑂 (1), on the expense of making the lower bounds fix-polynomial. This gives

us an EWL and reverse-EWL for ZNE/𝑂 (1) for fix-polynomial upper/lower bounds.

Theorem 4.6. [Row 6 of Table 1] The following statements are equivalent:

(1) ZNE ⊄ C
(2) NP/log𝑛-𝑢=1 ⊄𝑡𝑡 C
(3) NP-U ⊄𝑡𝑡 C

Proof. (2) ⇐⇒ (3) The reverse direction is trivial. For the forward direction, we convert any

NP/log𝑛-𝑢=1 property P into an NP-U property P ′
. The conversion from the proof of Theorem 4.2

works for NP properties as well.

(1) =⇒ (3) Let 𝐿 ∈ ZNE \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time zero-error non-deterministic verifier for 𝐿.

For any 𝑛, 𝐿𝑛 can be viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using 𝑉 we give an NP-U property U that is useful against C. For any input 𝑦 of length 2
𝑛
,

U simulates 𝑉 on all the 𝑛-length strings, one by one. If the 𝑖𝑡ℎ bit of 𝑦 is 0, it verifies the inclusion

of the 𝑖𝑡ℎ (lexicographically) 𝑛-length string in 𝐿. If the 𝑖𝑡ℎ bit of 𝑦 is 1, it verifies the inclusion

of the 𝑖𝑡ℎ (lexicographically) 𝑛-length string in 𝐿. U accepts if and only if it succeeds in all 2
𝑛

verifications.

Constructivity & uniqueness: For 𝑛 ∈ N,U accepts the truth table of function 𝑓𝑛 , and rejects all

the other strings. As it runs for 2
𝑂 (𝑛)

-time on 2
𝑛
-length inputs, it is NP-U.

Usefulness: As 𝐿 ∉ C, for each 𝑘 , there are infinitely many input lengths 𝑛, such that 𝑓𝑛 doesn’t

have 𝑛𝑘 -size C circuits. Thus U is useful against C.
(3) =⇒ (1) Let U be an NP-unique property useful against C. We construct a language 𝐿 in

ZNE \ C, whose ZNE verifier uses U.

For any 𝑛-length input 𝑥 , 𝑉 guesses a string 𝑦 of length 2
𝑛
and simulates U on it. Let the

lexicographical rank of 𝑥 (among all 𝑛-bit strings) be 𝑖 . 𝑉 outputs ‘?’ ifU rejects, else it proceeds

further. It outputs 1, if 𝑦’s 𝑖𝑡ℎ-bit is equal to 1. Else it outputs 0.

SinceU is NP-unique property, for each 𝑛 the 2
𝑛
-length string 𝑦𝑛 it accepts is unique. Thus 𝑉

accepts the language whose slices are represented by the strings 𝑦𝑛 (let’s call this language 𝐿), and

satisfies the promises of a ZNE verifier.
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SinceU is useful against C, for each 𝑘 , there are infinitely many values of 𝑛 where 𝑦𝑛 doesn’t

have 𝑛𝑘 -size C circuits. Thus 𝐿 ∉ C. �

The above proof also gives an equivalence between NP-promise-unique properties and lower

bounds against ip-ZNE (the promise version of ZNE).

Theorem 4.7. [Row 9 of Table 1] The following statements are equivalent:

(1) ip-ZNE ⊄ C
(2) NP-prU ⊄𝑡𝑡 C

Proof Idea: ( =⇒ ) Any 𝐿 ∈ ip-ZNE \ C that satisfies the ZNE or (NE ∩ Co-NE)-promise on

𝑛-length inputs for some 𝑛, yields a property that is unique on the input lengths 2
𝑛
. Since 𝐿 satisfies

the lower bound on the promise inputs, the property is useful on the inputs on which it is unique.

( ⇐= ) Any NP-unique useful property U that is unique on 2
𝑛
-length inputs for some 𝑛, yields a

ZNE verifier that satisfies the ZNE-promise on 𝑛-length inputs. Since useful inputs of U also satisfy

the promise, the verifier satisfies the lower bound on the promise inputs. �

4.5 ZNE lower bounds vs NP-N properties
Theorem 4.8. [Row 7 of Table 1] The following statements are equivalent:

(1) ZNE ⊄𝑜𝑠 C
(2) ZNE ⊄ℎ𝑠 C
(3) ZNE ⊄𝑠 C
(4) NP-N ⊄𝑡𝑡 C
(5) P-N ⊄𝑡𝑡 C

Proof. (4) ⇐⇒ (5) It is proved in [57].

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) This follows from the definitions.

(1) =⇒ (5) Let 𝑉 be a ZNE verifier that doesn’t have oblivious seeds in C. Let 𝑉 ’s certificate
length be 2

𝑐𝑛
, for some constant 𝑐 . Using 𝑉 we construct a P-N property P useful against C. View

any 2
(𝑐+1)𝑛

-length input as a collection of 2
𝑛
certificates. P accepts if and only if, for each 𝑖 ∈ [1, 2𝑛],

𝑉 outputs in {0, 1} on the 𝑖𝑡ℎ (lexicographically) 𝑛-length input when given the 𝑖𝑡ℎ certificate

from the collection. Clearly, P is a P-N property. It is useful against C as it only accepts oblivious

witnesses of 𝑉 .

(5) =⇒ (3) Let P be a P-N property useful against C. For each 𝑘 , let 𝑆𝑘 be the infinite set of

inputs where P only accepts strings 𝑠𝑡𝑟 with 𝑐𝑘𝑡C (𝑠𝑡𝑟 ) ≥ 𝑛𝑘 . Using P we construct a ZNE verifier

𝑉 for {0, 1}∗ that doesn’t have seeds in C. For 𝑛-length input 𝑥 ,𝑉 guesses a string 𝑦 of length 2
𝑛
.𝑉

outputs 1, if P accepts the string 𝑦. Otherwise𝑉 outputs ‘?’. For each 𝑘 , for any 𝑛 with 2
𝑛 ∈ 𝑆𝑘 , due

to the way it is constructed,𝑉 doesn’t have seeds in 𝑛𝑘 -size C. Thus𝑉 doesn’t have seeds in C. �

The above proof also gives an equivalence between NP-promise properties and lower bounds for

ip-ZNE seeds. The proof idea is similar to the one given for the Theorem 4.7.

Theorem 4.9. [Row 10 of Table 1] The following statements are equivalent:

(1) ip-ZNE ⊄𝑜𝑠 C
(2) ip-ZNE ⊄ℎ𝑠 C
(3) ip-ZNE ⊄𝑠 C
(4) NP-prN ⊄𝑡𝑡 C
(5) P-prN ⊄𝑡𝑡 C
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4.6 NE lower bounds vs NP/log𝑛-U properties
Theorem 4.10. [Row 8 of Table 1] The following statements are equivalent:

(1) NE ⊄ C
(2) NE ⊄𝑜𝑤 C
(3) NE ⊄ℎ𝑤 C
(4) NE ⊄𝑤 C
(5) NP/log𝑛-U ⊄𝑡𝑡 C
(6) NP/log𝑛-N ⊄𝑡𝑡 C
(7) P/log𝑛-N ⊄𝑡𝑡 C

Proof. Equivalence of (1), (2), (4), (6) & (7): It is proved in [57, 75].

Equivalence with (3): The implications, (4) =⇒ (3) and (3) =⇒ (2), follow from the definitions.

Equivalence with (5): The implication (5) =⇒ (6) follows from the definitions. We will now show

the implication (1) =⇒ (5).

Let 𝐿 ∈ NE \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time non-deterministic verifier for 𝐿. For any 𝑛, 𝐿𝑛 can be

viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using𝑉 we give an NP/log𝑛-U propertyU that is useful against C. For any input𝑦 of length

2
𝑛
,U goes through all the 𝑛-length strings, one by one. If the 𝑖𝑡ℎ bit of 𝑦 is 0, it does nothing. If the

𝑖𝑡ℎ bit of 𝑦 is 1, it simulates 𝑉 on the 𝑖𝑡ℎ 𝑛-length string in the lexicographical order (to verify its

inclusion in 𝐿). U accepts if and only if it succeeds in all 2
𝑛
verifications and the hamming weight

of 𝑦 is equal to the number encoded by the advice. If the advice is equal to the size of 𝐿𝑛 ,U accepts

the truth table corresponding to the function 𝑓𝑛 , and rejects all the other strings. Since it runs in

2
𝑂 (𝑛)

-time on 2
𝑛
-length inputs, it is NP/log𝑛-U. As 𝐿 ∉ C,U is useful against C. �

5 ISOLATION OF PROPERTIES: EWL & KLT FOR ZNE

In this section we discuss the consequences of isolating properties with different constructivity. By

isolation we mean: extracting (resp. proving existence of) an useful unique property from (resp.
from the existence of) an arbitrary useful property. From the Table 1 we know that:

(1) Isolation of P-properties is equivalent to: ZUE ⊂ C ⇐⇒ ZNE ⊂𝑜𝑠 C.
(2) Isolation of P/log𝑛-properties is equivalent to: UE/𝑛 ⊂ C ⇐⇒ NE ⊂ C.
(3) Isolation of NP-properties is equivalent to: ZNE ⊂ C ⇐⇒ ZNE ⊂𝑜𝑠 C.
(4) Isolation of NP-promise-properties is equivalent to: ip-ZNE ⊂ C ⇐⇒ ip-ZNE ⊂𝑜𝑠 C.
(5) Isolation of NP/log𝑛-properties was already achieved in the Theorem 4.10.

In this section we focus on the points (4) and (5). For the case of fix-polynomial lower bounds:

we merge the rows 6 and 7 (in presence of 𝑂 (1) advice), and rows 9 and 10 of the Table 1. Most of

the equivalences follow from the arguments from the previous section: Theorems 4.6, 4.7, 4.8 and

4.9. The main technical results of this section are the implications: (i) ∀ 𝑘 ≥ 1 ZNE ⊄𝑜𝑠 C(𝑛𝑘 ) =⇒
∀ 𝑘 ≥ 1 ZNE/1 ⊄ C(𝑛𝑘 ); (ii) ∀ 𝑘 ≥ 1 ZNE ⊄𝑜𝑠 io-C(𝑛𝑘 ) =⇒ ∀ 𝑘 ≥ 1 ZNE ⊄ C(𝑛𝑘 ); and (iii) ∀ 𝑘 ≥ 1

ip-ZNE ⊄𝑜𝑠 C(𝑛𝑘 ) =⇒ ∀ 𝑘 ≥ 1 ip-ZNE ⊄ C(𝑛𝑘 ). Contrapositive of these can be viewed as EWLs for
ZNE. Using these EWLs we derive KLTs for ZNE, and isolation results for NP-properties. We also use

the following folklore result to make our EWLs work for typical circuit classes.

Lemma 5.1. If P ⊂ C, then there exists a constant 𝑐 such that: for large enough 𝑛, any 𝑠-size circuit
has an equivalent 𝑠𝑐 -size C circuit.

Proof. Ckt-Eval is a problem in P whose input is a Boolean circuit 𝐶 and a string 𝑥 , and the

output is the output of𝐶 on 𝑥 . If P ⊂ C, then there is a constant 𝑐 such that Ckt-Eval has 𝑛𝑐/2-size
C circuits.
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Let 𝐵 be a P/poly circuit of size 𝑠 . Let 𝐸 be (𝑛 + 𝑠 log 𝑠)𝑐/2-size circuit corresponding to the

(𝑛 + 𝑠 log 𝑠)𝑡ℎ-slice of Ckt-Eval. Define 𝐷 (𝑥) = 𝐸 (𝐵, 𝑥). It is easy to check that: (i) 𝐷 is an 𝑠𝑐 -size

C circuit; and (ii) 𝐷 is equivalent to 𝐵. �

Now we prove the ZNE EWL and KLT.

Theorem 5.2. For constant 𝑘 ≥ 1:
(1) ZNE/1 ⊂ C(𝑛𝑘 ) =⇒ ∃ 𝑘 ′ ≥ 1 ZNE ⊂𝑜𝑠 C(𝑛𝑘

′)
(2) ZNE/𝑂 (1) ⊂ C(𝑛𝑘 ) =⇒ ∃ 𝑘 ′ ≥ 1 ZNE/𝑂 (1) ⊂𝑜𝑠 C(𝑛𝑘

′)
(3) ZNE ⊂ C(𝑛𝑘 ) =⇒ ∃ 𝑘 ′ ≥ 1 ZNE ⊂𝑜𝑠 io-C(𝑛𝑘

′)
(4) ip-ZNE ⊂ C(𝑛𝑘 ) =⇒ ∃ 𝑘 ′ ≥ 1 ZNE ⊂𝑜𝑠 C(𝑛𝑘

′)
(5) ip-ZNE ⊂ C(𝑛𝑘 ) =⇒ ∃ 𝑘 ′ ≥ 1 ip-ZNE ⊂𝑜𝑠 C(𝑛𝑘

′)

Proof. We prove these results for the unrestricted Boolean circuits. The result for the circuit

class C follows from the Lemma 5.1. All the assumptions imply P ⊂ C, thus any SIZE(𝑛𝑘′) circuit
has an equivalent C(𝑛𝑐𝑘′) circuit, for some constant 𝑐 .

Proof of (1): ZNE/1 ⊂ SIZE(𝑛𝑘 ) implies EXP ⊂ SIZE(𝑝𝑜𝑙𝑦), and thus EXP = MA ∩ Co-MA [9].
Now we show that, if ∀𝑘 ′ ≥ 1 ZNE ⊄𝑜𝑠 SIZE(𝑛𝑘

′), then MA ∩ Co-MA ⊂ io-ZNE/1. Combined with

the above statement it leads to the contradiction EXP ⊂ io-SIZE(𝑛𝑘 ) (since we can diagonalize

against fix-polynomial size circuits in EXP).
∀𝑘 ≥ 1 ZNE ⊄𝑜𝑠 SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 P-N ⊄𝑡𝑡 SIZE(𝑛𝑘 ) (the arguments from Theorem 4.8

apply to the fix-polynomial lower bounds as well). For any 𝐿 ∈ MA ∩ Co-MA: we derandomize the

MA protocols for 𝐿 and 𝐿 using the useful P-N properties to give an ZNE/1 algorithm that works

infinitely often. For any constant 𝑝 let N𝑝 be a P-N property useful against 𝑛𝑝 -size circuits.

The ZNE/1 algorithm: After including the non-determinism of Merlin into Arthur’s input: let the

size of the circuit𝐶 (resp.𝐶 ′
) that captures the BP computation of Arthur for 𝐿 (resp. 𝐿′

) be bounded

by 𝑛𝑙 , for some constant 𝑙 . We use the property N𝑙𝑔, where 𝑔 is the constant from Theorem 2.4.

The 1-bit of advice indicates whether the property is useful or not. If it’s 0, the algorithm always

outputs 0. If it’s 1, the algorithm guesses a 2
𝑛
-bit string 𝑌 and simulates N𝑙𝑔 on 𝑌 . It outputs ‘?’

if N𝑙𝑔 rejects 𝑌 , else it proceeds further and guesses another bit 𝑏. If 𝑏 = 0: it derandomizes 𝐶 ′

(after guessing Merlin’s non-determinism) and outputs 0 if the acceptance probability is ≥ 1/2, else
outputs ‘?’. If 𝑏 = 1: it derandomizes 𝐶 (after guessing Merlin’s non-determinism) and outputs 1 if

the acceptance probability is ≥ 1/2, else outputs ‘?’.
Derandomization: The property N𝑙𝑔 yields truth-tables that don’t have 𝑛

𝑙𝑔
-size circuits, infinitely

often. Once we have access to these truth-tables, we construct a PRG𝐺 : 𝑛 → 𝑛𝑙 using the Theorem

2.4, that fools 𝑛𝑙 -size circuits. We brute-force through the seeds of𝐺 to compute the acceptance

probability of the circuits 𝐶 and 𝐶 ′
in 2

𝑂 (𝑛)
-time (within ±1/𝑛𝑙 error).

Proof of (2): It’s same as (1), except we use the fact that the arguments from Theorem 4.8 also

apply in the advice setting and yield: ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄𝑜𝑠 SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 P/𝑂 (1)-
N ⊄𝑡𝑡 SIZE(𝑛𝑘 ). The extra 1-bit of advice used to indicate the usefulness of the property during

derandomization, now hides in the 𝑂 (1) advice.
Proof of (3): It’s same as (1), except we use the fact that the arguments from Theorem 4.8 also

yield: ∀𝑘 ≥ 1 ZNE ⊄𝑜𝑠 io-SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 P-N ⊄𝑡𝑡 io-SIZE(𝑛𝑘 ). That is, if we start with a ZNE
verifier 𝑉 whose oblivious-seeds have high circuit complexity on all input lengths, then we get a

P-N property that is useful everywhere. Now, when we derandomize any 𝐿 ∈ MA ∩ Co-MA, we don’t
need that one bit of advice.

Proof of (4): It’s same as (1), except if we don’t use that 1-bit of advice to encode the usefulness of

the property during derandomization, we get an ip-ZNE algorithm. The ZNE-promise is met only

when the property is useful.
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Proof of (5): Since in (4) we don’t use advice to encode the usefulness, we might as well use promise

property. So we use the Theorem 4.9 instead, to get: ∀𝑘 ≥ 1 ip-ZNE ⊄𝑜𝑠 SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 P-
prN ⊄𝑡𝑡 SIZE(𝑛𝑘 ). �

Using the above EWL we give the following KLT.

Theorem 5.3. For constant 𝑘 ≥ 1:
(1) ZNE/1 ⊂ SIZE(𝑛𝑘 ) =⇒ ZNE ⊂ MA
(2) ZNE/𝑂 (1) ⊂ SIZE(𝑛𝑘 ) =⇒ ZNE/𝑂 (1) ⊂ MA/𝑂 (1)
(3) ZNE ⊂ SIZE(𝑛𝑘 ) =⇒ ZNE ⊂ io-MA
(4) ip-ZNE ⊂ SIZE(𝑛𝑘 ) =⇒ ZNE ⊂ MA
(5) ip-ZNE ⊂ SIZE(𝑛𝑘 ) =⇒ ip-ZNE ⊂ MA

Proof Idea: All the assumptions give EXP ⊂ SIZE(𝑝𝑜𝑙𝑦) or EXP/𝑂 (1) ⊂ SIZE(𝑝𝑜𝑙𝑦). This gives
EXP = MA or EXP/𝑂 (1) = MA/𝑂 (1) from [9]. From the Theorem 5.2, all these assumptions give

circuit upper bounds on the oblivious-seeds of ZNE, ZNE/𝑂 (1) or ip-ZNE. Brute-forcing through

these circuits that encode the seeds, we get collapses to EXP, EXP/𝑂 (1) or io-EXP. �

Using the above EWL we also give the following isolation results.

Theorem 5.4. For constant 𝑘 ≥ 1:
(1) ∀ 𝑘 ≥ 1 NP-N ⊄𝑡𝑡 C(𝑛𝑘 ) =⇒ ∀ 𝑘 ≥ 1 NP/1-U ⊄𝑡𝑡 C(𝑛𝑘 )
(2) ∀ 𝑘 ≥ 1 NP/𝑂 (1)-N ⊄𝑡𝑡 C(𝑛𝑘 ) ⇐⇒ ∀ 𝑘 ≥ 1 NP/𝑂 (1)-U ⊄𝑡𝑡 C(𝑛𝑘 )
(3) ∀ 𝑘 ≥ 1 NP-N ⊄𝑡𝑡 io-C(𝑛𝑘 ) =⇒ ∀ 𝑘 ≥ 1 NP-U ⊄𝑡𝑡 C(𝑛𝑘 )
(4) ∀ 𝑘 ≥ 1 NP-N ⊄𝑡𝑡 C(𝑛𝑘 ) =⇒ ∀ 𝑘 ≥ 1 NP-prU ⊄𝑡𝑡 C(𝑛𝑘 )
(5) ∀ 𝑘 ≥ 1 prN-N ⊄𝑡𝑡 C(𝑛𝑘 ) ⇐⇒ ∀ 𝑘 ≥ 1 NP-prU ⊄𝑡𝑡 C(𝑛𝑘 )
Proof Idea: The result follows if we replace the hypothesizes and the conclusions, in the

contrapositive of these statements, by equivalent hypothesizes and conclusions from the Theorems

4.6, 4.7, 4.8 and 4.9. �

This points (2) and (5) of the above theorem also yield the following more general result.

Theorem 5.5. The following statements are equivalent:
(1) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄ C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄ C(𝑛𝑘 ))
(2) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄𝑜𝑠 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄𝑜𝑠 C(𝑛𝑘 ))
(3) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄ℎ𝑠 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄ℎ𝑠 C(𝑛𝑘 ))
(4) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄𝑠 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄𝑠 C(𝑛𝑘 ))
(5) ∀𝑘 ≥ 1 NP-U/𝑂 (1) ⊄𝑡𝑡 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 NP-prU ⊄𝑡𝑡 C(𝑛𝑘 ))
(6) ∀𝑘 ≥ 1 NP-N/𝑂 (1) ⊄𝑡𝑡 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 NP-prN ⊄𝑡𝑡 C(𝑛𝑘 ))
(7) ∀𝑘 ≥ 1 P-N/𝑂 (1) ⊄𝑡𝑡 C(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 P-prN ⊄𝑡𝑡 C(𝑛𝑘 ))

6 UEXP LOWER BOUNDS FROM FAST UNAMBIGUOUS ALGORITHMS
In this section we show how to get lower bounds from fast unambiguous algorithms: from half-

sub-exponential algorithms combined with the UTIME KLT (Section 6.1); by a generalization of the

“tight reductions to lower-bounds” connection of [73] combined with the UTIME EWL (Section 6.2);

by a generalization of the “learning to lower bounds” connection of [24] combined with the UTIME
KLT (Section 6.3). Finally, in Section 6.4 we show some generalizations of lower bound frameworks.

We use the following ‘UTIME hierarchy’ in our proofs.

Theorem 6.1 (Heirarchy for UTIME [26]). For any time bound 𝑡 such that 𝑛 ≤ 𝑡 ≤ 2
𝑛 , there

is a constant 𝜖 > 0 and an advice bound 𝑎 ∈ 𝑂 (log(𝑡) log(log(𝑡))) such that UTIME(𝑡)/𝑎 ⊄

UTIME(𝑡𝜖 )/(𝑎 + 1).
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6.1 UEXP lower bounds from UTIME KLT: a warm-up case
From [73] we know: a deterministic half-sub-exponential 3-SAT algorithm imply EXP ⊄ SIZE(𝑝𝑜𝑙𝑦).
Two interesting algorithm design questions are: “Does fast non-deterministic algorithms exist for

TAUT/CAPP? [19]" and “Does fast unambiguous non-deterministic algorithms exist for SAT?". Here
we show that (strong) positive answers to these questions imply UEXP lower bounds.

Main idea: UEXP/𝑎 ⊂ SIZE(𝑝𝑜𝑙𝑦) with UTIME KLT implies UEXP/𝑎 = Σ2/𝑎 = Π2/𝑎 = MA/𝑎. Then,
for 𝐿 ∈ UEXP/𝑎, we unfold the quantifiers of the MA, Σ2,Π2 algorithms, and use the faster algorithms

(from the assumptions) to contradict the UTIME hierarchy.

Theorem 6.2. Let 𝑓 , 𝑔 : N → N satisfy 𝑓 (𝑔(𝑛𝑂 (1) )𝑂 (1) )𝑂 (1) ∈ 𝑂 (2𝑛) and ℎ(𝑛𝑂 (1) )𝑂 (1) ∈ 𝑂 (2𝑛),
and 𝑏 ∈ {0, 1}. Then UE/𝜔 (𝑛 log𝑛) ⊄ SIZE(𝑝𝑜𝑙𝑦) if:

(1) 3-SAT ∈ UTIME(𝑓 )/𝑏 and 3-TAUT ∈ NTIME(𝑔)/1 − 𝑏; or

(2) Σ2-SAT ∈ UTIME(ℎ)/1 (resp. Π2-SAT ∈ UTIME(ℎ)/1); or
(3) 3-SAT ∈ UTIME(𝑓 )/𝑏 and CAPP ∈ NTIME(𝑔)/1 − 𝑏.

Here, CAPP (circuit approximation probability problem) is the problem where the input is an

𝑛-input 𝑠 (𝑛)-size circuit 𝐶 , and the output is the fraction of the 2
𝑛
inputs that 𝐶 accepts (within

±1/𝑠 error). 𝑠 (𝑛) is 𝑝𝑜𝑙𝑦 (𝑛) by default, and the complexity is measured in terms of 𝑛 and not 𝑠 (𝑛).
For 𝑠 (𝑛) = 𝑝𝑜𝑙𝑦 (𝑛), these problems turn into classes of problems: one problem for each polynomial.

We abuse the notation and treat these classes as single problems.

6.2 Lower bounds from UTIME EWL

We use the following ‘tight reductions to 3-USAT’ in this section.

Theorem 6.3 (Efficient local reductions [25, 37, 67]). Every language 𝐿 ∈ UTIME(2𝑛) can be
reduced to 3-USAT (uniquely satisfiable 3-SAT) instances of 2𝑛𝑛𝑐 -size, for some constant 𝑐 . Moreover,
given an instance of 𝐿 there is an 𝑛𝑐 -size C (P-uniform) circuit that, on an integer 𝑖 ∈ [2𝑛𝑛𝑐 ] in binary
as input, outputs the 𝑖𝑡ℎ-clause of the resulting 3-USAT formula.

In [73] they showed: any super-polynomial savings in designing non-deterministic algorithms

for TAUT imply NEXP ⊄ SIZE(𝑝𝑜𝑙𝑦). We extend this to: faster unambiguous algorithms for, TAUT
and canonization, imply UEXP lower bounds. We first formally define canonization.

Canonization : A subset 𝑆 of circuits is called CAN(𝑠,C,𝑝) , if for any 𝑠-size C circuit 𝐶 , there exists

a unique circuit 𝐶 ′ ∈ 𝑆 with 𝑡𝑡 (𝐶) = 𝑡𝑡 (𝐶 ′), and |𝐶 ′ | ≤ 𝑝 (𝑐𝑘𝑡C (𝑡𝑡 (𝐶 ′))). CAN(𝑠,C,𝑝) ∈ Γ/𝑎 means

there is a Γ/𝑎 algorithm that decides CAN(𝑠,C,𝑝) .
TAUT(𝑠,C) (resp. SAT(𝑠,C) ) denotes the TAUT (resp. SAT) for 𝑠-size C circuits.

In these definitions we omit, the parameter 𝑠 when it is 𝑝𝑜𝑙𝑦 (𝑛), and the circuit class when

C = Boolean. For 𝑠 = 𝑝𝑜𝑙𝑦 (𝑛), here again we abuse the notation and treat these classes as single

problems.

Main idea: In [73] they combined the witness circuit with the reduction circuit (from Theorem 9.5),

and used a fast TAUT algorithm. We do the same except: we use UTIME EWL, and we use canonization
to unambiguously guess the witness circuit.

Theorem 6.4. For 𝛿 ≤ 1, let 𝑎, 𝑐 and 𝜖 be the parameters of Theorems 6.1 and 6.3 for the time bound
𝑡 = 2

𝛿𝑛 . Then for constant 𝑘 and function 𝑝 (𝑛) ≥ 𝑛, UTIME(2𝛿𝑛)/𝑎 ⊄ C(𝑛𝑘 ) if:
(1) TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) ∈ UTIME(2𝜖𝑛) and CAN(𝑛𝑘+1,C,𝑝) ∈ UTIME(2𝜖𝑛)/1; or
(2) TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) ∈ UTIME(2𝜖𝑛)/1 and CAN(𝑛𝑘+1,C,𝑝) ∈ UTIME(2𝜖𝑛).

Proof. Using the assumptions (1 or 2), we will contradict the UTIME hierarchy (Theorem 6.1) by

designing a UTIME(2𝜖𝑛)/(𝑎 + 1) algorithm for arbitrary 𝐿 ∈ UTIME(2𝛿𝑛)/𝑎.
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Reduction circuit: For 𝐿 ∈ UTIME(2𝛿𝑛)/𝑎 and input 𝑥 , let 𝐹𝑥 be the 2
𝑛𝑛𝑐-size 3-SAT formula we

get by reducing from 𝑥 (Theorem 6.3). There is an 𝑛𝑐 -size (P-uniform) C circuit 𝐷 with 𝑛 + 𝑐 log𝑛
input wires, that outputs the 𝑖𝑡ℎ-clause of 𝐹 when given the input 𝑖 ∈ [1, 2𝑛𝑛𝑐 ].

Special verifier: Let 𝑉 be the verifier for 𝐿 that first reduces input 𝑥 to the 3-SAT formula 𝐹𝑥 , and

then non-deterministically guesses a satisfying assignment for 𝐹𝑥 .

Easy-witness circuit: From UTIME EWL (Theorem 3.3) and the assumption UTIME(2𝛿𝑛)/𝑎 ⊂ C(𝑛𝑘 )
we know that𝑉 has witness circuits in C(𝑛𝑘 ). Let 𝐸 be a witness circuit of this verifier for the input

length |𝑥 | = 𝑛.

Final circuit 𝐶 : Combining 𝐷 and 𝐸 we construct a circuit 𝐶 that satisfies: “𝐶 is a tautology

⇐⇒ 𝑥 ∈ 𝐿”. On input 𝑖 , the output of 𝐷 is 3𝑛 + 3𝑐 log𝑛 + 3 bits. The first 3𝑛 + 3𝑐 log𝑛 bits are the

three variables of the 𝑖𝑡ℎ-clause of 𝐹 . Plug these output bits to three separate copies of 𝐸. The last

three bits indicate whether the corresponding literals are positive or negative. Use these three bits

and the three output bits from the three copies of 𝐸 to compute the value of the 𝑖𝑡ℎ-clause (based

on the assignment encoded by 𝑡𝑡 (𝐸)).
Contradicting the first assumption:Non-deterministically guess a 𝑝 (𝑛𝑘+1)-size C circuit 𝐸. Simulate

the CAN(𝑛𝑘+1,C,𝑝) algorithm on 𝐸. This requires UTIME(2𝜖𝑛)/1. Reject if the answer is negative.

Continue if it’s positive, and construct𝐶 as described above. |𝐶 | ≤ 𝑝 (𝑛𝑘+1)𝑛 +𝑛𝑐 . Note that, for any
truth-table only one non-deterministic branch will lead to a non-rejecting path. Now simulate the

TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) algorithm on 𝐶 . This requires UTIME(2𝜖𝑛). Note that, 𝐶 is accepted if and only

if, 𝑥 ∈ 𝐿, and 𝑡𝑡 (𝐸) is the unique witness of 𝑉 . This whole process requires the advice used in the

UTIME(2𝛿𝑛)/𝑎 algorithm for 𝐿. So we get a UTIME(2𝜖𝑛)/(𝑎 + 1) algorithm.

Contradicting the second assumption: The algorithm is exactly the same, expect that the extra

1-bit of advice is used at an later stage of the algorithm. �

We get the following corollary that is cleaner in presentation.

Corollary 6.5. UE/𝜔 (𝑛 log𝑛) ⊄ C (resp. USUBE/𝜔 (𝑛 log𝑛) ⊄ C), if TAUTC ∈ USUBE/𝑏 (resp.
TAUTC ∈ USUBEXP/𝑏) and CAN(C,𝑝) ∈ USUBE/(1 − 𝑏) (resp. CAN(C,𝑝) ∈ USUBEXP/(1 − 𝑏)), for any
𝑏 ∈ {0, 1} and polynomial 𝑝 (𝑛) ≥ 𝑛.

6.3 Lower bound from fast learning algorithms
The two commonly studied learning models are: the Angluin’s exact learning model [4], and the

Valiant’s PAC model [70]. Fast learning algorithms in these models have been known to yield lower

bounds [24, 29, 45, 57, 58]. Before giving our results, we first formally define UTIME exact learning.

Exact UTIME learning with membership and equivalence queries: Let 𝑠 be the size of the target
concept𝐶 (the circuit to be learned). A UTIME(𝑡) algorithm is called Learn(𝑠,𝐶,𝑝) , if for any 𝑠-size C
circuit 𝐶 , it outputs a circuit 𝐶 ′

of size at most 𝑝 (𝑠) in time at most 𝑡 (𝑠) with 𝑡𝑡 (𝐶) = 𝑡𝑡 (𝐶 ′), on
exactly one of its non-deterministic branches, and rejects all the other branches. The algorithm

is allowed to make “membership" and “equivalence" queries. A membership query is: “What is

the value of 𝐶 (𝑥)?”. An equivalence query is: “Is the current hypothesis (𝐻 ) equal to 𝐶?”. On any

positive equivalence query, it halts and outputs the current hypothesis. On any negative query, it

gets 𝑥 from the oracle, such that 𝐻 (𝑥) ≠ 𝐶 (𝑥). If the output, and the equivalence queries are all

C circuits, the algorithm is called P-Learn(𝑠,𝐶,𝑝) (proper learning). Here again, we omit the size

parameter when 𝑠 (𝑛) = 𝑝𝑜𝑙𝑦 (𝑛), and the circuit class when C = Boolean. Here we omit 𝑝 (𝑛) too, if
it is 𝑝𝑜𝑙𝑦 (𝑛). Unlike in CAN(C,𝑝) , in Learn(C,𝑝) 𝑝 decides the size of the output (and not the input).

We extend the result of [24] for this exact UTIME learning. The proof is along the same lines

except: we use the SAT and TAUT algorithms for solving the equivalence queries, and we use them

in a clever order to get the result of the query in an unambiguous fashion.
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Theorem 6.6. UEXP/𝑛𝛿 ⊄ C for any 𝛿 > 0, if SAT, TAUT, and LearnC belong to USUBEXP.

Proof. Fix a 𝛿 > 0. Then, for 𝜖 < 𝛿 ′ < 𝛿 , there exists an 𝑎 < 𝑛𝛿 , such that UEXP/𝑎 ⊄

UTIME(2𝑛𝛿
′
)/(𝑎+1) (Theorem 6.1). We contradict this, using the assumption UEXP/𝑎 ⊂ C. UEXP/𝑎 ⊂

C implies that UEXP/𝑎 = P#P/𝑎 (using UTIME KLT). For 𝐿 ∈ UEXP/𝑎 we have a polynomial time algo-

rithm for 𝐿 that uses 𝑎 amount of advice and makes oracle queries to Permanent. Since P#P/𝑎 ⊂ C,
Permanent has 𝑛𝑐 -size C circuits, for some constant 𝑐 . Permanent is the problem, where input is a

matrix𝑀 , and output is the permanent of𝑀 .

Using UTIME(2𝑛𝜖 ) learning algorithm for 𝑛𝑐 -size C circuits, we learn and compute Permanent in

UTIME(2𝑛𝛿
′
). This will give a UTIME(2𝑛𝛿

′
)/𝑎 algorithm for 𝐿.

Algorithm for computing Permanent on input 𝑥 : For 𝑖 = 1 to |𝑥 |, let 𝑐𝑖 be a circuit that computes

permanent on 𝑖 × 𝑖 matrix. We will inductively compute 𝑐𝑖 for all |𝑥 | = 𝑛 values of 𝑖 . Then we will

compute 𝑐𝑛 (𝑥) to get the final result. For 𝑖 = 1 to |𝑥 |, do the following:

(1) If 𝑖 = 1, let 𝑐𝑖 be the trivial circuit (that outputs the input bit itself).

(2) Else, run the learning algorithm for 𝑐𝑖 and simulate the queries in the following way:

(a) Membership queries: For any query 𝑦 of length 𝑖 , using downward self-reducibility of

permanent we can get the answer by making 𝑖 queries to the circuit 𝑐𝑖−1.
(b) Equivalence queries: Let’s assume that our current hypothesis is ℎ. We want to know “Does

there exists an input 𝑧 such that ℎ(𝑧) ≠ 𝑐𝑖 (𝑧)?”. This is an NP query as we can compute

𝑐𝑖 (𝑧) in polynomial time using 𝑐𝑖−1. Convert this query and its compliment to SAT and

TAUT instances of 𝑝𝑜𝑙𝑦 (𝑛) size. Guess a non-deterministic bit 𝑧. If 𝑧 = 0, run the UTIME
algorithm for TAUT, and in the case of acceptance output ℎ as the 𝑐𝑖 circuit. If 𝑧 = 1, run the

UTIME algorithm for SAT. If it accepts, then we actually need to give a certificate 𝑧 such that

ℎ(𝑧) ≠ 𝑐𝑖 (𝑧). Now we make two new NP queries (search to decision): “Does there exists an

input 𝑧 starting with 𝑏 such that ℎ(𝑧) ≠ 𝑐𝑖 (𝑧)?”, one for 𝑏 = 0, and one for 𝑏 = 1. Guess

answers to both the queries. Create two 𝑝𝑜𝑙𝑦 (𝑛) size SAT instances, and two 𝑝𝑜𝑙𝑦 (𝑛) size
TAUT instances, by reducing these queries and their compliments. Run the UTIME algorithms

on theses queries to verify the two guesses. Note that, at least one guess has to have a

positive answer. Repeat this procedure again after fixing the first bit of 𝑧 unambiguously

(fix it to 0 if possible, else fix it to 1). This way we get a UTIME algorithm for the original

equivalence query.

This algorithm puts 𝐿 ∈ UTIME(2𝑛𝛿
′
) as the UTIME(2𝑛𝜖 ) learning algorithm is used 𝑝𝑜𝑙𝑦 (𝑛) times

(once for each 𝑐𝑖 ), and each time it makes 𝑂 (2𝑛𝜖 ) SAT and TAUT queries, each of which can be

computed in UTIME(2𝑛𝜖 ). �

6.4 Generalization of lower bound frameworks
In the above sections we saw that fast UTIME algorithms for certain C circuit related problems

(CAN, TAUT, SAT, Learn), were fed to certain frameworks to yield lower bounds for UTIME against
C. Consider the scenario where: a framework is altogether different, or is a fine-grained version

of one of the current ones, and works for Boolean circuits, but not for some restriction C. Also
consider that, the assumptions of these frameworks are satisfied for that C, but not for unrestricted
Boolean circuits. Do we get any lower bounds? In this section we prove that this question has a

positive answer.

We use a win-win type argument. We show that, either P ⊄ C (i.e., a stronger lower bound

exists against C), or fast algorithms for C circuits imply fast algorithms for Boolean circuits (i.e.,

frameworks that only work for Boolean circuits can now be used). To prove our results, we use the

Lemma 5.1.
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In [74], assumed fast algorithms were applied on witness circuits. To extend their framework,

they used the Lemma 5.1 to show, “either P ⊄ C, or the Boolean witnesses have equivalent C
circuits, and thus fast algorithms for C are sufficient”. Note that, unlike our result, that approach

was local to that particular framework.

Theorem 6.7. Either P ⊄ C, or ∃𝑐 ∀𝑘 :
(1) CAN(C,𝑛𝑘 ) ∈ UTIME(𝑡 (𝑛)) =⇒ CAN𝑛𝑐𝑘 ∈ UTIME(𝑡 (𝑛))
(2) CAN(C,𝑛𝑘 ) ∈ UTIME(𝑡 (𝑛)) ∧ TAUTC ∈ UTIME(𝑡 ′(𝑛)) =⇒ TAUT ∈ UTIME((𝑡 (𝑛𝑐𝑘 ) + 𝑡 ′(𝑛𝑐𝑘 ))𝑛).
(3) CAN(C,𝑛𝑘 ) ∈ UTIME(𝑡 (𝑛)) ∧ TAUTC ∈ UTIME(𝑡 ′(𝑛)) ∧ SATC ∈ UTIME(𝑡 ′′(𝑛))

=⇒ SAT ∈ UTIME((𝑡 (𝑛𝑐𝑘 ) + 𝑡 ′(𝑛𝑐𝑘 ))𝑛 + 𝑡 ′′(𝑛𝑐𝑘 ))
(4) P-Learn(C,𝑛𝑘 ) ∈ UTIME(𝑡 (𝑛)) ∧ TAUTC ∈ UTIME(𝑡 ′(𝑛)) ∧ SATC ∈ UTIME(𝑡 ′′(𝑛))

=⇒ CAN(C,𝑛𝑘 ) ∈ UTIME(𝑡 (𝑛) (𝑡 ′(𝑛𝑘 ) + 𝑡 ′′(𝑛𝑘 ))𝑛)

Proof. If P ⊂ C, from the Lemma 5.1 we know there exists a constant 𝑐 such that: for each 𝑠-size

Boolean circuit 𝐵, there is an equivalent 𝑠𝑐 -size C circuit 𝐶 (for large enough 𝑛).

Proof of 1: By a simple modification of an algorithm A for CAN(C,𝑛𝑘 ) , we obtain an algorithm A ′

for CAN𝑛𝑐𝑘 . On input 𝐵, the algorithmA ′
first checks whether 𝐵 belongs to C. It rejects if the answer

is negative. If the answer is positive it simulates A on 𝐵 and accepts if and only if A accepts.

Proof of 2: Let A be a UTIME(𝑡) algorithm for CAN(C,𝑛𝑘 ) , A ′
be a UTIME(𝑡 ′) algorithm for TAUTC .

Using A and A ′
, we construct a UTIME algorithm A ′′

for TAUT.
For input 𝐵 to A ′′

, for each gate 𝑔 of 𝐵, let 𝐵𝑔 be the circuit corresponding to the output wire of

gate 𝑔. For the output gate 𝑜 , A ′′
first guesses an equivalent C circuit 𝐶 ′

𝑜 . To make sure that its

guess is unambiguous, it simulates A on𝐶 ′
𝑜 and rejects if A rejects. Then it simulates A ′

on𝐶 ′
𝑜 (to

check if 𝐶 ′
𝑜 is a tautology) and rejects if it rejects. The only thing left to check is that 𝐶 ′

𝑜 is actually

equivalent to 𝐶𝑜 .

For checking the consistency of𝐶 ′
𝑜 ,A ′′

first guesses C circuit𝐶 ′
𝑔 , for each gate𝑔. It then simulates

A on each 𝐶 ′
𝑔 and rejects if A rejects on any of them. Finally it simulates A ′

on 𝐶 ′′
𝑔 for each 𝑔,

where 𝐶 ′′
𝑔 is the circuit that captures the tautology “𝐶 ′

𝑔 = 𝑜𝑝 (𝐶 ′
𝑔1
, . . . ,𝐶 ′

𝑔𝑙
)” for 𝑔 = 𝑜𝑝 (𝑔1, . . . , 𝑔𝑙 ). It

accepts if and only if A accepts on all of them.

Proof of 3: For input 𝐵, with the same strategy as in the proof of 2, we first unambiguously

construct an equivalent C circuit 𝐶 . Then, on this 𝐶 we simulate a UTIME(𝑡 ′′) algorithm for SATC .
Proof of 4: In an exact proper learning algorithm, if we have access to the circuit that we are

learning, then we can get a canonization algorithm for C (because the learning algorithm only

cares about the truth-table of the circuit that it is learning, and outputs the same hypothesis for all

the circuits that have same truth-tables). The membership queries can be handled directly since we

have the circuit with us. For the equivalence queries, in the proof of Theorem 6.6 we saw that we

need TAUT and SAT algorithms. Since we have the circuit with us, and the hypothesis belongs to

C, these queries can be converted into TAUTC and SATC queries. So we get a UTIME algorithm for

CAN(C,𝑛𝑘 ) . �

The point (4) of Theorem 6.7 shows that canonization is implied by proper learning, tautology and

satisfiability algorithms. Using that and the Corollary 6.5, we can get the following new corollary.

Corollary 6.8. USUBE/𝜔 (𝑛 log𝑛) ⊄ C if TAUTC , SATC , and P-LearnC belong to USUBEXP.

Note that, one can get a similar corollary from the framework of Theorem 6.6, by making some

modifications to it. But our translations use an existing framework (from the Corollary 6.5), and

yield a better result.
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7 GENERAL CIRCUIT CLASSES: KLT & LOWER BOUNDS
For 𝑖 ≥ 0, we use Δ𝑖 (𝑠) to represent any circuit class from the set {SVΣ𝑖SIZE(𝑠), Σ𝑖SIZE(𝑠),
Π𝑖SIZE(𝑠), SIZEΣ𝑖| | (𝑠)}. We do this because all the results in this, and the next section, treat these

circuit classes equally. We first give this collapse theorem for these classes in the Section 7.1.

We show how any non-adaptive Σ𝑖-oracle circuit family deciding a non-adaptively random-self

reducible language has an equivalent SVΣ𝑖 circuit family. Using this equivalence, and generalized

Arthur-Merlin classes, we establish high-end KLTs for variety of general circuit classes in the Section
7.2. We use these KLTs and the equivalence relation to give a wide spectrum of fix-polynomial circuit

lower bounds in the Section 7.3. In the Section 7.4 we discuss super-polynomial lower bounds.

7.1 General downward collapse theorem
We first formally define the term: non-adaptively random-self-reducible (na-RSR). Then, using the

framework from [22] we give our general collapse theorem for na-RSR languages. This framework

was also used in [64] in similar manner, to give a collapse theorem for complexity classes with

multi-linear extensions (ml-Ext). This result is more general in two ways: (i) any class that supports

ml-Ext also supports na-RSR [11, 50], (ii) this collapse also works for non-adaptive Σ𝑖 -oracle circuits,
and not just NP oracles. It was also noted in [23], that the collapse theorem of [64] works for PSPACE
and P#P.

Definition 7.1. A function 𝑓 is 𝑘 (𝑛)-na-RSR if there are two 𝑘 (𝑛)-time computable functions 𝜎

and 𝜙 that satisfies:

(1) ∀𝑛 ∈ N ∀𝑥 ∈ {0, 1}𝑛, 𝑃𝑟𝑟 ∈{0,1}𝑘 (𝑛) [𝑓 (𝑥) = 𝜙 (𝑥, 𝑟, 𝑓 (𝜎 (1, 𝑥, 𝑟 )), . . . , 𝑓 (𝜎 (𝑘 (𝑛), 𝑥, 𝑟 )))] ≥ 2/3;
(2) ∀𝑛 ∈ N ∀{𝑥1, 𝑥2} ⊂ {0, 1}𝑛, ∀𝑖 ∈ [1, 𝑘 (𝑛)] : 𝜎 (𝑖, 𝑥1, 𝑟 ) & 𝜎 (𝑖, 𝑥2, 𝑟 ) are identical distributions

over {0, 1}𝑛 .

Theorem 7.2. The following is true for integer 𝑖 ≥ 1 and poly-na-RSR language 𝐿:

∃𝑑 𝐿 ∈ SIZEΣ𝑖| | (𝑠 (𝑛)) =⇒ 𝐿 ∈ SVΣ𝑖SIZE(𝑠 (𝑛)𝑑 )

Proof. 𝐿 is 𝑛𝑐 -na-RSR for some constant 𝑐 . For input length 𝑛, let (𝐶𝑝𝑟𝑒 ,𝐶𝑝𝑜𝑠𝑡 ) be a SIZEΣ𝑖| | (𝑠 (𝑛))
circuit that decides 𝐿. Let 𝜎 and 𝜙 be the two 𝑛𝑐 -time computable functions for 𝐿 from the definition

of non-adaptive random self-reduciblity (see Definition 7.1).

Let {𝑟1, . . . , 𝑟𝑡 } be a set of uniformly random (independent from each other) strings, where size

of each 𝑟 𝑗 for 𝑗 ∈ [1, 𝑡] is 𝑛𝑐 . We decide the value of 𝑡 later.

Idea: The Σ𝑖 circuit we construct, does the following on any 𝑛-length input 𝑥 :

(1) for 𝑗 ∈ [1, 𝑡], for 𝑖 ∈ [1, 𝑛𝑐 ], computes the values 𝑓 (𝜎 (𝑖, 𝑥, 𝑟 𝑗 )) using (𝐶𝑝𝑟𝑒 ,𝐶𝑝𝑜𝑠𝑡 );
(it non-deterministically guesses which Σ𝑖SAT queries in𝐶𝑝𝑟𝑒 ’s output are positive, verifies all of
them, and feed them to 𝐶𝑝𝑜𝑠𝑡 )

(2) for 𝑗 ∈ [1, 𝑡], computes 𝜙 on (𝑥, 𝑟 𝑗 );
(3) finally outputs the majority of all these 𝜙 computations.

We define a (𝑡 × 𝑛𝑐 × 𝑠 (𝑛)) 3-D Boolean matrix𝑀 that encapsulates the above computation: for

𝑙 ∈ [1, 𝑠 (𝑛)],𝑀 ( 𝑗, 𝑖, 𝑙) contains the satisfiability of the 𝑙𝑡ℎ Σ𝑖SAT instance that 𝐶𝑝𝑟𝑒 outputs on the

input 𝜎 (𝑖, 𝑥, 𝑟 𝑗 ).
Hard-coding the randomness: Each of the 𝑡 2-D matrix𝑀 ( 𝑗, ∗, ∗) represents the computation of 𝜙

on (𝑥, 𝑟 𝑗 ). The circuit also has hard-coded in it, the expected number of 1s for any such 2-D matrix.

Let this value be 𝑒𝑥𝑝 . It uses it in step (1) to know the number of queries that are positive. The

circuit outputs correct if, for majority of these 2-D matrices, it’s able to guess all the 1s correctly

and the value of 𝜙 is correct too (i.e., correctly indicates if 𝑥 ∈ 𝐿 or not).
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Since {𝑟1, . . . , 𝑟𝑡 } are independent from each other, the number of 1s in the entire 3-D matrix

𝑀 is concentrated in the range (𝑡 × 𝑒𝑥𝑝 − √
𝑡 × 𝑒𝑥𝑝, 𝑡 × 𝑒𝑥𝑝 + √

𝑡 × 𝑒𝑥𝑝) (using any appropriate

concentration bound) for any 𝑛-size input 𝑥 (see condition (2) of Definition 7.1). We can hard-code

{𝑟1, . . . , 𝑟𝑡 } in such a way that, when our Σ𝑖 circuit guesses 𝑡 × 𝑒𝑥𝑝 −√
𝑡 × 𝑒𝑥𝑝 many Σ𝑖SAT queries

in step (1) to be positive, all the 2-D matrices except at most 2 ×√
𝑡 × 𝑒𝑥𝑝 , will be guessed correctly

(entirely). Setting 𝑡 = 𝑠 (𝑛)𝑑/3 for a large enough constant 𝑑 , we make sure that 𝑡 >> 2 × √
𝑡 × 𝑒𝑥𝑝 .

Moreover, there is also a possible hard-coding that makes sure that most of these correctly

guessed 2-D matrices yield the correct answer for all 𝑛-size inputs (by repeating the computation of

𝜙 and reducing the failure probability in condition (1) of Definition 7.1). Thus our Σ𝑖 circuit outputs
correctly on all 𝑛-size inputs, and is of size 𝑠 (𝑛)𝑑/3 ×𝑛𝑐 × 𝑠 (𝑛) × 𝑠 (𝑛) × 𝑠 (𝑛)𝑑/3+𝑐′ for some constant

𝑐 ′. This is bounded by 𝑠 (𝑛)𝑑 for appropriate choice of 𝑑 . �

The Theorem 7.2 yields the following corollary.

Corollary 7.3. For Γ ∈ {⊕P, PPP, P#P, PSPACE, EXP, ZUEXP, UEXP, Σ𝑖EXP ∩ Π𝑖EXP, Σ𝑖EXP, E
Σ𝑖
| | , E

Σ𝑖 }
for integer 𝑖 ≥ 1: (Γ ⊂ P

Σ 𝑗

| | /𝑝𝑜𝑙𝑦 ⇐⇒ Γ ⊂ Σ 𝑗/𝑝𝑜𝑙𝑦 ∩ Π 𝑗/𝑝𝑜𝑙𝑦) for integer 𝑗 ≥ 1.

Trevisan and Vadhan [68] constructed a PSPACE-complete language 𝐿𝑇𝑉 that was polynomially

random self-reducible. The language was collection of multivariate polynomials of polynomial

degree over a field of size 2
𝑛
, and thus the self-reducibility they get is non-adaptive. This proves the

corollary for PSPACE. For similar reasons it follow for ⊕P [30] and PPP = P#P [22, 23]. The result for
EXP follows from the fact that EXP ⊂ PH/𝑝𝑜𝑙𝑦 =⇒ EXP = PSPACE. For ZUEXP and UEXP it follows
from the fact that the ZUTIME and UTIME EWLs (Theorems 3.4 and 3.3) also work for general circuit

classes. For higher classes, except Σ𝑖EXP, it follows from the fact that they support multi-linear

extensions. For Σ𝑖EXP it follows because of EXPΣ𝑖| | ⊂ Σ𝑖EXP/𝑝𝑜𝑙𝑦 (attributed to Buhrman in [23]).

7.2 General High-end KLT

Before we give the general high-end KLT, we prove the following containment to increase the

expressiblility of our results.

Lemma 7.4. For integer 𝑖 ≥ 1: MAΣ𝑖∩Π𝑖 /𝑎 ⊆ AMΣ𝑖∩Π𝑖 /𝑎 = AMΣ𝑖−1/𝑎 = AM𝑖/𝑎
Proof. The first inclusion follows from the fact that MA ⊆ MAM = AM relativizes. The last equality

follows from the definitions.

Let 𝐿 be a language with AM protocol, where Arthur has access to some oracle 𝑂 ∈ Σ𝑖 ∩ Π𝑖

and 𝑎 amount of advice. We give an AM protocol for 𝐿, where Arthur has access to some oracle

𝑂 ′ ∈ Π𝑖−1 and same 𝑎 amount of advice (as in the original AM protocol). Along with the reply to

Arthur’s query, Merlin sends the answers to the queries Arthur would make to the oracle 𝑂 in

the original protocol. Merlin also sends the certificates corresponding to the first quantifiers of

some Σ𝑖 predicates for 𝑂 and 𝑂 . Due to these certificates, Arthur only needs an oracle 𝑂 ′
for any

Π𝑖−1-complete language, to verify Merlin’s reply. When required, Arthur uses the advice it was

using in the original protocol. �

We now give our general high-end KLT for PSPACE and some higher classes. We convert IP pro-

tocols for PSPACE languages into variety of Arthur-Merlin protocols. We use the general downward

collapse theorem (Corollary 7.3) and the generalized Arthur-Merlin protocols to improve/generalize

the previously known results. One can also show similar KLTs for the lower classes ⊕P, PPP, P#P,
using their special complete languages. But we only need the PSPACE or EXP KLTs for our results in
the future sections, so we stick to PSPACE and higher classes to keep the proofs simple.

Theorem 7.5. For integer 𝑖 ≥ 1 and Γ ∈ {PSPACE, ZUEXP, UEXP, EXP, EXPNP} :
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(1) Γ ⊂ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦 =⇒ Γ = MAΣ𝑖∩Π𝑖

(2) Γ ⊂ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦 =⇒ Γ = AM𝑖
(3) Γ ⊂ Δ𝑖 (𝑝𝑜𝑙𝑦) =⇒ Γ = MA𝑖+1
(4) Γ ⊂ PΣ𝑖 /𝑝𝑜𝑙𝑦 =⇒ Γ = MAΣ𝑖

Proof. We only prove the results for PSPACE, for all the other classes it follows: Γ ⊂ PH/𝑝𝑜𝑙𝑦 =⇒
Γ = PSPACE follows from [43] for EXP, from [15] for EXPNP, from ZUTIME and UTIME KLTs (Theorems

3.4 and 3.3) for ZUEXP and UEXP.
For any 𝐿 ∈ PSPACE, any honest prover 𝑃 for 𝐿 with an unique strategy,

𝐿𝑃 = {(𝑥,𝑦, 𝑏) | 𝑥 ∈ 𝐿 and (𝑦,𝑏) is a prefix of an accepting strategy/transcript of prover 𝑃}

is also in PSPACE. So PSPACE ⊂ Λ implies a Λ algorithm for 𝐿𝑃 as well. We use this algorithm to

design protocols for 𝐿.

Proof of (2): It follows from (1) and the Lemma 7.4.

Proof of (1): Here Λ = (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦. There are Σ𝑖 and Π𝑖 algorithms, A and A ′
respectively,

that accept complementary sets on any advice. Moreover, A accepts 𝐿𝑃 on any correct advice.

Including the advice into the input parameter, the modified language corresponding to A is a

Σ𝑖 ∩ Π𝑖 language. The verifier Arthur will have oracle access to this modified language.

Merlin sends the advice 𝑎𝑑𝑣 to Arthur. Arthur guesses its random bits 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚}. At
each iteration 𝑗 ∈ [1,𝑚], it creates two inputs for 𝐿𝑃 : (𝑥, 𝑟1𝑛1 . . . 𝑟 𝑗 , 0) and (𝑥, 𝑟1𝑛1 . . . 𝑟 𝑗 , 1), where
𝑛1, . . . , 𝑛 𝑗−1 are the results from the previous iteration. If the oracle returns complementary results,

then Arthur fixes 𝑛 𝑗 to be the last bit of the query that results in a positive answer, else it rejects (by

a standard padding argument we can make the length of all the queries equal, so that a single advice

from Merlin suffices). This way Arthur fills the transcript (and simultaneously checks whether the

strategy encoded by A/𝑎𝑑𝑣 is unique, where it matters). It finally accepts if the transcript is an

accepting one, else it rejects.

Completeness: If 𝑥 ∈ 𝐿, then Merlin can send the correct advice. The oracle then helps in

generating accepting transcripts on high fraction of the random bits, and thus Arthur accepts with

high probability.

Soundness: If 𝑥 ∉ 𝐿, and if Merlin sends an advice that makes the strategy unique (encoded by A
on that advice) on high fraction of random bits, then Arthur must reject with high probability (due

to the soundness of the original IP).
Proof of (3): Due to Corollary 7.3, here we only need to consider the case Λ = Σ𝑖/𝑝𝑜𝑙𝑦. There is

an Σ𝑖 algorithm A that accepts 𝐿𝑃 given the correct advice. Including the advice into the input

parameter, the modified language corresponding to A is an Σ𝑖 language. If we include the first
existential quantifier into the input parameter as well, then the modified language belongs to Π𝑖−1.
Let’s call this language B. The verifier Arthur will have oracle access to B.

Merlin sends the advice 𝑎𝑑𝑣 to two verifiers, Arthur and Henry (who are not allowed to commu-

nicate as per the definition of AM𝑖+1).
AM𝑖 = AMΠ𝑖−1 part: Arthur first guesses its random bits 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚}. Merlin then sends

the non-deterministic replies 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑚}. Merlin also sends, for all 𝑗 , positive certificates

(corresponding to the first existential quantifier) for inputs (𝑥, 𝑟1𝑛1 . . . 𝑟 𝑗 , 𝑛 𝑗 ) of A/𝑎𝑑𝑣 . Then for

all 𝑗 , Arthur uses its oracle B to check if A/𝑎𝑑𝑣 accepts (𝑥, 𝑟1𝑛1 . . . 𝑟 𝑗 , 𝑛 𝑗 ). Finally, Arthur checks
whether the transcript (𝑥, 𝑟1𝑛1 . . . 𝑟𝑚, 𝑛𝑚) is an accepting one.

Henry’s Π𝑖 part: Henry checks ¬∃(𝑥,𝑦) [A(𝑥,𝑦, 0)/𝑎𝑑𝑣 = A(𝑥,𝑦, 1)/𝑎𝑑𝑣 = 1], to confirm that

A/𝑎𝑑𝑣 encodes 𝐿𝑃 for some honest prover 𝑃 with an unique strategy (for the input length under

consideration).
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Completeness: If 𝑥 ∈ 𝐿, then Merlin can send the correct advice corresponding to 𝐿𝑃 . This advice

passes both, Arthur’s test (with high probability) and Henry’s test.

Soundness: If 𝑥 ∉ 𝐿, then either Henry’s test fails, or the unique strategy encoded by A/𝑎𝑑𝑣 is
rejected with high probability by Arthur (due to the soundness of the original IP).
Proof of (4): Here Λ = PΣ𝑖 /𝑝𝑜𝑙𝑦. There is a PΣ𝑖 algorithm A that accepts 𝐿𝑃 given the correct

advice. Including the advice into the input parameter, the modified language corresponding to A
is a PΣ𝑖 language. The verifier Arthur will have oracle access to this modified language. Now, the

roles of Merlin and Arthur, and the arguments of completeness and soundness of the protocol, are

similar to those given in the proof of (1). �

7.3 General fix-polynomial lower bounds
Santhanam [63] modified 𝐿𝑇𝑉 to give 𝐿𝑆 which satisfies the following lemma, which was a crucial

technical step in his celebrated MA lower-bound.

Lemma 7.6. There is a PSPACE-complete language 𝐿𝑆 and probabilistic polynomial-time oracle
Turing machines𝑀 and𝑀 ′ such that the following holds for any 𝑛-length input 𝑥 :
(1) 𝑀 and𝑀 ′ only query their oracle on strings of length 𝑛.
(2) If𝑀 (resp.𝑀 ′) is given 𝐿𝑆 as its oracle and 𝑥 ∈ 𝐿𝑆 (resp. 𝑥 ∉ 𝐿𝑆 ), then𝑀 (resp.𝑀 ′) accepts with

probability 1.
(3) If 𝑥 ∉ 𝐿𝑆 (resp. 𝑥 ∈ 𝐿𝑆 ), then irrespective of the oracle,𝑀 (resp.𝑀 ′) rejects with probability at

least 2/3.

The modified language 𝐿𝑆 retained the poly-na-RSR property of 𝐿𝑇𝑉 . We use this very fact,

combined with the general downward collapse theorem (Theorem 7.2), to yield fix-polynomial

lower bounds against non-adapative Σ𝑖 -oracle circuits.
Our proof of the lower bounds for general Arthur-Merlin protocols (with 1 bit of advice) against

fix-polynomial Λ circuits is split into two cases: (i) The easier case where PSPACE has poly-size

Λ circuits we use the general high-end KLT (Theorem 7.5). (ii) The difficult case where PSPACE
doesn’t have poly-size Λ circuits, we design protocols for a padded version of 𝐿𝑆 that doesn’t have

fix-polynomial Λ circuits. The protocols start with Merlin sending Λ circuits for 𝐿𝑆 .

For the case of non-adaptive Σ𝑖-oracle circuits, we use the padded version of 𝐿𝑆 that doesn’t

have fix-polynomial size non-adaptive Σ𝑖-oracle circuits. But to design the desired protocol, we

need to start with Merlin sending Σ𝑖 circuits instead. Here we use the following fact derived as an

result of our general downward collapse theorem (Theorem 7.2): there is a constant 𝑐 such that,

any SIZEΣ𝑖| | (𝑠 (𝑛)) circuit sequence for 𝐿
𝑆
has an equivalent Σ𝑖SIZE(𝑠 (𝑛)𝑐 ) circuit sequence.

We first prove an auxiliary lemma that we use for the second (difficult) case.

Lemma 7.7. For 𝑘 ≥ 1 and non-promise circuit class Λ, using 𝐿𝑆 from Lemma ?? we define:
𝐿𝑘Λ = {𝑥1𝑦 | 𝑥 ∈ 𝐿𝑆 ∧ ∃(𝑧 ∈ N) 𝑦 = 2

𝑧 ≥ |𝑥 | > 0, (2𝑦 + |𝑥 |)𝑘+1 ≥ 𝑐𝑘𝑡Λ (𝐿𝑆|𝑥 |) > (𝑦 + |𝑥 |)𝑘+1}.

If PSPACE doesn’t have poly-size Λ circuit sequence, then 𝐿𝑘Λ doesn’t have 𝑛𝑘 -size Λ circuit sequence.

Proof. For the sake of contradiction, let’s assume that there is a sequence of 𝑛𝑘 -size Λ circuits

{𝐶𝑛}𝑛∈N that decides 𝐿𝑘Λ. We modify this sequence to yield a sequence for 𝐿𝑆 (used in the definition

of 𝐿𝑘Λ). Any input length 𝑛 can be broken into unique 𝑛1 and 𝑦 = 2
𝑧
such that 𝑦 ≥ 𝑛1 and 𝑛1 +𝑦 = 𝑛.

If 𝑦 satisfies (2𝑦 + 𝑛1)𝑘+1 ≥ 𝑐𝑘𝑡Λ (𝐿𝑆𝑛1

) ≥ (𝑦 + 𝑛1)𝑘+1, then a circuit for the 𝑛𝑡ℎ-slice of 𝐿𝑘Λ can be

used to yield a circuit for the 𝑛𝑡ℎ
1
-slice of 𝐿𝑆 (by fixing the last 𝑦 input bits to 1). Moreover for any

𝑛1, there is a unique 𝑦 that satisfies (2𝑦 + 𝑛1)𝑘+1 ≥ 𝑐𝑘𝑡Λ (𝐿𝑆𝑛1

) ≥ (𝑦 + 𝑛1)𝑘+1 (since 𝑦 is a power

of 2). So for any input length 𝑛1, we get an 𝑛𝑘 -size circuit for 𝐿𝑆 . This leads to the contradiction
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𝑛𝑘 ≥ 𝑐𝑘𝑡Λ (𝐿𝑆𝑛1

) > (𝑦 +𝑛1)𝑘+1 = 𝑛𝑘+1 infinitely often. The first inequality follows from the definition

of the measure 𝑐𝑘𝑡Λ, and second inequality follows from the definition of 𝐿𝑘Λ. The assumption that

PSPACE doesn’t have poly-size Λ circuit sequence is essential for this contradiction: for each 𝑘 ≥ 1,

𝑐𝑘𝑡Λ (𝐿𝑆𝑛1

) > (2𝑛1)𝑘+1 holds infinitely often, and thus infinitely many (𝑦, 𝑛1) valid pairs exists that

satisfy 𝑦 ≥ 𝑛1. �

For the special case of promise SVΣ𝑖 circuits we prove a separate auxiliary lemma. The proof of

this lemma: (i) either deals with each of the underlying promise algorithms A separately using the

measure 𝑐𝑘𝑡prSV𝑖 (A) ; (ii) or combine them using the stronger measure 𝑐𝑘𝑡prSV𝑖 (see Section 2).

Lemma 7.8. Let A be a prSV𝑖 algorithm, then for 𝑘 ≥ 1, using 𝐿𝑆 from Lemma ?? we define:
(1) 𝐿𝑘A = {𝑥1𝑦 | 𝑥 ∈ 𝐿𝑆∧∃(𝑧 ∈ N) 𝑦 = 2

𝑧 ≥ |𝑥 | > 0, (2𝑦+|𝑥 |)𝑘+1 ≥ 𝑐𝑘𝑡SV𝑖 (A) (𝐿𝑆|𝑥 |) > (𝑦+|𝑥 |)𝑘+1}
(2) 𝐿𝑘prSV𝑖

= {𝑥1𝑦 | 𝑥 ∈ 𝐿𝑆∧∃(𝑧 ∈ N) 𝑦 = 2
𝑧 ≥ |𝑥 | > 0, (2𝑦+|𝑥 |)𝑘+1 ≥ 𝑐𝑘𝑡prSV𝑖 (𝐿𝑆|𝑥 |) > (𝑦+|𝑥 |)𝑘+1}

If PSPACE ⊄ (Σ𝑖∩Π𝑖 )/𝑝𝑜𝑙𝑦, then for all𝑘 ≥ 1, 𝐿𝑘A ∉ prSVΣA
𝑖
SIZE(𝑛𝑘 ) and 𝐿𝑘prSV𝑖 ∉ prSVΣ𝑖SIZE(𝑛𝑘 ).

Proof. Proof of (1): It is the same as the proof of the Lemma 7.7: any 𝑛𝑘 -size SVΣ𝑖 circuit sequence
that is produced by A, and that decides 𝐿𝑘A , can be modified to give a circuit sequence for 𝐿𝑆 that

violates the bounds in the definition of 𝐿𝑘A .

Proof of (2): This proof too is same except few changes: for the sake of contradiction, let’s assume

that 𝐿𝑘prSV𝑖
∈ prSVΣ𝑖 (𝑛𝑘 ). That means, there is a prSV𝑖 algorithm A, that produces an 𝑛𝑘 -size SVΣ𝑖

circuit sequence, that decides 𝐿𝑘prSV𝑖
. We modify this sequence as in the proof of Lemma 7.7 to give

an SVΣ𝑖 circuit sequence, that decides 𝐿
𝑆
. For any input length 𝑛1, the size of the circuit from this

sequence will be (𝑛1 + 𝑦)𝑘 for the unique 𝑦 that is paired with 𝑛1. This leads to the contradiction

(𝑛1 + 𝑦)𝑘 ≥ 𝑐𝑘𝑡prSV𝑖 (A) (𝐿𝑆𝑛1

) ≥ 𝑐𝑘𝑡prSV𝑖 (𝐿𝑆𝑛1

) > (𝑛1 + 𝑦)𝑘+1 infinitely often. The first inequality

follows from the fact that the circuit sequence is produced byA. The second inequality uses the fact

that the stronger measure 𝑐𝑘𝑡prSV𝑖 , beats the measure 𝑐𝑘𝑡prSV𝑖 (A) for any prSV𝑖 algorithm A, after

a certain input length (because A’s description is only of constant length, i.e. less than log𝑛1). �

Now we prove one of the two main results of this section. We prove a variety of lower bounds

for a collection of special Arthur-Merlin protocols that use 1 bit of advice (except one case, where

we need extra log𝑛 amount of advice).

Theorem 7.9. For integer 𝑖 ≥ 1:
(1) ∀𝑘 MAΣ𝑖∩Π𝑖 /1 ⊄ w-prSVΣ𝑖SIZE(𝑛𝑘 )
(2) ∀𝑘 AM𝑖/1 + log𝑛 ⊄ prSVΣ𝑖SIZE(𝑛𝑘 )
(3) ∀𝑘 MA𝑖+1/1 ⊄ Δ𝑖 (𝑛𝑘 )
(4) ∀𝑘 MAΣ𝑖 /1 ⊄ SIZEΣ𝑖 (𝑛𝑘 )

Proof. General idea: If PSPACE has poly-size Λ circuits, then PSPACE has the desired protocol

(Theorem 7.5), and we get the desired fix-polynomial circuit lower-bounds against these protocols

(without any advice) because in PSPACE we can diagonalize against any fix-polynomial size general

circuit class.

If PSPACE doesn’t have poly-size Λ circuits. From the Lemmas 7.7 and 7.8 we get languages with

the desired lower bounds. We design the desired protocols for these languages. Arthur rejects

everything if the first advice bit is 0. The first advice bit is 1 exactly for the input lengths 𝑛 that

split into valid (𝑛1, 𝑦) pairs (validity is based on the measure used in the definition of the language:

see the proofs of the lemmas). Arthur checks if the input is of the format 𝑥1𝑦 , and then simulates

the machine𝑀 from the Lemma 7.6 to check if 𝑥 ∈ 𝐿𝑆 or not. It uses the circuit 𝐶 , sent by Merlin

(or computed from Merlin’s reply), as an oracle to𝑀 .
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Proof of (1): To show MAΣ𝑖∩Π𝑖 /1 ⊄ w-prSVΣ𝑖SIZE(𝑛𝑘 ), for each prSV𝑖 algorithm A, we need to

find one language in MAΣ𝑖∩Π𝑖 /1, that is not in prSVΣA
𝑖
SIZE(𝑛𝑘 ). From Lemma 7.8 we have 𝐿𝑘A that

is not in prSVΣA
𝑖
SIZE(𝑛𝑘 ). We give an MAΣ𝑖∩Π𝑖 /1 protocol for 𝐿𝑘A .

For 𝑛-length input 𝑥1𝑦 with |𝑥 | = 𝑛1, Merlin sends an (2𝑦+𝑛1)𝑘 -length input 𝑧 forA. Arthur then

generates its random bits and simulates𝑀 using the SVΣ𝑖 circuit A(𝑧) as the oracle. For any oracle

query𝑎 that𝑀 makes, Arthur uses the Σ𝑖∩Π𝑖 oracle𝐿A defined by:𝐿A = {(𝑧, 𝑎) | ∃𝑦1 𝐹𝑙𝑎𝑔A(𝑧) (𝑎,𝑦1)
∧𝑉𝑎𝑙𝑢𝑒A(𝑧) (𝑎,𝑦1)} and 𝐿A = {(𝑧, 𝑎) | ∃𝑦1 𝐹𝑙𝑎𝑔A(𝑧) (𝑎,𝑦1) ∧ ¬𝑉𝑎𝑙𝑢𝑒A(𝑧) (𝑎,𝑦1)}, where 𝐹𝑙𝑎𝑔A(𝑧)
and 𝑉𝑎𝑙𝑢𝑒A(𝑧) both are Π𝑖−1 predicates (see the definition of SVΣ𝑖 circuits from Section 2).

Completeness follows easily. If 𝑥 ∈ 𝐿𝑆 , Merlin can send the input on which the algorithm A
outputs the correct SVΣ𝑖 circuit for 𝐿

𝑆
. If 𝑥 ∉ 𝐿𝑆 , soundness follows from the fact that the algorithm

A always generates SVΣ𝑖 circuits, and thus the oracle used by𝑀 is consistent (to some language),

and thus𝑀 rejects with probability at least 2/3.

Proof of (2): Its same as (1) except few changes. We give an MAMΠ𝑖−1/1 + log𝑛 protocol for the

𝐿𝑘prSV𝑖
language. The extra log𝑛 bits of advice encodes one of the most efficient prSV𝑖 algorithms for

that input length, i.e. an algorithm A such that 𝑐𝑘𝑡SV𝑖 (A) (𝐿𝑆|𝑥 |) = 𝑐𝑘𝑡prSV𝑖 (𝐿𝑆|𝑥 |). After Merlin sends

his reply 𝑧, Arthur guesses its random bits 𝑅 to simulate𝑀 . Instead of using an (Σ𝑖 ∩ Π𝑖 ) oracle,
it sends 𝑅 to Merlin. For each oracle query 𝑎 that 𝑀 would make on 𝑅: Merlin replies with the

certificate𝑦1 that, (i) satisfies (𝐹𝑙𝑎𝑔A(𝑧) (𝑎,𝑦1)∧𝑉𝑎𝑙𝑢𝑒A(𝑧) (𝑎,𝑦1)) for a positive query 𝑎, (ii) satisfies
(𝐹𝑙𝑎𝑔A(𝑧) (𝑎,𝑦1) ∧ ¬𝑉𝑎𝑙𝑢𝑒A(𝑧) (𝑎,𝑦1)) for a negative query 𝑎. Arthur uses advice to compute A(𝑧),
and then reduces 𝐹𝑙𝑎𝑔A(𝑧) and 𝑉𝑎𝑙𝑢𝑒A(𝑧) to some Π𝑖−1-complete language that it is using as the

oracle. Completeness and soundness follow because of similar reasons given in the proof of (1).

Proof of (3): We prove the result for non-adaptive Σ𝑖 -oracle circuits. Similar arguments yield the

results for Σ𝑖 , Π𝑖 and SVΣ𝑖 circuit classes.
First we use the Theorem 7.2 to get the implication: ∃𝑑 𝐿𝑆 ∈ SIZEΣ𝑖| | SIZE(𝑠 (𝑛)) =⇒ 𝐿𝑆 ∈

SVΣ𝑖SIZE(𝑠 (𝑛)𝑑 ). Now Merlin sends the SVΣ𝑖 circuit instead of the non-adaptive Σ𝑖 -oracle circuit
(which is also of size polynomial in the input, no matter what 𝑠 (𝑛) is).

Now the “AM𝑖 = AMΠ𝑖−1
” part, “Henry’s Π𝑖” part, completeness, and soundness are similar to that

given in the proof of the point (2) of Theorem 7.5. Merlin sends a Σ𝑖 circuit 𝐶 to Arthur and Henry.

Henry verifiers if𝐶 is consistent with some language, and Arthur interacts with Merlin to simulate

machine𝑀 with oracle 𝐶 (hoping that 𝐶 encodes 𝐿𝑆 ). Due to the interaction with Merlin, Arthur

only needs an Π𝑖−1 oracle to compute 𝐶 .

Proof of (4): Here, Merlin sends the Σ𝑖-oracle circuit 𝐶 . Arthur generates its random bits, and

simulates𝑀 as in the above proofs. Whenever𝑀 makes an oracle query, Arthur uses 𝐶 , and for

computing the output values of the Σ𝑖SAT oracle gates of 𝐶 , it makes oracle queries to the Σ𝑖SAT
oracle. Rest of the proof is same as the above proofs. �

Including the advice into the input, and making the inputs with the correct advice as the promise

inputs, we get the following theorem. Also note that, for any class Γ, ip-(Γ ∩ co-Γ) is a special case
of the class pr(Γ ∩ co-Γ), which is a special case of prΓ ∩ prco-Γ.

Theorem 7.10. For integer 𝑖 ≥ 1 and constant 𝑘 ≥ 1:
(1) ip-(MAΣ𝑖∩Π𝑖 ∩ Co-MAΣ𝑖∩Π𝑖 ) ⊄ w-prSVΣ𝑖SIZE(𝑛𝑘 )
(2) ip-(AM𝑖 ∩ Co-AM𝑖 ) ⊄ prSVΣ𝑖SIZE(𝑛𝑘 )
(3) ip-(MA𝑖+1 ∩ Co-MA𝑖+1) ⊄ Δ𝑖 (𝑛𝑘 )
(4) ip-(MAΣ𝑖 ∩ Co-MAΣ𝑖 ) ⊄ SIZEΣ𝑖 (𝑛𝑘 )

Proof. Here we just give the proof of (2). All the other proofs follow from similar arguments.

In the proof of the Theorem 7.9, if we use the machine 𝑀 ′
from the Lemma 7.6, we can get a
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Co-AM𝑖/1 + log𝑛 protocol for the language 𝐿𝑘prSV𝑖
that uses the same advice that the AM𝑖/1 + log𝑛

protocol used. This protocol accepts if the input length 𝑛 doesn’t split into a valid 𝑛1 and 𝑦 pair

(using the first advice bit), and if the input is not in the 𝑥1𝑦 format. It both these tests are passed

by the input, then it accepts if𝑀 ′
accepts 𝑥 (i.e. 𝑥 ∉ 𝐿𝑆 ). Only change is that Arthur simulates𝑀 ′

instead of𝑀 (using the same advice). Let’s denote these AM𝑖/1+ log𝑛 and Co-AM𝑖/1+ log𝑛 protocols

for 𝐿𝑘prSV𝑖
, by A and A respectively.

Now, define a newmodified language𝑇𝑘
prSV𝑖

= {𝑔1ℎ | A accepts𝑔 onℎ𝑡ℎ advice}. Any input length
𝑛 + 𝑗 in the range [𝑛 + 1, 3𝑛] is dedicated to the simulation ofA on the 𝑗𝑡ℎ advice (lexicographically

𝑗𝑡ℎ among all the 1 + log𝑛 bits long advice strings). Now we create a promise problem 𝑝𝑟𝑇𝑘
using

the language𝑇𝑘
prSV𝑖

, whose promise input lengths are the ones, that correspond to the correct advice

for A and A ′
.

The protocols A and A ′
decide𝑇𝑘

prSV𝑖
and𝑇𝑘

prSV𝑖
correctly on the promise inputs of 𝑝𝑟𝑇𝑘

. A and

A ′
also satisfy the semantic promises on these input lengths. Thus 𝑝𝑟𝑇𝑘 ⊂ ip-(AM𝑖 ∩ Co-AM𝑖 ), and

from the same arguments as in the proof of the Lemma 7.8, 𝑝𝑟𝑇𝑘 ∉ prSVΣ𝑖SIZE(𝑛𝑘−1). �

7.4 General super-polynomial lower bounds
In this section we show super-polynomial lower bounds against the exponential version of the

same protocols. We also improve these lower bounds in two ways: (i) extending them to sub-half-

exponential circuit sizes; (ii) extending them to super-half-exponential versions of the protocols.

Also, for the special case of MAΣ𝑖∩Π𝑖
, unlike the case of fix-polynomial lower bounds, we get strong

lower bounds against prSVΣ𝑖 circuits. That is, only one language in MAEΣ𝑖∩Π𝑖
is enough to beat the

circuits produced by each of the prSV𝑖 algorithms (infinitely often).

Theorem 7.11. [lower bounds against poly-size] For integer 𝑖 ≥ 1:
(1) MAEΣ𝑖∩Π𝑖 ⊄ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦
(2) AM𝑖E ⊄ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦
(3) MA𝑖+1E ⊄ Δ𝑖 (𝑝𝑜𝑙𝑦)
(4) MAEΣ𝑖 ⊄ PΣ𝑖 /𝑝𝑜𝑙𝑦

Proof. Proof of (1): We prove it by contradiction. Suppose MAEΣ𝑖∩Π𝑖 ⊂ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦, then
by Theorem 7.5 we get EXP = MAΣ𝑖∩Π𝑖

. By a simple padding argument we get DTIME(22𝑂 (𝑛) ) is
contained in MAEΣ𝑖∩Π𝑖

, and since in DTIME(22𝑂 (𝑛) ) we can diagonalize against any poly-size general

circuit class, we get the desired lower bound.

Proof of (2): It follows from (1) and a padded version of the Lemma 7.4.

Proofs of (3) & (4): They are analogous to the proof of (1). �

Theorem 7.12. [lower bounds against sub-half-exponential size] Let 𝑓 : N→ N be a function that
satisfies 𝑓 (𝑓 (𝑛)𝑂 (1) ) ∈ 2

𝑂 (𝑛) then for integer 𝑖 ≥ 1 :

(1) MAEΣ𝑖∩Π𝑖 ⊄ prSVSIZE(𝑓 (𝑛))
(2) AM𝑖E ⊄ prSVSIZE(𝑓 (𝑛))
(3) MA𝑖+1E ⊄ Δ𝑖 (𝑓 (𝑛))
(4) MAEΣ𝑖 ⊄ SIZEΣ𝑖 (𝑓 (𝑛))

Proof. Proof of (1): We prove it by contradiction. Suppose MAEΣ𝑖∩Π𝑖 ⊂ prSVΣ𝑖SIZE(𝑓 (𝑛)), then
DSPACE(𝑛) ⊂ prSVΣ𝑖SIZE(𝑓 (𝑛)) and by the same arguments as in the proof of Theorem 7.5 we get

∃𝑘 DSPACE(𝑛) ⊂ MAΣ𝑖∩Π𝑖TIME(𝑓 (𝑛𝑘 )𝑘 ). We can diagonalize against prSVΣ𝑖SIZE(𝑓 (𝑛)) circuits in
the class DSPACE(𝑓 (𝑛)2), which is a subset of MAΣ∩Π𝑖TIME(𝑓 (𝑓 (𝑛)2𝑘 )𝑘 ) ⊂ MAEΣ𝑖∩Π𝑖

due to padding.

Proof of (2): It follows from (1) and a padded version of the Lemma 7.4.
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Proofs of (3) & (4): They are analogous to the proof of (1). �

Theorem 7.13. [lower bounds for super-half-exponential time] Let 𝑓 : N→ N be a function that
satisfies 𝑓 (𝑓 (𝑛)𝜔 (1) ) ∈ 2

Ω (𝑛) , then for integer 𝑖 ≥ 1 :

(1) MAΣ𝑖∩Π𝑖TIME(𝑓 (𝑛𝜔 (1) )𝑂 (1) ) ⊄ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦
(2) AM𝑖TIME(𝑓 (𝑛𝜔 (1) )𝑂 (1) ) ⊄ (Σ𝑖 ∩ Π𝑖 )/𝑝𝑜𝑙𝑦
(3) MA𝑖+1TIME(𝑓 (𝑛𝜔 (1) )𝑂 (1) ) ⊄ Δ𝑖 (𝑝𝑜𝑙𝑦)
(4) MAΣ𝑖TIME(𝑓 (𝑛𝜔 (1) )𝑂 (1) ) ⊄ PΣ𝑖 /𝑝𝑜𝑙𝑦

Proof. Proof of (1):We prove it by contradiction. Suppose MATIMEΣ𝑖∩Π𝑖 (𝑓 (𝑛𝜔 (1) )) can be decided

by prSVΣ𝑖SIZE(𝑝𝑜𝑙𝑦 (𝑛)) circuits, then by padding we get MAΣ𝑖∩Π𝑖E ⊂ prSVΣ𝑖SIZE(𝑝𝑜𝑙𝑦 (𝑓 (𝑛))).
Thus ∃𝑘 DSPACE(𝑛) ⊂ prSVΣ𝑖SIZE(𝑓 (𝑛)𝑘 ), and by the same arguments as in the proof of Theorem

7.5 we get ∃𝑘 DSPACE(𝑛) ⊂ MAΣ𝑖∩Π𝑖TIME(𝑓 (𝑛𝑘 )𝑘 ). Padding gives us that DSPACE(𝑛𝜔 (1) ) is contained
in MAΣ𝑖∩Π𝑖TIME(𝑓 (𝑛𝜔 (1) )𝑘 ), but DSPACE(𝑛𝜔 (1) ) ⊄ prSVΣ𝑖SIZE(𝑝𝑜𝑙𝑦 (𝑛)) due to diagonalization.

Proof of (2): It follows from (1) and a padded version of the Lemma 7.4.

Proofs of (3) & (4): They are analogous to the proof of (1). �

8 DERANDOMIZATION VS LOWER BOUNDS
In this section we extend the lower bounds vs derandomization connection to: (i) UEXP and ZUEXP
(Section 8.1); and (ii) general circuit classes (Section 8.2). Combining the extension to general circuit

classes, with the fix-polynomial lower bounds of Section 7, we show how lower bounds translate

to sub-exponential versions of the corresponding exponential time classes (Section 8.3)

8.1 Variety of derandomization from variety of lower bounds
In this section we extend the “lower-bounds to derandomization” frame-work of [75] to get unified

results for: (i) the three one-sided error classes: NEXP, REXP and UEXP; and their zero-error versions:

ZNEXP, ZREXP, and ZUEXP. We use the “hardness to randomness” connection from Theorem 2.4.

As a first step towards unification, we generalize the connection between “lower bounds for ZRE
seeds (resp. RE hitting-sets for witnesses) and P-R useful properties (resp. P/log𝑛-R useful properties)”
[75], to ZNE (resp. NE) and ZUE (resp. UE). The results for ZNE (resp. NE) and ZUE (resp. UE) follow
from the results in the Table 1.

Lemma 8.1. For C = N, R, U:
(1) ZCE ⊄𝑠 C ⇐⇒ P-C ⊄𝑡𝑡 C
(2) CE ⊄ℎ𝑤 C =⇒ P/log𝑛-C ⊄𝑡𝑡 C
The original connection was used to show that REXP ⊄ SIZE(𝑝𝑜𝑙𝑦) or REXP ≠ EXP implies

BPP ⊂ ∩𝜖>0 io-ZPTIME(2𝑛
𝜖 )/𝑛𝜖 . The lower bounds implied the existence of useful properties (or

hard functions), which were used to derandomize BPP. Using Lemma 8.1, we get a variety of

properties from a variety of lower bounds, and thus get a variety of derandomization results.

Theorem 8.2. For C = N, R, U:
(1) ZCEXP ≠ EXP =⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛

𝜖 )
(2) ZCEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛

𝜖 )
(3) ZCEXP ≠ MA =⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛

𝜖 )
(4) ZCEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-ZCTIME(2𝑛

𝜖 )
(5) CEXP ≠ EXP =⇒ BPP ∩𝜖>0 ⊂ io-ZCTIME(2𝑛𝜖 )/𝑛𝜖
(6) CEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛

𝜖 )/𝑛𝜖
(7) CEXP ≠ MA =⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛

𝜖 )/𝑛𝜖
(8) CEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-ZCTIME(2𝑛

𝜖 )/𝑛𝜖
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Proof. Proof of (1): Let’s assume that ZCEXP ≠ EXP. Then ZCE can’t have seeds in SIZE(𝑝𝑜𝑙𝑦),
because brute-forcing through the seeds will prove ZCEXP = EXP. Thus, there exists a P-C property

P useful against SIZE(𝑝𝑜𝑙𝑦) (from the Lemma 8.1). For each 𝑐 , let 𝑆𝑐 be the infinite set of input

lengths where P only accept strings 𝑠𝑡𝑟 satisfying 𝑐𝑘𝑡 (𝑠𝑡𝑟 ) ≥ 𝑛𝑐 . These strings are truth-tables of

hard functions, and can be computed in CE using the constructivity of P.

For 𝑘, 𝜖 > 0, 𝜖 > 𝜖 ′/2 and 𝐿 ∈ BPTIME(𝑛𝑘/2), set 𝑐 = 𝑔𝑘/𝜖 ′ (where 𝑔 is the constant from Theorem

2.4). We give a ZCTIME(2𝑛𝜖 ) algorithm for 𝐿 that works for any input length 𝑛 with 2
𝑛 ∈ 𝑆𝑐 . For

𝑛-length input 𝑥 of 𝐿, let 𝐶𝑥 be the SIZE(𝑛𝑘 ) circuit capturing the BP computation of 𝐿.

For C = N : Non-deterministically guess a string 𝑌 of length𝑚 = 2
𝑛𝜖

′
. Output ‘?’ if P(𝑌 ) = 0.

Once we have access to 𝑌 with P(𝑌 ) = 1 (or 𝑐𝑘𝑡 (𝑌 ) ≥ 𝑛𝑘 ), we can construct PRG𝐺 : 𝑛𝜖 → 𝑛𝑘 from

𝑌 (using the Theorem 2.4) that is computable in E. We brute-force through all the 𝑛𝜖
′
-length seeds,

and on each of the output strings of length 𝑛𝑘 , compute the circuit 𝐶𝑥 to calculate its acceptance

probability in time 2
𝑛𝜖

(within ±1/𝑛𝑘 error). Output 1 if this value is 1/2 or more, else output 0.

For C = U : The same process as above works, because P(𝑌 ) = 1 holds for unique 𝑌 .

For C = R : Instead of one, non-deterministically guess a collection of strings {𝑌1, . . . , 𝑌𝑐 } for
some constant 𝑐 . Output ‘?’ if ∀𝑖 P(𝑌𝑖 ) = 0. Else proceed with any 𝑌𝑖 with P(𝑌𝑖 ) = 1 in the same

manner as above. For large enough 𝑐 , this is a ZRTIME algorithm: as P is large, with high probability

we find 𝑌𝑖 satisfying P(𝑌𝑖 ) = 1.

Proof of (2):We prove the contrapositive. Assume that ∃𝜖 > 0 such that BPP ⊄ io-ZCTIME(2𝑛𝜖 ).
This gives us EXP ⊂ SIZE(𝑝𝑜𝑙𝑦) [9, 55, 56], and ZCEXP = EXP from (1). Thus, ZCEXP ⊂ SIZE(𝑝𝑜𝑙𝑦).

Proof of (3): Using (1), (2) and EXP KLT we get a series of implications that conclude the proof.

ZCEXP ≠ MA =⇒ ZCEXP ≠ EXP or EXP ≠ MA

=⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛
𝜖 ) or EXP ⊄ SIZE(𝑝𝑜𝑙𝑦)

=⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛
𝜖 ) or ZCEXP ⊄ SIZE(𝑝𝑜𝑙𝑦)

=⇒ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛
𝜖 )

Proof of (4): Its the same as above, except EXP ≠ MA is replaced with EXP ≠ BPP and the Equation

(1) is used.

Proof of (5): It’s analogous to the proof of (1), except that the properties we get are P/log𝑛 and not

P. The log𝑛-bit advice for this property is precisely the 𝑛𝜖 -bit advice for the ZCTIME(2𝑛𝜖 ) algorithm
we get.

Proofs of (6), (7) & (8): They are analogous to the proofs of (2), (3) and (4). The advice from the

proof of (5) travels to them as well. �

In [75] they got: ∃𝑐 ≥ 1 RP ⊆ RE∩BPP ⊂ ∩𝜖>0 io-ZPTIME(2𝑛
𝜖 )/𝑛𝑐 . We get the following corollary

that is non-trivial, but not equally impressive.

Corollary 8.3. For C = N, R, U : ∃𝑐 ≥ 1 CE ∩ BPP ⊂ ∩𝜖>0 io-ZCTIME(2𝑛
𝜖 )/𝑛𝑐

8.2 Lower bounds against general circuit classes vs derandomization of higher
Arthur-Merlin classes

In this section we extend the “lower bounds vs derandomization” framework of [7] to get results

for all general circuit classes. We also extend the tighter connection of [18] to all general circuit

classes. We use our general high-end KLT (Theorem 7.5) in all these extensions. Summary of all

the results from this section can be found in the Table 2. Each row corresponds to an equivalence

between lower bounds and derandomization of randomized classes. The derandomization is: (i) of

the classes that have a checkmark in their column; (ii) works in ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛
𝜖 ) (and uses
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sub-polynomial advice if the checkmark has a super-script 𝑛𝜖 ). The lower bounds are: (i) for the

class(es) in the first column; (ii) against the fix-polynomial size of the circuit class (set of classes)

that has a checkmark in its column (for columns 4-6 the fix-polynomial lower bounds are also

equivalent to super-polynomial lower bounds); (iii) the star in the first row indicates that the lower

bound is only against the non-adaptive Σ𝑖 -oracle circuits (and not against Σ𝑖 / Π𝑖 / SVΣ𝑖 circuits).

Table 2. Derandomization vs Lower Bounds

Complexity Δ𝑖 (𝑝𝑜𝑙𝑦) PΣ𝑖 /𝑝𝑜𝑙𝑦 (Σ𝑖+1 ∩ Π𝑖+1)/𝑝𝑜𝑙𝑦 AM𝑖 BPPΣ𝑖 BPPΣ𝑖+1∩Π𝑖+1

Class / MA𝑖+1 / MAΣ𝑖 / MAΣ𝑖+1∩Π𝑖+1

ip-(Σ𝑖+1E ∩ Π𝑖+1E) X★ X𝑖𝑜

ip-(Σ𝑖+1E ∩ Π𝑖+1E) X X𝑖𝑜

ip-(Σ𝑖+1E ∩ Π𝑖+1E) X X𝑖𝑜

Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | X X𝑛𝜖

𝑖𝑜

Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | X X𝑛𝜖

𝑖𝑜

Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | X X𝑛𝜖

𝑖𝑜

EΣ𝑖+1 ?1 ?2 ?3 ?1 ?2 ?3

Note that, in the rows 1-3 one can use similar arguments as give in the Section 5 to replace the

class ip-(Σ𝑖+1E∩Π𝑖+1E) with (Σ𝑖+1E∩Π𝑖+1E)/𝑂 (1), and the ‘derandomization without advice’ with

‘derandomization with 𝑂 (1) advice’.
Recall that, CAPP (circuit approximation probability problem) is the problem where the input is

an 𝑛-input 𝑠 (𝑛)-size circuit 𝐶 , and the output is the fraction of the 2
𝑛
inputs that 𝐶 accepts (within

±1/𝑠 error). 𝑠 (𝑛) is 𝑝𝑜𝑙𝑦 (𝑛) by default, and we measure the complexity of a CAPP problem in terms

of the input length of the input circuit, i.e., in terms of 𝑛 and not 𝑠 (𝑛). For 𝑠 (𝑛) = 𝑝𝑜𝑙𝑦 (𝑛), these
problems turn into classes of problems: one problem for each polynomial. We abuse the notation

and treat these classes as single problems.

We use CAPPΣ𝑖 , CAPPΠ𝑖
, CAPPΣ𝑖∩Π𝑖

, CAPPΣ𝑖 and CAPPΣ𝑖| | to denote the CAPP problem for Σ𝑖 , Π𝑖 ,

(Σ𝑖 ∩ Π𝑖 )-oracle, Σ𝑖SAT-oracle, and non-adaptive Σ𝑖SAT-oracle circuits, respectively. Note that,

CAPPΣ𝑖∩Π𝑖
is the class of all CAPP problems for 𝐴-oracle circuits, for all 𝐴 ∈ Σ𝑖 ∩ Π𝑖 . A non-

deterministic algorithm for CAPP, on any non-deterministic branch, either outputs the correct value

(within proper range, on at least one branch), or outputs ‘?’ / nothing.

Faster CAPP algorithms are known to be equivalent to the derandomization of the associated

randomized classes. We also use them as an intermediate step in proving our equivalences.

First we prove the results from the row 4 of Table 2. We then extend that to rows 6 and 5. Finally

we prove the results from the rows 1-3.

Theorem 8.4. [Row 4 of Table 2] The following are equivalent for integer 𝑖 ≥ 0:
(1) prAM𝑖 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛

𝜖 )/𝑛𝜖
(2) prMA𝑖+1 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛

𝜖 )/𝑛𝜖
(3) (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ Δ𝑖 (𝑝𝑜𝑙𝑦)
(4) ∀𝑘 ≥ 1 (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ Δ𝑖 (𝑛𝑘 )
(5) CAPPΣ𝑖 ∈ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛

𝜖 )/𝑛𝜖
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Proof. (1) =⇒ (2) Let Π = (Π𝑌 ,Π𝑁 ) be a promise problem in prMA𝑖+1. Let Ψ = (Ψ𝑌 ,Ψ𝑁 ) be
the corresponding prAM𝑖 problem, and Γ be the corresponding Π𝑖 verifier. Let 𝑐 be a constant such

that:

𝑥 ∈ Π𝑌 =⇒ ∃(𝑦 ∈ {0, 1}𝑛𝑐 ) [(𝑥,𝑦) ∈ Ψ𝑌 ∧ (𝑥,𝑦) ∈ Γ]
𝑥 ∈ Π𝑁 =⇒ ∀(𝑦 ∈ {0, 1}𝑛𝑐 ) [(𝑥,𝑦) ∈ Ψ𝑁 ∨ (𝑥,𝑦) ∉ Γ]

Fix some 𝜖 > 0. We give a Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 algorithm A that decides Π on infinitely many

input lengths. A first non-deterministically guesses an 𝑛𝑐-length string 𝑦, then simulates some

Π𝑖-algorithm for Γ on the input (𝑥,𝑦). It rejects if the Π𝑖-algorithm rejects. Else, it simulates a

Σ𝑖+1TIME(2𝑛
𝜖/𝑐 )/𝑛𝜖/𝑐 algorithmA ′

for Ψ on the input (𝑥,𝑦) that is correct on infinitely many input

lengths (which exists due to our assumption). It rejects if A ′
rejects, else it accepts. The quantifiers

of the Π𝑖 -algorithm and the algorithm A ′
can be easily merged to give the desired algorithm.

(2) =⇒ (3, 4) First note that all the assumptions in (3) are equivalent because of the general

downward collapse theorem (Corollary 7.3) and the fact that EΣ𝑖+1| | ⊂ Σ𝑖+1E/𝑂 (𝑛), where the advice
encodes the number of positive Σ𝑖 oracle queries for all the inputs of that length. The assumptions

in (3) imply assumptions in (4). The reverse is true because EΣ𝑖+1| | /𝑂 (𝑛) = Σ𝑖+1E/𝑂 (𝑛), and Σ𝑖+1E

has complete problems under linear-time reductions.

Now we show that the assumptions prMA𝑖+1 ⊂ io-Σ𝑖+1E/𝑛 and Σ𝑖+1E/𝑛 ⊂ Σ𝑖SIZE(𝑛𝑘 ) (for some

constant 𝑘) lead to a contradiction. The latter assumption implies EXP ⊂ Σ𝑖/𝑝𝑜𝑙𝑦, which in turn

implies EXP = MA𝑖+1 by the general KLT (Theorem 7.5). Now the former assumption implies EXP ⊂
io-Σ𝑖SIZE(𝑛𝑘 ). This is a contradiction because in EXPwe can diagonalize against any fix-polynomial

size general circuit class.

(3) =⇒ (5) Let 𝐶 be an input to CAPPΣ𝑖 , i.e. a Σ𝑖 circuit of size 𝑛
𝑑
, for some constant 𝑑 . Fix an

𝜖 > 0 and 𝜖 ′ < 𝜖/2. We give a Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 algorithm that correctly approximates the fraction

of inputs that 𝐶 accepts (within ±1/𝑛𝑑 error). Our algorithm works for infinitely many values of 𝑛.

We start with the hardness assumption EΣ𝑖+1| | ⊄ Σ𝑖/𝑝𝑜𝑙𝑦. This assumption gives us a language

𝐿 ∈ EΣ𝑖+1| | that doesn’t have SIZEΣ𝑖| | (𝑛
𝑔𝑑/𝜖′) (where 𝑔 is the constant from Theorem 2.4) circuits for

infinitely many lengths 𝑛. Using Theorem 2.4 we first construct a PRG 𝐺 : 𝑛𝜖
′ → 𝑛𝑑 that fools

SIZEΣ𝑖| | (𝑛
𝑑 ) circuits (and thus Σ𝑖SIZE(𝑛𝑑 ) circuits) for infinitely many 𝑛. Then apply this PRG 𝐺 to

solve CAPP for 𝐶: by brute-forcing through 𝐺 ’s seeds.

Carefully brute-forcing through seeds: 𝐶 ∈ CAPPΣ𝑖 if and only if we are able to guess 2
𝑛𝜖

′
/2 seeds

𝑦 where𝐶 (𝐺 (𝑦)) = 1. So to solve CAPP for𝐶 in Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 we do the following: guess 2𝑛𝜖

′
/2

seeds and what 𝐺 would output on them, and for each guessed seed 𝑦 check if 𝐺 (𝑦) was guessed
correctly, and that 𝐶 (𝐺 (𝑦)) = 1.

Note that, after the initial non-deterministic guessing, we just want positive answers from some

queries. Query where 𝐺 (𝑦) value is being verified can be computed in Σ𝑖+1TIME(2𝑂 (𝑛2𝜖′ ) )/𝑂 (𝑛2𝜖′).
Query where 𝐶 needs to be computed can be done in Σ𝑖 . The total number of queries is bounded

by 𝑂 (2𝑛2𝜖′ ), thus all the queries can be combined to give a Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 algorithm.

(5) =⇒ (1) Let 𝐿 be a problem in prAM𝑖 . Then 𝐿 has a BP · Σ𝑖 algorithm (that works for all

promise inputs) where the length of the BP quantifier and all the other quantifiers, and the running-
time of the algorithm is upper-bounded by 𝑛𝑑/2−1, for some constant 𝑑 . For any 𝑛-length input 𝑥 ,

fixing 𝑥 and including the BP quantifier into the input, we get an 𝑛𝑑 -size Σ𝑖 circuit 𝐶𝑥 . We use the

CAPPΣ𝑖 algorithm on these circuits 𝐶𝑥 (from the assumption) to give the desired derandomization

of prAM𝑖 . �

Theorem 8.5. [Row 6 of Table 2] The following are equivalent for integer 𝑖 ≥ 0:
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(1) prBPPΣ𝑖+1∩Π𝑖+1 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖

(2) prMAΣ𝑖+1∩Π𝑖+1 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖

(3) (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ (Σ𝑖+1 ∩ Π𝑖+1)/𝑝𝑜𝑙𝑦
(4) ∀𝑘 ≥ 1 (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ prSVΣ𝑖+1SIZE(𝑛𝑘 )
(5) ∀𝑘 ≥ 1 (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ w-prSVΣ𝑖+1SIZE(𝑛𝑘 )
(6) CAPPΣ𝑖+1∩Π𝑖+1 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛

𝜖 )/𝑛𝜖

Proof. (1 =⇒ 2) Any 𝐿 ∈ prMAΣ𝑖+1∩Π𝑖+1
can be converted to some 𝐿′ ∈ prBPPNP∩Co-NP if

Merlin’s non-determinism is included in the input. If Merlin’s non-determinism is bounded by

𝑛𝑐 for some constant 𝑐 , then for any 𝜖 we use the Σ𝑖+1TIME(2𝑛
𝜖/𝑐 )/𝑛𝜖/𝑐 algorithm for 𝐿′

to give a

Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 algorithm for 𝐿.

(2) =⇒ (3, 4, 5) Like Theorem 8.4, we get the equivalence of all the assumptions in (3,4,5) due

to complete problems (under linear-time reduction) in Σ𝑖+1E, and the fact EΣ𝑖+1| | /𝑂 (𝑛) = Σ𝑖+1/𝑂 (𝑛).
Now we show that the assumptions prMAΣ𝑖+1∩Π𝑖+1 ⊂ i.o. Σ𝑖+1E/𝑛 and Σ𝑖+1E ⊂ prSVΣ𝑖+1SIZE(𝑛𝑘 )

(for some constant 𝑘) lead to a contradiction. Again like Theorem 8.4, we use Theorem 7.5 to get

the contradiction EXP = MAΣ𝑖+1∩Π𝑖+1 ⊂ io-prSVΣ𝑖SIZE(𝑛𝑘 ).
(3) =⇒ (6) Let 𝐶 be an input to CAPPΣ𝑖+1∩Π𝑖+1

, i.e. a SIZE𝐴 (𝑛𝑑 ) circuit for some constant 𝑑

and oracle 𝐴 ∈ Σ𝑖+1 ∩ Π𝑖+1. Fix an 𝜖 > 0 and 𝜖 ′ < 𝜖/2. The assumption EΣ𝑖+1| | ⊄ (Σ𝑖+1 ∩ Π𝑖+1)/𝑝𝑜𝑙𝑦
gives us a language 𝐿 ∈ EΣ𝑖| | that doesn’t have SIZE

𝐴 (𝑛𝑔𝑑/𝜖′) circuits (since Σ𝑖+1 ∩ Π𝑖+1 = PΣ𝑖+1∩Π𝑖+1
),

infinitely often. Now same as in the proof of Theorem 8.4, we again use the Theorem 2.4 to construct

a Σ𝑖+1TIME(2𝑛
𝜖′ )/𝑛𝜖′ computable PRG 𝐺 : 𝑛𝜖

′ → 𝑛𝑑 that fools 𝑛𝑑 -size 𝐴-oracle circuits, infinitely

often. We use this 𝐺 to fool 𝐶 .

Carefully brute-forcing through seeds: It’s the same as in the proof of Theorem 8.4, except: The

queries where 𝐶 needs to be computed, requires some extra non-deterministic guessing to be done

at the initial guessing step. The answers to all the oracle queries, that 𝐶 would make during the

computation of𝐶 (𝐺 (𝑦)) for each guessed seed 𝑦, is also guessed. These guesses are verified in Σ𝑖+1
using 𝐴 and 𝐴, and thus 𝐶 (𝐺 (𝑦)) is computed in Σ𝑖+1. This way, after merging the quantifiers of

the queries, we get an Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 computation.

(6) =⇒ (1) Same as in the proof of Theorem 8.4, we can show that any 𝐿 ∈ prBPPΣ𝑖+1∩Π𝑖+1
can

be reduced to CAPPΣ𝑖+1∩Π𝑖+1
. The proof then follows. �

Theorem 8.6. [Row 5 of Table 2] The following are equivalent for integer 𝑖 ≥ 0:

(1) prBPPΣ𝑖 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖

(2) prMAΣ𝑖 ⊂ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖

(3) (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ PΣ𝑖 /𝑝𝑜𝑙𝑦
(4) ∀𝑘 ≥ 1 (Π𝑖+1E / Σ𝑖+1E / EΣ𝑖+1| | ) ⊄ SIZEΣ𝑖 (𝑛𝑘 )
(5) CAPPΣ𝑖 ∈ ∩𝜖>0 io-Σ𝑖+1TIME(2𝑛

𝜖 )/𝑛𝜖

Proof. Except the computation of𝐶 (𝐺 (𝑦)), all the steps either follow from the proof of Theorem

8.4 or the proof of Theorem 8.6. The circuit𝐶 has an equivalent Σ𝑖+1 ( |𝐶 |𝑐 ) circuit that can be obtained
uniformly. Here the constant 𝑐 doesn’t depend on the input length. We use this circuit as in the

proofs of Theorem 8.4 and 8.5 to make the final computation Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 . �

The first three rows of the Table 2 follow the same proof pattern, except few minor technical

challenges that make the results not so clean: (i) Due to the lack of a complete language in

(Σ𝑖+1E ∩ Π𝑖+1E), the equivalence of fix-polynomial and super-polynomial lower bounds can’t be
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established. (ii) Due to the lack of a downward collapse theorem that works for fix-polynomial lower-

bounds (for the entire class), the equivalence between lower bounds against non-adaptive Σ𝑖 -oracle
circuits and SVΣ𝑖 circuits can’t be established (one can overcome this challenge using the stronger

notion of super-polynomial and sub-exponential from [18], but we stick to the fix-polynomial

setting) (iii) The stronger io-(Σ𝑖+1SUBEXP ∩ Π𝑖+1SUBEXP) derandomization fails to transfer from

prAM𝑖 to prMA𝑖+1 (same issue with the other two pairs of randomized classes). So to keep the

derandomization assumption same (without advice), we need to make the lower bound assumption

weaker (the ‘ip’ version).

Theorem 8.7. [Rows 1-3 of Table 2] For integer 𝑖 ≥ 0:
(1) pr(AM𝑖/MA𝑖+1) ⊂ io-Σ𝑖+1SUBEXP ⇐⇒ ∀𝑘 ≥ 1 ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊄ SIZEΣ𝑖| | (𝑛

𝑘 )
(2) pr(BPP/MA)Σ𝑖 ⊂ io-Σ𝑖+1SUBEXP ⇐⇒ ∀𝑘 ≥ 1 ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊄ SIZEΣ𝑖 (𝑛𝑘 )
(3) pr(BPP/MA)Σ𝑖+1∩Π𝑖+1 ⊂ io-Σ𝑖+1SUBEXP ⇐⇒ ∀𝑘 ≥ 1 ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊄ prSVΣ𝑖+1SIZE(𝑛𝑘 )
Proof. The equivalence of the derandomization of the two randomized classes follows from the

same arguments that were used in the proofs of Theorem 8.4, 8.6 and 8.5.

Derandomization to lower bound:We first give a proof for (2). ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊂ SIZEΣ𝑖 (𝑛𝑘 )
yields the contradiction EXP = MAΣ𝑖 ∩Co-MAΣ𝑖 ⊂ ip-(Σ𝑖+1E∩Π𝑖+1E) ⊂ SIZEΣ𝑖 (𝑛𝑘 ) using the general
KLT (Theorem 7.5). Note that, ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊂ SIZEΣ𝑖 (𝑛𝑘 ) gives EXP ⊂ io-SIZE(𝑛𝑘 ), but even
this is a contradiction.

The only non-trivial inclusion is MAΣ𝑖 ∩ Co-MAΣ𝑖 ⊂ ip-(Σ𝑖+1E ∩ Π𝑖+1E). We achieve this using

MAΣ𝑖 ⊂ io-Σ𝑖+1SUBEXP. For 𝐿 ∈ MAΣ𝑖 ∩ Co-MAΣ𝑖 we construct a new MAΣ𝑖 ∩ Co-MAΣ𝑖 language

𝐿′ = {𝑏𝑥 | (𝑏 = 1 ∧ 𝑥 ∈ 𝐿) ∨ (𝑏 = 0 ∧ 𝑥 ∈ 𝐿)}. Now the assumption gives 𝐿′ ∈ io-Σ𝑖+1SUBEXP. A
Σ𝑖+1SUBEXP algorithm for 𝐿′

that works infinitely often, yields Σ𝑖+1SUBEXP algorithms for 𝐿 and 𝐿

that work fine on infinitely many input lengths (for the other input lengths the algorithms might

not accept complimentary inputs). Thus 𝐿 ∈ ip-(Σ𝑖+1 ∩ Π𝑖+1).
Similar proof works for (1) and (3). For (3), we need that the (Σ𝑖+1 ∩ Π𝑖+1)-oracles used by the

MA-protocols for 𝐿 and 𝐿 must be the same. We actually get the same oracle from the Theorem 7.5.

Even if they are different, we can merge them into one oracle, using the same trick that we used to

merge 𝐿 and 𝐿 into 𝐿′
.

Lower bound to derandomization:We first give a proof for (2). ip-(Σ𝑖+1E ∩ Π𝑖+1E) ⊄ SIZEΣ𝑖 (𝑛𝑘 )
yields, for infinitely many 𝑛 ∈ N, functions that can be computed in Σ𝑖+1E ∩ Π𝑖+1E and don’t have

SIZEΣ𝑖 (𝑛𝑘 ) circuits. From the lower bound assumption this is true for every 𝑘 ≥ 1. Now for any

𝐿 ∈ prBPPΣ𝑖 , let the corresponding BPΣ𝑖 computation for the promise inputs be represented by

SIZEΣ𝑖 (𝑛𝑐 ) circuits for some constant 𝑐 . Fix 𝜖 > 0. We choose the appropriate 𝑘 , and construct PRG

𝐺 similar to the one constructed in Theorem 8.6 that fools SIZEΣ𝑖 (𝑛𝑐 ) circuits, infinitely often. The

entire fooling process can be done in Σ𝑖+1TIME(2𝑛
𝜖 ) without advice (because now the𝐺 (𝑦)-type of

queries don’t need advice).

Similar proofs work for (1) and (3). For (3), we use the fact: For any oracle 𝐴 ∈ (Σ𝑖+1 ∩ Π𝑖+1), for
any 𝑘 ≥ 1, the assumption gives us an 𝐿 ∈ ip-(Σ𝑖+1 ∩ Π𝑖+1) that doesn’t have SIZE𝐴 (𝑛𝑘 ) circuits.
This is true, else ip-(Σ𝑖+1 ∩ Π𝑖+1) ⊂ prSVΣ𝑖+1SIZE(𝑛𝑘

′) for some 𝑘 ′
that depends on 𝑘 and 𝐴. �

8.3 General downward separation
In this section we use the equivalences from Table 2, and the unconditional lower bounds from

Theorem 7.10, to transfer lower bounds from exponential time to sub-exponential time of certain

classes.

Theorem 8.8. For integer 𝑖 ≥ 0, Γ = Σ𝑖+1SUBEXP∩Π𝑖+1SUBEXP and Γ′ = ∩𝜖>0 (Σ𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖∩

Π𝑖+1TIME(2𝑛
𝜖 )/𝑛𝜖 ):
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(1) ∀𝑘 ≥ 1 EΣ𝑖+1| | ⊄ io-SVΣ𝑖SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ′ ⊄ SIZEΣ𝑖| | (𝑛
𝑘 )

(2) ∀𝑘 ≥ 1 EΣ𝑖+1| | ⊄ io-SIZEΣ𝑖 (𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ′ ⊄ SIZEΣ𝑖 (𝑛𝑘 )
(3) ∀𝑘 ≥ 1 EΣ𝑖+1| | ⊄ w-io-prSVΣ𝑖+1SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ′ ⊄ w-prSVΣ𝑖+1SIZE(𝑛𝑘 )
(4) ∀𝑘 ≥ 1 Σ𝑖+1E ∩ Π𝑖+1E ⊄ io-SIZEΣ𝑖| | (𝑛

𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ ⊄ SIZEΣ𝑖| | (𝑛
𝑘 )

(5) ∀𝑘 ≥ 1 Σ𝑖+1E ∩ Π𝑖+1E ⊄ io-SIZEΣ𝑖 (𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ ⊄ SIZEΣ𝑖 (𝑛𝑘 )
(6) ∀𝑘 ≥ 1 Σ𝑖+1E ∩ Π𝑖+1E ⊄ w-io-prSVΣ𝑖+1SIZE(𝑛𝑘 ) =⇒ ∀𝑘 ≥ 1 Γ ⊄ w-prSVΣ𝑖+1SIZE(𝑛𝑘 )

Proof. If these stronger lower bounds (against infinitely often circuit classes) are plugged into

the proofs from the previous section, then the PRGs they yield, fool the corresponding circuits on

all input lengths, and the derandomization of the corresponding randomized classes works on all

input lengths. From Theorem 7.10 we have weaker lower bounds for the corresponding randomized

classes that are being derandomized. These lower bounds thus transfer to Γ and Γ′. �

9 THE SPECIAL CASE OF (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
In this section we discuss the consequences of lower bound NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. In Section

9.1 we discuss its equivalence with a number of other lower bounds and derandomization results.

In Section 9.2 we extend some of the above equivalences to ZNE, for the fix-polynomial lower

bound case. In Sections 9.3, 9.4 and 9.5: we show how one can obtain the lower bound NEXP ⊄

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 from fast TAUT and CAPP algorithms. In Section 9.6 we show gap theorems for

MA, MANP∩Co-NP and CAPPNP∩Co-NP. In Section 9.7 we prove an unconditional lower bound for NEXP
against the ACC analogue of (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 (with sub-polynomial non-determinism).

9.1 NEXP vs (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
In this section we give NEXP EWL and KLT for (NP∩ Co-NP)/𝑝𝑜𝑙𝑦, and the converses. We also extend

the results to ENP| | . All these results work even if replace NP ∩ Co-NP with P (in circuit classes and

as oracles). That is, similar proof also extends the Theorem 4.10 to ENP| | , to give its KLT for P/𝑝𝑜𝑙𝑦:
ENP| | ⊂ P/𝑝𝑜𝑙𝑦 ⇐⇒ ENP| | = MA ⇐⇒ prMA ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖 .

Theorem 9.1. The following statements are equivalent:
(1) (NE/ENP| | ) ⊄ MANP∩Co-NP

(2) (NE/ENP| | ) ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(3) NE ⊄𝑜𝑤 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(4) NE ⊄ℎ𝑤 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(5) NE ⊄𝑤 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(6) NP/log𝑛-U ⊄𝑡𝑡 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(7) NP/log𝑛-N ⊄𝑡𝑡 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(8) P/log𝑛-N ⊄𝑡𝑡 (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(9) CAPPNP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖
(10) pr(BPP/MA)NP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖

Proof. (1) =⇒ (2) First note that both the assumptions in (2) are equivalent from the

arguments used in the previous section. Now we prove the contrapositive. NE ⊂ (NP∩ Co-NP)/𝑝𝑜𝑙𝑦
gives us EXP = MANP∩Co-NP from the general KLT (Theorem 7.5), and ∃𝑘 NE/𝑂 (𝑛) ⊂ NSIZE(𝑛𝑘 ) using
a complete problem for NE under liner time reductions.

If NE ⊄ MANP∩Co-NP = EXP, then from [31] we get AM ⊂ io-NE/𝑂 (𝑛). Since MANP∩Co-NP ⊆ AM from

Lemma 7.4, we get ∃𝑘 EXP = MANP∩Co-NP ⊂ io-NSIZE(𝑛𝑘 ). This is a contradiction since in EXP we

can diagonalize against any fix-polynomial size general circuit class.
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If ENP| | ⊄ MANP∩Co-NP = EXP, then we give a similar argument to prove ∃𝑘 EXP ⊂ io-NSIZE(𝑛𝑘 ).
We show AM ⊂ io-NE/𝑂 (𝑛) by using a language 𝐿 ∈ ENP| | , that has a ENP| | algorithm A deciding

it such that: there can’t be any SIZENP| | (𝑛
𝑘 ) circuits for any constant 𝑘 , encoding the witnesses

for all the positive oracle queries that A makes on all 𝑛-length input, for infinitely many 𝑛 (else

brute-forcing through these circuits will prove ENP| | ⊂ EXP). Now using A we get an NE/𝑂 (𝑛)
algorithm B that produces strings 𝑡𝑡 with 𝑐𝑘𝑡NP| | (𝑡𝑡) > 𝑛𝑘−1 for all 𝑘 . The advice encodes the number

of positive oracle queries that A makes on that input length. For any 𝑛, B simulates A on all

𝑛-length inputs and using advice guesses that many queries to be positive. It verifiers its guesses by

non-deterministically guessing certificates for the positive oracle queries. After all the verification

steps, it outputs the concatenation of all its non-deterministic certificates. This concatenated string

can’t have SIZENP| | (𝑛
𝑘−1) circuits for any constant 𝑘 (because its sub-strings doesn’t have SIZENP| | (𝑛

𝑘 )
circuits). Now we use B to get AM ⊂ io-NE/𝑂 (𝑛) (similar to the proof of Theorem 8.4).

(2) =⇒ (6) The proof of (NE ⊄ C =⇒ NP/log𝑛-U ⊄𝑡𝑡 C) from Theorem 4.10 also works

here. Any language 𝐿 ∈ NE \ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, if provided with |𝐿𝑛 | (size of 𝑛𝑡ℎ-slice) as advice,
converts into an NP/log𝑛-U property against (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.

(6) =⇒ (7) This follows from the definitions.

(7) =⇒ (8) The proof of (NP/log𝑛-N ⊄𝑡𝑡 C =⇒ P/log𝑛-N ⊄𝑡𝑡 C) from [57] also works here.

The non-deterministic certificates are included into the input, inducing a non-significant change in

the circuit complexity of the strings accepted by the property.

(8) =⇒ (5) The proof of (P/log𝑛-N ⊄𝑡𝑡 C =⇒ NE ⊄𝑤 C) from [57, 75] also works here. The

advice becomes input, and input becomes certificates. Thus the useful advice sequence converts

into useful input sequence, i.e. inputs that have non-easy witnesses / witnesses of high circuit

complexity.

(5) =⇒ (4) This follows from the definitions.

(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (9) This follows from the arguments used in Theorem 8.5. The NE verifier that doesn’t

have oblivious-witnesses in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, yields a function sequence computable in NE, that
infinitely often has high (NP ∩ Co-NP)-oracle circuit complexity (w.r.t. any (NP ∩ Co-NP)-oracle).
So we use the Theorem 2.4 to construct a PRG and solve CAPPNP∩Co-NP in the desired time.

(9) =⇒ (10) This implication, and the equivalence of the assumptions in (10), follows from the

Theorem 8.5.

(10) =⇒ (1) If NE ⊂ MANP∩Co-NP (or ENP| | ⊂ MANP∩Co-NP) and MANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖 ,

then we get EXP = NEXP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )/𝑛𝜖 . This gives us EXP ⊂ ∩𝜖>0 io-TIME(2𝑛

𝑐 )/𝑛 for

some constant 𝑐 . This is false due to the diagonalization result given in [31]. �

9.2 ZNE vs (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
All the results for ZNE from Sections 4 and 5 also work for promise SV non-deterministic circuits, if

we replace: MA with MANP∩Co-NP; and C with prSVN. We summarize the important connections in the

following theorems. As in the Theorem 9.1, here again we use the generalized connections from

Section 8.

Theorem 9.2. For constant 𝑘 ≥ 1:

(1) ZNE/𝑂 (1) ⊂ prSVNSIZE(𝑛𝑘 ) =⇒ ZNE/𝑂 (1) ⊂ MANP∩Co-NP/𝑂 (1)
(2) ZNE ⊂ prSVNSIZE(𝑛𝑘 ) =⇒ ZNE ⊂ io-MANP∩Co-NP

(3) ip-ZNE ⊂ prSVNSIZE(𝑛𝑘 ) =⇒ ip-ZNE ⊂ MANP∩Co-NP

Theorem 9.3. The following statements are equivalent:
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(1) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄ prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄ prSVΣ𝑖SIZE(𝑛𝑘 ))
(2) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄𝑜𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄𝑜𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ))
(3) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄ℎ𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄ℎ𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ))
(4) ∀𝑘 ≥ 1 ZNE/𝑂 (1) ⊄𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 ip-ZNE ⊄𝑠 prSVΣ𝑖SIZE(𝑛𝑘 ))
(5) ∀𝑘 ≥ 1 NP-U/𝑂 (1) ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 NP-prU ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ))
(6) ∀𝑘 ≥ 1 NP-N/𝑂 (1) ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 NP-prN ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ))
(7) ∀𝑘 ≥ 1 P-N/𝑂 (1) ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ) (resp. ∀𝑘 ≥ 1 P-prN ⊄𝑡𝑡 prSVΣ𝑖SIZE(𝑛𝑘 ))

As in the Theorem 9.1, the ip-ZNE lower bounds from the Theorems 5.5 (for unrestricted Boolean

circuits) and 9.3, are also equivalent to “pr(BPP/MA) ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )” and “pr(BPP/MA)NP∩Co-NP

⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖 )”, respectively.

9.3 Improving exhaustive search for TAUTNP∩Co-NP implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
The class TAUTNP∩Co-NP, is defined similar to CAPPNP∩Co-NP (see Section 8.2). The inputs are 𝐴-oracle

circuits, for some 𝐴 ∈ NP ∩ Co-NP, and the output indicates whether the circuit is a tautology or

not. The complexity is measured in terms of the input length of the input circuit.

In this section we show: super-polynomial savings in non-deterministic algorithms for the class

TAUTNP∩Co-NP, implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. We first state two theorems that we would need

in our result.

Theorem 9.4 (NTIME Hierarchy [39]). Let 𝑡1 and 𝑡2 be time constructible functions that satisfy
𝑡1 (𝑛 + 1) ∈ 𝑜 (𝑡2 (𝑛)). There is a unary language in NTIME(𝑡2 (𝑛)) that is not in NTIME(𝑡1 (𝑛)).

Theorem 9.5 (Efficient local reductions [25, 37, 67]). Every language 𝐿 ∈ NTIME(2𝑛) can be
reduced to 3-SAT instances of 2𝑛𝑛𝑐 -size, for some constant 𝑐 . Moreover, given an instance of 𝐿 there is
an 𝑛𝑐 -size P-uniform deterministic circuit that, on an integer 𝑖 ∈ [2𝑛𝑛𝑐 ] in binary as input, output the
𝑖𝑡ℎ-clause of the resulting 3-SAT formula.

Now we give our result.

Theorem 9.6. For any super-polynomial function 𝑠𝑝 , an NTIME(2𝑛/𝑠𝑝 (𝑛)) tautology algorithm for
𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size𝐴-oracle circuits, for every𝐴 ∈ (NP∩Co-NP), implies NEXP ⊄ (NP∩Co-NP)/𝑝𝑜𝑙𝑦.

Proof. We prove it by contradiction. NEXP ⊂ (NP∩ Co-NP)/𝑝𝑜𝑙𝑦 along with the faster tautology

algorithm will conclude NTIME(2𝑛) ⊂ NTIME(2𝑛/𝑠𝑝 (𝑛)), and thus contradict the non-deterministic

time hierarchy from Theorem 9.4.

Reduction circuit: For 𝐿 ∈ NTIME(2𝑛), we give an NTIME(2𝑛/𝑠𝑝 (𝑛)) algorithm. From the Theorem

9.5 we get: any input 𝑥 for 𝐿 uniformly reduces to a 3-SAT instance𝜙𝑥 , where the number of variables

and clauses in 𝜙𝑥 are bounded by 𝑛𝑑2𝑛 for some constant 𝑑 . Moreover the reduction is local in the

sense that: it can be uniformly converted to a deterministic circuit 𝐶𝑥 that on (𝑛 + 𝑑 log𝑛)-bits
input 𝑖 outputs the three variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3 (3𝑛 + 3𝑑 log𝑛 bits) from the 𝑖𝑡ℎ-clause of 𝜙𝑥 , along

with three extra bits 𝑧1, 𝑧2, 𝑧3 that indicate for each of these three variables, whether they appear as

positive literals or a negative literals.

Special verifier: Let𝑉 be a non-deterministic verifier for 𝐿, that first reduces 𝐿 to 3-SAT, and then
non-deterministically guesses a satisfying assignment for the 3-SAT formula.

Easy-witness circuit: Since NEXP ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 =⇒ NEXP = AM, from [31] we get

that the search problem for 𝑉 is in EXP. Thus, there is an algorithm A that: on any input 𝑥 ∈ 𝐿

outputs 𝑦 such that 𝑉 (𝑥,𝑦) = 1; on any input 𝑥 ∉ 𝐿 outputs an all zeros string. Now define a new

language 𝐿′ = {(𝑥, 𝑖) | 𝑖𝑡ℎ output bit of A on input 𝑥 is 1}. 𝐿′ ∈ EXP and thus 𝐿′ ∈ P𝐴/𝑝𝑜𝑙𝑦 for

some𝐴 ∈ NP∩ Co-NP. Let 𝐵𝑥 be the𝐴-oracle circuit whose truth-table is a witness for𝑉 on input 𝑥 .
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Final Circuit 𝐹𝑥 : (𝑛 + 𝑑 log𝑛)-bits long input 𝑖 is given to 𝐶𝑥 . We plug the output variables

𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3 to three different copies of the witness circuit 𝐵𝑥 . Let the three output bits be 𝑏1, 𝑏2, 𝑏3.

The final output is (𝑏1 ⊕ 𝑧1) ∨ (𝑏2 ⊕ 𝑧2) ∨ (𝑏3 ⊕ 𝑧3).
Final algorithm: On input 𝑥 , we get 𝐶𝑥 , non-deterministically guess 𝐵𝑥 , construct 𝐹𝑥 and run the

fast tautology algorithm on 𝐹𝑥 .

Correctness: 𝑥 ∈ 𝐿 ⇐⇒ 𝐹𝑥 is a tautology. The tautology algorithm on 𝐹𝑥 checks if the non-

deterministic guess 𝐵𝑥 satisfies: 𝑉 (𝑥, 𝑡𝑡 (𝐵𝑥 )) = 1. If 𝑥 ∉ 𝐿, this is not possible for any 𝐵𝑥 . If

𝑥 ∈ 𝐿, this is true for a poly-size 𝐴-oracle circuit 𝐵𝑥 , which exists due the easy-witness lemma for

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. �

9.4 Improving exhaustive search for CAPPNP∩Co-NP implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
In this section we show: super-polynomial savings in non-deterministic algorithms for the class

CAPPNP∩Co-NP, implies NEXP ⊄ (NP∩ Co-NP)/𝑝𝑜𝑙𝑦. We first state the following PCP verifier for NEXP,
that we would need in our result.

Theorem 9.7 (see [12, 73]). For any 𝐿 ∈ NTIME(2𝑛), there exists a PCP verifier 𝑉 (𝑥,𝑦, 𝑟 ) with
soundness 1/2, perfect completeness, and randomness complexity 𝑛 + 𝑐 log𝑛, query complexity 𝑛𝑐 , and
verification time 𝑛𝑐 , for some constant 𝑐 . That means:

• 𝑉 has random access to 𝑥 and 𝑦, uses at most |𝑟 | = 𝑛 + 𝑐 log𝑛 random bits in any execution,
makes 𝑛𝑐 queries to the candidate proof 𝑦, and runs in at most 𝑛𝑐 steps.

• if 𝑥 ∈ 𝐿, ∃𝑦 : |𝑦 | = 𝑛𝑐 𝑃𝑟𝑟 [𝑉 (𝑥,𝑦, 𝑟 ) = 1] = 1.
• if 𝑥 ∉ 𝐿, ∀𝑦 : |𝑦 | = 𝑛𝑐 𝑃𝑟𝑟 [𝑉 (𝑥,𝑦, 𝑟 ) = 1] ≤ 1/2.

Now we give our result. The proof uses the same structure as the proof of Theorem 9.6. Their the

‘easy-witness circuit’ was queried by the ‘reduction-circuit’ three times. Here, the ‘easy-witness

circuit’ will be queried polynomially-many times by the circuit that will capture the randomized

verification procedure of the PCP verifier, that we get from Theorem 9.7.

Theorem 9.8. For any super-polynomial function 𝑠𝑝 , an NTIME(2𝑛/𝑠𝑝 (𝑛)) CAPP algorithm for 𝑛-
input 𝑝𝑜𝑙𝑦 (𝑛)-size 𝐴-oracle circuits, for every 𝐴 ∈ (NP ∩ Co-NP), implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.

Proof. For 𝐿 ∈ NTIME(2𝑛) we design an NTIME(2𝑛/𝑠𝑝 (𝑛)) algorithm, under the assumption

NEXP ⊂ (NP∩Co-NP)/𝑝𝑜𝑙𝑦. This will contradict the non-deterministic time hierarchy from Theorem

9.4.

Reduction circuit: Let 𝑉 be a PCP verifier for 𝐿 from the Theorem 9.7. On any input 𝑥 , 𝑉 (𝑥,𝑦, 𝑟 )
receives |𝑟 | = 𝑛 + 𝑐 log𝑛 random bits, makes oracle queries to the proof 𝑦 of size 2

𝑛𝑛𝑐 , and runs for

𝑛𝑐 -time. Let 𝐶𝑥 be an oracle circuit capturing this computation. For the oracle gates, we will use

copies of the following described ‘easy-witness circuit’ 𝐵𝑥 .

Easy-witness circuit for an special verifier:Due to the same reasoning given in the proof of Theorem

9.6, we have an 𝐴-oracle circuit 𝐵𝑥 whose truth-table is the witness for the non-deterministic

verifier 𝑉 ′
on input 𝑥 : 𝑉 ′(𝑥,𝑦) computes 𝑉 (𝑥,𝑦, 𝑟 ) on each value of 𝑟 and outputs 1 if and only if

∀𝑟 𝑉 (𝑥,𝑦, 𝑟 ) = 1.

Final circuit 𝐹𝑥 : (𝑛 + 𝑐 log𝑛)-bits long input 𝑟 is given to 𝐶𝑥 . The oracle gates are replaced by the

circuit 𝐵𝑥 . The final output is the output of 𝐶𝑥 .

Final algorithm: On input 𝑥 , we get 𝐶𝑥 , non-deterministically guess 𝐵𝑥 , construct 𝐹𝑥 and run the

fast CAPP algorithm on 𝐹𝑥 .

Correctness: 𝑥 ∈ 𝐿 ⇐⇒ 𝐹𝑥 outputs 1 on more than 0.9 of its inputs. The CAPP algorithm on 𝐹𝑥
checks if the non-deterministic guess 𝐵𝑥 satisfies: 𝑃𝑟𝑟 [𝑉 (𝑥, 𝑡𝑡 (𝐵𝑥 ), 𝑟 ) = 1] ≥ 0.9 or𝑉 ′(𝑥, 𝑡𝑡 (𝐵𝑥 )) =
1. If 𝑥 ∉ 𝐿, this is not possible for any 𝐵𝑥 . If 𝑥 ∈ 𝐿, this is true for a poly-size 𝐴-oracle circuit 𝐵𝑥 ,

which exists due the easy-witness lemma for (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. �
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9.5 NSUBEXP TAUT algorithm for deterministic circuits implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
In this section, we extend the results from the previous sections, to deterministic circuits: fast TAUT
algorithm for deterministic circuits implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.

Theorem 9.9. A ∩𝜖>0 io-𝐻𝑒𝑢𝑟 -NTIME(2𝑛
𝜖 )/𝑛𝜖 tautology algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size deter-

ministic circuits implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.

Proof. The proof is very similar to the proof of Theorem 9.8.

We assume NEXP ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. Now for any 𝐿 ∈ NEXP we give a ∩𝜖>0 io-Heur-

NTIME(2𝑛𝜖 )/𝑛𝜖 algorithm. Since NEXP = EXP, NEXP ⊂ ∩𝜖>0 io-Heur-NTIME(2𝑛
𝜖 )/𝑛𝜖 is a contradiction

from [75].

We use the same reduction circuit𝐶𝑥 and the same verifier𝑉 . Instead of using the (NP ∩ Co-NP)-
oracle witness circuit 𝐵𝑥 , we construct two witness circuits (after guessing the advice of the

(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 algorithm A that has 𝑉 ’s oblivious-witnesses): one non-deterministic 𝐵1

𝑥 , and

one co-non-deterministic 𝐵2

𝑥 .

Now for constructing the final circuit 𝐹𝑥 : Take the reduction circuit 𝐶𝑥 . 𝐶𝑥 outputs three literals.

Plug any positive literal into a copy of the co-non-deterministic circuit 𝐵2

𝑥 , and any negative literal

into a copy of the co-non-deterministic circuit 𝐵1

𝑥 . Output is the logical-or of the three copies used.

To make the circuit deterministic, include the non-deterministic inputs of the copies of 𝐵2

𝑥 and 𝐵1

𝑥

into the actual input.

Final algorithm: Get 𝐶𝑥 . Non-deterministically guess the advice for A, and get 𝐵1

𝑥 and 𝐵2

𝑥 (that

are guaranteed to have complementary truth-tables). Construct the deterministic circuit 𝐹𝑥 as

described above. Run the the fast TAUT algorithm on 𝐹𝑥 .

Correctness: Its the same. We just replaced the function of the (NP∩ Co-NP)-oracle witness circuit
𝐵𝑥 with two co-non-deterministic circuits 𝐵2

𝑥 and 𝐵1

𝑥 . So 𝐹𝑥 becomes a co-non-deterministic circuit.

And tautology of a co-non-deterministic circuit, is same as the tautology of the deterministic

circuit we get after including the non-deterministic inputs into the actual input. So we modify 𝐹𝑥
accordingly to make it deterministic. �

Using the same proof as above, we also get NEXP lower bounds for (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 with

sub-polynomial non-determinism, with only mildly-exponential savings in the tautology algorithm.

This is because, now the conversion of the co-non-deterministic circuit into the deterministic circuit

doesn’t blow up the input size by much.

Corollary 9.10. For any 𝜖 > 0, an NTIME(2(1−𝜖)𝑛) tautology algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size
deterministic circuits implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 with sub-polynomial non-determinism.

9.6 New gap theorems for CAPP and MA

In the previous three sections we saw that, fast algorithms imply NEXP ⊄ (NP∩ Co-NP)/𝑝𝑜𝑙𝑦. In the

Section 8 we saw that this lower bound is equivalent to fast algorithm for the class CAPPNP∩Co-NP.
This gives us the following corollary.

Corollary 9.11 (Gap theorem for CAPPNP∩Co-NP). Let 𝑠𝑝 be any super-polynomial function.
Then a ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖 algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size 𝐴-oracle circuits, for every 𝐴 ∈
(NP ∩ Co-NP), is implied by any of the following:
(1) an NTIME(2𝑛/𝑠𝑝 (𝑛)) CAPP algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size 𝐴-oracle circuits, for every 𝐴 ∈

(NP ∩ Co-NP);
(2) an NTIME(2𝑛/𝑠𝑝 (𝑛)) TAUT algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size 𝐴-oracle circuits, for every 𝐴 ∈

(NP ∩ Co-NP);
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(3) a ∩𝜖>0 io-𝐻𝑒𝑢𝑟 -NTIME(2𝑛
𝜖 )/𝑛𝜖 TAUT algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size deterministic circuits.

In [31] they showed a gap theorem for MA: either MA is as powerful as NEXP, or can be derandomized

in NSUBEXP (infinitely often, with sub-polynomial advice). From the arguments in Section 9.1 we

can get an improved gap theorem where MA = EXPNP| | in the first case. We also get a similar gap

theorem for MANP∩Co-NP: either MANP∩Co-NP is as powerful as EXPNP| | , or can be derandomized in NSUBEXP

(infinitely often, with sub-polynomial advice).

Corollary 9.12 (Gap theorem for MA). Exactly one of the following statements is true:
(1) MA = EXPNP| |
(2) MA ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖

Corollary 9.13 (Gap theorem for MANP∩Co-NP). Exactly one of the following statements is true:
(1) MANP∩Co-NP = EXPNP| |
(2) MANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖 )/𝑛𝜖

9.7 New ACC lower bounds
Let ACC(𝑠), NACC(𝑠)𝑝 , SVACC(𝑠)𝑝 , prSVACC(𝑠)𝑝 , denote the classes of 𝑠-size deterministic, non-

deterministic, SV non-deterministic, and promise SV non-deterministic, ACC circuits respectively.
The superscript 𝑝 indicates the amount of non-determinism (the size of the non-deterministic

inputs). We omit 𝑠 or 𝑝 , if they are 𝑝𝑜𝑙𝑦 (𝑛). prSVACC(𝑠)𝑝 are defined similar to prSVN circuits: the

only difference is that the underlying prSV
1
algorithm outputs SVACC(𝑠)𝑝 circuits on all inputs.

In this section we say Γ doesn’t have ACC circuits (or ACC witnesses), if a single language in Γ
beats 𝑑-depth ACC circuits that use𝑚-mod gates, for all constants 𝑑 and𝑚. We write lower bounds

for all the other ACC variants similarly.

In [74] it was proved that NEXP doesn’t have ACC circuits, and witnesses in ACC. In [75] it was

improved to:

(1) NEXP ⊄𝑤 ∩𝜖>0ACC(2𝑛
𝜖 )

(2) NEXP ⊄ ACC(𝑛log𝑛)
The point (1) also gives that NEXP ⊄𝑤 ∩𝜖>0NACC

𝑛𝜖
: because NACC𝑛

𝜖

circuit can be converted into

an ACC(𝑝𝑜𝑙𝑦 (𝑛)2𝑛𝜖 ) circuit by evaluating the original circuit on each non-deterministic choice, and

taking a logical-or of each evaluation.

Now, different types of EWL will give different types of lower bounds for NEXP:

(1) EWL for ∩𝜖>0NACC
𝑛𝜖

implies NEXP ⊄ ∩𝜖>0NACC
𝑛𝜖
;

(2) EWL for ∩𝜖>0SVNACC
𝑛𝜖

implies NEXP ⊄ ∩𝜖>0SVNACC
𝑛𝜖
; and

(3) EWL for ∩𝜖>0prSVNACC
𝑛𝜖

implies NEXP ⊄ ∩𝜖>0prSVNACC
𝑛𝜖
.

We establish the lower bound in point (3), and prove that the lower bounds in points (1) and (2)

are equivalent. We use the following lemma in our proofs. The proof of the this lemma is similar to

the proof of Lemma 5.1.

Lemma 9.14. If NP ⊂ ∩𝜖>0SVNACC
𝑛𝜖 , then there exists a constant 𝑐 such that: for large enough 𝑛,

any ∩𝜖>0NSIZE(𝑠)𝑛
𝜖

circuit has an equivalent ∩𝜖>0SVNACC(𝑠𝑐 )𝑛
𝜖

circuit.

Proof. NCkt-Eval is a problem in NP whose input is a non-deterministic Boolean circuit 𝐶 and

a string 𝑥 , and the output is the output of 𝐶 on 𝑥 . If NP ⊂ ∩𝜖>0SV-NACC
𝑛𝜖
, then there is a constant

𝑐 such that NCkt-Eval has 𝑛𝑐/2-size ∩𝜖>0SVNACC
𝑛𝜖

circuits.

Let 𝐵 be a ∩𝜖>0NSIZE(𝑠)𝑛
𝜖

circuit. Let 𝐸 be (𝑛 + 𝑠 log 𝑠)𝑐/2-size circuit corresponding to the

(𝑛 + 𝑠 log 𝑠)𝑡ℎ-slice of NCkt-Eval. Define 𝐷 (𝑥) = 𝐸 (𝐵, 𝑥). It is easy to check that: (i) 𝐷 is an

∩𝜖>0SVNACC(𝑠𝑐 )𝑛
𝜖

circuit; and (ii) 𝐷 is equivalent to 𝐵. �
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Now using the above lemma, and the result from [75] that NEXP doesn’t have oblivious-witnesses
in ∩𝜖>0NACC

𝑛𝜖
, we give the following results. Note that, the oblivious-witness lower bound obtained

from Corollary 9.10 is also sufficient for these results.

Theorem 9.15. NP ⊂ ∩𝜖>0SVNACC
𝑛𝜖 =⇒ NEXP ⊄ ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛

𝜖

Proof. We prove: NP ⊂ ∩𝜖>0NACC
𝑛𝜖

and NEXP ⊂ ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛
𝜖

leads to contradiction.

First we prove: NEXP ⊂ ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛
𝜖

implies NEXP ⊂𝑜𝑤 ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛
𝜖

.

This proof is analogous to the EWL in the previous sections. Idea is, NEXP ⊂ ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛
𝜖

implies NEXP = AM, and from [31] we get that the search version of NEXP is in EXP. Specifically, it is
in ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛

𝜖

, thus oblivious-witnesses are also in ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛
𝜖

.

Now NP ⊂ ∩𝜖>0SVNACC
𝑛𝜖
, from the Lemma 9.14 implies that: any ∩𝜖>0prSVNSIZE(𝑝𝑜𝑙𝑦)𝑛

𝜖

circuit

has an equivalent ∩𝜖>0SVNACC
𝑛𝜖

circuit.

Thus NEXP has oblivious-witnesses in ∩𝜖>0SVNACC
𝑛𝜖
. We know this is not true from [75]. �

Corollary 9.16. NEXP ⊄ ∩𝜖>0prSVNACC
𝑛𝜖

Theorem 9.17. NEXP ⊄ ∩𝜖>0SVNACC
𝑛𝜖 ⇐⇒ NEXP ⊄ ∩𝜖>0NACC

𝑛𝜖

Proof. Backward direction is trivial. For the forward direction, first we observe that: Σ2 ∩ Π2 ⊄

∩𝜖>0SVNACC
𝑛𝜖 ⇐⇒ Σ2 ∩ Π2 ⊄ ∩𝜖>0NACC

𝑛𝜖
. Now, if Σ2 ∩ Π2 ⊄ ∩𝜖>0NACC

𝑛𝜖
, we are done. Else,

NP ⊂ ∩𝜖>0SVNACC
𝑛𝜖
. Now, if NEXP ⊂ ∩𝜖>0NACC

𝑛𝜖
, then from the Lemma 9.14 we contradict our

assumption and get: NEXP ⊂ ∩𝜖>0SVNACC
𝑛𝜖
. �

10 CONCLUSIONS AND OPEN PROBLEMS
The main open problem is whether there are any connections between fast algorithms and non-

uniform lower bounds possible within deterministic classes such as EXP. In almost all of the prior

connections, non-uniformity is simulated with non-determinism, by having a non-deterministic

machine guess the appropriate circuit. Can we substitute a recursive argument for non-determinism

here? Our results show that, while still allowing non-determinism, the form of non-determinism can

be restricted. In what other ways could we get such connections for smaller classes by restricting

the use of non-determinism? The circuit model combines two features: time and non-uniformity.

Can we get a fine-grained version of easy-witness lemma by distinguishing these two parameters?

Our results also show that, if we are using unrestricted non-determinism to simulate non-

uniformity, we can extract more out of it. That is, the guessed circuit is also allowed to use

non-determinism that is promise-single-valued. In what other ways can we extend this allowance?

Specifically, can we prove NEXP EWL and KLT for circuit classes above (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦? Which

of the inclusions, MA ⊆ MANP∩Co-NP ⊆ AM ⊆ M(AM| |Co-NP) ⊆ MANP, are equalities? Where exactly the

non-deterministic circuit class lies, whose NEXP lower bound is equivalent to NEXP ≠ AM?
We also show unconditional ACC lower bounds where sub-polynomial promise-single-valued non-

determinism is allowed. Can we increase the amount of non-determinism allowed, to polynomial

or linear? Designing fast algorithms for ACC is one direct strategy. Can we remove the ‘promise’

condition? Designing NEXP EWL for higher circuit classes is one direct strategy.

In the inclusion chain, EXP ⊆ ip-ZNEXP ⊆ NEXP ⊆ EXPNP| | ⊆ EXPNP, we have KLTs for the all

the classes. The KLT for ip-ZNEXP is only for fix-polynomial upper bounds. Can we improve it to

polynomial upper bounds? Except EXPNP, we have established equivalences between lower bounds

and derandomization of certain probabilistic classes. Can we get such equivalences for EXPNP?
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