
On Exponential-Time Hypotheses, Derandomization,
and Circuit Lower Bounds

Lijie Chen∗ Ron D. Rothblum† Roei Tell‡ Eylon Yogev§

November 21, 2019

Abstract

The Exponential-Time Hypothesis (ETH) is a strengthening of the P 6= NP conjec-
ture, stating that 3-SAT on n variables cannot be solved in time 2ε·n, for some ε > 0.
In recent years, analogous hypotheses that are “exponentially-strong” forms of other
classical complexity conjectures (such as NP * BPP or co-NP * NP) have also
been considered. These Exponential-Time Hypotheses have been widely influential
across different areas of complexity theory. However, their connections to derandom-
ization and circuit lower bounds have yet to be systematically studied. Such study is
indeed the focus of the current work, and we prove a sequence of results demon-
strating that the connections between exponential-time hypotheses, derandomization, and
circuit lower bounds are remarkably strong.

First, we show that if 3-SAT (or even TQBF) cannot be solved by probabilistic
algorithms that run in time 2n/polylog(n), then BPP can be deterministically simu-
lated “on average case” in (nearly-)polynomial-time (i.e., in time npolyloglog(n)). This
result addresses a long-standing lacuna in uniform “hardness-to-randomness” re-
sults, which did not previously extend to such parameter settings. Moreover, we
extend this result to support an “almost-always” derandomization conclusion from
an “almost-always” lower bound hypothesis.

Secondly, we show that disproving certain exponential-time hypotheses requires
proving breakthrough circuit lower bounds. In particular, if CircuitSAT for circuits
over n bits of size poly(n) can be solved by probabilistic algorithms in time 2n/polylog(n),
then BPE does not have circuits of quasilinear size. The main novel feature of this
result is that we only assume the existence of a randomized circuit-analysis algorithm,
whereas previous similar results crucially relied on the hypothesis that the circuit-
analysis algorithm does not use randomness.

Thirdly, we show that a very weak exponential-time hypothesis is closely-related
to the classical question of whether derandomization and circuit lower bounds are
equivalent. Specifically, we show two-way implications between the hypothesis that
the foregoing equivalence holds and the hypothesis that E cannot be decided by
“small” circuits that are uniformly generated by relatively-efficient non-deterministic
machines. This highlights a sufficient-and-necessary path for progress towards
proving that derandomization and circuit lower bounds are indeed equivalent.

∗Massachusetts Institute of Technology. Email: lijieche@mit.edu.
†Technion. Email: rothblum@cs.technion.ac.il.
‡Weizmann Institute of Science. Email: roei.tell@weizmann.ac.il.
§Simons Institute for the Theory of Computing. Email: eylony@gmail.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 169 (2019)

Contents

1 Introduction 1
1.1 Bird’s eye view of our results . 2
1.2 rETH and pseudorandom generators for uniform circuits 2
1.3 The negation of rETH and circuit lower bounds 5
1.4 NETH and an equivalence between derandomization and circuit lower

bounds . 7

2 Technical overview 9
2.1 Near-optimal uniform hardness-to-randomness results for TQBF 10
2.2 Circuit lower bounds from randomized CircuitSAT algorithms 14
2.3 NT IME -uniform circuits for E and the equivalence between deran-

domization and circuit lower bounds . 16

3 Preliminaries 18

4 rETH and near-optimal uniform hardness-to-randomness 22
4.1 Construction of a well-structured function 22
4.2 PRGs for uniform circuits with almost-exponential stretch 35
4.3 Proofs of Theorems 1.1 and 1.2 . 45

5 NOT-rETH and circuit lower bounds from randomized algorithms 46
5.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds . 48
5.2 Randomized Σ2-SAT[n] algorithms imply BPE circuit lower bounds . . 49

6 NETH and the equivalence of derandomization and circuit lower bounds 51
6.1 A refined Karp-Lipton-style result . 51
6.2 Proof of Theorems 1.4 and 1.5 . 59
6.3 Proof of Theorem 1.6 . 60

A Low-degree polynomials are sample-aided worst-case to average-case reducible 67

B When even Merlin and Arthur encounter difficulties 68

i

1 Introduction

The Exponential-Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [IP01]
(and refined in [IPZ01]), conjectures that 3-SAT with n variables and m = O(n) clauses
cannot be deterministically solved in time less than 2ε·n, for some constant ε = εm/n >
0. The ETH may be viewed as a “very strong version” of P 6= NP , since it con-
jectures that a specific problem in non-deterministic linear time (or quasi-linear time,
depending on the machine model) requires essentially exponential time to solve.

Since the introduction of ETH many related variants, which are also “stronger ver-
sions” of classical complexity-theoretic conjectures, have also been introduced. For
example, the Randomized Exponential-Time Hypothesis (rETH), introduced in [Del+14],
conjectures that the same lower bound holds also for probabilistic algorithms (i.e., it is
a strong version of NP 6⊆ BPP). The Non-Deterministic Exponential-Time Hypothesis

(NETH), introduced (implicitly) in [Car+16], conjectures that co-3SAT (with n variables
and O(n) clauses) cannot be solved by non-deterministic machines running in time
2ε·n for some constant ε > 0 (i.e., it is a strong version of co-NP 6⊆ NP). The vari-
ations MAETH and AMETH are defined analogously (see [Wil16]1), and other varia-
tions conjecture similar lower bounds for seemingly-harder problems (e.g., for #3-SAT;
see [Del+14]). Each of these hypotheses also has a “strong” variant that conjectures a
lower bound of 2(1−ε)·n, where ε > 0 is arbitrarily small, for solving a corresponding
problem (e.g., for solving SAT, co-SAT, or #SAT; for precise definitions see, e.g., [Wil18]).
However, in this paper we focus only on the “non-strong” variants that conjecture
lower bounds of 2ε·n for some ε > 0.

These Exponential-Time Hypotheses have been widely influential across different ar-
eas of complexity theory. Among the numerous fields to which they were applied
so far are structural complexity (i.e., showing classes of problems that, conditioned
on exponential-time hypotheses, are “exponentially-hard”), parameterized complex-
ity, communication complexity, and fine-grained complexity; for relevant surveys see,
e.g, [Woe03; LMS11; Wil15; Wil18]. However, the connections of exponential-time
hypotheses to derandomization and circuit lower bounds have yet to be systematically
studied.

In this work we indeed focus on the connections between exponential-time hy-
potheses, derandomization, and circuit lower bounds, and we prove a sequence of
results demonstrating that the foregoing connections are remarkably strong. Loosely
speaking, we show that proving (or disproving) certain relatively-weak exponential-
time hypotheses requires proving the existence of strong derandomization algorithms,
or breakthrough lower bounds for non-uniform circuit families, or strong connections
(i.e., an equivalence) between the former and the latter. We will mainly focus on weak
variants of rETH and of NETH, mentioned above, which refer to lower bounds for
solving CircuitSAT, TQBF, or E .

Our work follows a recent line-of-work that studies the implications of hypotheses

1In [Wil16], the introduction of these variants is credited to a private communication from Carmosino,
Gao, Impagliazzo, Mihajlin, Paturi, and Schneider [Car+16].

1

in fine-grained complexity on derandomization and circuit lower bounds. For example,
Abboud et al. [Abb+16] showed that very mild improvements in known polynomial-
time algorithms for certain problems would yield circuit lower bounds; and Car-
mosino, Impagliazzo, and Sabin [CIS18] showed that fine-grained hardness hypothe-
ses imply strong derandomization algorithms. The latter hypotheses are implied by
the Strong Randomized Exponential-Time Hypothesis (rSETH); however, as already men-
tioned, in this work we will focus only on weaker (“non-strong”) variants.

1.1 Bird’s eye view of our results

Let us now give a brief overview of our main results, before describing them in more
detail in Sections 1.2, 1.3 and 1.4.

First, in Section 1.2, we will show that the hypothesis rETH implies a strong average-
case derandomization of BPP . We will in fact consider a weaker hypothesis, which con-
jectures that the PSPACE -complete problem Totally Quanti�ed Boolean Formula (TQBF)

cannot be solved in probabilistic time 2n/polylog(n).2 Under this hypothesis, we show
that BPP can be decided, in average-case and infinitely-often, by deterministic algo-
rithms that run in time npolyloglog(n) (see Theorem 1.1). This addresses a long-standing
lacuna in uniform “hardness-to-randomness” results, which did not previously extend
to such parameter settings. We also extend this result to deduce an “almost-always”
derandomization of BPP from an “almost-always” hypothesized lower bound (see
Theorem 1.2).

Secondly, in Section 1.3 we show that disproving a conjecture similar to rETH re-
quires proving breakthrough circuit lower bounds. Specifically, we show that if there
exists a probabilistic algorithm that solves CircuitSAT for circuits with n input bits and
of size poly(n) in time 2n/polylog(n), then non-uniform circuits of quasilinear size can-

not decide BPE def
== BPT IME [2O(n)] (see Theorem 1.3). This result is analogous to

well-known theorems stating that “non-trivial” circuit-analysis algorithms imply cir-
cuit lower bounds, but has the key novel feature that the hypothesized circuit-analysis
algorithm is allowed to use randomness; see Section 1.3 for details.

Lastly, in Section 1.4 we show that a very weak version of NETH is closely-related
to the question of whether (worst-case) derandomization of BPP and circuit lower
bounds are fully equivalent. That is, we show two-way implications between a very
weak version of NETH and the hypothesis that derandomization of BPP and circuit
lower bounds are indeed equivalent (see Theorems 1.4, 1.5, and 1.6).

1.2 rETH and pseudorandom generators for uniform circuits

The first hypothesis that we study is rETH, which (slightly changing notation from
above) asserts that probabilistic algorithms cannot decide if a given 3-SAT formula
with v variables and O(v) clauses is satisfiable in time less than 2ε·v, for some constant

2Recall that TQBF is the set of 3-SAT formulas ϕ over variables w1, ..., wv such that
∀w1∃w2∀w3..., ϕ(w1, ..., wv) = 1 (see Definition 4.6), and that 3-SAT reduces to TQBF in linear time.

2

ε > 0. Note that such a formula can be represented with n = O(v · log(v)) bits, and
therefore the conjectured lower bound as a function of the input length is 2ε·(n/ log(n)).

Recall that in a classical work, Impagliazzo and Wigderson [IW98] showed that
if BPP 6= EXP – in other words, if probabilistic algorithms not extremely strong
– then there exists a pseudorandom generator with polynomial stretch that “fools”
BPP-uniform circuits. Specifically, there exists an algorithm G that stretches n.01

bits to n bits such that every probabilistic algorithm that runs in time nO(1) and tries
to output a circuit that distinguishes the output of G from uniform fails, with high
probability. We call such an algorithm a pseudorandom generator (PRG) for uniform

circuits (see Definition 3.8), and the existence of such a PRG implies what is typically
referred to as an “average-case” (or “effective”) derandomization of BPP .3 Since their
PRG only has polynomial stretch, the original result of [IW98] only yields an average-
case sub-exponential time derandomization of BPP .

Now, since rETH conjectures a much stronger lower bound for probabilistic algo-
rithms than BPP 6= EXP , one naturally expects it to yield a much stronger conse-
quence: Namely, as the lower bound is near-exponential (i.e., 2Ω(n/ log(n))), one would
expect to obtain a PRG for uniform circuits with near-exponential stretch. The key
problem, which is well-known, is that the proof framework of [IW98] does not scale
well; in other words, the known uniform “hardness-to-randomness” tradeoffs are sub-
optimal (see Section 2.1 for details). In particular, the current state-of-the-art tradeoff
by Trevisan and Vadhan [TV07] only yields a PRG with sub-exponential stretch from
such hardness. Previous works have bypassed this difficulty by constructing PRGs for
uniform circuits from different hypotheses, which are arguably stronger (or, in some
cases strictly stronger): For example, the hypothesis that prBPP = prP (see [Gol11]),
or hypotheses in fine-grained complexity (see [CIS18]).

Our first result directly addresses the problem described above, obtaining a near-
optimal uniform hardness-to-randomness tradeoff for the “high-end” parameter set-
ting. Specifically, we start from the hypothesis that the Totally Quanti�ed Boolean For-

mula (TQBF) problem cannot be solved by probabilistic algorithms that run in time
2n/polylog(n); this hypothesis is weaker than rETH (recall that 3-SAT can be reduced to
TQBF with a linear overhead). Under this hypothesis, we show that there exists a PRG
for uniform circuits with almost-exponential stretch (i.e., with seed length Õ(log(n))).

Theorem 1.1 (rETH ⇒ PRG with almost-exponential stretch for uniform circuits; in-
formal). Suppose that there exists T(n) = 2n/polylog(n) such that TQBF /∈ BPT IME [T].
Then, for every t(n) = npolyloglog(n), there exists a PRG that has seed length Õ(log(n)), runs
in time npolyloglog(n), and is infinitely-often (1/t)-pseudorandom for every distribution over
circuits that can be sampled in time t with log(t) bits of non-uniform advice.4

3Specifically, for every L ∈ BPP there exists an efficient deterministic algorithm D that satisfies the
following: Every probabilistic algorithm that gets input 1n and tries to find an input x ∈ {0, 1}n such
that D(x) 6= L(x) only has a small probability of success (see, e.g., [Gol11, Prop. 4.4]).

4Throughout the paper, when we say that the PRG is ε-pseudorandom for a distribution of circuits,
we mean that the probability over choice of circuit that the circuit distinguishes the output of the PRG
from uniform with advantage more than ε is at most ε (see Definitions 3.7 and 3.8).

3

The proof of Theorem 1.1 is based on a careful adaptation of the proof frame-
work of [IW98], using new technical tools that we construct. The latter tools signifi-
cantly refine and strengthen the technical tools that were used by [TV07] to obtain the
previously-best uniform hardness-to-randomness tradeoff. For high-level overviews
of the proof of Theorem 1.1 (and of the new constructions), see Section 2.1.

Overcoming the “infinitely-often” barrier. The hypothesis in Theorem 1.1 is that
any probabilistic algorithm that runs in time 2n/polylog(n) fails to compute TQBF infinitely-
often, and the corresponding conclusion is that the PRG “fools” uniform circuits only
infinitely-often. This is identical to all previous uniform “hardness-to-randomness”
results that used the [IW98] proof framework, which was not previously known to
support an “almost-always” conclusion from an “almost-always” hypothesis.5

In the following result, we show how to partially overcome this challenge in our
parameter setting. Specifically, we will assume that every probabilistic algorithm that
runs in time 2n/polylog(n) fails to decide TQBF on almost all input lengths; that is, we
assume that TQBF /∈ i.o.BPT IME [2n/polylog(n)]. From this hypothesis we will deduce
two incomparable conclusions: First, that there exists a Hitting-Set Generator (HSG) for
uniform circuits that works almost-always, and thus derandomizes RP in average-
case almost-always;6 and secondly, that BPP can also be derandomized in average-
case almost-always, albeit for a weaker notion of “average-case” derandomization (see
below) and using a tiny amount of non-uniform advice (i.e., O(logloglog(n)) bits).

Theorem 1.2 (almost-always-rETH⇒ almost-always derandomization in time npolyloglog(n);
informal). Suppose that there exists T(n) = 2n/polylog(n) such that TQBF /∈ i.o.BPT IME [T].
Then, for every t(n) = npolyloglog(n),

1. (“Black-box” almost-always derandomization of RP :) There exists a HSG for uni-
form circuits that has seed length Õ(log(n)), runs in time npolyloglog(n), and for every
distribution over circuits that can be sampled in time t with log(t) bits of non-uniform
advice, for almost all input lengths n ∈N, the HSG “hits” circuits with n input bits
from the distribution that accept at least 1/t(n) of their inputs.

2. (“White-box” almost-always derandomization of BPP using short advice:) For
every L ∈ BPT IME [t] and every distribution ensemble X = {Xn ⊂ {0, 1}n} such
that x ∼ Xn can be sampled in probabilistic time t(n), there exists a deterministic
algorithm D = DX that runs in time npolyloglog(n) and uses O(logloglog(n)) bits
of non-uniform advice such that for almost all input lengths n ∈ N it holds that
Prx∼Xn [D(x) 6= L(x)] < 1/t(n).

5In contrast, other proof strategies (which use different hypotheses) were able to support an “almost-
always” conclusion, albeit not necessarily a PRG, from an “almost-always” hypothesis (see [GSTS03;
CIS18]).

6A Hitting-set generator (HSG) for uniform circuits is defined analogously to PRG for uniform circuits,
and implies an average-case derandomization of RP (see Definition 3.9 and Claim 3.10). We note that
generic transformations of HSGs for non-uniform circuits to algorithms for worst-case derandomization of
BPP are known (see, e.g., [ACR98; BF99; GVW11]), but these transformations do not seem to work for
HSGs for uniform circuits and average-case derandomization of BPP .

4

The notions of “average-case” derandomization in Items (1) and (2) of Theorem 1.2
are different. Specifically, the derandomization of RP in Item (1) implies that for
every L ∈ RP there exists a single deterministic algorithm D such that for every
efficiently-samplable distribution X it holds that D agrees with L with high probability
over X (see Claim 3.10). The derandomization of BPP in Item (2), however, only
implies that for every L ∈ BPP and every efficiently-samplable distribution X there exists
a corresponding deterministic DX that agrees with L with high probability over X .
For a high-level description of the proof of Theorem 1.2, see Section 2.1.

Non-deterministic extensions. Note that “scaled-up” versions of Theorems 1.1 and 1.2
for non-deterministic settings essentially follow from known results; that is, assuming
lower bounds for non-deterministic uniform algorithms, we can deduce strong de-
randomization of corresponding non-deterministic classes. First, from the hypothesis
MAETH 7 we can deduce strong circuit lower bounds, and hence also worst-case deran-
domization of prBPP and of prMA (this uses relatively standard Karp-Lipton-style
arguments, following [Bab+93]; see Appendix B for details and for a related result).
Similarly, as shown by Gutfreund, Shaltiel, and Ta-Shma [GSTS03], a suitable variant
of AMETH implies an average-case derandomization of AM.

1.3 The negation of rETH and circuit lower bounds

The results in Section 1.2 show that rETH implies strong average-case derandomization
of BPP (indeed, this holds even for a weaker hypothesis that refers to TQBF). It
is not clear, though, if rETH implies circuit lower bounds; this is since rETH only
conjectures a lower bound for uniform probabilistic algorithms, rather than for non-
uniform circuits. Loosely speaking, in this section, we show that a hypothesis that is
a bit stronger than the negation of rETH implies breakthrough circuit lower bounds.
Thus, intuitively (and being slightly inaccurate), rETH implies derandomization of
BPP whereas (a form of) “not rETH” implies circuit lower bounds.

The main challenge in proving that “not rETH” implies circuit lower bounds is that
our hypothesis only means that there exists a randomized “non-trivial” circuit-analysis
algorithm. Recall that known arguments that deduce circuit lower bounds from “non-
trivial” circuit-analysis algorithms, following the celebrated result of Williams [Wil13]
(see, e.g., [SW13; BSV14; MW18; Che19; CW19]), crucially rely on the hypothesis that
the circuit-analysis algorithm does not use randomness. It is a well-known challenge
to obtain similar results for randomized algorithms; the best previous related result
that we are aware of is by Oliveira and Santhanam [OS17], who deduced circuit lower
bounds from randomized subexponential-time algorithms for learning with membership
queries (see Section 2.2 for details). 8

7Note that indeed a non-deterministic analogue of rETH is MAETH (or, arguably, AMETH), rather
than NETH, due to the use of randomness. Also recall that, while the “strong” version of MAETH is false
(see [Wil16]), there is currently no evidence against the “non-strong” version MAETH.

8Another known result, which was communicated to us by Igor Oliveira, asserts that if CircuitSAT

5

We are able to prove a significantly more refined result, with parameters that are
closer to the ones in the known results for deterministic algorithms. Specifically, the
first hypothesis that we consider is that there exists a probabilistic algorithm that solves
CircuitSAT for circuits with n input bits and of size poly(n) in time 2n/polylog(n), for
a sufficiently large polylogarithmic function. Under this hypothesis, we show that

BPE def
== BPT IME [2O(n)] cannot be decided by non-uniform circuits of quasilinear

size; indeed, these lower bounds might seem weak (compared, say, to lower bounds for
P/poly), but they would nevertheless be a major breakthrough in circuit complexity.9

That is:

Theorem 1.3 (circuit lower bounds from non-trivial randomized CircuitSAT algo-
rithms). For any constant c ∈ N there exists a constant c′ ∈ N such that the following
holds. If CircuitSAT for circuits over n variables and of size n2 · (log n)c′ can be solved in
probabilistic time 2n/(log n)c′

, then BPE 6⊂ SIZE [n · (log n)c].

Note that Theorem 1.3 is not a strict strengthening of the results of [Wil13; MW18],
despite the fact that it only assumes the existence of a randomized algorithm rather
than a deterministic one. This is since the results of [Wil13; MW18] yield some lower
bound even if the running time of the algorithm is 2n/nω(1) (e.g., the bound NEXP 6⊆
P/poly); and from an algorithm that runs in time 2n/polylog(n) as in Theorem 1.3, their
results yield the lower bound NP 6⊂ SIZE [nk] for every fixed k ∈N. In comparison,
in Theorem 1.3 we can only deduce a lower bound if the running time is 2n/polylog(n),
and the deduced lower bound is incomparable to NP 6⊆ SIZE [nk] (since BPE and
NP are incomparable). Nevertheless, as far as we are aware, Theorem 1.3 is the
first result that deduces circuit lower bounds from near-exponential-time randomized
algorithms for a natural circuit-analysis task.

The proof of Theorem 1.3 uses techniques that are very different from the ones
used in previous results (e.g., from “easy-witness” techniques or from MA lower
bounds; see Section 2.2). Loosely speaking, the proof is based on the connection
shown in [OS17] (following [FK09; HH13; KKO13]) between learning algorithms and
circuit lower bounds, while crucially leveraging the technical tools that we develop as
part of the proof of Theorems 1.1 and 1.2. See Section 2.2 for a description of the proof.

In addition, we show that a hypothesis similar to rETH implies an average-case de-
randomization of BPP , whereas its negation implies circuit lower bounds. We deduce
that, unconditionally, at least one of the following statements is true: (1) BPP can be
derandomized, in average-case and infinitely-often, in time npolyloglog(n); (2) BPE is

for circuits over n variables and of size poly(n) can be solved in probabilistic sub-exponential time 2no(1)
,

then BPTIME[2O(n)] 6⊂ P/poly. This result can be seen as a “high-end” form of our result (i.e., of
Theorem 1.3), where the latter will use a weaker hypothesis but deduce a weaker conclusion.

9For context, let us recall the current state-of-the-art lower bounds against circuits of quasilinear
size. There exist “hard” functions for such circuits that are computable by exponential-time Merlin-Arthur
verifiers (see [BFT98]), or computable by brute-force diagonalization (which requires time exponential
in the circuit-size, or several non-deterministic alterations), or computable by polynomial-time Merlin-
Arthur verifiers that use one bit of non-uniform advice (see [San09; MW18]).

6

hard for circuits of quasilinear size. (See Corollary 5.6 for a precise statement.) We
comment that we do not know how to prove this result by applying a “win-win” argu-
ment to rETH itself, because we do not know if the statement “rETH is false” implies
circuit lower bounds (this is since the hypothesis of Theorem 1.3 is stronger than the
negation of rETH).10 Instead, we base our “win-win” argument on other hypotheses,
which are similar to rETH (i.e., on hypotheses that refer either to Σ2-SAT[O(n)] or to
TQBF; see Section 5.2 for details).

1.4 NETH and an equivalence between derandomization and circuit lower
bounds

In this section we consider a different notion of derandomization of BPP , namely
worst-case derandomization rather than average-case derandomization. For example,
we will be interested in worst-case derandomizations of prBPP such as prBPP =
prP or prBPP ⊆ prNP . Recall that the Non-Deterministic Exponential-Time Hypothesis

(NETH) conjectures that co-3SAT (with n variables and O(n) clauses) cannot be solved
by non-deterministic machines running in time 2ε·n for some ε > 0. The motivating
observation for our results in this section is that NETH has an unexpected consequence
to the long-standing question of whether worst-case derandomization of prBPP is equiv-
alent to circuit lower bounds against E .

Specifically, recall that if E does not have “small” non-uniform circuits, then there
exist efficient pseudorandom generators, which allow for worst-case derandomization
of prBPP (this was proved in the sequence of works that began with [NW94; IW99]
and culminated in [Uma03]). On the other hand, efficient deterministic algorithms
for prBPP imply circuit lower bounds, albeit only against non-deterministic classes
rather than against E (see [MW18] and the follow-up [Tel19], following [Wil13] and the
sequence of works that began with [BFT98; IKW02]). It is a long-standing question of
whether the foregoing results can be strengthened to show a full equivalence between
worst-case derandomization of prBPP and circuit lower bounds against E ; one well-
known implication of such an equivalence would be that any derandomization of
prBPP necessitates the construction of PRGs that “fool” non-uniform circuits.11

Our main contribution is in showing that, loosely speaking (and being slightly
inaccurate), proving a very weak form of NETH is both sufficient and necessary in order
to answer the question of equivalence in the affirmative. Towards presenting this very
weak form of NETH, let us say that L ⊆ {0, 1}∗ has NT IME [T]-uniform circuits if
there exists a non-deterministic machine M that gets input 1n, runs in time T(n), and

10The hypothesis in Theorem 1.3 is stronger both because it refers to running-time 2n/polylog(n) (rather
than 2ε·n), and because it requires deciding satisfiability of n-bit circuits of size poly(n), whereas rETH
refers to deciding satisfiability of an n-bit formula of size O(n).

11The question of equivalence is mostly “folklore”, but was mentioned several times in writing. It was
raised as a hypothetical possibility in [TV07] (as a “super-Karp-Lipton theorem”), and was (implicitly)
referred to again in [Gol11], which focuses on average-case derandomization and whose main goal was
to bypass this question and obtain pseudorandom generators without circuit lower bounds. The question
was recently raised explicitly (as a conjecture) in [Tel19], following the results of [MW18].

7

satisfies the following: For some non-deterministic choices M outputs a single circuit
C : {0, 1}n → {0, 1} that decides L on all inputs x ∈ {0, 1}n, and whenever M does not
output such a circuit, it outputs ⊥. Moreover, we will sometimes quantify the size of
the circuit that the machine outputs, in cases where the machine runs in time T(n) but
outputs a circuit of much smaller size S(n)� T(n).

Indeed, the assumption that L has NT IME [T]-uniform circuits (let alone of size
S < T) is much stronger than the assumption L ⊆ NT IME [T], since the former
means that we can uniformly generate in time T(n) (using non-determinism) a concise
description of L∩{0, 1}n, in the form of a single circuit that decides L on all n-bit inputs.
(In particular, it means that L ∈ NT IME [T] ∩ SIZE [S].) Thus, the assumption that
E does not have NT IME [T]-uniform circuits of size S, for a small T and perhaps
smaller S, is much weaker than NETH (which asserts that co-3SAT /∈ NT IME [T] for
T(n) = 2ε·(n/ log(n))). The fact that such a weak assumption (i.e., for small values of T
and S that will be specified below) suffices to deduce that derandomization and circuit
lower bounds are equivalent can be seen as appealing evidence that the equivalence
indeed holds.

Our first result asserts that if E cannot be decided by NT IME [2nδ
]-uniform cir-

cuits of arbitrary polynomial size (for some δ > 0), then derandomization of prBPP
in sub-exponential time is equivalent to lower bounds for polynomial-sized circuits
against E . Moreover, we show that under this hypothesis, even non-deterministic deran-
domization of prBPP (in sub-exponential time) is equivalent to such lower bounds.

Theorem 1.4 (NETH⇒ circuit lower bounds are equivalent to derandomization; “low-end”
setting). Assume that there exists δ > 0 such that E cannot be decided by NT IME [2nδ

]-
uniform circuits of arbitrary polynomial size. Then, the following statements are equivalent:

1. prBPP ⊆ i.o.prNSUBEXP .

2. prBPP ⊆ i.o.prSUBEXP .

3. DT IME [2n] 6⊂ P/poly.

where prNSUBEXP = ∩ε>0i.o.prNT IME [2nε
] and prSUBEXP = ∩ε>0i.o.prDT IME [2nε

].

Recall that the circuit lower bound in Item (3) of Theorem 1.4 unconditionally im-
plies the derandomization results in Items (1) and (2) (see [Bab+93; Uma03]). The point
of Theorem 1.4 is that, under our hypothesis, the derandomization results also imply
the corresponding circuit lower bounds. We also note that the conditional equivalence
between non-deterministic derandomization and circuit lower bounds counters a com-
mon intuition for why the known “derandomization implies lower bounds” results
fail to show an equivalence as in the conclusion of Theorem 1.4; see the comment in
the end of Section 2.3 for details.

Next, we present a version of Theorem 1.4 for “high-end” parameter settings (i.e.,
an equivalence between fast derandomization and lower bounds for large circuits). For
this “high-end” result we will need the stronger hypothesis that E cannot be decided
by NT IME [2Ω(n)]-uniform circuits, and we prove the weaker conclusion that circuit

8

lower bounds are only equivalent to simulation of prBPP in small deterministic (rather
than non-deterministic) time. On the other hand, the “high-end” result also extends to
an “almost-always” version (i.e., if the hypothesis is an “almost-always” lower bound,
then we can deduce an “almost-always” derandomization; for simplicity, the statement
refers only to the “almost-always” version). Specifically:

Theorem 1.5 (NETH⇒ circuit lower bounds are equivalent to derandomization; “high-
-end” setting). Assume that there exists δ > 0 such that E cannot be decided byNT IME [2δ·n]-
uniform circuits even infinitely-often. Then:

prBPP = prP ⇐⇒ ∃ε > 0 : DT IME [2n] 6⊂ i.o.SIZE [2ε·n] ,

and furthermore, for every constant c > 1 we have that

prBPP ⊆ prDT IME
[
2O(log n)c

]
⇐⇒ ∃ε > 0 : DT IME [2n] 6⊂ i.o.SIZE [ε · 2n1/c

] .

Remarkably, as mentioned above, a hypothesis similar to the ones in Theorems 1.4
and 1.5 is also necessary in order to prove that derandomization and circuit lower
bounds are equivalent. Specifically, we show that if the latter equivalence is true,
then E cannot be decided by NT IME [T]-uniform circuits for a function T(n) =

22polyloglog(n)
= 2quasipolylog(n) that is “in between” quasipolynomial and subexponential:

Theorem 1.6 (a partial converse to Theorems 1.4 and 1.5; informal). There exist a class
T of time functions and a class S of size functions that are both “in between” quasipolynomial
and subexponential such that the following holds. If

prBPP ⊂ i.o.∪T∈T prNT IME [T] ⇐⇒ DT IME [2n] /∈ ∪S∈SSIZE [S] ,

then, for every c ∈ N, it holds that DT IME [2n] does not have NT IME [T]-uniform
circuits, where T(n) = 22(loglogn)c

.

The hypothesis of Theorem 1.6 is implied by the assumption that E does not have
NT IME [2nδ

]-uniform circuits for some δ > 0. By a more careful optimization of
the underlying argument we also show a tighter connection: That is, assuming that
E does not have NT IME [T]-uniform circuits, we deduce an equivalence between
derandomization and circuit lower bounds, which in turn implies that that E does not
have NT IME [T′]-uniform circuits, for functions T′ < T that are closer (and both
T and T′ are “in between” quasipolynomial and subexponential; specific statements
appear in Section 6.3).

2 Technical overview

In this section we provide high level overviews for the proofs of our main results,
which were stated in Section 1. In Section 2.1 we describe the proofs of Theorems 1.1
and 1.2. In Section 2.2 we describe the proof of Theorem 1.3, which relies on the proofs
from Section 2.1. And in Section 2.3 we describe the proofs of Theorems 1.5 and 1.6.

9

2.1 Near-optimal uniform hardness-to-randomness results for TQBF

Let us begin by describing the proof of Theorem 1.1, which will serve as a basis for the
proof of Theorem 1.2. In high-level, our proof strategy follows the classic approach
of Impagliazzo and Wigderson [IW98]. The starting-point of this approach is a well-

structured function f ws : {0, 1}∗ → {0, 1}∗; the meaning of the term "well-structured"
differs across different follow-up works to [IW98], and in the current work it will
also take on a new meaning, but for now let us intuitively think of f ws as downward
self-reducible and as having properties akin to random self-reducibility. Instantiating
the Nisan-Wigderson pseudorandom generator with a suitable encoding ECC(f ws) of
f ws as the “hard” function (again, the precise requirements from ECC differ across
works), the proof framework of [IW98] aims to show that if the PRG with stretch t(n)
does not “fool” uniform distinguishers even infinitely-often, then f ws is computable in
probabilistic time t′(n) > t(n). As a contrapositive, if probabilistic algorithms cannot
compute f ws in time t′, then the PRG “fools” uniform distinguishers infinitely-often.

The key challenge underlying this proof approach is the significant overheads in
the proof, which increase the time complexity t′ of computing f ws. In the original
proof of [IW98] this time was roughly t′(n) ≈ t(t(n)), and the state-of-the-art prior to
the current work, by Trevisan and Vadhan [TV07] (following [CNS99]), yielded time
t′(n) = poly(t(poly(n))). Since the relevant functions f ws in all works are computable
in E = DT IME [2O(n)], proofs with such overhead can yield at most a sub-exponential
stretch t(n) = 2nΩ(1)

. As mentioned in Section 1.2, Goldreich [Gol11] bypassed this dif-
ficulty by using the stronger hypothesis prBPP = prP , whereas Carmosino, Impagli-
azzo, and Sabin [CIS18] bypassed this difficulty by using hypotheses from fine-grained
complexity (that are implied by the “strong” version of rETH, i.e. by rSETH). In con-
trast, we take a brute-force approach: We replace all of the polynomial overheads in
the input length in the [IW98; TV07] proof with only polylogarithmic overheads in the
input length. That is, we will show that for carefully-constructed f ws and suitably-
chosen ECC (and with some variations in the proof itself), if the PRG instantiated with
ECC(f ws) for stretch t does not “fool” uniform distinguishers infinitely-often, then f ws

can be computed in time t′(n) = t(Õ(n))O(1).

2.1.1 The well-structured function f ws

Following an idea of Trevisan and Vadhan [TV07], we take f ws to be an artificial
problem that we carefully construct. Our function f ws will satisfy the following re-
quirements. First, we require that f ws will be computable in linear space. Sec-
ondly, we require that TQBF can be reduced to f ws in quasilinear time. Thirdly, we
require that f ws will be downward self-reducible, yet only in time 2n/polylog(n).12 And
lastly, we require that f ws will be sample-aided worst-case to δ-average-case reducible, for
δ(n) = 2−n/polylog(n); this property, which is implicit in many works and was recently

12That is, there exists an algorithm that computes f wsn (i.e., f ws on inputs of length n) in time 2n/polylog(n)

when given oracle access to f wsn−1.

10

made explicit by Goldreich and G. Rothblum [GR17], asserts the following: There
exists a uniform algorithm T that gets as input a circuit C : {0, 1}n → {0, 1}∗ that
agrees with f wsn on at least δ(n) of the inputs, and labeled examples (x, f ws(x)) where
x ∈ {0, 1}n is uniformly-chosen, runs in time 2n/poly log(n) and with high probability
outputs a circuit C′ : {0, 1}n → {0, 1}∗ that computes f wsn on all inputs (see Defini-
tion 4.2 for intuition and details).

The construction of f ws is the main technical part of the proof of Theorem 1.1; the
main challenge in constructing f ws is not to obtain each of the required properties
separately, but to obtain all of them simultaneously. We first explain (very briefly) the
key points underlying the construction; a detailed overview is presented in Section 4.1.
We will later show how f ws can be used to prove Theorem 1.1.

Our construction of f ws is a significant refinement of the construction of the well-
known PSPACE -complete set constructed by Trevisan and Vadhan [TV07]. Our start-
ing point is their previous construction. Loosely speaking, they first reduce TQBF to an
intermediate problem TQBF′ that is amenable to arithmetization, and then reduce TQBF′

to an arithmetic problem. Now, for every n ∈N they construct a collection of poly(n)
low-degree polynomials that are randomly self-reducible (since they have low degree)
and also satisfy a property akin to downward self-reducibility; loosely speaking, these
polynomials arise from applying the protocol underlying the proof of IP = PSPACE
to TQBF′ [Lun+92; Sha92]. Finally they “combine” these polynomials to a Boolean func-
tion f ws that “inherits” their useful properties, and is thus well-structured; this is done
by mapping each n ∈ N to an interval of poly(n) input lengths corresponding to the
collection of polynomials.

The main problem for us is that each of the four foregoing steps entails a poly-
nomial overhead in the input length; again, our challenge is to eliminate all of of the
overheads simultaneously. Loosely speaking, we do so by first reducing TQBF to an-
other problem, denoted TQBFloc, which is both amenable to arithmetization and re-
ducible from TQBF in quasilinear time (see Claim 4.7.1). We then move to an arithmetic
setting that will later on support the strong random self-reducibility that we want
(namely, low-degree polynomials in this setting will be sample-aided worst-case to
δ-average-case reducible), and show how to arithmetize TQBFloc in this setting (see
Claim 4.7.2). Then, we construct a much smaller collection of only polylog(n) low-
degree polynomials (instead of poly(n) polynomials), roughly corresponding to a
version of IP = PSPACE with polylog(n) rounds and relatively-high verification
times (see Claim 4.7.3); these polynomials are sample-aided worst-case to δ-average-
case reducible (see Proposition A.1), and also posses a property similar to downward
self-reducibility. Finally, we “combine” the polynomials (for every n ∈ N) to obtain a
single function f ws : {0, 1}∗ → {0, 1}∗, where the small number of polynomials allows
us to reduce TQBFloc to f ws in only quasilinear time. Indeed, we are “paying” for these
optimizations, by the fact that all of the underlying algorithms (e.g., for downward
self-reducibility and for sample-aided worst-case to δ-average-case reducibility) now
run in time 2n/polylog(n), instead of in polynomial time; but we are indeed able to afford
this in our proof (since eventually we only need to solve TQBF in time 2n/polylog(n)).

11

2.1.2 Instantiating the [IW98] proof framework with the function f ws

Given this construction, we can now instantiate a relatively-standard variant of the [IW98]
proof framework with f ws, as follows (for simplicity, we show how to “fool” polynomial-
time distinguishers that do not use advice). Let ECC be the Goldreich-Levin [GL89]
(i.e., Hadamard) encoding ECC(f ws)(x, r) = ⊕i f ws(x)i · ri. The argument of [IW98] (fol-
lowing [NW94]) shows that if for input length n there exists a uniform poly(n)-time
distinguisher A for the Nisan-Wigderson PRG (instantiated with ECC(f ws)) that suc-
ceeds with advantage 1/n, then for input length ` = Õ(log(n)) (corresponding to the
set-size in the underlying combinatorial design) there is a weak learner for ECC(f ws):
That is, there exists an algorithm that gets oracle access to ECC(f ws), runs in time
poly(n) ≈ 2`/polylog(`), and outputs a small circuit that agrees with ECC(f ws) on ap-
proximately 1/2 + 1/n2 ≈ 1/2 + δ0(`) of the `-bit inputs, where δ0(`) = 2−`/polylog(`).

Assuming that there exists a distinguisher for the PRG as above for every n ∈ N,
we deduce that a weak learner exists for every ` ∈N. Following [IW98], for each input
length i = 1, ..., ` we construct a circuit of size 2i/polylog(i) for f wsi . Specifically, in itera-
tion i we run the learner for ECC(f ws) on input length 2i, and answer its oracle queries
using the downward self-reducibility of f ws, the circuit that we have for f wsi−1, and the
fact that ECC(f ws)2i is easily computable given access to f wsi . The learner outputs a
circuit of size 22i/polylog(2i) that agrees with ECC(f ws) on approximately 1/2 + δ0(2i) of
the 2i-bit inputs, and the argument of [GL89] allows to efficiently transform this circuit
to a circuit of similar size that computes f ws on a approximately δ(i) = poly(δ0(2i))
of the i-bit inputs. Our goal now is to transform this circuit to a circuit of similar size
that computes f ws on all i-bit inputs. Recall that in general, performing such trans-
formations by a uniform algorithm is challenging (intuitively, if f ws is a codeword in
an error-correcting code, this corresponds to uniform list-decoding of a “very corrupt”
version of f ws). However, in our specific setting we can produce random labeled samples
for f ws, using its downward self-reducibility and the circuit that we have for f wsi−1. Re-
lying on the sample-aided worst-case to average-case reducibility of f ws, we can transform
our circuit to a circuit of similar size that computes f wsi on all inputs.

Finally, since TQBF is reducible with quasilinear overhead to f ws, if we can compute
f ws in time 2n/polylog(n) then we can compute TQBF in such time. Moreover, since
f ws is computable in space O(`) = Õ(log(n)) (and thus in time npolyloglog(n)), the
pseudorandom generator is computable in time npolyloglog(n).

2.1.3 The “almost-always” version: Proof of Theorem 1.2

The proof framework of [IW98], which underlies Theorem 1.1, was previously only
known to yield PRGs that “fool” any uniform distinguisher infinitely-often, rather than
an “almost-always” derandomization. We now explain how we can adapt the proof
above framework in order to get an “almost-always” conclusion, in our specific setting
of PRGs with near-exponential stretch.

For starters, we will need a stronger property of f ws. Specifically, we construct a
function f ws that is downward self-reducible in a polylogarithmic number of steps, which

12

means that for every input length ` there exists an input length `0 ≥ `− polylog(`)
such that f ws is efficiently-computable at input length `0 (i.e., f ws`0

is computable in time
2`0/polylog(`0) without a “downward” oracle; see Section 4.1.1 for intuition and details).

Now, observe that the transformation of a probabilistic time-t algorithm A (that
distinguishes G from uniform) to a probabilistic time-t′ algorithm F (that computes
f ws) actually gives a “point-wise” guarantee: For every input length n ∈ N, if A
distinguishes the PRG on a corresponding set of input lengths Sn, then F computes
f ws correctly at input length ` = `(n) = Õ(log(n)); specifically, Sn is the set of input
lengths at which we need a distinguisher for G, in order to obtain a weak learner for
ECC(f ws) at smaller input lengths, and use the downward self-reducibility argument
for f ws at input lengths `, `− 1, ..., `0. Moreover, since f ws is downward self-reducible in
polylog steps, we will only need weak learners at inputs `, `− 1, ..., `0 = `−polylog(`);
hence, we can show that Sn is a set of polylog(`) = polyloglog(n) input lengths in the
interval [n, n2] (see Lemma 4.9 for the precise calculation). Taking the contrapositive,
if f ws cannot be computed by F on almost all `’s, then for every n ∈ N there exists an
input length m ∈ Sn ⊂ [n, n2] such that G fools A at input length m.13

It is now relatively straightforward to obtain an “almost-always” HSG. Given input
1n, the HSG H randomly chooses m ∈ Sn and emulates G(1m) using its random seed,
truncating the output of G(1m) to n ≤ m bits. To see why this works, assume towards a
contradiction that a uniform distinguisher A(1n) outputs, with probability at least 1/n,
a circuit with acceptance probability at least 1/n that rejects all the outputs of H(1n).
Note that for every choice of m ∈ Sn by H, the output distribution of H conditioned on
this choice of m is simply the output distribution of G(1m), truncated to n bits. Then,
we can construct a distinguisher A′ for G that for every m ∈ Sn emulates A(1n), and
thus outputs with probability at least 1/n ≥ 1/m a circuit with acceptance probability
at least 1/n ≥ 1/m that rejects all the outputs of G; this contradicts our assumption
that for almost all n ∈N it holds that G fools the distinguisher A′ on some input length
m ∈ Sn.14 The seed length of H is log(|Sn|) + Õ(log(m)) = Õ(log(n)).

The second item of Theorem 1.2 deduces an “almost-always” derandomization of
BPP with O(logloglog(n)) bits of advice. In contrast to the HSG construction above,
given input 1n we cannot now simply choose a random m ∈ Sn and hope to “hit”
a good m (as that would critically deteriorate the “two-sided error” pseudorandom-

13Actually, since f ws is downward self-reducible in polylog steps, it can be computed relatively-
efficiently on infinitely-many input lengths, and thus cannot be “hard” for almost all `’s. However,
since TQBF can be reduced to f ws with quasilinear overhead, if TQBF is “hard” almost-always then for
every `(n) there exists `′ ≤ Õ(`(n)) such that f ws is “hard” on `′, which allows our argument to fol-
low through, with a similar set Sn ⊂ [n, npolyloglog(n)] (i.e., with only a minor loss in parameters; see
Proposition 4.11 for details). For simplicity, we ignore this issue in the overview.

14There is a slight complication here, since the distinguisher A′ needs to emulate A(1n) for the “good”
input length n, and it is not clear how A′ can find the “good” input length n. One option is for A′

to simply randomly guess n < m; another option, which we use in our proof, is to show that G also
“fools” distinguishers that use a small amount of non-uniform advice (the proof uses an idea of Oliveira
and Santhanam [OS17, Sec. 6]), in which case A′ can get the “good” input length n as advice. See
Proposition 4.11 for details.

13

ness guarantee). Thus, our derandomization algorithm gets input 1n and also gets
the “good” input length m ∈ Sn as non-uniform advice; it then simulates G(1m) and
truncates the output to n bits. (Similarly to the HSG argument above, we can show
that truncating the output of our PRG preserves its pseudorandomness in this uni-
form setting; see Proposition 4.12 for details.) Indeed, since |Sn| = polyloglog(n),
the advice length is O(logloglog(n)). Note, however, that for every potential distin-
guisher A there exists a different input length m ∈ Sn such that G is pseudorandom
for A on m. Hence, our derandomization algorithm (or, more accurately, the advice
that it needs) depends on the distinguisher that it wants to “fool”. Thus, for every
L ∈ BPP decided by algorithm M, and every efficient probabilistic algorithm that
“samples” inputs for M according to a distribution X , there exists a corresponding
“almost-always” derandomization algorithm DX (see Proposition 4.12).

Remark: Downward self-reducibility in “few” steps is not crucial. We note that
weaker versions of the “almost-always” results above can be obtained without relying
on the fact that f ws is downward self-reducible in polylog steps, relying instead only
on the fact that we are dealing with the “high-end” parameter setting (i.e., small seed
length of the PRG and high running time of the algorithm for f ws).

Specifically, when transforming A into F (i.e., a distinguisher into an algorithm for
f ws), in the downward self-reducibility argument, instead of taking `0 = `−polylog(`)
as the “base case” at which f ws is efficiently-computable, we take the “base case”
`0 = `/polylog(`), at which we can construct a circuit for f ws by “brute-force” (i.e., in
time 2`0 = 2`/polylog(`), which we are allowed). We obtain a set Sn ⊂ [n1/polyloglog(n), n2]
analogous to the set Sn above, and hence under an “almost-everywhere” hypothesized
lower bound, for every n ∈ N, and for a corresponding n = npolyloglog(n), there exists
some input length m ∈ Sn ⊂ [n, npolyloglog(n)] such that G fools A at input length m,
and the argument follows through.

This alternative approach suffices to obtain an “almost-always” hitting-set genera-
tor with seed length Õ(log(n)). However, since the set Sn in this approach is of size
Ω(`) = Õ(log(n)), this approach only yields “almost-always” derandomization of
BPP with O(loglog(n)) bits of advice, instead of O(logloglog(n)) as in Theorem 1.2.

2.2 Circuit lower bounds from randomized CircuitSAT algorithms

Our proof strategy for Theorem 1.3 is very different from previous proof strategies
that deduce circuit lower bounds from “non-trivial” circuit-analysis algorithms(e.g.,
from the “easy-witness” proof strategy [IKW02; Wil13; MW18; Che19], or from proofs
that rely on MA lower bounds [IKW02, Rmk. 26], [San09; Tel19]). In high-level, to
prove our result we exploit the connection between randomized learning algorithms and
circuit lower bounds, which was recently discovered by Oliveira and Santhanam [OS17,
Sec. 5] (following [FK09; HH13; KKO13]). Loosely speaking, their connection relies on
the classical results of [IW98], and we are able to significantly refine this connection,
using our refined version of the [IW98] argument that was detailed in Section 2.1.

14

Our starting point is the observation that CircuitSAT algorithms yield learning
algorithms. Specifically, fix k ∈ N, and assume (for simplicity) that CircuitSAT for
polynomial-sized n-bit circuits can be solved in probabilistic time 2n/polylog(n) for an
arbitrarily large polylogarithmic function. We show that in this case, any function
that is computable by circuits of size n · (log n)k can be learned (approximately) using
membership queries in time 2n/polylog(n) (we explain below how to prove this).15 Now,
let f ws be the well-structured function from Section 2.1, and recall that f ws is com-
putable in linear space, and hard for linear space under quasilinear-time reductions.
Then, exactly one of two cases holds:

1. The function f ws does not have circuits of size n · (log n)k. In this case a Boolean
version of f ws also does not have circuits of such size, and since this Boolean
version is in SPACE [O(n)] ⊆ BPE , we are done.

2. The function f ws has circuits of size n · (log n)k. Hence, f ws is also learnable (as
we concluded above), and so the argument of [IW98] can be used to show that
f ws is computable by an efficient probabilistic algorithm.16 Now, by a diagonal-
ization argument, there exists Ldiag ∈ Σ4[n · (log n)2k] that cannot be computed
by circuits of size n · (log n)k. We show that Ldiag ∈ BPE by first reducing Ldiag

to f ws in time Õ(n), and then computing f ws (using the efficient probabilistic
algorithm).

Thus, in both cases we showed a function in BPE \ SIZE [n · (log n)k]. The crucial
point is that in the second case, our new and efficient implementation of the [IW98]
argument (which was described in Section 2.1) yields a probabilistic algorithm for
f ws with very little overhead, which allows us to indeed show that Ldiag ∈ BPE .
Specifically, our implementation of the argument (with the specific well-structured
function f ws) shows that f ws can be learned in time T(n) = 2n/polylog(n), then f ws can
be computed in similar time T′(n) = 2n/polylog(n) (see Corollary 4.10).

We thus only need to explain how a CircuitSAT algorithm yields a learning al-
gorithm with comparable running time. The idea here is quite simple: Given oracle
access to a function f ws, we generate a random sample of r = poly(n) labeled ex-
amples (x1, f ws(x1)), ..., (xr, f ws(xr)) for f ws, and we use the CircuitSAT algorithm to
construct, bit-by-bit, a circuit of size n · (log n)k that agrees with f ws on the sample.
Note that the input for the CircuitSAT algorithm is a circuit of size poly(n) over only
n′ ≈ n · (log n)k+1 bits (corresponding to the size of the circuit that we wish to con-
struct). Hence, the CircuitSAT algorithm runs in time 2n′/polylog(n′) = 2n/polylog(n).
And if the sample size r = poly(n) is large enough, then with high probability any

15That is, there exists a probabilistic algorithm that gets input 1n and oracle access to the function f ,
and with high probability outputs an n-bit circuit of size n · (log n)k that agrees with f on almost all
inputs.

16Actually, our implementation of the [IW98] argument shows that if the function ECC(f ws) (where
ECC is defined as in Section 2.1) can be learned, then the function f ws can be efficiently computed. For
simplicity, we ignore the difference between f ws and ECC(f ws) in the current high-level decription.

15

circuit of size n · (log n)k that agrees with f ws on the sample also agrees with f ws on
almost all inputs(i.e., by a union-bound over all circuits of such size).

2.3 NT IME -uniform circuits for E and the equivalence between deran-
domization and circuit lower bounds

The proofs that we describe in the current section are technically much simpler than
the proofs described in Sections 2.1 and 2.2. We first describe the proof idea for Theo-
rems 1.4 and 1.5, which assert that if E does not haveNT IME [T]-uniform circuits (for
a relatively-small T such as T(n) = 2nε

), then derandomization is equivalent to lower
bounds. Recall that by known non-uniform “hardness-to-randomness” results (specif-
ically, using Umans’ [Uma03] pseudorandom generator; see Corollary 3.4), the circuit
lower bounds in the conclusions of the theorems unconditionally imply the correspond-
ing derandomization results. Therefore, it suffices to show that under our hypothesis,
each derandomization result implies the corresponding circuit lower bound.

For concreteness, let us focus on the setting of Theorem 1.4. The main underlying
result is a refinement of classical “Karp-Lipton-style” theorems. Specifically, for “nice”
functions S and T, assume that prBPP ⊆ prNT IME [T] and assume (towards a
contradiction) that E “collapses” to SIZE [S]. The classical result of [Bab+93] asserts
that in this case E ⊆ NT IME [T′], for T′(n) ≈ T(S(n)).17 We prove the stronger
conclusion that E can be decided by NT IME [T′]-uniform circuits of size approximately
S(n), where T′(n) ≈ T(S(S(n))). (See Proposition 6.6.)

To do so, fix a proof system for E with a polynomial-time verifier and a prover that
is computable in E ; concretely, we use an instance checker for E -complete sets (see
Proposition 6.4). Recall that in the argument of [Bab+93], anMA verifier gets input x
and non-deterministically guesses a concise proof that x ∈ L (or that x /∈ L), where the
latter proof exists by applying the “collapse” hypothesis to the E -computable prover
in the foregoing proof system. Our proof follows from two key observations. The
first observation is that the hypothesis actually implies that there exists a single concise
representation of a prover (by a small circuit) for all inputs x, rather than a separate con-
cise proof for each x. Upon receiver this “prover-circuit”, the MA verifier can check
(with high probability) that for almost all inputs x, the “prover-circuit” convinces the
verifier (in the underlying proof system) whether x is in L or not. Then, assuming that
L is also randomly self-reducible (which may be assumed without loss of generality
– see Proposition 6.4), the verifier can construct a small probabilistic circuit that gets
input x, invokes the random self-reducibility algorithm for L, and answers each of the
queries of this algorithm by simulating the proof system using the concise prover.

The second observation is that this construction can be derandomized, relying both
on the derandomization hypothesis and on the collapse hypothesis. First, since we
assumed that prBPP ⊆ prNT IME [T], the verifier can replace its initial probabilistic
verification of the “prover-circuit” with non-deterministic verification (see Step 2 in the
proof of Proposition 6.6). Secondly, to derandomize the resulting probabilistic circuit,

17This follows from a straightforward adaptation of their argument; see Proposition 6.5.

16

assume (by error-reduction) that there exists a random string that causes the circuit
to correctly decide L on all inputs. The verifier then non-deterministically constructs
such a string, bit-by-bit. Note that in each iteration we only need to solve a problem
in E : This is since in each iteration we have an input (〈C〉 , σ) where σ is a prefix of
the |C|-bit random string, and we want to decide whether or not we can extend (σ, 0)
and (σ, 1) to a |C|-bit string in a way that will cause C to correctly compute L ∈ E
on all 2n inputs. The point is that now we can use the classical result of [Bab+93],
which (as mentioned above) asserts that under our joint hypotheses we have that
E ⊆ NT IME [T′] for T′ ≈ T ◦ S. This allows us to non-deterministically construct a
“good” random string in time approximately T′(|C|) ≈ T(S(S(n))). Moreover, despite
the overhead in our running time, the resulting circuit is still of size |C| ≈ S(n).

Being a bit more careful in our construction of the probabilistic circuit C, we can
show a construction that uses only O(n) random bits (this relies on randomness-
efficient error-reduction and on re-using certain random strings). Relying on this, we
show that the hypothesis prBPP ⊆ prNT IME [T] can actually be relaxed, assum-
ing only that the circuit acceptance probability problem for circuits of size approximately
S(n) can be solved in non-deterministic time T.18

Proof of Theorem 1.6. Recall that Theorem 1.6 asserts that if non-deterministic de-
randomization is equivalent to circuit lower bounds, then E does not haveNT IME [T]-
uniform circuits, for a relatively-small function T. Let us describe the general proof
idea, which is very simple, without being specific regarding the parameters.

Assume towards a contradiction that E has NT IME [T]-uniform circuits. Then,
we can construct an efficient algorithm for non-deterministic derandomization: Specif-
ically, since our assumption implies that E ⊆ NT IME [T] ∩ coNT IME [T], we can
non-deterministically guess-and-verify in time T(poly(n)) the truth-table of the lex-
first function on O(log(n)) bits that is “hard” for circuits of size O(n) (see Claim 6.10).
We can then use this function to instantiate Umans’ [Uma03] PRG, and deduce that
prBPP ⊆ ∪c∈N prNT IME [T(poly(n))c].

Now, relying on the assumed equivalence between non-deterministic derandom-
ization and circuit lower bounds, we deduce that E does not have non-uniform circuits
of a corresponding size S. The point is that if S > T then we reach a contradiction:
This is since if E does not have non-uniform circuits of size T, then it certainly does
not have uniform circuits, of any kind, of such size. Indeed, we want to choose the
maximal value of T such that derandomization of prBPP in time poly(T(poly(n))) is
equivalent to lower bounds for circuits of size S such that S > T. Theorem 1.6 follows
by showing that this holds for T(n) = 22polyloglog(n)

, and (as mentioned in Section 1) we
actually show a much tighter result (see Theorem 6.11).

18For a definition of the Circuit Acceptance Probability Problem (CAPP), see Definition 3.1. Recall that
the existence of an algorithm that solves CAPP for n-bit circuits of large size in time T(n) is a weaker
hypothesis than the existence of an algorithm that solves CAPP on general n-bit circuits in time T(n).

17

An additional implication of the conditional equivalence between non-deterministic
derandomization of prBPP and circuit lower bounds. Recall that the known un-
conditional implications of derandomization only yield lower bounds against non-
deterministic classes (e.g., NEXP or NP , depending on the strength of the hypoth-
esis), rather than against E (see, e.g., [BFT98; IKW02; KI04; JS12; Wil13; MW18; Tel19;
Che19; CW19]). A natural explanation for this shortcoming is that known results fol-
low from the hypothesis that prBPP can be simulated non-deterministically (i.e., that
prBPP ⊆ prNT IME [T] for some small T), and thus it seems intuitive that the corre-
sponding conclusion only yields circuit lower bounds against non-deterministic classes.

However, Theorem 1.4 provides evidence that counters this explanation: Under the
(very weak) hypothesis of Theorem 1.4, non-deterministic derandomization of prBPP
already suffices to deduce circuit lower bounds against E .

3 Preliminaries

We denote random variables in boldface. For an alphabet Σ and n ∈N, we denote the
uniform distribution over Σn by un, where Σ will be clear from context.

For any set L ⊆ {0, 1}∗ and n ∈ N, we denote by Ln = L ∩ {0, 1}n the restriction
of L to n-bit inputs. Similarly, for f : {0, 1}∗ → {0, 1}∗, we denote by fn : {0, 1}n →
{0, 1}∗ the restriction of f to the domain of n-bit inputs.

3.1 Two exponential-time hypotheses

We define two exponential-time hypotheses that we consider in this paper. We note in
advance that our actual results refer to various weaker variants of these hypotheses.

Hypothesis 1 (rETH; see [Del+14]). Randomized Exponential Time Hypothesis (rETH):
There exists ε > 0 and c > 1 such that 3-SAT on n variables and with c · n clauses cannot be
solved by probabilistic algorithms that run in time 2ε·n.

Hypothesis 2 (NETH; see [Car+16]). Non-Deterministic Exponential Time Hypothesis (NETH):
There exists ε > 0 and c > 1 such that co-3-SAT on n variables and with c · n clauses cannot
be solved by non-deterministic algorithms that run in time 2ε·n.

We also extend the two foregoing hypotheses to stronger versions in which ev-
ery algorithm (probabilistic or non-deterministic, respectively) fails to compute the
corresponding “hard” function on all but finitely-many input lengths. These stronger
hypotheses are denoted a.a.-rETH, and a.a.-NETH, respectively.

3.2 Worst-case Derandomization and Pseudorandom Generators

We now formally define the circuit acceptance probability problem (or CAPP, in short);
this well-known problem is also sometimes called Circuit Derandomization, Approx
Circuit Average, and GAP-SAT or GAP-UNSAT.

18

Definition 3.1 (CAPP). The circuit acceptance probability problem with parameters α, β ∈
[0, 1] such that α > β and for size S : N→ N (or (α, β)-CAPP[S], in short) is the following
promise problem:

• The YES instances are (representations of) circuits over n input bits of size at most S(n)
that accept at least an α fraction of their inputs.

• The NO instances are (representations of) circuits over n input bits of size at most
S(n)that accept at most a β fraction of their inputs.

We define the CAPP[S] problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP problem. We
define CAPP to be the problem when there is no restriction on S.

It is well-known that CAPP is complete for prBPP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time if
and only if prBPP = prP .

Proposition 3.2 (CAPP is equivalent to prBPP = prP). The circuit acceptance probability
problem can be solved in deterministic polynomial time if and only if prBPP = prP .

For a proof of Proposition 3.2 see any standard textbook on the subject (e.g. [Vad12,
Cor. 2.31], [Gol08, Exer. 6.14]).

We will need the following well-known construction of a pseudorandom generator
from a function that is “hard” for non-uniform circuits, by Umans [Uma03] (following
the line of works initiated by Nisan and Wigderson [NW94]).

Theorem 3.3 (Umans’ PRG; see [Uma03, Thm. 6]). There exists a constant c > 1 and an
algorithm G such that the following holds. When G is given an n-bit truth-table of a function
f : {0, 1}log(n) → {0, 1} that cannot be computed by circuits of size s, and a random seed of
length `(n) = c · log(n), it runs in time nc, and for m = s1/c outputs an m-bit string that is
(1/m)-pseudorandom for every size-m circuit over m bits.

Corollary 3.4 (near-optimal non-uniform hardness-to-randomness using Umans’ PRG).
There exists a universal constant c > 0 such that the following holds. Let S : N → N be a
time-computable function, and assume that DT IME [2n] 6⊂ i.o.SIZE [S]. Then CAPP ∈
prDT IME [T] where T(n) = 2c·S−1(nc). Moreover, if DT IME [2n] 6⊂ SIZE [S] then
CAPP ∈ i.o.prDT IME [T].

In addition we will need a suitable construction of an averaging sampler. Recall
the standard definition of averaging samplers:

Definition 3.5 (averaging sampler). A function Samp : {0, 1}m′ → ({0, 1}m)D is an
averaging sampler with accuracy ε and con�dence δ (or (ε, δ)-averaging sampler, in short) if
for every T ⊆ {0, 1}m, the probability over choice of x ∈ {0, 1}m′ that Pri∈[D][Samp(x)i ∈
T] /∈ |T|/2m ± ε is at most δ.

19

We will specifically use the following well-known construction by Guruswami,
Umans, and Vadhan [GUV09]. (The construction in [GUV09] is of an extractor, rather
than of an averaging sampler, but the two are well-known to be essentially equivalent;
see, e.g., [Gol08, Sec. D.4.1.2] or [Vad12, Cor. 6.24].)

Theorem 3.6 (the near-optimal extractor of [GUV09], instantiated as a sampler and
for specific parameters). Let c ≥ 1 be an arbitrarily large constant. Then, there exists
a polynomial-time algorithm that for every m computes an (n−c, 2−2m)-averaging sampler
Samp : {0, 1}m′ → ({0, 1}m)D, where m′ = O(m) and D = poly(m).

3.3 Average-case Derandomization and Pseudorandom Generators

We now define the notions of “average-case” derandomization of probabilistic algo-
rithms. The first definitions that we need are of circuits that distinguish a distribution

from uniform, and of distributions that are pseudorandom for uniform algorithms, as fol-
lows:

Definition 3.7 (distinguishing distributions from uniform). For two functions str, ` :
N → N, let G be an algorithm that gets input 1n and a random seed of length `(n) and
outputs a string of length str(n). Then:

1. For n ∈ N and n′ ∈ str−1(n), we say that Dn : {0, 1}n → {0, 1} ε-distinguishes

G(1n′ , u`(n′)) from uniform if
∣∣∣Pr[Dn(G(1n′ , u`(n′))) = 1]− Pr[Dn(un) = 1]

∣∣∣ > ε.

2. For a probabilistic algorithm A, an integer n, and ε > 0, we say that G(1n, u`(n))

is ε-pseudorandom for A if the probability that A(1str(n)) outputs a circuit that ε-
distinguishes G(1n, u`(n)) from uniform is at most ε.

When applying this definition without specifying a function str, we assume that str is the
identity function.

We now use Definition 3.7 to define pseudorandom generators for uniform circuits and
hitting-set generators for uniform circuits, which are analogous to the standard definitions
of PRGs and HSGs for non-uniform circuits:

Definition 3.8 (PRGs for uniform circuits). For ` : N → N, let G be an algorithm that
gets as input 1n and a random seed of length `(n), and outputs strings of length n. For
t, a : N → N and ε : N → (0, 1), we say that G is an ε-i.o.-PRG for (t, a)-uniform
circuits if for every probabilistic algorithm A that runs in time t(n) and gets a(n) bits of non-
uniform advice there exists an infinite set SA ⊆ N such that for every n ∈ SA it holds that
G(1n, u`(n)) is ε(n)-pseudorandom for A. If for every such algorithm A there is a set SA as
above that contains all but finitely-many inputs, we say that G is an ε-PRG for (t, a)-uniform
circuits.

Definition 3.9 (HSGs for uniform circuits). For ` : N → N, let H be an algorithm that
gets as input 1n and a random seed of length `(n), and outputs strings of length n. For

20

t, a : N → N and ε : N → (0, 1), we say that H is an ε-HSG for (t, a)-uniform circuits

if the following holds. For every probabilistic algorithm A that gets input 1n and a(n) bits
of non-uniform advice, runs in time t(n), and outputs a circuit Dn : {0, 1}n → {0, 1}, and
every sufficiently large n ∈N, with probability at least 1− ε(n) (over the coin tosses of A) at
least one of the following two cases holds:

1. There exists s ∈ {0, 1}`(n) such that Dn(G(1n, s)) = 1.

2. The circuit Dn satisfies Prx∈{0,1}n [Dn(x) = 1] ≤ ε(n).

As mentioned in Section 1, PRGs for uniform circuits can be used to derandomize
BPP “on average” (see, e.g., [Gol11, Prop. 4.4]). Analogously, HSGs for uniform cir-
cuits can be used to derandomize RP “on average”. That is, loosely speaking, if there
exists an HSG for uniform circuits, then for any L ∈ RP there exists a deterministic
algorithm D such that for every efficiently-samplable distribution X , the probability
over x ∼ X that D(x) 6= L(x) is small. For simplicity, we prove the foregoing claim
for HSGs that are computable in polynomial time and have logarithmic seed length:

Claim 3.10 (HSGs for uniform circuits ⇒ derandomization of RP “on average”). For
ε : N → (0, 1) such that ε(n) ≤ 1/3, assume that for every k ∈ N there exists a ε-HSG
for (nk, 0)-uniform circuits that is polynomial-time computable and that has logarithmic seed
length. Then, for every L ∈ RP and every c ∈ N, there exists a deterministic polynomial-
time algorithm D such that for every probabilistic algorithm F that runs in time nc and every
sufficiently large n ∈N, the probability (over the internal coin tosses of F) that F(1n) outputs
a string x ∈ {0, 1}n such that D(x) 6= L(x) is at most ε(n).

Proof. Let M be an RP machine that decides L in time nc′ , for some c′ ∈ N. The
deterministic algorithm D gets input x ∈ {0, 1}n, enumerates the seeds of the HSG for
output length m = nc′ and with the parameter k = O(1 + c/c′), and accepts x if and
only if there exists an output r of the HSG such that M accepts x with random coins r.
Note that D never accepts inputs x /∈ L (since M is an RP machine), and thus we only
have to prove that for every algorithm F as in the claim’s statement, the probability
that x = F(1n) satisfies both x ∈ L and D(x) = 0 is at most ε(n).

To do so, let F be a probabilistic algorithm that runs in time nc. Consider the
probabilistic algorithm A that, on input 1m, runs the algorithm F on input 1n to obtain
x ∈ {0, 1}n, and outputs a circuit Cm,x : {0, 1}m → {0, 1} that computes the decision of
M at input x as a function of M’s m = nc′ random coins. Note that the algorithm A
runs in time at most mO(1+c/c′), and also note that the only probabilistic choices that
A makes are a choice of x = F(1n). Thus, by Definition 3.9 for every sufficiently large
m, with probability at least 1− ε(m) > 1− ε(n) over choice of x = F(1n) (i.e., over the
coin tosses of A), if D(x) = 0 then Prr[Cm,x(r) = 1] = Pr[M(x) = 1] ≤ ε(n) ≤ 1/3,
which means that x /∈ L.

21

4 rETH and near-optimal uniform hardness-to-randomness

In this section we prove Theorems 1.1 and 1.2. First, in Section 4.1, we define and
construct well-structured functions, which are the key technical component in our proof
of Theorem 1.1. Then, in Section 4.2 we show how well-structured functions can be
used in the proof framework of [IW98] (with minor variations) to construct a PRG
that “fools” uniform circuits, assuming that the well-structured function cannot be
computed by efficient probabilistic algorithms. Finally, in Section 4.3 we prove Theo-
rems 1.1 and 1.2.

4.1 Construction of a well-structured function

In Section 4.1.1 we present the required properties of well-structured functions and
define such functions. Then, in Section 4.1.2 we present a high-level overview of our
construction of such functions. Finally, in Section 4.1.3 we present the construction
itself in detail.

4.1.1 Well-structured function: Definition

Loosely speaking, we will say that a function f : {0, 1}∗ → {0, 1}∗ is well-structured if
it satisfies three properties. The first property, which is not crucial for our proofs but
simplifies them a bit, is that f is length-preserving; that is, for every x ∈ {0, 1}∗ it
holds that | f (x)| = |x|.

The second property is a strengthening of the notion of downwards self-reducibility.
Recall that a function f : {0, 1}∗ → {0, 1}∗ is downwards self-reducible if fn can be
computed by an efficient algorithm that has oracle access to fn−1. First, we quantify the
notion of “efficient”, in order to also allow for very large running time (e.g., running
time 2n/polylog(n)). Secondly, we also require that for any n ∈ N there exists an input
length m that is not much smaller than n such that fm is efficiently computable without
any “downward” oracle. That is, intuitively, if we try to compute f on input length n
by “iterating downwards” using downward self-reducibility, our “base case” in which
the function is efficiently-computable is not input length O(1), but a large input length
m that is not much smaller than n. More formally:

Definition 4.1 (downward self-reducibility in few steps). For t, s : N→ N, we say that
a function f : {0, 1}∗ → {0, 1}∗ is downward self-reducible in time t and s steps if there exists
a probabilistic oracle machine A that for any sufficiently large n ∈N satisfies the following.

1. When A is given input x ∈ {0, 1}n and oracle access to fn−1, it runs in time at most
t(n) and satisfies Prr[A fn−1(x, r) = f (x)] ≥ 2/3.

2. There exists an input length m ∈ [n− s(n), n] such that A computes fm in time t(m)
without using randomness or oracle queries..

In the special case that s(n) = n, we simply say that f is downward self-reducible in time t.

22

The third property that we need is a refinement of the notion of random self-
reducibility, which is called sample-aided worst-case to average-case reducibility. This no-
tion was recently made explicit by Goldreich and G. Rothblum [GR17], and is implicit
in many previous results (see, e.g., the references in [GR17]).

To explain the notion, recall that if a function f is randomly self-reducible, then
a circuit C̃ that computes f on most of the inputs can be efficiently transformed to a
(probabilistic) circuit C that computes f on every input (whp). We want to relax this
notion, by allowing the efficient algorithm that transforms C̃ into C to obtain random
labeled samples for f (i.e., inputs of the form (r, f (r)) where r is chosen uniformly at
random). The main advantage in this relaxation is that we will not need to assume that
C̃ computes f on most of the inputs, but will be satisfied with the weaker assumption
that C̃ computes f on a tiny fraction of the inputs. Specifically:19

Definition 4.2 (sample-aided reductions; see [GR17, Def 4.1]). Let f : {0, 1}∗ → {0, 1}∗
be a length-preserving function, and let s : N → N and δ0 : N → [0, 1). Let M be
a probabilistic oracle machine that gets input 1n and a sequence of s(n) pairs of the form
(r, v) ∈ {0, 1}n × {0, 1}n and oracle access to a function f̃n : {0, 1}n → {0, 1}n, and outputs
a circuit C : {0, 1}n → {0, 1}n with oracle gates. We say that M is a sample-aided reduction

of computing f in the worst-case to computing f on δ0 of the inputs using a sample of size s if
for every f̃n : {0, 1}n → {0, 1}n satisfying Prx∈{0,1}n [f̃n(x) = fn(x)] ≥ δ0(n) the following
holds: With probability at least 1− δ0(n) over choice of r̄ = r1, ..., rs(n) ∈ {0, 1}n and over the
internal coin tosses of M, we have that M f̃n(1n, (ri, fn(ri))i∈[s(n)]) outputs a circuit C such
that Pr[C f̃n(x) = fn(x)] ≥ 2/3 for every x ∈ {0, 1}n.

Definition 4.3 (sample-aided worst-case to average-case reducibility). For δ0 : N →
(0, 1), we say that a function f : {0, 1}∗ → {0, 1}∗ is sample-aided worst-case to δ0-

average-case reducible if there exists a sample-aided reduction M of computing f in worst-
case to computing f on δ0 of the inputs such that M runs in time poly(n, 1/δ0(n)) and uses
poly(1/δ0(n)) samples.

For high-level intuition of why labeled samples can be helpful for worst-case to
average-case reductions, and for a proof that if f is a low-degree multivariate polyno-
mial then it is sample-aided worst-case to average-case reducible, see Appendix A.

We are now ready to define well-structured functions. Fixing a parameter δ > 0, a
function f ws is δ-well-structured if it is length-preserving, downward self-reducible in
time poly(1/δ), and sample-aided worst-case to δ-average case reducible. That is:

Definition 4.4 (well-structured function). For δ : N → (0, 1) and s : N → N, we say
that a function f ws : {0, 1}∗ → {0, 1}∗ is (δ, s)-well-structured if f ws is length-preserving,

19Definition 4.2 is actually a slightly modified version of the definition in [GR17]. First, we consider
reductions of computing f in the worst-case to computing f in “rare-case”, whereas [GR17] both reduce
the computation of f to the computation of a possibly different function f ′, and parametrize the success
probability of computing both f and f ′. Secondly, we separately account for the success probability of
the transformation M and of the final circuit C. And lastly, we also require f to be length-preserving.

23

downward self-reducible in time poly(1/δ) and s steps, and sample-aided worst-case to δ-
average-case reducible. Also, when s(n) = n (i.e., f ws is simply downward self-reducible in
time poly(1/δ)), we say that f ws is δ-well-structured.

In the following definition, we consider reductions from a decision problem L ⊆
{0, 1}∗ to a well-structured function f ws : {0, 1}∗ → {0, 1}∗. To formalize this we
consider both a reduction R, which transforms any input x for L to an input R(x) for
f ws, and a “decision algorithm” D, which translates the non-Boolean result f ws(R(x))
into a decision of whether or not x ∈ L.

Definition 4.5 (reductions to multi-output functions). Let L ⊆ {0, 1}∗ and f : {0, 1}∗ →
{0, 1}∗. For t, b : N → N, we say that L reduces to f in time t with blow-up b if there
exist two deterministic time-t algorithms R and D such that for every x ∈ {0, 1}∗ it holds that
|R(x)| ≤ b(|x|) and that x ∈ L if and only if D(f (R(x))) = 1.

4.1.2 Overview of our construction

For δ = 2−n/polylog(n) and s = polylog(n), our goal is to construct a (δ, s)-well-
structured function f ws : {0, 1}∗ → {0, 1}∗ such that TQBF reduces to f ws in quasi-
linear time (and thus with quasilinear blow-up). Throughout the section, assume
that an n-bit input to TQBF is simply a 3-SAT formula ϕ on n variables, and it is
assumed that all variables are quantified in-order, with alternating quantifiers (e.g.,
∀w1∃w2∀w3...ϕ(w1, ..., wn); see Definition 4.6).

Our starting point is the well-known construction of Trevisan and Vadhan [TV07],
which (loosely speaking) transforms the protocol underlying the IP = PSPACE
proof into a computational problem LTV : {0, 1}∗ → {0, 1}∗.20 They required that LTV
will meet the weaker requirements (compared to our requirements) of being down-
ward self-reducible and randomly self-reducible, where the latter means reducible
from being worst-case computabile to being computable on, say, .99 of the inputs.

Before describing our new construction, let us first review the original construction
of LTV . For every n ∈ N, fix a corresponding interval In = [N0, N1] of r(n) = poly(n)
input lengths. The input to LTV at any input length in In (disregarding necessary
padding) is a pair (ϕ, w) ∈ F2n, where F is a sufficiently-large field. If (ϕ, w) ∈
{0, 1}2n then we think of ϕ as representing a 3-SAT formula and of w as representing
an assignment. At input length N0 we define LTV(ϕ, w) = P(ϕ, w), where P(ϕ, x) is a
low-degree arithmetized version of the Boolean function (ϕ, w) 7→ ϕ(w).

Now, recall that the IP = PSPACE protocol defines three arithmetic operators on
polynomials (two quantification operators and a linearization operator). Then, at in-
put length N0 + i, the problem LTV is recursively defined by applying one of the three
arithmetic operators on the polynomial from the previous input length N0 + i − 1.21

20Actually, in [TV07] they define a Boolean function, which treats a suffix of its input as an index of an
output bit in the non-Boolean version that we describe, and outputs the corresponding bit. To streamline
our exposition we ignore this issue.

21In more detail, we define three arithmetic operators on functions F2n → F, each indexed by a variable

24

Observe that computing LTV at input length N0 + i corresponds to the residual com-
putational problem that the verifier faces at the (r− i)th round of the IP = PSPACE
protocol, when instantiated for formula ϕ and with r = r(n) rounds. Indeed, at the
largest input length N1 = N0 + r(n) the polynomial LTV is simply a low-degree arith-
metized version of the function that decides whether or not ϕ ∈ TQBF (regardless of
w); thus, TQBF can be reduced to LTV by mapping ϕ ∈ {0, 1}n to (ϕ, 1n) ∈ F2n and
adding padding to get the input to be of length N1 = poly(n). Note that LTV is indeed
both downward self-reducible (since for each operator O and polynomial P, we can
compute O(P)(ϕ, w) in polynomial-time with two oracle queries to P), and randomly
self-reducible (since the polynomials have low degree.)

Let us now define our f ws : {0, 1}∗ → {0, 1}∗, which replaces their LTV , and high-
light what is different in our setting. Recall that our main goal is to construct the well-
structured function f ws such that TQBF is reducible to f ws with only quasilinear overhead
in the input length (i.e., we need to avoid polynomial overheads), while keeping the
running time of all operations (i.e., of the algorithms for downward self-reducibility
and for sample-aided worst-case to rare-case reducibility) to be at most 2n/polylog(n).

The first issue, which is relatively easy to handle, is the number of bits that we use
to represent an (arithmetized) input (ϕ, w) for f ws. Recall that we want f ws to be worst-
case to δ-average-case reducible for a tiny δ = 2−n/polylog(n); thus, f ws will involve
computing polynomials over a field of large size |F| ≥ poly(1/δ). Using the approach
of [TV07], we would need 2n · log(|F|) = Ω̃(n2) bits to represent (ϕ, w), and thus the
reduction from TQBF to f ws would incur a polynomial overhead. This is easily solvable
by considering a “low-degree extension” instead of their “multilinear extension”: To
represent an input (ϕ, w) ∈ {0, 1}2n to f ws we will use few elements in a very large field.
Specifically, we will use ` = polylog(n) variables (i.e., the polynomial will be F2` → F)
such that each variable “provides” O(n/polylog(n)) bits of information.

A second problem is constructing a low-degree arithmetization P(ϕ, w) of the
Boolean function that evaluates ϕ at w. In [TV07] they solve this by first reducing
TQBF to an intermediate problem TQBF′ that is amenable to such low-degree arithmeti-
zation; however, their reduction incurs a quadratic blow-up in the input length, which
we cannot afford in our setting. To overcome this we reduce TQBF to another inter-
mediate problem, denoted TQBFloc, which is amenable to low-degree arithmetization,
such that the reduction incurs only a quasilinear blow-up in the input length. (Loosely
speaking, we define TQBFloc by applying a very efficient Cook-Levin reduction to the
Turing machine that gets input (ϕ, w) and outputs ϕ(w); see Claim 4.7.1 for precise
details.) We then carefully arithmetize TQBFloc, while “paying” for this efficient arith-
metization by the fact that computing the corresponding polynomial now takes time
exp(n/`) = poly(1/δ), instead of poly(n) time as in [TV07] (see Claim 4.7.2).

j ∈ [n], and denote these operators by {O j
k}k∈[3],j∈[n]. In each recursive step i ∈ [r(n)], the polynomial

corresponding to input length N0 + i is obtained by applying operator O j(i)
k(i), where j, k : N → [3] are

polynomial-time computable functions, to the polynomial corresponding to input length N0 + i − 1.
Thus, at input length N0 + i, we compute LTV(ϕ, w) by applying i operators on the polynomial P and
evaluating the resulting polynomial at (ϕ, w).

25

Thirdly, the number of polynomials in the construction of LTV (i.e., the size of
the interval In) is r(n) = poly(n), corresponding to the number of rounds in the
IP = PSPACE protocol. This poses a problem for us since the reduction from TQBF

maps an input of length n is to an input of length N1 ≥ poly(n). We solve this
problem by “shrinking” the number of polynomials to be polylogarithmic, using an
approach similar to an IP = PSPACE protocol with only polylog(n) rounds and a
verifier that runs in time 2n/polylog(n): Intuitively, at each input length, we define f ws

by simultaneously applying O(log(1/δ)) operators (rather than a single operator) to
the polynomial that corresponds to the previous input length. Indeed, as one might
expect, this increases the running-time of the downward self-reducibility algorithm to
poly(1/δ), but we can afford this. Implementing this approach requires some care,
since multiple operators will be applied to a single variable (which represents many
bits of information), and since the linearization operator needs to be replaced by a
“degree-lowering operation” (that will reduce the individual degree of a variable to
be poly(1/δ)); see Claim 4.7.3 for details.

Lastly, we also want our function to be downward self-reducible in polylog(n)
steps (i.e., after polylog(n) “downward” steps, the function at the now-smaller input
length is computable in time poly(1/δ) without an oracle). This follows by noting that
the length of each interval In is now polylogarithmic, and that at the “bottom” input
length the function f ws simply computes the arithmetized version of TQBFloc, which
(as mentioned above) is computable in time poly(1/δ).

4.1.3 The construction itself

We consider the standard “totally quantified” variant of the Quanti�ed Boolean Formula

(QBF) problem, called Totally Quanti�ed Boolean Formula (TQBF). In this version the
quantifiers do not appear as part of the input, and we assume that all the variables
are quantified, and that the quantifiers alternate according to the index of the variable
(i.e., xi is quantified by ∃ if i is odd, and otherwise quantified by ∀).

Definition 4.6 (TQBF). A string ϕ ∈ {0, 1}∗ of length n = |ϕ| is in the set TQBF ⊆ {0, 1}∗
if ϕ is a representation of a 3-SAT formula in variables indexed by [n] such that, denoting
the variables by w1, ..., wn, it holds that ∃w1∀w2∃w3∀w4...ϕ(w1, ..., wn). In other words,
ϕ ∈ TQBF if the quantified expression that is obtained by quantifying all n variables, in order
of their indices and with alternating quantifiers (starting with ∃), evaluates to true.

Recall that QBF, in which the quantifiers are part of the input, is reducible in linear
time to TQBF from Definition 4.6 (by renaming variables and adding dummy variables).

The main result in this section is a construction of a well-structured function f ws

such that TQBF can be reduced to f ws with only quasilinear blow-up. This construction
is detailed in the following lemma:

Lemma 4.7 (a well-structured set that is hard for TQBF under quasilinear reductions).
There exists a universal constant r ∈ N such that for every constant c ∈ N the following
holds. For `(n) = log(n)3c and δ(n) = 2−n/`(n), there exists a (δ, O(`2))-well-structured

26

function f ws : {0, 1}∗ → {0, 1}∗ such that f ws is computable in linear space, and TQBF

deterministically reduces to f ws in time n · log2c+r(n).

Proof. In high-level, we first reduce TQBF to a problem TQBFloc that will have a prop-
erty useful for arithmetization, and then reduce TQBFloc to a function f ws that we will
construct as follows. We will first carefully arithmetize a suitable witness-relation that
underlies TQBFloc; then transform the corresponding arithmetic version of TQBFloc to
a collection of low-degree polynomials that also satisfy a property akin to downward
self-reducibility (loosely speaking, these polynomials arise from the protocol under-
lying the proof of IP = PSPACE [Lun+92; Sha92]); and finally “combine” these
polynomials to a Boolean function f ws that will “inherit” the useful properties of the
low-degree polynomials, and will thus be well-structured.

A variant of TQBF that is amenable to arithmetization. We will need a non-standard
variant of TQBF, which we denote by TQBFloc, such that TQBF is reducible to TQBFloc

with quasilinear blow-up, and TQBFloc has an additional useful property. To explain
this property, recall that the verification procedure of a “witness” w = w1, ..., wn in
TQBF is local, in the following sense: For every fixed ϕ it holds that ϕ ∈ TQBF iff
∃w1∀w2... 3SAT(ϕ, w), where 3SAT(ϕ, w) = ϕ(w) is a relation that can be decided by
a conjunction of local conditions on the “witness” w. We want the stronger property
that the relation that underlies TQBFloc can be tested by a conjunction of conditions that
are local both in the input and in the witness. That is, denoting the underlying relation by
R-TQBFloc, we will have that x ∈ TQBFloc iff ∃w1∀w2... R-TQBFloc(x, w), where R-TQBFloc

is a conjunction of local conditions on (x, w). In more detail:

Claim 4.7.1 (a variant of TQBF with verification that is local in both input and witness).
There exists a set TQBFloc ∈ SPACE [O(n)] and a relation R-TQBFloc ⊆ ({0, 1}∗ × {0, 1}∗)
such that TQBFloc = {x : ∃w1∀w2∃w3∀w4...(x, w) ∈ R-TQBFloc}, and the following holds.

1. (Length-preserving witnesses.) For any (x, w) ∈ R-TQBFloc it holds that |w| = |x|.

2. (Verification that is local in both input and witness.) For every n ∈ N there exist n
functions { fi : {0, 1}n × {0, 1}n → {0, 1}}i∈[n] such that the mapping (x, w, i) 7→
fi(x, w) is computable in quasilinear time and linear space, and each fi depends on
only three variables, and (x, w) ∈ R-TQBFloc if and only if for all i ∈ [n] it holds that
fi(x, w) = 1.

3. (Efficient reduction with quasilinear blow-up.) There exists a deterministic linear-space
and quasilinear-time algorithm A that gets as input ϕ ∈ {0, 1}n and outputs x = A(ϕ)
such that ϕ ∈ TQBF if and only if x ∈ TQBFloc.

Proof. Consider a 3-SAT formula ϕ ∈ {0, 1}n as an input to TQBF, and for simplicity
assume that n is even (this assumption is insignificant for the proof and only simplifies
the notation). By definition, we have that ϕ ∈ TQBF if and only if

∃w1∀w2∃w3....∃wn ϕ(w1, ..., wn) = 1 .

27

Now, let M be a linear-space and quasilinear-time machine that gets as input (ϕ, w)
and outputs ϕ(w). We use an efficient Cook-Levin transformation of the computation
of the machine M on inputs of length 2n to a 3-SAT formula, and deduce the fol-
lowing:22 There exists a linear-space and quasilinear-time algorithm that, on input
1n, constructs a 3-SAT formula Φn : {0, 1}n × {0, 1}n × {0, 1}ql(n) → {0, 1} of size
ql(n) = Õ(n) such that for any (ϕ, w) ∈ {0, 1}n × {0, 1}n it holds that ϕ(w) = 1 if and
only if there exists a unique w′ ∈ {0, 1}ql(n) satisfying Φn(x, w, w′) = 1.

Now, using the formula Φn, note that ϕ ∈ {0, 1}n is in TQBF if and only if

∃w1∀w2∃w3...∃wn ∃w′1∃w′2...∃w′ql(n) Φn(ϕ, w, w′) = 1 . (4.1)

We slightly modify Φn in order to make the suffix of existential quantifiers in Eq. (4.1)
alternate with universal quantifiers that are applied to dummy variables. (Specifically,
for each i ∈ [ql(n)], we rename w′i to w′2i, which effectively introduces a dummy
variable before w′i.) Denoting the modified formula by Φ′n, we have that ϕ ∈ TQBF if
and only if

∃w1∀w2∃w3...∃wn∀w′1∃w′2∀w′3...∃w′2ql(n) Φ′n(ϕ, w, w′) = 1 .

We define the relation R-TQBFloc to consist of all pairs (x, w) such that x = (ϕ, 12ql(|ϕ|))
and w = (w(0), w(1)) ∈ {0, 1}|ϕ| × {0, 1}2ql(|ϕ|) and Φ′|ϕ|(ϕ, w(0), w(1)) = 1. Indeed, in
this case the corresponding set TQBFloc is defined by

TQBFloc =
{
(ϕ, 12ql(|ϕ|)) : ∃w(0)

1 ∀w(0)
2 ...∃w(0)

|ϕ|∀w(1)
1 ∃w(1)

2 ...∃w(1)
2ql(|ϕ|) Φ′|ϕ|(ϕ, w(0), w(1)) = 1

}
.

Note that, by definition, for every (x, w) ∈ R-TQBFloc we have that |w| = |x|. To see
that R-TQBFloc can be tested by a conjunction of efficiently-computable local conditions,
note that an n-bit input to TQBFloc is of the form (ϕ, 12ql(|ϕ|)) ∈ {0, 1}m×{1}2ql(m), and
recall that Φ′m is a 3-SAT formula of size ql(m) < n that can be produced in linear space
and quasilinear time from input 1m. Also, TQBFloc is computable in linear space, since
on input (ϕ, 12ql(|ϕ|)) the number of variables that are quantified is |ϕ|+ 2ql(|ϕ|), and
since Φ′|ϕ| can be evaluated in space O(|ϕ|). Lastly, TQBF trivially reduces to TQBFloc

by adding padding ϕ 7→ (ϕ, 12ql(|ϕ|)). �

Arithmetic setting. For any n ∈ N, let `0 = `0(n) = b(log n)cc, let n′ = dn/`0e, let
δ0(n) = 2−n′ , and let F be the field with 25n′ = 1/poly(δ0(n)) elements. Recall that
a representation of such a field (i.e., an irreducible polynomial of degree 5n′ over F2)
can be found deterministically either in linear space (by a brute-force algorithm) or in
time poly(n′) = poly(n) (by Shoup’s [Sho90] algorithm).

Fix a bijection π between {0, 1}5n′ and F (i.e., π maps any string in {0, 1}5n′ to the
bit-representation of the corresponding element in F) such that both π and π−1 can be

22The algorithm transforms M into an oblivious machine [PF79; GS89], and then applies an efficient
Cook-Levin transformation of the oblivious machine to a 3-SAT formula (see, e.g., [AB09, Sec 2.3.4]).

28

computed in polynomial time and linear space. Let H ⊂ F be the set of 2n′ elements
that are represented (via π) by bit-strings with a prefix of n′ arbitrary bits and a suffix
of 4n′ zeroes (i.e., H =

{
π(z) : z = x04n′ , x ∈ {0, 1}n′

}
⊂ F such that |H| = 2n′).23

We will consider polynomials F2`0 → F, and we think of the inputs to each such
polynomial as of the form (x, w) ∈ F`0 × F`0 . Note that, intuitively, x and w each
represent about 5n bits of information. When x and w are elements in the subset
H`0 ⊂ F`0 , we think of them as a pair of n-bit strings that might belong to R-TQBFloc.

Arithmetization of R-TQBFloc. Our first step is to carefully arithmetize the relation
R-TQBFloc within the arithmetic setting detailed above. We will mainly rely on the
property that there is a “doubly-local” verification procedure for R-TQBFloc.

Claim 4.7.2 (low-degree arithmetization). There exists a polynomial PTQBFloc : F2`0 → F

such that the following holds:

1. (Low-degree.) The degree of PTQBFloc is at most O(n · 2n′).

2. (Arithmetizes R-TQBFloc.) For every (x, w) ∈ H`0 × H`0 it holds that PTQBFloc(x, w) =
1 if (x, w) ∈ R-TQBFloc, and PTQBFloc(x, w) = 0 otherwise.

3. (Efficiently-computable.) There exists a deterministic algorithm that gets as input (x, w) ∈
F2`0 , runs in time poly(|F|), and outputs PTQBFloc(x, w) ∈ F. There also exists a deter-
ministic linear-space algorithm with the same functionality.

Proof. We first show a polynomial-time and linear-space algorithm that, given input 1n,
constructs a low-degree polynomial PTQBFloc

0 : F2n′·`0 → F that satisfies the following:
For every (x, w) ∈ F

2n′·`0
2 (i.e., when the input is a string of 2n′ · `0 ≥ 2n bits, and

we interpret it as a pair (x, w) ∈ {0, 1}2n) it holds that PTQBFloc

0 (x, w) = 1 if (x, w) ∈
R-TQBFloc(x, w), and PTQBFloc

0 (x, w) = 0 otherwise.
To do so, recall that by Claim 4.7.1 we can construct in polynomial time and

linear space a collection of n polynomials
{

fi : F
2n′·`0
2 → F2

}
i∈[n]

such that for each

i ∈ [n] the polynomial fi depends only on three variables in the input (x, w), and
such that (x, w) ∈ R-TQBFloc if and only if for all i ∈ [n] it holds that fi(x, w) = 1.
For each i ∈ [n], let pi : F2n′·`0 → F be the multilinear extension of fi, which can be
evaluated in time poly(n) and in linear space (since fi depends only on three vari-
ables, and using Lagrange’s interpolation formula and the fact that π is efficiently-
computable). Then, the polynomial PTQBFloc

0 is simply the multiplication of all the pi’s;
that is, PTQBFloc

0 (x, w) = Πi∈[n]pi(x, w). Note that PTQBFloc

0 can indeed be evaluated in

time poly(n) and in linear space, and that the degree of PTQBFloc

0 is O(n) (since each pi
is a multilinear polynomial in O(1) variables).

23The specific choice of H as the image of H0 = {x04n′ : x ∈ {0, 1}n′} under π is immaterial for our
argument, as long as we can efficiently decide H0 and enumerate over H0.

29

Now, let π
(H)
1 , ..., π

(H)
n′ : H → {0, 1} be the “projection” functions such that π

(H)
i

outputs the ith bit in the bit-representation of its input according to π. Abusing nota-
tion, we let π

(H)
1 , ..., π

(H)
n′ : F → F be the low-degree extensions of the π

(H)
i ’s, which

are of degree at most |H| − 1 < 2n′ . Also, for every σ ∈ F, we denote by π(H)(σ) the
string π

(H)
1 (σ), ..., π

(H)
n′ (σ) ∈ Fn′ . Note that the mapping of σ ∈ F to π(H)(σ) ∈ Fn′

can be computed in time poly(|H|) = poly(|F|) and in linear space (again just using
Lagrange’s interpolation formula and the fact that π is efficiently-computable).

Finally, we define the polynomial PTQBFloc : F2`0 → F. Intuitively, for (x, w) ∈
H`0 × H`0 , the polynomial PTQBFloc first uses the π

(H)
i ’s to compute the bit-projections

of x and w, which are each of length n′ · `0, and then evaluates the polynomial PTQBFloc

0
on these 2n′ · `0 bit-projections. More formally, for every (x, w) ∈ F2`0 we define

PTQBFloc(x, w) = PTQBFloc

0

(
π(H)(x1), ..., π(H)(x`0), π(H)(w1), ..., π(H)(w`0)

)
.

The first item in the claim follows since for every i ∈ [n′] the degree of π
(H)
i is

less than 2n′ , and since deg(PTQBFloc

0) = O(n). The second item in the claim follows
immediately from the definition of PTQBFloc . And the third item in the claim follows
since π(H) can be computed in time poly(|F|) and in linear space, and since PTQBFloc

0
can be constructed and evaluated in polynomial time and in linear space. (The two
different algorithms are since we need to find an irreducible polynomial, which can
be done either in linear space or in time poly(n) < poly(|F|).) �

Constructing a “downward self-reducible” collection of low-degree polynomials.
Our goal now is to define a collection of O(`2

0) polynomials
{

Pn,i : F2`0 → F
}

i∈[O(`2
0)]

such that the polynomials are of low degree, and Pn,1 essentially computes TQBFloc,
and computing Pn,i can be reduced in time poly(1/δ0(n)) to computing Pn,i+1. The
collection and its properties are detailed in the following claim:

Claim 4.7.3. There exists a collection of ¯̀0 = `0(2`0 + 1)+ 1 polynomials, denoted
{

Pn,i : F2`0 → F
}

i∈[¯̀0]
,

that satisfies the following:

1. (Low degree:) For every i ∈ [¯̀0], the degree of Pn,i is at most O(n · `0 · 22n′).

2. (Pn,1 computes TQBFloc on H-inputs:) For any (x, w) ∈ H`0 × H`0 it holds that
Pn,1(x, w) = 1 if x ∈ TQBFloc, and Pn,1(x, w) = 0 if x /∈ TQBFloc. (Regardless of w.)

3. (“Forward” self-reducible:) For every i ∈ [¯̀0] it holds that Pn,i can be computed in
time poly(2n′) when given oracle access to Pn,i+1.

4. (Efficiently-computable:) The polynomial Pn, ¯̀0 can be computed in time poly(2n′).
Moreover, for every i ∈ [¯̀0] it holds that Pn,i can be computed in space O(n · ¯̀0).

30

Proof. For simplicity of notation, assume throughout the proof that n′ is even. To-
wards defining the collection of polynomials, we first define two operators on func-
tions p : F2`0 → F. Loosely speaking, the first operator corresponds to n′ alternating
quantification steps in the IP = PSPACE proof (i.e., n′ steps of alternately quantify-
ing the next variable either by ∃ or by ∀), and the second operator roughly corresponds
to a linearization step that is simultaneously applied to n′ variables. In both cases, the
n′ variables that we consider are the bits in the representation of a single element in
the second input to p.

Quantifications operator: Let i ∈ [`0]. Loosely speaking, Quant(i)(p) causes p to
ignore the ith variable of its second input, and instead consider alternating quantifi-
cation steps applied to the bits that represent this variable. To do this, we define a
sequence of functions such that the first function replaces the ith variable in the second
input for p by a dummy variable in H, and each subsequent function corresponds to a
quantification step applied to a single bit in the representation of this dummy variable.

Formally, we recurvisely define n′+ 1 functions Quant(i,0), ..., Quant(i,n
′) = Quant(i)(p)

such that for j ∈ {0, ..., n′} it holds that Quant(i,j)(p) is a function F2`0 ×{0, 1}n′−j → F.
The function Quant(i,0)(p) gets as input (x, w) ∈ F2`0 and σ ∈ {0, 1}n′ , ignores the
ith element of w, and outputs Quant(i,0)(x, w, σ) = p(x, w1...wi−1π(σ04n′)). Then, for
j ∈ [n′], if j is odd then we define

Quant(i,j)(p)(x, w, σ1...σn′−j) = 1−
(

∏
z∈{0,1}

(
1− Quant(i,j−1)(p)(x, w, σ1, ..., σn′−jz)

))
,

and if j is even then we define

Quant(i,j)(p)(x, σ1, ..., σn′−j) = ∏
z∈{0,1}

Quant(i,j−1)(p)(x, w, σ1...σn′−jz) .

Note that the function Quant(i)(p) can be evaluated at any input in linear space
with oracle access to p (since each Quant(i,j)(p) can be evaluated in linear space with
oracle access to Quant(i,j−1)(p)). Also observe the following property of Quant(i)(p),
which follows immediately from the definition:

Fact 4.7.3.1. If for some x ∈ H`0 and any w ∈ H`0 it holds that p(x, w) ∈ {0, 1}, then for the
same x and any w ∈ H`0 it holds that Quant(i)(p)(x, w) = 1 if ∃σ1∀σ2∃σ3...∀σn′ such that
p(x, w1...wi−1π(σ1...σn′04n′)wi+1...w`0) = 1, and Quant(i)(p)(x, w) = 0 otherwise.

Degree-reduction operator: For every fixed z ∈ H, let Iz : H → {0, 1} be the
indicator function of whether the input equals z, and let Īz : F→ F be the low-degree
extension of Iz, which is of degree at most |H| − 1 (i.e., Īz(x) = ∏h∈H\{z}

x−h
z−h). Then,

for any i ∈ [`0], we define

DegRed(i)(p)(x, w) = ∑
z∈H

Īz(xi) · p(x1...xi−1zxi+1...x`0 , w) ,

31

and similarly for i ∈ [2`0] we denote i′ = i− `0 and define

DegRed(i)(p)(x, w) = ∑
z∈H

Īz(wi′) · p(x, w1...wi′−1zwi′+1...w`0) .

Similarly to the operator Quant(i), note that the function DegRed(i)(p) can be eval-
uated at any input in linear space with oracle access to p. Also, the definition of the
operator DegRed(i) implies that:

Fact 4.7.3.2. For i ∈ [2`0], let v be the variable whose degree DegRed(i) reduces (i.e., v = xi if
i ∈ [`0] and v = wi′ = wi−`0 if i ∈ [2`0]). Then, the individual degree of v in DegRed(i)(p)
is |H| − 1, and the individual degree of any other input variable to DegRed(i)(p) remains the
same as in p. Moreover, for every (x, w) ∈ F`0 × F`0 , if the input (x, w) assigns the variable
v to a value in H, then DegRed(i)(p)(x, w) = p(x, w).

Composing the operators: We will be particularly interested in what happens when
we first apply the quantifications operator to some variable i ∈ [`0], and then apply
the degree-reduction operator to all variables, sequentially. A useful property of this
operation is detailed in the following claim:

Claim 4.7.3.3. Let p : F2`0 → F and x ∈ H`0 such that for any w ∈ H`0 it holds that
p(x, w) ∈ {0, 1}. For i ∈ [`0], let p′ : F2`0 → F be the function that is obtained by first
applying Quant(i) to p, then applying DegRed(j) for each j = 1, ..., 2`0. Then, for any w′ ∈ H`0

we have that p′(x, w′) = 1 if ∃σ1∀σ2∃σ3...∀σn′ : p(x, w′1...w′i−1π(σ1...σn′)w′i+1...w′`0
) = 1,

and p′(x, w′) = 0 otherwise.

Proof. Fix any w′ ∈ H`0 . By Fact 4.7.3.1, and relying on the hypothesis that for
any w ∈ H`0 we have that p(x, w) ∈ {0, 1}, it follows that Quant(i)(p)(x, w′) = 1 if
∃σ1∀σ2∃σ3...∀σn′ : p(x, w′1...w′i−1π(σ1...σn′)w′i+1...w′`0

) = 1 and that Quant(i)(p)(x, w′) =
0 otherwise. Now, let p(0) = Quant(i)(p), and for every j ∈ [2`0] recursively define
p(j) = DegRed(j)(p(j−1)). By the “moreover” part of Fact 4.7.3.2, and since (x, w′) ∈
H`0 × H`0 , for every j ∈ [2`0] we have that p(j)(x, w′) = p(j−1)(x, w′), and hence
p′(x, w′) = Quant(i)(x, w′). �

Defining the collection of polynomials: Let us now define the collection of ¯̀0 =
`0(2`0 + 1) + 1 polynomials. We first define Pn,`0(2`0+1)+1(x, w) = PTQBFloc(x, w). Then,
we recursively construct the collection in `0 blocks such that each block consists of
2`0 + 1 polynomials. The base case will be block i = `0, and we will decrease i down
to 1. Loosely speaking, in each block i ∈ [`0], starting from the last polynomial in
the previous block, we first apply a quantification operator to the ith variable of the
second input w, and then apply 2`0 linearization operators, one for each variable in
the inputs (x, w). Specifically, for the ith block, we define the first polynomial by
Pn,i(2`0+1)(x, w) = Quant(i)(Pn,i(2`0+1)+1)(x, w); and for each j = 1, ..., 2`0, we define
Pn,i(2`0+1)−j(x, w) = DegRed(j)(Pn,i(2`0+1)−j+1)(x, w).

Note that the claimed Property (3) of the collection holds immediately from our
definition. To see that Property (4) also holds, note that the first part (regarding Pn, ¯̀0)

32

holds by Claim 4.7.2; and for the “moreover” part, recall (by the properties of the
operators Quant(i) and DegRed(i) that were mentioned above) that each polynomial Pn,k
in the collection can be computed in linear space when given access to the “previous”
polynomial Pn,k−1, and also that we can compute the “first” polynomial Pn,`0(2`0+1)+1 in
linear space (since this polynomial is just PTQBFloc , and relying on Claim 4.7.2). Using
a suitable composition lemma for space-bounded computation (see, e.g., [Gol08, Lem.
5.2]), we can compute any polynomial in the collection in space O(n · ¯̀0).

We now prove Property (1), which asserts that all the polynomials in the collec-
tion are of degree at most O(n · `0 · 22n′). We prove this by induction on the blocks,
going from i = `0 down to i = 1, while maintaining the invariant that the “last”
polynomial in the previous block i + 1 (i.e., the polynomial Pn,i(2`0+1)+1) is of degree
at most O(n · 2n′). For the base case i = `0 the invariant holds by our definition that
Pn,`0(2`0+1)+1 = PTQBFloc and by Claim 4.7.2. Now, for every i = `0, ..., 1, note that the
first polynomial Pn,i(2`0+1) in the block is of degree at most 2n′ · deg(Pn,i(`0+1)+1) =

O(n · 22n′) (i.e., the quantifications operator induces a degree blow-up of 2n′), and in
particular the individual degrees of all variables of Pn,i(2`0+1) are upper-bounded by
this expression. Then, in the subsequent 2`0 polynomials in the block, we reduce the
individual degrees of the variables (sequentially) until all individual degrees are at
most |H| − 1 < 2n′ (this relies on Fact 4.7.3.2). Thus, the degree of the last polynomial
in the block (i.e., of Pn,(i−1)(2`0+1)+1) is at most 2`0 · 2n′ < n · 2n′ , and the invariant is
indeed maintained.

Finally, to see that Property (2) holds, fix any (x, w) ∈ H`0 × H`0 . Our goal is to
show that Pn,1(x, w) = 1 if x ∈ TQBFloc and Pn,1(x, w) = 0 otherwise (regardless of
w). To do so, recall that Pn, ¯̀0 = PTQBFloc , and hence for any w′ ∈ H`0 it holds that
Pn, ¯̀0(x, w′) = 1 if (x, w′) ∈ R-TQBFloc and Pn, ¯̀0(x, w′) = 0 otherwise. Note that the last
polynomial in block i = `0 (i.e., the polynomial Pn,`0(2`0+1)−2`0

) is obtained by applying
Quant(`0) to Pn, ¯̀0 and then applying DegRed(j) for each j = 1, ..., 2`0. Using Claim 4.7.3.3,
for any w′ ∈ H`0 , when this polynomial is given input (x, w′), it outputs the value 1
if ∃σ1∀σ2∃σ3...∀σn′(x, w′1...w′`0−1π(σ1...σn′)) ∈ R-TQBFloc, and outputs 0 otherwise. By
repeatedly using Claim 4.7.3.3 for the last polynomial in each block i = `0− 1, ..., 1, we
have that Pn,1(x, w) = 1 if ∃σ

(1)
1 ∀σ

(1)
2 ...∀σ

(1)
n′ ...∃σ

(`0)
1 ...∀σ

(`0)
n′ : (x, w′) ∈ R-TQBFloc, where

w′ = (π(σ
(1)
1 ...σ(1)

n′), ..., π(σ
(`0)
1 ...σ(`0)

n′)); and Pn,1(x, w) = 0 otherwise. In other words,
we have that Pn,1(x, w) = 1 if x ∈ TQBFloc and Pn,1(x, w) = 0 otherwise, as we wanted.
�

Combining the polynomials into a Boolean function. Intuitively, the polynomials in
our collection are already downward self-reducible (where “downward” here means
that Pn,i is reducible to Pn,i+1) and sample-aided worst-case to average-case reducible
(since the polynomials have low degree, and relying on Proposition A.1). Our goal
now is simply to “combine” these polynomials into a single Boolean function f ws :
{0, 1}∗ → {0, 1}∗ that will be δ-well-structured.

33

For every n ∈N, we define a corresponding interval of input lengths In = [N, N +
¯̀0 − 1], where N = 10n′ · `0 + 11n · ¯̀0 = O(n · ¯̀0). Then, for every i ∈ {0, ..., ¯̀0 − 1},

we define f ws on input length N + i such that it computes (a Boolean version of)
Pn, ¯̀0−i. Specifically, f ws : {0, 1}N+i → {0, 1}N+i considers only the first 10n′ · `0 = 2`0 ·
log(|F|) = O(n) bits of its input, maps these bits to (x, w) ∈ F2`0 using π, computes
Pn, ¯̀0−i(x, w), and outputs the bit-representation of Pn, ¯̀0−i(x, w) (using π−1), padded to
the appropriate length N + i. On input lengths that do not belong to any interval In
for n ∈N, we define f ws in some fixed trivial way (e.g., as the identity function).

A straightforward calculation shows that the intervals {In}n∈N are disjoint, and
thus f ws is well-defined.24 In addition, since the input length to f ws is N = O(n · ¯̀0)
and each polynomial in the collection is computable in space O(n · ¯̀0), it follows that
f ws is computable in linear space. To see that TQBF reduces to f ws, recall that by
Claim 4.7.1 we can reduce TQBF to TQBFloc in time n · (log n)r (for some universal
constant r ∈ N); and note that we can then further reduce TQBFloc to f ws by mapping
any x ∈ {0, 1}n to an (N + ¯̀0 − 1)-bit input of the form (x, w, p), where w is an
arbitrary string and p is padding. (This is since f ws on inputs of length N + ¯̀0 −
1 essentially computes Pn,1.) This reduction is computable in deterministic time n ·
log(n)r+2c+1.

We now want to show that f ws is downward self-reducible in time poly(1/δ) and
in O((log N)2c) steps, where δ(N) = 2N/(log N)3c

and N denotes the input length. To
see this, first note that given input length N ∈ N we can find in polynomial time an
input length n such that N ∈ In, if such n exists. If such n does not exist, then the func-
tion is defined trivially on input length n and can be computed in polynomial time.
Otherwise, let N0 ≤ N be the smallest input length in In (i.e., N0 = 10 dn/`0(n)e ·
`0(n) + 11n · ¯̀0(n)), and denote N = N0 + i, for some i ∈ {0, ..., ¯̀0(n) − 1}. Note
that f wsN corresponds to the polynomial Pn, ¯̀0(n)−i, and f wsN−1 corresponds to the poly-
nomial Pn, ¯̀0(n)−(i−1). By Claim 4.7.3, the former can be computed in time poly(2n′) =

poly(2n/(log n)c
) = poly(2N/(log N)3c

) with oracle access to the latter. Lastly, recall that
|In| = ¯̀0(n) < O(log N)2c and that f wsN0

corresponds to Pn,`0(n), which can be computed
in time poly(2n′); hence, there exists an input length N0 ≥ N −O((log N)2c) such that
f wsN0

can be computed in time poly(2n′) < poly(1/δ(N0)).
To see that f ws is sample-aided worst-case to δ-average-case reducible, first note

that computing f ws on any input length N on which it is not trivially defined is
equivalent (up to a polynomial factor in the runtime) to computing a polynomial
F2`0(n) → F of degree d = O(poly(n) · 22n′) in a field of size q = |F| = 25n′ , where
n < N/(log N)2c and n′ = dn/`0(n)e. 25 We use Proposition A.1 with parameter

24This is the case since the largest input length in In is 10 dn/`0(n)e · `0(n) + 11n · ¯̀0(n) + (¯̀0(n)− 1) <
10n + 10`0(n) + (11n + 1) · ¯̀0(n)− 1 < 10n + 11(n + 1) · ¯̀0(n)− 1, whereas the smallest input length in
In+1 is 10 d(n + 1)/`0(n + 1)e · `0(n + 1) + 11(n + 1) · ¯̀0(n + 1) ≥ 10n + 11(n + 1) ¯̀0(n + 1) + 10.

25The only potential issue here is that the Boolean function is actually a “padded” version of the func-
tion that corresponds to polynomial: It is not immediate that if there exists an algorithm that computes
the Boolean function correctly on ε > 0 of the n-bit inputs, then there exists an algorithm that computes
the polynomial correctly on the same fraction ε > 0 of the m = log(|F2`0 |)-bit inputs. However, the latter

34

ρ(log(|F2`0(n)|)) = δ0(n) < δ(N), and note that its hypothesis δ0(n) ≥ 10 ·
√

d/|F| is
satisfied since we chose |F| = poly(1/δ0(n)) to be sufficiently large.

4.2 PRGs for uniform circuits with almost-exponential stretch

Let δ(n) = 2−n/polylog(n). The following proposition asserts that if there exists a func-
tion that is both δ-well-structured and “hard” for probabilistic algorithms that run
in time 2n/polylog(n), then there exists an i.o.-PRG for uniform circuits with almost-
exponential stretch. That is:

Proposition 4.8 (almost-exponential hardness of a well-structured function⇒ PRG for
uniform circuits with almost-exponential stretch). Assume that for some constant c ∈ N

and for δ(n) = 2−n/ log(n)c+1
there exists a δ-well-structured function that can be computed

in linear space but cannot be computed by probabilistic algorithms that run in time 2n/ log(n)c
.

Then, for every k ∈ N and for t(n) = nloglog(n)k
there exists a (1/t)-i.o.-PRG for (t, log(t))-

uniform circuits that has seed length Õ(log(n)) and is computable in time npolyloglog(n).

Proposition 4.8 follows as an immediate corollary of the following lemma. Loosely
speaking, the lemma asserts that for any δ-well-structured function f ws, there exists
a corresponding PRG with almost-exponential stretch such that a uniform algorithm
that distinguishes the output of the PRG from uniform yields a uniform probabilistic
algorithm that computes f ws. Moreover, the lemma provides a “point-wise” state-
ment: For any n ∈ N, a distinguisher on a small number (i.e., polyloglog(n)) of input
lengths in a small interval around n yields a uniform algorithm for f ws on input length
Õ(log(n). We will later use this “point-wise” property of the lemma to extend Propo-
sition 4.8 to “almost everywhere” versions (see Propositions 4.11 and 4.12).

In the following statement we consider three algorithms: The pseudorandom gen-
erator G; a potential distinguisher for the PRG, denoted A; and an algorithm F for
the “hard” function f ws. Loosely speaking, the lemma asserts that for any n ∈ N, if
G is not pseudorandom for A on a every input length in a small set of input lengths
surrounding n, then F computes f ws on input length `(n) = Õ(log(n)). We will
first fix a constant c that determines the target running time of F (i.e., running time
tF(`) = 2`/ log(`)c

), and the other parameters (e.g., the parameters of the well-structured
function, and the seed length of the PRG) will depend on c. Specifically:

Lemma 4.9 (distinguishing a PRG based on f ws ⇒ computing f ws). Let c ∈ N be
an arbitrary constant, let δ(n) = 2−n/ log(n)c+1

, and let s : N → N be a polynomial-time
computable function such that s(n) ≤ n/2 for all n ∈ N. Let f ws : {0, 1}∗ → {0, 1}∗ be
a (δ, s)-well-structured function that is computable in linear space, let t(n) = nloglog(n)k

for
some constant k ∈ N, and let `(n) =

⌈
log(n) · (loglogn)b⌉ for a sufficiently large constant

b ∈N. Then, there exist two objects that satisfy the property detailed below:

1. (Pseudorandom generator). An algorithm G0 that gets as input 1n and a random seed of
length `G(n) = Õ(`(n)), runs in time npolyloglog(n), and outputs a string of length n.

assertion holds in our case since we are interested in probabilistic algorithms.

35

2. (Mapping of any input length to a small set of surrounding input lengths). A polynomial-
time computable mapping of any unary string 1n to a set Sn ⊂

[
n, n2] of size |Sn| =

s(Õ(log(n))), where a ∈N is a sufficiently large constant that depends on k.

The property that the foregoing objects satisfy is the following. For every probabilistic
time-t algorithm A that uses log(t) bits of non-uniform advice there exists a corresponding
probabilistic algorithm F that runs in time tF(`) = 2`/ log(`)c

such that for any n ∈N we have
that: If for every m ∈ Sn it holds that G0(1m, u`G0 (m)) is not (1/t(m))-pseudorandom for A,
then F computes f ws on strings of length `(n).

Moreover, for any function str : N → N such that str(n) ≤ n, the above property
holds if we replace G0 by the algorithm G that computes G0 and truncates the output to length
str(n) (i.e., G(1n, z) = G0(1n, z)1, ..., G0(1n, z)str(n)).

Observe that Proposition 4.8 indeed follows as a contra-positive of Lemma 4.9
(with str being the identity function, which means that G = G0): If every probabilis-
tic algorithm F that gets an `-bit input and runs in time 2`/ log(`)c

fails to compute
f ws infinitely-often, then for every corresponding time-t algorithm A there exists an
infinite set of inputs on which G is pseudorandom for A.

Proof of Lemma 4.9. For any p, s, δ, k, t, and f ws that satisfy our hypothesis, let
f GL(ws) : {0, 1}∗ → {0, 1} be defined as follows: For any (x, r) ∈ {0, 1}n × {0, 1}n we let
f GL(ws)(x, r) = ∑i∈[n] f ws(x)i · ri, where the arithmetic is over F2.26 (We use the notation
f GL(ws) since we will use the algorithm of Goldreich and Levin [GL89] to transform a
circuit that agrees with f GL(ws) on 1/2+ ε of the inputs into a circuit that computes f ws

on poly(ε) of the inputs.)
The algorithm G0 is the Nisan-Wigderson generator, instantiated with f GL(ws) as the

hard function and with combinatorial designs such that the output length is n, the sets
in the design are of size `(n) =

⌈
log(n) · (loglogn)b⌉ (where b is a sufficiently large

constant that depends on k), the seed length is `G(n) = Õ(`(n)) = Õ(log(n)), and the
size of the intersection between any two sets in the design is γ · log(n) where γ > 0
is a sufficiently small constant (see, e.g., [Vad12, Prob 3.2] for a suitable construction).
Since f ws is computable in linear space, the function f GL(ws)(x, r) is computable in time
npolyloglog(n), and hence G0 is computable in time npolyloglog(n).

Fix a mapping of any 1n to a corresponding set Sn that will be defined in a moment
(and depends only on the parameters up to this point). Now, let str : N → N

be any polynomial-time computable function satisfying str(n) ≤ n, and let G be
such that G(1n, s) = G0(1n, s)1,...,str(n). For t(n) = nloglog(n)k

, let A be a probabilistic
algorithm that gets input 1n and log(t(n)) bits of non-uniform advice and runs in
time t(n). For any sufficiently large n ∈ N, we assume that for every m ∈ Sn, when
A is given input 1str(m) and corresponding “good” advice, with probability at least
1/t(m) it outputs a circuit Dstr(m) : {0, 1}str(m) → {0, 1} that (1/t(m))-distinguishes
G(1m, u`G(m)) from uniform. Under this assumption, we will construct a probabilistic

26On odd input lengths the function f GL(ws) is defined by ignoring the last input bit; that is,
f GL(ws)(x, rσ) = f GL(ws)(x, r), where |x| = |r| and |σ| = 1.

36

algorithm that gets input 1`(n), runs in time poly(1/δ(`(n)) = 2O(`(n)/ log(`(n))c+1), and
with high probability outputs a circuit {0, 1}`(n) → {0, 1} that correctly computes
f ws on `(n)-bit inputs. This implies that a probabilistic algorithm can decide f ws on
{0, 1}`(n) in time at most 2`(n)/ log(`(n))c

.
Towards presenting the construction, denote `′(n) = `(n)/ log(`(n))c+1, and fix a

sufficiently small universal constant ε > 0 (which depends only on universal constants
from arguments in [NW94; IW98]). We assume that `(n) is sufficiently large such that
t(n) = nloglog(n)k ≤ 2ε·`′(n). Recall that, since f ws is downward self-reducible in s steps,
there exists an input length `0(n) ≥ `(n) − s(`(n)) such that f ws`0(n)

is computable in
time poly(1/δ(`0(n))). For Ln = {`0(n), ..., `(n)}, we define Sn = {`−1(2i) : i ∈
Ln}. Note that indeed |Sn| ≤ s(`(n)) = s(Õ(log(n))); and relying on the fact that
s(`(n)) ≤ `(n)/2, we have that Sn ⊂ [n0, n1] where n0 = `−1(2`0) ≥ `−1(`(n)) = n
and n1 = `−1(2`(n)) < n2. Lastly, note that Sn does not depend on the function str

or on the algorithm A.
Our first step is to show that (loosely speaking) under our assumption about A, for

any m ∈ Sn we can efficiently construct (using only a small amount of non-uniform
advice) a circuit that computes f GL(ws) on noticeably more than half of the inputs of
length `(m). The proof of this claim is a variation on the standard efficient transfor-
mation of distinguishers for the Nisan-Wigderson PRG to approximating circuits for
the “hard” function, from [IW98] (following [NW94]).

Claim 4.9.1. There exists a probabilistic algorithm such that for any m ∈ Sn, when the
algorithm is given input 1`(m), and oracle access to f GL(ws) on `(m)-bit inputs, and 2ε · `′(m)
bits of non-uniform advice, the algorithm runs in time 2`

′(m) and with probability more than
2−`

′(m) outputs a circuit {0, 1}`(m) → {0, 1} that computes f GL(ws) correctly on more than
1/2 + 2−`

′(m) of the inputs.

Proof. Let ` = `(m), let `′ = `′(m), and let m′ = str(m) ≤ m. Let us first assume that
m′ = m (i.e., G0 = G and str is the identity function). In this case, a standard argument
(based on [NW94] and first noted in [IW98]) shows that there exists a probabilistic
polynomial time algorithm ANW that satisfies the following: When given as input
a circuit Dm : {0, 1}m → {0, 1} that (1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from
uniform, and also given oracle access to f GL(ws) on `-bit inputs, with probability at
least 1/O(m) the algorithm ANW outputs a circuit C` : {0, 1}` → {0, 1} such that
Prx∈{0,1}` [C`(x) = f GL(ws)(x)] ≥ 1/2 + 1/O(mloglog(m)k

).
Towards extending this claim to the setting of str(m) < m, let us quickly recap the

original construction of ANW : The algorithm randomly chooses an index i ∈ [m] (for a
hybrid argument) and values for all the bits in the seed of the NW generator outside
the ith set (in the underlying design); then uses its oracle to query poly(m) values for
f GL(ws) (these are potential values for the output indices whose sets in the seed intersect
with the ith set), and “hard-wires” them into a circuit C` that gets input x ∈ {0, 1}`,
simulates the corresponding m-bit output of the PRG, and uses the distinguisher to
decide if x ∈ f GL(ws). Now, note that if the output of the PRG is truncated to length

37

m′ = str(m) < m, the construction above works essentially the same if we choose
an initial index i ∈ [m′] instead of i ∈ [m], and if C` completes x to an m′-bit output
of the PRG instead of an m-bit output. Indeed, referring to the underlying analysis,
these changes only improve the guarantee on the algorithm’s probability of success
(we do not use the fact that the guarantee is better). Thus, for any m′ = str(m) ≤ m,
there is an algorithm ANW that gets as input a circuit Dm′ : {0, 1}m′ → {0, 1} that
(1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from uniform, and oracle access to f GL(ws)` ,
and with probability at least 1/O(m) outputs a circuit C` : {0, 1}` → {0, 1} such that
Prx∈{0,1}` [C`(x) = f GL(ws)(x)] ≥ 1/2 + 1/O(mloglog(m)k

).
Now, for ` ∈ N, let m = m(`) be such that ` is the seed length of G on m-bit

inputs, and let m′ = str(m). Our probabilistic algorithm is given as input 1` and
non-uniform advice (a, m′) such that |a| = log(t(m)) = log(m) · loglog(m)k = ε · `′;
note that, since m′ ≤ m, the total length of the advice is at most ε · `′ + log(m) <
2ε · `′. Our probabilistic algorithm simulates the algorithm A on input 1m′ with the
advice a, and feeds the output of A as input for ANW . This algorithm runs in time
mO(loglog(m)k) = 2`

′
. Note that with probability more than (1/mloglog(m)k

), the algorithm
A outputs Dm′ : {0, 1}m′ → {0, 1} that (1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from
uniform, and conditioned on this event, with probability at least 1/O(m) the combined
algorithm outputs a circuit C` : {0, 1}` → {0, 1} that correctly computes f GL(ws) on
1/2 + 1/O(mloglog(m)k

) > 1/2 + 2−`
′

of the `-bit inputs. �

We will call the algorithm in the statement of Claim 4.9.1 a weak learner for f GL(ws) on
input length `(m). Then, Claim 4.9.1 implies that there exists a weak learner for f GL(ws)

on any input length in 2Ln = {2i : i ∈ Ln}. See Figure 1 for a pictorial description of
the sets Ln, 2Ln, and Sn, and for a reminder about our assumptions at this point.

`0(n) `(n)

Ln

2`0(n) 2`(n)

2Ln

`−1(2`0(n)) `−1(2`(n))

contains Sn = `−1(2Ln)

Figure 1: We want to compute f ws on inputs of length `(n). We define a corresponding
interval Ln = {`0(n), ..., `(n)} of input lengths, where `0(n) ≥ `(n)− s(`(n)), in which
we will use the downward self-reducibility of f ws. We assume that there is a uniform
distinguisher A for the PRG on all input lengths in Sn = `−1(2Ln), and deduced that
there exists a weak learner for f GL(ws) on all input lengths in 2Ln.

Given as input 1`(n), we construct in time poly(1/δ(`(n))) = 2O(`(n)/ log(`(n))c+1) =
2O(`′(n)) a circuit for f ws`(n), by inductively constructing circuits for f wsi , for increasing
values of i ∈ Ln = {`0(n), ..., `(n)}, where for each i we will construct the correspond-
ing circuit in time 2O(i/ log(i)c+!). Indeed, the construction for the base case i = `0(n)
is trivial, since f ws`0(n)

is computable in time poly(1/δ(`0(n))) ≤ 2O(`0(n)/ log(`0(n))c+1),
where the inequality is due to our hypothesis that δ is sufficiently large (the precise

38

requirement from δ will be specified below). Therefore we just need to prove the
inductive step. This will be done as follows:

Claim 4.9.2. There exists an algorithm that gets as input i ∈ Ln \ {`0(n)} and a circuit
Ci−1 : {0, 1}i−1 → {0, 1} that computes f wsi−1, runs in time 2O(i/ log(i)c+1) · poly(|Ci−1|), and
with probability at least 1− exp(i/ log(i)c+1) outputs a circuit Ci : {0, 1}i → {0, 1} of size
2O(i/ log(i)c+1) that computes f wsi . (Note that the size of the output circuit Ci does not depend
on the size of the input circuit Ci−1.)

Proof. Let i′ = 2i/ log(2i)c+1, and let S = |Ci−1|. First note that the algorithm can
compute f wsi in time poly(1/δ(i), S) (using the downward self-reducibility of f ws and
the circuit Ci−1) and also compute f GL(ws)2i in time poly(1/δ(i), S) (using the fact that
f GL(ws)(x, r) = ∑j∈[i] f wsi (x)j · rj). We will construct Ci in four steps:

1. Simulating the learner for f GL(ws)2i . We use the weak learner for f GL(ws)2i to construct
a list of 2O(i′) circuits {0, 1}2i → {0, 1} of size 2i′ such that at least one circuit in the list
correctly decides f GL(ws)2i on 1/2 + 2−i′ of the (2i)-bit inputs.

To do so, we enumerate over all 22ε·i′ possible advice strings for the weak learner
for f GL(ws)2i . For each fixed advice string a ∈ {0, 1}2ε·i′ , we simulate the weak learner
with advice a for 2O(i′) times (using independent randomness in each simulation),
while answering its queries to f GL(ws)2i using Ci−1. Note that when a is the “good”
advice, each simulation of the learner is successful with probability at least 2−i′ . Thus,
with probability at least 1− exp(−i′) our list contains at least one circuit that correctly
computes f GL(ws)2i on at least 1/2 + 2−i′ of its inputs.

2. Weeding the list to find a circuit for f GL(ws)2i . We now test each of the 2O(i′) circuits

in order to find a single circuit C′i : {0, 1}2i → {0, 1} that computes f GL(ws)2i on 1/2 +

2−2i′ of the inputs.
To test each circuit we randomly sample 2O(i′) inputs, compute f GL(ws)2i at each of

these inputs using Ci−1, and compare the value of f GL(ws)2i to the output of the candidate
circuit. For each circuit, with probability at least 1− 2−O(i′) over the sampled inputs,
we correctly estimate its agreement with f GL(ws)2i up to error 2−2i′−1. Union-bounding
over the 2O(i′) circuits, with probability at least 1− 2−O(i′), the circuit that we find in
this step has agreement at least 1/2 + 2−2i′ with f ws.

3. Conversion to a circuit that computes f wsi on average. We now convert the circuit
C′i for f GL(ws)2i to a circuit {0, 1}i → {0, 1}i of size 2O(i′) that computes f wsi correctly on
δ(i) = 2−O(i′) of its i-bit inputs.27

27Recall that in our hypothesis we required a δ-well-structured function where δ(n) = 2−n/polylog(n)

for a sufficiently large polylogarithmic function. At this point we can specify our precise requirement,

39

To do so, we first use the algorithm of Goldreich and Levin [GL89] to convert the
deterministic circuit C′i into a probabilistic circuit C′′i of size 2O(i′) such that Pr[C′′i (x) =
f wsi (x)] ≥ 2−O(i′), where the probability is taken both over a random choice of x ∈
{0, 1}i and over the internal randomness of C′′i . Specifically, the circuit C′′i : {0, 1}i →
{0, 1} gets input x ∈ {0, 1}i, and simulates the algorithm from [Gol08, Thm 7.8] with
parameter δ0 = 2−2i′ , while resolving the oracle queries of the algorithm using the
circuit C′i ; then, the circuit C′′i outputs a random element from the list that is produced
by the algorithm from [Gol08]. Since Ex[Prr[C′i(x, r) = f GL(ws)2i (x, r)]] ≥ 1/2 + δ0, it
follows that for at least δ0/2 of the inputs x ∈ {0, 1}i it holds that Prr[C′i(x, r) =

f GL(ws)2i (x, r)] ≥ 1/2 + δ0/2. For each such input, with probability at least 1/2 the
algorithm of [GL89] outputs a list of size poly(1/δ0) that contains f ws(x), and thus the
circuit C′′i outputs f ws(x) with probability poly(δ0).

To conclude we now choose randomness for C′i and “hard-wire” it into the circuit.
With probability at least 1− exp(i′), we obtain a circuit C′′′i of size 2O(i′) that computes
f wsi correctly on δ = poly(δ0) of the inputs.

4. Worst-case to δ-average-case reduction for f wsi . Our final step is to convert C′′i
(which computes f wsi correctly on δ(i) of the i-bit inputs) into a circuit Ci of size 2O(i′)

that correctly computes f wsi on all inputs.
To do so we will use the fact that f ws is sample-aided worst-case to δ-average-case

reducible, and the fact that we can generate random labeled samples (r, f wsi (r)) by
using the circuit Ci−1 to compute f wsi (r). With probability at least 1− δ(i), the uniform
reduction outputs a probabilistic circuit C′′′i of size 2O(i′) such that for every x ∈ {0, 1}i

it holds that Prr[C′′′i (x, r) = f ws(x)] ≥ 2/3. 28 Using naive error-reduction we obtain a
circuit of size 2O(i′) that correctly computes f ws at any input with probability 1− 2−O(i).
Then we uniformly choose randomness of this circuit and “hard-wire” the randomness
into it, such that with probability at least 1 − 2−i we obtain a deterministic circuit
Ci : {0, 1}i → {0, 1} that computes f wsi . �

Repeating the algorithm from Claim 4.9.2 for i = `0(n) + 1, ..., `(n), we obtain an
algorithm that runs in time 2O(`′), and outputs a circuit for f ws`(n) with probability at

least 1−∑`
i=`′ exp(i/ log(i)c+1) ≥ 2/3, assuming that ` is sufficiently large.

In the last part of the proof of Lemma 4.9, after we converted a distinguisher for
f GL(ws) into a weak learner for f GL(ws) (i.e., after Claim 4.9.1), we used the existence of
the weak learner for f GL(ws) on 2Ln to obtain a circuit that computes f ws on Ln. This
part of the proof immediately implies the following, weaker corollary. (The corollary

which is that δ(n) = 2−O(n/ log(n)c+1), where the universal constant hidden inside the O-notation depends
only on universal constants from [GL89] as explained in the argument that we now present.

28In Definition 4.3 the output circuit has oracle gates to a function that agrees with the target function
on a δ fraction of the inputs. Indeed, we replace these oracle gates with copies of the circuit C′′i .

40

is weaker since it does not have any “point-wise” property, i.e. does not convert a
learner on specific input lengths to a circuit for f ws on a corresponding input length.)

Corollary 4.10 (learning f GL(ws) =⇒ computing f ws). Let c ∈N be an arbitrary constant,
let f ws : {0, 1}∗ → {0, 1}∗ be a δ-well-structured function for δ(n) = 2−n/ log(n)c+1

, and
let f GL(ws) be defined as in the proof of Lemma 4.9. Assume that for every ` ∈ N there
exists a weak learner for f GL(ws); that is, an algorithm that gets input 1` and oracle access to
f GL(ws)` , runs in time δ−1(`), and with probability more than δ(`) outputs a circuit over ` bits
that computes f GL(ws) correctly on more than 1/2 + δ(`) of the inputs. Then, there exists an
algorithm that for every `, when given input 1`, runs in time 2`/ log(`)c

and outputs an `-bit
circuit that computes f ws.

We now use the “point-wise” property of Lemma 4.9 to deduce two “almost-
always” versions of Proposition 4.8. Recall that in our construction of a well-structured
function f ws, on some input lengths f ws is defined trivially, and thus it cannot be that
f ws is “hard” almost-almost.29 However, since TQBF can be reduced to f ws with a
quasilinear blow-up b : N → N, we can still deduce the following: If TQBF is “hard”
almost-always, then for every n ∈ N there exists n′ ≤ b(n) such that f ws is “hard” on
input length n′ (i.e., this holds for the smallest n′ ≥ n of the form b(n0) for n0 ∈N).

In our first “almost-always” result, the hypothesis is that a well-structured function
is “hard” on a dense set of input lengths as above, and the conclusion is that there
exists an “almost-everywhere” HSG for uniform circuits.

Proposition 4.11 (“almost everywhere” hardness of f ws ⇒ “almost everywhere” de-
randomization ofRP “on average”). Assume that for some constant c ∈N and for δ(n) =
2−n/ log(n)c+1

there exists a (δ, polylog(n))-well-structured function and b(n) = Õ(n) such
that for every probabilistic algorithm that runs in time 2n/ log(n)c

, and every sufficiently large
n ∈ N, the algorithm fails to compute f ws on input length n = min{b(n0) ≥ n : n0 ∈ N}.
Then, for every k ∈ N and for t(n) = nloglog(n)k

there exists a (1/t)-HSG for (t, log(t))-
uniform circuits that is computable in time npolyloglog(n) and has seed length Õ(log(n)).

Proof. We instantiate Lemma 4.9 with the constant c, the function f ws, the parame-
ter 2k instead of k (i.e., the parameter t in Lemma 4.9 is t(n) = nloglog(n)2k

) and with
str(n) = n (i.e., str is the identity function). Let `(n) =

⌈
Õ(log(n))

⌉
be the quasilog-

arithmic function given by Lemma 4.9, let G = G0 be the corresponding PRG, and
let `G(n) = Õ(log(n)) be the seed length of G. From our hypothesis regarding the
hardness of f ws, we can deduce the following:

Corollary 4.11.1. For every n ∈N there is a polynomial-time-enumerable set Sn = Snpolyloglog(n) ⊂
[n, npolyloglog(n)] of size polyloglog(n) such that for every probabilistic algorithm A′ that runs
in time t2 and uses 2 log(t) bits of advice, if n ∈N is sufficiently large then there exists m ∈ Sn
such that G(1m, u`G(m)) is (1/t2(m))-pseudorandom for A′.

29Moreover, in every small interval of input lengths, there is an input length on which f ws can be
solved in time poly(1/δ) (without using an oracle).

41

Proof. For every n ∈ N, let `(n) = min{b(`0) ≥ `(n) : `0 ∈ N}, and let n =
`−1(`(n)) ∈ [n, npolyloglog(n)]. We define Sn = Sn, where Sn is the set from Item (2)
of Lemma 4.9 that corresponds to n. Note that Sn ⊂ [n, npolyloglog(n)] and that |Sn| ≤
polyloglog(n).

Now, let A′ be a probabilistic algorithm as in our hypothesis, let F′ be the corre-
sponding probabilistic algorithm from Lemma 4.9 that runs in time tF′(i) = 2i/ log(i)c

,
and let n ∈ N be sufficiently large. By Lemma 4.9, if there is no m ∈ Sn such that
G(1m, u`G(m)) is (1/t(m))-pseudorandom for A′, then F′ correctly computes f ws on
input length `(n) = `(n), which contradicts our hypothesis. �

The HSG, denoted H, gets input 1n, uniformly chooses m ∈ Sn, computes G(1m, s)
for a random s ∈ {0, 1}`G(m), and outputs the n-bit prefix of G(1m, s). Note that the
seed length that H requires is Õ(log(npolyloglog(n))) + log(|Sn|) = Õ(log(n)), and that
H is computable in time at most npolyloglog(n).

To prove that H is a (1/t)-HSG for (t, log(t))-uniform circuits, let A be a proba-
bilistic algorithm that runs in time t and uses log(t) bits of advice. Assume towards a
contradiction that there exists an infinite set BA ⊆ N such that for every n ∈ BA, with
probability more than 1/t(n) the algorithm A outputs a circuit Dn : {0, 1}n → {0, 1}
satisfying Prs[Dn(H(1n, s)) = 0] = 1 and Prx∈{0,1}n [Dn(x) = 1] > 1/t(n). We will con-
struct an algorithm A′ that runs in time less than t2, uses log(t)+ log(n) < 2 log(t) bits
of advice, and for infinitely-many sets of the form Sn, for every m ∈ Sn it holds that
G(1m, u`G(m)) is not (1/t(m))-pseudorandom for A′. This contradicts Corollary 4.11.1.

The algorithm A′ gets input 1m, and as advice it gets an integer of size at most
m. Specifically, if m is in a set Sn for some n ∈ BA, then the advice will be set to n;
and otherwise the advice is zero (which signals to A′ that it can fail on input length
m). For any m ∈ N such that the first case holds, we know that A(1n) outputs,
with probability more than 1/t(n), a circuit Dn : {0, 1}n → {0, 1} satisfying both
Prs∈{0,1}Õ(log(n)) [Dn(H(1n, s)) = 0] = 1 and Prx∈{0,1}n [Dn(x) = 1] > 1/t(n). The algo-
rithm A′ simulates A on input length n, and outputs a circuit Dm : {0, 1}m → {0, 1}
such that Dm computes Dn on the n-bit prefix of its input. By our hypothesis regard-
ing Dn, when fixing the first part of the seed of H to be the integer m, we have that
Prs′ [Dn(H(1n, m ◦ s′)) = 0] = Prs′ [Dm(G(1m, s′)) = 0] = 1, whereas Prx∈{0,1}m [Dm(x) =
1] > 1/t(n). It follows that Dm distinguishes the m-bit output of G from uniform with
advantage 1/t(n) ≥ 1/t(m).

We also prove another “almost-everywhere” version of Proposition 4.8. Loosely
speaking, under the same hypothesis as in Proposition 4.11, we show that BPP can be
derandomized “on average” using only a small (triple-logarithmic) amount of advice.
In contrast to the conclusion of Proposition 4.11, in the following proposition we do not
construct a PRG or HSG, but rather simulate every BPP algorithm by a corresponding
deterministic algorithm that uses a small amount of non-uniform advice.

Proposition 4.12 (“almost everywhere” hardness of f ws ⇒ “almost everywhere” de-
randomization of BPP “on average” with short advice). Assume that for some constant

42

c ∈ N and for δ(n) = 2−n/ log(n)c+1
there exists a (δ, polylog(n))-well-structured function

and b(n) = Õ(n) such that for every probabilistic algorithm that runs in time 2n/ log(n)c
,

and every sufficiently large n ∈ N, the algorithm fails to compute f ws on input length
n = min{b(n0) ≥ n : n0 ∈N}.

For k ∈N and t(n) = nloglog(n)k
, let L ∈ BPT IME [t] and let F be a probabilistic t-time

algorithm. Then, there exists a deterministic machine D that runs in time npolyloglog(n) and
gets O(logloglog(n)) bits of non-uniform advice such that for all sufficiently large n ∈N, the
probability (over coin tosses of F) that F(1n) is an input x ∈ {0, 1}n for which D(x) 6= L(x)
is at most 1/t(n).

Proof. Let us first prove the claim assuming that L ∈ BPT IME [t] can be decided
using only a number of random coins that equals the input length; later on we show
how to remove this assumption (by a padding argument). For t as in our hypothesis
for L as above, let M be a probabilistic t-time algorithm that decides L and that for
every input x ∈ {0, 1}∗ uses |x| random coins, and let F be a probabilistic t-time
algorithm. Consider the algorithm A that, on input 1n, simulates F on input 1n to
obtain x ∈ {0, 1}n, and outputs a circuit Cx : {0, 1}n → {0, 1} that computes the
decision of M at input x as a function of the random coins of M.

We instantiate Lemma 4.9 with the constant c, the function f ws, and the parameter
k. Let ` = Õ(log(n)) be the quasilogarithmic function given by the lemma, let G0 be
the PRG, and let `G = Õ(log(n)) be the seed length of G0. We first need a claim similar
to Corollary 4.11.1, but this time also quantifying over the function str:

Corollary 4.12.1. For every n ∈N there is a polynomial-time-enumerable set Sn = Snpolyloglog(n) ⊂
[n, npolyloglog(n)] of size polyloglog(n) that satisfies the following. For every str : N → N

satisfying str(n) ≤ n, let Gstr be the algorithm that on input 1n uses a random seed of length
Õ(log(n)), computes G0, which outputs an n-bit string, and truncates the output to length
str(n). Then, for every probabilistic algorithm A′ that runs in time t and uses log(t) bits of
advice, if n ∈ N is sufficiently large then there exists m ∈ Sn such that Gstr(1m, u`G(m)) is
(1/t(m))-pseudorandom for A′.

Proof. For any n ∈ N we define `(n) and Sn as in the proof of Corollary 4.11.1. For
any str : N→N satisfying str(n) ≤ n, let Gstr be the corresponding function. Now,
let A′ be any probabilistic algorithm as in our hypothesis, let F′ be the corresponding
probabilistic algorithm from Lemma 4.9 that runs in time tF′(i) = 2i/ log(i)c

, and let n ∈
N be sufficiently large. By Lemma 4.9, if there is no m ∈ Sn such that Gstr(1m, u`G(m))

is (1/t(m))-pseudorandom for A′, then F′ correctly computes f ws on input length `(n).
This contradicts our hypothesis regarding f ws. �

The machine D gets input x ∈ {0, 1}n and advice of length O(logloglog(n)), which
is interpreted as an index of an element m in the set Sn. Then, for each s ∈ {0, 1}`G(m)

the algorithm computes the n-bit prefix of G0(1m, s), denoted ws = G0(1m, s)1,...,n, and
outputs the majority value of {M(x, ws) : s ∈ {0, 1}`G(m)}. Note that the machine D
indeed runs in time mpolyloglog(m) = npolyloglog(n).

43

Our goal now is to prove that for every sufficiently large n ∈N there exists advice
m ∈ Sn such that with probability at least 1− 1/t(n) over the coin tosses of F (which
determine x ∈ {0, 1}n and Cx : {0, 1}n → {0, 1}) it holds that∣∣∣ Pr

r∈{0,1}n
[Cx(r) = 1]− Pr

s
[Cx(G0(1m, s)1,...,n) = 1]

∣∣∣ < 1/t(n) , (4.2)

which is equivalent (for a fixed x ∈ {0, 1}n) to the following statement:∣∣∣ Pr
r∈{0,1}n

[M(x, r) = 1]− Pr
s
[M(x, ws) = 1]

∣∣∣ < 1/t(n) . (4.3)

Indeed, proving this would suffice to prove our claim, since for every x ∈ {0, 1}n such
that Eq. (4.3) holds we have that D(x) = L(x).

To prove the claim above, assume towards a contradiction that there exists an infi-
nite set of input lengths BA ⊆ N such that for every n ∈ BA and every advice m ∈ Sn,
with probability more than 1/t(n) over x ← F(1n) it holds that Cx : {0, 1}n → {0, 1}
violates Eq. (4.2). Let str : N → N be defined by str(m) = n if m ∈ Sn for some
n ∈ BA, and str(m) = m otherwise.30 Then, our assumption implies that for infinitely-
many input lengths n ∈ BA, for every m ∈ Sn it holds that Gstr(1m, u`G(m)) is not
(1/t(n))-pseudorandom for A. This contradicts Corollary 4.12.1.

Finally, let us remove the assumption that L can be decided using a linear number
of coins, by a padding argument. For any L ∈ BPT IME [t], consider a padded
version Lpad = {(x, 1t(|x|)) : x ∈ L}, and note that Lpad can be decided in linear time
using |z| coins on any input z. By the argument above, for every probabilistic t-time
algorithm Fpad there exists an algorithm Dpad that runs in time tDpad(m) = mpolyloglog(m)

such that for all sufficiently large m ∈N it holds that Prz←Fpad(1m)[Dpad(z) 6= Lpad(z)] ≤
1/t(m).

We define the algorithm D in the natural way, i.e. D(x) = Dpad(x, 1t(|x|)), and note
that this algorithm runs in time npolyloglog(n). Assume towards a contradiction that
there exists a t-time algorithm F and an infinite set of input lengths BF ⊆ N such
that for every n ∈ BF, with probability more than 1/t(n) it holds that D(x) 6= L(x).
Consider the algorithm Fpad that on input of the form 1n+t(n) runs F(1n) to obtain
x ∈ {0, 1}n, and outputs (x, 1n) (on inputs of another form Fpad fails and halts), and
let BFpad = {n + t(n) : n ∈ BF}. For any m ∈ BFpad we have that

Pr
z←Fpad(1m)

[Dpad(z) 6= Lpad(z)] = Pr
x←F(1n)

[D(x) 6= L(x)] > 1/t(n) > 1/t(m) ,

which yields a contradiction.

An aside: Derandomization using quasilogarithmic space. The PRG constructed
in Lemma 4.9 actually works in quasilogarithmic space (since f ws is computable in lin-
ear space), except for one crucial part: The construction of combinatorial designs.

30Note that str is well-defined, since we can assume without loss of generality that Sn ∩ Sn′ = ∅ for
distinct n, n′ ∈ BA (i.e., we can assume without loss of generality that n and n′ are sufficiently far apart).

44

Combinatorial designs with parameters as in our proof actually can be constructed
in logarithmic space, but only for values of ` that are of a specific form (since the
constructions are algebraic).31 However, in our downward self-reducibility argument
we need such designs for every integer ` (such that we can assume the existence of
distinguishers on the set Sn = `−1(2Ln), and hence of learners for f GL(ws) on 2Ln).

4.3 Proofs of Theorems 1.1 and 1.2

Let us now formally state Theorem 1.1 and prove it. The theorem follows immediately
as a corollary of Lemma 4.7 and Proposition 4.8.

Theorem 4.13 (rETH ⇒ i.o.-PRG for uniform circuits). Assume that there exists i ≥ 1
such that TQBF /∈ BPT IME [2n/ log(n)i

]. Then, for every k ∈ N and for t(n) = nloglog(n)k

there exists a (1/t)-i.o.-PRG for (t, log(t))-uniform circuits that has seed length Õ(log(n))
and is computable in time npolyloglog(n).

Proof. Let δ(n) = 2n/ log(n)3c
for a sufficiently large constant c ∈ N. By Lemma 4.7,

there exists (δ, O(`2))-well-structured function f ws that is computable in linear space,
and such that TQBF reduces to f ws in time ql(n) = n · log(n)2c+r, where r ∈ N is a
universal constant. Using our hypothesis, we deduce that f ws cannot be computed in
probabilistic time 2n/ log(n)3c−1

; this is the case since otherwise, TQBF could have been
computed in probabilistic time

2ql(n)/ log(ql(n))3c−1
= 2n·log(n)2c+r/ log(ql(n))3c−1

< 2n/ log(n)c−r−1
, (4.4)

which is a contradiction if c ≥ i + r + 1. Our conclusion now follows from Proposi-
tion 4.8.

We also formally state Theorem 1.2 and prove it, as a corollary of Lemma 4.7 and
of Propositions 4.11 and 4.12.

Theorem 4.14 (a.a.-rETH⇒ almost-always HSG for uniform circuits and alm0st-always
“average-case” derandomization of BPP). Assume that there exists i ≥ 1 such that
TQBF /∈ i.o.-BPT IME [2n/ log(n)i

]. Then, for every k ∈N and for t(n) = nloglog(n)k
:

1. There exists a (1/t)-HSG for (t, log(t))-uniform circuits that is computable in time
npolyloglog(n) and has seed length Õ(log(n)).

2. For every L ∈ BPT IME [t] and probabilistic t-time algorithm F there exists a deter-
ministic machine D that runs in time npolyloglog(n) and gets O(logloglog(n)) bits of
non-uniform advice such that for all sufficiently large n ∈ N the probability (over coin
tosses of F) that F(1n) is an input x ∈ {0, 1}n for which D(x) 6= L(x) is at most
1/t(n).

31This can be done using an idea from [HR03, Lemma 5.5] (attributed to Salil Vadhan), essentially
“composing” Reed-Solomon codes over GF(n) of degree n/polylog(n) with standard designs (a-la Nisan
and Wigderson [NW94]; see [HR03, Lemma 2.2]) with set-size ` = polylog(n).

45

Proof. Note that both Proposition 4.11 and Proposition 4.12 rely on the same hypoth-
esis, and that their respective conclusions correspond to Items (1) and (2) in our claim.
Thus, it suffices to prove that their hypothesis holds.

To see this, as in the proof of Theorem 4.13, let δ(n) = 2n/ log(n)3c
for a sufficiently

large constant c ∈N, and let f ws be the (δ, polylog(n))-well-structured function that is
obtained from Lemma 4.7 with parameter δ. Let r ∈N be the universal constant from
Lemma 4.7, and let ql(n) = n · log(n)2c+r. Note that for every algorithm that runs in
time 2n/ log(n)3c−1

and every sufficiently large n0 ∈ N, the algorithm fails to compute
f ws on input length n = ql(n0); this is because otherwise we could have computed
TQBF on infinitely-often n0’s in time 2n/ log(n)c−r−1 ≤ 2n0/ log(n0)

k
, where the calculation

is as in Eq. (4.4). This implies the hypothesis of Propositions 4.11 and 4.12.

5 NOT-rETH and circuit lower bounds from randomized algo-
rithms

In this section we prove Theorem 1.3. We first show the desired BPE lower bounds
follow from a non-trivial weak learner of general circuits of quasi-linear size, and then
show such a weak learner follows from the 2n/polylog(n)-time randomized CircuitSAT

algorithm for roughly quadratic-size circuits.
We are going to apply Corollary 4.10 to show that non-trivial weak learners imply

faster randomized algorithms for TQBF. For that purpose, we first generalize the def-
inition of weak learners so that the algorithm is now required to learn any possible
small oracle circuits.

For a function O : {0, 1}n → {0, 1}, we also use SIZE(O) to denote the size of the
smallest circuit computing O.

Definition 5.1 (weak learner for general circuits). For S : N → N and δ : N → R, we
say that a randomized oracle machine A is a δ-weak learner for S-size circuits, if the following
holds.

• On input 1n, A is given oracle access to an oracle O : {0, 1}n → {0, 1}, and runs in
time δ−1(n).

• If SIZE(O) ≤ S(n), then with probability at least δ, A outputs a circuit C on n input
bits with size ≤ S(n) such that C computes O correctly on at least a 1/2 + δ fraction of
inputs.

Next, we need the following standard diagonalization argument.

Proposition 5.2 (diagonalization against circuits in Σ4). Let δ = 2−n/polylog(n), kckt be a
constant, and f ws be the δ-well-structured function guaranteed by Lemma 4.7, there is a lan-
guage Ldiag which is n · polylog(n)-time reducible to f ws, and Ldiag /∈ SIZE [n · (log n)kckt].

46

Proof. Let s = n · (log n)kckt and s′ = s · log n. By standard arguments, there exists an
s′-size circuit on n bits which cannot be computed by s-size circuits.

Consider the following Σ4 algorithm:

• Given an input x ∈ {0, 1}n, we guess a circuit C of size s′ on n input bits, and
reject immediately if C(x) = 0. Then we check the following two conditions and
accept if and only if both of them are satisfied.

• (A): For all circuits D on n input bits with size ≤ s, there exists an input y ∈
{0, 1}n such that C(y) 6= D(y). That is, C cannot be computed by any circuit
with size ≤ s.

• (B): For all circuits D on n input bits with size s′ such that the description of D
is lexicographically smaller than that of C, there exists a circuit E with size ≤ s
such that for all y ∈ {0, 1}n, E(y) = D(y). That is, C is the lexicographically first
s′-size circuit which cannot be computed by s-size circuits.

Clearly, the above algorithm can be formulated as an n · polylog(n)-size Σ4SAT
instance, and therefore also an n · polylog(n)-size TQBF instance (which can be further
reduced to f ws in n · polylog(n) time). Moreover, it is easy to see that it computes the
truth-table of the lexicographically first s′-size circuit on n input bits which cannot be
computed by any circuit with size ≤ s.

Therefore, we can set Ldiag to be the language computed by the above algorithm.

Remark 5.3. We remark that the standard Σ3P construction of a truth-table hard for s-size
circuits actually takes Õ(s2) time: in which one first existentially guesses an s′-length (where
s′ = s · polylog(s)) truth-table L, then enumerates all possible s-size circuits C and all s′-
length truth-tables L′ such that L′ < L (lexicographically), and checks there exists an input x
such that C(x) 6= L(x), and an s-size circuit C′ computing L′. In the last step, checking C′

computing L′ requires evaluating C′ on s′ many inputs, which takes Õ(s2) time.

Now we are ready to show that non-trivial learning algorithms imply non-trivial
circuit lower bounds for BPE .

Theorem 5.4 (non-trivial learning algorithms imply BPE lower bounds). For any con-
stant kckt > 0, there is another constant klearn = klearn(kckt), such that letting δlearn =

2−n/(log n)klearn , if there is a δlearn-weak learner for n · (log n)kckt-size circuits, then BPT IME [2n] 6⊂
SIZE [n · (log n)kckt].

Proof. Let δ = 2−n/(log n)kδ where kδ is a large enough constant depending on kckt. Let
f ws be the δ-well-structured function guaranteed by Lemma 4.7.

Recall that f ws ∈ SPACE [O(n)]. Hence, the Boolean function f GL(ws), which is
defined as in the proof of Lemma 4.9, is computable in SPACE [O(n)] as well.

We can safely assume f GL(ws) ∈ SIZE [n · (log n)kckt] as otherwise the theorem
follows immediately. Then, by our assumption, it follows that there is a δlearn-weak

47

learner for f GL(ws)n . Applying Corollary 4.10 and setting klearn = kδ, it follows that f ws

can be computed by randomized Tws(n) def
== 2n/(log n)klearn−1

.
Let Ldiag be the language guaranteed by Proposition 5.2 such that Ldiag /∈ SIZE [n ·

(log n)kckt], and d = d(kckt) be a constant such that Ldiag is n · (log n)d-time reducible
to f ws. We can then compute Ldiag

n in randomized Tws(n · (log n)d) = 2o(n) time, by
setting klearn to be large enough. Therefore, it follows that BPT IME [2n] 6⊂ SIZE [n ·
(log n)kckt].

5.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds

We now prove Theorem 1.3, which asserts that “non-trivial” randomized algorithms
that solve CircuitSAT in time 2n/polylog(n) imply circuit lower bounds against BPE .
As explained in Section 2.2, we do so by showing that “non-trivial” randomized al-
gorithms for CircuitSAT imply the weak learner for quasi-linear size circuits, which
enables us to apply Theorem 5.4.

Reminder of Theorem 1.3. For any constant kckt ∈ N there exists a constant ksat ∈ N

such that the following holds. If CircuitSAT for circuits over n variables and of size n2 ·
(log n)ksat can be solved in probabilistic time 2n/(log n)ksat , then BPT IME [2n] 6⊂ SIZE [n ·
(log n)kckt].

Proof. Let s = s(n) = n · (log n)kckt . Let klearn and δlearn be as in Theorem 5.4 such that
a δlearn-weak learner for s-size circuits implies that BPE 6⊂ SIZE [s]. In the following
we construct such a weak learner A with the assumed CircuitSAT algorithm. In fact,
we are going to construct a stronger learner such that:

• If SIZE(O) ≤ s(n), then with probability at least 2/3, A outputs a circuit C on
n input bits with size ≤ s(n) such that C computes O correctly on at least a 0.99
fraction of inputs.

Let ksat = ksat(kckt) be a constant to be specified later. The learner A first draws
t = n · (log n)kckt+2 uniform random samples x1, x2, . . . , xt from {0, 1}n, and asks O to
get yi = O(xi) for all i ∈ [t]. Note that A operates incorrectly if and only if SIZE(O) ≤
s(n) and it outputs a circuit D of size ≤ s(n) such that Prx∈{0,1}n [O(x) = D(x)] < 0.99.

We say that a circuit D is bad if it has size ≤ s(n) and Prx∈{0,1}n [O(x) = D(x)] <
0.99. For a fixed bad circuit D, by a Chernoff bound, with probability at least 1 −
2−Ω(t), we have D(xi) 6= yi for some i. Since there are at most nO(s) bad circuits,
with probability at least 1− nO(s) · 2−Ω(t) ≥ 1− 2−Ω(t)+O(s)·log n = 1− 2−Ω(t) (the last
equality follows as t = n · (log n)kckt+2), it follows that for every bad circuit D there
exists an index i such that D(xi) 6= yi. In the following we condition on such a good
event.

By repeating the CircuitSAT algorithm O(n) times and taking the majority of the
outputs, we can assume without loss of generality that the CircuitSAT algorithm

48

has an error probability of at most 2−n. Now, we use the randomized CircuitSAT

algorithm to construct a circuit C of size ≤ s(n) such that C(xi) = yi for all i, bit-by-bit
(this can be accomplished with the well-known search-to-decision reduction for SAT)
with probability at least 0.99. Note that in each iteration, the length of the input to
the CircuitSAT algorithm is the length of the description of a circuit of size s(n), and
hence at most s′(n) = O(n · (log n)kckt+1). Setting ksat large enough, it follows that A
runs in randomized (δlearn(n))−1 time.

Assuming SIZE(O) ≤ s(n), such circuits exist, and we can find one with prob-
ability at least 0.99. Conditioning on the good event, this circuit cannot be bad, and
therefore it must agree with O on at least a 0.99 fraction of inputs. Putting every-
thing together, when SIZE(O) ≤ s(n), the algorithm A outputs a circuit C such that
Prx∈{0,1}n [O(x) = D(x)] ≥ 0.99 with probability at least 0.99− 2−Ω(t) ≥ 2/3, which
completes the proof.

5.2 Randomized Σ2-SAT[n] algorithms imply BPE circuit lower bounds

One shortcoming of Theorem 1.3 is that the hypothesized algorithm needs to decide
the satisfiability of an n-bit circuit of size Õ(n2), rather than the satisfiability of circuits
(or of 3-SAT formulas) of linear size.32 To address this shortcoming, we now prove
a different version of Theorem 1.3, which asserts that “non-trivial” randomized algo-
rithms that solve Σ2-SAT for formulas of linear size in time 2n/polylog(n) imply circuit
lower bounds against BPE .

Theorem 5.5 (randomized Σ2-SAT algorithms imply circuit lower bounds against BPE).
For any constant kckt > 0, there is another constant ksat = ksat(kckt) such that if Σ2-SAT with
n variables and n clauses can be decided in randomized 2n/(log n)ksat time, then BPT IME [2n] 6⊂
SIZE [n · (log n)kckt].

Proof. Let TQBFloc be the function from Claim 4.7.1, and recall that TQBFloc ∈ SPACE [O(n)].
Therefore, we can safely assume TQBFloc ∈ SIZE [s(n)], for s(n) = n · (log n)kckt .

Now we describe a randomized algorithm computing a circuit for TQBFloc on in-
puts of length n. First, it computes the trivial circuit of size-s(1) for TQBFloc1. Now,
suppose we have an s(m)-size circuit Cm computing TQBFlocm where m < n, we wish
to find an s(m + 1)-size circuit for TQBFlocm+1.

By the downward self-reducibility of TQBFloc, we can obtain directly an O(s(m))-
size circuit D for TQBFlocm+1. Our goal is to utilizing the circuit D and our fast Σ2-SAT
algorithm to compute an s(m + 1)-size circuit for TQBFlocm+1. Consider the following
Σ2-SAT question: given a prefix p, is there an s(m + 1) circuit C whose description
starts with p, such that for all x ∈ {0, 1}m+1 we have C(x) = D(x). This can be

32Since we are interested in algorithms that run in time 2n/polylog(n) for a sufficiently large polyloga-
rithmic function, there is no significant difference for us between circuits and 3-SAT formulas of linear (or
quasilinear) size. This is since any circuit can be transformed to a formula with only a polylogarithmic
overhead, using an efficient Cook-Levin reduction; and since we can “absorb” polylogarithmic overheads
by assuming that the polylogarithmic function in the running time 2n/polylog(n) is sufficiently large.

49

formulated by a Σ2-SAT instance of n · polylog(n) size. By fixing the description bit by
bit, we can obtain an s(m + 1)-size circuit for TQBFlocm+1. The success probability can
be boosted to 1− 2−2n by repeating each call to the Σ2-SAT algorithm a polynomial
number of times and taking the majority.

Let Ldiag be the language guaranteed by Proposition 5.2, and d be a constant such
that Ldiag is n · (log n)d-time reducible to TQBFloc. By setting ksat large enough, we can
compute TQBFlocn·(log n)d (and therefore also Ldiag

n) in 2o(n) time, Therefore, it follows
that BPT IME [2n] 6⊂ SIZE [n · (log n)kckt].

Finally, we now use a “win-win” argument to deduce, unconditionally, that either
we have an average-case derandomization of BPP , or BPE is “hard” for circuits of
quasilinear size (or both statements hold). An appealing interpretation of this result is
as a Karp-Lipton-style theorem: If BPE has circuits of quasilinear size, then BPP can
be derandomized in average-case.

Corollary 5.6 (a “win-win” result for average-case derandomization of BPP and cir-
cuit lower bounds against BPE). At least one of the following statements is true:

1. For every constant k ∈N it holds that BPT IME [2n] 6⊂ SIZE [n · (log n)k].

2. For every constant k ∈ N and for t(n) = nloglog(n)k
there exists a (1/t)-i.o.-PRG for

(t, log(t))-uniform circuits that has seed length Õ(log(n)) and is computable in time
npolyloglog(n).

Proof. If for every k′ ∈N it holds that Σ2-SAT for n-bit formulas with O(n) clauses can
be decided by probabilistic algorithms that run in time 2n/(log n)k′

, then by Theorem 5.5
we have that Item (1) holds. Otherwise, for some k′ ∈ N it holds that Σ2-SAT for
n-bit formulas with O(n) clauses cannot be decided by probabilistic algorithms that
run in time 2n/(log n)k′

. In particular, since solving satisfiability of a given n-bit Σ2
formula with O(n) clauses can be reduced in linear time to solving TQBF, we have that
TQBF /∈ BPT IME [2n/(log n)k′+1

]. In this case, Item (2) follows from Theorem 4.13.

We note that to prove Corollary 5.6 we do not have to use Theorem 5.5. An alter-
native proof relies on the fact that the Σ4 formula from the proof of Proposition 5.2 can
be constructed in polynomial time. In particular, if TQBF can be decided in probabilis-
tic time 2n/polylog(n) for an arbitrarily large polylogarithmic function, then for every
kckt we can construct the corresponding Σ4 formula from Proposition 5.2 in polyno-
mial time, and decide its satisfiability in probabilistic time 2o(n), which implies that
Ldiag ∈ BPE ; Item (1) of Corollary 5.6 then follows. Otherwise, we have that TQBF
cannot be solved in probabilistic time 2n/polylog(n) for some polylogarithmic function;
then we can invoke Theorem 4.13 to deduce Item (2) of Corollary 5.6.

50

6 NETH and the equivalence of derandomization and circuit
lower bounds

Recall that our results in this section show two-way implications between the statement
that derandomization and circuit lower bounds are equivalent, and a very weak variant
of NETH. Specifically, the latter variant is that E does not have NT IME [T]-uniform
circuits of small size. Let us now properly define this notion:

Definition 6.1 (NT IME [T]-uniform circuits). For S, T : N → N, we say that a set
L ⊆ {0, 1}∗ can be decided by NT IME [T]-uniform circuits of size S if there exists a non-
deterministic machine M that gets input 1n, runs in time T(n), and satisfies the following:

1. For every n ∈N there exist non-deterministic choices such that M(1n) outputs a circuit
C : {0, 1}n → {0, 1} of size at most S(n) that decides Ln.

2. Whenever M outputs a circuit C : {0, 1}n → {0, 1}, the circuit C decides Ln.

When we simply say that L can be decided by NT IME [T]-uniform circuits (without
specifying a size bound S), we consider the trivial size bound S(n) ≤ T(n).

This section is organized as follows. We first prove, in Section 6.1, the main tech-
nical results that underlie Theorems 1.4 and 1.5. Then, in Section 6.2 we prove Theo-
rems 1.4 and 1.5. Finally, in Section 6.3 we prove Theorem 1.6.

6.1 A refined Karp-Lipton-style result

In this section we prove the main technical results that underlie Theorems 1.4 and 1.5.
Specifically, we prove a refined Karp-Lipton-style result, which asserts that if E has
small circuits, and prBPP has quick non-deterministic algorithms, then E has small
circuits that can be constructed by quick non-deterministic machines.

The first ingredient that we will use is a set L ∈ E such that L has an instance
checker with linear-length queries, and is randomly self-reducible, and both the in-
stance checker and the random self-reducibility algorithm use only a linear number of
random bits. Let us properly define these notions and prove that such L exist:

Definition 6.2 (instance checkers). A probabilistic polynomial-time oracle machine M is an
instance checker for a set L ⊆ {0, 1}∗ if for every x ∈ {0, 1}∗ the following holds:

1. (Completeness.) ML(x) = L(x), with probability one.

2. (Soundness.) For every L′ ⊆ {0, 1}∗ we have that Pr[ML′(x) /∈ {L(x),⊥}] ≤ 1/6.

For ` : N → N, if for every x ∈ {0, 1}∗, all the oracle queries of M on input x are of length
at most `(|x|), then we say that M has queries of length `. We will also measure the maximal
number of queries that M makes on inputs of any given length.

51

Definition 6.3 (random self-reducible function). We say that f : {0, 1}∗ → {0, 1}∗ is
randomly self-reducible if there exists a probabilistic oracle machine A that gets input x ∈
{0, 1}n and access to an oracle g : {0, 1}∗ → {0, 1}∗, runs in time poly(n), and if every
query q ∈ {0, 1}n that it issues is answered by f (q), then Ag(x) = f (x).

Proposition 6.4 (an E -complete problem that is random self-reducible and has a good
instance checker). There exists L ∈ E such that L is defined non-trivially only on input
lengths of the form n = 2m · dlog(n0)e+ dloglog(n0)e+ 1 where m = O(n0/ log(n0)) is
an integer, and L has the following properties:

1. Any L′ ∈ DT IME [2n] can be reduced to L in linear time, where the reduction produces
inputs of length n as above (i.e., on which L is defined non-trivially).

2. There is an instance checker for L that on inputs of length n uses O(n) random bits and
makes O(1) queries of length `(n) = O(n).

3. The set L is randomly self-reducible by an oracle machine A that on inputs of length n
uses O(n) random bits, and its queries come in batches, where each batch is defined by
a uniform choice of prefix q1 ∈ {0, 1}2m·dlog(n0)e that is then extended by every possible
suffix q2 ∈ {0, 1}dloglog(n0)e+1; that is, the batch defined by q1 consists of the O(log(n))
queries {(q1, q2) ∈ {0, 1}n : q2 ∈ {0, 1}dloglog(n0)e+1}.

Proof. Let L0 = {(〈M〉 , x) : M accepts x in 2|x| steps}, and note that L0 ∈ E and that
any set in DT IME [2n] can be reduced to L0 in linear time. Let fL0 : {0, 1}∗ →
{0, 1}∗ be the low-degree extension of L0 where inputs of size n0 for L0 are mapped
to m-variate inputs, where m = O(n0/loglog(n0)), for a polynomial of individual
degree d√n0e over a field of size |F| = 22dlog(n0)e. Finally, let L be the set of inputs of
the form (z, i) ∈ {0, 1}m·dlog(|F|)e × {0, 1}dloglog(|F|)e such that the ith bit of fL0(z) ∈ F

equals one. Note that L is indeed defined non-trivially only on inputs of the form
n = 2m · dlog(n0)e+ dloglog(n0)e+ 1 = O(n0), and that L0 is linear-time reducible to
L, which means that any L′ ∈ DT IME [2n] is linear-time reducible to L.

To see that L is randomly self-reducible as claimed, consider the standard random
self-reducibility algorithm for fL0 , denoted A0 (see, e.g., [Gol08, Sec. 7.2.1.1]). Recall
that A0 uniformly chooses two points ~u,~v ∈ Fm, which requires O(n) random bits, and
then queries its oracle on a fixed set of points on the line corresponding to ~u,~v. Now,
given input (z, i) ∈ {0, 1}m·dlog(|F|)e+dloglog(|F|)e, we simulate A0 on input z ∈ Fm, and
answer each of its oracle queries q1 ∈ Fm by querying L on all values of q = (q1, q2)
for q2 ∈ {0, 1}dloglog(|F|)e. Indeed, if each query q is answered by L(q), then we can
reconstruct the value fL0(z) and answer the query q1 of A0 correctly.

To see that L has an instance checker that uses O(1) queries of length O(n), fix a
PCP system for E with a polynomial-time verifier that uses O(n) bits of randomness
and O(1) queries, and with proofs that can be constructed in time 2O(n).33 Now, since

33Such PCPs follow from the PCPP of Miele [Mie09], using a standard PCPP-to-PCP transformation
(as in [DR06; BS+06]). For explicit statements that proofs in the PCPP of [Mie09] can be constructed in
time 2O(n), see e.g. [BS+17, Thm 2.9 and Rmk 2.10] or [RZR19, Thm 8.4 and Rmk 8.5].

52

the set {(z, i, b) : L(z, i) = b} is in E , it has a PCP verifier as above, and there exists a
mapping (z, i, b) 7→ π(z, i, b) of inputs to proofs for this verifier that can be computed
in time 2O(n). To correctly answer the verifier’s queries it suffices to decide the set
Q = {((z, i, b), j) : π(z, i, b)j = 1}. Since Q is in E , it can be reduced to L. The instance
checker for L simulates the PCP verifier on inputs (z, i, 0) and (z, i, 1), and whenever
the verifier issues a query to the PCP proof, the instance checker reduces this query
to an input for Q, and further reduces this to an input for L; since the PCP proof is
of length 2O(n), and the reductions to Q and to L incur only a linear overhead, the
(constantly-many) queries of the instance checker are of length O(n).

We will also need a relatively standard Karp-Lipton-style result, which asserts that
if E has small circuits and prBPP can be solved by a quick non-deterministic, then
E ⊆ NT IME [T′] ∩ coNT IME [T′] for a small function T′.

Proposition 6.5 (a standard Karp-Lipton-style result, following [Bab+93]). There ex-
ists a constant k > 1 and L ∈ E such that the following holds. Let S, T : N → N be
time-computable functions such that S(n) ≥ n and T(n) ≥ n for every n ∈ N. Assume
that L ∈ SIZE [S] and that CAPP[S(k · n)k] ∈ prNT IME [T]. Then, DT IME [2n] ⊆
NT IME [T′] ∩ coNT IME [T′], where T′(n) = T(S(k · n)k)k.

Proof. Let L0 ∈ DT IME [2n], and let us construct a non-deterministic machine that
gets input x0 ∈ {0, 1}n0 , and for some non-deterministic choices outputs L(x0), but
for all other non-deterministic choices outputs ⊥. The non-deterministic machine first
computes x ∈ {0, 1}n, where n = O(n0), such that x0 ∈ L0 if and only if x ∈ L, where
L is the problem from Proposition 6.4.

Let n′ = `(n) = O(n) = O(n0). By our hypothesis, there exists a circuit over n′

input bits of size S(n′) that decides Ln′ . Our machine non-deterministically guesses
a circuit CL : {0, 1}n′ → {0, 1} of size S(n′), and constructs a circuit C : {0, 1}O(n′) →
{0, 1,⊥} that compute the decision of the machine M from Proposition 6.4 on input x
as a function of the random coins of M, while resolving the oracle queries of M using
CL as a sub-circuit. Then, the machine converts C into two circuits C(y) and C(n) such
that C(y) outputs 1 if and only if C outputs 1 (i.e., both ⊥ and 0 are mapped to 0), and
C(n) outputs 1 if and only if C outputs 0. Note that each of these circuits are over O(n′)
input bits and of size poly(S(n′)).

Now, recall that in general, CAPP ∈ NT IME [t] if and only if CAPP ∈ NT IME [t′]∩
coNT IME [t′] for t′ ≈ t; that is:

Fact 6.5.1. For any time-computable s, t : N → N, if CAPP[s] ∈ prNT IME [t] then
CAPP[s] ∈ prNT IME [t] ∩ co-prNT IME [t + O(n)].

Proof. This follows since ¬CAPP can be reduced to CAPP in linear time and without
any overhead in the input size (by negating the output bit of the given circuit). �

Thus, by Fact 6.5.1 and by our hypothesis, there exists a non-deterministic machine
M′ that gets as input a circuit C′ and satisfies the following: If C′ accepts all of its

53

inputs, then there exist non-deterministic choices for M′ such that M′(C′) = 1, and
for all other non-deterministic choices M′(C′) =⊥; and if C′ accepts at most 1/6 of
its inputs, then there exist non-deterministic choices such that M′(C′) = 0, and for all
other non-deterministic choices M′(C′) =⊥. Our machine simulates M′ on C(y) and if
M′(C(y)) = 1 then it outputs “yes”, and then simulates M′ on C(n) and if M′(C(n)) = 1
outputs “no”, and otherwise outputs ⊥.

Note that both C(y) and C(n) are of size poly(n) · S(n′) ≤ S(n′)O(1), and therefore
the running time of our machine is at most T′(n). Also note that if x ∈ L then for some
guess of CL the circuit C(y) will have acceptance probability one, and will therefore
be accepted given some non-deterministic choice of M′; and for all guesses of CL
the circuit C(n) accepts at most 1/6 of its inputs, and hence for all non-deterministic
choices of M′ we have that M′(C(n)) ∈ {0,⊥}, and thus x will never be rejected. By
a symmetric argument, any x /∈ L will be rejected for some non-deterministic choices
but will never be accepted. Hence L0 ∈ NT IME [T′] ∩ coNT IME [T′].

We are now ready to prove the main result in this section. Recall that the proof
was described in high-level in Section 2.3.

Proposition 6.6 (a refined Karp-Lipton-style result). There exists a constant k > 1 and
L ∈ E such that the following holds. Let S, T : N → N be time-computable functions such
that S(n) ≥ n and T(n) ≥ n for every n ∈N, and assume that L ∈ SIZE [S]. Then:

1. If CAPP[S(k · n)k] ∈ prDT IME [T] then any L0 ∈ DT IME [2n] can be decided by
NT IME [T′]-uniform circuits, where T′(n) = T(S(k · n)k)k.

2. If CAPP[S(k · n)k] ∈ prNT IME [T] then any L0 ∈ DT IME [2n] can be decided by

NT IME [T′′]-uniform circuits of size nk ·S(k ·n), where T′′(n) = T
(

S
(
S(k · n)k)k

)k
.

Proof. Let us first prove Item (2), and then explain how to modify the proof to obtain
Item (1). Fixing any L0 ∈ DT IME [2n], we prove that there exist NT IME [T′′]-
uniform circuits of size poly(n) · S(O(n)) for L0. The non-deterministic machine gets
input 1n0 , and constructs a circuit C : {0, 1}n0 → {0, 1} as follows. As a first step the
machine will construct a probabilistic circuit C, and then convert C into a deterministic
circuit.

Step 1: Reduction to L. The circuit C first computes the linear-time reduction from
L0 to L from Proposition 6.4; that is, C maps its input x0 ∈ {0, 1}n0 into x ∈ {0, 1}n,
where n = O(n0), such that x0 ∈ L0 if and only if x ∈ L.

Step 2: Non-deterministic guess and verification of a circuit for L. Recall that inputs
to L (that are targets of reductions from other sets in DT IME [2n]) are of the form
z = (z1, z2) ∈ {0, 1}n, where z2 ∈ {0, 1}c0·loglog(n) and c0 is a constant. Let M be
the instance checker for L, let n′ = `(n) = O(n) = O(n0), and let c ∈ N such that

54

the number of queries of the machine A underlying the random self-reducibility of L
makes at inputs of length n is at most nc.

By our hypothesis, there exists a circuit CL : {0, 1}n′ → {0, 1} of size S(n′) that
decides Ln′ . Our machine non-deterministically guesses such a circuit. Now, consider
the following promise problem Π:

• The input is guaranteed to be a circuit CL : {0, 1}n′ → {0, 1} of size S(n′).

• YES instances: The circuit CL decides L.

• NO instances: It holds that

Pr
z1

[
∃z2 : Pr[MCL(z1, z2) =⊥] > 1/6

]
> n−2c , (6.1)

where the internal probability in the LHS of Eq. (6.1) is over the random choices
of the machine M.

Note that Π ∈ pr-coRP , since a probabilistic polynomial-time algorithm that gets
CL as input can estimate the value of the expression in the LHS of Eq. (6.1) up to
accuracy 1/poly(n) and with high confidence (and since for YES instances this value
is zero); moreover, using the sampler from Theorem 3.6, there is a probabilistic coRP
algorithm for this problem that on input CL of size Õ(S′(n)) uses only O(n) random
bits.34 Hence, the problem Π is reducible in poly(|CL|) time to CAPP[S(O(n))O(1)].

By our hypothesis that CAPP[S(O(n))O(1)] ∈ prNT IME [T], there exists a non-
deterministic machine MΠ for Π that gets input CL, runs in time T(poly(S(n′))),
accepts every YES instance on some non-deterministic path, and rejects every NO
instance on all non-deterministic paths. Our non-deterministic machine simulates MΠ
on its guess of CL, and aborts unless MΠ reaches an accepting state. So from now on
we assume that CL is not a NO instance, or in other words that for at least 1− 1/n2c

of the z1’s there does not exist z2 such that Pr[MCL(z1, z2) =⊥] > 1/6.

Step 3: Using the guessed circuit and the instance checker to get a “suitably-corrupt”
version of L. Let m = O(n) be the number of random bits that M uses on inputs
of length n. Consider the following probabilistic algorithm P that gets input z1 ∈

34Specifically, the algorithm for estimating the LHS of Eq. (6.1) uses the sampler from Theorem 3.6
(with a sufficiently large constant for the accuracy parameter) to sample D = poly(n) strings z1 ∈
{0, 1}n−c0·loglog(n), and then uses this sampler again to sample poly(n) strings r1, ..., rD ∈ {0, 1}O(n) to be
used as randomness for the machine M. For each z1 in the first sample, and for each z2 ∈ {0, 1}c0·loglog(n),
and for each ri, the algorithm simulates MCL (z1, z2) with ri as its fixed randomness, and thus obtain an
estimate of Pr[MCL (z1, z2) =⊥]. The algorithm considers a string z1 “bad” if its estimate of the latter value
is more than .01, and rejects its input CL if and only if the fraction of “bad” z1’s is larger than 1/2n−2c. By
the properties of the sampler, the probability that a fixed z1 such that the Pr[MCL (z1, z2) =⊥] ≥ 1/6 will
be considered “bad” by the algorithm is exp(−n); hence, by a union-bound, with probability 1− exp(−n)
over the choice of randomness for the second sample, all strings z1 in the first sample such that for some
z2 it holds that Pr[MCL (z1, z2) =⊥] ≥ 1/6 will be classified as “bad” by the algorithm. Conditioned on
this event, the algorithm rejects, with high probability, every NO instance.

55

{0, 1}n−c0·loglog(n), and outputs 2c0·loglog(n) = polylog(n) symbols such that each symbol
is either a bit or ⊥:

1. The algorithm uses the sampler from Theorem 3.6, instantiated for output length
m and with accuracy 1/n, in order to obtain a sample of D = poly(n) strings
r1, ..., rD ∈ {0, 1}m.

2. For each z2 ∈ {0, 1}c0·loglog(n), the algorithm P outputs the majority vote among
the values {vi}i∈[D], where vi is the output of MCL(z1, z2) when simulated with
the fixed randomness ri.

Note that P uses O(n) random bits. We claim that there exists a set G of 1− 1/n2c

inputs z1 such that for each such z1, with probability at least 1− exp(−n) over the
randomness of P it holds that P(z1) = {L(z1, z2)}z2∈{0,1}c0 ·loglog(n) . To see this, let G be
the set of z1’s such that for all z2 it holds that Pr[MCL(z1, z2) =⊥] ≤ 1/6, and recall
that the density of G is at least 1− n−2c. Note that for any z1 ∈ G and any z2 we
have that Pr[MCL(z1, z2) = L(z1, z2)] ≥ 2/3; this is the case because Pr[MCL(z1, z2) 6=
L(z1, z2)] ≤ Pr[MCL(z1, z2) =⊥] + Pr[MCL(z1, z2) = ¬L(x)] ≤ 1/3. Thus, for any fixed
z1 ∈ G, and any z2, the probability (over the random choice of P) that the majority
vote of the vi’s will not equal L(z1, z2) is at most exp(−n). By a union-bound over the
polylogarithmically-many z2’s, for any fixed z1 ∈ G, the probability that for some z2 it
holds that the corresponding output bit of P is not L(z1, z2) is exp(−n).

Step 4: Using random self-reducibility to decide L. The circuit C chooses O(n)
random bits to be used as randomness for P, and simulates the oracle machine A from
Proposition 6.4 at input x ∈ {0, 1}n, while answering the oracle queries of A using the
procedure P with the fixed randomness chosen in advance. We claim that with high
probability this procedure outputs L(x).

To see this, recall that A makes poly(n) queries, where the queries are organized in
batches such that each batch is defined by a uniform choice of z1 ∈ {0, 1}n−c0·loglog(n)

and all choices of z2 ∈ {0, 1}c0·loglog(n). Since each z1 is uniformly-distributed, and
using a union-bound, the probability that all queries of A lie in the set G is at least
1− n−c. Conditioned on this event, for each fixed choice of z1, the probability over
choice of randomness for P that P(z1) does not output {L(z1, z2)}z2 is at most exp(−n).
Hence, by another union-bound, with high probability all the queries of A are an-
swered correctly, in which case A outputs L(x).

So far we described a machine that on input 1n0 makes Õ(S(n′)) non-deterministic
choices, verifies them in time T(poly(S(n′))), and then constructs a probabilistic cir-
cuit over n0 input bits that first performs a linear-time reduction (of x0 to x), and
then simulates a polynomial-time machine A while answering its queries using the
(guessed) circuit of size S(n′). Thus, the machine runs in time T(S(O(n0))O(1))O(1),
and constructs a probabilistic circuit of size S′(n0) = poly(n0) · S(O(n0)) that uses
O(n0) random bits.

56

Step 5: Converting to a deterministic circuit. Denote by m = O(n0) the num-
ber of random bits that C uses. We first use the sampler from Theorem 3.6, in-
stantiated with output length n0 and accuracy 1/n, for randomness-efficient error-
reduction of C. Specifically, we construct a circuit C′ that gets input x0 ∈ {0, 1}n0 and
randomness r′ ∈ {0, 1}m′=O(m), computes C at x0 with the poly(n) random strings
{Samp(r′, i)}i∈[D], and outputs a majority vote of the decisions of C. Thus, C′ is of size
S′′(n0) = poly(n0) · S′(n0) = poly(n0) · S(O(n0)). For any x ∈ {0, 1}n0 , the probability
that C′(x0) 6= L0(x0) is at most 2−2·n0 , and hence almost all of the random strings lead
C′ to correctly decide L0 on all of the inputs.

Our goal now is to find (using non-determinism) a fixed random string for C′ with
which it will be correct on all inputs. We construct this fixed string iteratively, bit-by-
bit. In each iteration we have a prefix σ ∈ {0, 1}i−1, where i ∈ [m′], and wish to extend
by a bit while preserving the property that there exists a continuation of the string
with which C′ is correct on all inputs. The crucial point is that each iteration requires
solving a decision problem in E on inputs of length O(S′′(n0) · log(S′′(n0))). This is the
case because the set {(〈C′〉 , σ) : ∃σ′ ∈ {0, 1}m′−|σ| ∀x0 ∈ {0, 1}n0 C′(x0, σσ′) = L0(x0)}
is in E , relying on the fact that there are at most 2O(n0) choices of continuations σ′

and that L0 ∈ E . By Proposition 6.5, there exists a non-deterministic machine that in
each iteration runs in time T(S(O(S′′(n0) · log(S′′(n0))))O(1))O(1) and either allows us
to extend the current prefix by a correct bit, or outputs ⊥ (in which case we abort).

The running time of our non-deterministic machine is dominated by the last step,
and is thus bounded by

T
(

S
(
O(S′′(n0) · log(S′′(n0)))

)O(1)
)O(1)

≤ T
(

S
(
(n0)

k · S(k · n0) · log(S(k · n0))
)k
)k

≤ T
(

S
(

S(2k · n0)
2k
)2k
)2k

,

where k ∈ N is a sufficiently large constant. The size of the circuit that the machine
outputs is still S′′(n0) = (n0)k · S(k · n0).

The modifications needed to prove Item (1). Note that we used the hypothesis that
CAPP[S(k · n)k] ∈ prNT IME [T] both in Step 2 and in Step 5. In the current proof we
can use the stronger hypothesis that CAPP[S(k · n)k] ∈ prDT IME [T]. We leave the
first four steps of our construction without change (including the Step 2, for which we
don’t need the stronger hypothesis), and modify only the fifth step.

Recall that in the end of the fourth step, our non-deterministic machine ran in
time T(S(O(n0))O(1))O(1) and constructed a probabilistic circuit C of size S′(n0). Now,
instead of constructing C′ in the fifth step, our non-deterministic machine constructs a
circuit D : {0, 1}n0 → {0, 1} that, on input x0 ∈ {0, 1}n0 , constructs a description of the
circuit C (using the fixed guess of CL that we already have), “hard-wires” x0 into C to
obtain a circuit Cx0 that computes the decision of C at x as a function of the random
bits of C, and then runs the CAPP algorithm on the description of Cx0 . The time it

57

takes to construct D is polynomial in T(S′(n0)), and so our final running time is still
bounded by T(S(O(n0))O(1))O(1).

Lastly, we also prove an “infinitely-often” version of Item (1) in Proposition 6.6.
Loosely speaking, in this version our assumption is that E has small circuits infinitely-
often, and the corresponding conclusion is that E can be decided infinitely-often by
circuits that can be uniformly constructed by quick non-deterministic machines.

Proposition 6.7 (an “infinitely-often” version of Item (1) in Proposition 6.6). There
exists a constant k > 1 and L ∈ E such that the following holds. Let S, T : N → N be time-
computable functions such that S(n) ≥ n and T(n) ≥ n for every n ∈ N. Assume that L ∈′
ioSIZE [S] and that CAPP[S(k · n)k] ∈ prDT IME [T]. Then, any L0 ∈ DT IME [2n]
can be decided infinitely-often by NT IME [T′]-uniform circuits of size nk · S(k · n), where
T′(n) = T(S(k · n)k)k.

Proof. We adapt the proof of Item (1) in Proposition 6.6. The only place in which we
used the hypothesis that E has small circuits is in Step 2, where this was applied to the
set L from Proposition 6.4. In our current setting we are only guaranteed that there
exists an infinite set of input lengths S ⊆ N such that for every n′′ ∈ S it holds that
Ln′′ can be decided by a circuit of size S(n′′).

The non-deterministic machine that we use is essentially identical to that in Propo-
sition 6.6, and we wish to claim that it succeeds in non-deterministically constructing
circuits for L0 on infinitely-many input lengths. Recall that on any input length n0, the
machine non-deterministically guesses a circuit CL for L on input length n′′ = c · n0,
where c > 1 is some universal constant, and deterministically verifies that CL is “suf-
ficiently good” to support the construction of the larger circuit for L0 (where “suffi-
ciently good” means that CL is not a NO instance for the problem Π defined there).
The only problem in this approach is that the set {c · n0}n0∈N might not intersect the
set S infinitely-many times, in which case we are not guaranteed that a “sufficiently
good” circuit CL exists for infinitely-many n0’s.

This problem can be easily solved using a padding argument. Specifically, instead
of the set L, we consider a set L′ that for every input length m ∈ N satisfies the
following: If m = c · n0 for some n0 ∈ N (and c as above) then L′m = Lm, and if
m ∈ [c · n0 + 1, c · (n0 + 1)− 1] for some n0, then L′ depends only on the first c · n0 bits
of its input, and computes Lc·n0 . Note that if for some m ∈ [c · n0 + 1, c · (n0 + 1)− 1]
there exists a circuit of size S(m) for L′m, then there exists a circuit of size less than
S(c · (n0 + 1)) = S(c · n0 + O(1)) for Lc·n0 . Our new hypothesis is therefore that L′ ∈
i.o.SIZE [s] (instead of L ∈ i.o.SIZE [s]), and in this case, for an infinite set of input
lengths in n0 there exists a circuit for L on input length c · n0 of size S(n′′ + O(1)) =
S(O(n0)). The overhead in the circuit size only affects the constant hidden inside the
O-notation in the definition of S′.

58

6.2 Proof of Theorems 1.4 and 1.5

We first prove Theorem 1.4, which refers to the “low-end” parameter setting and shows
an equivalence between circuit lower bounds and non-deterministic derandomization.
Then we will prove Theorem 1.5, which handles the “high-end” setting and also ex-
tends to an “almost-always” version. In both cases the proofs follow from Proposi-
tions 6.6 and 6.7 and from Corollary 3.4, instantiated with specific useful parameters.

We note in advance that the statements generalize to other parameter settings in
a straightforward way (for an example of such a generalized statement, see Theo-
rem 6.11).

Theorem 6.8 (Theorem 1.4, restated). There exists L ∈ E such that the following holds.
Assume that there exists δ > 0 such that DT IME [2n] cannot be decided by NT IME [2nδ

]-
uniform circuits of polynomial size (for any polynomial). Then, denoting prNSUBEXP =
∩ε>0 prNT IME [2nε

], we have that

prBPP ⊂ i.o.prNSUBEXP ⇐⇒ L /∈ P/poly .

Proof. The “⇐=” direction follows from [Bab+93]. For the “=⇒” direction, assume
that prBPP ⊂ i.o.prNSUBEXP , which implies that CAPP ∈ i.o.prNT IME [2nε

]
for every ε > 0. Fixing an arbitrarily large c ∈ N, we now prove that L /∈ SIZE [nc],
where L ∈ E is the problem from Proposition 6.6.

Indeed, assuming towards a contradiction that L ∈ SIZE [nc], we use Item (2) of
Proposition 6.6 with parameters S(n) = nc and T(n) = 2nε

, where ε > 0 is sufficiently
small. We conclude that DT IME [2n] has NT IME [T′′]-uniform circuits of size nk ·
S(k · n) < nck, where

T′′(n) ≤ T(S(S(k · n)k)k)k = T(nOc,k(1)) = 2nOc,k(ε) ,

which contradicts our hypothesis if Oc,k(ε) < δ.

Theorem 6.9 (Theorem 1.5, restated). Assume that there exists δ > 0 such that E cannot
be decided by NT IME [2δ·n]-uniform circuits. Then:

1. It holds that prBPP ⊂ i.o.prP ⇐⇒ ∃ε > 0 : DT IME [2n] 6⊂ SIZE [2ε·n].

2. For every fixed η > 0 it holds that prBPP ⊂ i.o.∪c∈N prDT IME [2c·(log n)1/η
] ⇐⇒

∃ε > 0 : DT IME [2n] 6⊂ SIZE [2ε·nη
].

Moreover, if we assume that E cannot be decided by NT IME [2δ·n]-uniform circuits even
infinitely-often, then the two foregoing statements hold with both derandomization and circuit
lower bounds that hold “almost-always”.

Proof. We first prove Item (1). The “⇐=” direction was proved in [IW99] (and follows
from the more general Corollary 3.4). For the “=⇒” direction, assume that CAPP ∈
i.o.prDT IME [T] where T(n) = nc for some constant c ∈ N, and assume towards a

59

contradiction that DT IME [2n] ⊂ SIZE [S] where S(n) = 2ε·n for a sufficiently small
constant ε = ε(c) > 0. Then, Item (1) of Proposition 6.6 implies that for a universal
constant k ∈ N it holds that DT IME [2n] can be decided by NT IME [T′]-uniform
circuits, where T′(n) = T(S(k · n)k)k = 2ε·(ck2)·n < 2δ·n, which is a contradiction.

The proof of Item (2) is similar. The “⇐=” follows from Corollary 3.4, instantiated
with S(n) = 2ε·nη

, to deduce that CAPP ∈ prDT IME [T] for T(n) = 2c·S−1(nc) =

2c/ε1/η ·(log n)1/η
. For the “=⇒” direction, we use Item (1) of Proposition 6.6 with T(n) =

2c·(log n)1/η
and with S(n) = 2ε·nη

, where ε < (δ/c)η · kη2/(1+η) is sufficiently small, and
rely on the fact that T′(n) = T(S(k · n)k)k < 2δ·n.

The “moreover” part follows from the exact same arguments above, just replacing
Proposition 6.6 with Proposition 6.7.

6.3 Proof of Theorem 1.6

In this section we prove Theorem 1.6, which asserts that an equivalence between
derandomization and circuit lower bounds implies that E does not have small cir-
cuits that can be uniformly constructed by quick non-deterministic machines. In
fact, as mentioned in Section 2.3, we will prove the stronger conclusion that E 6⊆
NT IME [T] ∩ coNT IME [T] for a small function T.

The first step towards proving the theorem is the following easy claim, which
asserts that if E ⊆ NT IME [T]∩ coNT IME [T] for a small function T (and in partic-
ular if E has NT IME [T]-uniform circuits) then we can non-deterministically find a
“hard” function, and then use this function to instantiate the pseudorandom generator
of Umans [Uma03] and derandomize prBPP .

Claim 6.10 (collapse of E to small non-deterministic time implies non-deterministic
derandomization). Let c ∈ N be the constant from Theorem 3.3, and let T : N → N

be time-computable. Assume that E ⊆ NT IME [T] ∩ coNT IME [T]. Then, CAPP ∈
prNT IME [T′], where T′ = T(nc) · poly(n).

Proof. Let A be an algorithm that gets input 1n, and for ` = c · log(n) constructs
the truth-table of the lexicographically-first Boolean function over ` bits that cannot
be computed by circuits of size n. Note that this can be done deterministically in
time polynomial in 22` · 2Õ(n) = 2O(nc). Therefore, applying our assumption to a
padded input of length nc,35 there exists a non-deterministic machine that runs in
time poly(n) · T(nc), for some non-deterministic guesses constructs this truth-table,
and for all other non-deterministic guesses aborts. Feeding this truth-table into the
PRG from Theorem 3.3, we can solve CAPP in time poly(n) · T(nc).

35Specifically, we consider the set L of triplets (1n, 1nc
, x) such that x ∈ {0, 1}` and the lexicographically-

first Boolean function over ` bits that cannot be computed by circuits of size n accepts x. Since L ∈ E , we
have that L ⊆ NT IME [T] ∩ coNT IME [T]. Therefore, we can use the non-deterministic machine for
L to construct the truth-table bit-by-bit, for all values of x ∈ {0, 1}`.

60

We now prove Theorem 1.6. As mentioned in the introduction, we actually prove
a stronger version, which shows tighter two-way implications between the statement
“derandomization and lower bounds are equivalent” and the statement “E does not
have NT IME [T]-uniform circuits”.

Towards proving the result, we define a class of growth functions “in between”
quasipolynomial functions and subexponential functions. Specifically, for every two
constants k, c ∈N, we denote by e(k,c) : N→N the function that applies k logarithms
to its input, raises the obtained expression to the power c, and then takes k exponen-
tiations of this expression. For example, e(1,c)(n) = 2(log n)c

and e(2,c)(n) ∈ 22polyloglog(n)
.

Note that e(k+1,c) grows asymptotically faster than e(k,c′) for any constants c, c′, and
that e(k,c) is smaller than any subexponential function. Then, we have that:

Theorem 6.11 (Theorem 1.6, a tighter version). For any constant k ∈N we have that:

∃δ > 0 : DT IME [2n] does not have NT IME [T]-uniform circuits, for T = 2e
(k,δ)

(6.2)ww�
prBPP ⊂ ∩ε>0i.o.prNT IME [2e(k,ε)

] ⇐⇒ DT IME [2n] 6⊂ ∪c0∈NSIZE [e(k,c0)]
(6.3)ww�

∀c0 ∈N,DT IME [2n] does not have NT IME [T]-uniform circuits, for T(n) = e(k,c0)

(6.4)

that is, statement (6.2) implies statement (6.3), which in turn implies statement (6.4).

We stress that the gap between the values of T in statements (6.2) and (6.4) is
substantial, but nevertheless much smaller than an exponential gap. This is since in
statement (6.2) the hypothesis is for T that is exponential in e(k,δ) where δ > 0 is an
arbitrarily small constant, whereas in statement (6.4) the conclusion is for T = e(k,c0)

where c0 is an arbitrarily large constant. For example, for k = 1 this is the difference
between quasipolynomial functions and functions of the form 22(log n)ε � 2nε

.

Proof of Theorem 6.11. To see that statement (6.2) implies statement (6.3), first ob-
serve that for any two constants c, c′ ∈ N it holds that (e(k,c))−1(n) = e(k,1/c)(n) and
that e(k,c)(e(k,c′)(n)) = e(k,cc′)(n). The “⇐=” then follows from Corollary 3.4, instanti-
ated with S(n) = e(k,c0), to deduce that CAPP ∈ prDT IME [T] for T(n) = 2c·S−1(nc) =

2c·e(k,1/c0)(nc) < 2e
(k,2/c0) . For the “=⇒” direction we use Item (2) of Proposition 6.6 with

S(n) = e(k,c0) and with T(n) = 2e
(k,ε)

(n) for a sufficiently small ε > 0, and rely on the
fact that T′(n) = T(S(k · n)k)k < T(e(k,2c0)(n)) = 2e

(k,2εc0)(n).
To see that statement (6.3) implies statement (6.4), assume towards a contradiction

that for some c0 ∈ N it holds that DT IME [2n] has NT IME [T]-uniform circuits,
where T(n) = e(k,c0)(n). Using Claim 6.10, we have that CAPP ∈ prNT IME [T(nc) ·

61

nc], and hence prBPP ⊆ ∪c∈N prNT IME
[
e(k,c)

]
⊆ ∩ε>0 prNT IME

[
2e

(k,ε)
]
. By

our hypothesis it now follows that DT IME [2n] 6⊂ ∪c0∈NSIZE
[
e(k,c0)

]
, which is a

contradiction.

Acknowledgements

The authors are grateful to Igor Oliveira for pointing them to the results in [OS17,
Sec. 5], which serve as a basis for the proof of Theorem 1.3. The authors thank Oded
Goldreich, who provided feedback throughout the research process and detailed com-
ments on the manuscript, both of which helped improve the work. We also thank Ryan
Williams for a helpful discussion, for asking us whether a result as in Theorem 1.3 can
be proved, and for feedback on the manuscript. The work was initiated in the 2018
Complexity Workshop in Oberwolfach; the authors are grateful to the Mathematis-
ches Forschungsinstitut Oberwolfach and to the organizers of the workshop for the
productive and lovely work environment.

Lijie Chen is supported by NSF CCF-1741615 and a Google Faculty Research Award.
Ron Rothblum is supported in part by a Milgrom family grant, by the Israeli Science
Foundation (Grant No. 1262/18), and the Technion Hiroshi Fujiwara cyber security re-
search center and Israel cyber directorate. Roei Tell is supported by funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 819702). Eylon Yogev is visiting the
Simons Institute for the Theory of Computing.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[Abb+16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Ryan Williams. “Simulating branching programs with edit distance
and friends”. In: Proc. 48th Annual ACM Symposium on Theory of Computing
(STOC). 2016, pp. 375–388.

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A
new general derandomization method”. In: Journal of the ACM 45.1 (1998),
pp. 179–213.

[Adl78] Leonard Adleman. “Two theorems on random polynomial time”. In: Proc.
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1978, pp. 75–83.

[Bab+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP has
subexponential time simulations unless EXPTIME has publishable proofs”.
In: Computational Complexity 3.4 (1993), pp. 307–318.

62

[BF99] Harry Buhrman and Lance Fortnow. “One-Sided Versus Two-Sided Error
in Probabilistic Computation”. In: Proc. 16th Symposium on Theoretical As-
pects of Computer Science (STACS). 1999, pp. 100–109.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. “Nonrelativizing
separations”. In: Proc. 13th Annual IEEE Conference on Computational Com-
plexity (CCC). 1998, pp. 8–12.

[BG81] Charles H. Bennett and John Gill. “Relative to a random oracle A, PA 6=
NPA 6= co−NPA with probability 1”. In: SIAM Journal of Computing 10.1
(1981), pp. 96–113.

[BS+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. “Robust PCPs of proximity, shorter PCPs and applications to cod-
ing”. In: SIAM Journal of Computing 36.4 (2006), pp. 889–974.

[BS+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and
Nicholas Spooner. “Interactive oracle proofs with constant rate and query
complexity”. In: Proc. 44th International Colloquium on Automata, Languages
and Programming (ICALP). 2017, Art. No. 40, 15.

[BSV14] Eli Ben-Sasson and Emanuele Viola. “Short PCPs with projection queries”.
In: Proc. 41st International Colloquium on Automata, Languages and Program-
ming (ICALP). 2014, pp. 163–173.

[Car+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ra-
mamohan Paturi, and Stefan Schneider. “Nondeterministic extensions of
the strong exponential time hypothesis and consequences for non-reducibility”.
In: Proc. 7th Conference on Innovations in Theoretical Computer Science (ITCS).
2016, pp. 261–270.

[Che19] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-case Hard
for ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2019.

[Che+19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. “Re-
lations and Equivalences Between Circuit Lower Bounds and Karp-Lipton
Theorems”. In: Proc. 34th Annual IEEE Conference on Computational Complex-
ity (CCC). 2019, 30:1–30:21.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-grained
derandomization: from problem-centric to resource-centric complexity”.
In: Proc. 45th International Colloquium on Automata, Languages and Program-
ming (ICALP). 2018, Art. No. 27, 16.

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy
theorems for probabilistic quasi-polynomial time”. In: Proc. 31st Annual
ACM Symposium on Theory of Computing (STOC)). 1999, pp. 726–735.

63

[CW19] Lijie Chen and R. Ryan Williams. “Stronger Connections Between Cir-
cuit Analysis and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc.
34th Annual IEEE Conference on Computational Complexity (CCC). 2019, 19:1–
19:43.

[Del+14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin
Wahlén. “Exponential time complexity of the permanent and the Tutte
polynomial”. In: ACM Transactions on Algorithms 10.4 (2014), Art. 21, 32.

[DR06] Irit Dinur and Omer Reingold. “Assignment testers: towards a combinato-
rial proof of the PCP theorem”. In: SIAM Journal of Computing 36.4 (2006),
pp. 975–1024.

[FK09] Lance Fortnow and Adam R. Klivans. “Efficient learning algorithms yield
circuit lower bounds”. In: Journal of Computer and System Sciences 75.1 (2009),
pp. 27–36.

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-
way Functions”. In: Proc. 21st Annual ACM Symposium on Theory of Comput-
ing (STOC). 1989, pp. 25–32.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[Gol11] Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp. 191–232.

[GR17] Oded Goldreich and Guy N. Rothblum. “Worst-case to Average-case re-
ductions for subclasses of P”. In: Electronic Colloquium on Computational
Complexity: ECCC 26 (2017), p. 130.

[GS89] Yuri Gurevich and Saharon Shelah. “Nearly linear time”. In: Logic at Botik,
Symposium on Logical Foundations of Computer Science. Lecture Notes in Com-
puter Science. 1989, pp. 108–118.

[GSTS03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hardness
versus randomness tradeoffs for Arthur-Merlin games”. In: Computational
Complexity 12.3-4 (2003), pp. 85–130.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbal-
anced expanders and randomness extractors from Parvaresh-Vardy codes”.
In: Journal of the ACM 56.4 (2009), Art. 20, 34.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “Simplified derandom-
ization of BPP using a hitting set generator”. In: Studies in complexity and
cryptography. Vol. 6650. Lecture Notes in Computer Science. Springer, Hei-
delberg, 2011, pp. 59–67.

[HH13] Ryan C. Harkins and John M. Hitchcock. “Exact learning algorithms, bet-
ting games, and circuit lower bounds”. In: ACM Transactions on Computation
Theory 5.4 (2013), Art. 18, 11.

64

[HR03] Tzvika Hartman and Ran Raz. “On the distribution of the number of roots
of polynomials and explicit weak designs”. In: Random Structures & Algo-
rithms 23.3 (2003), pp. 235–263.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”. In:
Journal of Computer and System Sciences 65.4 (2002), pp. 672–694.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-
SAT”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 367–375.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which prob-
lems have strongly exponential complexity?” In: Journal of Computer and
System Sciences 63.4 (2001), pp. 512–530.

[IW98] R. Impagliazzo and A. Wigderson. “Randomness vs. Time: De-Randomization
Under a Uniform Assumption”. In: Proc. 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1998, pp. 734–.

[IW99] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1999, pp. 220–229.

[JS12] Maurice Jansen and Rahul Santhanam. “Stronger lower bounds and randomness-
hardness trade-offs using associated algebraic complexity classes”. In: Proc.
29th Symposium on Theoretical Aspects of Computer Science (STACS). Vol. 14.
2012, pp. 519–530.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polynomial
Identity Tests Means Proving Circuit Lower Bounds”. In: Computational
Complexity 13.1-2 (2004), pp. 1–46.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor Oliveira. “Constructing Hard
Functions Using Learning Algorithms”. In: Proc. 28th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2013, pp. 86–97.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Lower bounds based
on the exponential time hypothesis”. In: Bulletin of the European Association
for Theoretical Computer Science (EATCS) 105 (2011), pp. 41–71.

[Lun+92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Alge-
braic methods for interactive proof systems”. In: Journal of the Association
for Computing Machinery 39.4 (1992), pp. 859–868.

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”.
In: Annals of Mathematics and Artificial Intelligence 56.3-4 (2009), pp. 313–338.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeter-
ministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

65

[OS17] Igor C. Oliveira and Rahul Santhanam. “Conspiracies between learning
algorithms, circuit lower bounds, and pseudorandomness”. In: Proc. 32nd
Annual IEEE Conference on Computational Complexity (CCC). Vol. 79. 2017,
Art. No. 18, 49.

[PF79] Nicholas Pippenger and Michael J. Fischer. “Relations among complexity
measures”. In: Journal of the ACM 26.2 (1979), pp. 361–381.

[RZR19] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Wit-
ness Length”. In: Electronic Colloquium on Computational Complexity: ECCC
26 (2019), p. 127.

[San09] Rahul Santhanam. “Circuit lower bounds for Merlin-Arthur classes”. In:
SIAM Journal of Computing 39.3 (2009), pp. 1038–1061.

[Sha92] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–877.

[Sho90] Victor Shoup. “New algorithms for finding irreducible polynomials over
finite fields”. In: Mathematics of Computation 54.189 (1990), pp. 435–447.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[SW13] Rahul Santhanam and Ryan Williams. “On medium-uniformity and cir-
cuit lower bounds”. In: Proc. 28th Annual IEEE Conference on Computational
Complexity (CCC). 2013, pp. 15–23.

[Tel19] Roei Tell. “Proving that prBPP = prP is as hard as proving that “almost
NP” is not contained in P/poly”. In: Information Processing Letters 152
(2019), p. 105841.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case
Complexity Via Uniform Reductions”. In: Computational Complexity 16.4
(2007), pp. 331–364.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[Wil13] Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218–1244.

[Wil15] Virginia V. Williams. “Hardness of easy problems: basing hardness on pop-
ular conjectures such as the Strong Exponential Time Hypothesis”. In: Proc.
10th International Symposium on Parameterized and Exact Computation. Vol. 43.
2015, pp. 17–29.

[Wil16] Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur: short
non-interactive proofs of batch evaluation”. In: Proc. 31st Annual IEEE Con-
ference on Computational Complexity (CCC). Vol. 50. 2016, Art. No. 2, 17.

66

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms
and complexity. Accessed at https : / / people . csail . mit . edu / virgi /

eccentri.pdf, October 17, 2019. 2018.

[Woe03] Gerhard J. Woeginger. “Exact algorithms for NP-hard problems: a survey”.
In: Combinatorial optimization—Eureka, you shrink! Vol. 2570. Lecture Notes
in Computer Science. Springer, Berlin, 2003, pp. 185–207.

A Low-degree polynomials are sample-aided worst-case to average-
case reducible

Recall that in Section 4.1 we defined the notion of sample-aided worst-case to δ-average-
case-reducible function (see Definitions 4.2 and 4.3), following [GR17]. In this appendix
we explain why labeled samples can be helpful for uniform worst-case to “rare-case”
reductions, and show that low-degree polynomials are indeed sample-aided worst-
case to average-case-reducible.

Consider a function f whose truth-table is a codeword of a locally list-decodable
code, and also assume that f is randomly self-reducible (i.e., computing f in the worst-
case is reducible to computing f on, say, .99 of the inputs). Then, for every circuit C̃
that agrees with f on a tiny fraction of inputs (i.e., C̃ computes a “corrupt” version of
f), we can efficiently produce a small list of circuits with oracle gates to C̃ such that one
of these circuits correctly computes f on all inputs. The main trouble is that we don’t
know which candidate circuit in this list to use. This is where the labeled samples
come in: We can iterate over the candidates in the list, use the labeled samples to test
each candidate circuit for agreement with f , and with high probability find a circuit
that agrees with f on (say) .99 of the inputs. Then, using the random self-reducibility
of f , we obtain a circuit that correctly computes f on each input, with high probability.

The crucial property that we need from the code in order to make the foregoing
algorithmic approach work is that the local list-decoding algorithm will efficiently pro-
duce a relatively short list. Specifically, recall that by our definition, a sample-aided
worst-case to δ-average-case reduction needs to run in time poly(1/δ). Hence, we
need a list-decoding algorithm that runs in time poly(1/δ) (and indeed produces a list
of such size). A suitable local list-decoding algorithm indeed exists in the case that the
code is the Reed-Muller code, which leads us to the following result:

Proposition A.1 (low-degree polynomials are uniformly worst-case to average-case
reducible with a self-oracle). Let q : N → N be a field-size function, let ` : N → N

such that n ≥ ` · log(q), and let d, ρ : N → N such that 10
√

d(n)/q(n) ≤ ρ(n) ≤
(q(n))−Ω(1) = o(1). Let f = { fn : {0, 1}n → {0, 1}}n∈N be a sequence of functions such
that fn computes a polynomial F

`(n)
n → Fn of degree d(n) where |Fn| = q(n). Then f is

sample-aided worst-case to ρ-average-case reducible.

Proof. We construct a probabilistic machine M that gets input 1n, and oracle access to
a function f̃n that agrees with fn on ρ(n) of the inputs, and also poly(1/ρ(n)) labeled

67

https://people.csail.mit.edu/virgi/eccentri.pdf
https://people.csail.mit.edu/virgi/eccentri.pdf

samples for fn, and with probability 1− ρ(n) outputs a circuit C : F` → F such that
for every x ∈ F` it holds that Prr[C f̃n(x, r) = fn(x)] ≥ 2/3.

The first step of the machine M is to invoke the local list-decoding algorithm
of [STV01, Thm 29], instantiated with degree parameter d = d(n) and agreement
parameter ρ = ρ(n). The algorithm runs in time poly(`(n), d, log(q(n)), 1/ρ) =
poly(n, 1/ρ) and outputs a list of O(1/ρ) probabilistic oracle circuits C1, ..., CO(1/ρ) :
{0, 1}n → {0, 1}n such that with probability at least 2/3 there exists i ∈ [O(1/ρ)] sat-

isfying Pr[C f̃n
i (x) = fn(x)] ≥ 2/3 for all x ∈ {0, 1}n. We call any circuit that satisfies

the latter condition good. By invoking the algorithm of [STV01] for poly(1/ρ) times,
we obtain a list of t = poly(1/ρ) circuits C1, ..., Ct such that with probability at least
1− poly(ρ) there exists i ∈ [t] such that Ci is good.

The second step of the machine is to transform the probabilistic circuits into deter-
ministic circuits such that, with high probability, the deterministic circuit correspond-
ing to the “good” circuit Ci will correctly compute fn on .99 of the inputs (when given
oracle access to f̃n). Specifically, by implementing naive error-reduction in all circuits,

we can assume that for every x ∈ F` it holds that Prr[C
f̃n
i (x, r) = fn(x)] ≥ .995. Now

the machine M creates O(log(1/ρ)) copies of each circuit in the list, and for each copy
M “hard-wires” a randomly-chosen fixed value for the circuit’s randomness. The re-
sult is a list of t′ = poly(1/ρ) deterministic circuits D1, ..., Dt′ such that with probability

1− poly(ρ) there exists a circuit Di satisfying Prx[D
f̃n
i (x) = fn(x)] ≥ .99.

The third step of the machine M is to “weed” the list in order to find a single circuit
Di that (when given access to f̃n) correctly computes f on .95 of the inputs. To do so

M iterates over the list, and for each circuit Dj estimates the agreement of D f̃n
j with fn

with error .01 and confidence 1− poly(ρ), using the random samples.
The final step of the machine M is to use the standard random self-reducibility

of the Reed-Muller code to transform the circuit Di into a probabilistic circuit that
correctly computes f at each input with probability at least 2/3. Specifically, the
probabilistic circuit implements the standard random self-reducibility algorithm for
the (q, `, d) Reed-Muller code (see, e.g., [AB09, Thm 19.19]), while resolving its oracle
queries using the circuit Di. The standard algorithm runs in time poly(q, `, d), and
works whenever Di agrees with fn on at least 1− 1−d/q

6 < .95 + d/q of the inputs,
which holds in our case since d/q < δ = o(1).

B When even Merlin and Arthur encounter difficulties

As mentioned in Section 1.4, the assumption MAETH can be easily shown to imply
strong circuit lower bounds and derandomization of prBPP (and thus also of prMA).
Specifically, the following more general (i.e., parametrized) Theorem B.1 relies on a
standard Karp-Lipton-style argument, which originates in [Bab+93] and also underlies
the proof of Proposition 6.5.

We note in advance that after the proof of Theorem B.1 we prove another result,

68

which shows a very different tradeoff betweenMA lower bounds (specifically, lower
bounds for fixed-polynomial-time verifiers) and derandomization.

Theorem B.1 (lower bounds for MA algorithms imply non-uniform circuit lower
bounds). There exists L ∈ E and a constant k > 1 such that for any time-computable func-
tion S : N → N such that S(n) ≥ n the following holds. Assume that DTIME[2n] 6⊆
MATIME[S′], where S′(n) = S(k · n)k. Then, L 6∈ SIZE[S].

Note that, using Corollary 3.4, under the hypothesis of Theorem B.1 we have that
CAPP ∈ i.o.prDTIME[T], where T(n) = 2O(S−1(nO(1))). In particular, under MAETH
(which refers to S(n) = 2Ω(n/ log(n))) we have that prBPP ⊆ i.o.prDTIME[nO(loglog(n))].

Proof of Theorem B.1. Let L be the problem L from Proposition 6.4. Assuming to-
wards a contradiction that L ∈ SIZE[S], we show that DTIME[2n] ⊆ MATIME[S′].

Let L0 ∈ DTIME[2n]. We construct a probabilistic verifier that gets input x0 ∈
{0, 1}n0 , and if x0 ∈ L0 then for some non-deterministic choices the verifier accepts
with probability one, and if x0 /∈ L0 then for all non-deterministic choices the verifier
rejects, with high probability. The verifier first reduces L0 to L, by computing x ∈
{0, 1}n of length n = O(n0) such that x0 ∈ L0 if and only if x ∈ L.

Let n′ = `(n) = O(n) = O(n0). By our hypothesis, there exists a circuit over n′

input bits of size S(n′) that decides Ln′ . The verifier guesses a circuit CL : {0, 1}n′ →
{0, 1} of size S(n′), and simulates the machine M from Proposition 6.4 on input x,
while resolving its oracle queries of using CL. The verifier accepts if and only if M
accepts. Note that if x0 ∈ L0 and the verifier’s guess was correct (i.e., CL decides Ln′),
then the verifier accepts with probability one. On the other hand, if x0 /∈ L0, then for
every guess of CL (i.e., every oracle for M) the verifier rejects, with high probability.
The running time of the verifier is poly(n) · poly(S(n′)) = S(O(n))O(1).

The following result uses a hypothesis that is intuitively much weaker than MAETH,
namely that there exists a function in P that cannot be solved by anyMA verifier that
runs in fixed polynomial time (i.e., in time nk for some constant k ∈ N). As a conse-
quence, we obtain a derandomization of prBPP either in sub-exponential time, or in
polynomial time but with n.01 bits of non-uniform advice.36

Theorem B.2 (fixed-polynomial-size lower bounds forMA =⇒ derandomization and
circuit lower bounds). Assume that for every k ∈ N it holds that P 6⊆ i.o.MATIME[nk].
Then, for every ε > 0 it holds that prBPP ⊆ (prP/nε ∩ prDTIME[2nε

]).

Proof. In high-level, we want to use our hypothesis to deduce that there exists a
polynomial-time algorithm that outputs the truth-table of a “hard” function, and then
use that “hard” function for derandomization. Loosely speaking, the following claim,

36Recall that, by Adleman’s theorem [Adl78; BG81], we can derandomize prBPP with poly(n) bits
of non-uniform advice (and even with O(n) bits, using Theorem 3.6). However, it is not known how to
derandomize prBPP with o(n) bits of non-uniform advice.

69

whose proof is a refinement of on an argument from [Che+19], asserts that if the out-
put string of every polynomial-time algorithm has circuit complexity at most nk, then
all of P can be decided byMA verifiers running in time nO(k).

Claim B.2.1. Assume that there exists k ∈ N such that for every deterministic polynomial-
time machine M there exists an infinite set S ⊆ N such that for every n ∈ S the following
holds: For every x ∈ {0, 1}n, when the output string M(x) is viewed as a truth-table of a
function, this function has circuit complexity at most nk. Then, P ⊆ i.o.MATIME[nO(k)].

Proof. Let L ∈ P , and let M be a polynomial-time machine that decides L. Our goal is
to decide L in MATIME[nk] on infinitely-many input lengths.

For every x ∈ {0, 1}n, let Tx : {0, 1}poly(n) → {0, 1} be a polynomial-sized circuit
that gets as input a string Π, and accepts if and only if Π is the computational his-
tory of M(x) and M(x) = 1. Note that the mapping of x 7→ Tx can be computed
in polynomial time (since M runs in polynomial time). Also, fix a PCP system for
CircuitSAT with the following properties: The verifier runs in polynomial time and
uses O(log(n)) randomness and O(1) queries; the verifier has perfect completeness
and soundness error 1/3; and there is a polynomial-time algorithm W that maps any
circuit C and a satisfying assignment for C (i.e., y ∈ C−1(1)) to a PCP proof that the
verifier accepts. For every x ∈ {0, 1}n and every input Π ∈ {0, 1}poly(n) for Tx, let
W(Tx, Π) be the corresponding PCP proof that W produces.

Observe that there is a polynomial-time algorithm A that gets as input x ∈ {0, 1}n,
produces the computational history of M(x), which we denote by HM(x), produces the
circuit Tx, and finally prints the PCP witness W(Tx, HM(x)). Thus, by our hypothesis,
there exists an infinite set S ⊆N such that for every n ∈ S and every x ∈ {0, 1}n there
exists a circuit Cx : {0, 1}O(log(n)) → {0, 1} of size nk whose truth-table is W(Tx, HM(x)).

TheMA verifier V gets input x, and expects to get as proof a circuit C : {0, 1}O(log(n)) →
{0, 1} bits. The verifier V now simulates the PCP verifier, while resolving its queries
to the PCP using the circuit C. Note that for every n ∈ S and every x ∈ {0, 1}n the
following holds: If M(x) = 1 then there exists a proof (i.e., a circuit Cx) such that the
verifier accepts with probability one; on the other hand, if M(x) = 0, then Tx rejects
all of its inputs, which implies that for every proof, with probability at least 2/3 the
MA verifier rejects. �

Using our hypothesis that for every k ∈N it holds that P 6⊆ i.o.MATIME[nk], and
taking the counter-positive of Claim B.2.1, we deduce that:

Corollary B.2.2. For every k ∈ N there exists a polynomial-time machine M such that for
every sufficiently large n ∈ N there exists an input x ∈ {0, 1}n such that M(x) is the truth-
table of a function with circuit complexity more than nk.

Now, fix ε > 0, let L ∈ prBPP , and let R be a probabilistic polynomial-time ma-
chine that decides L. Given input x ∈ {0, 1}n, we decide whether x ∈ L in polynomial-
time and with nε advice, as follows. Consider the circuit Rx that computes the decision
of R at x as a function of the random coins of R, and let c > 1 such that the size of Rx is

70

at most nc. We instantiate Corollary B.2.2 with k = c′/ε, where c′ > c is a sufficiently
large constant. We expect as advice an input y of length nε to the machine M such
that M(y) has circuit complexity nc′ . We then use M(y) to instantiate Theorem 3.3
with seed length O(log(n)) and error 1/10 and for circuits of size nc (such that the
PRG “fools” the circuit Rx), and enumerate its seeds to approximate the acceptance
probability of Rx (and hence decide whether or not x ∈ L).

We now also show that L ∈ prDTIME[2n2ε
]. To do so, consider the foregoing

algorithm, and assume that it gets no advice. Instead, it enumerates over all 2nε
pos-

sible advice strings to obtain 2nε
truth-tables, each of size poly(n). We know that at

least one of these truth-tables has circuit complexity nc′ . Now the algorithm constructs
the truth-table of a function f over nε + O(log(n)) bits, which uses the first nε bits to
“choose” one of the 2nε

truth-tables, and uses the O(log(n)) bits as an index to an entry
in that truth-table (i.e., for i ∈ {0, 1}nε

and z ∈ O(log(n)) it holds that f (i, z) = gi(z),
where gi is the function that is obtained from the ith advice string). Note that, since
at least one of the 2nε

functions had circuit complexity nc′ , it follows that f also has
circuit complexity nc′ . Thus, this algorithm can use f to instantiate Theorem 3.3 with
seed length nε + O(log(n)) and for circuits of size nc to “fool” the circuit Rx.

71

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

