
On Limiting & Limited Non-determinism in NEXP Lower
Bounds

ANANT DHAYAL, University of California San Diego, USA

RUSSELL IMPAGLIAZZO, University of California San Diego, USA

Proving circuit lower bounds is one of the most difficult tasks in computational complexity theory. The NP
vs. P/𝑝𝑜𝑙𝑦 problem asks whether there are small non-uniform circuits that can simulate circuit satisfiability.

The answer is widely believed to be false, but so far progress has only been made in the case of restricted

circuits. In 1980s the progress stalled after it was shown that NP doesn’t have non-uniform AC0 circuits that
have MOD-𝑚 gates for any prime𝑚. After almost three decades, in 2010s Williams made progress in the relaxed

case of NEXP lower bounds. He first showed that non-trivial satisfiability algorithms for a circuit class entail

NEXP lower bounds against that class. Then he designed a fast satisfiability algorithm for ACC circuits (AC0

circuits with MOD-𝑚 gates for any constant𝑚) to show that NEXP doesn’t have non-uniform ACC circuits.
We make progress in bringing down the class NEXP, specifically by limiting non-determinism (in terms

of the number of non-deterministic branches that accept). We show that slightly faster satisfiability algorithms

entail lower bounds for UEXP and related classes.We believe this is progress towardsmaking similar connections,

and thus proving lower bounds, for EXP and lower complexity classes.

To investigate why progress again stalled around ACC lower bounds, and why TC0 (AC0 circuits with

majority gates) lower bounds have not been established yet, Williams made rigorous connections between

NEXP lower bounds and variations of Natural Proofs. Razborov and Rudich defined Natural Proofs to showcase

the limitations of the current lower bound techniques. They showed that any technique that entails Natural

Proofs, i.e. Proofs that are (i) constructive, (ii) useful, and (iii) large, fail to prove strong lower bounds. Williams

showed that NEXP lower bounds, regardless of the technique, entail Proofs that satisfy the first two of the

three conditions of Natural Proofs.

We make Williams connections more rigorous, and show that UEXP lower bounds entail Proofs, that in

addition to the first two conditions of Natural Proofs, satisfy a third condition that is exactly the opposite of

largeness condition. We call this condition, the uniqueness condition, and these Proofs, the Unique Proofs.

These connections showcase that NEXP ⊇ UEXP ⊇ EXP is a viable path to approach EXP lower bounds.
We also discuss an alternate approach to improve NEXP lower bounds. We define a new form of non-

determinism to capture the non-uniform circuits from the class (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, and call it promise-Single-

Valued non-determinism. We show that in the current NEXP lower bounds, we can allow the non-uniform

circuits some limited non-determinism (in terms of the number of non-deterministic inputs) of the type

promise-Single-Valued. We also discuss that, how small improvements in the amount of this special type

of non-determinism, even in the restricted circuits much weaker than ACC, would imply very strong lower

bounds such as NEXP ⊄ P/𝑝𝑜𝑙𝑦.

CCS Concepts: • Theory of computation→ Complexity classes; Circuit complexity.

Additional Key Words and Phrases: Circuit complexity, lower bounds, satisfiability, Natural Proofs, Unique

Proofs, promise-Single-Valued non-determinism

Authors’ addresses: Anant Dhayal, adhayal@eng.ucsd.edu, University of California San Diego, La Jolla, CA, USA; Russell

Impagliazzo, russell@eng.ucsd.edu, University of California San Diego, La Jolla, CA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2020.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 167 (2019)

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Anant Dhayal and Russell Impagliazzo

ACM Reference Format:
Anant Dhayal and Russell Impagliazzo. 2020. On Limiting & Limited Non-determinism in NEXP Lower Bounds.

1, 1 (December 2020), 38 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The two fundamental problems in theoretical computer science are: (a) design non-trivial algorithms

for computational tasks; or (b) prove that such algorithms do not exist, i.e. prove (circuit) lower

bounds for the computational task in question. For instance, the famous 1970s question of Cook and

Levin, is NP = P or NP ≠ P [25, 61]? Or its non-uniform version, is NP ⊂ P/𝑝𝑜𝑙𝑦 or NP ⊄ P/𝑝𝑜𝑙𝑦 (it

would also imply NP ≠ P)? P/𝑝𝑜𝑙𝑦 is the class of problems that have non-uniform polynomial-size

circuits. Non-uniform computation allows the sizes of programs to grow with the sizes of inputs,

and can be naturally represented as an infinite family of Boolean circuits (one for each possible

input length). They are very powerful and can simulate all undecidable problems when there is

no size restriction, and certain undecidable problems even with polynomial size restriction. But

it’s still not known if P/𝑝𝑜𝑙𝑦 can simulate NP. In fact the answer is believed to be false. One of the

main reasons being the collapse of polynomial hierarchy. This is second to the P = NP collapse, in
the list of collapses that are widely believed to be false by complexity theorists.

No significant progress after decades of efforts lead to the pursuit of considerably relaxed versions

of the above pair of questions. Here we focus on the lower bounds side of the question. Optimists

started the bottom-up approach and started proving lower bounds for restricted circuit classes with

a hope that gradually they would lift the restrictions over time.

If we just consider size restrictions, the best known lower bound for any NP problem is 5𝑛 − 𝑜 (𝑛),
for circuits over the basis of 2-bit AND, OR, and NOT gates [49, 60]. MA (with 1-bit of advice) is

the lowest class that contains functions with super-linear and fixed-polynomial (size 𝑛𝑘 for any

constant 𝑘) lower bounds [79]. If we consider restrictions on gate types (basis), monotone circuits,

i.e. circuits without negations or NOT gates are the most studied. A super-polynomial lower bound

was proved for NP in [76] (for CLIQUE to be specific), and improved to exponential size in [5]. But

later in [77] it was shown that these techniques for monotone circuit lower bounds would not

extend to general circuits.

Here we only focus on the depth restrictions. Constant depth restrictions are the most studied

ones. In 1980s it was shown that the parity function on 𝑛 bits, which is in P (infact in even lower

complexity classes), can’t be computed by AC0 circuits [2, 34]: the class of constant depth circuits

over the basis of AND, OR, and NOT gates of arbitrary fan-in. Later the lower bound was improved

to exponential size in [102], and eventually an optimal lower bound was established in [37]. Then

the next question in line was about the power of AC0 circuits with parity gates. Let AC0 [⊕𝑝] denote
the class of AC0 circuits with MOD-𝑝 gates. An exponential size lower bound was proved for AC0 [⊕2]in
[77] for the majority function on 𝑛 bits. Majority too lies in P and lower classes. For any two primes

𝑝 ≠ 𝑞, an exponential size lower bound for the MOD-𝑝 function was proved for the AC0 [⊕𝑞] circuits
in [86]. Based on these lower bounds, the logical next step was to move towards the following two

classes that are more expressive: (i) ACC, the class of AC0 circuits with MOD-𝑚 gates for arbitrary

constant𝑚 > 1; (ii) TC0, the class of AC0 circuits with majority (or equivalently, threshold) gates.

Note that, TC0 can simulate ACC.
Failing to prove that NP is not contained in polynomial-size non-uniform ACC circuits, the lower

bound question was relaxed further. The next question asked was, whether this lower bound

can be established for NEXP, or even EXPNP. Note that, MAEXP is the smallest class known to have

super-polynomial lower bounds for unrestricted Boolean circuits [13] (although, in [53] it was

shown that NEXPRP, that is contained in MAEXP, can’t have polynomial-size circuits of both types,

Boolean and arithmetic). MAEXP contains NEXP, and is incomparable to EXPNP. Even for EXPNP, the

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

On Limiting & Limited Non-determinism in NEXP Lower Bounds 3

super-polynomial lower bound for ACC (even depth-3 AC0 [⊕6]) were elusive for about three decades.
In his seminal work in 2010s, Williams [99] showed super-polynomial ACC lower bounds for NEXP,
and exponential ACC lower bounds for EXPNP. He used connections between fast algorithms and

lower bounds from his prior work [98]. For TC0 lower bounds, MAEXP is still the smallest class we

know.

Pessimists on the other hand started formulating barriers to show that all the techniques used in

the bottom-up approach are not good enough to prove stronger lower bounds. There are three main

barriers in the literature that any lower bound technique should overcome: (i) Relativization [10],

(ii) Algebrization or Algebric Relativization [1], and (iii) Natural Proofs barrier [78]. The first two

barriers essentially say that techniques that relativize, i.e. work even in presence of arbitrary oracles,

fail to prove most of the lower bounds. This is because, for most of the lower bound questions,

there are some oracles relative to which the lower bound is known to hold, and there are other

oracles relative to which the lower bound is not known to hold. In this paper we will only focus on

the third barrier.

The Natural Proofs barrier of Razborov and Rudich [78] argues that almost all known proofs of

nonuniform circuit lower bounds, entail algorithms/properties that: (i) are efficient (constructivity),
(ii) distinguish hard functions from easy by only accepting hard functions (usefulness), (iii) accept
many hard functions (largeness). Here by hard (resp. easy) we mean that the function requires bigger

(resp. smaller) circuits to compute, typically super-polynomial (resp. polynomial) in size. Any such

algorithm would refute widely believed cryptography primitives, and thus Natural Proofs are self-

limiting in the sense that: in order to prove weak lower bounds, they provide algorithms that refute

strong lower bounds that are also believed to be true. Even the small class TC0 supports cryptography
[59, 64, 69], and to prove lower bounds against it we would need un-Natural techniques.

Main results:We focus on three different directions in this paper: (i) We describe ways in which

Williams fast algorithms to lower bounds connection from [98] can be extended to lower bounds for

classes smaller than NEXP, by limiting the non-determinism used by NEXP (in terms of the number

of non-deterministic branches that accept). This can be viewed as a progress towards establishing

similar connections, and hence proving lower bounds, for EXP and lower complexity classes. (ii)

Then we discuss how lower bounds for these smaller classes evade the Natural Proofs barrier. (iii)

Finally we extend the current NEXP lower bounds by allowing circuit classes a limited amount of

non-determinism. We also discuss how small increments in our results would lead to much stronger

lower bounds such as NEXP ⊄ P/𝑝𝑜𝑙𝑦. This can also be viewed as a new bottom-up approach, where

gradually lifting the restriction on the amount of non-determinism used by the circuits, would lead

to NEXP ⊄ P/𝑝𝑜𝑙𝑦.

1.1 Fast (unambiguous) algorithms imply UEXP circuit lower bounds
In the direction of algorithm-design too, the questions were relaxed. The intial question was: do

NP-complete languages have polynomial time algorithms? The rlaxed version is: do they have

algorithms that beat the naive brute-force strategy? For solving circuit satisfiability (Ckt-SAT), the
canonical NP-complete language, the naive approach runs in 2

𝑛𝑚 deterministic time for 𝑛-input

𝑚-size circuits. The relaxed questions are: Is it possible to design a 2
𝑐𝑛𝑝𝑜𝑙𝑦 (𝑚) time algorithm for

any constant 𝑐 < 1? Or even 2
𝑛𝑝𝑜𝑙𝑦 (𝑚)/𝑠𝑝 (𝑛) time algorithm for some super-polynomial function

𝑠𝑝? While pessimists formulated many conjunctures [20, 43, 45, 96] believing that no substantial

progress is possible, optimists took the bottom-up approach and started designing fast algorithms

for restricted classes. The most studied restrictions in this line are: 3-CNF ⊆ k-CNF ⊆ CNF ⊆ AC0 ⊆
ACC ⊆ TC0 ⊆ NC1 ⊆ NC ⊆ P/𝑝𝑜𝑙𝑦 [17, 18, 23, 39, 42, 44, 63, 65, 67, 74, 75, 80–82, 84, 99, 101].

We often think of algorithm design and lower bounds as being antithetical, for instance: the

two statements, P = NP and P ≠ NP, can’t be simultaneously true. But there have been a series of

, Vol. 1, No. 1, Article . Publication date: December 2020.

4 Anant Dhayal and Russell Impagliazzo

results showing that efficient algorithm for certain problem in certain computation model, implies a

lower bound for related problem in other computation model [41, 53, 68, 98, 99, 101]. The intuition

behind these connections is: if there is a fast algorithm for a circuit class, then the algorithm must

be exploiting a simple structure or pattern that exists in that class, and thus that class can’t simulate

complex classes.
Williams in his ACC lower bound result, first connects the relaxed versions of P = NP and

NP ⊄ P/𝑝𝑜𝑙𝑦 that we discussed above [98]: for any super-polynomial function 𝑠𝑝 , a 2𝑛/𝑠𝑝 (𝑛) time

Ckt-SAT algorithm for polynomial-size Boolean circuits implies NEXP ⊄ P/𝑝𝑜𝑙𝑦. Infact, an equally

fast non-deterministic algorithm for circuit tautology suffices. His connection (and many others

in the literature) also preserve the nature of circuits. That is, fast satifiability algorithm for a

restricted sub-class of Boolean circuits C, implies lower bounds against C circuits. He developed

fast satisfiability algorithm for ACC circuits, and then used this connection to establish NEXP and
EXPNP lower bounds [99].
Unfortunately, most of these connections are only known to show circuit lower bounds in

relatively large complexity classes such as NEXP or EXPNP (although [68] extends this to scaled-down

versions of these classes). Establishment of similar connections for lower classes like EXP, can be

seen as the first step towards establishing lower bounds for them.

One of the main focus of this paper is to extend these connections to non-uniform lower bounds

for the class UEXP of languages recognized by unambiguous non-deterministic machines, and to

related classes. Since UEXP lies between EXP and NEXP, we believe that lower bounds for UEXP based
on algorithms would be progress towards making similar connections for EXP. We don’t known

how far UEXP is from NEXP. In [93] a randomized reduction was given from NP to promise-UP which
only succeeds with a low probability. In [27] it was shown that derandomizing this reduction, or

even increasing the success probability, will have unlikely consequences.

We show that fast unambiguous non-deterministic circuit analysis algorithms imply circuit lower

bounds for UEXP. In our first result we use fast tautology and canonization algorithms. Roughly

speaking, a canonization algorithm for a circuit class, is an algorithm that only accepts one circuit

per function or truth-table, from that class (see Section 4.1 for a technical definition).

Theorem 1.1. USUBE algorithms for tautology and canonization of C imply UE/𝑂 (𝑛 log𝑛) ⊄ C.
We use C to denote any non-uniform circuit class from the set {AC0, ACC0, TC0, NC1, NC, P/𝑝𝑜𝑙𝑦}.

This set is called typical in the literature.Wemeasure the complexity of any circuit analysis algorithm

in terms of the input wires, and not the circuit size. We omit the size parameter for circuits if

it’s polynomial, i.e. C(𝑝𝑜𝑙𝑦) = C. Here by SUBE (sub-E) we denote the class of languages that

have 2
𝜖𝑛
-time algorithm for each 𝜖 > 0. USUBE is the extension to unambiguous non-deterministic

algorithms.

Since canonization is not prominently used circuit analysis algorithm in the lower bound liter-

ature, we replace the assumption of fast canonization with different circuit analysis algorithms.

Based on the definition of canonization, a fast Π2SAT algorithm would be an ideal replacement. We

derive the following theorem.

Theorem 1.2. For every constant 𝑘1 there is a constant 𝑘2, such that if Π2SAT on 𝑛 variables and 𝑛
clauses can be solved in UTIME(2𝑛/(log𝑛)𝑘2), then UE/𝑛 ⊄ SIZE(𝑛(log𝑛)𝑘1).
Relaxing the unambiguity condition a little, helps us totally get rid of the fast canonization

assumption. One other well studied variant of UTIME(𝑡) is FewTIME(𝑡), which was first defined in

[3]. 𝐿 ∈ FewTIME(𝑡), if there exists a constant 𝑐 and a non-deterministic verifier 𝑉 , such that the

number of accepting certificates on any input is bounded by 𝑡𝑐 . We get results for a slightly relaxed

version of FewTIME, the class F̃ewTIME(𝑡).

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 5

Definition 1.3. F̃ewTIME(𝑡) is the class of problems decidable by NTIME(𝑡) verifiers, where the
number of accepting paths are bounded by 2

2
(log log 𝑡)2

.

Actually, even if we bound the number of accepting paths by 2
2
𝑠𝑐 (𝑡) log log 𝑡

for any super constant

function 𝑠𝑐 , the definition would satisfy all our results. We use 𝑠𝑐 (𝑡) = log log 𝑡 for the sake of

cleaner presentation. Note that, this definition allows any F̃ewE verifier to have 2
2
(log𝑛)2+𝑂 (log𝑛)

many

accepting paths compared to the 2
2
log𝑛+𝑂 (1)

upper bound for the FewE verifiers. But it’s still very

‘few’ compared to the maximum possible by an NE verifier, that is 22
𝑂 (𝑛)

. Definition of F̃ewSUBE is
analogous to USUBE. We derive the following result.

Theorem 1.4. F̃ewSUBE tautology algorithm for C circuits implies ∀𝑘 F̃ewE/𝑂 (𝑛 log𝑛) ⊄ C(𝑛𝑘).

Lastly, we replace canonization with exact proper learning (that makes membership and equiv-

alence queries) and derive the following result. Here by proper we mean that any hypothesis

produced by the learning algorithm is a polynomial-size C circuit, i.e., belongs to the class being

learned (see Section 4.4 for a technical definition).

Theorem 1.5. USUBE algorithms for tautology and proper-learning of C imply UE/𝑂 (𝑛 log𝑛) ⊄ C.

Almost all of our connections work for any typical restricted circuit class C. But still we derive
some translation results to show that, any lower bound frame work (that may be different from ours),

if uses certain set of fast unambiguous circuit analysis algorithms, and only works for unrestricted

Boolean circuits, now can be used for C. These translations are tight enough to be useful in the

scenario where the new framework only requires the algorithms to be UTIME(2𝑛/𝑠𝑝 (𝑛)) for some

super-polynomial function 𝑠𝑝 (𝑛), as opposed to our frameworks that require USUBE algorithms.

Theorem 1.6. Either P ⊄ C, or:
(1) UTIME(2𝑛/𝑛𝜔 (1)) tautology and canonization algorithms for C, imply UTIME(2𝑛/𝑛𝜔 (1)) tautol-

ogy and canonization algorithm for unrestricted Boolean circuits; and
(2) F̃ewTIME(2𝑛/𝑛𝜔 (1)) tautology algorithm for C, implies F̃ewTIME(2𝑛/𝑛𝜔 (1)) tautology algorithm

for unrestricted Boolean circuits.

1.2 UEXP lower bounds are constructive, useful, and unique
To inquire why lower bounds for smaller classes like TC0 are still open after decades of efforts,

Williams proved rigorous equivalences between NEXP lower bounds and useful properties that are

constructive [100]. He showed that the lower bound NEXP ⊄ C is equivalent to the existence of

P/log𝑛 constructive property against C circuits. As it is believed that there can’t be any Natural

Proofs against TC0 and more expressive circuit classes, this is a negative result in the sense that

any NEXP lower bound, already satisfies two of the three conditions of Natural Proofs, regardless of

the technique used to obtain it.

We extend these results to characterize UEXP lower bounds. Our connections show that the future

of UEXP lower bounds is brighter in the sense that, they not only ‘not satisfy’ the third condition

of Natural Proofs, but they satisfy a different third condition that is totally opposite of largeness.

We introduce a new notion called Unique Proofs. Unique properties are those that contain exactly

one function of each input length. Useful unique properties are implicitly proving a circuit lower

bound for a specific function: the one function that has the property, but might not explicitly spell

out which function the lower bound holds for. We derive the following equivalence.

Theorem 1.7. UE/𝑛 ⊄ C if and only if a P/log𝑛 computable unique property exists against C.

, Vol. 1, No. 1, Article . Publication date: December 2020.

6 Anant Dhayal and Russell Impagliazzo

In [72] the NE ∩ Co-NE ⊄ C lower bound was shown to yield a P computable property against C.
The equivalence was also conjectured to be true. We prove that conjecture for the case of UE∩Co-UE
lower bounds and P computable unique properties.

Theorem 1.8. UE ∩ Co-UE ⊄ C if and only if a P computable unique property exists against C.

As an application of these connections, we get USUBEXP derandomization of BPP from different

UEXP lower bounds.

Theorem 1.9. (1) UEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-UTIME(𝑛𝜖)/𝑛𝜖
(2) UEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-UTIME(𝑛𝜖)/𝑛𝜖
(3) UEXP ∩ Co-UEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-UTIME(𝑛𝜖)
(4) UEXP ∩ Co-UEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-UTIME(𝑛𝜖)

1.3 Gradually increasing the non-determinism in circuits for NEXP lower bounds:
With a hope to prove NEXP ⊄ P/𝑝𝑜𝑙𝑦

We extend the known NEXP lower bounds by allowing the restricted circuit classes some amount

of non-determinism. We also discuss why it would be difficult to increase this non-determinism

without proving stronger lower bounds, such as NEXP ⊄ P/𝑝𝑜𝑙𝑦. This can also be seen as an

approach to prove NEXP ⊄ P/𝑝𝑜𝑙𝑦, by gradually increasing the non-determinism in circuits in our

current lower bounds.

We use a weaker version of non-determinism (due to technical difficulties that we discuss in the

next section), but we’ll see that even this kind of non-determinism is very powerful. We first define

all the types of non-determinism that circuits in our lower bounds would use.

P/𝑝𝑜𝑙𝑦 is equivalent to the class of non-uniform polynomial size circuits. A language 𝐿 ∈ SIZE(𝑠)
if 𝐿 is accepted by a sequence of deterministic Boolean circuits {𝐶𝑛}𝑛∈N of size 𝑂 (𝑠 (𝑛)), where 𝐶𝑛

computes 𝐿𝑛 (𝑛𝑡ℎ-slice of 𝐿) and the size is measured by the number of wires.

Similarly NP/𝑝𝑜𝑙𝑦 is equivalent to the class of non-uniform non-deterministic polynomial size

circuits. A non-deterministic circuit has extra guess inputs, and the circuit accepts an input, if there

is a setting of these guess inputs that makes the output 1.

Definition 1.10. A language 𝐿 ∈ NSIZE(𝑠) if 𝐿 is accepted by a sequence of non-deterministic

Boolean circuits {𝐶𝑛}𝑛∈N of size 𝑂 (𝑠 (𝑛)). 𝐶𝑛 receives two inputs, 𝑥 of length 𝑛 and guess input 𝑦.

The function 𝑓𝐶 : {0, 1}𝑛 → {0, 1} computed by 𝐶 satisfies, 𝑓𝐶 (𝑥) = 1 ⇐⇒ ∃𝑦 𝐶 (𝑥,𝑦) = 1.

NP/𝑝𝑜𝑙𝑦∩Co-NP/𝑝𝑜𝑙𝑦 is equivalent to the class of languages that have non-deterministic circuits

for both, the language and its complement. These circuits can also be combined to output an

equivalent Single-Valued or SV circuit.

Definition 1.11. A language 𝐿 ∈ SVSIZE(𝑠) if 𝐿 is accepted by a sequence of non-deterministic

Single-Valued Boolean circuits {𝐶𝑛}𝑛∈N of size 𝑂 (𝑠 (𝑛)). 𝐶𝑛 receives two inputs, 𝑥 of length 𝑛

and guess input 𝑦. 𝐶𝑛 has two outputs, 𝐹𝑙𝑎𝑔𝐶𝑛
and 𝑉𝑎𝑙𝑢𝑒𝐶𝑛

. The circuit 𝐶𝑛 computes function

𝑓𝐶 : {0, 1}𝑛 → {0, 1} if it satisfies the following two promises for any input 𝑥 : (a) ∃𝑦 𝐹𝑙𝑎𝑔𝐶𝑛
(𝑥,𝑦) = 1;

(b) ∀𝑦 𝐹𝑙𝑎𝑔𝐶𝑛
(𝑥,𝑦) = 1 =⇒ 𝑉𝑎𝑙𝑢𝑒𝐶𝑛

(𝑥,𝑦) = 𝑓𝐶 (𝑥).

We define a new type of non-determinism to capture the class (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. This class
is weaker than NP/𝑝𝑜𝑙𝑦 ∩ Co-NP/𝑝𝑜𝑙𝑦 as both the algorithms need to be complimentary on all

the advice sequences. For any language 𝐿 ∈ (NTIME(𝑡) ∩ Co-NTIME(𝑡))/𝑡 , there is a DTIME(𝑡2)
algorithm, that on any 𝑡 size input (which is actually the advice), outputs a pair of non-deterministic

circuits (that correspond to the NTIME(𝑡) and Co-NTIME(𝑡) algorithms) that accept complimentary

set of inputs, and there is an infinite sequence of 𝑡 (𝑛)-size inputs (one for each 𝑛 ∈ N) for which

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 7

the produced pair of circuits accept 𝐿 and 𝐿. We call such pair of circuits promise-SV or prSV, since
there is an algorithm that produces these circuits, and the algorithm satisfies the promise of always

producing circuits that can be combined to become SV. We call the underlying algorithm, a prSV
algorithm.

Definition 1.12. A linear-time algorithm A is called prSV if on each input it outputs a pair of

non-deterministic circuits that accepts some 𝑛′
-bit function 𝑓𝑛′ and its compliment, for some 𝑛′ ≤ 𝑛.

We say 𝐿 ∈ prSVASIZE(𝑠), if for 𝑛 ∈ N, 𝐿𝑛 has 𝑂 (𝑠 (𝑛)) size non-deterministic circuits 𝐶𝑛 and 𝐶 ′
𝑛 ,

deciding it and its compliment. Additionally, these circuits are produced by the prSV algorithm

A on some 𝑠 (𝑛)-length input. 𝐿 ∈ prSVSIZE(𝑠) denotes that 𝐿 ∈ prSVASIZE(𝑠) for some prSV
algorithm A.

The equation prSVSIZE(𝑝𝑜𝑙𝑦) = (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 follows from the definition. We also get,

(NTIME(𝑛𝑘/2) ∩ Co-NTIME(𝑛𝑘/2))/𝑛𝑘/2 ⊆ prSVSIZE(𝑛𝑘) ⊆ (NTIME(𝑛𝑘) ∩ Co-NTIME(𝑛𝑘))/𝑛𝑘 .
These definitions of non-deterministic circuits naturally extend to any restricted circuit class C

of Boolean circuits. For the prSV circuits, the underlying prSV algorithm satisfies an extra promise

of always producing C circuits. This gives us C(𝑠) ⊆ prSV-C(𝑠) ⊆ SV-C(𝑠) ⊆ N-C(𝑠) for any size

parameter 𝑛 ≤ 𝑠 (𝑛) ≤ 2
𝑛
. We use prSV𝑎-C(𝑠) to denote C(𝑠) circuit that uses 𝑎 amount of prSV

non-determinism. SV𝑎-C(𝑠) and N𝑎-C(𝑠) are defined similarly.

Now, we discuss why non-determinism, even the prSV type, is very powerful and can lead to big

lower bounds.

Theorem 1.13. The class SIZE(𝑠) is contained in prSV-3-CNF(𝑠 log𝑛).

Proof. For 𝐿 ∈ SIZE(𝑠) we give a prSV-3-CNF(𝑠 log𝑛) circuit sequence. The underlying prSV
algorithm treats its inputs as SIZE(𝑠) circuits, converts fan-in of each gate to two by adding more

gates, and then converts the input circuit and its compliment into two 3-CNF circuits with𝑂 (𝑠 log𝑛)
guess inputs. The algorithm applies Tseitin transformation [90]: for each gate 𝑔(𝑥,𝑦) it introduces
a new variable 𝑦 that it labels as guess input, and adds clauses for the equation 𝑦 = 𝑔(𝑥,𝑦). Finally
adds a clause with just the guess variable that represents the output gate. □

Such conversions were discussed in [66] for non-deterministic circuits, we observe that they

also extend to prSV circuits. In fact unambiguous prSV non-determinism suffices (the guess inputs

introduced in the proof represents gates of the original deterministic circuit, and take unique values

on any input). Also, the multiplicative log𝑛 factor can be removed if we start with fan-in two

unrestricted Boolean circuits.

The above theorem shows that lower bounds against restricted circuits that contain 3-CNF and

use prSV type of non-determinism, imply lower bounds against unrestricted Boolean circuits. We

derive lower bounds for NE and ENP against such classes, with limited non-determinism. Increasing

the non-determinism in our results won’t be possible without proving lower bounds like ‘ENP is not
simulated by linear-size fan-in-two unrestricted Boolean circuits’, which are still very far from the

reach of current lower bound techniques. Our results also give hope of obtaining TC0 lower bounds,
if one can simulate threshold gates, by the use of less expressive gates and limited non-determinism.

Theorem 1.14. ∩𝜖>0 prSV
𝑛𝜖 -ACC can’t simulate NE.

For ENP we get a variety of lower bounds where the amount of non-determinism increases as we

go down from ACC to k-CNF.

Theorem 1.15. ∩𝜖>0 prSV
𝑛/(log𝑛)𝜖 -AC0, ∩𝜖>0 prSV

𝜖𝑛/(log𝑛)2 -k-CNF, or ∩𝜖>0 prSV
𝜖𝑛-AC0 (𝑛), can’t

simulate ENP.

, Vol. 1, No. 1, Article . Publication date: December 2020.

8 Anant Dhayal and Russell Impagliazzo

One can directly get the lower bound ENP ⊄ ∩𝜖>0 N
𝑛𝜖
-ACC by using Williams sub-exponential

size ACC lower bound. But this direct approach won’t work for lower bounds against sub-linear

non-determinism, and for NE lower bounds (see the next section for full details). Our lower bounds

follow from a more general connection that we build by extending Williams’s connection.

Theorem 1.16. For super-polynomial function 𝑠𝑝 and 𝑠 (𝑛) ≤ 𝑂 (𝑛):
(1) an NTIME(2𝑛−𝑠 (𝑛)𝑐 /𝑠𝑝 (𝑛)) C-tautology algorithm for every 𝑐 > 0 implies NE ⊄ prSV𝑠 (𝑛) -C
(2) an NTIME(2𝑛−3𝑠 (𝑛)/𝑠𝑝 (𝑛)) C-tautology algorithm implies ENP ⊄ prSV𝑠 (𝑛) -C

We also extend Santhanam’s [79] lower bound against fixed-polynomial size deterministic circuits

to prSV circuits.

Theorem 1.17. ∀𝑘 ≥ 1 prAM ⊄ prSVSIZE(𝑛𝑘) and ∀𝑘 ≥ 1 AM/𝜔𝑛 (1) ⊄ prSVSIZE(𝑛𝑘).

We also extend Williams’s connection between non-trivial GAP-SAT algorithm and NEXP lower
bounds. GAP-SAT is the promise problem, where the positive inputs are tautology circuits, and

negative inputs are 𝑠-size circuits that have at most 2
𝑛 (1 − 1/𝑠) satisfying assignments. Note that, a

tautology or a CAPP algorithm also imply a GAP-SAT algorithm. CAPP is the problem of computing

the acceptance probability of 𝑠-size circuits within an additive error of ±1/𝑠 .

Theorem 1.18. An NTIME(2𝑛/𝑠𝑝 (𝑛)) GAP-SAT algorithm for 𝑛-input polynomial-size (NP∩Co-NP)-
oracle circuits, for any super-polynomial function 𝑠𝑝 (𝑛), implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.

As there is no complete language in NP ∩ Co-NP, we need a (possibly different) non-trivial

algorithm for each NP ∩ Co-NP oracle. Note that, for any 𝐴 ∈ NP ∩ Co-NP, tautology (or CAPP) for
poly-size 𝐴-oracle circuits has a trivial algorithm that runs in non-deterministic 𝑝𝑜𝑙𝑦 (𝑛)2𝑛-time:

for all 2
𝑛
inputs, non-deterministically guess the answers to all the oracle queries, and guess their

certificates (for 𝐴 for any positive answer, for 𝐴 for any negative answer).

One can also view NP ∩ Co-NP as PNP∩Co-NP. In this view, our result works separately for any one

NP ∩ Co-NP oracle 𝐴: a non-trivial GAP-SAT algorithm for 𝐴-oracle circuits implies NEXP ⊄ P𝐴/𝑝𝑜𝑙𝑦.
So our result is essentially a relativized version of Williams’s result upto (NP ∩ Co-NP) oracles.

1.4 Our techniques, interesting by-products, and previous work
Lower bounds from Karp-Lipton Theorems and fast tautology algorithms:

Previous work: The idea of fast algorithms to lower bounds, can be traced back to the first

paper where the non-uniform class P/𝑝𝑜𝑙𝑦 was discussed (by Karp and Lipton [55]), where one of

the corollaries (credited to Meyer) is that P = NP =⇒ EXP ⊄ P/𝑝𝑜𝑙𝑦. This can be interpreted as: a

polynomial time algorithm for Ckt-SAT (or any other NP-complete problem), implies EXP ⊄ P/𝑝𝑜𝑙𝑦.
The connection in [55] was established by first establishing EXP ⊂ P/𝑝𝑜𝑙𝑦 =⇒ EXP = ΣP

2
. Any

such non-uniform to uniform collapse is famously called Karp-Lipton Theorem (or KLT for short) in
the literature. The assumed fast SAT algorithm, along with the assumption EXP ⊂ P/𝑝𝑜𝑙𝑦, implies

EXP = ΣP
2
= P and thus contradicts the deterministic time hierarchy [36, 38].

A similar KLT was proved for NEXP in [41]. Similar KLTs have also been proved for EXPNP [14],
PSPACE [9], and related classes [28, 40]. Using the NEXP KLT, an NSUBEXP tautology algorithm

contradicts the non-deterministic time hierarchy [26, 32, 51, 83] by showing NEXP = ΣP
2
= NSUBEXP.

The collapse was extend from ΣP
2
∩ ΠP

2
to MA in [9]. This collapse yields NEXP ⊄ P/𝑝𝑜𝑙𝑦 from an

NSUBEXP CAPP algorithm.

Our work: As a starting point for our connection between fast algorithms and UEXP lower

bounds, we design similar KLTs for the intermediate classes: F̃ewEXP, UEXP, and UEXP ∩ Co-UEXP.

Theorem 1.19. For any 𝑘 ≥ 1:

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 9

(1) F̃ewE/𝑛 ⊂ SIZE(𝑛𝑘) =⇒ F̃ewEXP = MA
(2) UEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ UEXP = MA
(3) UEXP ∩ Co-UEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ UEXP ∩ Co-UEXP = MA

Unfortunately our KLTs doesn’t give the desired lower bound from USUBEXP, or even SUBEXP
algorithms. This is because the first quantifiers of ΣP

2
and MA are not unambiguous. In any case,

SUBEXP tautology or CAPP algorithms are far from the reach of current algorithm design techniques.

Soon we’ll see that USUBE algorithms are sufficient for UEXP lower bounds.

Easy-witness Lemmas:
Previous work: Williams’s work [98] show that even a small progress in SAT and CAPP algo-

rithms will prove super-polynomial NEXP lower bounds. His connection is tighter because he uses

the easy-witness lemma (or EWL for short) from [41], which was the core of the collapse of NEXP
to EXP in the NEXP KLT. The easy-witness technique was first introduced in [52]. We also derive

analogous EWL for UEXP while establishing the UEXP KLT.
EWL for NEXP states that, if NEXP has P/𝑝𝑜𝑙𝑦 circuits, then any NEXP verifier 𝑉 , for every input 𝑥

that it accepts, has a certificate 𝑦 with 𝑉 (𝑥,𝑦) = 1 that is encoded by the truth-table of a P/𝑝𝑜𝑙𝑦
circuit (when the truth-table is seen as a concatenation of the 2

𝑛
outputs). In short, if NEXP has

small circuits, than all NEXP verifiers have small witnesses (i.e., witness encoded by small circuits).

The proof is given by contradiction: if NEXP witnesses have high circuit complexity, then they can

be used to derandomize MA and contradict a certain lower bound.

Our techniques:We prove same connection between the circuit complexity of F̃ewEXP, UEXP,
and UEXP ∩ Co-UEXP, and the witness complexity for corresponding verifiers. Our EWL for F̃ewEXP
uses the technique from [41], and exploits the fact that derandomization of MA only requires limited

non-determinism. For UEXP and UEXP ∩ Co-UEXP EWLs, we use a simpler technique that gives even

stronger results. We show that a specific version of search problem (that searches for the lexico-

graphically smallest certificate) for UEXP verifiers lies within UEXP itself. The circuit complexity of

that search version is same as the circuit complexity of witnesses for UEXP verifiers, so we directly

get the EWL from this reduction. Note that, such reductions are not possible for NEXP verifiers unless
EXPNP = NEXP [46].

Lower bounds from Easy-witness Lemmas and fast tautology algorithms:
Previous work: Even in his approach with NEXP EWL, Williams proves his result by contradicting

the non-deterministic hierarchy. He only needs a NTIME(2𝑛/𝑠𝑝 (𝑛)) tautology algorithm for 𝑛-input

polynomial-size circuits, for any super-polynomial function 𝑠𝑝 . This is a huge improvement over

the NSUBEXP tautology algorithm, that was required if one uses the NEXP KLT directly.
Ourwork and technique:WeuseWilliams’s framework and get UEXP lower bounds from USUBE

(∪𝜖>0UTIME(2𝜖𝑛)) algorithm by using our UEXP EWL. The main reason why we need faster algorithms

is that we don’t have any hierarchy for UTIME that is as good as the hierarchies for NTIME. Note
that, before this no UEXP lower bound was obtained, even from a deterministic SUBEXP tautology
algorithm. Although our approach requires a canonization algorithm too, for unambiguously

guessing the witness circuits, we get rid of this requirement for the case of F̃ewEXP lower bounds.
Related work: Similar results were also proved for BPEXP [22], where they require randomized

tautology algorithms (with two-sided error). They require algorithms to run in 2
𝑛/(log𝑛)𝜔 (1)

, which

is slightly faster than SUBE. Although, they get sharper lower bounds than BPEXP ⊄ P/𝑝𝑜𝑙𝑦, namely

BPE ⊄ SIZE(𝑛(log𝑛)𝑂 (1)), and only require the fast algorithm to run for quadratic-size circuits,

BPEXP is incomparable to NEXP. Only a fast randomized algorithm (with zero-sided error) to ZPEXP

, Vol. 1, No. 1, Article . Publication date: December 2020.

10 Anant Dhayal and Russell Impagliazzo

lower bound, or a fast randomized algorithm (with one-sided error) to REXP lower bound, would be

considered a strict improvement over Williams’s connection for NEXP.
In [68], they extended Williams’s connection to NQP (non-deterministic quasi-polynomial time).

There are two major differences with our work. First, the NQP lower bounds require fast algorithms

for circuits with size sub-exponential or higher, whereas our results only need fast algorithms for

polynomial-size circuits. Second, there is no known comparison between NQP and F̃ewEXP. Even
if we try to distribute all non-deterministic branches of an NQP verifier within exponential time,

the new EXP verifier will have more branches that 2
𝑛𝑂 (log𝑛)

(also note that, our results would go

through even for slightly strict definition of F̃ew).

Super-linear lower bounds from fast Π2SAT algorithms:
Previous work: In [22] they also showed that a randomized algorithm for Π2SAT with linear-

clauses that runs in 2
𝑛/(log𝑛)𝜔 (1)

time implies BPE ⊄ SIZE(𝑛(log𝑛)𝑂 (1)).
Our work:We show an analogous result for unambiguous non-deterministic time. We show that,

a UTIME(2𝑛/(log𝑛)𝜔 (1)) algorithm for Π2SAT with linear clauses implies UE/𝑛 ⊄ SIZE(𝑛(log𝑛)𝑂 (1)).
Our technique: We get this result by genaralizing Williams’s connection, whereas in [22] they

use altogether different techniques. Note that, one can’t directly get such connections between non-

deterministic Π2SAT algorithms and NE lower bounds, because the NEXP EWL is not as fine-grained

as our UEXP EWL.

Lower bounds from fast learning algorithms:
Previous work: The two commonly studied learning models are: “the Angluin’s exact learning

model” [6], and “the Valiant’s PAC model” [92]. Fast learning algorithms in these models have been

known to yield lower bounds [30, 35, 57, 72, 73].

In [30] it was implicit that, if a circuit (concept) class C is exact learnable in SUBEXPNP, then
EXPNP ⊄ C. In [35, 57] it was improved to: SUBEXP learning algorithm implies EXP ⊄ C. In [72] it

was implicit that: NSUBEXP learning algorithm (where on any input circuit regardless of its size,

there is one branch where the algorithm outputs a hypothesis, and the hypothesis is guaranteed to

be correct only for polynomial size circuits) implies NEXP ⊄ C. In [73] it was shown that if C admits

2
𝑛/𝑛𝜔 (1)

randomized (weak) learning algorithm (with membership queries), then BPEXP ⊄ C.
Our work:We show that unambiguous learning algorithm implies UE lower bounds. As far as we

know this is the first lower bound result from unambiguous learning. Our results are weak in sense

that: the lower bound requires UE to use𝑂 (𝑛 log𝑛) bits of advice, we also need a tautology algorithm
to assist the learning, and our algorithm only makes membership queries to polynomial-size circuits

(it can make queries to sub-exponential size too, but then we would require fast tautology algorithm

for sub-exponential size circuits). Even with these small weaknesses, our connection is not implied

by any of the previous known connections, and our lower bound is strictly better than EXPNP ⊄ C
and NEXP ⊄ C, and incomparable to BPEXP ⊄ C. For the EXP ⊄ C lower bound, they used a clever

diagonalization argument in [57] that directly doesn’t work for UTIME learning (and also NTIME
learning, because it’s not clear how the diagonalization process will beat all the non-deterministic

branches for all the C circuits).

Our Technique: Unlike other results, we use Williams’s framework itself, and simulate canon-

ization using a learning algorithm that is assisted with a tautology algorithm.

Avoiding the Natural Proofs barrier:
Our work and technique:We avoid the barrier by taking the route NEXP ⊇ UEXP ⊇ EXP, and

hit the much safer unique properties. Using our UEXP EWL we prove equivalence between UEXP

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 11

lower bounds and natural properties that are not large, instead are unique. EXP lower bounds were

known to yield P computable unique properties, our work extends this to UEXP ∩ Co-UEXP lower
bounds, and also establish the equivalence.

Related work:We put an upper bound on the number of non-deterministic branches that accept.

If one wants to start by putting an lower bound, they would have to take the NEXP ⊇ REXP ⊇ EXP
route. Williams work [100] also indicates that this other direction would not be feasible, if one

wants to use the easy-witness technique, as certain lower bounds for witnesses of REXP and ZPEXP
are equivalent to the existence of natural properties.

Other related work [24] that talks about properties sparser than natural properties, shows that

under the same cryptography primitives that indicates the non-existence of natural properties,

there is a property with density 1/2𝑛 (log𝑛)𝑂 (1)
(vs. density 1/2𝑂 (𝑛)

of a natural property) against

P/𝑝𝑜𝑙𝑦, that establishes NP ⊄ P/𝑝𝑜𝑙𝑦. In [21] they give hope of avoiding the Natural Proofs barrier

by establishing equivalence between NP ⊄ P/𝑝𝑜𝑙𝑦 and natural properties that accept SAT and are

useful against only those polynomial-size circuits that never error on SAT.

Lower bounds to derandomization:
Previouswork: Relationship between derandomization and uniform/non-uniform lower bounds

has been studied extensively in the past [8, 9, 19, 41, 47, 48, 70, 71, 88, 91, 100]. In our results we

only focus on the lower end of this spectrum, i.e. derandomization that requires sub-exponential

time. Note that, BPP is a sub-class of P/𝑝𝑜𝑙𝑦, and we also don’t know if NEXP ≠ BPP.
First in a series of work [9, 70, 71] non-uniform lower bounds were shown to yield derandom-

ization of the class BPP. In the lower end of the spectrum it was shown that EXP ⊄ P/𝑝𝑜𝑙𝑦 implies

BPP ⊂ io-SUBEXP. Later in [47] this connection was extended to the uniform lower bound EXP ≠ BPP.
This lower bound was actually shown to be equivalent to BPP ⊂ io-Heur-SUBEXP. In [41, 100] these

connections and equivalences were extended to NEXP and REXP lower bounds, and derandomization

that works in NSUBEXP and ZPSUBEXP.
Our work:We extend these connections to UEXP and UEXP ∩ Co-UEXP lower bounds, and deran-

domization that works in USUBEXP.
Our technique: We use our connections between UEXP lower bounds and unique properties.

We only get the lower bounds to derandomization connections, and not the reverse connections. It

is due to the lack of complete languages and strong hierarchies for UEXP.

Unconditional super-polynomial lower bounds:
Previous work: Although, TC0 lower bounds are still untouchable, and at this point we don’t

even have NEXP lower bound for depth-two circuits with linear-threshold gates, some improvements

have been made after Williams’s ACC lower bound. In [101] it was shown that NEXP doesn’t have
ACC circuits where the bottom most layer is allowed to have linear-threshold gates. In [97] the

circuit class was further generalized by allowing the top gate to be any sparse symmetric function

(exact majority is one example).

Our work: We extend the NEXP lower bound against ACC by allowing the circuits to use sub-

polynomial amount of prSV non-determinism. For the case of ENP, our lower bounds allow almost

sub-linear amount of non-determinism as we go down to non-uniform k-CNF circuits. Recall that,

even k-CNF circuits are very powerful with such type of non-determinism (Theorem 1.13), and if

we increase the amount to linear we will get super-linear lower bounds for ENP.
Our techniques: One can directly get the lower bounds against ∩𝜖>0 N

𝑛𝜖
-ACC for ENP and NEXP

witnesses, by using Williams sub-exponential size ACC lower bound. Any N𝑛
𝜖

-ACC circuit can be

, Vol. 1, No. 1, Article . Publication date: December 2020.

12 Anant Dhayal and Russell Impagliazzo

converted to a sub-exponential size ACC circuit by OR-ing over all the non-deterministic inputs.

Williams used his fast ACC algorithm for sub-exponential size in his result.

There are two drawbacks of this direct approach. First, it requires a very large size. For instance, for

sub-linear non-deterministic inputs, the size of the resultant deterministic circuit is ∩𝜖>0SIZE(2𝜖𝑛).
Second, even if we have fast algorithms for these large circuits, the lower bounds don’t transfer to

NEXP. The fast algorithms can only give lower bounds for NEXP witnesses, or ENP. This is because
the NEXP EWL is not that fine-grained.

So we design an NEXP EWL for prSV non-deterministic circuits. Our EWL also works for the case of
limited non-determinism. As far as we know, this is the first EWL that talks about any kind of non-

deterministic circuits. We use our EWL and combine the non-deterministic and co-non-deterministic

circuits for NEXP witnesses in a clever way, to yield NEXP ⊄ ∩𝜖>0 prSV
𝑛𝜖ACC. Since our technique

only requires fast algorithms for polynomial-size circuits, we also get lower bounds with sub-linear

non-determinism, for ENP against circuit classes lower than ACC.
Previous work: Note that, there was already an NEXP KLT for (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 which gives

NEXP = AM [95], and can be extended to NEXP = MANP∩Co-NP using results from [16]. This KLT implies

that an NSUBEXP tautology algorithm would yield NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. But we use the EWL
to derive lower bounds from much slower algorithms.

Extension of NEXP KLT and new gap theorems:
Our work:While deriving the EWL we also prove the converse of this KLT and extend it to the

class EXPNP| | , where the subscript ‘| |’ means that the algorithm is only allowed to make non-adaptive

queires. This extension also applies to the NEXP KLT for P/𝑝𝑜𝑙𝑦. The equivalence of non-uniform
lower bounds for NEXP and EXPNP| | were already known (attributed to Buhrman in [29]). Our result

proves an equivalence between uniform lower bounds, and thus results in a better gap theorem

for MA than what was previous known [41]. We also get similar gap theorem for MANP∩Co-NP. As
MA ⊆ MANP∩Co-NP ⊆ AM, this can be seen as an intermediate step for proving a gap theorem for AM.

Using the EWL we also get a gap/speed-up theorem for CAPP for (NP ∩ Co-NP)-oracle circuits. We

first extend Williams connection to show that, non-trivial CAPP algorithm for (NP ∩ Co-NP)-oracle
circuits imply NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. As this lower bound is equivalent to NSUBEXP CAPP
algorithm (that works infinitely often, and uses sub-polynomial advice), we get that non-trivial

savings in CAPP for (NP ∩ Co-NP)-oracle circuits imply sub-exponential savings.

Our technique: In the extension of the KLT to EXPNP| | , in some sense we derive an EWL for EXPNP| | ,

where the witness circuit captures all the NP-oracle queries on all 𝑛-length inputs.

Unconditional fixed-polynomial size lower bounds:
Previous work: This work of fixed-polynomial size lower bounds was started by Kannan in

1982 [54]. He used the low-end KLT for NP, which collapses the polynomial heirarchy to ΣP
2
∩ ΠP

2

[55], to prove fix-polynomial lower bounds for ΣP
2
∩ ΠP

2
. Better lower bounds were proved using

improved low-end KLTs [12, 15, 56, 62, 94], before Santhnam [79] gave the lower bound for MA/1
and prMA, using the high-end KLT for PSPACE from [9].

For non-deterministic and SV non-deterministic circuits, the best high-end KLT was given in [8],

which collapses PSPACE to M(AM| |Co-NP). In [87] this KLT was used to give fixed-polynomial lower

bounds for prM(AM| |Co-NP) against non-deterministic and SV non-deterministic circuits. The class

M(AM| |Co-NP) lies in the third-level of the polynomial hierarchy and contains AM and ΣP
2
.

Our work and technique: We establish fixed-polynomial lower bounds for prAM against prSV
non-deterministic circuits. Note that, in this lower bound, the class has to have one language that

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 13

beats all of the (NTIME(𝑛𝑘) ∩Co-NTIME(𝑛𝑘))/𝑛𝑘 algorithms for each 𝑘 ≥ 1. The main technical diffi-

culty in proving this lower bound was the lack of complete problems for NTIME(𝑛𝑘)∩Co-NTIME(𝑛𝑘).
Prior to our result, the best known lower bounds for prAM were against fixed-polynomial determin-

istic circuits.

1.5 Organization of the paper
In the Section 2 we discuss and define all the technical definitions that we use. In the Section 3

we derive the EWL and KLT for UEXP and related classes. In the Section 4 we derive the connections

between fast unambiguous circuit analysis algorithms and circuit lower bounds. In the Section 5 we

derive connections between unique properties and UEXP lower bounds, derive fast unambiguous

derandomization results from UEXP lower bounds. In the Section 6 we give all the results regarding

the prSV non-deterministic circuits. Finally in the Section 7 we give concluding remarks and discuss

some open problems.

2 PRELIMINARIES
Basic notations: Unless a new range is declared during the usage, we use 𝑡 for time-constructible

functions 𝑛 ≤ 𝑡 (𝑛) ≤ 2
𝑛𝑂 (1)

, 𝑎 for advice functions 0 ≤ 𝑎(𝑛) ≤ 𝑝𝑜𝑙𝑦 (𝑛), 𝑠 for circuit sizes (number

of wires) 𝑛 ≤ 𝑠 (𝑛) ≤ 2
𝑛
. For language 𝐿 we use 𝐿𝑛 = {𝑥 | 𝑥 ∈ 𝐿 ∧ |𝑥 | = 𝑛} to denote the 𝑛𝑡ℎ-slice of

𝐿 (or the characteristic function of 𝐿 on 𝑛-length inputs). For circuit 𝐶 , we use 𝑡𝑡 (𝐶) to denote its

truth-table, and |𝐶 | to denote its size.

Uniform classes:We assume that the reader is familiar with the standard complexity classes

such as P, NP, RP, UP, BPP, ZPP, MA, AM, ΣP
2
,ΠP

2
, PH (see [7]) and their corresponding complexity mea-

sures, DTIME, NTIME, RTIME, UTIME, BPTIME, ZPTIME, MATIME, AMTIME, Σ2TIME, Π2TIME. For the
special cases of ΣP

2
,ΠP

2
, we omit the superscript P and simply write Σ2,Π2. For C = D, N, R, U, BP, ZP,

MA, AM, Σ2,Π2: CTIME(𝑡) denotes the class of languages accepted by CTIMEmachines that run in𝑂 (𝑡)
time. CE, CEXP, CSUBE, CSUBEXP, denote the classes∪𝑐≥0CTIME(2𝑐𝑛),∪𝑐≥0CTIME(2𝑛

𝑐),∩𝑐≥0CTIME(2𝑐𝑛),
∩𝑐≥0CTIME(2𝑛

𝑐) respectively. We assume familiarity with Ckt-SAT (circuit satisfiability), Ckt-TAUT
(circuit tautology), k-SAT, k-TAUT, CNF-SAT, DNF-TAUT, Σ2-SAT and Π2-SAT.

Zero-error classes: We extend the concept of zero-error class to non-deterministic and un-

ambiguous classes. We do this for the sake of clarity in certain arguments, and specially for

distinguishing between certain non-uniform classes.

𝐿 ∈ ZCTIME(𝑡) if there exists a Turing machine 𝑀 , that for input (𝑥,𝑦) with |𝑥 | = 𝑛 and

|𝑦 | = 𝑐 · 𝑡 (𝑛) for some constant 𝑐 , runs in time 𝑐 · 𝑡 (𝑛) for ∀𝑛 ∈ N, and whose output lies in {1, ?}
if 𝑥 ∈ 𝐿, and in {0, ?} if 𝑥 ∉ 𝐿. Additionally, the quantity Σ𝑦:𝑀 (𝑥,𝑦) ∈{0,1}1 is equal to: 1 for C = U

(uniqueness), ≥ 1

2
× 2

𝑐 ·𝑡 (𝑛)
for C = R (largeness), ≥ 1 for C = N (existence). The verifier/predicate

corresponding to𝑀 is called zero-error non-deterministic. For the special cases of C = U and C = R,
its called zero-error unambiguous and zero-error randomized respectively.

Remark : ZRTIME = ZPTIME, and for C = N, R, U, ZCTIME(𝑡) = CTIME(𝑡) ∩ Co-CTIME(𝑡) follows
by a similar argument that shows ZPTIME(𝑡) = RTIME(𝑡) ∩ Co-RTIME(𝑡).

Circuit classes:We assume basic familiarity with Boolean circuits and their sub-classes. We use

C to denote any typical non-uniform circuit class, i.e., any class from the set {AC0, ACC0, TC0, NC1, NC,
P/𝑝𝑜𝑙𝑦}. All these circuit classes are of polynomial size. We use C(𝑠) to denote the class of 𝑂 (𝑠)-
size C circuits. For truth-table 𝑡𝑡 , we use 𝑐𝑘𝑡C (𝑡𝑡) to denote its exact C circuit complexity, i.e.

the minimum size of any C circuit 𝐶 whose truth-table (when concatenated to make the string

, Vol. 1, No. 1, Article . Publication date: December 2020.

14 Anant Dhayal and Russell Impagliazzo

𝐶 (00 . . . 0) . . .𝐶 (11 . . . 1)) is 𝑡𝑡 . In the case of unrestricted Boolean circuits, instead of C(𝑠) and
𝑐𝑘𝑡C (𝑡𝑡), we use SIZE(𝑠) and 𝑐𝑘𝑡 (𝑡𝑡) respectively. 𝑐𝑘𝑡𝑀 (𝑡𝑡) denotes the minimum size of any𝑀-

oracle circuit whose truth-table is 𝑡𝑡 .

Non-uniform classes: 𝐿 ∈ Γ/𝑎 if there exists an advice-taking Γ Turing Machine𝑀 , and advice

sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: 𝑥 ∈ 𝐿 ⇐⇒ 𝑀 (𝑥)/𝑎 |𝑥 | = 1. For semantic

classes, the machine𝑀 only needs to satisfy the semantic promise on the correct advice sequence

{𝑎𝑛}𝑛∈N (and not on all advice sequences). Below we define an exception for C = N, R, U:

(1) 𝐿 ∈ (CTIME(𝑡) ∩ Co-CTIME(𝑡))/𝑎: If there are NTIME(𝑡) Turing Machines 𝑀 and 𝑀 ′
, and

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: (i) 𝑥 ∈ 𝐿 ⇐⇒ 𝑀 (𝑥)/𝑎 |𝑥 | = 1;

(ii) both𝑀 and𝑀 ′
satisfy the semantic promise on {𝑎𝑛}𝑛∈N (for C = N there is no promise);

and (iii) both accept complement languages. For the other advice sequences,𝑀 and𝑀 ′
are not

required to satisfy the semantic promise, but are required to accept complement languages.

(2) 𝐿 ∈ ZCTIME(𝑡)/𝑎: It’s the same as (1), except that in the “other advice sequences” part,𝑀 and

𝑀 ′
are not required to accept complement languages. That is, both𝑀 and𝑀 ′

are required

to accept complement languages just for some correct advice sequence, and simultaneously

satisfy the semantic promise. Equivalently, there is a ZCTIME(𝑡) Turing Machine 𝑁 , and

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), such that: 𝑥 ∈ 𝐿 ⇐⇒ 𝑁 (𝑥)/𝑎 |𝑥 | = 1;

and 𝑁 satisfy the semantic promise. For other advice sequences 𝑁 might: (i) fail to provide

uniqueness/largeness/existence; (ii) for some input, output both 0 and 1 (on different non-

deterministic branches); or (iii) for some input, output just ‘?’ (on all non-deterministic

branches).

(3) 𝐿 ∈ CTIME(𝑡)/𝑎∩Co-CTIME(𝑡)/𝑎: It’s further relaxed than (2). We need two advice sequences

{𝑎𝑛}𝑛∈N and {𝑏𝑛}𝑛∈N, satisfying ∀𝑛 |𝑏𝑛 | = 𝑏 (𝑛) and ∀𝑛 |𝑏𝑛 | = 𝑏 (𝑛) (these sequences need
not be the same). 𝑀 satisfy the semantic promise on {𝑎𝑛}𝑛∈N and accept 𝐿. 𝑀 ′

satisfy the

semantic promise on {𝑏𝑛}𝑛∈N and accept 𝐿. There are no other conditions.

Remark: 𝐿 ∈ ZCTIME(𝑡)/𝑎 is equivalent to 𝐿 having CTIME(𝑡)/𝑎 and Co-CTIME(𝑡)/𝑎 algorithms

that both use the same advice. This shows:

(CTIME(𝑡) ∩ Co-CTIME(𝑡))/𝑎 ⊆ ZCTIME(𝑡)/𝑎 ⊆ CTIME(𝑡)/𝑎 ∩ Co-CTIME(𝑡)/𝑎 ⊆ ZCTIME(𝑡)/2𝑎
So the difference between ZCTIME(𝑡)/𝑎 and CTIME(𝑡)/𝑎 ∩ Co-CTIME(𝑡)/𝑎 only matters when the

amount of advice is precise.

Heuristic classes: For uniform/non-uniform class Λ, 𝐿 ∈ 𝐻𝑒𝑢𝑟 -Λ if ∃𝐿′ ∈ Λ, such that for all

polynomially samplable distributions D, ∀𝑛 𝑃𝑟𝑥∼D, |𝑥 |=𝑛 [𝐿𝑛 (𝑥) = 𝐿′
𝑛 (𝑥)] ≥ 1 − 1

𝑛
.

Infinitely-often classes: For uniform/non-uniform, heuristic/non-heuristic class Λ, 𝐿 ∈ io-Λ if

∃𝐿′ ∈ Λ, and an infinite subset 𝑆 ⊂ N, such that 𝑛 ∈ 𝑆 =⇒ 𝐿𝑛 = 𝐿′
𝑛 .

Promise classes: A promise problem Π = (Π𝑌 ,Π𝑁) is a pair of disjoint sets Π𝑌 and Π𝑁 . In the

special case where Π𝑌 ∪ Π𝑁 = {0, 1}∗, Π is also a language. We say that a language 𝐿 agrees with

Π if, 𝑥 ∈ Π𝑌 implies 𝑥 ∈ 𝐿, and 𝑥 ∈ Π𝑁 implies 𝑥 ∉ 𝐿. prΓ for any semantic class Γ, is the class of
problems that have Γ algorithms for promise inputs (that may not satisfy the semantic promise on

other inputs). Lower and upper bounds for promise classes are only defined on promise inputs.

Variety of witness complexities for CTIME:We define different ways of measuring complexity

of witnesses for non-deterministic verifiers, that has been used in the literature.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 15

(1) Witnesses: A non-deterministic verifier 𝑉 for 𝐿, has witnesses in 𝑠-size C circuits, if for

every 𝑥 ∈ 𝐿, there is an 𝑠 (|𝑥 |)-size C circuit𝐶𝑥 , such that𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥)) = 1. If𝑉 uses 𝑎 amount

of advice, then we say that 𝑉 /𝑎 has witnesses in 𝑠-size C circuits, if for some correct advice

sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), for every 𝑥 ∈ 𝐿, there is an 𝑠 (|𝑥 |)-size C circuit

𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥))/𝑎 |𝑥 | = 1.

(2) Hitting-sets for witnesses (all witnesses in one): A non-deterministic verifier 𝑉 for 𝐿

has 𝑙-size hitting-sets in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 𝑙 strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟𝑙 } of equal lengths, satisfies
∀(𝑥 : |𝑥 | = 𝑛 ∧ 𝑥 ∈ 𝐿) ∃(𝑖 ∈ [1, 𝑙]) 𝑉 (𝑥, 𝑠𝑡𝑟𝑖) = 1. The default value of 𝑙 is 2𝑛 . If𝑉 uses advice,

hitting-sets are defined analogous to witnesses in the advice setting.

(3) Oblivious witnesses (ordered hitting-sets for witnesses): Let 𝑦1, . . . , 𝑦2𝑛 denote the 𝑛-

length strings arranged in the lexicographical order. A non-deterministic verifier 𝑉 for 𝐿

has oblivious witnesses in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 2
𝑛
strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟2𝑛 } of equal lengths, satisfies

∀(𝑖 ∈ [1, 2𝑛]) 𝑦𝑖 ∈ 𝐿 =⇒ 𝑉 (𝑦𝑖 , 𝑠𝑡𝑟𝑖) = 1. For 𝑖 with 𝑦𝑖 ∉ 𝐿, 𝑠𝑡𝑟𝑖 is the all 0s string. If 𝑉 uses

advice, oblivious witnesses are defined analogous to the witnesses in advice setting.

Variety of seed complexities for ZCTIME:Any language in ZCTIME has two, a CTIME algorithm
and a Co-CTIME algorithm deciding it. So instead of witnesses, we define a stronger notion: seeds,

which is nothing but a technical way of combining witnesses from the two algorithms.

(1) Seeds: A zero-error non-deterministic verifier 𝑉 for 𝐿 has seeds in 𝑠-size C circuits, if for

every 𝑥 , there is an 𝑠 (|𝑥 |)-size C circuit 𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥)) ∈ {0, 1}. If 𝑉 uses 𝑎

amount of advice, then we say that 𝑉 /𝑎 has seeds in 𝑠-size C circuits, if for some correct

advice sequence {𝑎𝑛}𝑛∈N satisfying ∀𝑛 |𝑎𝑛 | = 𝑎(𝑛), for every 𝑥 , there is an 𝑠 (|𝑥 |)-size C
circuit 𝐶𝑥 , such that 𝑉 (𝑥, 𝑡𝑡 (𝐶𝑥))/𝑎 |𝑥 | ∈ {0, 1}.

(2) Hitting-sets for seeds (all seeds in one): A zero-error non-deterministic verifier 𝑉 for

𝐿 has 𝑙-size hitting-sets in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 𝑙 strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟𝑙 } of equal lengths, satisfies
∀(𝑥 : |𝑥 | = 𝑛) ∃(𝑖 ∈ [1, 𝑙]) 𝑉 (𝑥, 𝑠𝑡𝑟𝑖) ∈ {0, 1}. The default value of 𝑙 is 2𝑛 . If 𝑉 uses advice,

hitting-sets are defined analogous to seeds in the advice setting.

(3) Oblivious seeds (ordered hitting-sets for seeds): Let 𝑦1, . . . , 𝑦2𝑛 denote the 𝑛-length

strings arranged in the lexicographical order. A zero-error non-deterministic verifier 𝑉

for 𝐿 has oblivious seeds in 𝑠-size C circuits, if ∀𝑛 ∈ N, there is an 𝑠 (𝑛)-size C circuit 𝐶𝑛

such that 𝑡𝑡 (𝐶𝑛) when partitioned into 2
𝑛
strings {𝑠𝑡𝑟1, . . . , 𝑠𝑡𝑟2𝑛 } of equal lengths, satisfies

∀(𝑖 ∈ [1, 2𝑛]) 𝑉 (𝑦𝑖 , 𝑠𝑡𝑟𝑖) ∈ {0, 1}. If 𝑉 uses advice, oblivious seeds are defined analogous to

seeds in the advice setting.

Useful properties: We define a generalized version of the natural properties.

Definition 2.1 (Useful uniform properties). A uniform Γ algorithmA is a Γ-C property if it satisfies
the first condition stated below, on the inputs that are powers of 2 (interpreted as truth-tables of

Boolean functions).A is said to be useful against 𝑠-size C circuits if it satisfies the second condition

stated below.

(1) Size restrictions:
(a) Uniqueness for C = U: ∀𝑛 ∈ N Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)=11 = 1

(b) Largeness for C = R: ∀𝑛 ∈ N 𝑃𝑟𝑥 : |𝑥 |=2𝑛 [A(𝑥) = 1] ≥ 1

2
𝑛

(c) Existence for C = N: ∀𝑛 ∈ N Σ𝑥 : |𝑥 |=2𝑛∧A(𝑥)=11 ≥ 1

, Vol. 1, No. 1, Article . Publication date: December 2020.

16 Anant Dhayal and Russell Impagliazzo

(2) Usefulness: for infinitely many 𝑛 ∈ N, ∀(𝑥 : |𝑥 | = 2
𝑛) A(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑠 (𝑛)

Note that, in the case where 𝑠 is 𝑝𝑜𝑙𝑦 (𝑛), a single algorithm A should be useful against 𝑛𝑘 -

size C circuits for all 𝑘 . That is, for each 𝑘 , there should be infinitely many 𝑛 ∈ N, such that

∀(𝑥 : |𝑥 | = 2
𝑛) A(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 .

Definition 2.2 (Useful properties that use advice). A Γ/𝑎 algorithm A is a Γ/𝑎-C property if it

satisfies the first condition of Definition 2.1 on an advice sequence {𝑎𝑛}𝑛∈N that satisfies ∀𝑛 |𝑎𝑛 | =
𝑎(𝑛). A is said to be useful against 𝑠-size C circuits if it satisfies the second condition of Definition

2.1 on the same advice sequence {𝑎𝑛}𝑛∈N.

Lower bounds against prSVΣ𝑖 circuits:
The promise SVΣ𝑖 circuits need special care in regards of lower bounds, as we need to deal with

each prSV algorithm separately. For any class Γ, we define the following upper bounds and lower

bounds against prSV circuits:

• Let A be a prSV algorithm. For any 2
𝑛
-length truth-table 𝑡𝑡 , we use 𝑐𝑘𝑡SV(A) (𝑡𝑡) to denote

the minimum size 𝑠 (𝑛) such that: A outputs 𝐶 with 𝑡𝑡 (𝐶) = 𝑡𝑡 on an 𝑠 (𝑛)-size input. We use

𝑐𝑘𝑡
𝑓

prSV (𝑡𝑡) to denote the minimum size 𝑠 (𝑛) such that: any prSV algorithm with description

length at most 𝑓 (𝑛), outputs 𝐶 with 𝑡𝑡 (𝐶) = 𝑡𝑡 on an 𝑠 (𝑛)-size input.
• Γ ⊄ prSVSIZE(𝑠): There is an 𝐿 ∈ Γ, such that for every prSV algorithmA, there is an infinite

subset 𝑆 ⊂ N of input lengths, such that 𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) ≠ 𝐿𝑛 .

• Γ has witnesses/seeds in prSVSIZE(𝑠): For 𝐿 ∈ Γ and Γ verifier 𝑉 for 𝐿, there is a prSV
algorithm A, there is an input sequence {𝑥𝑠 (𝑛) }𝑛∈N such that ∀𝑛 ∈ N 𝑡𝑡 (A(𝑥𝑠 (𝑛))) is the
‘oblivious witness / oblivious seed / hitting-set for witnesses / hitting-set for seeds’ for 𝑉 on

𝑛-length inputs. For the case of ‘witnesses / seeds’, ∀𝑛 ∈ N ∀𝑦 : |𝑦 | = 𝑛 there is an input 𝑥𝑠 (𝑛)
such that 𝑡𝑡 (A(𝑥𝑠 (𝑛))} is the ‘witness / seed’ for 𝑉 on input 𝑦.

• Γ doesn’t have witnesses/seeds in prSVSIZE(𝑠): There is an 𝐿 ∈ Γ and Γ verifier𝑉 for 𝐿, such

that for every prSV algorithm A, there is an infinite subset 𝑆 ⊂ N of input lengths, such that

𝑛 ∈ 𝑆 =⇒ ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) is not the ‘oblivious witness / oblivious seed / hitting-set
for witnesses / hitting-set for seeds’ for 𝑉 on 𝑛-length inputs. For the case of ‘witnesses /

seeds’, 𝑛 ∈ 𝑆 =⇒ ∃𝑦 : |𝑦 | = 𝑛 ∀𝑥 : |𝑥 | = 𝑠 (𝑛) 𝑡𝑡 (A(𝑥)) is not the ‘ witness / seed’ for 𝑉 on

input 𝑦.

Hardness vs randomness: The process of using a function that is hard for a circuit class Λ (i.e.

requires large size of Λ circuits) to yield a pseudo random generator (PRG) that fools Λ circuits

(i.e. creates a sparse subset of inputs with roughly same fraction of inputs resulting in 1) is well

known in the literature. A PRG 𝐺 creates this sparse subset by mapping a small input length to the

required larger output length (same as the input length of the circuit).

A PRG𝐺 : 𝑠 (𝑛) → 𝑛 is computable in Γmeans: the language𝐿𝐺 = {(𝑠, 𝑖, 𝑏) | the 𝑖𝑡ℎ-bit of𝐺 (𝑠) is𝑏}
is in Γ. Inputs to 𝐺 are called seeds, and their size (here 𝑠 (𝑛)) is called the seed length of 𝐺 .

A PRG 𝐺 is fooling a circuit 𝐶 means: the fraction of inputs from the 2
𝑠 (𝑛)

size image of 𝐺 that

𝐶 accepts, is same as the fraction of all the inputs that 𝐶 accepts (within error ±1/𝑛). We use the

following theorem in all our derandomization results.

Theorem 2.3. [58, 71, 85, 91] There exists a universal constant 𝑔 such that the following holds
for any class O of oracles and oracle 𝑀 , and any constants 𝜖 > 0 and 𝑑 ≥ 1: if a Boolean function
family 𝑓 = {𝑓𝑛}𝑛∈N computable in EO that satisfies ∀𝑛 ∈ N 𝑐𝑘𝑡𝑀 (𝑓 (𝑛)) ≥ 𝑛𝑔𝑑/𝜖 , then there exists a
PRG family 𝐺 = {𝐺𝑛}𝑛∈N computable in EO , such that 𝐺𝑛 : 𝑛𝜖 → 𝑛𝑑 fools 𝑛𝑑 -size 𝐵-oracle circuits.
Moreover, if circuit lower bound holds infinitely often, then 𝐺 fools circuits infinitely often.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 17

3 EWL AND KLT FOR UTIME AND RELATED CLASSES
We first give a specific search to decision reduction for UTIME (Section 3.1). Using this reduction we

give the EWL and KLT for UTIME (Section 3.2). Then we describe similar results for ZUTIME (Section

3.3) and F̃ewTIME (Section 3.4).

3.1 Search to decision reduction for UTIME
For 𝐿 ∈ NP and verifier 𝑉 for 𝐿, there is a standard PNP algorithm for the corresponding search

problem. This algorithm implicitly decides the following language:

𝐿𝑒𝑤𝑙 (𝑉) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦) = 1 ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧) = 0]} (1)

where 𝑧 <𝑙 .𝑜. 𝑦 stands for “𝑧 is lexicographically smaller than 𝑦”, and the subscript 𝑒𝑤𝑙 (𝑉) in
𝐿𝑒𝑤𝑙 (𝑉) stands for “easy-witness language for 𝑉 ”.

So if P = NP, then 𝐿𝑒𝑤𝑙 (𝑉) ∈ P. For 𝐿 ∈ NEXP and verifier 𝑉 for 𝐿, such results are not known.

In particular, it is not known whether NEXP = EXP yields an EXP algorithm for the corresponding

search problem, let alone 𝐿𝑒𝑤𝑙 (𝑉) .
NEXP ⊂𝑤 SIZE(𝑝𝑜𝑙𝑦) yields EXP algorithms for the NEXP search problems, by a simple brute-force

argument. It is known that NEXP ⊂𝑤 SIZE(𝑝𝑜𝑙𝑦) is equivalent to NEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) [41, 100], and
to NEXP = MA [41] (reverse implication was attributed to van Melkebeek). In [41] it was also shown

that a weaker collapse, namely NEXP = AM, is sufficient to give EXP algorithms for NEXP search

problems. This is the weakest collapse known so far.

From [46] we get: ∀(𝐿 ∈ NEXP) ∀ (NEXP verifier 𝑉 for 𝐿) 𝐿𝑒𝑤𝑙 (𝑉) ∈ EXP ⇐⇒ EXPNP = EXP.
In this section we show that for 𝐿 ∈ UTIME(𝑡) and unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉) ∈

UTIME(𝑡). UTIME(𝑡) languages also have 𝑂 (𝑡)-time verifiers that are ambiguous. We show why it

would be difficult to extend this result to all 𝑂 (𝑡)-time ambiguous verifiers for UTIME(𝑡) languages.

Theorem 3.1. For 𝐿 ∈ UTIME(𝑡) and unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉) ∈ UTIME(𝑡 (𝑛)) (where
𝑛 is the input size for 𝐿 and not 𝐿𝑒𝑤𝑙 (𝑉)). Moreover if this statement is true for every 𝑂 (𝑡)-time non-
deterministic verifier (ambiguous and unambiguous) for every UTIME(𝑡) language, then ZNTIME(𝑡) =
ZUTIME(𝑡).

Proof. Algorithm for 𝐿𝑒𝑤𝑙 (𝑉) : For input (𝑥, 𝑖), guess a certificate 𝑦 and simulate 𝑉 (𝑥,𝑦). Accept
if𝑉 accepts and the 𝑖𝑡ℎ-bit of 𝑦 is 1, otherwise reject. This algorithm is correct and unambiguous as

𝑉 is unambiguous. It runs in time 𝑂 (𝑡 (|𝑥 |)).
The moreover part: For 𝐿 ∈ ZNTIME(𝑡), let 𝑉1 and 𝑉0 be its NTIME(𝑡) and Co-NTIME(𝑡) verifiers

respectively. Consider the UTIME(𝑡) language 𝐿′ = {0, 1}∗.
Using 𝑉1 and 𝑉0 we first construct a verifier 𝑉

′
for 𝐿′

: if the first bit of the certificate is 𝑖 , 𝑉 ′

simulates 𝑉𝑖 using the rest of the certificate.

Now using a UTIME(𝑡 (𝑛)) algorithm A for 𝐿′
𝑒𝑤𝑙 (𝑉 ′) we give a UTIME(𝑡) algorithm for 𝐿: on input

𝑥 , simulate A on (𝑥, 1). Accept iff A accepts.

If A accepts then we know that 𝑥 ∈ 𝐿 because there is no positive certificate for 𝑉 ′
that starts

with 0 (or in other words, no positive certificate for 𝑉0). If A rejects, then 𝑥 ∈ 𝐿 because there is a

positive certificate for 𝑉 ′
that starts with 0 (or in other words, a positive certificate for 𝑉0).

Similarly, there is a UTIME(𝑡) algorithm for 𝐿, and thus 𝐿 ∈ ZUTIME(𝑡). □

For the advice setting same proof goes through for the following adaptation of 𝐿𝑒𝑤𝑙 (𝑉) . For
non-deterministic verifier𝑉 /𝑎, that uses 𝑎 amount of advice to decide a language 𝐿, for any correct

advice sequence {𝑎𝑛}𝑛∈N:
𝐿𝑒𝑤𝑙 (𝑉 /𝑎) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦)/𝑎 |𝑥 | = 1 ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧)/𝑎 |𝑥 | = 0]} (2)

, Vol. 1, No. 1, Article . Publication date: December 2020.

18 Anant Dhayal and Russell Impagliazzo

Using this adaptation we get the following stronger corollary.

Corollary 3.2. For 𝐿 ∈ UTIME(𝑡)/𝑎 and unambiguous verifier𝑉 /𝑎 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉 /𝑎) ∈ UTIME(𝑡)/𝑎.

3.2 EWL and KLT for UTIME
Using the search to decision reduction from Theorem 3.1 we derive EWL for unambiguous verifiers

of languages in UTIME(𝑡). Here again we see why it might be difficult to extend this to all ambiguous

verifiers. Using the EWL we also get a KLT for UTIME.

Theorem 3.3. For time-constructible 𝑡 ∈ 2
𝑂 (𝑛) , and constants 𝑐 and 𝑘 :

(1) UTIME(𝑡) ⊂ C(𝑛𝑘) =⇒ UTIME(𝑡) has oblivious witnesses in C(𝑛𝑘). Moreover if this statement
is true for every 𝑂 (𝑡)-time non-deterministic verifier (ambiguous and unambiguous) for every
UTIME(𝑡) language, even just for witnesses (let alone oblivious-witnesses), then ZNTIME(𝑡) ⊆
DTIME(2𝑛𝑘+1).

(2) UTIME(𝑡)/𝑎 ⊆ C(𝑛𝑘) =⇒ UTIME(𝑡)/𝑎 has oblivious witnesses in C(𝑛𝑘).
(3) UTIME(2𝑛𝑐)/𝑎 ⊆ C(𝑛𝑘) =⇒ UTIME(2𝑛𝑐)/𝑎 has oblivious witnesses in C(𝑛𝑐𝑘).
(4) UEXP/𝑎 ⊆ SIZE(𝑝𝑜𝑙𝑦) =⇒ UEXP/𝑎 = MA/𝑎.

Proof. Proof of (1): For 𝐿 ∈ UTIME(𝑡), let 𝑥 ∈ 𝐿 be an 𝑛-length input, and 𝑉 be an unambiguous

verifier for 𝐿 whose certificate length is ≤ 𝑑 · 𝑡 for some constant 𝑑 . The UTIME(𝑡) algorithm
for 𝐿𝑒𝑤𝑙 (𝑉) from Theorem 3.1 puts it into C(𝑚𝑘) for input size𝑚. The C circuit for input length

𝑚 = (|𝑥 | + log 𝑡 + log𝑑) ∈ 𝑂 (𝑛) is the oblivious witness circuit for 𝑛-length inputs.

The moreover part: For 𝐿 ∈ ZNTIME(𝑡), construct the same verifier𝑉 ′
for the language 𝐿′ = {0, 1}∗

as in the proof of Theorem 3.1. As 𝐿′ ∈ UTIME(𝑡),𝑉 ′
will have witness in C(𝑛𝑘). Now a DTIME(2𝑛𝑘+1)

algorithm for 𝐿 is: for 𝑛-length input 𝑥 , go through all the circuits in C(𝑛𝑘 log𝑛) one at a time,

compute their truth-tables 𝑡𝑡 , and then compute 𝑉 ′(𝑥, 𝑡𝑡). Due to the way 𝑉 ′
is constructed, all of

its positive certificates have the same first bit. If 𝑉 accepts on any 𝑡𝑡 whose first bit is 1, then 𝑥 ∈ 𝐿.

Else 𝑥 ∉ 𝐿.

Proofs of (2) & (3): They are analogous to the proof of (1), except that they use Corollary 3.2.

Proof of (4): Let 𝐿 ∈ UEXP/𝑎, and𝑉 /𝑎 be an unambiguous (given the correct advice) verifier𝑉 for

𝐿 that runs in time 𝑂 (2𝑛𝑐) for some constant 𝑐 . Since ∃𝑘 𝐿 ∈ SIZE(𝑛𝑘), from the proof of part (3)

we know that 𝑉 /𝑎 has witnesses in SIZE(𝑛𝑐𝑘) for some constant 𝑘 .

Using this we first give an EXP/𝑎 algorithm for 𝐿. On 𝑛-length input 𝑥 , go through all the circuits

in SIZE(𝑛𝑐𝑘 log𝑛) one at a time, compute their truth-tables 𝑡𝑡 , and then compute𝑉 (𝑥, 𝑡𝑡)/𝑎. Accept
if 𝑉 /𝑎 accepts for any 𝑡𝑡 , else reject. This is an EXP/𝑎 algorithm as simulation of 𝑉 /𝑎 needs the

original advice.

Once we get UEXP/𝑎 = EXP/𝑎, EXP/𝑎 ⊆ SIZE(𝑝𝑜𝑙𝑦) gives UEXP/𝑎 = MA/𝑎 [55]. □

3.3 EWL and KLT for ZUTIME
We extend the techniques from the previous section to give similar results for ZUTIME. The main

difference in the proof of our search to decision reduction is that, we adapt our definition of 𝐿𝑒𝑤𝑙 (𝑉)
to capture seeds of zero-error non-deterministic verifiers. First let’s define this adaptation. For

zero-error non-deterministic verifier 𝑉 for language 𝐿:

𝐿𝑒𝑤𝑙 (𝑉) = {(𝑥, 𝑖) | ∃𝑦 [𝑉 (𝑥,𝑦) ∈ {0, 1} ∧ (𝑖𝑡ℎ-bit of 𝑦 is 1) ∧ ∀(𝑧 <𝑙 .𝑜. 𝑦) 𝑉 (𝑥, 𝑧) =?]} (3)

The difference is that 𝐿𝑒𝑤𝑙 (𝑉) captures the lexicographically first certificate that gives the correct

answer (doesn’t matter whether the answer is 1 or 0). Once the search to decision reduction is

established, the EWL and KLT follow from similar arguments as in the previous section. Here again

we see why it might be difficult to extend these results to all ambiguous zero-error verifiers.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 19

Theorem 3.4. For time-constructible 𝑡 ∈ 2
𝑂 (𝑛) , and constants 𝑐 and 𝑘 :

(1) For 𝐿 ∈ ZUTIME(𝑡) and zero-error unambiguous verifier 𝑉 for 𝐿, 𝐿𝑒𝑤𝑙 (𝑉) ∈ ZUTIME(𝑡 (𝑛))
(where 𝑛 is the input size for 𝐿). Moreover if this statement is true for all 𝑂 (𝑡)-time zero-error
non-deterministic verifiers (ambiguous and unambiguous) for every ZUTIME(𝑡) language, then
ZNTIME(𝑡) = ZUTIME(𝑡).

(2) ZUTIME(𝑡) ⊂ C(𝑛𝑘) =⇒ ZUTIME(𝑡) has oblivious seeds in C(𝑛𝑘). Moreover if this statement
is true for all 𝑂 (𝑡)-time zero-error non-deterministic verifiers (ambiguous and unambiguous)
for every ZUTIME(𝑡) language, even just for seeds (let alone oblivious-seeds), then ZNTIME(𝑡) ⊆
DTIME(2𝑛𝑘+1).

(3) ZUTIME(2𝑛𝑐) ⊂ C(𝑛𝑘) =⇒ ZUTIME(2𝑛𝑐) has oblivious seeds in C(𝑛𝑐𝑘).
(4) ZUEXP ⊂ SIZE(𝑝𝑜𝑙𝑦) =⇒ ZUEXP = MA.

Proof. Proof of (1): Algorithm for 𝐿𝑒𝑤𝑙 (𝑉) : For input (𝑥, 𝑖), guess a certificate 𝑦 and simulate

𝑉 (𝑥,𝑦). Output ‘?’ is 𝑉 outputs ‘?’. Output 1 if 𝑉 outputs in {0, 1} and the 𝑖𝑡ℎ-bit of 𝑦 is 1. Output 0

if𝑉 outputs in {0, 1} and the 𝑖𝑡ℎ-bit of 𝑦 is 0. This algorithm is correct and zero-error unambiguous

as 𝑉 is zero-error unambiguous. It runs in time 𝑂 (𝑡 (|𝑥 |)).
The moreover part: For 𝐿 ∈ ZNTIME(𝑡), let 𝑉 be its ZNTIME(𝑡) verifier. Consider the ZUTIME(𝑡)

language 𝐿′ = {0, 1}∗.
Using𝑉 we first construct a ZNTIME(𝑡) verifier𝑉 ′

for 𝐿′
:𝑉 ′

ignores the first bit of the certificate

and simulates 𝑉 using the rest of the certificate. 𝑉 ′
outputs ‘?’ if 𝑉 outputs ‘?’, it outputs 1 if 𝑉

outputs in {0, 1} and its output matches the first bit of the certificate.

Now using a ZUTIME(𝑡 (𝑛)) algorithm A for 𝐿′
𝑒𝑤𝑙 (𝑉 ′) we give a ZUTIME(𝑡) algorithm for 𝐿: on

input 𝑥 , simulate A on (𝑥, 1). Output whatever A outputs.

Proofs of (2), (3) & (4): They are analogous to the proofs in Theorem 3.3. □

3.4 EWL and KLT for F̃ewTIME
We use the following folklore result to translate our results for Boolean circuits to any typical

circuit class.

Lemma 3.5. If P ⊂ C, then there exists a constant 𝑐 such that: for large enough 𝑛, any 𝑠-size circuit
has an equivalent 𝑠𝑐 -size C circuit.

Proof. Ckt-Eval is a problem in P whose input is a Boolean circuit 𝐶 and a string 𝑥 , and the

output is the output of𝐶 on 𝑥 . If P ⊂ C, then there is a constant 𝑐 such that Ckt-Eval has 𝑛𝑐/2-size
C circuits.

Let 𝐵 be a P/poly circuit of size 𝑠 . Let 𝐸 be (𝑛 + 𝑠 log 𝑠)𝑐/2-size circuit corresponding to the

(𝑛 + 𝑠 log 𝑠)𝑡ℎ-slice of Ckt-Eval. Define 𝐷 (𝑥) = 𝐸 (𝐵, 𝑥). It is easy to check that: (i) 𝐷 is an 𝑠𝑐 -size

C circuit; and (ii) 𝐷 is equivalent to 𝐵. □

Now we give the EWL and KLT for F̃ewE.

Theorem 3.6. For constant 𝑘 ≥ 1:
(1) F̃ewE/(𝑎 + 𝑛) ⊂ C(𝑛𝑘) =⇒ ∃𝑘 ′ F̃ewE/𝑎 has witnesses in C(𝑛𝑘′)
(2) F̃ewE/(𝑎 + 𝑛) ⊂ SIZE(𝑛𝑘) =⇒ F̃ewE/𝑎 ⊆ MA/𝑎

Proof. Proof of (1): We prove the result for unrestricted Boolean circuits. The result for the

circuit class C follows from the Lemma 3.5. The assumption implies P ⊂ C, thus any SIZE(𝑛𝑘′)
circuit has an equivalent C(𝑛𝑐𝑘′) circuit, for some constant 𝑐 .

Contradiction: F̃ewE/(𝑎 + 𝑛) ⊂ SIZE(𝑛𝑘) implies EXP ⊂ SIZE(𝑝𝑜𝑙𝑦) and thus EXP = MA [9]. Now
we show that, if ∀𝑘 ′ ≥ 1 F̃ewE/𝑎 doesn’t have witnesses in SIZE(𝑛𝑘′), then MA ⊂ io-F̃ewE/(𝑎 + 𝑛).

, Vol. 1, No. 1, Article . Publication date: December 2020.

20 Anant Dhayal and Russell Impagliazzo

Combined with the above statement it leads to the contradiction EXP ⊂ io-SIZE(𝑛𝑘) (since we can
diagonalize against fixed-polynomial size circuits in EXP).

Hardness tester: ∀𝑘 ≥ 1 F̃ewE/𝑎 doesn’t have witnesses in SIZE(𝑛𝑘) implies that for every 𝑘 ≥ 1,

there is a 2

√
𝑛
-time F̃ew/𝑎 verifier𝑉𝑘/𝑎 that has infinite set of inputs 𝑆𝑘 that it accepts, and for 𝑥 ∈ 𝑆𝑘

and 2

√
|𝑥 |
-length certificate 𝑦 such that 𝑉𝑘 (𝑥,𝑦)/𝑎 = 1 (using the correct advice), the constraint

𝑐𝑘𝑡 (𝑦) ≥ 𝑛𝑘 is true (where 𝑦 is truth-table of a

√
𝑛-input circuit). If 𝑉𝑘 with its original 𝑎 amount of

advice, is also given elements of 𝑆𝑘 as advice (one element per input length, and all 0s string for

the input lengths for which 𝑆𝑘 contains no element), 𝑉𝑘 becomes a F̃ewTIME(2
√
𝑛)/(𝑎 + 𝑛) hardness

tester.

Derandomization: For 𝐿 ∈ MA, we derandomize the MA protocol for 𝐿 using the above described

F̃ew verifiers. After including the non-determinism of Merlin into Arthur’s input, let the size of the

circuit 𝐶 that captures the BP computation of Arthur for 𝐿 be bounded by 𝑛𝑙 (for some constant

𝑙). We use the verifier 𝑉𝑘 for 𝑘 = 𝑙𝑔, where 𝑔 is the constant from Theorem 2.3. Our algorithm

guesses a 2
𝑛
-bit string 𝑌 and simulates 𝑉𝑘 on 𝑌 , using the 𝑎 + 𝑛 amount of advice as described

above. It rejects if 𝑉𝑘 rejects, else it uses the certificate that 𝑉𝑘 accepted. Note that, infinitely often

the accepted certificates 𝑌 will satisfy 𝑐𝑘𝑡 (𝑌) ≥ 𝑛𝑙𝑔. We use the certificates to construct a PRG

𝐺 : 𝑛 → 𝑛𝑙 using the Theorem 2.3, that fools 𝑛𝑙 -size circuits. We brute-force through the seeds

of 𝐺 to compute the acceptance probability of the circuit 𝐶 in 2
𝑂 (𝑛)

-time (within ±1/𝑛𝑙 error). If
the acceptance probability is greater than 1/2, our algorithm accepts, else it rejects. The running

time of our non-deterministic algorithm is bounded by 2
𝑛
, and the number of accepting branches is

bounded by 2
2
(log𝑛)2/4 × 2

𝑛𝑙
, which is less that 2

2
(log𝑛)2

for large enough 𝑛.

Proof of (2): F̃ewE/(𝑎 +𝑛) ⊂ SIZE(𝑛𝑘) combined with (1) gives F̃ewE/𝑎 has witnesses in SIZE(𝑛𝑘′)
for some constant 𝑘 ′

. This gives F̃ewE/𝑎 ⊂ EXP/𝑎: by brute-forcing through the truth-tables of all

SIZE(𝑛𝑘′) circuits to find accepting certificates (if there are any). Finally we get F̃ewE/𝑎 ⊆ MA/𝑎
since EXP/𝑎 = MA/𝑎 by [55]. □

4 UEXP LOWER BOUNDS FROM FAST UNAMBIGUOUS ALGORITHMS
First we show how to get UEXP lower bounds from fast unambiguous algorithms for canonization

and tautology (Section 4.1). Then we show how to replace canonization and tautology by Π2SAT and
get more fine-grained results (Section 4.2). Then we show how to completely get rid of canonization

for the case F̃ewE lower bounds (Section 4.3). Then we show how to simulate canonization using

proper learning (Section 4.4). Finally, we show how to generalize certain lower bound frameworks

for unrestricted Boolean circuits, to typical circuit classes, even when the algorithms are very slow

(Section 4.5). We use the following hierarchy for semantic classes in our proofs.

Theorem 4.1 (Heirarchy for Semantic Classes [33]). For any time bound 𝑡 such that𝑛 ≤ 𝑡 ≤ 2
𝑛 ,

there is a constant 𝜖 > 0 and an advice bound 𝑎 ∈ 𝑂 (log(𝑡) log(log(𝑡))) such that UTIME(𝑡)/𝑎 ⊄

UTIME(𝑡𝜖)/(𝑎 + 1) (resp. F̃ewTIME(𝑡)/𝑎 ⊄ F̃ewTIME(𝑡𝜖)/(𝑎 + 1)).

4.1 Lower bounds from unambiguous tautology and canonization algorithms
We use the following ‘tight reductions to 3-USAT’ in this section.

Theorem 4.2 (Efficient local reductions [31, 50, 89]). Every language 𝐿 ∈ UTIME(2𝑛) can be
reduced to 3-USAT (uniquely satisfiable 3-SAT) instances of 2𝑛𝑛𝑐 -size, for some constant 𝑐 . Moreover,
given an instance of 𝐿 there is an 𝑛𝑐 -size C (P-uniform) circuit that, on an integer 𝑖 ∈ [2𝑛𝑛𝑐] in binary
as input, outputs the 𝑖𝑡ℎ-clause of the resulting 3-USAT formula.

We first formally define canonization and related notations.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 21

Canonization : A subset 𝑆 of circuits is called CAN(𝑠,C,𝑝) , if for any 𝑠-size C circuit 𝐶 , there exists

a unique circuit 𝐶 ′ ∈ 𝑆 with 𝑡𝑡 (𝐶) = 𝑡𝑡 (𝐶 ′), and |𝐶 ′ | ≤ 𝑝 (𝑐𝑘𝑡C (𝑡𝑡 (𝐶 ′))). CAN(𝑠,C,𝑝) ∈ Γ/𝑎 means

there is a Γ/𝑎 algorithm that decides CAN(𝑠,C,𝑝) .
TAUT(𝑠,C) (resp. SAT(𝑠,C)) denotes the TAUT (resp. SAT) for 𝑠-size C circuits.

In these definitions we omit, the parameter 𝑠 when it is 𝑝𝑜𝑙𝑦 (𝑛), and the circuit class when C =

Boolean.

The main idea is to guess the witness circuit unambiguoulsy using the canonization algorithm,

and then combine the witness circuit with the reduction circuit in the same manner that Williams

did [98]. The existence of the witness circuit follows from the UTIME EWL.

Theorem 4.3. For 𝛿 ≤ 1, let 𝑎, 𝑐 and 𝜖 be the parameters of Theorems 4.1 and 4.2 for the time bound
𝑡 = 2

𝛿𝑛 . Then for constant 𝑘 and function 𝑝 (𝑛) ≥ 𝑛, UTIME(2𝛿𝑛)/𝑎 ⊄ C(𝑛𝑘) if:
(1) TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) ∈ UTIME(2𝜖𝑛) and CAN(𝑛𝑘+1,C,𝑝) ∈ UTIME(2𝜖𝑛)/1; or
(2) TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) ∈ UTIME(2𝜖𝑛)/1 and CAN(𝑛𝑘+1,C,𝑝) ∈ UTIME(2𝜖𝑛).

Proof. Using the assumptions (1 or 2), we will contradict the UTIME hierarchy (Theorem 4.1) by

designing a UTIME(2𝜖𝑛)/(𝑎 + 1) algorithm for arbitrary 𝐿 ∈ UTIME(2𝛿𝑛)/𝑎.
Reduction circuit: For 𝐿 ∈ UTIME(2𝛿𝑛)/𝑎 and input 𝑥 , let 𝐹𝑥 be the 2

𝑛𝑛𝑐 -size 3-USAT formula we

get by reducing from 𝑥 (Theorem 4.2). There is an 𝑛𝑐 -size (P-uniform) C circuit 𝐷 with 𝑛 + 𝑐 log𝑛
input wires, that outputs the 𝑖𝑡ℎ-clause of 𝐹 when given the input 𝑖 ∈ [1, 2𝑛𝑛𝑐].
Special verifier: Let 𝑉 be the verifier for 𝐿 that first reduces input 𝑥 to the 3-USAT formula 𝐹𝑥 ,

and then non-deterministically guesses a satisfying assignment for 𝐹𝑥 .

Easy-witness circuit: From UTIME EWL (Theorem 3.3) and the assumption UTIME(2𝛿𝑛)/𝑎 ⊂ C(𝑛𝑘)
we know that𝑉 has witness circuits in C(𝑛𝑘). Let 𝐸 be a witness circuit of this verifier for the input

length |𝑥 | = 𝑛.

Final circuit 𝐶 : Combining 𝐷 and 𝐸 we construct a circuit 𝐶 that satisfies: “𝐶 is a tautology

⇐⇒ 𝑥 ∈ 𝐿”. On input 𝑖 , the output of 𝐷 is 3𝑛 + 3𝑐 log𝑛 + 3 bits long. The first 3𝑛 + 3𝑐 log𝑛 bits are

the three variables of the 𝑖𝑡ℎ-clause of 𝐹 . Plug these output bits to three separate copies of 𝐸. The

last three bits indicate whether the corresponding literals are positive or negative. Use these three

bits and the three output bits from the three copies of 𝐸 to compute the value of the 𝑖𝑡ℎ-clause

(based on the assignment encoded by 𝑡𝑡 (𝐸)).
Contradicting the first assumption:Non-deterministically guess a 𝑝 (𝑛𝑘+1)-size C circuit 𝐸. Simulate

the CAN(𝑛𝑘+1,C,𝑝) algorithm on 𝐸. This requires UTIME(2𝜖𝑛)/1. Reject if the answer is negative.

Continue if it’s positive, and construct𝐶 as described above. |𝐶 | ≤ 𝑝 (𝑛𝑘+1)𝑛 +𝑛𝑐 . Note that, for any
truth-table only one non-deterministic branch will lead to a non-rejecting path. Now simulate the

TAUT(𝑝 (𝑛𝑘+1)𝑛+𝑛𝑐 ,C) algorithm on 𝐶 . This requires UTIME(2𝜖𝑛). Note that, 𝐶 is accepted if and only

if, 𝑥 ∈ 𝐿, and 𝑡𝑡 (𝐸) is the unique witness of 𝑉 . This whole process requires the advice used in the

UTIME(2𝛿𝑛)/𝑎 algorithm for 𝐿. So we get a UTIME(2𝜖𝑛)/(𝑎 + 1) algorithm.

Contradicting the second assumption: The algorithm is exactly the same, expect that the extra

1-bit of advice is used by the tautology algorithm, and not by the canonization algorithm. □

We get the following corollary that is cleaner in presentation.

Corollary 4.4. UE/𝑂 (𝑛 log𝑛) ⊄ C, if TAUTC ∈ USUBE and CAN(C,𝑝) ∈ USUBE, for 𝑝 (𝑛) ∈ 𝑝𝑜𝑙𝑦 (𝑛).

4.2 Lower bounds from unambiguous Π2SAT algorithms
Here the idea is to simulate canonization using a Π2SAT algorithm.

Theorem 4.5. For every constant 𝑘1 there is a constant 𝑘2, such that if Π2SAT on 𝑛 variables and 𝑛
clauses can be solved in UTIME(2𝑛/(log𝑛)𝑘2), then UE/𝑛 ⊄ SIZE(𝑛(log𝑛)𝑘1).

, Vol. 1, No. 1, Article . Publication date: December 2020.

22 Anant Dhayal and Russell Impagliazzo

Proof. From the Theorem 4.1 we know that there is an 𝑎 ≤ 𝑛 such that UTIME(2𝑛/(log𝑛)2)/𝑎 ⊄

UTIME(2𝑛/(log𝑛)3)/(𝑎+1). So if UE/𝑛 ⊂ SIZE(𝑛(log𝑛)𝑘1), then UTIME(2𝑛/(log𝑛)2)/𝑎 ⊂ SIZE(𝑛(log𝑛)𝑘1).
From the UTIME EWL we get UTIME(2𝑛/(log𝑛)2)/𝑎 ⊂𝑤 SIZE(𝑛(log𝑛)𝑘1).
Now the proof is similar to the proof of Theorem 4.3, except few changes. We prove that any

𝐿 ∈ UTIME(2𝑛/(log𝑛)2)/𝑎 has an UTIME(2𝑛/(log𝑛)3)/𝑎 algorithm. After guessing a SIZE(𝑛(log𝑛)𝑘1)
witness circuit 𝐸, we use a fast Π2SAT algorithm on it (from our assumption) to make sure that

we move forward unambiguously. We check that, for all lexicographically small (in some fixed

encoding scheme) circuits 𝐷 , there is at least one input 𝑧, such that 𝐸 (𝑧) ≠ 𝐷 (𝑧). For the final
circuit𝐶 , we use three copies of 𝐸 and a reduction circuit that is (P-uniform) linear-size (the 𝑛𝑐 -size

circuit in the Theorem 6.9 can be made linear [50]). Finally we run a fast tautology algorithm (from

our assumption) on the circuit 𝐶 . □

4.3 Lower bounds from F̃ew tautology algorithms
The idea is that there can only be exponential many possibilities for the witness circuit, and thus

the number of positive non-deterministic branches of the final algorithm remain within the limits

of a F̃ew verifier.

Theorem 4.6. TAUTC ∈ F̃ewSUBE =⇒ ∀𝑘 F̃ewE/𝑂 (𝑛 log𝑛) ⊄ C(𝑛𝑘).

Proof. For the sake of contradiction, assume that ∃𝑘 F̃ewE/𝑂 (𝑛 log𝑛) ⊂ C(𝑛𝑘). From the

F̃ewTIME EWL (Theorem 3.6) we get that ∃𝑘 ′ F̃ewE/𝑎 ⊂𝑤 C(𝑘 ′), where 𝑎 is the advice parameter

of the Theorem 4.1 for time bound 𝑡 = 2
𝑛
. Using the fast F̃ew algorithm from our assumption we

contradict the Theorem 4.1 by showing that any arbitrary 𝐿 ∈ FewE/𝑎 has an F̃ewSUBE/(𝑎 + 1)
algorithm.

Now again our proof follows the structure of Theorem 4.3 with some modifications. We construct

the final circuit 𝐶 without using any canonization. There can only be 2
𝑂 (𝑛𝑘′)

many witness circuits

𝐸. For designing a F̃ewTIME(2𝑛𝜖)/𝑎 algorithm for any 0 < 𝜖 < 1, we use a F̃ewTIME(2𝑛𝛿) tautology
algorithm for some 𝛿 ≤ 𝜖 . This makes the number of accepting paths for the final algorithm at

most 2
𝑂 (𝑛𝑘′) × 2

(𝛿𝑛) log(𝛿𝑛) ≤ 2
(𝜖𝑛) log(𝜖𝑛)

. □

4.4 Lower bounds from unambiguous learning and tautology algorithms
We first show how exact (proper) learning along with tautology algorithm imply canonization.

Then we plug this connection in the Theorem 4.3 to get lower bounds from learning and tautology

algorithms. Before we give our result, we first formally define the UTIME exact learning algorithm

that we use in our results.

Exact UTIME learning with membership and equivalence queries: Let 𝑠 be the size of the target
concept 𝐶 (the circuit to be learned). A UTIME(𝑡) algorithm is called LRN(𝑠,𝐶,𝑝) , if for any 𝑠-size C
circuit 𝐶 , it outputs a circuit 𝐶 ′

of size at most 𝑝 (𝑠) in time at most 𝑡 (𝑛) (where 𝑛 is the number of

input wires) with 𝑡𝑡 (𝐶) = 𝑡𝑡 (𝐶 ′), on exactly one of its non-deterministic branches, and rejects all

the other branches. The algorithm is allowed to make “membership" and “equivalence" queries. A

membership query is of the type: “What is the value of𝐶 (𝑥)?”. An equivalence query is of the type:

“Is the current hypothesis (𝐻) equal to 𝐶?”. On any positive equivalence query, it halts and outputs

the current hypothesis. On any negative query, it gets 𝑥 from the oracle, such that 𝐻 (𝑥) ≠ 𝐶 (𝑥).
If the output, and the equivalence queries are all polynomial-size C circuits, the algorithm is

called P-LRN(𝑠,𝐶,𝑝) (proper learning).
Here again, we omit the size parameter when 𝑠 (𝑛) = 𝑝𝑜𝑙𝑦 (𝑛), and the circuit class when C =

Boolean. Here we omit 𝑝 (𝑛) too, if it is 𝑝𝑜𝑙𝑦 (𝑛). Unlike in CAN(C,𝑝) , in LRN(C,𝑝) 𝑝 decides the size

of the output (and not the input).

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 23

Theorem 4.7. For any polynomial 𝑝 (𝑛):
(1) P-LRN(C,𝑝) ∈ UTIME(𝑡) ∧ TAUTC ∈ UTIME(𝑡 ′) =⇒ CAN(C,𝑝) ∈ UTIME(𝑡 (𝑡 ′ + 𝑝𝑜𝑙𝑦 (𝑛)))
(2) P-LRN(C,𝑝) ∈ USUBE ∧ TAUTC ∈ USUBE =⇒ UE/𝑂 (𝑛 log𝑛) ⊄ C

Proof. Proof of (1): In an exact proper learning algorithm, if we have access to the circuit 𝐶 that

we are learning, then we can get a canonization algorithm for C (because the learning algorithm

only cares about the truth-table of the circuit that it is learning, and outputs the same hypothesis for

all the circuits that have same truth-tables). As the final hypothesis will be of size at most 𝑝 (𝑠) for
𝑠-size C circuits, we get a UTIME algorithm for CAN(C,𝑝) . The membership queries can be handled

directly since we have the circuit with us. For the equivalence queries, we non-deterministically

guess the faith for the hypothesis 𝐻 .

If we guess 𝐻 ≡ 𝐶 , we use the tautology algorithm to verify it. If our guess is wrong, we reject.

If our guess is right, we accept if only if, 𝐻 ’s description is same as 𝐶 .

If we guess 𝐻 . 𝐶 , we have to output an input 𝑧, such that 𝐻 (𝑧) ≠ 𝐶 (𝑧). We try to guess the

lexicographically smallest such 𝑧 to keep the whole process unambiguous. After guessing 𝑧, we

check that 𝐻 (𝑧) ≠ 𝐶 (𝑧) and use our tautology algorithm to check that ∀(𝑧 ′ <𝑙 .𝑜. 𝑧) 𝐻 (𝑧) = 𝐶 (𝑧),
where l.o. stands for lexicographical ordering (the test 𝑧 ′ <𝑙 .𝑜. 𝑧 can be encoded by any typical

circuit of linear size). We return 𝑧 if both the checks pass, else we reject.

Proof of (2):We get this directly from (1) and the Corollary 4.4. □

4.5 Generalization of lower bound frameworks
In the above sections we saw that fast UTIME algorithms for certain circuit analysis algorithms for

C circuits were fed to certain frameworks to yield lower bounds for UTIME against C. Consider
the scenario where: a framework is altogether different, or is a fine-grained version of one of the

current ones (in terms of size and depth of the circuits and running time of the algorithms), and

works for Boolean circuits, but not for some restriction C. Also consider that, the assumptions of

these frameworks are satisfied for that C, but not for unrestricted Boolean circuits. Do we get any

lower bounds? In this section we prove that this question has a positive answer.

We use win-win type arguments analogous to the ones used in [72] for fast NTIME algorithms.

We show that, either P ⊄ C (i.e., a stronger lower bound exists against C), or fast unambiguous

algorithms for C circuits imply fast unambiguous algorithms for Boolean circuits (i.e., frameworks

that only work for Boolean circuits can now be used). To prove our results, we use the Lemma 3.5.

Theorem 4.8. Either P ⊄ C, or ∃𝑐 , for 𝑝 (𝑚) =𝑚𝑘 for any 𝑘 ≥ 1, and 𝑡, 𝑡 ′, 𝑡 ′′ ≤ 2
𝑛 :

(1) CAN(C,𝑝) ∈ UTIME(𝑡) =⇒ CAN𝑝𝑐 ∈ UTIME(𝑡)
(2) CAN(C,𝑝) ∈ UTIME(𝑡) ∧ TAUTC ∈ UTIME(𝑡 ′) =⇒ TAUT ∈ UTIME((𝑡 + 𝑡 ′)𝑝𝑜𝑙𝑦 (𝑛))
(3) CAN(C,𝑝) ∈ UTIME(𝑡) ∧ TAUTC ∈ UTIME(𝑡 ′) ∧ SATC ∈ UTIME(𝑡 ′′)

=⇒ SAT ∈ UTIME((𝑡 + 𝑡 ′)𝑝𝑜𝑙𝑦 (𝑛) + 𝑡 ′′)

Proof. If P ⊂ C, from the Lemma 3.5 we know there exists a constant 𝑐 such that: for each 𝑠-size

Boolean circuit 𝐵, there is an equivalent 𝑠𝑐 -size C circuit 𝐶 (for large enough 𝑛).

Proof of (1): By a simple modification of an algorithm A for CAN(C,𝑝) , we obtain an algorithm A ′

for CAN𝑝𝑐 . On input 𝐵, the algorithmA ′
first checks whether 𝐵 belongs to C. It rejects if the answer

is negative. If the answer is positive it simulates A on 𝐵 and accepts if and only if A accepts.

Proof of (2): Let A be a UTIME(𝑡) algorithm for CAN(C,𝑝) , A ′
be a UTIME(𝑡 ′) algorithm for TAUTC .

Using A and A ′
, we construct a UTIME algorithm A ′′

for TAUT.
For input 𝐵 to A ′′

, for each gate 𝑔 of 𝐵, let 𝐵𝑔 be the circuit corresponding to the output wire of

gate 𝑔. For the output gate 𝑜 , A ′′
first guesses an equivalent C circuit 𝐶 ′

𝑜 . To make sure that its

guess is unambiguous, it simulates A on𝐶 ′
𝑜 and rejects if A rejects. Then it simulates A ′

on𝐶 ′
𝑜 (to

, Vol. 1, No. 1, Article . Publication date: December 2020.

24 Anant Dhayal and Russell Impagliazzo

check if 𝐶 ′
𝑜 is a tautology) and rejects if it rejects. The only thing left to check is that 𝐶 ′

𝑜 is actually

equivalent to 𝐶𝑜 .

For checking the consistency of𝐶 ′
𝑜 ,A ′′

first guesses C circuit𝐶 ′
𝑔 , for each gate𝑔. It then simulates

A on each 𝐶 ′
𝑔 and rejects if A rejects on any of them. Finally it simulates A ′

on 𝐶 ′′
𝑔 for each 𝑔,

where 𝐶 ′′
𝑔 is the circuit that captures the tautology “𝐶 ′

𝑔 = 𝑜𝑝 (𝐶 ′
𝑔1
, . . . ,𝐶 ′

𝑔𝑙
)” for 𝑔 = 𝑜𝑝 (𝑔1, . . . , 𝑔𝑙). It

accepts if and only if A accepts on all of them.

Proof of (3): For input 𝐵, with the same strategy as in the proof of 2, we first unambiguously

construct an equivalent C circuit𝐶 . Then, on this𝐶 we simulate a UTIME(𝑡 ′′) algorithm for SATC . □

For the case of F̃ew algorithms, we get the following theorem where we don’t need canonization.

The proof is same as of the above theorem, except that now we can skip all the canonization

steps. This change will not increase the number of positive non-deterministic branches of the final

algorithm by much, and thus the constraints of a F̃ew verifier are not violated.

Theorem 4.9. Either P ⊄ C, or:
(1) TAUTC ∈ F̃ewTIME(2𝑛/𝑛𝜔 (1)) =⇒ TAUT ∈ F̃ewTIME(2𝑛/𝑛𝜔 (1))
(2) TAUTC ∈ F̃ewTIME(2𝑛/𝑛𝜔 (1)) ∧ SATC ∈ F̃ewTIME(2𝑛/𝑛𝜔 (1)) =⇒ SAT ∈ F̃ewTIME(2𝑛/𝑛𝜔 (1))

5 UNIQUE PROPERTIES VS. LOWER BOUNDS
In this section we establish relationships between unique properties and ZUTIME (Section 5.2) and

UTIME (Section 5.3) lower bounds. In both these connections we use the equivalence between UP-U
and P-U properties (Section 5.1). Then we use these connections to derive zero-error unambiguous

derandomization under UEXP lower bounds (Section 5.4).

5.1 UP-U properties vs. P-U properties
The proof of this connection is along the same lines as the original connection [4, 72, 100]: an useful

NP (resp. RP-natural) property yields an useful P (resp. P-natural) property.

Theorem 5.1. UP/𝑎 propertyU can be converted into a P/𝑎 property P such that:
(1) U is UP/𝑎-U property =⇒ P is P/𝑎-U property;
(2) U is useful against C =⇒ P is useful against C.
Proof. Let 𝑉 be the unambiguous verifier corresponding toU’s algorithm. Let 𝑐 be a constant

such that 2
𝑐𝑛 − 2

𝑛
is the length of the certificates that 𝑉 guesses for the inputs of size 2

𝑛
. Now we

design P which satisfies the promises of the theorem statement. For𝑚 which is not a multiple of 𝑐 ,

among all the inputs of length 2
𝑚
, P only accepts the all 0s string. For𝑚 = 𝑐𝑛 for some 𝑛, for any

input 𝑥𝑦 where |𝑥 | = 2
𝑛
and |𝑦 | = 2

𝑐𝑛 − 2
𝑛
, P simulates 𝑉 on (𝑥,𝑦), and accepts if and only if 𝑉

accepts. For any 𝑛 ∈ N, P uses the same advice for 2
𝑐𝑛
-size inputs, that U uses for 2

𝑛
-size inputs.

Proofs of (1): The construction of P ensures this for the inputs of size 2
𝑚
, where 𝑚 is not a

multiple of 𝑐 . For all the other input sizes this is ensured by the fact that U is a UP/𝑎 property. For

any 𝑛 ∈ N, and any advice string, the number of 2
𝑐𝑛
-size inputs P accepts, is same as the number

of 2
𝑛
-size inputs U accepts.

Proof of (2): IfU is useful against C, then for each 𝑘 there exists an infinite subset 𝑆𝑘 such that

for each 𝑛 ∈ 𝑆𝑘 ,U(𝑥) = 1 =⇒ 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 . For any 𝑥 , let 𝑦 be the unique certificate such that

𝑉 (𝑥,𝑦) = 1. Since 𝑐𝑘𝑡C (𝑥) > 𝑛𝑘 =⇒ 𝑐𝑘𝑡C (𝑥𝑦) > 𝑛𝑘 ≥ (𝑐𝑛)𝑘−1 for each 𝑘 , P is useful against

𝑛𝑘−1-size C circuits for each 𝑘 , and hence is useful against C. □

5.2 ZUE lower bounds vs P-U properties
We extend arguments from [72] to give the following result. Unlike the NE∩ Co-NE case, we get the
equivalence too exploiting the fact that any unique property has a fix size.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 25

Theorem 5.2. The following statements are equivalent:

(1) ZUE doesn’t have C circuits
(2) ZUE doesn’t have oblivious seeds in C
(3) ZUE doesn’t have hitting-sets for seeds in C
(4) ZUE doesn’t have seeds in C
(5) There exists a P computable unique property against C

Proof. (1) =⇒ (5) Let 𝐿 ∈ ZUE \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time zero-error unambiguous verifier

for 𝐿. For any 𝑛, 𝐿𝑛 can be viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using 𝑉 we give a UP-U propertyU that is useful against C. Then the result follows from

the Theorem 5.1.

For any input 𝑦 of length 2
𝑛
, U simulates 𝑉 on all the 𝑛-length strings, one by one. For each 𝑖 , it

matches the 𝑖𝑡ℎ bit of 𝑦, and the output of 𝑉 on the 𝑖𝑡ℎ 𝑛-length string.U accepts if and only if it

succeeds in all 2
𝑛
verifications.

Constructivity & uniqueness: For 𝑛 ∈ N, U unambiguously accepts the truth table of function 𝑓𝑛 ,

and rejects all the other strings. As it runs for 2
𝑂 (𝑛)

-time on 2
𝑛
-length inputs, it is UP-U (as 𝑉 is

ZUE).
Usefulness: As 𝐿 ∉ C, for each 𝑘 , there are infinitely many input lengths 𝑛, such that 𝑓𝑛 doesn’t

have 𝑛𝑘 -size C circuits. Thus U is useful against C.
(5) =⇒ (4) Let P be a P-unique property useful against C. Using P we construct a zero-error

unambiguous verifier 𝑉 for the ZUE language {0, 1}∗ such that 𝑉 doesn’t have seeds in C.
For any 𝑛-length input 𝑥 ,𝑉 guesses a string 𝑦 of length 2

𝑛
and accepts if and only if P accepts 𝑦.

Since P is P-unique property useful against C, the unique accepting witnesses of 𝑉 are not in C.
(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the ZUTIME EWL (Theorem 3.4). □

5.3 UE/𝑛 lower bounds vs P/log𝑛-U properties
We extend arguments from [100] to give the following result. Here unlike the NE case, we need

advice to establish relationship between lower bounds for UE witnesses and oblivious witnesses.

Theorem 5.3. The following statements are equivalent for any constant 𝑘 ≥ 1:

(1) UE/𝑛𝑘 doesn’t have C circuits
(2) UE/𝑛𝑘 doesn’t have oblivious witnesses in C
(3) UE/𝑛𝑘 doesn’t have hitting-sets for witnesses in C
(4) UE/𝑛𝑘 doesn’t have witnesses in C
(5) There exists a P/(log𝑛)𝑘 computable unique property against C

Proof. (1) =⇒ (5) Let 𝐿 ∈ UE/𝑛𝑘 \ C, and let 𝑉 be 2
𝑂 (𝑛)

-time unambiguous verifier for 𝐿. For

any 𝑛, 𝐿𝑛 can be viewed as a function 𝑓𝑛 , where 𝑓
−1
𝑛 (1) = {𝑥 ∈ 𝐿 | |𝑥 | = 𝑛}.

Now using𝑉 we give a UP/log𝑘𝑚-U propertyU that is useful against C. Then the result follows

from the Theorem 5.1.

For odd𝑚, among all the inputs of length 2
𝑚
, U only accepts the all 0s string. For𝑚 = 2𝑛 for

some 𝑛, for any 2𝑚-length input 𝑦𝑧 with |𝑦 | = 2
𝑛
and |𝑧 | = 2

2𝑛 − 2
𝑛
,U goes through all the 𝑛-length

strings, one by one. If the 𝑖𝑡ℎ bit of 𝑦 is 0, it does nothing. If the 𝑖𝑡ℎ bit of 𝑦 is 1, it simulates 𝑉 on

the 𝑖𝑡ℎ 𝑛-length string in the lexicographical order (to verify its inclusion in 𝐿). The first 𝑛𝑘 bits of

advice is the advice required for the simulation of𝑉 . The rest of the (log 22𝑛)𝑘 −𝑛𝑘 = (2𝑛)𝑘 −𝑛𝑘 ≥ 𝑛

bits of advise encodes the number of 𝑛-length inputs that 𝑉 accepts. U accepts if and only if: (i) it

, Vol. 1, No. 1, Article . Publication date: December 2020.

26 Anant Dhayal and Russell Impagliazzo

succeeds in all 2
𝑛
verifications; (ii) the hamming weight of 𝑦 is equal to the number encoded by the

last (2𝑛)𝑘 − 𝑛𝑘 bits of advise; and (iii) 𝑧 is an all 0s string.

Constructivity & uniqueness: For 𝑛 ∈ N, U unambiguously accepts the truth table of function

𝑓𝑛 (followed by an all 0s string of length 2
2𝑛 − 2

𝑛
), and rejects all the other strings. As it runs for

2
𝑂 (𝑛)

-time for 2
𝑛
-length inputs with 𝑛𝑘 -size advice, it is UP/(log𝑛)𝑘 -U (as 𝑉 is UE).

Usefulness: As 𝐿 ∉ C, for each 𝑙 , there are infinitely many input lengths 𝑛, such that 𝑓𝑛 doesn’t

have 𝑛𝑙+1-size C circuits. Corresponding to each such 𝑛, for the inputs of length 2
2𝑛
, U accepts

strings 𝑦 that doesn’t have (2𝑛)𝑙 -size C circuits because: any (2𝑛)𝑙 -size circuit 𝐶 with 𝑡𝑡 (𝐶) = 𝑦,

decides 𝐿𝑛 after we fix the first half of its input wires to 1s, and (2𝑛)𝑙 ≤ 𝑛𝑙+1.
(5) =⇒ (4) Let P be a P/(log𝑛)𝑘 -U property useful against C. We construct an unambiguous

verifier 𝑉 for the UE/𝑛𝑘 language {0, 1}∗, that doesn’t have witnesses in C. For any 𝑛-length input

𝑥 , guess a 2𝑛-length string 𝑦 and simulate P on 𝑦, and accept if an only if P accepts.

Since P is useful against C, 𝑉 doesn’t have witnesses in C. As P is unique, 𝑉 is UE/𝑛𝑘 .
(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the UTIME EWL (Theorem 3.3). □

5.4 Derandomization using unique properties
Here we extend the lower-bounds to derandomization connection to UEXP and ZUEXP lower bounds.
We use the two connections from the above two sections. The idea is to obtain unique properties

from UEXP and ZUEXP lower bounds, and then use these properties to unambiguously obtain hard

functions, which then yield the desired derandomization.

Theorem 5.4. [Unambiguous derandomization from UEXP and ZUEXP lower bounds]

(1) ZUEXP ≠ EXP =⇒ BPP ⊂ ∩𝜖>0 io-ZUTIME(2𝑛
𝜖)

(2) ZUEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-ZUTIME(2𝑛
𝜖)

(3) ZUEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-ZUTIME(2𝑛
𝜖)

(4) UEXP ≠ EXP =⇒ BPP ∩𝜖>0 ⊂ io-ZUTIME(2𝑛𝜖)/𝑛𝜖
(5) UEXP ⊄ SIZE(𝑝𝑜𝑙𝑦) =⇒ BPP ⊂ ∩𝜖>0 io-ZUTIME(2𝑛

𝜖)/𝑛𝜖
(6) UEXP ≠ BPP =⇒ BPP ⊂ ∩𝜖>0 io-Heur-ZUTIME(2𝑛

𝜖)/𝑛𝜖

Proof. Proof of (1): Let’s assume that ZUEXP ≠ EXP. Then ZUE can’t have seeds in SIZE(𝑝𝑜𝑙𝑦),
because brute-forcing through the seeds will prove ZUEXP = EXP. Thus, there exists a P-U property

P useful against SIZE(𝑝𝑜𝑙𝑦) (from the Theorem 5.2). For each 𝑐 , let 𝑆𝑐 be the infinite set of input

lengths where P only accept strings 𝑠𝑡𝑟 satisfying 𝑐𝑘𝑡 (𝑠𝑡𝑟) ≥ 𝑛𝑐 . These strings are truth-tables of

hard functions, and can be computed in UE using the constructivity of P.

For 𝑘, 𝜖 > 0, 𝜖 > 𝜖 ′/2 and 𝐿 ∈ BPTIME(𝑛𝑘/2), set 𝑐 = 𝑔𝑘/𝜖 ′ (where 𝑔 is the constant from Theorem

2.3). We give a ZCTIME(2𝑛𝜖) algorithm for 𝐿 that works for any input length 𝑛 with 2
𝑛 ∈ 𝑆𝑐 . For

𝑛-length input 𝑥 of 𝐿, let 𝐶𝑥 be the SIZE(𝑛𝑘) circuit capturing the BP computation of 𝐿.

Non-deterministically guess a string 𝑌 of length𝑚 = 2
𝑛𝜖

′
. Output ‘?’ if P(𝑌) = 0. Once we have

access to 𝑌 with P(𝑌) = 1 (or 𝑐𝑘𝑡 (𝑌) ≥ 𝑛𝑘), we can construct PRG 𝐺 : 𝑛𝜖 → 𝑛𝑘 from 𝑌 (using the

Theorem 2.3) that is computable in E. We brute-force through all the 𝑛𝜖
′
-length seeds, and on each

of the output strings of length 𝑛𝑘 , compute the circuit 𝐶𝑥 to calculate its acceptance probability in

time 2
𝑛𝜖

(within ±1/𝑛𝑘 error). Output 1 if this value is 1/2 or more, else output 0. Since P(𝑌) = 1

holds for unique 𝑌 , the whole process is unambiguous.

Proofs of (2):We prove the contrapositive. Assume that ∃𝜖 > 0 such that BPP ⊄ io-ZUTIME(2𝑛𝜖).
This gives us EXP ⊂ SIZE(𝑝𝑜𝑙𝑦) [9, 70, 71], and ZUEXP = EXP from (1). Thus, ZUEXP ⊂ SIZE(𝑝𝑜𝑙𝑦).

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 27

Proof of (3): Either ZUEXP ≠ EXP or EXP ≠ BPP. The former gives better derandomization from (1),

and the latter gives the desired derandomization from [48].

Proof of (4): It’s analogous to the proof of (1), except that the property we get is P/log𝑛 and not P
constructive (from the Theorem 5.3). The log𝑛-bit advice for this property is precisely the 𝑛𝜖 -bit

advice for the ZUTIME(2𝑛𝜖) algorithm we get.

Proofs of (5) & (6): They are analogous to the proofs of (2) and (3). The advice from the proof of

(4) travels to them as well. □

6 LOWER BOUNDS AGAINST prSV NON-DETERMINISTIC CIRCUITS
Here we discuss all the results regarding lower bounds against prSV non-deterministic circuits. First

we derive the EWL for the case of NEXP and (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 (Section 6.1) and use it to derive the

connection between non-trivial GAP-SAT algorithm and the lower bound NEXP ⊄ (NP∩Co-NP)/𝑝𝑜𝑙𝑦
(Section 6.2). Then we derive new gap theorems for MA and CAPP (Section 6.3). Then we derive

connections between fast algorithms and NE and ENP lower bounds against circuits that use limited

amount of prSV non-determinism (Section 6.4) and use that connection to derive unconditional

lower bounds (Section 6.5). Finally we show unconditional lower bounds against fixed-polynomial

prSV non-deterministic circuits (Section 6.6).

6.1 NEXP vs (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
Here we give NEXP EWL and KLT for (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, and the converses. We also extend the

results to ENP| | . These results work even if replace NP∩Co-NPwith P (in circuit classes and as oracles).

Theorem 6.1. The following statements are equivalent:

(1) NE ⊄ MANP∩Co-NP

(2) ENP| | ⊄ MANP∩Co-NP

(3) ENP| | ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(4) NE ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(5) NE doesn’t have witnesses in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(6) NE doesn’t have hitting-sets for witnesses in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(7) NE doesn’t have oblivious witnesses in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
(8) prMANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖)/𝑛𝜖

Proof. (1) =⇒ (2) This is trivial.
(2) =⇒ (3) For the sake of contradiction, assume that ENP| | ⊄ MANP∩Co-NP and ENP| | ⊂ (NP ∩

Co-NP)/𝑝𝑜𝑙𝑦. The latter implies EXP = AM = MANP∩Co-NP. Thus the former implies ENP| | ⊄ EXP and

∃𝑘 NE/𝑂 (𝑛) ⊂ NSIZE(𝑛𝑘) (using a linear time NE-complete language). AM ⊂ io-NE/𝑂 (𝑛), and these

implications, gives us the contradiction ∃𝑘 EXP ⊂ io-NSIZE(𝑛𝑘).
We show AM ⊂ io-NE/𝑂 (𝑛) by using a language 𝐿 ∈ ENP| | , such that 𝐿 ∉ EXP (which again follows

from the assumptions). For any ENP| | algorithm A deciding 𝐿, for any constant 𝑘 , for infinitely

many 𝑛, there can’t be any NP-oracle 𝑛𝑘 -size circuits encoding the witnesses for all the positive

oracle queries that A makes on all 𝑛-length inputs. This is because, brute-forcing through such

circuits will give an EXP algorithm for 𝐿. Now using A we get an NE/𝑂 (𝑛) algorithm B, that for

each 𝑘 , for infinitely many 𝑛, produces 2𝑂 (𝑛)
-length strings 𝑡𝑡 with 𝑐𝑘𝑡NP (𝑡𝑡) > 𝑛𝑘 . The advice

encodes the number of positive oracle queries that A makes on that input length. For any 𝑛, B
simulates A on all 𝑛-length inputs and using advice guesses that many queries to be positive. It

verifiers its guesses by non-deterministically guessing certificates for the positive oracle queries.

After all the verification steps, it outputs the concatenation of all its non-deterministic certificates.

, Vol. 1, No. 1, Article . Publication date: December 2020.

28 Anant Dhayal and Russell Impagliazzo

This concatenated string can’t have NP-oracle 𝑛𝑘 -size circuits, for any 𝑛 where its sub-strings that

represent the positive oracle queries of A doesn’t have NP-oracle 𝑛𝑘+1-size circuits (because a

circuit for the whole string, can be projected down to get a circuit for any sub-string). Now B gives

us AM ⊂ io-NE/𝑂 (𝑛), using the hardness to derandomization connection from [58].

(3) =⇒ (4) This follows from the result ENP| | ⊂ NE/𝑂 (𝑛), where the advice gives the count of
the number of positive oracle queries on all 𝑛-length inputs.

(4) =⇒ (5) Let 𝐿 ∈ NE \ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. We construct a NE verifier 𝑉 for the language

{0, 1}∗ that doesn’t have witnesses in (NP∩ Co-NP)/𝑝𝑜𝑙𝑦.𝑉 accepts any 𝑛-length string only on the

2
𝑛
-length witness that represents the characteristic function of 𝐿𝑛 . Since 𝐿 ∉ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦,

witness of 𝑉 are also not in (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦.
(5) =⇒ (6) This follows from the definitions.

(6) =⇒ (7) This follows from the definitions.

(7) =⇒ (8) The NE verifier𝑉 that doesn’t have oblivious-witnesses in (NP∩Co-NP)/𝑝𝑜𝑙𝑦, yields
a function sequence computable in NE/𝑂 (𝑛) that, for any constant 𝑘 , for any (NP∩ Co-NP)-oracle𝐴,
infinitely often, doesn’t have 𝐴-oracle circuits of size 𝑛𝑘 . The advice is used to encode the number

of inputs that the NE verifier accepts, and output sequence is just the oblivious-witnesses of 𝑉 .

Moreover, by a simple padding argument, for any 𝜖 > 0, the function sequence can be computed in

NTIME(2𝑛𝜖)/𝑛𝜖 .
Any language 𝐿 ∈ prMANP∩Co-NP, has MA protocols where Arthur uses some 𝐴 ∈ NP ∩ Co-NP as

oracle. After including the non-determinism of Merlin into the input, Arthur’s computation can

be converted into an 𝐴-oracle 𝑛𝑑 -size circuit 𝐶 for some constant 𝑑 . This conversion only takes

NP. Now for any 𝜖 > 0, we derandomize these circuits for infinitely many input lengths 𝑛, in

NTIME(2𝑛𝜖)/𝑛𝜖 . This will establish prMANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖)/𝑛𝜖 .

For any input length 𝑛, we first compute the function from the function sequence that doesn’t

have 𝑛𝑔𝑑/𝜖 -size 𝐴-oracle circuits, and then use that function and the Theorem 2.3, to construct a

PRG 𝐺 : 𝑛𝜖 → 𝑛𝑑 . This PRG fools 𝑛𝑑 -size 𝐴-oracle circuits, and thus brute-forcing through its

inputs, we can estimate the acceptance probability of 𝐶 , and output accordingly.

(8) =⇒ (1) If NE ⊂ MANP∩Co-NP and MANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖)/𝑛𝜖 , then we get EXP =

NEXP ⊂ ∩𝜖>0 io-NTIME(2𝑛
𝜖)/𝑛𝜖 . This gives us EXP ⊂ ∩𝜖>0 io-TIME(2𝑛

𝑐)/𝑛 for some constant 𝑐 . This

is false due to the diagonalization result given in [41]. □

6.2 Improving exhaustive search implies NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦
In this section we show that super-polynomial savings in non-deterministic algorithms for GAP-SAT
for (NP∩ Co-NP)-oracle circuits, imply NEXP ⊄ (NP∩ Co-NP)/𝑝𝑜𝑙𝑦. We first state the following PCP

verifier for NEXP, and hierarchy theorem for NTIME, that we will need in our result.

Theorem 6.2 (see [11, 98]). For any 𝐿 ∈ NTIME(2𝑛), there exists a PCP verifier 𝑉 (𝑥,𝑦, 𝑟) with
soundness 1/2, perfect completeness, randomness complexity 𝑛 + 𝑐 log𝑛, query complexity 𝑛𝑐 , and
verification time 𝑛𝑐 , for some constant 𝑐 . That means:

• 𝑉 has random access to 𝑥 and 𝑦, uses at most |𝑟 | = 𝑛 + 𝑐 log𝑛 random bits in any execution,
makes 𝑛𝑐 queries to the candidate proof 𝑦, and runs in at most 𝑛𝑐 steps.

• if 𝑥 ∈ 𝐿, ∃𝑦 : |𝑦 | = 𝑛𝑐 𝑃𝑟𝑟 [𝑉 (𝑥,𝑦, 𝑟) = 1] = 1.
• if 𝑥 ∉ 𝐿, ∀𝑦 : |𝑦 | = 𝑛𝑐 𝑃𝑟𝑟 [𝑉 (𝑥,𝑦, 𝑟) = 1] ≤ 1/2.

Theorem 6.3 (NTIME Hierarchy [51]). Let 𝑡1 and 𝑡2 be time constructible functions that satisfy
𝑡1 (𝑛 + 1) ∈ 𝑜 (𝑡2 (𝑛)). There is a unary language in NTIME(𝑡2 (𝑛)) that is not in NTIME(𝑡1 (𝑛)).

Now we prove our result. Recall that, a CAPP or tautology algorithm can also solve GAP-SAT.

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 29

Theorem 6.4. For any super-polynomial function 𝑠𝑝 , an NTIME(2𝑛/𝑠𝑝 (𝑛)) GAP-SAT algorithm for
𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size𝐴-oracle circuits, for every𝐴 ∈ (NP∩Co-NP), implies NEXP ⊄ (NP∩Co-NP)/𝑝𝑜𝑙𝑦.

Proof. For 𝐿 ∈ NTIME(2𝑛) we design an NTIME(2𝑛/𝑠𝑝 (𝑛)) algorithm, under the assumption

NEXP ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. This will contradict the NTIME hierarchy from Theorem 6.3.

Reduction circuit: Let 𝑉 be a PCP verifier for 𝐿 from the Theorem 6.2. On any input 𝑥 , 𝑉 (𝑥,𝑦, 𝑟)
receives |𝑟 | = 𝑛 + 𝑐 log𝑛 random bits, makes oracle queries to the proof 𝑦 of size 2

𝑛𝑛𝑐 , and runs for

𝑛𝑐 -time. Let 𝐶𝑥 be an oracle circuit capturing this computation. For the oracle gates, we will use

copies of the following described easy-witness circuit 𝐵𝑥 for a special verifier 𝑉 ′
.

Special NE verifier: On input 𝑥 and certificate 𝑦, 𝑉 ′(𝑥,𝑦) computes 𝑉 (𝑥,𝑦, 𝑟) on each value of 𝑟

and outputs 1 if and only if ∀𝑟 𝑉 (𝑥,𝑦, 𝑟) = 1.

Easy-witness circuit: Since NEXP ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 =⇒ NEXP = AM, from [41] we get that

the search problem for 𝑉 ′
is in EXP. Thus, there is an algorithm A that: on any input 𝑥 ∈ 𝐿

outputs 𝑦 such that 𝑉 ′(𝑥,𝑦) = 1; on any input 𝑥 ∉ 𝐿 outputs an all zeros string. Now define a new

language 𝐿′ = {(𝑥, 𝑖) | 𝑖𝑡ℎ output bit of A on input 𝑥 is 1}. 𝐿′ ∈ EXP and thus 𝐿′ ∈ P𝐴/𝑝𝑜𝑙𝑦 for

some 𝐴 ∈ NP ∩ Co-NP. Let 𝐵𝑥 be the 𝐴-oracle circuit whose truth-table is the witness for 𝑉 ′
on

input 𝑥 that is produced by A.

Final circuit 𝐹𝑥 : (𝑛 + 𝑐 log𝑛)-bits long input 𝑟 is given to 𝐶𝑥 . The oracle gates are replaced by the

circuit 𝐵𝑥 . The final output is the output of 𝐶𝑥 .

Final algorithm: On input 𝑥 , we get 𝐶𝑥 , non-deterministically guess 𝐵𝑥 , construct 𝐹𝑥 and run the

fast GAP-SAT algorithm on 𝐹𝑥 .

Correctness: The GAP-SAT algorithm on 𝐹𝑥 checks if the non-deterministic guess 𝐵𝑥 satisfies

𝑃𝑟𝑟 [𝑉 (𝑥, 𝑡𝑡 (𝐵𝑥), 𝑟) = 1] ≥ 1/2, or equivalently 𝑉 ′(𝑥, 𝑡𝑡 (𝐵𝑥)) = 1. If 𝑥 ∉ 𝐿, this is not possible for

any 𝐵𝑥 due to the definition of 𝑉 . If 𝑥 ∈ 𝐿, as argued above, this is true for a poly-size 𝐴-oracle

circuit 𝐵𝑥 that captures witnesses for 𝑉 ′
. □

6.3 New gap theorems for CAPP and MA

Results from the previous two sections also gives us gap theorems for CAPP and MA. First we saw that

NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 is equivalent to the derandomization of CAPP for (NP ∩ Co-NP)-oracle
circuits in NSUBEXP (infinitely often, with sub-polynomial advice). Then we saw that a non-trivial

derandomization is sufficient to prove NEXP ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦. So we get the following gap

theorem for CAPP.

Theorem 6.5 (Gap theorem for CAPP on (NP ∩ Co-NP)-oracle circuits). Let 𝑠𝑝 be any super-
polynomial function, then an NTIME(2𝑛/𝑠𝑝 (𝑛)) CAPP algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size oracle circuits,
for every (NP ∩ Co-NP)-oracle, implies a ∩𝜖>0 io-NTIME(2𝑛

𝜖)/𝑛𝜖 algorithm for 𝑛-input 𝑝𝑜𝑙𝑦 (𝑛)-size
oracle circuits, for every (NP ∩ Co-NP)-oracle.
In [41] they used NEXP KLT and its converse to establish a gap theorem for MA: either MA is as

powerful as NEXP, or can be derandomized in NSUBEXP (infinitely often, with sub-polynomial advice).

From the arguments in Section 6.1 we can get an improved gap theorem where MA = EXPNP| | in the

first case.

Theorem 6.6 (Gap theorem for MA). Exactly one of the following statements is true:
(1) MA = EXPNP| |
(2) MA ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖)/𝑛𝜖

We also get a similar gap theorem for MANP∩Co-NP: either MANP∩Co-NP is as powerful as EXPNP| | , or can

be derandomized in NSUBEXP (infinitely often, with sub-polynomial advice).

Theorem 6.7 (Gap theorem for MANP∩Co-NP). Exactly one of the following statements is true:

, Vol. 1, No. 1, Article . Publication date: December 2020.

30 Anant Dhayal and Russell Impagliazzo

(1) MANP∩Co-NP = EXPNP| |
(2) MANP∩Co-NP ⊂ ∩𝜖>0 io-NTIME(2𝑛

𝜖)/𝑛𝜖

6.4 Fast algorithms imply lower bounds against circuits with limited prSV
non-determinism

Here we show how fast tautology algorithms imply lower bounds for NE and ENP, against circuits
that use limited amount of prSV non-determinism.

Theorem 6.8. For 𝑠 (𝑛) ∈ 𝑂 (𝑛):
(1) NE ⊂ prSV𝑠 (𝑛) -C =⇒ NE has oblivious witnesses in prSV𝑠 (𝑛)

𝑂 (1)
-C

(2) ENP ⊂ prSV𝑠 (𝑛) -C =⇒ NE has oblivious witnesses in prSV𝑠 (𝑛) -C
Proof. Let 𝐿 ∈ NE, and 𝑉 be an NE verifier for 𝐿.

Proof of (1): Since NEXP ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 =⇒ NEXP = AM, from [41] we get that the search

problem for 𝑉 is in EXP. Thus, there is an algorithm A that: on any input 𝑥 ∈ 𝐿 outputs 𝑦 such

that 𝑉 (𝑥,𝑦) = 1; on any input 𝑥 ∉ 𝐿 outputs an all zeros string. Now define a new language

𝐿′ = {(𝑥, 𝑖) | 𝑖𝑡ℎ output bit ofA on input 𝑥 is 1}. 𝐿′ ∈ EXP and thus 𝐿′ ∈ prSV𝑠 (𝑛)
𝑂 (1)

-C. The circuit
sequence for 𝐿′

captures oblivious-witnesses for 𝑉 .

Proof of (2): Let A that is defined above, output the lexicographically smallest witnesses for 𝑉 .

Then its already known that the corresponding 𝐿′
language is in ENP (the algorithm does a binary

search over all the witnesses, and use the NP-oracle to check if there is any positive witness smaller

than the current witness). □

Before giving our main result, we state the local reductions that we will use in our proof.

Theorem 6.9 (Efficient local reductions [31, 50, 89]). Every language 𝐿 ∈ NTIME(2𝑛) can be
reduced to 3-SAT instances of 2𝑛𝑛𝑑 -size, for some constant 𝑐 . Moreover, given an instance of 𝐿 there
is an P-uniform deterministic circuit 𝐶 that, on an integer 𝑖 ∈ [2𝑛𝑛𝑑] in binary as input, output the
𝑖𝑡ℎ-clause of the resulting 3-SAT formula. Each output bit of 𝐶 depends on at most 𝑑 input bits.

Now we prove our main result.

Theorem 6.10. For super-polynomial function 𝑠𝑝 and 𝑠 (𝑛) ≤ 𝑂 (𝑛):
(1) an NTIME(2𝑛−𝑠 (𝑛)𝑐 /𝑠𝑝 (𝑛)) C-tautology algorithm for every 𝑐 > 0 implies NE ⊄ prSV𝑠 (𝑛) -C
(2) an NTIME(2𝑛−3𝑠 (𝑛)/𝑠𝑝 (𝑛)) C-tautology algorithm implies ENP ⊄ prSV𝑠 (𝑛) -C
Proof. Assume that NE ⊂ prSV𝑠 (𝑛) -C or ENP ⊂ prSV𝑠 (𝑛) -C. We contradict the NTIME hierarchy

by giving an NTIME(2𝑛/𝑠𝑝 (𝑛)) algorithm for arbitrary 𝐿 ∈ NE.
Reduction circuit: From the Theorem 6.9 we get: any input 𝑥 for 𝐿 uniformly reduces to a 3-SAT

instance 𝜙𝑥 , where the number of variables and clauses in𝜙𝑥 are bounded by 𝑛
𝑑
2
𝑛
for some constant

𝑑 . Moreover the reduction is local in the sense that: it can be uniformly converted to a deterministic

circuit𝐶𝑥 that on (𝑛 + 𝑑 log𝑛)-bits input 𝑖 outputs the three variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3 (3𝑛 + 3𝑑 log𝑛 bits)

from the 𝑖𝑡ℎ-clause of 𝜙𝑥 , along with three extra bits 𝑧1, 𝑧2, 𝑧3 that indicate for each of these three

variables, whether it appears as a positive literal or a negative literal.

Special verifier: Let𝑉 be a non-deterministic verifier for 𝐿, that first reduces 𝐿 to 3-SAT, and then
non-deterministically guesses a satisfying assignment for the 3-SAT formula.

Witness Circuits 𝐵𝑥 : We construct two witness circuits (after guessing the advice of the (NP ∩
Co-NP)/𝑝𝑜𝑙𝑦 algorithm A that has 𝑉 ’s oblivious-witnesses): one non-deterministic 𝐵1

𝑥 , and one

co-non-deterministic 𝐵2

𝑥 .

Final Circuit 𝐹𝑥 : Take the reduction circuit 𝐶𝑥 . 𝐶𝑥 outputs three literals. Plug any positive literal

into a copy of the co-non-deterministic circuit 𝐵2

𝑥 , and any negative literal into a copy of the

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 31

co-non-deterministic circuit 𝐵1

𝑥 . Output is the logical-or of the three copies used. To make the

circuit deterministic, include the non-deterministic inputs of the copies of 𝐵2

𝑥 and ¬𝐵1

𝑥 into the

actual input.

Final algorithm: Get 𝐶𝑥 . Non-deterministically guess the advice for A, and get 𝐵1

𝑥 and 𝐵2

𝑥 (that

are guaranteed to have complementary truth-tables). Construct the deterministic circuit 𝐹𝑥 as

described above. Run the the fast TAUT algorithm on 𝐹𝑥 .

Correctness: 𝑥 ∈ 𝐿 ⇐⇒ 𝐹𝑥 is a tautology. The tautology algorithm on 𝐹𝑥 checks if the pair

(𝐵1

𝑥 , 𝐵
2

𝑥) satisfy, 𝑉 (𝑥, 𝑡𝑡 (𝐵1

𝑥)) = 1. If 𝑥 ∉ 𝐿, this is not possible for any 𝐵1

𝑥 and 𝐵2

𝑥 . If 𝑥 ∈ 𝐿, this is

true for the witness circuits that exists due the easy-witness lemma proved in the above theorem.

While constructing 𝐹𝑥 , we use the fact that tautology of a co-non-deterministic circuit, is same as

the tautology of the deterministic circuit we get after including the non-deterministic inputs into

the actual input.

Final contradiction: The final input size is increased by 𝑠 (𝑛)𝑐 +𝑂 (log𝑛) if we use the EWL from
assumption NE ⊄ prSV𝑠 (𝑛) -C, and is increased by 3𝑠 (𝑛)+𝑂 (log𝑛) if we use the EWL from assumption

ENP ⊄ prSV𝑠 (𝑛) -C. So algorithms from our assumptions are fast enough to contradict the NTIME
hierarchy. □

6.5 Uncodntional lower bounds against restricted prSV non-deterministic circuits
Using the Theorem 6.10 from previous section we get uncondtional lower bounds against restricted

circuits that use limited prSV non-determinism. The following theorem follows from TIME(2𝑛−𝑛𝜖)
tautology algorithm for ACC circuits [99], where the constant 𝜖 depends on the depth and the

modulus function used by the circuits.

Theorem 6.11. NE ⊄ ∩𝜖>0prSV
𝑛𝜖 -ACC

The following theorem follows from the ZPTIME(2𝑛 (1−1/(log𝑛)𝜖)) tautology algorithm for AC0

circuits [42], where the constant 𝜖 increases as the size or depth of the circuits increases.

Theorem 6.12. ENP ⊄ ∩𝜖>0prSV
𝑛/(log𝑛)𝜖 -AC0

In the proof of the Theorem 6.10, the final circuit is constructed by giving the output bits of the

reduction circuit as input to the witness circuit. Each output bit of the reduction circuit of Theorem

6.9 only depends on constant number of inputs, so can be represented by a set of constant-width

clauses or terms, and thus can be plugged without increasing the depth. Thus the depth of the final

circuit is only increased by the top OR-gate. For the case of ENP, the final circuit also preserves

the size of the witness circuit upto a constant factor. So we get the following result using fast AC0

algorithms for different size and depth ranges [42].

Theorem 6.13. ENP ⊄ ∩𝜖>0prSV
𝜖𝑛/(log𝑛)2 -k-CNF and ENP ⊄ ∩𝜖>0prSV

𝜖𝑛-AC0 (𝑛)

Note that, 𝑂 (𝑛) amount of prSV non-determinism in any of the above two lower bounds, will

give super-linear lower bounds for ENP.

6.6 Unconditional lower bounds against unrestricted fixed-polynomial prSV
non-determinsitic circuits

Here we give unconditional lower bounds for prAM against fixed-polynomial size prSV non-

deterministic circuits. We use the following PSPACE-complete language of Santhanam [79], which

was also a crucial technical step in his celebrated MA lower-bound.

Lemma 6.14. There is a PSPACE-complete language 𝐿𝑆 and probabilistic polynomial-time oracle
Turing machines𝑀 and𝑀 ′ such that the following holds for any 𝑛-length input 𝑥 :

, Vol. 1, No. 1, Article . Publication date: December 2020.

32 Anant Dhayal and Russell Impagliazzo

(1) 𝑀 and𝑀 ′ only query their oracle on strings of length 𝑛.
(2) If𝑀 (resp.𝑀 ′) is given 𝐿𝑆 as its oracle and 𝑥 ∈ 𝐿𝑆 (resp. 𝑥 ∉ 𝐿𝑆), then𝑀 (resp.𝑀 ′) accepts with

probability 1.
(3) If 𝑥 ∉ 𝐿𝑆 (resp. 𝑥 ∈ 𝐿𝑆), then irrespective of the oracle,𝑀 (resp.𝑀 ′) rejects with probability at

least 2/3.

Like Santhanam’s proof, our proof is also split into two cases: (i) The easier case where PSPACE ⊂
(NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, we use the KLT from [16]. (ii) The difficult case where PSPACE doesn’t have

poly-size prSV circuits, we design AM protocol for a padded version of 𝐿𝑆 that doesn’t have fixed-

polynomial prSV circuits. We first prove an auxiliary lemma that we use for the second case.

Lemma 6.15. For 𝑘 ≥ 1 and super-constant function 𝑠𝑐 , using 𝐿𝑆 from Lemma 6.14 we define:
𝐿𝑘 = {𝑥1𝑦 | 𝑥 ∈ 𝐿𝑆 ∧ ∃(𝑧 ∈ N) 𝑦 = 2

𝑧 ≥ |𝑥 | > 0, (2𝑦 + |𝑥 |)𝑘+1 ≥ 𝑐𝑘𝑡𝑠𝑐prSV (𝐿𝑆|𝑥 |) > (𝑦 + |𝑥 |)𝑘+1}
If PSPACE ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, then 𝐿𝑘 ∉ prSVNSIZE(𝑛𝑘) for every 𝑘 ≥ 1.

Proof. For the sake of contradiction, let’s assume that 𝐿𝑘 ∈ prSVN(𝑛𝑘). That means, there is a

prSVN algorithm A, that produces an 𝑛𝑘 -size SV non-deterministic circuit sequence, that decides

𝐿𝑘 . We modify this sequence to yield a sequence for 𝐿𝑆 (used in the definition of 𝐿𝑘). Any input

length 𝑛 can be broken into unique𝑚 and 𝑦 = 2
𝑧
such that 𝑦 ≥ 𝑚 and𝑚 + 𝑦 = 𝑛. If 𝑦 satisfies

(2𝑦 +𝑚)𝑘+1 ≥ 𝑐𝑘𝑡𝑠𝑐prSV (𝐿𝑆𝑚) ≥ (𝑦 +𝑚)𝑘+1, then a circuit for the 𝑛𝑡ℎ-slice of 𝐿𝑘 can be used to yield a

circuit for the𝑚𝑡ℎ
-slice of 𝐿𝑆 (by fixing the last 𝑦 input bits to 1s). Moreover for any𝑚, there is a

unique 𝑦 that satisfies (2𝑦 +𝑚)𝑘+1 ≥ 𝑐𝑘𝑡𝑠𝑐prSV (𝐿𝑆𝑚) ≥ (𝑦 +𝑚)𝑘+1 (since 𝑦 is a power of 2).

For any input length𝑚, the size of the circuit from this sequence will be (𝑚 + 𝑦)𝑘 for the unique

𝑦 that is paired with𝑚. This leads to the contradiction (𝑚 +𝑦)𝑘 ≥ 𝑐𝑘𝑡prSV(A) (𝐿𝑆𝑚) ≥ 𝑐𝑘𝑡𝑠𝑐prSV (𝐿𝑆𝑚) >
(𝑚+𝑦)𝑘+1 on input lengths𝑚 where 𝐿𝑆 requires more that𝑚𝑘+1

size (due to 𝐿𝑆 ∉ (NP∩Co-NP)/𝑝𝑜𝑙𝑦)
and thus a positive 𝑦 exits. The first inequality follows from the fact that the circuit sequence is

produced by A. The second inequality uses the fact that the measure 𝑐𝑘𝑡𝑠𝑐prSV, beats the measure

𝑐𝑘𝑡prSV(A) for any prSVN algorithm A, after a certain input length (because A’s description is only

of constant length, i.e. less than 𝑠𝑐 (𝑚)). The third inequality follows from the definition of 𝐿𝑘 . □

Now we prove one of the two main results of this section.

Theorem 6.16. For any super-constant function 𝑠𝑐 , ∀𝑘 AM/𝑠𝑐 (𝑛) ⊄ prSVNSIZE(𝑛𝑘).
Proof. If PSPACE ⊂ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦, then PSPACE = MANP∩Co-NP. As in PSPACE we can diago-

nalize against any fixed-polynomial size circuit class, we get the desired fixed-polynomial circuit

lower-bound for MANP∩Co-NP (without any advice). MANP∩Co-NP is contained MAM = AM (Idea: after

Arthur guesses its random bits, it sends them to Merlin, who then computes all the NP ∩ Co-NP
queries Arthur will make, and sends Arthur the replies along with the certificates for the queries

and their compliments).

If PSPACE ⊄ (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦 . From the Lemma 6.15 we get languages (𝐿𝑘 for 𝑘 ≥ 1) with the

desired lower bounds. We design AM/𝑠𝑐 (𝑛) protocols for these languages. Arthur rejects everything
if the first advice bit is 0. The first advice bit is 1 exactly for the input lengths 𝑛 that split into valid

(𝑚,𝑦) pairs (see the proof of the Lemma 6.15 for the notion of valid pairs), when 𝐿𝑘 is defined

using the measure 𝑐𝑘𝑡𝑠𝑐−1prSV . Arthur rejects if the input is not in the format 𝑥1𝑦 . Else, it simulates the

machine𝑀 from the Lemma 6.14 to check if 𝑥 ∈ 𝐿𝑆 or not. It accepts if and only if 𝑥 ∈ 𝐿𝑆 . It uses

the circuit 𝐶 , that it computes from Merlin’s reply and the rest of the 𝑠𝑐 (𝑛) − 1 bits of advice, as an

oracle to𝑀 (from the Lemma 6.14).

The last 𝑠𝑐 (𝑛) − 1 bits of advice encodes a prSVN algorithm A. Correct advice encodes the

most efficient one of the most efficient prSVN algorithms for that input length, i.e. an algorithm

, Vol. 1, No. 1, Article . Publication date: December 2020.

On Limiting & Limited Non-determinism in NEXP Lower Bounds 33

A such that 𝑐𝑘𝑡SV(A) (𝐿𝑆|𝑥 |) = 𝑐𝑘𝑡prSV (𝐿𝑆|𝑥 |). For 𝑛-length input 𝑥1𝑦 with |𝑥 | =𝑚, Merlin sends an

(2𝑦 +𝑚)𝑘+1-length input𝑤 for A. Arthur produces the circuit 𝐶 = A(𝑤) to use as an oracle for

𝑀 . Arthur then guesses random bits for the simulation of𝑀 and sends them to Merlin. Merlin in

return sends the certificates that sets the flag bit of 𝐶 to 1, on all the queries that 𝑀 makes to 𝐶 .

Arthur uses these certificates, to compute the value bits of 𝐶 , and thus successfully simulates𝑀 on

𝑥 (using 𝐶 as oracle).

Completeness follows easily. If 𝑥 ∈ 𝐿𝑆 , Merlin can send the input on which the algorithm A
outputs the correct SV circuit for 𝐿𝑆 . If 𝑥 ∉ 𝐿𝑆 , soundness follows from the fact that the algorithm

A always generates SV circuits, and thus the oracle used by 𝑀 is consistent (to some language),

and thus𝑀 rejects with probability at least 2/3. □

For each input length, assigning multiple input lengths corresponding to each possible advice,

and making the input lengths with the correct advice as the promise input lengths, we get the

following theorem.

Theorem 6.17. ∀𝑘 prAM ⊄ prSVNSIZE(𝑛𝑘).

7 CONCLUSIONS AND OPEN PROBLEMS
The main open problem is whether there are any connections between fast algorithms and non-

uniform lower bounds possible within deterministic classes such as EXP. In almost all of the prior

connections, non-uniformity is simulated with non-determinism, by having a non-deterministic

machine guess the appropriate circuit. Can we substitute a recursive argument for non-determinism

here? Our results show that, while still allowing non-determinism, the form of non-determinism can

be weakened. In what other ways could we get such connections for smaller classes by restricting

the use of non-determinism? The circuit model combines two features: time and non-uniformity.

Can we get a fine-grained version of easy-witness lemma by distinguishing these two parameters?

Next obvious question in this line is whether we can get lower bounds for UEXP and related

classes using our connections. Designing fast algorithms is one direct strategy. One other, seemingly

easier strategy is to design tight hierarchy theorems for these semantic classes, possibly under the

assumption that they have small circuits.

Our results also show that, if we are using unrestricted non-determinism to simulate non-

uniformity, we can extract more out of it. That is, the guessed circuit is also allowed to use

non-determinism that is promise-single-valued. In what other ways can we extend this allowance?

Can we remove the promise condition? Specifically, can we prove NEXP easy-witness lemmas and

Karp-Lipton theorems for circuit classes above (NP ∩ Co-NP)/𝑝𝑜𝑙𝑦?
We also show unconditional NEXP lower bounds where sub-polynomial and sub-linear amounts of

promise-single-valued non-determinism is allowed. Canwe increase the amount of non-determinism

allowed, to polynomial or linear? Designing fast algorithms is one direct strategy. Can we do it with-

out changing the satisfiability upper bounds? This would lead to super-linear and super-polynomial

lower bounds against unrestricted Boolean circuits. Or can we get lower bounds against TC0 circuits
by simulating threshold gates, by the use of less expressive gates and limited non-determinism?

ACKNOWLEDGMENTS
This work is supported by the Simons Foundation and NSF grant CCF-1909634. We want to thank

Sasank Mouli, Vaibhav Krishan, Marco Carmosino and Sam McGuire for useful discussions, and for

comments and corrections on the manuscript.

, Vol. 1, No. 1, Article . Publication date: December 2020.

34 Anant Dhayal and Russell Impagliazzo

REFERENCES
[1] Scott Aaronson and Avi Wigderson. 2009. Algebrization: A New Barrier in Complexity Theory. ACM Trans. Comput.

Theory 1, 1 (2009), 2:1–2:54. https://doi.org/10.1145/1490270.1490272

[2] Miklós Ajtai. 1983.

∑
1

1
-Formulae on finite structures. Ann. Pure Appl. Log. 24, 1 (1983), 1–48. https://doi.org/10.

1016/0168-0072(83)90038-6

[3] Eric Allender. 1986. The Complexity of Sparse Sets in P. In Structure in Complexity Theory, Proceedings of the Conference
hold at the University of California, Berkeley, California, USA, June 2-5, 1986. 1–11. https://doi.org/10.1007/3-540-

16486-3_85

[4] Eric Allender. 2001. When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity. In FST
TCS 2001: Foundations of Software Technology and Theoretical Computer Science, Ramesh Hariharan, V. Vinay, and

Madhavan Mukund (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–15.

[5] N Alon and RB Boppana. 1987. The monotone circuit complexity of boolean functions. Combinatorica 7, 1 (1987),
1–22.

[6] Dana Angluin. 1987. Queries and Concept Learning. Machine Learning 2, 4 (1987), 319–342. https://doi.org/10.1007/

BF00116828

[7] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Approach (1st ed.). Cambridge University

Press, New York, NY, USA.

[8] Baris Aydinlioglu and Dieter van Melkebeek. 2017. Nondeterministic circuit lower bounds from mildly derandomizing

Arthur-Merlin games. Computational Complexity 26, 1 (2017), 79–118. https://doi.org/10.1007/s00037-014-0095-y

[9] László Babai, Lance Fortnow, NoamNisan, and AviWigderson. 1993. BPPHas Subexponential Time Simulations Unless

EXPTIME has Publishable Proofs. Computational Complexity 3 (1993), 307–318. https://doi.org/10.1007/BF01275486

[10] Theodore P. Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P =? NP Question. SIAM J. Comput. 4, 4
(1975), 431–442. https://doi.org/10.1137/0204037

[11] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. 2005. Short PCPs Verifiable in

Polylogarithmic Time. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June 2005, San
Jose, CA, USA. IEEE Computer Society, 120–134. https://doi.org/10.1109/CCC.2005.27

[12] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon. 1996. Oracles and Queries

That Are Sufficient for Exact Learning. J. Comput. Syst. Sci. 52, 3 (1996), 421–433. https://doi.org/10.1006/jcss.1996.0032
[13] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. 1998. Nonrelativizing Separations. In Proceedings of the

13th Annual IEEE Conference on Computational Complexity, Buffalo, New York, USA, June 15-18, 1998. IEEE Computer

Society, 8–12. https://doi.org/10.1109/CCC.1998.694585

[14] Harry Buhrman and Steven Homer. 1992. Superpolynomial Circuits, Almost Sparse Oracles and the Exponential

Hierarchy. In Foundations of Software Technology and Theoretical Computer Science, 12th Conference, New Delhi, India,
December 18-20, 1992, Proceedings (Lecture Notes in Computer Science, Vol. 652), R. K. Shyamasundar (Ed.). Springer,

116–127. https://doi.org/10.1007/3-540-56287-7_99

[15] Jin-yi Cai. 2001. S
p

2
subseteq ZPP

NP
. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17

October 2001, Las Vegas, Nevada, USA. IEEE Computer Society, 620–629. https://doi.org/10.1109/SFCS.2001.959938

[16] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara. 2005. Competing provers

yield improved Karp–Lipton collapse results. Information and Computation 198, 1 (2005), 1 – 23. https://doi.org/10.

1016/j.ic.2005.01.002

[17] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2006. A Duality between Clause Width and Clause

Density for SAT. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,
Czech Republic. IEEE Computer Society, 252–260. https://doi.org/10.1109/CCC.2006.6

[18] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The Complexity of Satisfiability of Small Depth

Circuits. In Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark,
September 10-11, 2009, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 5917), Jianer Chen and Fedor V.

Fomin (Eds.). Springer, 75–85. https://doi.org/10.1007/978-3-642-11269-0_6

[19] Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. 2015. Tighter Connections

between Derandomization and Circuit Lower Bounds. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA (LIPIcs, Vol. 40),
Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

645–658. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.645

[20] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. 2016.

Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Consequences for Non-reducibility. In

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, Madhu Sudan (Ed.). ACM, 261–270. https://doi.org/10.1145/2840728.2840746

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1007/3-540-16486-3_85
https://doi.org/10.1007/3-540-16486-3_85
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/s00037-014-0095-y
https://doi.org/10.1007/BF01275486
https://doi.org/10.1137/0204037
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1109/SFCS.2001.959938
https://doi.org/10.1016/j.ic.2005.01.002
https://doi.org/10.1016/j.ic.2005.01.002
https://doi.org/10.1109/CCC.2006.6
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.645
https://doi.org/10.1145/2840728.2840746

On Limiting & Limited Non-determinism in NEXP Lower Bounds 35

[21] Brynmor Chapman and Ryan Williams. 2015. The Circuit-Input Game, Natural Proofs, and Testing Circuits With

Data. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science (Rehovot, Israel) (ITCS ’15).
Association for Computing Machinery, New York, NY, USA, 263–270. https://doi.org/10.1145/2688073.2688115

[22] Lijie Chen, Ron Rothblum, Roei Tell, and Eylon Yogev. 2019. On Exponential-Time Hypotheses, Derandomization,

and Circuit Lower Bounds. Electron. Colloquium Comput. Complex. 26 (2019), 169. https://eccc.weizmann.ac.il/report/

2019/169

[23] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuckerman. 2015. Mining Circuit

Lower Bound Proofs for Meta-Algorithms. Comput. Complex. 24, 2 (2015), 333–392. https://doi.org/10.1007/s00037-

015-0100-0

[24] Timothy Y. Chow. 2011. Almost-natural proofs. J. Comput. System Sci. 77, 4 (2011), 728 – 737. https://doi.org/10.

1016/j.jcss.2010.06.017 JCSS IEEE AINA 2009.

[25] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. 151–158. https://doi.org/10.1145/

800157.805047

[26] Stephen A. Cook. 1972. A Hierarchy for Nondeterministic Time Complexity. In Proceedings of the 4th Annual ACM
Symposium on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, Patrick C. Fischer, H. Paul Zeiger, Jeffrey D.

Ullman, and Arnold L. Rosenberg (Eds.). ACM, 187–192. https://doi.org/10.1145/800152.804913

[27] Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe. 2013. Is Valiant-Vazirani’s isolation

probability improvable? Computational Complexity 22, 2 (2013), 345–383. https://doi.org/10.1007/s00037-013-0059-7

[28] Joan Feigenbaum and Lance Fortnow. 1993. Random-Self-Reducibility of Complete Sets. SIAM J. Comput. 22, 5 (1993),
994–1005. https://doi.org/10.1137/0222061

[29] Lance Fortnow and Adam R. Klivans. 2005. NP with Small Advice. In 20th Annual IEEE Conference on Computational
Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA. IEEE Computer Society, 228–234. https://doi.org/10.1109/

CCC.2005.15

[30] Lance Fortnow and Adam R. Klivans. 2009. Efficient learning algorithms yield circuit lower bounds. J. Comput. Syst.
Sci. 75, 1 (2009), 27–36. https://doi.org/10.1016/j.jcss.2008.07.006

[31] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. 2005. Time-space Lower Bounds for

Satisfiability. J. ACM 52, 6 (Nov. 2005), 835–865. https://doi.org/10.1145/1101821.1101822

[32] Lance Fortnow and Rahul Santhanam. 2011. Robust Simulations and Significant Separations. In Automata, Languages
and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 6755), Luca Aceto, Monika Henzinger, and Jirí Sgall (Eds.). Springer, 569–580.

https://doi.org/10.1007/978-3-642-22006-7_48

[33] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. 2005. Hierarchies for Semantic Classes. In Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing (Baltimore, MD, USA) (STOC ’05). ACM, New York,

NY, USA, 348–355. https://doi.org/10.1145/1060590.1060642

[34] Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity, Circuits, and the Polynomial-Time Hierarchy. Math.
Syst. Theory 17, 1 (1984), 13–27. https://doi.org/10.1007/BF01744431

[35] Ryan C. Harkins and John M. Hitchcock. 2013. Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds.

TOCT 5, 4 (2013), 18:1–18:11. https://doi.org/10.1145/2539126.2539130

[36] J. Hartmanis and R. E. Stearns. 1965. On the Computational Complexity of Algorithms. Trans. Amer. Math. Soc. 117
(1965), 285–306. http://www.jstor.org/stable/1994208

[37] Johan Håstad. 1986. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, Juris Hartmanis (Ed.). ACM, 6–20.

https://doi.org/10.1145/12130.12132

[38] F. C. Hennie and Richard Edwin Stearns. 1966. Two-Tape Simulation of Multitape Turing Machines. J. ACM 13, 4

(1966), 533–546. https://doi.org/10.1145/321356.321362

[39] Timon Hertli. 2011. 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General. In Proceedings of
the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS ’11). IEEE Computer Society, USA,

277–284. https://doi.org/10.1109/FOCS.2011.22

[40] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. 2018. The Power of Natural Properties as Oracles. In

33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA (LIPIcs, Vol. 102), Rocco A.

Servedio (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:20. https://doi.org/10.4230/LIPIcs.CCC.2018.7

[41] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of an easy witness: exponential time vs.

probabilistic polynomial time. J. Comput. Syst. Sci. 65, 4 (2002), 672–694. https://doi.org/10.1016/S0022-0000(02)00024-7
[42] Russell Impagliazzo,WilliamMatthews, and Ramamohan Paturi. 2012. A satisfiability algorithm for AC

0
. In Proceedings

of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, Yuval Rabani (Ed.). SIAM, 961–972. https://doi.org/10.1137/1.9781611973099.77

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1145/2688073.2688115
https://eccc.weizmann.ac.il/report/2019/169
https://eccc.weizmann.ac.il/report/2019/169
https://doi.org/10.1007/s00037-015-0100-0
https://doi.org/10.1007/s00037-015-0100-0
https://doi.org/10.1016/j.jcss.2010.06.017
https://doi.org/10.1016/j.jcss.2010.06.017
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800152.804913
https://doi.org/10.1007/s00037-013-0059-7
https://doi.org/10.1137/0222061
https://doi.org/10.1109/CCC.2005.15
https://doi.org/10.1109/CCC.2005.15
https://doi.org/10.1016/j.jcss.2008.07.006
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1007/978-3-642-22006-7_48
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/2539126.2539130
http://www.jstor.org/stable/1994208
https://doi.org/10.1145/12130.12132
https://doi.org/10.1145/321356.321362
https://doi.org/10.1109/FOCS.2011.22
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1137/1.9781611973099.77

36 Anant Dhayal and Russell Impagliazzo

[43] Russell Impagliazzo and Ramamohan Paturi. 1999. Complexity of k-SAT. In Proceedings of the 14th Annual IEEE
Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6, 1999. 237–240. https://doi.org/10.1109/CCC.

1999.766282

[44] Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. 2013. A Satisfiability Algorithm for Sparse Depth Two

Threshold Circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA. IEEE Computer Society, 479–488. https://doi.org/10.1109/FOCS.2013.58

[45] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 1998. Which Problems Have Strongly Exponential

Complexity?. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto,
California, USA. 653–663. https://doi.org/10.1109/SFCS.1998.743516

[46] Russell Impagliazzo and Gábor Tardos. 1989. Decision Versus Search Problems in Super-Polynomial Time. In 30th
Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989. IEEE Computer Society, 222–227. https://doi.org/10.1109/SFCS.1989.63482

[47] Russell Impagliazzo and Avi Wigderson. 1997. P = BPP if E Requires Exponential Circuits: Derandomizing the XOR

Lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA,
May 4-6, 1997. 220–229. https://doi.org/10.1145/258533.258590

[48] Russell Impagliazzo and Avi Wigderson. 2001. Randomness vs Time: Derandomization under a Uniform Assumption.

J. Comput. Syst. Sci. 63, 4 (2001), 672–688. https://doi.org/10.1006/jcss.2001.1780

[49] Kazuo Iwama and Hiroki Morizumi. 2002. An Explicit Lower Bound of 5n - o(n) for Boolean Circuits. InMathematical
Foundations of Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002,
Proceedings (Lecture Notes in Computer Science, Vol. 2420), Krzysztof Diks andWojciech Rytter (Eds.). Springer, 353–364.

https://doi.org/10.1007/3-540-45687-2_29

[50] Hamid Jahanjou, Eric Miles, and Emanuele Viola. 2015. Local Reductions. In Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I. 749–760. https:

//doi.org/10.1007/978-3-662-47672-7_61

[51] Stanislav Žák. 1983. A Turing machine time hierarchy. Theoretical Computer Science 26, 3 (1983), 327 – 333.

https://doi.org/10.1016/0304-3975(83)90015-4

[52] Valentine Kabanets. 2001. Easiness Assumptions and Hardness Tests: Trading Time for Zero Error. J. Comput. Syst.
Sci. 63, 2 (2001), 236–252. https://doi.org/10.1006/jcss.2001.1763

[53] Valentine Kabanets and Russell Impagliazzo. 2004. Derandomizing Polynomial Identity Tests Means Proving Circuit

Lower Bounds. Computational Complexity 13, 1-2 (2004), 1–46. https://doi.org/10.1007/s00037-004-0182-6

[54] Ravi Kannan. 1982. Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets. Information and Control 55, 1-3
(1982), 40–56. https://doi.org/10.1016/S0019-9958(82)90382-5

[55] Richard M. Karp and Richard J. Lipton. 1980. Some Connections Between Nonuniform and Uniform Complexity

Classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (Los Angeles, California, USA)

(STOC ’80). ACM, New York, NY, USA, 302–309. https://doi.org/10.1145/800141.804678

[56] Johannes Köbler and Osamu Watanabe. 1998. New Collapse Consequences of NP Having Small

Circuits. SIAM J. Comput. 28, 1 (1998), 311–324. https://doi.org/10.1137/S0097539795296206

arXiv:https://doi.org/10.1137/S0097539795296206

[57] Adam R. Klivans, Pravesh Kothari, and Igor Carboni Oliveira. 2013. Constructing Hard Functions Using Learning

Algorithms. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California, USA,
5-7 June, 2013. 86–97. https://doi.org/10.1109/CCC.2013.18

[58] Adam R. Klivans and Dieter van Melkebeek. 2002. Graph Nonisomorphism Has Subexponential Size Proofs Unless

the Polynomial-Time Hierarchy Collapses. SIAM J. Comput. 31, 5 (2002), 1501–1526. https://doi.org/10.1137/

S0097539700389652

[59] Matthias Krause and Stefan Lucks. 2002. Pseudorandom Functions in TC0 and Cryptographic Limitations to Proving

Lower Bounds. Comput. Complex. 10, 4 (May 2002), 297–313. https://doi.org/10.1007/s000370100002

[60] Oded Lachish and Ran Raz. 2001. Explicit Lower Bound of 4.5n - o(n) for Boolena Circuits. In Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing (Hersonissos, Greece) (STOC ’01). Association for

Computing Machinery, New York, NY, USA, 399–408. https://doi.org/10.1145/380752.380832

[61] Leonid A. Levin. 1973. Universal sorting problems. Problems of Information Transmission 9 (1973), 265–266.

[62] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. 1992. Algebraic Methods for Interactive Proof

Systems. J. ACM 39, 4 (1992), 859–868. https://doi.org/10.1145/146585.146605

[63] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. 2013. Derandomizing the HSSW Algorithm for 3-SAT.

Algorithmica 67, 2 (2013), 112–124. https://doi.org/10.1007/s00453-012-9741-4

[64] Eric Miles and Emanuele Viola. 2012. Substitution-Permutation Networks, Pseudorandom Functions, and Natural

Proofs. In Advances in Cryptology – CRYPTO 2012, Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 68–85.

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/FOCS.2013.58
https://doi.org/10.1109/SFCS.1998.743516
https://doi.org/10.1109/SFCS.1989.63482
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/978-3-662-47672-7_61
https://doi.org/10.1007/978-3-662-47672-7_61
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1006/jcss.2001.1763
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/800141.804678
https://doi.org/10.1137/S0097539795296206
https://arxiv.org/abs/https://doi.org/10.1137/S0097539795296206
https://doi.org/10.1109/CCC.2013.18
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1007/s000370100002
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/146585.146605
https://doi.org/10.1007/s00453-012-9741-4

On Limiting & Limited Non-determinism in NEXP Lower Bounds 37

[65] Burkhard Monien and Ewald Speckenmeyer. 1985. Solving satisfiability in less than 2
n
steps. Discret. Appl. Math. 10,

3 (1985), 287–295. https://doi.org/10.1016/0166-218X(85)90050-2

[66] Hiroki Morizumi. 2015. Lower Bounds for the Size of Nondeterministic Circuits. In Computing and Combinatorics,
Dachuan Xu, Donglei Du, and Dingzhu Du (Eds.). Springer International Publishing, Cham, 289–296.

[67] Robin A. Moser and Dominik Scheder. 2011. A full derandomization of schöning’s k-SAT algorithm. In Proceedings of
the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, Lance Fortnow and

Salil P. Vadhan (Eds.). ACM, 245–252. https://doi.org/10.1145/1993636.1993670

[68] Cody Murray and R. Ryan Williams. 2018. Circuit lower bounds for nondeterministic quasi-polytime: an easy witness

lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018. 890–901. https://doi.org/10.1145/3188745.3188910

[69] Moni Naor and Omer Reingold. 2004. Number-theoretic Constructions of Efficient Pseudo-random Functions. J. ACM
51, 2 (March 2004), 231–262. https://doi.org/10.1145/972639.972643

[70] Noam Nisan. 1991. Pseudorandom bits for constant depth circuits. Combinatorica 11, 1 (1991), 63–70. https:

//doi.org/10.1007/BF01375474

[71] Noam Nisan and Avi Wigderson. 1994. Hardness vs Randomness. J. Comput. Syst. Sci. 49, 2 (1994), 149–167.

https://doi.org/10.1016/S0022-0000(05)80043-1

[72] Igor Carboni Oliveira. 2013. Algorithms versus Circuit Lower Bounds. CoRR abs/1309.0249 (2013). arXiv:1309.0249

http://arxiv.org/abs/1309.0249

[73] Igor Carboni Oliveira and Rahul Santhanam. 2017. Conspiracies Between Learning Algorithms, Circuit Lower

Bounds, and Pseudorandomness. In 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia.
18:1–18:49. https://doi.org/10.4230/LIPIcs.CCC.2017.18

[74] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. 2005. An improved exponential-time algorithm

for k-SAT. J. ACM 52, 3 (2005), 337–364. https://doi.org/10.1145/1066100.1066101

[75] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. 1999. Satisfiability Coding Lemma. Chicago J. Theor. Comput. Sci.
1999 (1999). http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html

[76] A. A. RAZBOROV. 1985. Lower bounds for the monotone complexity of some Boolean functions. Soviet Math. Dokl.
31 (1985), 354–357. https://ci.nii.ac.jp/naid/10003041149/en/

[77] Alexander A. Razborov. 1989. On the Method of Approximations. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, David S. Johnson (Ed.). ACM, 167–176. https:

//doi.org/10.1145/73007.73023

[78] Alexander A Razborov and Steven Rudich. 1997. Natural Proofs. J. Comput. System Sci. 55, 1 (1997), 24 – 35.

https://doi.org/10.1006/jcss.1997.1494

[79] Rahul Santhanam. 2009. Circuit Lower Bounds for Merlin–Arthur Classes. SIAM J. Comput. 39, 3 (2009), 1038–1061.
https://doi.org/10.1137/070702680

[80] Rahul Santhanam. 2010. Fighting Perebor: New and Improved Algorithms for Formula and QBF Satisfiability. In 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA.
IEEE Computer Society, 183–192. https://doi.org/10.1109/FOCS.2010.25

[81] Uwe Schöning. 1999. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE Computer

Society, 410–414. https://doi.org/10.1109/SFFCS.1999.814612

[82] Rainer Schuler. 2005. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms
54, 1 (2005), 40–44. https://doi.org/10.1016/j.jalgor.2004.04.012

[83] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. 1978. Separating Nondeterministic Time Complexity Classes.

J. ACM 25, 1 (1978), 146–167. https://doi.org/10.1145/322047.322061

[84] Kazuhisa Seto and Suguru Tamaki. 2012. A Satisfiability Algorithm and Average-Case Hardness for Formulas over

the Full Binary Basis. In Proceedings of the 27th Conference on Computational Complexity, CCC 2012, Porto, Portugal,
June 26-29, 2012. IEEE Computer Society, 107–116. https://doi.org/10.1109/CCC.2012.29

[85] Ronen Shaltiel and Christopher Umans. 2006. Pseudorandomness for Approximate Counting and Sampling. Compu-
tational Complexity 15, 4 (2006), 298–341. https://doi.org/10.1007/s00037-007-0218-9

[86] Roman Smolensky. 1987. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity. In

Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, Alfred V.

Aho (Ed.). ACM, 77–82. https://doi.org/10.1145/28395.28404

[87] Donald M. Stull. 2017. Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems.

CoRR abs/1701.04428 (2017). arXiv:1701.04428 http://arxiv.org/abs/1701.04428

[88] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. 2001. Pseudorandom Generators without the XOR Lemma. J.
Comput. Syst. Sci. 62, 2 (2001), 236–266. https://doi.org/10.1006/jcss.2000.1730

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/972639.972643
https://doi.org/10.1007/BF01375474
https://doi.org/10.1007/BF01375474
https://doi.org/10.1016/S0022-0000(05)80043-1
https://arxiv.org/abs/1309.0249
http://arxiv.org/abs/1309.0249
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://ci.nii.ac.jp/naid/10003041149/en/
https://doi.org/10.1145/73007.73023
https://doi.org/10.1145/73007.73023
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1137/070702680
https://doi.org/10.1109/FOCS.2010.25
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1016/j.jalgor.2004.04.012
https://doi.org/10.1145/322047.322061
https://doi.org/10.1109/CCC.2012.29
https://doi.org/10.1007/s00037-007-0218-9
https://doi.org/10.1145/28395.28404
https://arxiv.org/abs/1701.04428
http://arxiv.org/abs/1701.04428
https://doi.org/10.1006/jcss.2000.1730

38 Anant Dhayal and Russell Impagliazzo

[89] Iannis Tourlakis. 2001. Time–Space Tradeoffs for SAT on Nonuniform Machines. J. Comput. System Sci. 63, 2 (2001),
268 – 287. https://doi.org/10.1006/jcss.2001.1767

[90] G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus. Springer Berlin Heidelberg, Berlin,

Heidelberg, 466–483. https://doi.org/10.1007/978-3-642-81955-1_28

[91] Christopher Umans. 2003. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci. 67, 2 (2003), 419–440.
https://doi.org/10.1016/S0022-0000(03)00046-1

[92] Leslie G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984), 1134–1142. https://doi.org/10.1145/

1968.1972

[93] Leslie G. Valiant and Vijay V. Vazirani. 1986. NP is as Easy as Detecting Unique Solutions. Theor. Comput. Sci. 47, 3
(1986), 85–93. https://doi.org/10.1016/0304-3975(86)90135-0

[94] N.V. Vinodchandran. 2005. A note on the circuit complexity of PP. Theoretical Computer Science 347, 1 (2005), 415 –
418. https://doi.org/10.1016/j.tcs.2005.07.032

[95] N. V. Vinodchandran. 2004. AMexp[nsube](NP[cap]coNP)/poly. Inf. Process. Lett. 89, 1 (2004), 43–47. https:

//doi.org/10.1016/j.ipl.2003.09.011

[96] Nikhil Vyas and Ryan Williams. 2019. On Super Strong ETH. In Theory and Applications of Satisfiability Testing – SAT
2019, Mikoláš Janota and Inês Lynce (Eds.). Springer International Publishing, Cham, 406–423.

[97] Nikhil Vyas and R. Ryan Williams. 2020. Lower Bounds Against Sparse Symmetric Functions of ACC Circuits:

Expanding the Reach of #SAT Algorithms. In 37th International Symposium on Theoretical Aspects of Computer Science,
STACS 2020, March 10-13, 2020, Montpellier, France (LIPIcs, Vol. 154), Christophe Paul and Markus Bläser (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 59:1–59:17. https://doi.org/10.4230/LIPIcs.STACS.2020.59

[98] Ryan Williams. 2013. Improving Exhaustive Search Implies Superpolynomial Lower Bounds. SIAM J. Comput. 42, 3
(2013), 1218–1244. https://doi.org/10.1137/10080703X

[99] Ryan Williams. 2014. Nonuniform ACC Circuit Lower Bounds. J. ACM 61, 1 (2014), 2:1–2:32. https://doi.org/10.1145/

2559903

[100] R. Ryan Williams. 2016. Natural Proofs versus Derandomization. SIAM J. Comput. 45, 2 (2016), 497–529. https:

//doi.org/10.1137/130938219

[101] R. Ryan Williams. 2018. New Algorithms and Lower Bounds for Circuits With Linear Threshold Gates. Theory of
Computing 14, 1 (2018), 1–25. https://doi.org/10.4086/toc.2018.v014a017

[102] Andrew Chi-Chih Yao. 1985. Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version). In 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer

Society, 1–10. https://doi.org/10.1109/SFCS.1985.49

, Vol. 1, No. 1, Article . Publication date: December 2020.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1006/jcss.2001.1767
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.1016/j.ipl.2003.09.011
https://doi.org/10.1016/j.ipl.2003.09.011
https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
https://doi.org/10.1137/130938219
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.1109/SFCS.1985.49

