Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 169 (2019)

On Exponential-Time Hypotheses, Derandomization,
and Circuit Lower Bounds

Lijie Chen* Ron D. Rothblumf Roei Tell* Eylon YogevS
April 17, 2020

Abstract

The Exponential-Time Hypothesis (ETH) is a strengthening of the P # NP con-
jecture, stating that 3-SAT on n variables cannot be solved in (uniform) time 2¢7”,
for some € > 0. In recent years, analogous hypotheses that are “exponentially-
strong” forms of other classical complexity conjectures (such as NP ¢ BPP or
coN'P ¢ N'P) have also been introduced, and have become widely influential.

In this work, we focus on the interaction of exponential-time hypotheses with
the fundamental and closely-related questions of derandomization and circuit lower
bounds. We show that even relatively-mild variants of exponential-time hypotheses
have far-reaching implications to derandomization, circuit lower bounds, and the
connections between the two. Specifically, we prove that:

1. The Randomized Exponential-Time Hypothesis (rETH) implies that BPP can
be simulated on “average-case” in deterministic (nearly-)polynomial-time (i.e., in

time 20(log(n)) — nk’gl"g(”)o(l)). The derandomization relies on a conditional
construction of a pseudorandom generator with near-exponential stretch (i.e.,
with seed length O(log(n))); this significantly improves the state-of-the-art
in uniform “hardness-to-randomness” results, which previously only yielded
pseudorandom generators with sub-exponential stretch from such hypotheses.

2. The Non-Deterministic Exponential-Time Hypothesis (NETH) implies that deran-
domization of BPP is completely equivalent to circuit lower bounds against &£,
and in particular that pseudorandom generators are necessary for derandom-
ization. In fact, we show that the foregoing equivalence follows from a very
weak version of NETH, and we also show that this very weak version is necessary
to prove a slightly stronger conclusion that we deduce from it.

Lastly, we show that disproving certain exponential-time hypotheses requires
proving breakthrough circuit lower bounds. In particular, if CircuitSAT for cir-
cuits over n bits of size poly(n) can be solved by probabilistic algorithms in time
21/polylog(n) then BPE does not have circuits of quasilinear size.

*Massachusetts Institute of Technology. Email: 1ijieche@mit.edu.
tTechnion. Email: rothblum@cs.technion.ac.il.

{Weizmann Institute of Science. Email: roei.tell@weizmann.ac.il.
SBoston University and Tel Aviv University. Email: eylony@gmail.com.

ISSN 1433-8092

Contents

1

Introduction

1.1 Ouwurresults: Bird'seye
1.2 rETH and pseudorandom generators for uniform circuits
1.3 NETH and an equivalence of derandomization and circuit lower bounds
1.4 Disproving a version of rETH requires circuit lower bounds

Technical overview

2.1 Near-optimal uniform hardness-to-randomness results for TQBF

22 NTIME-uniform circuits for £ and an equivalence between deran-
domization and circuit lower bounds 0L

2.3 Circuit lower bounds from randomized CircuitSAT algorithms

Preliminaries

rETH and near-optimal uniform hardness-to-randomness

4.1 Construction of a well-structured function
42 PRGs for uniform circuits with almost-exponential stretch
4.3 Proofs of Theorems 1.1and 1.2

NETH and the equivalence of derandomization and circuit lower bounds
51 Strengthened Karp-Lipton styleresults
5.2 Proof of Theorems 1.3,1.4,and 1.5

NOT-rETH and circuit lower bounds from randomized algorithms
6.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds .
6.2 Randomized X,-SAT[n] algorithms imply BPE circuit lower bounds

On implications of MAETH
Polynomials are sample-aided worst-case to average-case reducible

An E-complete problem with useful properties

Q0 Ul W = =

(e]

12
14

16

20
21
33
44

45
46
55

58
60
61

68

70

72

1 Introduction

The Exponential-Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [IP01]
(and refined in [IPZ01]), conjectures that 3-SAT with n variables and m = O(n) clauses
cannot be deterministically solved in time less than 2¢", for some constant € = €,,/, >
0. The ETH may be viewed as an “exponentially-strong” version of P # NP, since it
conjectures that a specific NP-complete problem requires essentially exponential time
to solve.

Since the introduction of ETH many related variants, which are also “exponentially-
strong” versions of classical complexity-theoretic conjectures, have also been intro-
duced. For example, the Randomized Exponential-Time Hypothesis (rETH), introduced
in [Del+14], conjectures that the same lower bound holds also for probabilistic algo-
rithms (i.e., it is a strong version of NP Z BPP). The Non-Deterministic Exponential-
Time Hypothesis (NETH), introduced (implicitly) in [Car+16], conjectures that co-3SAT
(with n variables and O(n) clauses) cannot be solved by non-deterministic machines
running in time 2¢" for some constant € > 0 (i.e., it is a strong version of coN'P <
N'P). The variations MAETH and AMETH are defined analogously (see [Wil16]'), and
other variations conjecture similar lower bounds for seemingly-harder problems (e.g.,
for #3SAT; see [Del+14]).

These Exponential-Time Hypotheses have been widely influential across different
areas of complexity theory. Among the numerous fields to which they were applied
so far are structural complexity (i.e., showing classes of problems that, conditioned
on exponential-time hypotheses, are “exponentially-hard”), parameterized complexity,
communication complexity, and fine-grained complexity; see, e.g., the surveys [Woe(3;
LMS11; Will5; Wil18].

Exponential-time hypotheses focus on conjectured lower bounds for uniform algo-
rithms. Two other fundamental questions in theoretical computer science are those of
derandomization, which refers to the power of probabilistic algorithms; and of circuit
lower bounds, which refers to the power of non-uniform circuits. Despite the central
place of all three questions, the interactions of exponential-time hypotheses with de-
randomization and circuit lower bounds have yet to be systematically studied.

1.1 Our results: Bird’s eye

In this work we focus on the interactions between exponential-time hypotheses, deran-
domization, and circuit lower bounds. In a nutshell, our main contribution is showing
that even relatively-mild variants of exponential-time hypotheses have far-reaching con-
sequences on derandomization and circuit lower bounds.

Let us now give a brief overview of our specific results, before describing them in
more detail in Sections 1.2, 1.3, and 1.4. Our two main results are the following;:

1In [Wil16], the introduction of these variants is credited to a private communication from Carmosino,
Gao, Impagliazzo, Mihajlin, Paturi, and Schneider [Car+16].

1. We show that rETH implies a nearly-polynomial-time average-case derandomiza-
tion of BPP. Specifically, assuming rETH,> we construct a pseudorandom gen-
erator for uniform circuits with near-exponential stretch (i.e., with seed length

O(log(n))) and with running time 20(08(1) — nloslog(m® and deduce that BPP
can be decided, in average-case and infinitely-often, by deterministic algorithms

that run in time nloglog(m" (see Theorem 1.1). This significantly improves the
state-of-the-art in the long line of uniform “hardness-to-randomness” results, which
previously only yielded pseudorandom generators with at most a sub-exponential
stretch from worst-case lower bounds for uniform probabilistic algorithms (i.e.,
for BPTZME; see Section 1.2 for details). We also extend this result to deduce
an “almost-always” derandomization of BPP from an “almost-always” lower
bound (see Theorem 1.2), which again improves on the state-of-the-art. See Sec-
tion 1.2 for details.

2. Circuit lower bounds against £ are well-known to yield pseudorandom gener-
ators for non-uniform circuits that can be used to derandomize prBPP in the
worst-case. An important open question is whether such lower bounds and
pseudorandom generators are actually necessary for worst-case derandomization
of prBPP. We show that a very weak version of NETH yields a positive answer
to the foregoing question; specifically, to obtain a positive answer it suffices to
assume that £ cannot be computed by small circuits that are uniformly generated by
a non-deterministic machine.? In fact, loosely speaking, we show that this weak
version of NETH is both sufficient and necessary to show an equivalence between
non-deterministic derandomization of prBPP and circuit lower bounds against
€. See Section 1.3 for more details.

Lastly, in Section 1.4 we show that disproving a conjecture similar to rETH requires
proving breakthrough circuit lower bounds. Specifically, we show that if there exists a
probabilistic algorithm that solves CircuitSAT for circuits with n input bits and of size

poly(n) in time 2""/PO¥18(") | then non-uniform circuits of quasilinear size cannot decide

BPE L BPTIME [20(1)] (see Theorem 1.6, and see the discussion in Section 1.4 for

a comparison with the state-of-the-art).

Relation to Strong Exponential Time Hypotheses. The exponential-time hypotheses
that we consider also have “strong” variants that conjecture a lower bound of 2(1-€)",
where € > 0 is arbitrarily small, for solving a corresponding problem (e.g., for solving

2We will in fact consider a hypothesis that is weaker (qualitatively and quantitatively), and conjectures
that the specific PSP.ACE-complete problem Totally Quantified Boolean Formula (TQBF) cannot be solved
in probabilistic time n/polylog(n) (Recall that TQBF is the set of 3-SAT formulas ¢ over variables wy, ..., wy
such that Vwq Jw,Vws..., ¢(wy, ..., wy) = 1, and that 3SAT reduces to TQBF in linear time; see Definition 4.6.)

3That is, we assume that the following statement does not hold: For any L € & there is a uniform
machine My that runs in time < 2" and uses its non-determinism to generate a single small circuit Cp
that decides L on all n-bit inputs; for example, M runs in sub-exponential time and Cp, is of polynomial
size. (See Section 1.3.)

SAT, coSAT, or #SAT; see, e.g., [Will8]). We emphasize that in this paper we focus only
on the “non-strong” variants that conjecture lower bounds of 2" for some € > 0;
these are indeed significantly weaker than their “strong” counterparts; in fact, some
“strong” variants of standard exponential-time hypotheses are simply known to be
false (see [Wil16]).

We mention that a recent work of Carmosino, Impagliazzo, and Sabin [CIS18]
studied the implications of hypotheses in fine-grained complexity on derandomization.
These fine-grained hypotheses are implied by the “strong” version of rETH (i.e., by
rSETH), but are not known to follow from the “non-strong” versions that we consider
in this paper. We will refer again to their results in Section 1.2.

1.2 rETH and pseudorandom generators for uniform circuits

The first hypothesis that we study is rETH, which (slightly changing notation from
above) asserts that probabilistic algorithms cannot decide if a given 3-SAT formula
with v variables and O(v) clauses is satisfiable in time less than 27, for some constant
€ > 0. Note that such a formula can be represented with n = O(v - log(v)) bits, and
therefore the conjectured lower bound as a function of the input length is 2¢*(*/108(1)),

Intuitively, using “hardness-to-randomness” results, we expect that such a strong
lower bound would imply a strong derandomization result. For context, recall that
in non-uniform hardness-to-randomness results (following [NW94]), lower bounds for
non-uniform circuits yield pseudorandom generators (PRGs) that “fool” non-uniform
distinguishers. Moreover, these results “scale smoothly” such that lower bounds for
larger circuits yield PRGs with longer stretch (see [Uma03] for an essentially optimal
trade-off); at the extreme, if £ is hard almost-always for exponential-sized circuits, then
we obtain PRGs with exponential stretch and deduce that prBPP = prP (see [IW99]).

The key problem, however, is that the long line-of-works concerning uniform “hardness-
to-randomness” did not yield such smooth trade-offs so far (see [IW98; CNS99; Kab01;
Lu01; GSTS03; TV07; SU07; GV08; Goll1; CIS18]). Ideally, given an exponential lower
bound for uniform probabilistic algorithms (such as £ Z i.0.BPTIME2"]) we
would like to deduce that there exists a PRG with exponential stretch for uniform
circuits, and consequently that BPP = P in “average-case”.? However, prior to the
current work, the state-of-the-art (by Trevisan and Vadhan [TV07]) could at best yield
PRGs with sub-exponential stretch (i.e., with seed length polylog(#)), even if the hypoth-
esis refers to an exponential lower bound. Moreover, the best currently-known PRG
only works infinitely-often, even when we assume that the “hard” function cannot be
computed by probabilistic algorithms on almost all input lengths.

4Throughout the paper, when we say that a PRG is e-pseudorandom for uniform circuits, we mean
that for every efficiently-samplable distribution over circuits, the probability over choice of circuit that
the circuit distinguishes the output of the PRG from uniform with advantage more than € is at most €
(see Definitions 3.6 and 3.7). The existence of such PRGs implies an “average-case” derandomization of
BPP in the following sense: For every L € BPP there exists an efficient deterministic algorithm D such
that every probabilistic algorithm that gets input 1" and tries to find x € {0,1}" such that D(x) # L(x)
has a small probability of success (see, e.g., [Goll1, Prop. 4.4]).

Previous works bypassed these two obstacles in various indirect ways. Goldre-
ich [Gol11] relied on the (much) stronger hypothesis prBPP = prP to construct an
“almost-always” PRG with exponential stretch for uniform circuits. Similarly, Car-
mosino, Impagliazzo, and Sabin [CIS18] relied on hypotheses from fine-grained com-
plexity (recall that these are qualitatively strong, and implied by the “strong” version
of rETH, i.e. by rSETH) to bypass both obstacles and derandomize BPP “almost-
always” on average-case in polynomial time; however, their derandomization does not
rely on a PRG construction, and satisfies a weaker notion of average-case derandom-
ization than the notion that we use.” Gutfreund and Vadhan [GV08] bypassed the
“almost-always” barrier by deducing (subexponential-time) derandomization of RP
rather than of BPP (see details below). Lastly, a line-of-works dealing with uniform
“hardness-to-randomness” for AM (rather than for BPP) was able to bypass both
obstacles in this context (see, e.g., [Lu01; GSTS03; SU07]).

In this work we tackle both obstacles directly. First, we establish for the first time
that hardness assumptions for BPTZMZE yield a pseudorandom generator for uni-
form circuits with near-exponential stretch (i.e., with seed length O(log())), which can
be used for average-case derandomization of BPP in nearly-polynomial-time (i.e.,

in time 20(0g(n) — yloglog(m)°V) Specifically, we start from the hypothesis that the
Totally Quantified Boolean Formula (TQBF) problem cannot be solved by probabilistic al-
gorithms that run in time 2""/POY1o8("); this hypothesis is weaker than rETH (since 3-SAT
reduces to TQBF with a linear overhead). Under this hypothesis, we show that there
exists a PRG for uniform circuits with seed length O(log(n)) that is computable in
time 20(og(n)) — ;loglog(n)°M)

Theorem 1.1 (rETH = PRG with almost-exponential stretch for uniform circuits; in-
formal). Suppose that there exists T(n) = 2"/POWIo8(") sych that TQBF ¢ BPTIME[T).
Then, for every t(n) = nPoYIo818(") there exists a PRG that has seed length O(log(n)), runs
in time nPoYI818(") and is infinitely-often (1/t)-pseudorandom for every distribution over
circuits that can be sampled in time t with log(t) bits of non-uniform advice.

The proof of Theorem 1.1 is based on careful refinements of the proof frame-
work of [IW98], using new technical tools that we construct. The latter tools signifi-
cantly refine and strengthen the technical tools that were used by [TV07] to obtain the
previously-best uniform hardness-to-randomness tradeoff. For high-level overviews
of the proof of Theorem 1.1 (and of the new constructions), see Section 2.1.

Overcoming the “infinitely-often” barrier. The hypothesis in Theorem 1.1 is that
any probabilistic algorithm that runs in time 2"/PoY1°8(") fails to compute TQBF infinitely-
often, and the corresponding conclusion is that the PRG “fools” uniform circuits only
infinitely-often. This is identical to all previous uniform “hardness-to-randomness” re-

SSpecifically, they deduce an average-case derandomization of BPP with respect to the uniform dis-
tribution, rather than with respect to every polynomial-time-samplable distribution.

sults that used the [IW98] proof framework.°

Gutfreund and Vadhan [GV08, Sec 6] showed one way to overcome this “infinitely-
often” barrier, by deducing almost-always average-case derandomization of RP (rather
than of BPP) under an almost-always lower bound hypothesis; as in previous re-
sults, their derandomization is relatively slow (i.e., it works in sub-exponential time).
Combining their ideas with the techniques underlying Theorem 1.1, we prove that un-
der the hypothesis that rETH holds almost-always, R'P can be derandomized almost-
always in average-case and in (nearly-)polynomial time (see Theorem 4.14).

In addition, their techniques can be adapted to yield an almost-always PRG (from
an almost-always lower bound hypothesis) that uses O(log(n)) bits of non-uniform
advice. We are able to significantly improve this: Assuming that every probabilistic
algorithm that runs in time 2""/PO¥18(") fails to decide TQBF on almost all input lengths,
we prove that BPP can be derandomized in average-case and almost-always, using
only a triply-logarithmic number (i.e., O(logloglog(n))) of advice bits.

Theorem 1.2 (aa-rETH = almost-always derandomization in time nPolyloglog(n). infor-
mal). Assume that for some T(n) = 2"/PoWI08(") it holds that TQBF ¢ i.0.BPTIME|T),
and let t(n) = nPOYI1818(") Then, for every L € BPTIME]t] and every distribution en-
semble X = {X, C {0,1}"} such that x ~ X, can be sampled in time t(n), there exists a
deterministic algorithm D = Dy that runs in time nPoY1°818(") and uses O(logloglog(n))
bits of non-uniform advice such that for almost all input lengths n € IN it holds that
Pry.x,[D(x) # L(x)] < 1/t(n).

Remark: Non-deterministic extensions. We note that “scaled-up” versions of The-
orems 1.1 and 1.2 for non-deterministic settings follow easily from known results; that
is, assuming lower bounds for non-deterministic uniform algorithms, we can deduce
strong derandomization of corresponding non-deterministic classes. First, from the
hypothesis MAETH” we can deduce strong circuit lower bounds, and hence also worst-
case derandomization of prBPP and of prM.A (this uses relatively standard Karp-
Lipton-style arguments, following [Bab+93]; see Appendix A for details and for a
related result). Similarly, as shown by Gutfreund, Shaltiel, and Ta-Shma [GSTS03], a
suitable variant of AMETH implies an average-case derandomization of AM.

1.3 NETH and an equivalence of derandomization and circuit lower bounds

Let us now consider the Non-Deterministic Exponential-Time Hypothesis (NETH), which
asserts that co-3SAT (with n variables and O(n) clauses) cannot be solved by non-
deterministic machines running in time 2" for some € > 0. This hypothesis is an

®Other proof strategies (which use different hypotheses) were able to support an “almost-always”
conclusion, albeit not necessarily a PRG, from an “almost-always” hypothesis (see [GSTS03; CIS18]).

"Note that indeed a non-deterministic analogue of rETH is MAETH (or, arguably, AMETH), rather
than NETH, due to the use of randomness. Also recall that, while the “strong” version of MAETH is false
(see [Wil16]), there is currently no evidence against the “non-strong” version MAETH.

exponential-time version of coN'P ¢ NP, and is therefore incomparable to rETH and
weaker than MAETH.

The motivating observation for our results in this section is that NETH has an un-
expected consequence to the long-standing question of whether worst-case derandom-
ization of prBPP is equivalent to circuit lower bounds against €. Specifically, recall that
two-way implications between derandomization and circuit lower bounds have been
gradually developing since the early ‘90s (for surveys see, e.g., [Oli13; Will4]), and
that it is a long-standing question whether the foregoing implications can be strength-
ened to show a complete equivalence between the two. One well-known implication of
such an equivalence would be that any (worst-case) derandomization of prBPP neces-
sitates the construction of PRGs that “fool” non-uniform circuits.® Then, being more
concrete, the motivating observation for our results in this section is that NETH implies
an affirmative answer to the foregoing question (and this is not difficult to show; see
Section 2.2).

Our main contribution is in showing that, loosely speaking, even a very weak form
of NETH suffices to answer the question of equivalence in the affirmative, and that
this weak form of NETH is in some sense inherent (see details below). Specifically, we
say that L C {0,1}* has N'TZME|T]-uniform circuits if there exists a non-deterministic
machine M that gets input 1”, runs in time T(#), and satisfies the following: For some
non-deterministic choices M outputs a single circuit C: {0,1}" — {0,1} that decides L
on all inputs x € {0,1}", and whenever M does not output such a circuit, it outputs L.
We also quantify the size of the output circuit, when this size is smaller than T(n).

The hypotheses that will suffice to show an equivalence between derandomization
and circuit lower bounds are of the form “£ does not have N'TZME|[T]-uniform cir-
cuits of size S(n) < T(n)”, for values of T and S that will be specified below. In words,
this hypothesis rules out a world in which every L € £ can be computed by small cir-
cuits that can be efficiently produced by a uniform (non-deterministic) machine. Indeed,
this hypothesis is weaker than the NETH-style hypothesis £ Z N'TZME|T], and even
than the hypothesis £ € (NTZME[T|NSIZE[T]). We stress that our hypothesis
refers to lower bounds for uniform models of computation, for which strong lower
bounds (compared to those for non-uniform circuits) are already known. (For exam-
ple, NP is hard for N'P-uniform circuits of size n* for every fixed k € N (see [SW13]),
whereas we do not even know if EV7 is hard for non-uniform circuits of arbitrarily
large linear size.) The fact that such a weak hypothesis suffices to deduce that deran-
domization and circuit lower bounds are equivalent can be seen as appealing evidence

8The question of equivalence is mostly “folklore”, but was mentioned several times in writing. It was
asked in [IKWO02, Remark 33], who proved an analogous equivalence between non-deterministic deran-
domization with short advice and circuit lower bounds against non-deterministic classes (i.e., against
NTIME; see also [CR20]). It was also mentioned as a hypothetical possibility in [TV07] (referred to
there as a “super-Karp-Lipton theorem”). Following the results of [MW18], the question was recently
raised again as a conjecture in [Tel19]. We note that in the context of uniform “hardness-to-randomness”,
equivalences between average-case derandomization, lower bounds for uniform classes, and PRGs for
uniform circuits have long been known (see [IW98; Gol11]), but these equivalences do not involve circuit
lower bounds or standard PRGs.

that the equivalence indeed holds.

Our first result is that if £ cannot be decided by N'TZME [27')-uniform circuits of
polynomial size (for some 6 > 0), then derandomization of pr BPP in sub-exponential
time is equivalent to lower bounds for polynomial-sized circuits against EXP.

Theorem 1.3 (NETH = circuit lower bounds are equivalent to derandomization; “low-end”

setting). Assume that there exists & > 0 such that £ cannot be decided by NTTME[2"]-
uniform circuits of arbitrary polynomial size, even infinitely-often. Then,

prBPP C i.0.prSUBEXP < EXP ¢ P/poly.

Theorem 1.3 also scales-up to “high-end” parameter settings, albeit not smoothly,
and using different proof techniques (see Section 5 for details). Nevertheless, an
analogous result holds for the extreme “high-end” setting: Under the stronger hy-
pothesis that £ cannot be decided by N'TZME 22"]-uniform circuits, we show that
prBPP = prP is equivalent to lower bounds for exponential-sized circuits against &;
that is:

Theorem 1.4 (NETH => circuit lower bounds are equivalent to derandomization; “high-
-end” setting). Assume that there exists 6 > 0 such that £ cannot be decided by N'TTME[2°"]-
uniform circuits, even infinitely-often. Then:

prBPP = prP <= Je>0:DTIME2"] ¢ i.0.STZE2°"].

Remarkably, as mentioned above, hypotheses such as the ones in Theorems 1.3
and 1.4 actually yield a stronger conclusion, and are also necessary for that stronger
conclusion. Specifically, the stronger conclusion is that even non-deterministic deran-
domization of prBPP (such as prBPP C prNSUBEXP) yields circuit lower bounds
against £, which in turn yield PRGs for non-uniform circuits.

Theorem 1.5 (N TZME-uniform circuits for £, non-deterministic derandomization,
and circuit lower bounds). Assume that there exists 6 > 0 such that £ cannot be decided by

NTIME2" -uniform circuits of arbitrary polynomial size. Then,
prBPP C prtNSUBEXP — EXP ¢ P/poly . (1.1)

In the other direction, if Eq. (1.1) holds, then € cannot be decided by N P-uniform circuits.

Note that in Theorem 1.5 there is a gap between the hypothesis that implies
Eq. (1.1) and the conclusion from Eq. (1.1). Specifically, the hypothesis refers to
NTIME[2"]-uniform circuits of polynomial size, whereas the conclusion refers to
N P-uniform circuits. By optimizing the parameters, this gap between sub-exponential
and polynomial can be considerably narrowed (see Theorem 5.11).

1.4 Disproving a version of rETH requires circuit lower bounds

Lastly, we show that disproving a strong version of rETH requires breakthrough cir-
cuit lower bounds. Specifically, we show that a randomized algorithm that solves
CircuitSAT in time 2"/PO¥198(") would yield lower bounds for circuits of quasilinear
size against BPE = BPTZIME[2°M]. For context, the best known lower bounds for
such circuits are against X, (see [Kan82]) or against M.A/1 (i.e., Merlin-Arthur pro-
tocols that use one bit of non-uniform advice; see [San09]). Specifically, we prove the
following:

Theorem 1.6 (circuit lower bounds from non-trivial randomized CircuitSAT algo-
rithms). For any constant ¢ € IN there exists a constant ¢’ € IN such that the following
holds. If CircuitSAT for circuits over n variables and of size n? - (logn)< can be solved in

probabilistic time 2”/(1"5”)C’, then BPE ¢ STZE[n - (logn)‘].

Theorem 1.6 constitutes progress on a well-known technical challenge. Specifically,
the known arguments that deduce circuit lower bounds from “non-trivial” circuit-
analysis algorithms (following Williams [Wil13]) crucially rely on the hypothesis that
the circuit-analysis algorithm is deterministic, and it is a well-known challenge to obtain
analogous results for randomized algorithms, as we do in Theorem 1.6. In order to prove
Theorem 1.6 we crucially leverage the technical tools that we develop in the proof of
Theorem 1.1; see Section 2.3 for further details and for comparison with known results.

Finally, we combine Theorem 1.6 and Theorem 1.1 to deduce the following un-
conditional Karp-Lipton style result: If BPE can be decided by circuits of quasilinear
size, then BPP can be derandomized, in average-case and infinitely-often, in time
20(log(n)) — ppolyloglog(n) (See Corollary 6.6 for details and for a precise statement.)

2 Technical overview

In this section we describe the proofs of our main results, in high level. In Section 2.1
we describe the proofs of Theorems 1.1 and 1.2; in Section 2.2 we describe the proofs
of Theorems 1.3, 1.4 and 1.5; and in Section 2.3 we describe the proof of Theorem 1.6,
which relies on the proofs from Section 2.1.

2.1 Near-optimal uniform hardness-to-randomness results for TQBF

Recall that in typical “hardness-to-randomness” results, a PRG is based on a hard
function, and the proof amounts to showing that an efficient distinguisher for the PRG
can be transformed to an efficient algorithm or circuit that computes the hard function.

In high-level, our proof strategy follows this paradigm, and relies on the classic
approach of Impagliazzo and Wigderson [IW98] for transforming a distinguisher into
an algorithm for the hard function. Loosely speaking, the latter approach works only
when the hard function f**: {0,1}* — {0,1}* is well-structured; the precise meaning of
the term “well-structured” differs across different follow-up works, and in the current

work it will also take on a new meaning, but for now let us intuitively think of /¢ as
downward self-reducible and as having properties akin to random self-reducibility. In-
stantiating the Nisan-Wigderson PRG with a suitable encoding ECC(f¥%) of f¥® as the
underlying function (again, the precise requirements from ECC differ across works),
our goal is to show that if the PRG with stretch #(n) does not “fool” uniform distin-
guishers even infinitely-often, then ¢ is computable in probabilistic time #'(n) > t(n).

The key challenge underlying this approach is the significant overheads in the proof,
which increase the time complexity # of computing f*®. In the original proof of [TW98]
this time was roughly (1) ~ t(t(n)), and the state-of-the-art prior to the current work,
by Trevisan and Vadhan [TV07] (following [CNS99]), yielded t'(n) = poly(¢(poly(#n))).
Since the relevant functions f** in all works are computable in £, proofs with such an

overhead can yield at most a sub-exponential stretch ¢(n) = om0,

As mentioned in Section 1.2, previous works bypassed this difficulty by either
using stronger hypotheses, or deducing weaker conclusions, or working in different
contexts (e.g., considering derandomization of AM rather than of BPP). In contrast,
we tackle this difficulty directly, and manage to reduce all of the polynomial overheads
in the input length to polylogarithmic overheads in the input length. That is, we will show
that for carefully-constructed f** and suitably-chosen ECC (and with some variations in
the proof approach), if the PRG instantiated with ECC(f*®) for stretch ¢ does not “fool”
uniform distinguishers infinitely-often, then " can be computed in time t'(n) =
tH(O(n))OW.

2.1.1 The well-structured function f"*

Following Trevisan and Vadhan [TV07], our f¥® is an artificial PSP.ACE-complete
problem that we carefully construct. Their goal was to construct f** that will be si-
multaneously downward self-reducible and randomly self-reducible. They achieved
this by constructing a function based on the proof of ZP = PSPACE [Lun+92; Sha92]:
Loosely speaking, at input length N = poly(n) the function gets as input a 3-SAT for-
mula ¢ over n variables, and outputs p(eN) (¢) = Q10Qp0...0 only(n)P(‘P), where P(9)
is an arithmetization of ¢, the Q;’s are arithmetic operators from the ZP = PSPACE
proof, and P(#N)(¢) = TQBF(¢); and for i € [poly(n)], at input length N — i, the func-
tion gets input (@, w) and outputs P(?N~9) (g, w), where P(?N=)) is the polynomial
that applies one less operator to P(?) than P(#N~i+1) and fixes some input variables
for P(?) according to w. Since f** consists of low-degree polynomials, it is randomly
self-reducible; and since each P(?"N=) is obtained by applying a simple operator to
p(@N=(=1)) the function f¥® is also downward self-reducible.

Going through their proof (with needed adaptations for our “high-end” parameter
setting), we encounter four different polynomial overheads in the input length. The
tirst and obvious one is that inputs of length n are mapped to inputs of length N =
poly(n), corresponding to the number of rounds in the ZP = PSPACE protocol. The
other polynomial overheads in the input length come from their reduction of TQBF
to an intermediate problem that takes both ¢ and w as part of the input and is still

amenable to arithmetization,” from the field size that is required for the strong random
self-reducibility that is needed in our parameter setting (see below), and from the way
the poly(n) polynomials are combined into a single Boolean function.

The main challenge is to eliminate all of the foregoing overheads simultaneously. We
will achieve this by presenting a construction of a suitable f¥$, which is a refinement of
their construction, and constitutes the main technical part in the proof of Theorem 1.1.
We now outline (very briefly) the key points underlying the construction; for a detailed
overview see Section 4.1. After the following brief outline, we will explain how we use
f*® to prove Theorem 1.1.

Our first main idea is to use an ZP = PSP.ACE protocol with polylog(n) rounds
instead of poly(n) rounds, so that the first overhead (i.e., the additive overhead in
the input length caused by the number of operators) will be only polylog(#) instead
of poly(n). Indeed, in such a protocol the verification time in each round is high,
and therefore our downward self-reducibility algorithm is relatively slow and makes
many queries; but we will be able to afford this in our proof (since eventually we only
need to solve TQBF in time 2"/ P"lylog(”)). While implementing this idea, we define a
different intermediate problem that is both amenable to arithmetization and reducible
from TQBF in quasilinear time (see Claim 4.7.1); we move to an arithmetic setting that
will support the strong random self-reducibility that we want (see details below), and
arithmetize the intermediate problem in this setting (see Claim 4.7.2); we show how
to execute arithmetic operators in a “batch” in this arithmetic setting (see Claim 4.7.3);
and we combine the resulting collection of polynomials into a single Boolean function.
We stress that we are “paying” for all the optimizations above, by the fact that the
associated algorithms (for downward self-reducibility and for our notion of random
self-reducibility that will be described next) now run in time on/ POlYlog(”), rather than
polynomial time; but again, we are able to afford this in our proof.

We obtain a function f¥“® with the following properties: First, f*¢ is computable
in linear space; secondly, TQBF is reducible to f** in quasilinear time; thirdly, f"s is
downward self-reducible in time 2"/POY1o8("); and lastly, f** is sample-aided worst-case to
d-average-case reducible, for §(n) = 27 "/Po1o8(") The last property, which is implicit in
many works and was recently made explicit by Goldreich and G. Rothblum [GR17],
asserts the following: There exists a uniform algorithm T that gets as input a circuit
C: {0,1}" — {0,1}* that agrees with f® on at least 6(n) of the inputs, and labeled
examples (x, f**(x)) where x € {0,1}" is uniformly-chosen, runs in time 2"/Polylog()
and with high probability outputs a circuit C': {0,1}" — {0,1}* that computes fi®
on all inputs (see Definition 4.2). Our construction of f*¢ also satisfies an additional
property, which will only be used in the proof of Theorem 1.2 (i.e., of the “almost-
always” version of the result); we will describe this property in the proof outline for
Theorem 1.2 below.

9Recall that the standard arithmetization of 3-SAT is a polynomial that depends on the input formula,
whereas we want a single polynomial that gets both a formula and the assignment as input.

10

2.1.2 Instantiating the [IW98] proof framework with the function f"*

Given this construction of f¥%, we now use a variant of the [IW98] proof framework, as
follows. (For simplicity, we show how to “fool” polynomial-time distinguishers that
do not use advice.) Let ECC be the Goldreich-Levin [GL89] (i.e., Hadamard) encoding
ECC(f¥®)(x,r) = @®;f**(x); - ;. The argument of [[W98] (following [NW94]) shows that
if for input length n there exists a uniform poly(n)-time distinguisher A for the Nisan-
Wigderson PRG (instantiated with ECC(f*®)) that succeeds with advantage 1/#, then
for input length £ = O(log(n)) (corresponding to the set-size in the underlying com-
binatorial design) there is a weak learner for ECC(f*®): That is, there exists an algorithm
that gets oracle access to ECC(f*®), runs in time poly(n) = 2{/Po1o8() and outputs a
small circuit that agrees with ECC(f*) on approximately 1/2 + 1/n% ~ 1/2 + 6y(¢) of
the (-bit inputs, where dy(£) = 2~{/polylog((),

Assuming that there exists a distinguisher for the PRG as above for every n € N,
we deduce that a weak learner exists for every ¢ € IN. Following [IW98], for each input
length i = 1, ..., £ we construct a circuit of size 2i/polylog(i) fqor 1. Specifically, in itera-
tion i we run the learner for ECC(f*®) on input length 2i, and answer its oracle queries
using the downward self-reducibility of f*%, the circuit that we have for £, and the
fact that ECC(f"®),; is easily computable given access to f*. The learner outputs a
circuit of size 2%/POIo8(2)) that agrees with ECC(f¥*) on approximately 1/2 + 8y(2i) of
the 2i-bit inputs, and the argument of [GL89] allows to efficiently transform this circuit
to a circuit of similar size that computes f** on a approximately é(i) = poly(do(2i))
of the i-bit inputs. Our goal now is to transform this circuit to a circuit of similar size
that computes f“® on all i-bit inputs. Recall that in general, performing such trans-
formations by a uniform algorithm is challenging (intuitively, if f“* is a codeword in
an error-correcting code, this corresponds to uniform list-decoding of a “very corrupt”
version of f**). However, in our specific setting we can produce random labeled samples
for f"*, using its downward self-reducibility and the circuit that we have for f/%,. Re-
lying on the sample-aided worst-case to average-case reducibility of f**, we can transform
our circuit to a circuit of similar size that computes f** on all inputs.

Finally, since TQBF is reducible with quasilinear overhead to f**, if we can compute
f¥ in time 2"/POY1o8(") then we can compute TQBF in such time. Moreover, since
f¥ is computable in space O(¢) = O(log(n)) (and thus in time nPOY8log() the
pseudorandom generator is computable in time nPOyloglog(),

2.1.3 The “almost-always” version: Proof of Theorem 1.2

We now explain how to adapt the proof above in order to get an “almost-always”
PRG with near-exponential stretch. For starters, we will use a stronger property of
f¥¢, namely that it is downward self-reducible in a polylogarithmic number of steps; this
means that for every input length ¢ there exists an input length ¢y > ¢ — polylog(¢)
such that f** is efficiently-computable at input length /o (i.e., f/* is computable in time

2%/polylog(fo) without a “downward” oracle); see Section 4.1.1 for intuition and details
about this property.

11

Now, observe that the transformation of a probabilistic distinguisher A for the PRG
to a probabilistic algorithm F that computes f** actually gives a “point-wise” guaran-
tee: For every input length n € IN, if A distinguishes the PRG on a corresponding set of
input lengths S, then F computes f¥ correctly at input length £ = £(n) = O(log(n));
specifically, we want to use the downward self-reducibility argument for f¥$ at input
lengths 7,/ —1, ..., £y, and S, is the set of input lengths at which we need a distinguisher
for G in order to obtain a weak learner for ECC(f¥*) at input lengths ¢, ¢ — 1, ...{y. More-
over, since f"* is downward self-reducible in polylog steps, we will only need weak
learners at inputs ¢, ..., £y = ¢ — polylog(¥¢); hence, we can show that S, is a set of
polylog(¢) = polyloglog(n) input lengths in the interval [, 1n?] (see Lemma 4.9 for
the precise calculation). Taking the contrapositive, if f* cannot be computed by F on
almost all ¢’s, then for every n € IN there exists an input length m € S, C [n,1%] such
that G fools A at input length m.1°

Our derandomization algorithm gets input 1" and also gets the “good” input
length m € S, as non-uniform advice; it then simulates G(1") (i.e., the PRG at input
length m) and truncates the output to n bits. (We can indeed show that truncating the
output of our PRG preserves its pseudorandomness in a uniform setting; see Proposi-
tion 4.12 for details.) The crucial point is that since |S,| = polyloglog(n), the advice
length is O(logloglog(n)). Note, however, that for every potential distinguisher A
there exists a different input length m € S, such that G is pseudorandom for A on
m. Hence, our derandomization algorithm (or, more accurately, its advice) depends
on the distinguisher that it wants to “fool”. Thus, for every L € BPP and every
efficiently-samplable distribution X of inputs, there exists a corresponding “almost-
always” derandomization algorithm Dy (see Proposition 4.12).

2.2 NTZIME-uniform circuits for £ and an equivalence between deran-
domization and circuit lower bounds

The proofs that we describe in the current section are significantly simpler technically
than the proofs described in Sections 2.1 and 2.3. As mentioned in Section 1.3, the
motivating observation is that NETH implies an equivalence between derandomization
and circuit lower bounds; let us start by proving this statement:

Proposition 2.1 (“warm-up”: a weaker version of Theorem 1.3). Assume that EXP ¢

1.0 NSUBEXP. Then, prBPP C prSUBEXP < EXP ¢ i.0.P/poly.

Proof. The “<=" direction follows (without any assumption) from [Bab+93]. For the
“=" direction, assume that prBPP C prSUBEX P, and assume towards a contra-
diction that EXP C i.o.P/poly. The latter hypothesis implies (using the Karp-Lipton

10Actually, since f" is downward self-reducible in polylog steps, it can be computed relatively-
efficiently on infinitely-many input lengths, and thus cannot be “hard” for almost all ¢’s. However,
since TQBF can be reduced to f“$ with quasilinear overhead, if TQBF is “hard” almost-always then for
every £(n) there exists £/ < O(£(n)) such that f% is “hard” on ¢, which allows our argument to follow
through, with a similar set S, C [n, nPOY18108(7)] (see Proposition 4.11 for details). For simplicity, we
ignore this issue in the overview.

12

style result of [Bab+93]) that EAP C i.o. MA. Combining this with the former hy-
pothesis, we deduce that EXP C 1.0 NSUBEX P, a contradiction. W

Our proofs of Theorems 1.3 and 1.4 will follow the same logical structure as
the proof of Proposition 2.1, and our goal will be to relax the hypothesis EXP ¢
1.0 NSUBEXP. We will do so by strengthening the Karp-Lipton style result that
uses [Bab+93] and asserts that a joint “collapse” hypothesis and derandomization hy-
pothesis implies that £XP can be decided in small non-deterministic time. We will
show two different strengthenings, each referring to a different parameter setting: The
first strengthening refers to a “low-end” setting, and asserts that if EXP C P/poly
and prBPP C prSUBEXP then EXP has N SUBEX P-uniform circuits of polyno-
mial size (see Item (1) of Proposition 5.6); and the second strengthening refers to a
“high-end” setting, and asserts that if £ C i.0.SZZE[2°"] and prBPP = prP then
£ has N'TTME[2°€)"]-uniform circuits (see Proposition 5.7). The proofs of these
two different strengthenings rely on different ideas; for high-level descriptions of the
proofs see Sections 5.1.2 and 5.1.3, respectively.

For context, recall that (as noted by Fortnow, Santhanam, and Williams [FSW09]),
the proof of [Bab+93] already supports the stronger result that EXP C P/poly <=
EXP = OMA;M and by adding a derandomization hypothesis (e.g., prBPP = prP)
we can deduce that EXP = ON'P. Nevertheless, our results above are stronger,
because N P-uniform circuits are an even weaker model than ONP: This is since in
the latter model the proof is verified on an input-by-input basis, whereas in the former
model we only verify once that the proof is convincing for all inputs. We also stress
that some lower bounds for this weaker model (i.e., for N'T ZME-uniform circuits of
small size) are already known: Santhanam and Williams [SW13] proved that for every
k € N there exists a function in AN'P that cannot be computed by N P-uniform circuits
of size n*.

We also note that our proofs actually show that (conditioned on lower bounds
for NTZMZE-uniform circuits against £) even a relaxed derandomization hypothesis is
already equivalent to the corresponding circuit lower bounds. For example, in the
“high-end” setting, to deduce that £ ¢ STZE[2?M)] it suffices to assume that CAPP
on v-bit circuits of size n = 22 can be solved in time 2¢?, for a sufficiently small
€ > 0.12 For more details, see Section 5.2.

Proof of Theorem 1.5. The first part of Theorem 1.5 asserts that if £ does not have

N TIM(‘:[Z”é]—uniform circuits of polynomial size, then the conditional statement
“prBPP C prNSUBEXP — EXP ¢ P/poly” holds. The proof of this state-

1The notation O.M A stands for “oblivious” M.A. It denotes the class of problems that can be decided
by an MA verifier such that for every input length there is a single “good” proof that convinces the
verifier on all inputs in the set (rather than a separate proof for each input); see, e.g., [FSW09; GM15].

12Note that the problem of solving CAPP for v-bit circuits of size n = 2?) can be trivially solved in
time 20(®) = poly(n), and thus unconditionally lies in prP N prBPTIME[O(n)]. The derandomization
problem described above simply calls for a faster deterministic algorithm for this problem.

13

ment again follows the logical structure from the proof of Proposition 2.1, and relies
on a further strengthening of our “low-end” Karp-Lipton style result such that the
result only uses the hypothesis that prBPP C prNSUBEXP rather than prBPP C
prSUBEXP.13

The second part of Theorem 1.5 asserts that if the conditional statement “prBPP C
prINSUBEXP — EXP ¢ P/poly” holds, then £ does not have N P-uniform
circuits. We will in fact prove the stronger conclusion that & Z (NP NP /poly).
(Recall that the class of problems decidable by N P-uniform circuits is a subclass of
ONP C N'PNP/poly.) The proof itself is very simple: Assume towards a contradic-
tion that £ C (NP NP /poly); since BPP C EXP, it follows that prBPP C prN'P
(see the proof of Theorem 5.10); and by the hypothesized conditional statement, we
deduce that EXP ¢ P/poly, a contradiction. Indeed, the parameter choices in the
foregoing proof are far from tight, and (as mentioned after the statement of Theo-
rem 1.5) the quantitative gap between the two parts of Theorem 1.5 can be considerably
narrowed (see Theorem 5.11).

2.3 Circuit lower bounds from randomized CircuitSAT algorithms

Recall that Theorem 1.6 asserts that if CircuitSAT for n-bit circuits of size O(n?) can
be solved in probabilistic time 2"/ (18", then BPE ¢ STZE[n - (logn)°], where ¢’
depends on c. The relevant context for this result is the known line of works that
deduce circuit lower bounds from “non-trivial” circuit-analysis algorithms, following
the celebrated result of Williams [Wil13]. The main technical innovation in Theorem 1.6
is that our hypothesis is only that there exists a probabilistic circuit-analysis algorithm,
whereas the aforementioned known results crucially rely on the fact that the circuit-
analysis algorithm is deterministic. On the other hand, the aforementioned known
results yield new circuit lower bounds even if the running time of the algorithm is
2n/ 11“’(1),14 whereas Theorem 1.6 only yields new circuit lower bounds if the running
time is 2""/Polylog(n),

As far as we are aware, Theorem 1.6 is the first result that deduces circuit lower
bounds from a near-exponential-time probabilistic algorithm for a natural circuit-
analysis task. The closest result that we are aware of is by Oliveira and Santhanam [OS17,
Theorem 14], who deduced lower bounds for circuits of size n°(!) against BPE from
non-trivial probabilistic algorithms for learning with membership queries (rather than for
a circuit-analysis task such as CircuitSAT); as explained next, we build on their tech-
niques in our proof.'®

BIntuitively, in the “low-end” Karp-Lipton result we only need to derandomize probabilistic decisions
made by the non-deterministic machine that constructs the circuit, whereas the circuit itself is determin-
istic; thus, a non-deterministic derandomization hypothesis suffices for this result. See Section 5.1.2 for
details.

14For example, from such an algorithm they deduce the lower bound NEXP € P /poly; and from an
algorithm that runs in time 21/polylog(n) a5 in Theorem 1.6, their results yield the lower bound NP ¢
ST ZE[n] for every fixed k € N.

15 Another known result, which was communicated to us by Igor Oliveira, asserts that if CircuitSAT

14

Our proof strategy is indeed very different from the proof strategies underlying
known results that deduce circuit lower bounds from deterministic circuit-analysis al-
gorithms (e.g., from the “easy-witness” proof strategy [IKW02; Wil13; MW18; CW19;
Che19; CR20], or from proofs that rely on M.A lower bounds [IKW02, Rmk. 26], [San09;
Tel19]). In high-level, to prove our result we exploit the connection between randomized
learning algorithms and circuit lower bounds, which was recently discovered by Oliveira
and Santhanam [OS17, Sec. 5] (following [FK09; HH13; KKO13]). Loosely speaking,
their connection relies on the classical results of [IW98], and we are able to signifi-
cantly refine this connection, using our refined version of the [IW98] argument that
was detailed in Section 2.1.

Our starting point is the observation that CircuitSAT algorithms yield learning
algorithms. Specifically, fix k € IN, and assume (for simplicity) that CircuitSAT for
polynomial-sized n-bit circuits can be solved in probabilistic time 2""/POY1o8(") for an
arbitrarily large polylogarithmic function. We show that in this case, any function
that is computable by circuits of size 7 - (logn)¥ can be learned (approximately) using
membership queries in time 2/POY108(") (we explain below how to prove this).'® Now,
let f"s be the well-structured function from Section 2.1, and recall that f* is com-
putable in linear space, and hard for linear space under quasilinear-time reductions.
Then, exactly one of two cases holds:

1. The function f** does not have circuits of size 7 - (logn)*. In this case a Boolean
version of f¥¢ also does not have circuits of such size, and since this Boolean
version is in SPACE[O(n)] C BPE, we are done.

2. The function f¥* has circuits of size 1 - (logn). Hence, f*® is also learnable (as
we concluded above), and so the argument of [IW98] can be used to show that
f¥s is computable by an efficient probabilistic algorithm.!” Now, by a diagonal-
ization argument, there exists L92& € ¥4[n - (logn)?] that cannot be computed
by circuits of size 1 - (logn)¥. We show that L42& € BPE by first reducing L4128
to f“ in time O(n), and then computing f“® (using the efficient probabilistic
algorithm).

Thus, in both cases we showed a function in BPE \ SZZE&[n - (log n)*]. The crucial
point is that in the second case, our new and efficient implementation of the [IW98]
argument (which was described in Section 2.1) yields a probabilistic algorithm for
f¥s with very little overhead, which allows us to indeed show that L9 ¢ BPE.
Specifically, our implementation of the argument (with the specific well-structured

for circuits over n variables and of size poly(n) can be solved in probabilistic sub-exponential time o',
then BPTZME[2°(M] ¢ P /poly. This result can be seen as a “high-end” form of our result (i.e., of
Theorem 1.6), where the latter will use a weaker hypothesis but deduce a weaker conclusion.

16That is, there exists a probabilistic algorithm that gets input 1" and oracle access to f, and with high
probability outputs an n-bit circuit of size 1 - (logn)¥ that agrees with f on almost all inputs.

17 Actually, our implementation of the [IW98] argument shows that if the function ECC(f") (where
ECC is defined as in Section 2.1) can be learned, then the function f"® can be efficiently computed. For
simplicity, we ignore the difference between ¥ and ECC(f¥“#) in the current high-level decription.

15

function f¥) shows that f* can be learned in time T(n) = 2"/P°108(") then f¥* can
be computed in similar time T’ (1) = 2"/P¥lo8(") (see Corollary 4.10).

We thus only need to explain how a CircuitSAT algorithm yields a learning al-
gorithm with comparable running time. The idea here is quite simple: Given oracle
access to a function f¥%, we generate a random sample of r = poly(n) labeled ex-
amples (x1, f*5(x1)), ..., (xr, f*(x,)) for f¥%, and we use the CircuitSAT algorithm to
construct, bit-by-bit, a circuit of size n - (logn)* that agrees with f* on the sample.
Note that the input for the CircuitSAT algorithm is a circuit of size poly(#) over only
n' =~ n- (logn)**! bits (corresponding to the size of the circuit that we wish to con-
struct). Hence, the CircuitSAT algorithm runs in time 2"'/Polylog(n) — pn/polylog(n),
And if the sample size r = poly(n) is large enough, then with high probability any
circuit of size n - (logn)k that agrees with f“* on the sample also agrees with f* on
almost all inputs (i.e., by a union-bound over all circuits of such size).

3 Preliminaries

We denote random variables in boldface. For an alphabet ¥ and n € IN, we denote the
uniform distribution over X" by u,, where X will be clear from context.

For any set L C {0,1}* and n € IN, we denote by L, = L N {0,1}" the restriction
of L to n-bit inputs. Similarly, for f : {0,1}* — {0,1}*, we denote by f, : {0,1}" —
{0,1}* the restriction of f to the domain of n-bit inputs.

3.1 Two exponential-time hypotheses

We define two exponential-time hypotheses that we consider in this paper. We note in
advance that our actual results refer to various weaker variants of these hypotheses.

Hypothesis 1 (rETH; see [Del+14]). Randomized Exponential Time Hypothesis (rETH):
There exists € > 0 and ¢ > 1 such that 3-SAT on n variables and with c - n clauses cannot be
solved by probabilistic algorithms that run in time 2°7".

Hypothesis 2 (NETH; see [Car+16]). Non-Deterministic Exponential Time Hypothesis (NETH):
There exists € > 0 and ¢ > 1 such that co-3-SAT on n variables and with c - n clauses cannot
be solved by non-deterministic algorithms that run in time 2°".

We also extend the two foregoing hypotheses to stronger versions in which ev-
ery algorithm (probabilistic or non-deterministic, respectively) fails to compute the
corresponding “hard” function on all but finitely-many input lengths. These stronger
hypotheses are denoted a.a.-rETH, and a.a.-NETH, respectively.

3.2 Worst-case derandomization and pseudorandom generators

We now formally define the circuit acceptance probability problem (or CAPP, in short);
this well-known problem is also sometimes called Circuit Derandomization, Approx
Circuit Average, and GAP-SAT or GAP-UNSAT.

16

Definition 3.1 (CAPP). The circuit acceptance probability problem with parameters «, 5 €
[0,1] such that « > B and for size S : N — IN (or («, B)-CAPPIS], in short) is the following
promise problem:

e The YES instances are (representations of) circuits over v input bits of size at most S(v)
that accept at least an « fraction of their inputs.

e The NO instances are (representations of) circuits over v input bits of size at most S(v)
that accept at most a B fraction of their inputs.

We define the CAPP[S] problem (i.e., omitting « and B) as the (2/3,1/3)-CAPP problem. We
define CAPP to be the problem when there is no restriction on S.

It is well-known that CAPP is complete for pr 3PP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time
if and only if prBPP = prP. (For a proof see any standard textbook on the subject,
e.g. [Vad12, Cor. 2.31], [Gol08, Exer. 6.14].)

We will need the following well-known construction of a pseudorandom generator
from a function that is “hard” for non-uniform circuits, by Umans [Uma03] (following
the line of works initiated by Nisan and Wigderson [NW94]).

Theorem 3.2 (Umans’ PRG; see [Uma03, Thm. 6]). There exists a constant ¢ > 1 and an
algorithm G such that the following holds. When G is given an n-bit truth-table of a function
f:{0,1}°8(") — {0,1} that cannot be computed by circuits of size s, and a random seed of
length £(n) = c -log(n), it runs in time n°, and for m = s'/¢ outputs an m-bit string that is
(1/m)-pseudorandom for every size-m circuit over m bits.

Corollary 3.3 (near-optimal non-uniform hardness-to-randomness using Umans’ PRG).
There exists a universal constant A > 1 such that for every time-computable S : IN — IN and

for T(n) = 2285(") we have that
1. If€ ¢ STZE[S| then CAPP € i.0.prDTIME|T].
2. If€ ¢ 1.0.STZE[S] then CAPP € prDTTME]T).

In addition we will need a suitable construction of an averaging sampler. Recall
the standard definition of averaging samplers:

Definition 3.4 (averaging sampler). A function Samp : {0,1}" — ({0,1}")P is an
averaging sampler with accuracy € and confidence ¢ (or (€, §)-averaging sampler, in short) if
for every T C {0,1}™, the probability over choice of x € {0,1}" that Pricip)[Samp(x); €
T) € |T|/2™ + € is at most §.

We will specifically use the following well-known construction by Guruswami,
Umans, and Vadhan [GUV09]. (The construction in [GUV09] is of an extractor, rather
than of an averaging sampler, but the two are well-known to be essentially equivalent;
see, e.g., [Gol08, Sec. D.4.1.2] or [Vad12, Cor. 6.24].)

17

Theorem 3.5 (the near-optimal extractor of [GUV09], instantiated as a sampler and
for specific parameters). Let v > 1 and B > a > 0 be constants. Then, there exists a
polynomial-time algorithm that for every m computes an (m="7,2~“=F)™)_qveraging sampler
Samp: {0,1}" — ({0,1}")P, where m' = (1 + B) - m and D = poly(m).

3.3 Average-case derandomization and pseudorandom generators

We now define the notions of “average-case” derandomization of probabilistic algo-
rithms. The first definitions that we need are of circuits that distinguish a distribution
from uniform, and of distributions that are pseudorandom for uniform algorithms, as fol-
lows:

Definition 3.6 (distinguishing distributions from uniform). For two functions str, ¢ :
IN — N, let G be an algorithm that gets input 1" and a random seed of length {(n) and
outputs a string of length stx(n). Then:

1. For n € N and n' € str—1(n), we say that D, : {0,1}"* — {0,1} e-distinguishes
G(l”/,ug(n/)) from uniform if ‘ Pr[Dn(G(lnl,ug(n/))) = 1] — Pr[Dy(u,) = 1]‘ > €.

2. For a probabilistic algorithm A, an integer n, and € > 0, we say that G(1",uy,)

is e-pseudorandom for A if the probability that A(15*(W)) outputs a circuit that e-
distinguishes G(1",uy(,) from uniform is at most €.

When applying this definition without specifying a function str, we assume that str is the
identity function.

We now use Definition 3.6 to define pseudorandom generators for uniform circuits and
hitting-set generators for uniform circuits, which are analogous to the standard definitions
of PRGs and HSGs for non-uniform circuits:

Definition 3.7 (PRGs for uniform circuits). For £ : IN — IN, let G be an algorithm that
gets as input 1" and a random seed of length ¢(n), and outputs strings of length n. For
t,ta:IN — Nand e : N — (0,1), we say that G is an €-i.0.-PRG for (t,a)-uniform
circuits if for every probabilistic algorithm A that runs in time t(n) and gets a(n) bits of non-
uniform advice there exists an infinite set Sy, C IN such that for every n € S, it holds that
G(1", gy) is €(n)-pseudorandom for A. If for every such algorithm A there is a set S as
above that contains all but finitely-many inputs, we say that G is an e-PRG for (t,a)-uniform
circuits.

Definition 3.8 (HSGs for uniform circuits). For £ : N — IN, let H be an algorithm that
gets as input 1" and a random seed of length {(n), and outputs strings of length n. For
t,a: N — Nand e : N — (0,1), we say that H is an e-HSG for (t,a)-uniform circuits
if the following holds. For every probabilistic algorithm A that gets input 1" and a(n) bits
of non-uniform advice, runs in time t(n), and outputs a circuit D,, : {0,1}" — {0,1}, and
every sufficiently large n € IN, with probability at least 1 — e(n) (over the coin tosses of A) at
least one of the following two cases holds:

18

1. There exists s € {0,1}") such that D, (G(1%,s)) = 1.
2. The circuit Dy satisfies Pryc o130 [Du(x) = 1] < €(n).

As mentioned in Section 1, PRGs for uniform circuits can be used to derandomize
BPP “on average” (see, e.g., [Golll, Prop. 4.4]). Analogously, HSGs for uniform cir-
cuits can be used to derandomize RP “on average”. That is, loosely speaking, if there
exists an HSG for uniform circuits, then for any L € RP there exists a deterministic
algorithm D such that for every efficiently-samplable distribution X, the probability
over x ~ X that D(x) # L(x) is small. For simplicity, we prove the foregoing claim
for HSGs that are computable in polynomial time and have logarithmic seed length:

Claim 3.9 (HSGs for uniform circuits = derandomization of RP “on average”). For
€ :IN — (0,1) such that e(n) < 1/3, assume that for every k € IN there exists a e-HSG
for (n*,0)-uniform circuits that is polynomial-time computable and that has logarithmic seed
length. Then, for every L € R'P and every ¢ € IN, there exists a deterministic polynomial-
time algorithm D such that for every probabilistic algorithm F that runs in time n° and every
sufficiently large n € IN, the probability (over the internal coin tosses of F) that F(1") outputs
a string x € {0,1}" such that D(x) # L(x) is at most €(n).

Proof. Let M be an RP machine that decides L in time n¢, for some ¢’ € N. The
deterministic algorithm D gets input x € {0,1}", enumerates the seeds of the HSG for
output length m = n¢ and with the parameter k = O(1 + ¢/c’), and accepts x if and
only if there exists an output r of the HSG such that M accepts x with random coins r.
Note that D never accepts inputs x ¢ L (since M is an R’P machine), and thus we only
have to prove that for every algorithm F as in the claim’s statement, the probability
that x = F(1") satisfies both x € L and D(x) = 0 is at most €(n).

To do so, let F be a probabilistic algorithm that runs in time n°. Consider the
probabilistic algorithm A that, on input 1™, runs the algorithm F on input 1" to obtain
x € {0,1}", and outputs a circuit Cy, y : {O 1}’” — {0,1} that computes the decision of
M at input x as a function of M’s m = n° " random coins. Note that the algorithm A
runs in time at most m©(1+¢/¢) and also note that the only probabilistic choices that
A makes are a choice of x = F (1). Thus, by Definition 3.8 for every sufficiently large
m, with probability at least 1 — e(m) > 1 — e(n) over choice of x = F(1") (i.e., over the
coin tosses of A), if D(x) = 0 then Pr,[Cp(r) = 1] = Pr[M(x) = 1] < e(n) < 1/3,
which meansthatx ¢ L. B

3.4 An E-complete problem with useful properties

Our proofs in Section 5 will rely on the well-known existence of an £-complete prob-
lem L**°® with the following useful properties: The problem L™¢® is randomly self-
reducible and that has an instance checker with linear-length queries such that both
the instance checker and the random self-reducibility algorithm use a linear number
of random bits. Let us properly define these notions:

19

Definition 3.10 (instance checkers). A probabilistic polynomial-time oracle machine IC is
an instance checker for a set L C {0, 1}* if for every x € {0,1}* the following holds:

1. (Completeness.) ICL(x) = L(x), with probability one.
2. (Soundness.) For every L' C {0,1}* we have that Pr[ICY (x) ¢ {L(x), L}] <1/6.18

For £ : N — NN, if for every x € {0,1}*, all the oracle queries of IC on input x are of length
£(|x|), then we say that IC has queries of length ¢. We will also measure the maximal number
of queries that IC makes on inputs of any given length.

Definition 3.11 (random self-reducible function). We say that f: {0,1}* — {0,1}* is
randomly self-reducible if there exists a probabilistic oracle machine Dec that gets input x €
{0,1}" and access to an oracle g: {0,1}" — {0,1}*, runs in time poly(n), makes oracle
queries such that each query is uniformly distributed in {0,1}", and if for every oracle query

g € {0,1}" it holds that g(q) = f(q), then Dec®(x) = f(x).

In high-level, the problem L™ is the low-degree extension of an (arbitrary) &-
complete problem. The intuition is that since L*°® is a low-degree extension it is
randomly self-reducible, and since L™ is £-complete we can construct an instance
checker for it. (Specifically, the instance checker for L simulates a PCP verifier
for L*¢¢, and the problem of answering the verifier’s queries reduces to L**°¢, to the
verifier’s queries can be answered using an oracle to L*¢¢)) For details and a full
proof, see Appendix C.

Proposition 3.12 (an £-complete problem that is random self-reducible and has a good
instance checker). There exists L*°® € DTIZME[O(2")] such that:

1. Any L € DTZME[2"] reduces to L**°® in polynomial time with a constant multiplica-
tive blow-up in the input length; specifically, for every n there exists n' = O(n) such
that any n-bit input for L is mapped to an n’-bit input for L™,

2. The problem L™<® is randomly self-reducible by an algorithm Dec that on inputs of
length n uses n + polylog(n) random bits.

3. There is an instance checker IC for L*'°® that on inputs of length n uses n + O(log(n))
random bits and makes O(1) queries of length £(n) = O(n).

4 rETH and near-optimal uniform hardness-to-randomness

In this section we prove Theorems 1.1 and 1.2. First, in Section 4.1, we define and
construct well-structured functions, which are the key technical component in our proof
of Theorem 1.1. Then, in Section 4.2 we show how well-structured functions can be
used in the proof framework of [IW98] (with minor variations) to construct a PRG

18The standard definition of instance checkers fixes the error probability to 1/3, but we can reduce the
error to 1/6 using standard error-reduction.

20

that “fools” uniform circuits, assuming that the well-structured function cannot be
computed by efficient probabilistic algorithms. Finally, in Section 4.3 we prove Theo-
rems 1.1 and 1.2.

4.1 Construction of a well-structured function

In Section 4.1.1 we present the required properties of well-structured functions and
define such functions. Then, in Section 4.1.2 we present a high-level overview of our
construction of such functions. Finally, in Section 4.1.3 we present the construction
itself in detail.

4.1.1 Well-structured function: Definition

Loosely speaking, we will say that a function f : {0,1}* — {0,1}* is well-structured if
it satisfies three properties. The first property, which is not crucial for our proofs but
simplifies them a bit, is that f is length-preserving; that is, for every x € {0,1}* it
holds that |f(x)| = |x|.

The second property is a strengthening of the notion of downwards self-reducibility.
Recall that a function f : {0,1}* — {0,1}* is downwards self-reducible if f, can be
computed by an efficient algorithm that has oracle access to f,_1. First, we quantify the
notion of “efficient”, in order to also allow for very large running time (e.g., running
time 2"/POYIo8(1)) - Secondly, we also require that for any n € IN there exists an input
length m that is not much smaller than n such that f,, is efficiently computable without
any “downward” oracle. That is, intuitively, if we try to compute f on input length n
by “iterating downwards” using downward self-reducibility, our “base case” in which
the function is efficiently-computable is not input length O(1), but a large input length
m that is not much smaller than n. More formally:

Definition 4.1 (downward self-reducibility in few steps). For t,s : N — IN, we say that
a function f : {0,1}* — {0,1}* is downward self-reducible in time ¢ and s steps if there exists
a probabilistic oracle machine A that for any sufficiently large n € IN satisfies the following.

1. When A is given input x € {0,1}" and oracle access to f,_1, it runs in time at most
t(n) and satisfies Pr,[Afr1(x,7) = f(x)] > 2/3.

2. There exists an input length m € [n — s(n), n] such that A computes f,, in time t(m)
without using randomness or oracle queries..

In the special case that s(n) = n, we simply say that f is downward self-reducible in time f.

The third property that we need is a refinement of the notion of random self-
reducibility, which is called sample-aided worst-case to average-case reducibility. This no-
tion was recently made explicit by Goldreich and G. Rothblum [GR17], and is implicit
in many previous results (see, e.g., the references in [GR17]).

To explain the notion, recall that if a function f is randomly self-reducible, then
a circuit C that computes f on most of the inputs can be efficiently transformed to a

21

(probabilistic) circuit C that computes f on every input (whp). We want to relax this
notion, by allowing the efficient algorithm that transforms C into C to obtain random
labeled samples for f (i.e., inputs of the form (7, f(r)) where r is chosen uniformly at
random). The main advantage in this relaxation is that we will not need to assume that
C computes f on most of the inputs, but will be satisfied with the weaker assumption
that C computes f on a tiny fraction of the inputs. Specifically:'’

Definition 4.2 (sample-aided reductions; see [GR17, Def 4.1]). Let f : {0,1}* — {0,1}"
be a length-preserving function, and let s : N — NN and dy : N — [0,1). Let M be
a probabilistic oracle machine that gets input 1" and a sequence of s(n) pairs of the form
(r,v) € {0,1}" x {0, 1}" and oracle access to a function f, : {0,1}" — {0,1}", and outputs
a circuit C : {0,1}" — {0,1}" with oracle gates. We say that M is a sample-aided reduction
of computing f in the worst-case to computing f on &y of the inputs using a sample of size s if
for every f,, : {0,1}" — {0,1}" satisfying Prycoyn [fn(x) = fu(x)] > do(n) the following
holds: With probability at least 1 — 6o(n) over choice of 7 = 11, ..., 75(y € {0,1}" and over the

internal coin tosses of M, we have that MFi(1m, (ri, fu(7i))ic[s(n))) outputs a circuit C such
that Pr[C/r(x) = f,(x)] > 2/3 for every x € {0,1}".

Definition 4.3 (sample-aided worst-case to average-case reducibility). For 6y : N —
(0,1), we say that a function f : {0,1}* — {0,1}* is sample-aided worst-case to do-
average-case reducible if there exists a sample-aided reduction M of computing f in worst-
case to computing f on &y of the inputs such that M runs in time poly(n,1/6y(n)) and uses
poly(1/8y(n)) samples.

For high-level intuition of why labeled samples can be helpful for worst-case to
average-case reductions, and for a proof that if f is a low-degree multivariate polyno-
mial then it is sample-aided worst-case to average-case reducible, see Appendix B.

We are now ready to define well-structured functions. Fixing a parameter 6 > 0, a
function f*® is §-well-structured if it is length-preserving, downward self-reducible in
time poly(1/J), and sample-aided worst-case to d-average case reducible. That is:

Definition 4.4 (well-structured function). For 6 : N — (0,1) and s : N — IN, we say
that a function f* : {0,1}* — {0,1}* is (J,s)-well-structured if f¥s is length-preserving,
downward self-reducible in time poly(1/6) and s steps, and sample-aided worst-case to o-
average-case reducible. Also, when s(n) = n (i.e., f* is simply downward self-reducible in
time poly(1/6)), we say that f* is 6-well-structured.

In the following definition, we consider reductions from a decision problem L C
{0,1}* to a well-structured function "¢ : {0,1}* — {0,1}*. To formalize this we
consider both a reduction R, which transforms any input x for L to an input R(x) for

Y Definition 4.2 is actually a slightly modified version of the definition in [GR17]. First, we consider
reductions of computing f in the worst-case to computing f in “rare-case”, whereas [GR17] both reduce
the computation of f to the computation of a possibly different function f/, and parametrize the success
probability of computing both f and f’. Secondly, we separately account for the success probability of
the transformation M and of the final circuit C. And lastly, we also require f to be length-preserving.

22

f¥, and a “decision algorithm” D, which translates the non-Boolean result f¥*(R(x))
into a decision of whether or not x € L.

Definition 4.5 (reductions to multi-output functions). Let L C {0,1}* and f : {0,1}* —
{0,1}*. For t,b : N — IN, we say that L reduces to f in time t with blow-up b if there
exist two deterministic time-t algorithms R and D such that for every x € {0,1}* it holds that
|R(x)| < b(|x|) and that x € L if and only if D(f(R(x))) = 1.

4.1.2 Overview of our construction

For § = 27"/PWog(n) and s = polylog(n), our goal is to construct a (4,s)-well-
structured function f : {0,1}* — {0,1}* such that TQBF reduces to f*® in quasi-
linear time (and thus with quasilinear blow-up). Throughout the section, assume
that an n-bit input to TQBF is simply a 3-SAT formula ¢ on n variables, and it is
assumed that all variables are quantified in-order, with alternating quantifiers (e.g.,
Vw, JwyVws...p(wy, ..., wy,); see Definition 4.6).

Our starting point is the well-known construction of Trevisan and Vadhan [TV07],
which (loosely speaking) transforms the protocol underlying the ZP = PSPACE
proof into a computational problem Lry : {0,1}* — {0,1}*.2° They required that Lty
will meet the weaker requirements (compared to our requirements) of being down-
ward self-reducible and randomly self-reducible, where the latter means reducible
from being worst-case computabile to being computable on, say, .99 of the inputs.

Before describing our new construction, let us first review the original construction
of Lty. For every n € N, fix a corresponding interval I,, = [Ny, Ni] of r(n) = poly(n)
input lengths. The input to Lty at any input length in I, (disregarding necessary
padding) is a pair (¢,w) € F?", where F is a sufficiently-large field. If (¢, w) €
{0,1}?" then we think of ¢ as representing a 3-SAT formula and of w as representing
an assignment. At input length Ny we define Lty (¢, w) = P(¢,w), where P(¢, x) is a
low-degree arithmetized version of the Boolean function (¢, w) — ¢@(w).

Now, recall that the ZP = PSPACE protocol defines three arithmetic operators on
polynomials (two quantification operators and a linearization operator). Then, at in-
put length Ny + i, the problem Lty is recursively defined by applying one of the three
arithmetic operators on the polynomial from the previous input length Ny + i — 1.%!
Observe that computing Lty at input length Ny + i corresponds to the residual com-
putational problem that the verifier faces at the (r — i) round of the ZP = PSPACE

20Ac’cually, in [TVO07] they define a Boolean function, which treats a suffix of its input as an index of an
output bit in the non-Boolean version that we describe, and outputs the corresponding bit. To streamline
our exposition we ignore this issue.

21Tn more detail, we define three arithmetic operators on functions IF?"* — I, each indexed by a variable

j € [n], and denote these operators by { O{(}ke[s],je[ny In each recursive step i € [r(n)], the polynomial

((ll)), where j,k : IN — [3] are

polynomial-time computable functions, to the polynomial corresponding to input length Ny +i — 1.
Thus, at input length Ny + i, we compute Lty (¢, w) by applying i operators on the polynomial P and
evaluating the resulting polynomial at (¢, w).

corresponding to input length Nj + i is obtained by applying operator Oi

23

protocol, when instantiated for formula ¢ and with » = r(n) rounds. Indeed, at the
largest input length Ny = Ny + r(n) the polynomial Lty is simply a low-degree arith-
metized version of the function that decides whether or not ¢ € TQBF (regardless of
w); thus, TQBF can be reduced to Lty by mapping ¢ € {0,1}" to (¢,1") € F*" and
adding padding to get the input to be of length N7 = poly(n). Note that L7y is indeed
both downward self-reducible (since for each operator O and polynomial P, we can
compute O(P)(¢, w) in polynomial-time with two oracle queries to P), and randomly
self-reducible (since the polynomials have low degree.)

Let us now define our ¥ : {0,1}* — {0,1}*, which replaces their Lty, and high-
light what is different in our setting. Recall that our main goal is to construct the well-
structured function f¥ such that TQBF is reducible to f"* with only quasilinear overhead
in the input length (i.e., we need to avoid polynomial overheads), while keeping the
running time of all operations (i.e., of the algorithms for downward self-reducibility
and for sample-aided worst-case to rare-case reducibility) to be at most 2"/Polylog(),

The first issue, which is relatively easy to handle, is the number of bits that we use
to represent an (arithmetized) input (¢, w) for f*. Recall that we want f** to be worst-
case to d-average-case reducible for a tiny § = 2-n/polylog(n). thysg, f¥s will involve
computing polynomials over a field of large size |F| > poly(1/6). Using the approach
of [TV07], we would need 27 - log(|F|) = ()(n?) bits to represent (¢, w), and thus the
reduction from TQBF to f“® would incur a polynomial overhead. This is easily solvable
by considering a “low-degree extension” instead of their “multilinear extension”: To
represent an input (¢, w) € {0,1}?*" to f*¢ we will use few elements in a very large field.
Specifically, we will use £ = polylog(n) variables (i.e., the polynomial will be F** — TF)
such that each variable “provides” O(n/polylog(n)) bits of information.

A second problem is constructing a low-degree arithmetization P(¢,w) of the
Boolean function that evaluates ¢ at w. In [TV07] they solve this by first reducing
TQBF to an intermediate problem TQBF’ that is amenable to such low-degree arithmeti-
zation; however, their reduction incurs a quadratic blow-up in the input length, which
we cannot afford in our setting. To overcome this we reduce TQBF to another inter-
mediate problem, denoted TQBF'°¢, which is amenable to low-degree arithmetization,
such that the reduction incurs only a quasilinear blow-up in the input length. (Loosely
speaking, we define TQBF'°¢ by applying a very efficient Cook-Levin reduction to the
Turing machine that gets input (¢, w) and outputs ¢(w); see Claim 4.7.1 for precise
details.) We then carefully arithmetize TQBF'°¢, while “paying” for this efficient arith-
metization by the fact that computing the corresponding polynomial now takes time
exp(n/f) = poly(1/6), instead of poly(n) time as in [TV07] (see Claim 4.7.2).

Thirdly, the number of polynomials in the construction of Lty (i.e., the size of
the interval I,) is r(n) = poly(n), corresponding to the number of rounds in the
IP = PSPACE protocol. This poses a problem for us since the reduction from TQBF
maps an input of length n is to an input of length Ny > poly(n). We solve this
problem by “shrinking” the number of polynomials to be polylogarithmic, using an
approach similar to an ZP = PSPACE protocol with only polylog(n) rounds and a
verifier that runs in time 2"/PY1o8("): Intuitively, at each input length, we define f¥

24

by simultaneously applying O(log(1/d)) operators (rather than a single operator) to
the polynomial that corresponds to the previous input length. Indeed, as one might
expect, this increases the running-time of the downward self-reducibility algorithm to
poly(1/4), but we can afford this. Implementing this approach requires some care,
since multiple operators will be applied to a single variable (which represents many
bits of information), and since the linearization operator needs to be replaced by a
“degree-lowering operation” (that will reduce the individual degree of a variable to
be poly(1/4)); see Claim 4.7.3 for details.

Lastly, we also want our function to be downward self-reducible in polylog(n)
steps (i.e., after polylog(n) “downward” steps, the function at the now-smaller input
length is computable in time poly(1/6) without an oracle). This follows by noting that
the length of each interval I, is now polylogarithmic, and that at the “bottom” input
length the function ¢ simply computes the arithmetized version of TQBF!°¢, which
(as mentioned above) is computable in time poly(1/J).

4.1.3 The construction itself

We consider the standard “totally quantified” variant of the Quantified Boolean Formula
(QBF) problem, called Totally Quantified Boolean Formula (TQBF). In this version the
quantifiers do not appear as part of the input, and we assume that all the variables
are quantified, and that the quantifiers alternate according to the index of the variable
(i.e., x; is quantified by 3 if 7 is odd, and otherwise quantified by V).

Definition 4.6 (TQBF). A string ¢ € {0,1}* of length n = || is in the set TQBF C {0,1}*
if ¢ is a representation of a 3-SAT formula in variables indexed by [n| such that, denoting
the variables by wy, ..., Wy, it holds that JwiYwy3wsVws...@(w1, ..., w,). In other words,
¢ € TQBF if the quantified expression that is obtained by quantifying all n variables, in order
of their indices and with alternating quantifiers (starting with 3), evaluates to true.

Recall that QBF, in which the quantifiers are part of the input, is reducible in linear
time to TQBF from Definition 4.6 (by renaming variables and adding dummy variables).

The main result in this section is a construction of a well-structured function f"¢
such that TQBF can be reduced to f** with only quasilinear blow-up. This construction
is detailed in the following lemma:

Lemma 4.7 (a well-structured set that is hard for TQBF under quasilinear reductions).
There exists a universal constant r € IN such that for every constant ¢ € IN the following
holds. For £(n) = log(n) and §(n) = 2"/, there exists a (8,0(¢2))-well-structured
function f** : {0,1}* — {0,1}* such that f*s is computable in linear space, and TQBF
deterministically reduces to ¥ in time n - 1og>*" (n).

Proof. In high-level, we first reduce TQBF to a problem TQBF°¢ that will have a prop-
erty useful for arithmetization, and then reduce TQBF'°¢ to a function f¥¢ that we will
construct as follows. We will first carefully arithmetize a suitable witness-relation that
underlies TQBF°¢; then transform the corresponding arithmetic version of TQBF!°¢ to

25

a collection of low-degree polynomials that also satisfy a property akin to downward
self-reducibility (loosely speaking, these polynomials arise from the protocol under-
lying the proof of ZP = PSPACE [Lun+92; Sha92]); and finally “combine” these
polynomials to a Boolean function f¥ that will “inherit” the useful properties of the
low-degree polynomials, and will thus be well-structured.

A variant of TQBF that is amenable to arithmetization. We will need a non-standard
variant of TQBF, which we denote by TQBF'°¢, such that TQBF is reducible to TQBF'°¢
with quasilinear blow-up, and TQBF'°¢ has an additional useful property. To explain
this property, recall that the verification procedure of a “witness” w = wy, ..., w, in
TQBF is local, in the following sense: For every fixed ¢ it holds that ¢ € TQBF iff
Jw1Vw,... 3SAT (¢, w), where 3SAT (¢, w) = ¢(w) is a relation that can be decided by
a conjunction of local conditions on the “witness” w. We want the stronger property
that the relation that underlies TQBF*°¢ can be tested by a conjunction of conditions that
are local both in the input and in the witness. That is, denoting the underlying relation by
R-TQBF'°¢, we will have that x € TQBF°¢ iff Jw; Vw;... R-TQBF°¢(x, w), where R-TQBF!°°
is a conjunction of local conditions on (x,w). In more detail:

Claim 4.7.1 (a variant of TQBF with verification that is local in both input and witness).
There exists a set TQBF*°¢ € SPACE[O(n)] and a relation R-TQBF**° C ({0,1}* x {0,1}*)
such that TQBF'°¢ = {x : JwVw,JwsVwy...(x,w) € R-TABF°¢}, and the following holds.

1. (Length-preserving witnesses.) For any (x,w) € R-TQBF°€ it holds that |w| = |x|.

2. (Verification that is local in both input and witness.) For every n € IN there exist n
functions {f; : {0,1}" x {0,1}" — {0,1} }ic(y) such that the mapping (x,w,i) —
fi(x,w) is computable in quasilinear time and linear space, and each f; depends on
only three variables, and (x,w) € R-TQBF'°¢ if and only if for all i € [n] it holds that

filx,w) = 1.

3. (Efficient reduction with quasilinear blow-up.) There exists a deterministic linear-space
and quasilinear-time algorithm A that gets as input ¢ € {0,1}" and outputs x = A(¢)
such that ¢ € TQBF if and only if x € TQBF°°.

Proof. Consider a 3-SAT formula ¢ € {0,1}" as an input to TQBF, and for simplicity
assume that 7 is even (this assumption is insignificant for the proof and only simplifies
the notation). By definition, we have that ¢ € TQBF if and only if

JwqVw, Jws.... Jwy, ¢(w, ..., w,) = 1.

Now, let M be a linear-space and quasilinear-time machine that gets as input (¢, w)
and outputs ¢(w). We use an efficient Cook-Levin transformation of the computation
of the machine M on inputs of length 2n to a 3-SAT formula, and deduce the fol-
lowing:??> There exists a linear-space and quasilinear-time algorithm that, on input

22The algorithm transforms M into an oblivious machine [PF79; GS89], and then applies an efficient
Cook-Levin transformation of the oblivious machine to a 3-SAT formula (see, e.g., [AB09, Sec 2.3.4]).

26

1", constructs a 3-SAT formula @, : {0,1}" x {0,1}" x {0,1}22(W — {0,1} of size
ql(n) = O(n) such that for any (¢, w) € {0,1}" x {0,1}" it holds that ¢(w) = 1 if and
only if there exists a unique w’ € {0,1}%(") satisfying ®, (x, w,w') = 1.

Now, using the formula ®,, note that ¢ € {0,1}" is in TQBF if and only if

Jw,Yw, Jws... 3w, Elw’ﬁw'z..Elw;l(n) D, (p,w,w')=1. (4.1)

We slightly modify @, in order to make the suffix of existential quantifiers in Eq. (4.1)
alternate with universal quantifiers that are applied to dummy variables. (Specifically,
for each i € [ql(n)], we rename w; to w);, which effectively introduces a dummy
variable before w!.) Denoting the modified formula by &), we have that ¢ € TQBF if
and only if

Jw1Vw)3ws... 3w, Vwy 3wy V... 3wy, () Pplew,w') =1.

We define the relation R-TQBF°° to consist of all pairs (x, w) such that x = (¢, 122(?)
and w = (w®,wM) € {0,1}l¢l x {0,1}221(¢) and CDT(P‘(go,w(O),w(l)) = 1. Indeed, in
this case the corresponding set TQBF'°¢ is defined by

TQBF ¢ = {(qo, 12at(lel)y Elwgo)Vwéo)..E!w‘(gf‘v’wgl)Elwél)...ﬂwg;)l(‘q)') q)i(p‘(q),w(o),w(l)) = 1} :

Note that, by definition, for every (x,w) € R-TQBF*°° we have that |w| = |x|. To see
that R-TQBF'°¢ can be tested by a conjunction of efficiently-computable local conditions,
note that an n-bit input to TQBF*° is of the form (¢, 1231(¢D) € {0,1}" x {1}291("), and
recall that @/, is a 3-SAT formula of size q1(m) < n that can be produced in linear space
and quasilinear time from input 1”. Also, TQBF*°¢ is computable in linear space, since
on input (¢, 1294(#))) the number of variables that are quantified is |¢| 4+ 2q1(|¢|), and

since @1 o) can be evaluated in space O(|¢]). Lastly, TQBF trivially reduces to TQBF*°¢
by adding padding ¢ > (¢, 129%(¢D). 0

Arithmetic setting. For any n € IN, let ¢y = {o(n) = |(logn)], let n’ = [n/4y], let
So(n) = 27", and let FF be the field with 25" = 1/poly(dy(n)) elements. Recall that
a representation of such a field (i.e., an irreducible polynomial of degree 51’ over IF,)
can be found deterministically either in linear space (by a brute-force algorithm) or in
time poly(n’) = poly(n) (by Shoup’s [Sho90] algorithm).

Fix a bijection 77 between {0,1}%" and F (i.e., ¥ maps any string in {0,1}°" to the
bit-representation of the corresponding element in IF) such that both 77 and 77! can be
computed in polynomial time and linear space. Let H C T be the set of 2"’ elements
that are represented (via 77) by bit-strings with a prefix of n’ arbitrary bits and a suffix

of 4n’ zeroes (i.e, H = {n(z) rz=x0",x € {0,1}”/} C F such that |H| = 2").?

ZThe specific choice of H as the image of Hy = {x0*" : x € {0,1}""} under 7 is immaterial for our
argument, as long as we can efficiently decide Hy and enumerate over Hy.

27

We will consider polynomials F> — F, and we think of the inputs to each such
polynomial as of the form (x,w) € F% x F%. Note that, intuitively, x and w each
represent about 5n bits of information. When x and w are elements in the subset
H% C F%, we think of them as a pair of n-bit strings that might belong to R-TQBF*°°.

Arithmetization of R-TQBF'°°. Our first step is to carefully arithmetize the relation
R-TQBF'°° within the arithmetic setting detailed above. We will mainly rely on the
property that there is a “doubly-local” verification procedure for R-TQBF°¢.

Claim 4.7.2 (low-degree arithmetization). There exists a polynomial PT®F'™ : F2b — |
such that the following holds:

1. (Low-degree.) The degree of PY®F*" is at most O(n - 2").

2. (Arithmetizes R-TQBF°¢.) For every (x,w) € H' x H% it holds that PT®F* (x,w) =
1if (x,w) € R-TQBF°¢, and PT®F (x,w) = 0 otherwise.

3. (Efficiently-computable.) There exists a deterministic algorithm that gets as input (x, w) €
IF2%0, runs in time poly(|F|), and outputs P™®F*° (x,w) € IF. There also exists a deter-
ministic linear-space algorithm with the same functionality.

Proof. We first show a polynomial-time and linear-space algorithm that, given input 1%,
constructs a low-degree polynomial P} WFC . F2"h _ F that satisfies the following:
For every (x,w) €]an'.go (i.e., when the input is a string of 2n’ - ¢y > 2n bits, and
we interpret it as a pair (x,w) € {0,1}?") it holds that PgQBFloc(x,w) =1if (x,w) €
R-TQBF'°°(x, w), and PgQBFloc (x,w) = 0 otherwise.

To do so, recall that by Claim 4.7.1 we can construct in polynomial time and

linear space a collection of n polynomials { fi: IFE"/'KO —]Fz}, . such that for each
en

i € [n] the polynomial f; depends only on three variables in the input (x,w), and
such that (x,w) € R-TQBF*°° if and only if for all i € [n] it holds that f;(x,w) = 1.
For each i € [n], let p; : F?"*% — TF be the multilinear extension of f;, which can be
evaluated in time poly(n) and in linear space (since f; depends only on three vari-
ables, and using Lagrange’s interpolation formula and the fact that 7 is efficiently-

computable). Then, the polynomial P} WBF° s simply the multiplication of all the p;’s;

that is, PSQBFIOC(x,w) = Hie[n]pi(x,w). Note that PgQBFloc can indeed be evaluated in

time poly(n) and in linear space, and that the degree of POTQBFM is O(n) (since each p;

is a multilinear polynomial in O(1) variables).

Now, let ngH),..., n,(f) : H — {0,1} be the “projection” functions such that nl(H)
outputs the i bit in the bit-representation of its input according to 7r. Abusing nota-
tion, we let 7‘E§H), .y 7[1(1{{) : F — F be the low-degree extensions of the 7(1.(H)
are of degree at most |H| — 1 < 2", Also, for every ¢ € F, we denote by 71(H) () the

string n%H) (0),. 7T(H)(0’) € F". Note that the mapping of ¢ € F to 7 (¢) € F”

s Py

’s, which

28

can be computed in time poly(|H|) = poly(|F|) and in linear space (again just using
Lagrange’s interpolation formula and the fact that 77 is efficiently-computable).
: F?% — F. Intuitively, for (x,w) €

Floc

Finally, we define the polynomial PT%
H'% x H%, the polynomial P™®F" first uses the nz-(H)’s to compute the bit-projections

of x and w, which are each of length n’ - £y, and then evaluates the polynomial PgQBFlOC
on these 21’ - £ bit-projections. More formally, for every (x,w) € F> we define

PTF (x,w) = PSQBFIOC (n(H) (x1), ..., T (x4,), aH) (wy), ..., e (w(go)) .

(H)

The first item in the claim follows since for every i € [n'] the degree of 71, is

less than 2, and since deg(PgQBFloc) = O(n). The second item in the claim follows

. And the third item in the claim follows
PTQBFloc
0

immediately from the definition of PpTaBFe

since 71(H) can be computed in time poly(|F|) and in linear space, and since
can be constructed and evaluated in polynomial time and in linear space. (The two
different algorithms are since we need to find an irreducible polynomial, which can

be done either in linear space or in time poly(n) < poly(|F|).) O

Constructing a “downward self-reducible” collection of low-degree polynomials.
Our goal now is to define a collection of O(¢3) polynomials {P,; : F* — F}, c[o(2)
such that the polynomials are of low degree, and P, essentially computes TQBF'°¢,
and computing P,; can be reduced in time poly(1/éy(n)) to computing P, ;1. The
collection and its properties are detailed in the following claim:

Claim 4.7.3. There exists a collection of lo=Co(20p+1)+1 polynomials, denoted {Pn,i : F2l
that satisfies the following:

1. (Low degree:) For every i € [{y), the degree of P, ; is at most O(n - £o - 22"").

2. (P,1 computes TQBF'°¢ on H-inputs:) For any (x,w) € H% x H% it holds that
Pya(x,w) =1if x € TQBF*¢, and P, 1(x,w) = 0 if x ¢ TQBF*°°. (Regardless of w.)

3. (“Forward” self-reducible:) For every i € [{o] it holds that P, ; can be computed in
time poly (2"") when given oracle access to Py ;1.

4. (Efficiently-computable:) The polynomial P, ;. can be computed in time poly(2").
Moreover, for every i € [{y] it holds that P, ; can be computed in space O(n - {y).

Proof. For simplicity of notation, assume throughout the proof that n’ is even. To-
wards defining the collection of polynomials, we first define two operators on func-
tions p : F?% — TF. Loosely speaking, the first operator corresponds to n’ alternating
quantification steps in the ZP = PSPACE proof (i.e., n’ steps of alternately quantify-
ing the next variable either by 3 or by V), and the second operator roughly corresponds
to a linearization step that is simultaneously applied to n’ variables. In both cases, the

29

— F}

ielbo]’

n' variables that we consider are the bits in the representation of a single element in
the second input to p.

Quantifications operator: Let i € [fg]. Loosely speaking, Quant!)(p) causes p to
ignore the i*" variable of its second input, and instead consider alternating quantifi-
cation steps applied to the bits that represent this variable. To do this, we define a
sequence of functions such that the first function replaces the i** variable in the second
input for p by a dummy variable in H, and each subsequent function corresponds to a
quantification step applied to a single bit in the representation of this dummy variable.

Formally, we recurvisely define n’ + 1 functions Quant(® ... Quant(") = Quant(?) (p)
such that for j € {0, ..., n'} it holds that Quant("/)(p) is a function IF2 x {0,1}" 7 — .
The function Quant(?)(p) gets as input (x,w) € F*» and ¢ € {0,1}", ignores the
i" element of w, and outputs Quant ™) (x,w,) = p(x,wy...w;_17(c0*")). Then, for
j € [n'], if j is odd then we define

Quant ™) (p) (x, w, 01...00 ;) =1 — (IT (1-quant®™ D (p)(x, w01, .., ffn/—jz))> ,
z€{0,1}

and if j is even then we define

Quant(i'j)(p)(x,al,...,an/,]-) = J1 Quant(i'j’l)(p)(x,w,al...an/,jz).
z€{0,1}

Note that the function Quant()(p) can be evaluated at any input in linear space
with oracle access to p (since each Quant (") (p) can be evaluated in linear space with
oracle access to Quant("/~1)(p)). Also observe the following property of Quant()(p),
which follows immediately from the definition:

Fact 4.7.3.1. If for some x € H' and any w € HEO it holds that p(x,w) € {0,1}, then for the
same x and any w € H' it holds that Quant¥) (p)(x,w) = 1 if 301Y0»303..Voy such that
p(x, wy.. w;_q 7'((01...Un/04”’)wi+1...w40) =1, and Quant?) (p)(x, w) = 0 otherwise.

Degree-reduction operator: For every fixed z € H, let I, : H — {0,1} be the
indicator function of whether the input equals z, and let I, : F — TF be the low-degree
extension of I, which is of degree at most |H| — 1 (i.e., L(x) = [Tyem (2} Iy Then,
for any i € [{], we define

DegRed(i)(p)(x,w) = Z L(x;) - p(x1...X_12Xj11...Xg,, W) ,
zeH

and similarly for i € [2{y] we denote i’ = i — {j and define

DegRed! (p)(x,w) = Y L(wy) - p(x, wr...wy_12w0p 1.0y, -
zeH

Similarly to the operator Quant(?), note that the function DegRed! (p) can be eval-
uated at any input in linear space with oracle access to p. Also, the definition of the
operator DegRed(”) implies that:

30

Fact 4.7.3.2. For i € [2{y], let v be the variable whose degree DegRed ") reduces (i.e., v = x; if
i € [lo] and v = wy = w;_y, if i € [2€y]). Then, the individual degree of v in DegRed!) (p)
is |H| — 1, and the individual degree of any other input variable to DegRed") (p) remains the
same as in p. Moreover, for every (x,w) € ' x ', if the input (x,w) assigns the variable
v to a value in H, then DegRed) (p)(x,w) = p(x, w).

Composing the operators: We will be particularly interested in what happens when
we first apply the quantifications operator to some variable i € [{y], and then apply
the degree-reduction operator to all variables, sequentially. A useful property of this
operation is detailed in the following claim:

Claim 4.7.3.3. Let p : F? — F and x € H% such that for any w € H' it holds that
p(x,w) € {0,1}. Fori € [fo], let p' : F?0 — T be the function that is obtained by first
applying Quant!) to p, then applying DegRed!) for each j = 1,...,20o. Then, for any w' € H'
we have that p'(x,w') = 1 if J01V0r303..Y0, @ p(x, wy.w] (70(01..00)W), qwy) = 1,

and p’(x,w') = 0 otherwise.

Proof. Fix any w’ € H%. By Fact 4.7.3.1, and relying on the hypothesis that for
any w € H% we have that p(x,w) € {0,1}, it follows that Quant)(p)(x,w’) = 1 if
J01V02303..V0, p(x, wh...w]_47(01...00)W}, 4...w)) = 1 and that Quant) (p)(x,w') =
0 otherwise. Now, let p(*) = Quant!)(p), and for every j € [2fy] recursively define
pl) = DegRed!)(pU~1). By the “moreover” part of Fact 4.7.3.2, and since (x,w') €
H% x H%, for every j € [2fg] we have that pi)(x,w') = pU~1(x,w’), and hence
p'(x,w') = Quant) (x,w’). O

Defining the collection of polynomials: Let us now define the collection of /; =
lo(26y + 1) + 1 polynomials. We first define P, s, (1, +1)+1(x,) = P™®F* (x,w). Then,
we recursively construct the collection in ¢y blocks such that each block consists of
2y + 1 polynomials. The base case will be block i = ¢y, and we will decrease i down
to 1. Loosely speaking, in each block i € [{y], starting from the last polynomial in
the previous block, we first apply a quantification operator to the i" variable of the
second input w, and then apply 2¢ linearization operators, one for each variable in
the inputs (x,w). Specifically, for the i block, we define the first polynomial by
Py i1y (X, w) = Quant(i)(Pn,i(zgoﬂ)ﬂ)(x,w); and for each j = 1,..,,2¢y, we define
Py 2ty +1)—j (%, w) = DegRed) (P, iagy41)—j41) (%,).

Note that the claimed Property (3) of the collection holds immediately from our
definition. To see that Property (4) also holds, note that the first part (regarding P, ;)
holds by Claim 4.7.2; and for the “moreover” part, recall (by the properties of the
operators Quant(!) and DegRed!”) that were mentioned above) that each polynomial P, x
in the collection can be computed in linear space when given access to the “previous”
polynomial P, 1, and also that we can compute the “first” polynomial P, 4 (2¢,11)+1 In

linear space (since this polynomial is just PT®F*°, and relying on Claim 4.7.2). Using
a suitable composition lemma for space-bounded computation (see, e.g., [Gol08, Lem.
5.2]), we can compute any polynomial in the collection in space O(n - {p).

31

We now prove Property (1), which asserts that all the polynomials in the collec-
tion are of degree at most O(n - £y - 22"'). We prove this by induction on the blocks,
going from i = /¢y down to i = 1, while maintaining the invariant that the “last”
polynomial in the previous block i + 1 (i.e., the polynomial P, ;24 41)+1) is of degree
at most O(n - 2"). For the base case i = £, the invariant holds by our definition that
Py to2t04+1)+1 = PT®° and by Claim 4.7.2. Now, for every i = {y, ..., 1, note that the
first polynomial P, ;5 41) in the block is of degree at most 2" . deg(P, il +1) 1) =

O(n - 22") (i.e., the quantifications operator induces a degree blow-up of 2"), and in
particular the individual degrees of all variables of P, ;,,+1) are upper-bounded by
this expression. Then, in the subsequent 2/y polynomials in the block, we reduce the
individual degrees of the variables (sequentially) until all individual degrees are at
most |[H| — 1 < 2" (this relies on Fact 4.7.3.2). Thus, the degree of the last polynomial
in the block (i.e., of P, ;_1)(2¢,+1)+1) is at most 24y - 2" < n-2", and the invariant is
indeed maintained.

Finally, to see that Property (2) holds, fix any (x,w) € H% x H%. Our goal is to
show that P,1(x,w) = 1 if x € TQBF'°¢ and P,;(x,w) = 0 otherwise (regardless of
w). To do so, recall that P, , = — PT®F° and hence for any w’ € H% it holds that
P, (x,w') =1if (x,w') €R- TQBF1°° and P, ; (x,w’) = 0 otherwise. Note that the last
polynomial in block i = /y (i.e., the polynomial P, 4 (2¢,11)-2¢,) is obtained by applying
Quant (%) to Py s and then applying DegRed(j) foreachj =1,...,,2{y. Using Claim 4.7.3.3,
for any w’ € H', when this polynomial is given input (x,w’), it outputs the value 1
if doqVop3os.. Vo, (x, w’l...wzo_ln(al...an/)) € R-TQBF'°¢, and outputs 0 otherwise. By
repeatedly using Claim 4.7.3.3 for the last polynomial in each blocki = ¢y —1,...,1, we
have that P, 1 (x,w) = 1 if 3(71(1)V(72(1) ..V(Tr(l,l)...Elal(éo)...Va,(fO) : (x,w’) € R-TQBF'°¢, where

w' = (7‘[(0-1(1)...0'7(1,1)),.”/7'((0'1@0) U(f"))); and P, 1(x,w) = 0 otherwise. In other words,

we have that P, 1(x,w) = 1 if x € TQBF'°¢ and P,1(x, w) = 0 otherwise, as we wanted.
O

Combining the polynomials into a Boolean function. Intuitively, the polynomials in
our collection are already downward self-reducible (where “downward” here means
that P, ; is reducible to P, ;1) and sample-aided worst-case to average-case reducible
(since the polynomials have low degree, and relying on Proposition B.1). Our goal
now is simply to “combine” these polynomials into a single Boolean function f¥s :
{0,1}* — {0,1}* that will be é-well-structured.

For every n € IN, we define a corresponding interval of input lengths I,, = [N N+
by — 1], where N = 101" - £y + 11n - fy = O(n - £y). Then, for every i € {0,... o — 1},
we define f¥¢ on input length N + i such that it computes (a Boolean version of)

P, ;. _;- Specifically, f* : {0,1}N*" — {0, 1}N* considers only the first 10n’ - £y = 2 -

log(|FF|) = O(n) bits of its input, maps these bits to (x,w) € F? using 7, computes
P, ;. _i(x,w), and outputs the bit-representation of P, 5 ;(x,w) (using 77~ !), padded to
the appropriate length N +i. On input lengths that do not belong to any interval I,
for n € IN, we define f** in some fixed trivial way (e.g., as the identity function).

32

A straightforward calculation shows that the intervals {I,},en are disjoint, and
thus ¥ is well-defined.?* In addition, since the input length to f*s is N = O(n - {)
and each polynomial in the collection is computable in space O(# - £y), it follows that
f¥® is computable in linear space. To see that TQBF reduces to f¥s, recall that by
Claim 4.7.1 we can reduce TQBF to TQBF!°¢ in time 7 - (logn)" (for some universal
constant r € IN); and note that we can then further reduce TQBF'°¢ to f¥¢ by mapping
any x € {0,1}" to an (N + ¢y — 1)-bit input of the form (x,w,p), where w is an
arbitrary string and p is padding. (This is since f* on inputs of length N + {5 —
1 essentially computes P,;.) This reduction is computable in deterministic time 7 -
log(n)r+2c+1_

We now want to show that f*¢ is downward self-reducible in time poly(1/4) and
in O((log N)%) steps, where §(N) = 2N/(logN)* and N denotes the input length. To
see this, first note that given input length N € IN we can find in polynomial time an
input length n such that N € I, if such n exists. If such n does not exist, then the func-
tion is defined trivially on input length n and can be computed in polynomial time.
Otherwise, let Ny < N be the smallest input length in I, (i.e., Ny = 10 [n/ly(n)] -
lo(n) + 11n - fy(n)), and denote N = Ny + i, for some i € {0,..., {y(n) —1}. Note
that f{ corresponds to the polynomial P, 7 ,)_;, and f? ; corresponds to the poly-

nomial P, 7y (j_q)- By Claim 4.7.3, the former can be computed in time poly(2") =

poly(21/(legm)%) — poly(2N/10gN)*) with oracle access to the latter. Lastly, recall that
|I,| = lo(n) < O(log N)? and that fX, corresponds to P, 4 (), which can be computed
in time poly(2"); hence, there exists an input length Ny > N — O((log N)%*) such that
fX¢ can be computed in time poly(2") < poly(1/8(Np)).

To see that f"* is sample-aided worst-case to J-average-case reducible, first note
that computing f* on any input length N on which it is not trivially defined is
equivalent (up to a polynomial factor in the runtime) to computing a polynomial
F200(") — F of degree d = O(poly(n) -2%") in a field of size ¢ = |F| = 25", where
n < N/(logN)* and n' = [n/ly(n)]. ® We use Proposition B.1 with parameter
p(log([IF?0|)) = §y(n) < 6(N), and note that its hypothesis do(n) > 10 - \/d/[F] is
satisfied since we chose |F| = poly(1/dp(n)) to be sufficiently large. W

4.2 PRGs for uniform circuits with almost-exponential stretch

Let 6(n) = 27"/PoYo8(") The following proposition asserts that if there exists a func-
tion that is both J-well-structured and “hard” for probabilistic algorithms that run

24This is the case since the largest input length in I, is 10 [1/£g(n)] - bo(n) + 11n - fo(n) + (fo(n) — 1) <
101 4+ 104y (n) + (1ln + 1) - £y(n) — 1 < 10n + 11(n + 1) - fo(n) — 1, whereas the smallest input length in
Liv1is10[(n+1)/by(n+1)] - bo(n+1) + 11 (n+1) - fy(n+1) > 10n + 11(n + 1)y (n + 1) + 10.

2The only potential issue here is that the Boolean function is actually a “padded” version of the func-
tion that corresponds to polynomial: It is not immediate that if there exists an algorithm that computes
the Boolean function correctly on € > 0 of the n-bit inputs, then there exists an algorithm that computes
the polynomial correctly on the same fraction € > 0 of the m = log(|IF2%|)-bit inputs. However, the latter
assertion holds in our case since we are interested in probabilistic algorithms.

33

in time 27/Polylog(n) then there exists an i.0.-PRG for uniform circuits with almost-
exponential stretch. That is:

Proposition 4.8 (almost-exponential hardness of a well-structured function = PRG for
uniform circuits with almost-exponential stretch). Assume that for some constant c € IN
and for §(n) = 27"/ 18 there exists a -well-structured function that can be computed
in linear space but cannot be computed by probabilistic algorithms that run in time 2/ 108(1)°,
Then, for every k € IN and for t(n) = nlo8lo8(" there exists a (1/t)-i.0.-PRG for (t,log(t))-
uniform circuits that has seed length O(log(n)) and is computable in time nPeYloglog(n),

Proposition 4.8 follows as an immediate corollary of the following lemma. Loosely
speaking, the lemma asserts that for any J-well-structured function f¥®, there exists
a corresponding PRG with almost-exponential stretch such that a uniform algorithm
that distinguishes the output of the PRG from uniform yields a uniform probabilistic
algorithm that computes f"*. Moreover, the lemma provides a “point-wise” state-
ment: For any n € IN, a distinguisher on a small number (i.e., polyloglog(#)) of input
lengths in a small interval around 7 yields a uniform algorithm for f** on input length
O(log(n). We will later use this “point-wise” property of the lemma to extend Propo-
sition 4.8 to “almost everywhere” versions (see Propositions 4.11 and 4.12).

In the following statement we consider three algorithms: The pseudorandom gen-
erator G; a potential distinguisher for the PRG, denoted A; and an algorithm F for
the “hard” function f"*. Loosely speaking, the lemma asserts that for any n € IN, if
G is not pseudorandom for A on a every input length in a small set of input lengths
surrounding 7, then F computes f* on input length £(n) = O(log(n)). We will
first fix a constant c that determines the target running time of F (i.e., running time
te(€) = 2¢/108(0) and the other parameters (e.g., the parameters of the well-structured
function, and the seed length of the PRG) will depend on c. Specifically:

Lemma 4.9 (distinguishing a PRG based on f" = computing f"%). Let ¢ € IN be
an arbitrary constant, let §(n) = 27"/ 18 and let s : N — IN be a polynomial-time
computable function such that s(n) < n/2 for all n € N. Let f*s : {0,1}* — {0,1}* be
a (8, s)-well-structured function that is computable in linear space, let t(n) = n'o8los(" for
some constant k € IN, and let £(n) = [log(n) - (loglogn)¥| for a sufficiently large constant

b € IN. Then, there exist two objects that satisfy the property detailed below:

1. (Pseudorandom generator). An algorithm Go that gets as input 1" and a random seed of
length (g (n) = O(£(n)), runs in time nP°Y1°818(") and outputs a string of length n.

2. (Mapping of any input length to a small set of surrounding input lengths). A polynomial-
time computable mapping of any unary string 1" to a set S, C [n,n?] of size |S,| =
s(O(log(n))), where a € N is a sufficiently large constant that depends on k.

The property that the foregoing objects satisfy is the following. For every probabilistic
time-t algorithm A that uses log(t) bits of non-uniform advice there exists a corresponding
probabilistic algorithm F that runs in time tg(£) = 2¢/1°8(° sych that for any n € N we have

34

that: If for every m € S, it holds that Go(1™, ulco(m)) is not (1/t(m))-pseudorandom for A,
then F computes f¥ on strings of length {(n).
Moreover, for any function str : N — IN such that str(n) < n, the above property

holds if we replace Go by the algorithm G that computes Gy and truncates the output to length
str(n) (ie, G(1",z) = Go(1",2)1, ..., Go(1", 2) stz (n))-

Observe that Proposition 4.8 indeed follows as a contra-positive of Lemma 4.9
(with str being the identity function, which means that G = Gy): If every probabilis-
tic algorithm F that gets an ¢-bit input and runs in time 2¢/1°8()° fails to compute
f¥¢ infinitely-often, then for every corresponding time-t algorithm A there exists an
infinite set of inputs on which G is pseudorandom for A.

Proof of Lemma 4.9. For any p, s, J, k, t, and f*® that satisfy our hypothesis, let
fELs) 1 £0,1}* — {0,1} be defined as follows: For any (x,7) € {0,1}" x {0,1}" we let
L) (x,7) = Vi) f7°(x);i - i, where the arithmetic is over IF.® (We use the notation
fEL(#3) since we will use the algorithm of Goldreich and Levin [GL89] to transform a
circuit that agrees with f€-(*3) on 1/2 + € of the inputs into a circuit that computes f*
on poly(e) of the inputs.)

The algorithm Gy is the Nisan-Wigderson generator, instantiated with f¢(%%) as the
hard function and with combinatorial designs such that the output length is 1, the sets
in the design are of size {(n) = [log(n) - (loglogn)"] (where b is a sufficiently large
constant that depends on k), the seed length is {5 (n) = O(¢(n)) = O(log(n)), and the
size of the intersection between any two sets in the design is vy - log(n) where v > 0
is a sufficiently small constant (see, e.g., [Vad12, Prob 3.2] for a suitable construction).
Since f¥ is computable in linear space, the function fé-(%%) (x,r) is computable in time
nPolyloglog(n) ‘and hence Gy is computable in time pPolyloglog(n)

Fix a mapping of any 1" to a corresponding set S, that will be defined in a moment
(and depends only on the parameters up to this point). Now, let str : N — N
be any polynomial-time computable function satisfying str(n) < n, and let G be
algorithm that gets input 1" and log(#(n)) bits of non-uniform advice and runs in
time t(n). For any sufficiently large n € IN, we assume that for every m € S,, when
A is given input 1°¢*(") and corresponding “good” advice, with probability at least
1/t(m) it outputs a circuit Dgyy () : {0, 1}stx(m) 5 £0,1} that (1/t(m))-distinguishes
G(1™, 4y, (sp)) from uniform. Under this assumption, we will construct a probabilistic
algorithm that gets input 1), runs in time poly(1/5(¢(n)) = 20(¢(n)/1og(Lm)™) and
with high probability outputs a circuit {0,1}*"") — {0,1} that correctly computes
f¥ on £(n)-bit inputs. This implies that a probabilistic algorithm can decide f* on
{0,1}4™ in time at most 2¢()/1og(¢(m)*,

Towards presenting the construction, denote ¢'(n) = ¢(n)/log(¢(n))“t!, and fix a
sufficiently small universal constant € > 0 (which depends only on universal constants

c+1

20n odd input lengths the function fS-(“s) is defined by ignoring the last input bit; that is,
FOLs) (x, ro) = FOL(¥S) (x, 7), where |x| = |r| and || = 1.

35

from arguments in [NW94; IW98]). We assume that £(n) is sufficiently large such that
t(n) = ploglog(n)* < 2¢4'(n) Recall that, since f*® is downward self-reducible in s steps,
there exists an input length ¢o(n) > ¢(n) —s(¢(n)) such that fZ)s(n) is computable in
time poly(1/6(¢y(n))). For L, = {ly(n),..,L(n)}, we define S, = {¢71(2i) : i €
L,}. Note that indeed |S,| < s(¢(n)) = s(O(log(n))); and relying on the fact that
s((n)) < £(n)/2, we have that S, C [ng, n1] where ng = £=1(24y) > ¢-1({(n)) = n
and n; = £71(2¢(n)) < n?. Lastly, note that S, does not depend on the function str
or on the algorithm A.

Our first step is to show that (loosely speaking) under our assumption about A, for
any m € S, we can efficiently construct (using only a small amount of non-uniform
advice) a circuit that computes f¢($) on noticeably more than half of the inputs of
length ¢(m). The proof of this claim is a variation on the standard efficient transfor-
mation of distinguishers for the Nisan-Wigderson PRG to approximating circuits for
the “hard” function, from [IW98] (following [NW94]).

Claim 4.9.1. There exists a probabilistic algorithm such that for any m € S,, when the
algorithm is given input 1°™), and oracle access to f¥(“s) on £(m)-bit inputs, and 2¢ - £'(m)
bits of non-uniform advice, the algorithm runs in time 2 ") and with probability more than
210 outputs a circuit {0,1}¢0") — {0,1} that computes f-(%) correctly on more than
1/2 + 2710 of the inputs.

Proof. Let £ = £(m), let ¢/ = ¢'(m), and let m" = str(m) < m. Let us first assume that
m' = m (i.e.,, Go = G and str is the identity function). In this case, a standard argument
(based on [NW94] and first noted in [IW98]) shows that there exists a probabilistic
polynomial time algorithm Apw that satisfies the following: When given as input
a circuit D,, : {0,1}" — {0,1} that (1/m'"8l8(m")_distinguishes G(1", g () from
uniform, and also given oracle access to f(“) on (-bit inputs, with probability at
least 1/0(m) the algorithm Ay outputs a circuit C; : {0,1}* — {0,1} such that
Prycqony[Ce(x) = fO09) (x)] = 1/2+1/0(mleslos(m)’).

Towards extending this claim to the setting of str(m) < m, let us quickly recap the
original construction of Aynw: The algorithm randomly chooses an index i € [m] (for a
hybrid argument) and values for all the bits in the seed of the NW generator outside
the i set (in the underlying design); then uses its oracle to query poly(m) values for
fSL(¥s) (these are potential values for the output indices whose sets in the seed intersect
with the it" set), and “hard-wires” them into a circuit C, that gets input x € {0, 1}5,
simulates the corresponding m-bit output of the PRG, and uses the distinguisher to
decide if x € f(“3). Now, note that if the output of the PRG is truncated to length
m' = str(m) < m, the construction above works essentially the same if we choose
an initial index i € [m'] instead of i € [m], and if C; completes x to an m’-bit output
of the PRG instead of an m-bit output. Indeed, referring to the underlying analysis,
these changes only improve the guarantee on the algorithm’s probability of success
(we do not use the fact that the guarantee is better). Thus, for any m’ = str(m) < m,
there is an algorithm A that gets as input a circuit D, : {0,1}" — {0,1} that

36

fGL(ws)

(1/mloslos(m))_distinguishes G (1", u, (m)) from uniform, and oracle access to f,""",
and with probability at least 1/0(m) outputs a circuit C; : {0,1}* — {0,1} such that
Prycqony[Ce(x) = f09) (x)] = 1/2 4 1/O(mleslos(m)’).

Now, for ¢ € N, let m = m({) be such that ¢ is the seed length of G on m-bit
inputs, and let m’ = str(m). Our probabilistic algorithm is given as input 1¢ and
non-uniform advice (a,m’) such that |a| = log(t(m)) = log(m) - loglog(m)* = € - ¢/;
note that, since m’ < m, the total length of the advice is at most € - ¢/ + log(m) <
2¢ - ¢'. Our probabilistic algorithm simulates the algorithm A on input 1" with the
advice a, and feeds the output of A as input for Ayw. This algorithm runs in time
mOoglog(m)) — o' Note that with probability more than (1/m!°8°8 (m)k), the algorithm
A outputs D,y : {0,1}™ — {0,1} that (1/m!°8l8(m")_distinguishes G (1", Uy () from
uniform, and conditioned on this event, with probability at least 1/O(m) the combined
algorithm outputs a circuit C; : {0,1} — {0,1} that correctly computes f(**) on
1/2+1/0(mosls(m") > 1/2 427 of the (-bit inputs. 0

We will call the algorithm in the statement of Claim 4.9.1 a weak learner for f(") on
input length £(m). Then, Claim 4.9.1 implies that there exists a weak learner for f¢-(¥s)
on any input length in 2L, = {2i : i € L,}. See Figure 1 for a pictorial description of
the sets L,,, 2L,,, and S,, and for a reminder about our assumptions at this point.

ﬁo(.ﬂ)_ﬁ(f} _____ Mun)) _?jl_(_Zfo(”)) 5_1(25(”))
L, 2L, contains S, = ¢~1(2L,)

Figure 1: We want to compute f** on inputs of length ¢(n). We define a corresponding
interval L, = {{y(n),...,£(n)} of input lengths, where ¢y(n) > ¢(n) —s(¢(n)), in which
we will use the downward self-reducibility of f*s. We assume that there is a uniform
distinguisher A for the PRG on all input lengths in S,, = ¢~!(2L,), and deduced that
there exists a weak learner for f("s) on all input lengths in 2L,.

Given as input 1/("), we construct in time poly(1/8(£(n))) = 20(¢(1)/log(t(n)™) —

20(¢(m) 3 circuit for [E’(sn), by inductively constructing circuits for f;*, for increasing
values of i € L, = {{y(n), ..., £(n)}, where for each i we will construct the correspond-
ing circuit in time 20(i/108()™") " Indeed, the construction for the base case i = lo(n)
is trivial, since fZ)S(n) is computable in time poly(1/5(ly(n))) < 20(to(n)/ log(£o(n))“*1)
where the inequality is due to our hypothesis that ¢ is sufficiently large (the precise
requirement from ¢ will be specified below). Therefore we just need to prove the
inductive step. This will be done as follows:

Claim 4.9.2. There exists an algorithm that gets as input i € L, \ {lo(n)} and a circuit
Ci—1:{0,1}1 — {0,1} that computes fs,, runs in time 20/ 10g()™™) . poly(|Ci_4]), and
with probability at least 1 — exp(i/ log(i)*1) outputs a circuit C; : {0,1} — {0,1} of size

37

200/ 108()™Y) that computes fF=. (Note that the size of the output circuit C; does not depend
on the size of the input circuit C;_1.)

Proof. Let i’ = 2i/log(2i)°"!, and let S = |C;_1|. First note that the algorithm can
compute f'* in time poly(1/4(i), S) (using the downward self-reducibility of f*¢ and
the circuit C;_1) and also compute f;iL(ws) in time poly(1/5(i),S) (using the fact that
L) (x,7) = Yjeli f75(x);j - 7j). We will construct C; in four steps:

1. Simulating the learner for f,; “L("%) " We use the weak learner for f;iL(ws) to construct

a list of 200 circuits {0,1}% — {0,1} of size 2 such that at least one circuit in the list
correctly decides fzciL(ws) on 1/2 427" of the (2i)-bit inputs.

To do so, we enumerate over all 22¢ possible advice strings for the weak learner
for f;L(ws). For each fixed advice string a € {0, 1}2€‘i,, we simulate the weak learner
with advice a for 2°() times (using independent randomness in each simulation),

WS

while answering its queries to f2 : using C;_;. Note that when a is the “good”
advice, each simulation of the learner is successful with probability at least 2= Thus,
with probability at least 1 — exp(—i’) our list contains at least one circuit that correctly

computes f2l) on at least 1/2 427 of its inputs.

GL ws

2. Weeding the list to find a circuit for f,; We now test each of the 2°(") circuits

in order to find a single circuit C} : {0,1}* — {0,1} that computes f;iL(ws) on1l/2+
272" of the inputs.
To test each circuit we randomly sample 2°(") mputs, compute fGL “s) at each of

these inputs using C;_1, and compare the value of f2i ") to the output of the candidate

circuit. For each circuit, with probability at least 1 —2-9() over the sampled inputs,

oL Y . .
=) 41p to error 2-2'~1. Union-bounding

o(i")

we correctly estimate its agreement with f,;
over the 20() circuits, with probability at least 1 — 2~
this step has agreement at least 1/2 + 22" with f¥s.

, the circuit that we find in

3. Conversion to a circuit that computes f/’° on average. We now convert the circuit
C! for f;iL(ws) to a circuit {0,1}' — {0,1} of size 2°(") that computes f}'® correctly on
(i) = 2700) of its i-bit inputs.?’

To do so, we first use the algorithm of Goldreich and Levin [GL89] to convert the
deterministic circuit C/ into a probabilistic circuit C/’ of size 20(") such that Pr[C/ (x) =
fF3(x)] > 2790, where the probability is taken both over a random choice of x €

?7Recall that in our hypothesis we required a d-well-structured function where §(n) = 2~"/polylog(n)
for a sufficiently large polylogarithmic function. At this point we can specify our precise requirement,

which is that (n) = 2-00*/ log(n)"") where the universal constant hidden inside the O-notation depends
only on universal constants from [GL89] as explained in the argument that we now present.

38

{0,1}" and over the internal randomness of C/. Specifically, the circuit C/ : {0,1}' —
{0,1} gets input x € {0,1}/, and simulates the algorithm from [Gol08, Thm 7.8] with
parameter 8y = 2%, while resolving the oracle queries of the algorithm using the
circuit C/; then, the circuit C/’ outputs a random element from the list that is produced
by the algorithm from [Gol08]. Since Ey[Pr,[C](x,7) = fZGZ.L(WS)(x,r)]] > 1/2+ b, it
follows that for at least dy/2 of the inputs x € {0,1}' it holds that Pr,[C/(x,r) =
Fotu=)(x,r)] > 1/2 4 69/2. For each such input, with probability at least 1/2 the
algorithm of [GL89] outputs a list of size poly(1/4p) that contains f**(x), and thus the
circuit C!’ outputs f**(x) with probability poly(dp).

To conclude we now choose randomness for C; and “hard-wire” it into the circuit.
With probability at least 1 — exp(i'), we obtain a circuit C/” of size 2°(") that computes
£’ correctly on § = poly(dg) of the inputs.

4. Worst-case to J-average-case reduction for f/s. Our final step is to convert C/
(which computes f/'® correctly on d(i) of the i-bit inputs) into a circuit C; of size 20()
that correctly computes f/* on all inputs.

To do so we will use the fact that f*¢ is sample-aided worst-case to J-average-case
reducible, and the fact that we can generate random labeled samples (r, f{**(r)) by
using the circuit C;_; to compute f7*(r). With probability at least 1 — (i), the uniform
reduction outputs a probabilistic circuit C/” of size 2°(") such that for every x € {0,1}/
it holds that Pr,[C/”(x,7) = f"*(x)] > 2/3. ?® Using naive error-reduction we obtain a
circuit of size 20() that correctly computes f¥ at any input with probability 1 —2-00).
Then we uniformly choose randomness of this circuit and “hard-wire” the randomness
into it, such that with probability at least 1 — 2" we obtain a deterministic circuit
C;: {0,1} — {0,1} that computes f¥®. O

Repeating the algorithm from Claim 4.9.2 for i = {y(n) +1,...,£(n), we obtain an
algorithm that runs in time 2°(“), and outputs a circuit for f[f’(sn) with probability at

least 1 — Y_!_, exp(i/ log(i)**1) > 2/3, assuming that / is sufficiently large. i

In the last part of the proof of Lemma 4.9, after we converted a distinguisher for
fEL(#8) into a weak learner for f:(%) (i.e., after Claim 4.9.1), we used the existence of
the weak learner for f¢(*3) on 2L, to obtain a circuit that computes f* on L,. This
part of the proof immediately implies the following, weaker corollary. (The corollary
is weaker since it does not have any “point-wise” property, i.e. does not convert a
learner on specific input lengths to a circuit for f** on a corresponding input length.)

Corollary 4.10 (learning f¢-("s) — computing f**). Let ¢ € N be an arbitrary constant,
let o= : {0,1}* — {0,1}* be a S-well-structured function for §(n) = 27-"/180)" aug
let fS0%3) be defined as in the proof of Lemma 4.9. Assume that for every £ € IN there

2In Definition 4.3 the output circuit has oracle gates to a function that agrees with the target function
on a § fraction of the inputs. Indeed, we replace these oracle gates with copies of the circuit C/’.

39

exists a weak learner for f€L(8); that is, an algorithm that gets input 1° and oracle access to

fz}L(ws)

, runs in time 6~ 1(£), and with probability more than 5({) outputs a circuit over bits
that computes f(“s) correctly on more than 1/2 + 5(¢) of the inputs. Then, there exists an
algorithm that for every £, when given input 1°, runs in time 2/1°8(0° and outputs an (-bit
circuit that computes f*s.

We now use the “point-wise” property of Lemma 4.9 to deduce two “almost-
always” versions of Proposition 4.8. Recall that in our construction of a well-structured
function f¥$, on some input lengths f** is defined trivially, and thus it cannot be that
f¥s is “hard” almost-almost.” However, since TQBF can be reduced to f* with a
quasilinear blow-up b : N — IN, we can still deduce the following: If TQBF is “hard”
almost-always, then for every n € IN there exists n’ < b(n) such that f** is “hard” on
input length n’ (i.e., this holds for the smallest n’ > n of the form b(ng) for ny € N).

In our first “almost-always” result, the hypothesis is that a well-structured function
is “hard” on a dense set of input lengths as above, and the conclusion is that there
exists an “almost-everywhere” HSG for uniform circuits.

Proposition 4.11 (“almost everywhere” hardness of f** = “almost everywhere” de-
randomization of RP “on average”). Assume that for some constant ¢ € IN and for 6(n) =
21/ 108()™ there exists a (9, polylog(n))-well-structured function and b(n) = O(n) such
that for every probabilistic algorithm that runs in time 2"/ 180", and every sufficiently large
n € N, the algorithm fails to compute f* on input length n = min{b(ng) > n : ngp € N}.
Then, for every k € N and for t(n) = n'°8108()" there exists a (1/t)-HSG for (t,log(t))-
uniform circuits that is computable in time nPoY1°81°8(") and has seed length O(log(n)).

Proof. We instantiate Lemma 4.9 with the constant ¢, the function f", the parame-
ter 2k instead of k (i.e., the parameter t in Lemma 4.9 is t(n) = nk’gl"g(”)Zk) and with
str(n) = n (i.e., str is the identity function). Let £(n) = [O(log(n))] be the quasilog-
arithmic function given by Lemma 4.9, let G = Gy be the corresponding PRG, and
let /g(n) = O(log(n)) be the seed length of G. From our hypothesis regarding the
hardness of "¢, we can deduce the following;:

Corollary 4.11.1. For every n € IN there is a polynomial-time-enumerable set S, = S, poyiogiog(n) C
[1n, nPOY108108(1)] of size polyloglog(n) such that for every probabilistic algorithm A’ that runs

in time t> and uses 2 log(t) bits of advice, if n € IN is sufficiently large then there exists m € S,
such that G(1",uy_ () is (1/*(m))-pseudorandom for A’,

Proof. For every n € N, let £(n) = min{b({y) > ¢(n) : £y € N}, and let 1 =
(1((n)) € [n,nPoWloglog(n)] We define S, = Sy, where Sy is the set from Item (2)
of Lemma 4.9 that corresponds to 7i. Note that S, C [n, nP°Y1o8lo8(")] and that |S,| <
polyloglog ().

Now, let A’ be a probabilistic algorithm as in our hypothesis, let F’ be the corre-
sponding probabilistic algorithm from Lemma 4.9 that runs in time tp (i) = 2//1080)°,

2Moreover, in every small interval of input lengths, there is an input length on which f* can be
solved in time poly(1/J) (without using an oracle).

40

and let n € N be sufficiently large. By Lemma 4.9, if there is no m € S, such that
G(1"™,ug () is (1/t(m))-pseudorandom for A’, then F’ correctly computes f* on
input length ¢(7) = £(n), which contradicts our hypothesis. O

The HSG, denoted H, gets input 1", uniformly chooses m € Sa, computes G(1™,s)
for a random s € {0,1}%("), and outputs the n-bit prefix of G(1",s). Note that the
seed length that H requires is O(log(nPo¥1glo8("))) 4-1og(|S,|) = O(log(n)), and that
H is computable in time at most nPl¥loglos(),

To prove that H is a (1/)-HSG for (t,1og(t))-uniform circuits, let A be a proba-
bilistic algorithm that runs in time ¢ and uses log(t) bits of advice. Assume towards a
contradiction that there exists an infinite set B4 C IN such that for every n € B4, with
probability more than 1/¢(n) the algorithm A outputs a circuit D,, : {0,1}" — {0,1}
satisfying Prs[D,(H(1",s)) = 0] =1 and Pricqonyn [Dy(x) =1] > 1/t(n). We will con-
struct an algorithm A’ that runs in time less than 2, uses log(t) + log(n) < 2log(t) bits
of advice, and for infinitely-many sets of the form S, for every m € S, it holds that
G(1™,uy () is not (1/t(m))-pseudorandom for A’. This contradicts Corollary 4.11.1.

The algorithm A’ gets input 1", and as advice it gets an integer of size at most
m. Specifically, if m is in a set S, for some n € By, then the advice will be set to #;
and otherwise the advice is zero (which signals to A’ that it can fail on input length
m). For any m € IN such that the first case holds, we know that A(1") outputs,
with probability more than 1/f(n), a circuit D, : {0,1}" — {0,1} satisfying both
Pr i (0,1)000501) [Dn(H(1",5)) = 0] = 1 and Pryc(g1}:[Dn(x) = 1] > 1/t(n). The algo-
rithm A’ simulates A on input length #, and outputs a circuit Dy, : {0,1}" — {0,1}
such that D,, computes D, on the n-bit prefix of its input. By our hypothesis regard-
ing D;, when fixing the first part of the seed of H to be the integer m, we have that
Pry[Dy(H(1",mos')) = 0] = Pry[Dy(G(1™,s")) = 0] = 1, whereas Pryc g 1n[Dm(x) =
1] > 1/t(n). It follows that D,, distinguishes the m-bit output of G from uniform with
advantage 1/t(n) > 1/t(m). N

We also prove another “almost-everywhere” version of Proposition 4.8. Loosely
speaking, under the same hypothesis as in Proposition 4.11, we show that BPP can be
derandomized “on average” using only a small (triple-logarithmic) amount of advice.
In contrast to the conclusion of Proposition 4.11, in the following proposition we do not
construct a PRG or HSG, but rather simulate every BPP algorithm by a corresponding
deterministic algorithm that uses a small amount of non-uniform advice.

Proposition 4.12 (“almost everywhere” hardness of f** = “almost everywhere” de-
randomization of BPP “on average” with short advice). Assume that for some constant
¢ € N and for §(n) = 27"/ 1800 there exists a (5, polylog(n))-well-structured function
and b(n) = O(n) such that for every probabilistic algorithm that runs in time 2"/ 108("),
and every sufficiently large n € IN, the algorithm fails to compute f¥s on input length
n=min{b(ng) > n:np € N}.

Fork € N and t(n) = n'8°8()", let L € BPTIME[t] and let F be a probabilistic t-time
algorithm. Then, there exists a deterministic machine D that runs in time ppolyloglog(n) 51,4

41

gets O(logloglog(n)) bits of non-uniform advice such that for all sufficiently large n € IN, the
probability (over coin tosses of F) that F(1") is an input x € {0,1}" for which D(x) # L(x)
is at most 1/t(n).

Proof. Let us first prove the claim assuming that L € BPTZME|t] can be decided
using only a number of random coins that equals the input length; later on we show
how to remove this assumption (by a padding argument). For t as in our hypothesis
for L as above, let M be a probabilistic t-time algorithm that decides L and that for
every input x € {0,1}* uses |x| random coins, and let F be a probabilistic t-time
algorithm. Consider the algorithm A that, on input 1", simulates F on input 1" to
obtain x € {0,1}", and outputs a circuit C, : {0,1}" — {0,1} that computes the
decision of M at input x as a function of the random coins of M.

We instantiate Lemma 4.9 with the constant ¢, the function ¥, and the parameter
k. Let ¢ = O(log(n)) be the quasilogarithmic function given by the lemma, let Gy be
the PRG, and let £ = O(log(n)) be the seed length of Gy. We first need a claim similar
to Corollary 4.11.1, but this time also quantifying over the function str:

Corollary 4.12.1. For every n € IN there is a polynomial-time-enumerable set S, = S polytogios(n)
[, nPoYIoglog(m)] of size polyloglog(n) that satisfies the following. For every str : N — N
satisfying str(n) < n, let Gg¢y be the algorithm that on input 1" uses a random seed of length
O(log(n)), computes Gy, which outputs an n-bit string, and truncates the output to length
str(n). Then, for every probabilistic algorithm A’ that runs in time t and uses log(t) bits of
advice, if n € N is sufficiently large then there exists m € S, such that Geer (1", uy () is
(1/t(m))-pseudorandom for A’.

Proof. For any n € IN we define £(n) and S, as in the proof of Corollary 4.11.1. For
any str : N — N satisfying str(n) < n, let G, be the corresponding function. Now,
let A’ be any probabilistic algorithm as in our hypothesis, let F’ be the corresponding
probabilistic algorithm from Lemma 4.9 that runs in time ¢ (i) = 2//1°80)°, and let n €
N be sufficiently large. By Lemma 4.9, if there is no m € S, such that Geer (1", uy (1))

is (1/t(m))-pseudorandom for A’, then F’ correctly computes f*° on input length /(n).
This contradicts our hypothesis regarding f**. 0

The machine D gets input x € {0,1}" and advice of length O(logloglog(n)), which
is interpreted as an index of an element m in the set S,,. Then, for each s € {0,1}/("™)
the algorithm computes the n-bit prefix of Go(1™,s), denoted ws = Go(1",5)1,.n, and
outputs the majority value of {M(x,ws) : s € {0,1}%("™}. Note that the machine D
indeed runs in time mPeyloglog(m) — ypolyloglog(n),

Our goal now is to prove that for every sufficiently large n € IN there exists advice
m € S, such that with probability at least 1 — 1/t(n) over the coin tosses of F (which
determine x € {0,1}" and Cy: {0,1}" — {0,1}) it holds that

Pr [C0) =1 = PG (1", s),.0) = 11| < 1/ 4.2)

42

which is equivalent (for a fixed x € {0,1}") to the following statement:

{l?)rl}n[M(x,r) =1] - Psr[M(x, ws) =1]| < 1/t(n) . (4.3)

Indeed, proving this would suffice to prove our claim, since for every x € {0,1}" such
that Eq. (4.3) holds we have that D(x) = L(x).

To prove the claim above, assume towards a contradiction that there exists an infi-
nite set of input lengths B4 C IN such that for every n € B4 and every advice m € S,
with probability more than 1/¢(n) over x < F(1") it holds that C, : {0,1}" — {0,1}
violates Eq. (4.2). Let str : N — IN be defined by str(m) = n if m € S, for some
n € By, and str(m) = m otherwise.’ Then, our assumption implies that for infinitely-
many input lengths n € B, for every m € S, it holds that Gstr(lm,ugc(m)) is not
(1/t(n))-pseudorandom for A. This contradicts Corollary 4.12.1.

Finally, let us remove the assumption that L can be decided using a linear number
of coins, by a padding argument. For any L € BPTZIME|t], consider a padded
version LP2 = {(x,1!(*])) : x € L}, and note that LP2 can be decided in linear time
using |z| coins on any input z. By the argument above, for every probabilistic ¢-time
algorithm FP2d there exists an algorithm DP2? that runs in time #pypsa (112) = mPolyloglog(m)
such that for all sufficiently large m € IN it holds that Pr,,ppsa(ym) [DP24(z) # LP2%(z)] <
1/t(m).

We define the algorithm D in the natural way, i.e. D(x) = DP2d(x, 1)), and note
that this algorithm runs in time nP¥1818(") Assume towards a contradiction that
there exists a t-time algorithm F and an infinite set of input lengths Br C IN such
that for every n € Bp, with probability more than 1/¢(n) it holds that D(x) # L(x).
Consider the algorithm FP2d that on input of the form 1"+(") runs F(1") to obtain
x € {0,1}", and outputs (x,1") (on inputs of another form FP3? fails and halts), and
let Bppaa = {n + t(n) : n € Br}. For any m € Bppaa we have that

P DR A LR = Pr [D(x) # L) > 1/tn) > 1/4m)

which yields a contradiction. [l

An aside: Derandomization using quasilogarithmic space. The PRG constructed
in Lemma 4.9 actually works in quasilogarithmic space (since f¥“® is computable in lin-
ear space), except for one crucial part: The construction of combinatorial designs.
Combinatorial designs with parameters as in our proof actually can be constructed
in logarithmic space, but only for values of ¢ that are of a specific form (since the
constructions are algebraic).> However, in our downward self-reducibility argument

30Note that str is well-defined, since we can assume without loss of generality that 5,NS, =@ for
distinct n,n’ € By4 (i.e., we can assume without loss of generality that n and n’ are sufficiently far apart).

31This can be done using an idea from [HR03, Lemma 5.5] (attributed to Salil Vadhan), essentially
“composing” Reed-Solomon codes over GF(n) of degree n/polylog(n) with standard designs (a-la Nisan
and Wigderson [NW94]; see [HR03, Lemma 2.2]) with set-size ¢ = polylog(n).

43

we need such designs for every integer ¢ (such that we can assume the existence of
distinguishers on the set S, = £~1(2L,), and hence of learners for fGL(WS) on 2L,).

4.3 Proofs of Theorems 1.1 and 1.2

Let us now formally state Theorem 1.1 and prove it. The theorem follows immediately
as a corollary of Lemma 4.7 and Proposition 4.8.

Theorem 4.13 (rETH = i.0.-PRG for uniform circuits). Assume that there exists i > 1
such that TQBF ¢ BPTIME[2" 98], Then, for every k € N and for t(n) = n'oglog(n)*
there exists a (1/t)-1.0.-PRG for (t,log(t))-uniform circuits that has seed length O(log(n))
and is computable in time nPoY1o8log(n),

Proof. Let () = 2"/1°8(")* for a sufficiently large constant ¢ € IN. By Lemma 4.7,
there exists (6, 0(¢?))-well-structured function f“s that is computable in linear space,
and such that TQBF reduces to f*¢ in time ql(n) = n -log(n)**", where r € N is a
universal constant. Using our hypothesis, we deduce that f** cannot be computed in
probabilistic time on/ log(n)*~! ; this is the case since otherwise, TQBF could have been
computed in probabilistic time

c—r—1

pail(n)/ Tog(1 (1)~ __ prilog(n)**"/log(ai(n))*~! - g/ log(n)" (4.4)

which is a contradiction if ¢ > i +r + 1. Our conclusion now follows from Proposi-
tion4.8. W

We also formally state Theorem 1.2 and prove it, as a corollary of Lemma 4.7 and
of Propositions 4.11 and 4.12.

Theorem 4.14 (a.a.-rETH = almost-always HSG for uniform circuits and alm0Ost-always
“average-case” derandomization of BPP). Assume that there exists i > 1 such that
TQBF ¢ i.0.-BPTIME[2"/198(")]. Then, for every k € N and for t(n) = nloslos(m"
1. There exists a (1/t)-HSG for (t,log(t))-uniform circuits that is computable in time
nPOIglog(n) ayd has seed length O(log(n)).

2. For every L € BPTIME|t] and probabilistic t-time algorithm F there exists a deter-
ministic machine D that runs in time nP°Y°8°8(") and gets O(logloglog(n)) bits of
non-uniform advice such that for all sufficiently large n € IN the probability (over coin
tosses of F) that F(1") is an input x € {0,1}" for which D(x) # L(x) is at most
1/t(n).

Proof. Note that both Proposition 4.11 and Proposition 4.12 rely on the same hypoth-
esis, and that their respective conclusions correspond to Items (1) and (2) in our claim.
Thus, it suffices to prove that their hypothesis holds.

To see this, as in the proof of Theorem 4.13, let §(1) = 2"/18()* for a sufficiently
large constant ¢ € IN, and let f** be the (4, polylog(n))-well-structured function that is

44

obtained from Lemma 4.7 with parameter 6. Let r € IN be the universal constant from
Lemma 4.7, and let q1(n) = n - log(n)?**". Note that for every algorithm that runs in
time 27/108(1*" and every sufficiently large nop € IN, the algorithm fails to compute
f¥ on input length n = ql(np); this is because otherwise we could have computed
TQBF on infinitely-often 7(’s in time on/ log(m)* " < 2m/ IOg(”O)k, where the calculation
is as in Eq. (4.4). This implies the hypothesis of Propositions 4.11 and 4.12. W

5 NETH and the equivalence of derandomization and circuit
lower bounds

In this section we prove Theorems 1.3, 1.4, and 1.5. Recall that these results show
two-way implications between the statement that derandomization and circuit lower
bounds are equivalent, and a very weak variant of NETH. Specifically, the latter variant
is that £ does not have N'TZME|[T]-uniform circuits of small size; let us now properly
define this notion:

Definition 5.1 (VT ZMZE|T]-uniform circuits). For S,T : N — IN, we say that a set
L C {0,1}* can be decided by N'TZMZE|[T]-uniform circuits of size S if there exists a non-
deterministic machine M that gets input 1", runs in time T (n), and satisfies the following:

1. Forevery n € IN there exist non-deterministic choices such that M(1") outputs a circuit
C:{0,1}" — {0,1} of size at most S(n) that decides L, = L N {0,1}".

2. Forevery n € N and non-deterministic choices, M(1") either outputs a circuit C: {0,1}" —
{0,1} that decides Ly, or outputs L.

When we simply say that L can be decided by N'TZME|[T]-uniform circuits (without
specifying a size bound S), we consider the trivial size bound S(n) = T(n).

Recall that ON'TZME(T] is the class “oblivious N'TZME[T]|”, which consists
of all sets decidable by non-deterministic time-T machines such that for every input
length n € IN there exists a single witness w, that convinces the non-deterministic
machine on all n-bit inputs in the set (see [FSW09; GM15]). As mentioned in Sec-
tion 2.2, the class of problems decidable by N'TZME|[T]-uniform circuits is a subclass
of ON'TIME|T], which is in turn a subclass of NTZME[T] N STZE[T]. That is:

Fact 5.2. For T: N — IN, if L C {0,1}* can be decided by N'TZME|T)-uniform circuits,
then L € ONTIME[T) C (NTIME[T'|NSIZE[T']), for T'(n) = O(T(n)).

Proof Sketch. Fix L, and let M be a non-deterministic machine that uniformly con-
structs circuits for L as in Definition 5.1. For every n € N, let w, € {O,l}T(”) be
non-deterministic choices such that M(1",w,) is a circuit for L,. Then, L can be de-
cided by a non-deterministic machine that gets input x € {0,1}" and witness wy,
constructs a circuit for L, using w,, and evaluates this circuit at input x. [l

45

Since we will be repeating some technical non-degeneracy conditions on functions
throughout the section, let us define these conditions concisely at this point:

Definition 5.3 (size functions and time functions). We say that S: IN — IN is a size
function if S is time-computable, increasing, satisfies S(n) = o(2"/n), and for every n € N
satisfies S(n) > nand S(n+1) < 25(n). We say that T: IN — IN is a time function if T is
time-computable, increasing, and for every n € N satisfies T(n) > n.

We will first prove, in Section 5.1, the key technical results that underlie the main
theorems; these technical results will be strengthenings of classical Karp-Lipton style
theorems. Then, in Section 5.2, we will prove Theorems 1.3, 1.4, and 1.5.

5.1 Strengthened Karp-Lipton style results

Recall that Babai et al. [Bab+93] proved thatif EXP C P /poly then EXP = MUA; if we
also use an additional hypothesis that prBPP = prP, then we can deduce the stronger
conclusion EXP = N'P. In the current section we will prove two strengthenings of
this result, which further strengthen the foregoing conclusion: Instead of deducing
that EXP = NP, we will deduce that EX'P can be decided by N'TZME|[T]-uniform
circuits of size S, for small values of T, S.

We first prove, in Section 5.1.1 a lemma that will be used in one of our proofs; we
present this lemma and the underlying question in a separate section since they might
be of independent interest. The two strengthened Karp-Lipton style results will be
subsequently proved in Sections 5.1.2 and 5.1.3, respectively.

5.1.1 Solving (1,1/3)-CAPP using many untrusted CAPP algorithms

Recall that in the problem («, 3)-CAPP, we get as input a description of a circuit,
and our goal is to distinguish between circuits with acceptance probability at least
« > 0 and circuits with acceptance probability at most f > 0; we also denote CAPP =
(2/3,1/3)-CAPP (see Definition 3.1). Assume that we want to solve CAPP on an input
circuit C of description length 1, and that we are guaranteed that an algorithm A solves
CAPP on some input length (unknown to us) in the interval [n, S(n)], for some function
S. This problem arises, for example, if we assume that prBPP C i.o.prAN'P (which
implies that CAPP € i.o.prA/'P), and want to derandomize M A infinitely-often. (This
is because when the M A verifier gets an input of length m, the derandomization of
the verifier corresponds to a CAPP problem on some input length n = m¥, but we
are not guaranteed that the CAPP algorithm works on input length 7.)>> How can we
solve this problem?

If we invoke the algorithm A on each input length in the interval [n, S(n)], while
feeding it C as input each time (i.e., C is padded up to the appropriate length), then
we obtain a variety of answers, and it is not clear a-priori how we can distinguish the

32 Also, in this setting the function S represents “how far ahead” (beyond n) we are willing to look in
our search for the “good” input length.

46

correct answer from possibly-misleading ones. In this section we show a solution for
this problem in the setting where we only need to solve CAPP with one-sided error,
and when A solves a problem in prBPP that slightly generalizes CAPP. Intuitively,
since we only need to solve (1,1/3)-CAPP, it will be possible to prove to us that C is
not a YES instance (i.e., that C does not accept all of its inputs); and since A solves a
problem that slightly generalizes CAPP, we will be able to modify it to an algorithm
that is able to provide such a proof when C is not a YES instance. Details follow.

We first define the aforementioned variation of («, 8)-CAPP, denoted pCAPP (for
“parametrized CAPP”), in which a and B are specified as part of the input.

Definition 5.4 (parametrized CAPP). In the promise problem pCAPPIS,{], the input is
a triplet (C,a, B), where C is a Boolean circuit over v variables and of size S(v) and 1 >
a > B > 0 are rational numbers specified with £(v) bits. The YES instances are such that
Pry[C(x) = 1] > a and the NO instances are such that Pry[C(x) = 1] < B.

Note that if /(v) = O(log(S(v))), then pCAPP[S,¢] € prBPP. (This is since we
can uniformly sample €2 inputs for C, where € = B —a > 1/poly(S(v)), and esti-
mate Pr,[C(x) = 1] with accuracy (a« — B)/2, with high probability). We now show
that solving (1,1/3)-CAPP for circuits of size S(n) infinitely-often reduces to solving
pCAPP infinitely-often (i.e., on an arbitrary infinite set of input lengths).

Lemma 5.5 (solving CAPP with one-sided error on a fixed input length reduces to solv-
ing pCAPP on an unknown “close” input length). For any two size functions S, S : N —
IN and time function T: N — IN, assume that pCAPP[S(®), (] € 1.0.DTIME|T), where
{(v) = 4-log(v). Then, there exists an algorithm M RP that for infinitely-many val-
ues of n € IN, when given as input (1",C) such that C a v-bit circuit of size at most
max {S(”)(n), S(U)(v)}, the algorithm M RP solves (1,1/3)-CAPP on C in time poly(n) -
v-0(8(n)) - T(O(8" (n))).

Proof. Let q1(S) = O(S) such that circuits of size S can be described by strings of
length q1(S). For any n € IN, we consider inputs of length $(") (1) that describe v-bit
circuits of size S@ (v). Let I, = [2q1(5"(n)),2q1(S" (n + 1)) — 1], and note that
any sufficiently large integer belongs to a unique interval I,. Let MP“APP be a time-T
algorithm that solves pCAPP[S(®), /] infinitely-often. We will use MP“APP to construct
the following search algorithm:

Claim 5.5.1 (search-to-decision reduction that preserves the input length). There ex-
ists an algorithm F that gets as input (1",C,m), where C is a v-bit circuit of size at most

max {S(”)(n),S(”)(v)} and m € I, runs in time poly(n) - v - T(m), and if MP<APP cor-
rectly solves pCAPP[S(®), ¢] on input length m and Pry[C(x) = 1] < 1/3 then F(1",C,m) €
C1(0).

Proof. In the following we will construct a set of m-bit inputs and run MP“APP on each
of those inputs. Since all of our inputs will be of the form (C, «,) where a and B can

47

be specified with 4 - log(v) bits, each input will be of size less than 2q1(S°") (n)) < m;
we will therefore pad each input to be of length exactly m.

First we run MPAPP on input (C,1/2,1/3), and if MPCAPP accepts then we output
0?. Otherwise, when MPCAPP rejected, we have that Pry[C(x) = 1] < 1/2; in this case
our goal will be to construct a string in C~1(0), bit-by-bit. Let ~C be the circuit that
computes C and negates the output, let 0y be the empty string, and for i € [v], in
iteration i we act as follows:

1. We start with a prefix 0;_1 € {0, 1}i_1, and with the guarantee that the circuit
—Cq, ,, which is obtained by fixing the first i — 1 input variables of —C to ¢;_1,
satisfies Pry[—C,, ,(x) =1] >1/2—(i—1)-v 2

2. We run MPAPP at input (=Cy, ,0,1/2— (i —1)-0v72,1/2 —i-v2). If MPCAPP
accepts then we define 0; = 0;_10, and otherwise we define ¢; = 0;_11.

3. To see that the guarantee on —C,, is preserved for iteration i 4+ 1, note that if
MPAPP accepted then Pry[—C,.(x) = 1] > 1/2 —i-v~%; and otherwise we have
that Pry[—Cy, ,1(x) = 0] < 1/2— (i — 1) - v~2, which implies (by the guarantee
on =Cy, , from the beginning of the iteration) that Pry[-~C,.(x) = 1] > 1/2 — (i —
1)-072

After the v iterations we have that Pr,[~C,. (x) = 1] > 0, and therefore 0; € (—-C~1)(1) =
C~1(0) and we output ¢;. The running time of each iteration is poly(n) -v- T(m). O

Our algorithm M“®” runs F at inputs {(1",C,k)},., , and evaluates C at the out-
puts of F; if for some k € I, it holds that C(F(C,k)) = 0 then MCEORP rejects, and
otherwise M©R” accepts. The running time of M“R? is poly(n) - v - T(2q1(S") (n +
1)) - [Ia] = poly(n) - O(S™ (n)) - v T(O(S" ().

Now, fix n € N such that for some 1 € I, it holds that MP“APP decides pCAPP[S(®),]
on inputs of length m. To see that M®R” correctly solves (1,1/3)-CAPP on an input

circuit C over v bits of size at most max {S) (n),5®) (v) }, note that if C accepts all its

inputs then M®R” always accepts C; and if C accepts at most 1/3 of its inputs then
for the “good” m € I, it holds that F(1",C,m) € C~1(0), in which case M“®? rejects.
|

5.1.2 A strengthened Karp-Lipton style result for the “low-end” setting

To prove our first strengthening of [Bab+93], let L € £XP, and note that by our
assumption L € P/poly. Consider an MA verifier V that gets input 1%, guesses a
circuit Cr: {0,1}" — {0,1}, and tries to decide if C; correctly computes L, = LN
{0,1}". The key observation is that since this decision problem (of deciding whether
or not a given n-bit circuit computes L) is in £XP, we can apply the original Karp-
Lipton style result of [Bab+93] to it. The latter result implies that there exists an
MA verifier M that decides whether or not C, computes L, correctly. Our verifier V

48

guesses Cr and a witness for M, simulates M, and if M confirms that C;, computes L,
then V outputs Cr.

We will derandomize the foregoing M A verifier in one of two ways. The first relies
on a hypothesis of the form prBPP C prNSUBEX P, which immediately implies
that MA C NSUBEXP. The second relies on a hypothesis of the form prBPP C
i.0.prSUBE XP; in this case we derandomize the M A verifier infinitely-often, relying
on the fact that the M A verifier can be assumed to have perfect completeness [Fiir+89]
and on Lemma 5.5 (which was presented in Section 5.1.1). Note that in both cases, the
running time of the resulting non-deterministic machine is sub-exponential, but the
size of the output circuit Cy, is nevertheless still polynomial.

The following statement and proof generalize the above, using parametrized “col-
lapse” and derandomization hypotheses. Specifically, if we assume that £ C STZE|[S]
and that prBPP can be derandomized in time T, we deduce that £ has N TZME|T'|
uniform circuits of size S(n), where T'(n) =~ T(5(S(n))).

Proposition 5.6 (a strengthened “low-end” Karp-Lipton style result). There exist two
constants k, k' > 1 such that for any size function S: N — N and time function T: N —
IN satisfying T(n) > n¥ the following holds. Let T'(n) = T(§(n)))o(1) where S(n) =
O(S(0(5(n))))-

1. fF DTIME2"] C STZE[S] and pCAPP[v* - S(v),4 -1og(v)] € i.0.prDTIME[T],
then any L € DTZME[2"] can be decided on infinitely-many input lengths by N TZME[T']-
uniform circuits of size S(n).

2. f DTIME2"] C STZE[S] and (1,1/3)-CAPP[v* - S(v)] € prNTIME]T), then
any L € DTZME[2"] can be decided (on all input lengths) by N'TZME[T'|-uniform
circuits of size S(n).

Proof. We first prove Item (1). Fix L € DT ZME[2"], and recall that by our hypothesis
L € STZE[S]. We define a corresponding problem L-Ckts as the set of size-S circuits
that decide L; that is, denoting by q1(S) = O(S) the description length of size-S
circuits, on inputs of length N = n 4 q1(S(n)) we define L-Ckts by

L-Cktsy = {(1",C) : |C| = q1(S(n)) AVx € {0,1}",C(x) = L(x)} ,

and on inputs of length N that cannot be parsed as N = n +q1(S(n)) we define L-Ckts
trivially. Note that L-Ckts € DTZME[2N], since we can enumerate the 2" < 2°(N)
inputs, and for each x € {0,1}" compute C(x) and L(x) in time 2" + poly(|C|) < 2°0).

Given input 1", we first guess a circuit C,(lL) of size S(n), in the hope that C,(ll“) de-
cides L,; note that a suitable circuit exists by our hypothesis. Now we consider the
problem of deciding if x = (1”,C,(1L)) € L-Ckts, where x € {0,1}N="+a1(5() Gince
L-Ckts € DTZME2N], we can reduce L-Ckts to the problem L*°¢ from Proposi-
tion 3.12; that is, we compute in time poly(N) an input ' € {0,1}N'=O0N) for [nice
such that x € L-Ckts <= x’ € Lrce,

49

Now, let N = ¢(N') = O(N), where is the query length of the instance checker IC
for L*°®. We guess another circuit, which is of size 5(2N) and denoted C5™: {0,1}Y —
{0,1}, in the hope that CILQnice decides L%°%; again, a suitable circuit exists by our hy-

énice _
pothesis.?> We then construct a circuit IC_Y : {0,1}°™) — {0,1} that computes the
decision of IC at input x" and with oracle Cf™, as a function of the O(N) random
coins of IC, and maps the outputs {0, L} of IC to 0, and the output 1 of IC to 1.

ppice

Note that the circuit IC N is over v = O(N) input bits and of size S (n)

[nice

poly(N) - S(2N). Also, measuring the size of IC Y as a function of its number of

def

input bits (i.e., of v), the size is upper-bounded by S(*) (v) def k. S(v), where k € N is
a sufficiently large universal constant (and we assume without loss of generality that
v > 2N). By the properties of the instance checker, and using the fact that a suitable
circuit CILVn ** for L’Z‘vice exists, we have that:

1. If C{%) decides L then x' € L"i°, and hence for some guess of CL™ the circuit
Lnice

Ic, ¥ will have acceptance probability one.

2. 1If C,SL) does not decide L then x" ¢ L*°¢, and hence for all guesses of C]Lvnice the
[nice

circuit IC, N accepts at most 1/6 of its inputs.

Using our hypothesis about pCAPP and Lemma 5.5, there exists an algorithm

[nice

MCRP that for infinitely-many values of n € IN gets input (1”,IC_Y) and solves
[nice " "

(1,1/3)-CAPP on ICS,N in time poly(n)-v-0O(S(n))-T (O(S(”)(n)>. We run this
pnice

algorithm on (1",IC_~), and if it accepts (i.e., asserts that the acceptance probability

of IC Y is larger than 1/3) then we output the circuit C,(lL) ; otherwise we output L.

Note that the size of the circuit that we output is S(n), and that our running time
is at most

poly(n) -v- O(S(n)) - T (O™ (n)) = poly(n) - O(S(m))* - T (O(S(O(S(n)))))

< T (O(S(O(s(m))))°™

[nice

where the last inequality relied on the fact that T(n) > n¥ for a sufficiently large
constant k’.

3To see this more formally, let LP2d = {(x,lo(log(‘x))) ix € Lnice}. Since L*°® € DTIME[O(2")),

we have that LP2¢ € DTZME[2"]. Using our hypothesis, LP2¢ on inputs of length N’ = N + O(log(N))
has circuits of size S(N’), and these circuits can be converted (by hardwiring the last N’ — N input bits)
to N-bit circuits for L*¢® of size S(N’) < S(2N).

50

Let us now explain how to prove Item (2). We guess C,SL) and CILVuice and con-

pnice

struct IC Y as above. However, instead of using Lemma 5.5, we run the hypoth-
esized non-deterministic (1,1/3)-CAPP[v* - S(v)] machine, denoted M®“®?, on input

énice
IC,N (the advantage in the current setting being that, in contrast to the proof of
Item (1), the machine M7 is guaranteed to work on all input lengths). When C,SL)
decides L, there are some non-deterministic choices that will cause M“R7 to accept,
whereas when Cr(lL) does not decide L,, all non-deterministic choices will cause M©RP

to reject. Our running time is T(O(S")(n))), which can be bounded as above by

T(O(S(O(5(m))))°".

Note that in the proof of Proposition 5.6 we did not use the fact that L™ is
randomly self-reducible, but only the facts that L**°® is complete for £ under linear-
time reductions (such that all n-bit inputs are mapped to n’-bit inputs, for n’ = O(n))
and that it has an instance checker with query length ¢(n) = O(n).

5.1.3 A strengthened Karp-Lipton style result for the “high-end” setting

The result presented next asserts that if £ € SZZE[S] and prBPP can be derandom-
ized in time T, then & has N'TZMZE[T'] uniform circuits (with a trivial size bound of
T'(n)), where T' =~ T(S(n)). The main difference between this result and the result
presented in Section 5.1.3, other than the differences in parameters, is that for this re-
sult we will need to assume that prBPP can be derandomized deterministically, rather
than only non-deterministically.

Let us briefly describe the proof idea. We construct a circuit for an £-complete
problem L™ that has an instance checker and that is randomly self-reducible (see
Section 3.4 for definitions and details). We guess a circuit CL™* for LPice which
exists by our “collapse” hypothesis, and randomly check whether or not this circuit
“convinces” the instance checker on almost all inputs; if it does, we instantiate the
instance checker with CF"** as an oracle, to obtain a “corrupt” version of L**°¢, denoted
L. We then construct a probabilistic circuit C’ that decides L*¢, with high probability,
using the random self-reducibility of L*'°® and oracle access to L.

Now, under the hypothesis prBPP C prDTZME[T|, we can derandomize the
two probabilistic steps in the foregoing construction. Specifically, we derandomize
the probabilistic verification that the circuit C*"* “convinces” the instance checker
on almost all inputs, and we also derandomize the probabilistic circuit itself (i.e., we
actually output a deterministic circuit that constructs the probabilistic circuit C" and
applies a deterministic CAPP algorithm to C’). Details follow.

Proposition 5.7 (a strengthened “high-end” Karp-Lipton style result). There exist two
constants k, k' > 1 such that for any size function S: N — IN and time function T: N — N
the following holds. Assume that DTTME2"] C i.0.STZE[S] and that CAPP[v* - S(v)] €

51

prDTIZIMEIT|. Thenany L € DTIME[2"] can be decided on infinitely-many input lengths
by NTIZME[T'|-uniform circuits, where T'(n) = O(T (n*- S(k - n))).

Note that the actual hypothesis of Proposition 5.7 is weaker than the hypothesis
prBPP € prDTZIME][T], since we only require an algorithm for CAPP for large cir-
cuits (i.e., for v-bit circuits of size poly(v) - S(v)).

Proof of Proposition 5.7. Fixing any L € DTZME(2"], we prove that there exist
NTIME[T']-uniform circuits that solve L infinitely-often. In what follows, it will
be important to distinguish between the non-deterministic machine M, and the deter-
ministic circuit C: {0,1}" — {0,1} that M constructs. The machine M gets input 1"
and constructs C as follows.

Step 1: Reduce L to L*°°. As its first step, the circuit C computes the linear-time
reduction from L to the problem L™¢® from Proposition 3.12; that is, C maps its input
x € {0,1}" into x’ € {0,1}", where n’ = O(n), such that x € L if and only if x’ € L»ice,

Step 2: Guess-and-verify a circuit for L2*°®. Let IC be the instance checker for L*'¢®
and let i = ¢(n’) be the length of queries that IC makes to its oracle on inputs of
length n’.

Claim 5.7.1. For infinitely-many input lengths n there exists a circuit C¥"*: {0,1}" —
{0,1} of size S(47) that decides L2*°®.

Proof. For every n € IN let I, = [2a - n,2a - (n 4+ 1) — 1], where « € N is the constant
such that 7 = ¢(n’) = a - n. Note that every sufficiently large integer m € IN belongs
to a unique interval I, (i.e.,, n = |m/2x|). We define L' to be the language that on
input length m € I, considers only its first i = « - n input bits and decides L%**® on
those input bits. Since L' on input length m can be decided in time O(2") < 2™, by
our hypothesis there exist an infinite set M C IN of input lengths such that for every
m € M there exist size-S(m) circuits for L),. For every such m € I,,, we hard-wire the
last m — 7 input bits (to be all-zeroes), and obtain a circuit of size S(m) < S(4a - n) =
S(47) that decides LB, O

Thus, if n is one of the infinitely-many input lengths mentioned in Claim 5.7.1,
then there exists CL~ " : {0,1}" — {0, 1} of size S(47) that decides L3*°®. The machine
M non-deterministically guesses such a circuit. We define the corruption of C5"* by

Crpt(CE*") = Pr [Pr[xccé‘““ (z) =1] > 1/6} ,
ze{0,1}"

where the internal probability is over the random choices of the machine IC. Let Dec
be the machine underlying the random self-reducibility of L**°¢, and let ¢ € IN such
that the number of queries that Dec makes on inputs of length n’ is at most (n’)°.
Consider the following promise problem IT:

52

Lnice

e The input is guaranteed to be a circuit C; : {0,1}" — {0,1} of size S(4n).
e YES instances: The circuit Cx"** decides L3¢, in which case Crpt(C:"*) = 0.
e NO instances: It holds that Crpt(CL™) > (n')~%.

Now, note that IT € pr-coRP, since a probabilistic algorithm that gets CL™* as
input can decide whether C}"* is a YES instance or a NO instance by sampling z’s

and estimating Pr [ICC,%nm (z) :J_} for each z. Moreover, using the sampler from The-

orem 3.5, there is a probabilistic coRP algorithm for IT that on input Ct"**: {0,1}" —
{0,1} of size S(47) uses m = O(n) random bits and runs in time poly(n) - S(47). 3*

Hence, the problem IT is reducible to an instance of (1,1/3)-CAPP with a circuit Cry
on v = O(n) input bits and of size n°() - §(471) = v°() . §(v). The machine M runs the
hypothesized CAPP[o* - S(v)] algorithm on Cry, which takes time T (no(l) : S(O(n))),
and rejects iff the CAPP algorithm rejects. Thus, from now on we can assume that
CL™* is not a NO instance of I1, or in other words that Crpt (CL"*) < (n')~%.

Step 3: Transforming a non-corrupt CL™* into a probabilistic circuit for L. Given
that Crpt(C5™) < (n')~%, the machine M now transforms C'* into a probabilistic
circuit C’ that computes L. In high-level, the circuit C’ simulates the random self-
reducibility algorithm Dec for L, while resolving the random queries of Dec by instan-
tiating the instance checker with oracle C"***. Details follow.

Lemma 5.7.2 (non-corrupt C5™* = probabilistic circuit for L*i¢®). There exists an al-
gorithm that gets as input 1" and a circuit C5™*: {0,1}" — {0,1} of size S(47) such that
Crpt(CL™) < (n')~2%, and outputs a probabilistic circuit C': {0,1}" — {0,1} of size
poly(n) - S(471) that uses O(n) random coins such that for every x' € {0,1}", with high
probability over choice of random coins r for C it holds that C'(x/,r) = L™ (x').

Proof. We consider an instantiation of IC on inputs of length n’ and with oracle to
CL™, and as a first step we reduce the error of this algorithm. Let m = O(n) be
the number of random bits that IC uses on inputs of length n’. Consider the following

3Gpecifically, the algorithm uses the sampler from Theorem 3.5 (with a sufficiently large 8,7 > 1
and sufficiently small « > 0) to sample D = poly(n) strings zy,...,z2p € {0,1}”’, and then uses this
sampler again to sample D strings r1, ...,7p € {0, 1}”+O(1°g(”)> to be used as randomness for the machine
IC. The algorithm rejects CL™* if and only if Pric(p) [Prje[D] [Iccr%me (z,71}) :J_] > .01] > 1/2(n")72%,
where 1¢CH (z,7;) denotes the simulation of e (z) with the fixed randomness ;. This algorithm
always accepts YES instances. Now, assume that C,Igme is a NO instance, and let us call z € {0,1}”/
is bad if Pr [ICC%nice (2) :J_} > 1/6. By the properties of the sampler, with high probability over the
choice of zj, ..., zp, the fraction of bad z’s in our sample is at least 1/2(n’)*26; and for any (fixed) bad
z, the probability that Pr;cp| [Iccéfme (z,19) :J_} < .01 is exp(—n). Hence, CL™* will be rejected with

high probability. The bound on the algorithm’s running time follows from standard quasilinear-time
algorithms for the Circuit Eval problem (see, e.g., [LW13, Thm 3.1]) and since O(S(47)) < poly(n) - S(27).

53

probabilistic algorithm IC: {0,1}" — {0,1, L}. Given input z € {0,1}", the algorithm
IC uses the sampler from Theorem 3.5, instantiated for output length m and with
accuracy 1/n, to obtain a sample of D = poly(n) strings r4,...,rp € {0,1}"; then IC
outputs the majority vote among the values {v;};cp), where v; is the output of IC
when instantiated on input z with oracle CL™* and fixed randomness 7;.

Note that IC uses O(n) random bits and runs in time poly(n) - S(471). We claim
that there exists a set G C {0,1}" of density 1 — (n’)~% such that for every z € G,
with probability at least 1 — exp(—n) over the randomness of IC it holds that IC(z) =

L*ice(z). To see this, let G be the set of z’s such that Pr[ICC'%nlce (z) =1] < 1/6,
and recall that the density of G is at least 1 — (n’)~%. Note that for any z € G
we have that Pr[ICCH (z) = LRice(z) > 2/3, because Pr[ICCH (z) # LPice(z)] <
Pr(1cS (z) =L]+Pr[1c% (z) = —CL™*(z)] < 1/3. Thus, for any fixed z € G, the
probability (over the random choices of IC) that the majority vote of the v;’s will not
equal L*°®(z) is at most exp(—n).

Now, consider a probabilistic circuit C’: {0,1}" — {0,1} that chooses O(n) ran-
dom bits to be used as randomness for IC, and simulates the random self-reducibility
algorithm Dec on its input x’ € {0,1}", while answering its queries using the algo-
rithm IC with the fixed random bits chosen in advance. Note that the circuit C’ is
of size poly(n) - S(471). We claim that for every x' € {0,1}", with high probability
C'(x) = L™<(x’). To see this, recall that Dec makes at most (n')¢ queries such that
each query is uniformly-distributed, and thus the probability that all queries of Dec lie
in the set G is at least 1 — (n’) . Conditioned on this event, for each fixed query z, the
probability over choice of randomness for IC that IC(z) does not output L*°®(z) is at
most exp(—n). Hence, by another union-bound, with high probability all the queries
of Dec are answered correctly, in which case C'(x") = L™ (x"). O

Step 4: Derandomizing C'. The non-deterministic machine guessed-and-verified a
circuit C}"*: {0,1}" — {0,1} such that Crpt(C}"™) < (n’)~%, and transformed it
(using the algorithm from Proposition 5.7.2) into a probabilistic circuit C’. The machine

M then constructs the final circuit C, which gets input x € {0,1}" and acts as follows:

1. Computes the reduction from L to L*i°® to obtain x’ € {0,1}".

2. Hard-wires x’ into C' to obtain a description of a circuit C’,: {0,1}°") — {0,1}
such that C/,(r) = C'(¥/,r).

3. Runs the hypothesized CAPP[vX - S(v)] algorithm on C.. and outputs its decision.

Note that C/ is a circuit with v = O(n) input bits and of size poly(n) - S(471) =
v9() . §(v), and therefore for an appropriate choice of constant k/, the CAPP[0X - §(0)]
algorithm distinguishes between the case that C" accepts x’ with high probability and
the case that C’ rejects x” with high probability. Thus, for every x € {0,1}" it holds
that C(x) = L(x). Finally, both the size of the circuit C and the running time of our

non-deterministic machine are bounded by O (T ((no(l) : S(O(n)))) [|

54

5.2 Proof of Theorems 1.3, 1.4, and 1.5

We now prove the main theorems from Section 1.3. We will first prove Theorem 1.3,
which refers to the “low-end” parameter setting: Subexponential-time derandomiza-
tion of prBPP and lower bounds for polynomial-sized circuits against £XP.

Theorem 5.8 (Theorem 1.3, restated). Assume that there exists & > 0 such that DT ZME[2"]

cannot be decided by NTIME [2”5]—uniform circuits of an arbitrarily large polynomial size,
even infinitely-often. Then, denoting prSUBEXP = Ne=oprDT IME[2™], we have that

UcpCAPP[v%, 4 - log(v)] € i.0.prSUBEXP <= EXP ¢ P/poly.

Proof. Let us first prove the first statement. The “<=" direction follows from [Bab+93],
relying on the fact that U.pCAPP[v°, 4 - log(v)] € prBPP. For the “=" direction, as-
sume that for every ¢ € IN and every € > 0 it holds that pCAPP[v%, 4 - log(v)] €
i.0.prDTIME[2™]. Assuming towards a contradiction that EXP C P/poly, we
have that DTZME2"] € SZZE[n°] for some ¢ € IN. We use Item (1) of Proposi-
tion 5.6 with parameters S(n) = n¢ and T(n) = 2", where € > 0 is sufficiently small.
We deduce that DT ZME[2"] can be decided infinitely-often by N'TZME[T']-uniform
circuits of size n‘, where

~ ~ e-Oc(1)
s

T'(n) < T(O(S(O(5(n)))))°") < T(rO)O) = 27
which contradicts our hypothesis if € is sufficiently small. W

We now prove Theorem 5.9, which refers to a “high-end” parameter setting (i.e.,
faster derandomization and lower bounds for larger circuits). We will in fact show that,
conditioned on the hypothesis that £ cannot be decided by N'TZME[22(")]-uniform
circuits, even a weaker derandomization hypothesis is already equivalent to circuit
lower bounds. For example, instead of assuming that prBPP = prP, we will only
need to assume that CAPP for v-bit circuits of size 22(?) can be solved deterministically
in time 2%?, for some small constant « > 0. %

Theorem 5.9 (Theorem 1.4, restated). Assume that there exists § > 0 such that £ cannot
be decided by N'TZME[2°"|-uniform circuits even infinitely-often. Then:

1. There exists a universal constant ¢ > 1 such that

Je > 0: CAPP[2°?] € prDTIME[n/9/¢)] = e >0:& ¢ 1.0.STZE2°"].

2. For every fixed constant ¢ > 1 it holds that

1/c . c . pl/c

Ja > 1:CAPP[2° ‘] € prDTIMER* 18] «—= Fe > 0: & ¢ i.0.STZE[2"
3This is reminiscent of the recent results of Murray and Williams [MW18], who showed that solving
CAPP for v-bit circuits of size 224?) in time 2997 suffices to deduce circuit lower bounds. Note that the

foregoing CAPP problem can be solved in deterministic polynomial time, since the input length is 20(v)
(i-e., this CAPP problem lies in prBPTZME[O(n)] N prP).

].

55

Proof. We first prove Item (1). The “<=" direction follows from [IW99] (or, alterna-
tively, from the more general Corollary 3.3). Specifically, the hypothesized circuit lower
bound implies that prBPP = prP, and in particular that CAPP € prDTIZME[n¢] for
some ¢’ € IN. The conclusion then holds for € < %. For the “==" direction, let k, k' €
N be as in Proposition 5.7, and let ¢ = 2k. Assume that for some € > 0 it holds that
CAPP[S'] € prDTZME|[T], where T(n) = nl®/9)/€), and S(n) = 2¢"/n*, and §'(v) =
ok . S(v) = 2¢7. Assuming towards a contradiction that £ C i.0.STZE[S], Propo-
sition 5.7 implies that DT ZME[2"] can be decided infinitely-often by N'TZME[T'}-
uniform circuits, where T’(n) = O (T(n* - S(k - n))) < 2°7; this is a contradiction.

The proof of Item (2) is similar. The “<=" follows from Corollary 3.3, instantiated
with S(n) = 26", to deduce that CAPP € prDTIME[T] for T(n) = 2457 (") =
2(a/€)"(logn)° For the “==" direction, let e < (5/ka)/¢ be sufficiently small, let S(n) =
2en fk et §'(v) = oF - S(v) = 29", and let T(n) = 2% (1°87)° We use Proposition 5.7
as above, and rely on the fact that T'(n) = O (T(n*- S(k-n))) < 2°". W

Next, we prove Theorem 1.5, which asserts that if non-deterministic derandom-
ization implies lower bounds against EXP, then EXP does not have N P-uniform
circuits. We will actually prove a stronger result: First, we will use a weaker hy-
pothesis than in Theorem 1.5, namely that prBPP C prN'P implies circuit lower
bounds against £XP; and secondly, we will deduce the stronger conclusion that
EXP L (NP NP /poly). (This conclusion is stronger because the class of problems
decidable by N'P-uniform circuits is a subclass of NP NP /poly.)

Theorem 5.10 (Theorem 1.5, restated). Assume that there exists 6 > 0 such that £ does not
have N'TTME 2" |-uniform circuits of an arbitrarily large polynomial size. Then,

prBPP C prNSUBEXP = EXP ¢ P/poly, (5.1)

where prNSUBEXP = NesoprNTIME[2™]. In the other direction, if Eq. (5.1) holds,®
then EXP & (NP NP /poly), and in particular EX'P does not have N'P-uniform circuits.

Proof. The proof of the first statement is similar to the proof of Theorem 5.8. We
assume that EXP C P/poly, and use Item (2) of Proposition 5.6 with parameters
S(n) = n°and T(n) = 2", where € > 0 is sufficiently small; we deduce that any L € £
can be decided on all input lengths by N'TZME|T']-uniform circuits of size n°, where
T'(n) < 200°) < 2" which is a contradiction (the last inequality relied on € > 0
being sufficiently small).

To prove the “in the other direction” statement, first recall that prE XP C pr(N'P N
P/poly) < EXP C (NPnNP/poly), because every exponential-time machine

36In fact, for this statement it suffices to assume that prBPP C prN'P = EXP ¢ P/poly. However,
since we will show a result with tighter relations between the parameters below (see Theorem 5.11), in
the current statement we ignore this issue for simplicity.

56

that solves a promise problem also induces a language.’”” Now, assume towards a con-
tradiction that prEXP C pr(N'P NP /poly). Since prBPP C prEXP, we have that
prBPP C pr(N'PNP/poly). By the hypothesized conditional statement, it follows
that EXP ¢ P/poly, a contradiction. W

As mentioned in the introduction, by optimizing the parameters we can show
tighter two-way implications between the statement “derandomization and lower bounds
are equivalent” and the statement “£ does not have N'TZME|[T|-uniform circuits”.
Towards proving this result, we define the following class of growth functions, which
lie “in between” quasipolynomial functions and sub-exponential functions. For every
two constants k,c € IN, we denote by e(*¢) : N — N the function that applies k loga-
rithms to its input, raises the obtained expression to the power ¢, and then takes k expo-
nentiations of this expression. For example, (%) (1) = 2(°8") and ¢(2¢) (n) € p2eses’.
Note that e¥*1¢) grows asymptotically faster than (%) for any constants ¢, ¢/, and that
(k) is smaller than any sub-exponential function. Then, we have that:

Theorem 5.11 (Theorem 1.5, a tighter version). For any constant k € IN we have that:

36 > 0: DTZME[2"] does not have N'TZME[T]-uniform circuits, for T = 22" (5.2)

I

prBPP C NesoprNTIME2™] = DTIME2"] ¢ UpenSIZE[R™)] (5.3)

I

Veo € N, DTIMER"] ¢ (NTIME[T|NSTZE[T)), for T(n) = e0) (5.4)
that is, statement (5.2) implies statement (5.3), which in turn implies statement (5.4).

We stress that the gap between the values of T in statements (5.2) and (5.4) is
substantial, but nevertheless much smaller than an exponential gap. This is since in
statement (5.2) the hypothesis is for T that is exponential in e(**) where § > 0 is an
arbitrarily small constant, whereas in statement (5.4) the conclusion is for T = e(kco)
where cy is an arbitrarily large constant. For example, for k = 1 this is the difference

< 2",

between quasipolynomial functions and functions of the form 22<log "

Proof of Theorem 5.11. To see that statement (5.2) implies statement (5.3), first ob-
serve that for any two constants c,c’ € IN it holds that (e*9))~1(n) = ¢(1/9) (1) and
that (69) (e(6<) (1)) = e®¢) (). Now, assuming that prBPP C NeprNTIME[22™]
and that DTZME2"] C U, STZE[eR)], we will show that Eq. (5.2) does not hold.
To do so we use Item (2) of Proposition 5.6 with S(1) = e¥%) and with T(n) = 2o (n)

37 In more detail, the “=" direction is trivial, so we prove the “<=" direction. For every IT € pré XP,
let M be an exponential-time machine that solves I, and let Ly be the set of inputs that M accepts. Since
Ly € EXP, there exists an NP-machine that decides Ly and a polynomial-sized circuit family that
decides Ly, and the foregoing machine and circuit family also solve IT.

57

for a sufficiently small € > 0, and rely on the fact that for some b € IN it holds that

T'(n) < T(S(S(n)!)8)! < T(e®2a) (1)) = ¢ (n),

To see that statement (5.3) implies statement (5.4), assume towards a contradiction
that for some ¢y € IN it holds that prDTZME2"] C pr(NTIME[T|NSITZE[T)),
where T(n) = e (n). Hence, CAPP € DTZME[O(2")] C pr(NTIME[T(O(n))]N
STZE[T(O(n))]), and it follows that

prBPP C UeenprNTIMET (n°)]
C UeeNnprNTIME {e(k’c)}

C NesoprNTIME [ze‘k'ﬂ .

By our hypothesis (i.e., by Eq. (5.3)) it follows that DTZME2"] ¢ U,,eNnSZZE [e(k'CO)} ,
which is a contradiction. Finally, to deduce the statement (i.e. bridge the gap between
prDTIME[2"] and DTZIME|2"]), we use the same argument as in Footnote 37. W

6 NOT-rETH and circuit lower bounds from randomized algo-
rithms

In this section we prove Theorem 1.6. We first show the desired BPE lower bounds
follow from a non-trivial weak learner of general circuits of quasi-linear size, and then
show such a weak learner follows from the 2"/PO¥1o8(")_time randomized CircuitSAT
algorithm for roughly quadratic-size circuits.

We are going to apply Corollary 4.10 to show that non-trivial weak learners imply
faster randomized algorithms for TQBF. For that purpose, we first generalize the def-
inition of weak learners so that the algorithm is now required to learn any possible
small oracle circuits.

For a function O : {0,1}" — {0,1}, we also use SZZE(O) to denote the size of the
smallest circuit computing O.

Definition 6.1 (weak learner for general circuits). For S : N — N and 6 : N — R, we
say that a randomized oracle machine A is a 5-weak learner for S-size circuits, if the following
holds.

e On input 1", A is given oracle access to an oracle O : {0,1}" — {0,1}, and runs in
time 6~ 1(n).

o IfSTZE(O) < S(n), then with probability at least 5, A outputs a circuit C on n input
bits with size < S(n) such that C computes O correctly on at least a 1/2 + & fraction of
inputs.

Next, we need the following standard diagonalization argument.

58

Proposition 6.2 (diagonalization against circuits in X4). Let § = 2-n/polylog(n) 'k bea
constant, and ¥ be the d-well-structured function guaranteed by Lemma 4.7, there is a lan-
guage L9728 which is n - polylog(n)-time reducible to f*, and L92& ¢ STZE[n - (logn)ke].

Proof. Let s = n - (logn)k* and s’ = s - logn. By standard arguments, there exists an
s'-size circuit on n bits which cannot be computed by s-size circuits.
Consider the following ¥4 algorithm:

e Given an input x € {0,1}", we guess a circuit C of size s’ on n input bits, and
reject immediately if C(x) = 0. Then we check the following two conditions and
accept if and only if both of them are satisfied.

e (A): For all circuits D on n input bits with size < s, there exists an input y €
{0,1}" such that C(y) # D(y). That is, C cannot be computed by any circuit
with size < s.

e (B): For all circuits D on n input bits with size s’ such that the description of D
is lexicographically smaller than that of C, there exists a circuit E with size < s
such that for all y € {0,1}", E(y) = D(y). That is, C is the lexicographically first
s’-size circuit which cannot be computed by s-size circuits.

Clearly, the above algorithm can be formulated as an n - polylog(n)-size X4SAT
instance, and therefore also an 7 - polylog(n)-size TQBF instance (which can be further
reduced to f*® in n - polylog(n) time). Moreover, it is easy to see that it computes the
truth-table of the lexicographically first s’-size circuit on # input bits which cannot be
computed by any circuit with size <'s.

Therefore, we can set L9128 to be the language computed by the above algorithm.

Remark 6.3. We remark that the standard X3P construction of a truth-table hard for s-size
circuits actually takes O(s2) time: in which one first existentially guesses an s'-length (where
s’ = s - polylog(s)) truth-table L, then enumerates all possible s-size circuits C and all s'-
length truth-tables L' such that L' < L (lexicographically), and checks there exists an input x
such that C(x) # L(x), and an s-size circuit C' computing L'. In the last step, checking C'
computing L' requires evaluating C' on s' many inputs, which takes O(s?) time.

Now we are ready to show that non-trivial learning algorithms imply non-trivial
circuit lower bounds for BPE.

Theorem 6.4 (non-trivial learning algorithms imply BPE lower bounds). For any con-
stant ke > 0, there is another constant Kiearn = Kiearn(kckt), such that letting Siearn =
o~/ (logn)fiearn if there is a jeam-weak learner for n - (log n)ke—size circuits, then BPTIME[2"] ¢
STZE[n - (logn)ke].

Proof. Let § = 27/(08m" where ks is a large enough constant depending on k.. Let
f¥® be the J-well-structured function guaranteed by Lemma 4.7.

59

Recall that f* € SPACE[O(n)]. Hence, the Boolean function f¢-(“s), which is
defined as in the proof of Lemma 4.9, is computable in SPACE[O(n)] as well.

We can safely assume (%) ¢ STZE[n - (logn)k] as otherwise the theorem
follows immediately. Then, by our assumption, it follows that there is a Jjearn-weak

)

GL
learner for f, (ws

can be computed by randomized T%*(n) Aot pn/(logn)fieam™!.

Let L938 be the language guaranteed by Proposition 6.2 such that L4%¢ ¢ STZE[n -
(logn)*], and d = d(ke:) be a constant such that L9 is 7 - (log n)?-time reducible
to f*. We can then compute L3¢ in randomized T%(n - (logn)?) = 2°() time, by
setting kiearn to be large enough. Therefore, it follows that BPTZME2"] ¢ STZE[n -
(lognyfer). M

. Applying Corollary 4.10 and setting kiearn = k;, it follows that f*®

6.1 Randomized CircuitSAT algorithms imply BPE circuit lower bounds

We now prove Theorem 1.6, which asserts that “non-trivial” randomized algorithms
that solve CircuitSAT in time 2"/POY198(") imply circuit lower bounds against BPE.
As explained in Section 2.3, we do so by showing that “non-trivial” randomized al-
gorithms for CircuitSAT imply the weak learner for quasi-linear size circuits, which
enables us to apply Theorem 6.4.

Reminder of Theorem 1.6. For any constant k. € IN there exists a constant keyy € IN

such that the following holds. If CircuitSAT for circuits over n variables and of size n® -

(log 1)kt can be solved in probabilistic time 2"/ (18 mt then BPTIME2"] ¢ STZE[n -
(log)],

Proof. Let s = s(n) = n- (logn) . Let kiearn and djearm be as in Theorem 6.4 such that
a djearn-weak learner for s-size circuits implies that BPE ¢ SZZE[s]. In the following
we construct such a weak learner A with the assumed CircuitSAT algorithm. In fact,
we are going to construct a stronger learner such that:

o If STZE(O) < s(n), then with probability at least 2/3, A outputs a circuit C on
n input bits with size < s(n) such that C computes O correctly on at least a 0.99
fraction of inputs.

Let ksat = ksat(kekt) be a constant to be specified later. The learner A first draws
t=mn-(log n)ke«t2 yniform random samples x1,x2,...,x; from {0,1}", and asks O to
gety; = O(x;) for all i € [t]. Note that A operates incorrectly if and only if STZE(O) <
s(n) and it outputs a circuit D of size < s(n) such that Pryco13:[O(x) = D(x)] < 0.99.

We say that a circuit D is bad if it has size < s(n) and Pryc(91)»[O(x) = D(x)] <
0.99. For a fixed bad circuit D, by a Chernoff bound, with probability at least 1 —
2-9), we have D(x;) # y; for some i. Since there are at most n°) bad circuits,
with probability at least 1 — n0() . 270 > 1 - 2=0(H)+0(s)logn — 1 _2-O() (the last
equality follows as t = n - (logn)*«+2), it follows that for every bad circuit D there

60

exists an index i such that D(x;) # y;. In the following we condition on such a good
event.

By repeating the CircuitSAT algorithm O(n) times and taking the majority of the
outputs, we can assume without loss of generality that the CircuitSAT algorithm
has an error probability of at most 27"". Now, we use the randomized CircuitSAT
algorithm to construct a circuit C of size < s(n) such that C(x;) = y; for all i, bit-by-bit
(this can be accomplished with the well-known search-to-decision reduction for SAT)
with probability at least 0.99. Note that in each iteration, the length of the input to
the CircuitSAT algorithm is the length of the description of a circuit of size s(n), and
hence at most s'(1n) = O(n - (logn)ket1). Setting ks large enough, it follows that A
runs in randomized (Sjearn (7)) ! time.

Assuming STZE(0O) < s(n), such circuits exist, and we can find one with prob-
ability at least 0.99. Conditioning on the good event, this circuit cannot be bad, and
therefore it must agree with O on at least a 0.99 fraction of inputs. Putting every-
thing together, when SZZ£(0) < s(n), the algorithm A outputs a circuit C such that
Pr.c(0112[0(x) = D(x)] > 0.99 with probability at least 0.99 — 2"} > 2/3, which
completes the proof. W

6.2 Randomized X,-SAT[n] algorithms imply BPE circuit lower bounds

One shortcoming of Theorem 1.6 is that the hypothesized algorithm needs to decide
the satisfiability of an n-bit circuit of size O(n?), rather than the satisfiability of circuits
(or of 3-SAT formulas) of linear size.®® To address this shortcoming, we now prove
a different version of Theorem 1.6, which asserts that “non-trivial” randomized algo-
rithms that solve T»-SAT for formulas of linear size in time 2"/POWI8(") imply circuit
lower bounds against BPE.

Theorem 6.5 (randomized ¥,-SAT algorithms imply circuit lower bounds against BPE).
For any constant ke > 0, there is another constant ksar = ksat (kewe) such that if Yo-SAT with
n variables and n clauses can be decided in randomized 2/ 198" time then BPTIME 2" &
STZE[n - (logn)kex].

Proof. Let TQBF'°¢ be the function from Claim 4.7.1, and recall that TQBF*°¢ € SPACE[O(n)].
Therefore, we can safely assume TQBF**° € SZZE[s(n)], for s(n) = n - (logn)ke.

Now we describe a randomized algorithm computing a circuit for TQBF'°¢ on in-
puts of length n. First, it computes the trivial circuit of size-s(1) for TQBF*°¢;. Now,
suppose we have an s(m)-size circuit C,, computing TQBF'°¢,, where m < n, we wish
to find an s(m + 1)-size circuit for TQBF°¢,, 1.

38Since we are interested in algorithms that run in time 2"/PO108(") for a sufficiently large polyloga-
rithmic function, there is no significant difference for us between circuits and 3-SAT formulas of linear (or
quasilinear) size. This is since any circuit can be transformed to a formula with only a polylogarithmic
overhead, using an efficient Cook-Levin reduction; and since we can “absorb” polylogarithmic overheads
by assuming that the polylogarithmic function in the running time 2n/polylog(n) ig sufficiently large.

61

By the downward self-reducibility of TQBF!°¢, we can obtain directly an O(s(m))-
size circuit D for TQBF°¢,,, 1. Our goal is to utilizing the circuit D and our fast ¥,-SAT
algorithm to compute an s(m + 1)-size circuit for TQBF'°¢,, 1. Consider the following
Y,-SAT question: given a prefix p, is there an s(m + 1) circuit C whose description
starts with p, such that for all x € {0,1}"*! we have C(x) = D(x). This can be
formulated by a X,-SAT instance of # - polylog(n) size. By fixing the description bit by
bit, we can obtain an s(m + 1)-size circuit for TQBF*°°,, ;. The success probability can
be boosted to 1 — 272" by repeating each call to the X,-SAT algorithm a polynomial
number of times and taking the majority.

Let L2 be the language guaranteed by Proposition 6.2, and d be a constant such
that L9128 s 5 - (log n)d—time reducible to TQBF'°°. By setting ke, large enough, we can
compute TQBF1°°n,(10g n)¢ (and therefore also L3928 in 2°(") time, Therefore, it follows

that BPTIME2"] ¢ STZE[n - (logn)). N

Finally, we now use a “win-win” argument to deduce, unconditionally, that either
we have an average-case derandomization of BPP, or BPE is “hard” for circuits of
quasilinear size (or both statements hold). An appealing interpretation of this result is
as a Karp-Lipton-style theorem: If BPE has circuits of quasilinear size, then BPP can
be derandomized in average-case.

Corollary 6.6 (a “win-win” result for average-case derandomization of BPP and cir-
cuit lower bounds against BPE). At least one of the following statements is true:

1. For every constant k € IN it holds that BPTIME[2"] ¢ STZE[n - (logn)F).

2. For every constant k € IN and for t(n) = nlo8log() there exists a (1/t)-i.0.-PRG for

(t,1og(t))-uniform circuits that has seed length O(log(n)) and is computable in time
pPpolyloglog(n)

Proof. If for every k' € IN it holds that X,-SAT for n-bit formulas with O(n) clauses can

be decided by probabilistic algorithms that run in time 2"/ (18 ”)k,, then by Theorem 6.5
we have that Item (1) holds. Otherwise, for some k€’ € IN it holds that X,-SAT for
n-bit formulas with O(n) clauses cannot be decided by probabilistic algorithms that
run in time 27/ (0gm* In particular, since solving satisfiability of a given n-bit ¥,
formula with O(n) clauses can be reduced in linear time to solving TQBF, we have that

TQBF ¢ BPTIME [2"/ UOg”)k/H]. In this case, Item (2) follows from Theorem 4.13. i

We note that to prove Corollary 6.6 we do not have to use Theorem 6.5. An alter-
native proof relies on the fact that the >4 formula from the proof of Proposition 6.2 can
be constructed in polynomial time. In particular, if TQBF can be decided in probabilis-
tic time 2"/POW1o8(") for an arbitrarily large polylogarithmic function, then for every
ke we can construct the corresponding ¥4 formula from Proposition 6.2 in polyno-
mial time, and decide its satisfiability in probabilistic time 2°("), which implies that
L9 ¢ BPE; Item (1) of Corollary 6.6 then follows. Otherwise, we have that TQBF

62

cannot be solved in probabilistic time 2"/PO¥1o8(") for some polylogarithmic function;
then we can invoke Theorem 4.13 to deduce Item (2) of Corollary 6.6.

Acknowledgements

We are grateful to Igor Oliveira for pointing us to the results in [OS17, Sec. 5], which
serve as a basis for the proof of Theorem 1.6. We thank Oded Goldreich, who provided
feedback throughout the research process and detailed comments on the manuscript,
both of which helped improve the work. We also thank Ryan Williams for a helpful
discussion, for asking us whether a result as in Theorem 1.6 can be proved, and for
feedback on the manuscript. Finally, we thank an anonymous reviewer for pointing
out a bug in the initial proof of Theorem 1.5, which we fixed.

The work was initiated in the 2018 Complexity Workshop in Oberwolfach; the
authors are grateful to the Mathematisches Forschungsinstitut Oberwolfach and to
the organizers of the workshop for the productive and lovely work environment. Li-
jie Chen is supported by NSF CCF-1741615 and a Google Faculty Research Award.
Ron Rothblum is supported in part by a Milgrom family grant, by the Israeli Science
Foundation (Grant No. 1262/18), and the Technion Hiroshi Fujiwara cyber security re-
search center and Israel cyber directorate. Roei Tell is supported by funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 819702). Eylon Yogev is funded
by the ISF grants 484/18, 1789/19, Len Blavatnik and the Blavatnik Foundation, and
The Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University. Part of
this work was done while the fourth author was visiting the Simons Institute for the
Theory of Computing.

References

[ABO9] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[Ad178] Leonard Adleman. “Two theorems on random polynomial time”. In: Proc.
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1978, pp. 75-83.

[Bab+93] Laszl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP has
subexponential time simulations unless EXPTIME has publishable proofs”.
In: Computational Complexity 3.4 (1993), pp. 307-318.

[BG81] Charles H. Bennett and John Gill. “Relative to a random oracle A, P4 #
NP4 # co — NP4 with probability 1”. In: SIAM Journal of Computing 10.1
(1981), pp. 96-113.

63

[BS+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “On
the concrete efficiency of probabilistically-checkable proofs”. In: Proc. 45th
Annual ACM Symposium on Theory of Computing (STOC). 2013, pp. 585-59%4.

[Car+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ra-
mamohan Paturi, and Stefan Schneider. “Nondeterministic extensions of
the strong exponential time hypothesis and consequences for non-reducibility”.
In: Proc. 7th Conference on Innovations in Theoretical Computer Science (ITCS).
2016, pp. 261-270.

[Chel9] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-case Hard
for ACC Circuits”. In: Proc. 60th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2019.

[Che+19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. “Re-
lations and Equivalences Between Circuit Lower Bounds and Karp-Lipton
Theorems”. In: Proc. 34th Annual IEEE Conference on Computational Complex-
ity (CCC). 2019, 30:1-30:21.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-grained
derandomization: from problem-centric to resource-centric complexity”.
In: Proc. 45th International Colloquium on Automata, Languages and Program-
ming (ICALP). 2018, Art. No. 27, 16.

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy
theorems for probabilistic quasi-polynomial time”. In: Proc. 31st Annual
ACM Symposium on Theory of Computing (STOC)). 1999, pp. 726-735.

[CR20] Lijie Chen and Hanlin Ren. “Strong Average-Case Circuit Lower Bounds
from Non-trivial Derandomization”. In: Proc. 52th Annual ACM Symposium
on Theory of Computing (STOC). 2020.

[CW19] Lijie Chen and R. Ryan Williams. “Stronger Connections Between Circuit
Analysis and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc. 34th
Annual IEEE Conference on Computational Complexity (CCC). 2019, 19:1-19:43.

[Del+14] Holger Dell, Thore Husfeldt, Daniel Marx, Nina Taslaman, and Martin
Wahlén. “Exponential time complexity of the permanent and the Tutte
polynomial”. In: ACM Transactions on Algorithms 10.4 (2014), Art. 21, 32.

[FK09] Lance Fortnow and Adam R. Klivans. “Efficient learning algorithms yield
circuit lower bounds”. In: Journal of Computer and System Sciences 75.1 (2009),
pp- 27-36.

[FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. “Fixed-polynomial
size circuit bounds”. In: Proc. 24th Annual IEEE Conference on Computational
Complexity (CCC). 2009, pp. 19-26.

[Fiir+89] Martin Fiirer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis
Zachos. “On Completeness and Soundness in Interactive Proof Systems”.
In: Advances in Computing Research 5 (1989), pp. 429-442.

64

[GL89]

[GM15]

[Gol08]

[Gol11]

[GR17]

[GS89]

[GSTS03]

[GUV09]

[GVO08]

[HH13]

[HRO3]

[TKW02]

[1P01]

Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-
way Functions”. In: Proc. 21st Annual ACM Symposium on Theory of Comput-
ing (STOC). 1989, pp. 25-32.

Oded Goldreich and Or Meir. “Input-oblivious proof systems and a uni-
form complexity perspective on P/poly”. In: ACM Transactions on Compu-
tation Theory 7.4 (2015), Art. 16, 13.

Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

Oded Goldreich. “In a World of P=BPP”. In: Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computation. 2011,
pp- 191-232.

Oded Goldreich and Guy N. Rothblum. “Worst-case to Average-case re-
ductions for subclasses of P”. In: Electronic Colloquium on Computational
Complexity: ECCC 26 (2017), p. 130.

Yuri Gurevich and Saharon Shelah. “Nearly linear time”. In: Logic at Botik,
Symposium on Logical Foundations of Computer Science. Lecture Notes in Com-
puter Science. 1989, pp. 108-118.

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hardness
versus randomness tradeoffs for Arthur-Merlin games”. In: Computational
Complexity 12.3-4 (2003), pp. 85-130.

Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbal-
anced expanders and randomness extractors from Parvaresh-Vardy codes”.
In: Journal of the ACM 56.4 (2009), Art. 20, 34.

Dan Gutfreund and Salil Vadhan. “Limitations of hardness vs. randomness
under uniform reductions”. In: Proc. 12th International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM). 2008,
pp- 469-482.

Ryan C. Harkins and John M. Hitchcock. “Exact learning algorithms, bet-
ting games, and circuit lower bounds”. In: ACM Transactions on Computation
Theory 5.4 (2013), Art. 18, 11.

Tzvika Hartman and Ran Raz. “On the distribution of the number of roots
of polynomials and explicit weak designs”. In: Random Structures & Algo-
rithms 23.3 (2003), pp. 235-263.

Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “In search
of an easy witness: exponential time vs. probabilistic polynomial time”. In:
Journal of Computer and System Sciences 65.4 (2002), pp. 672-694.

Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-
SAT”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 367-375.

65

[IPZ01]

[IW98]

[IW99]

[Kab01]

[Kan82]

[KKO13]

[LMS11]

[Lu01]

[Lun+92]

[LW13]

[MW18]

[NW94]

[Oli13]

[OS17]

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which prob-
lems have strongly exponential complexity?” In: Journal of Computer and
System Sciences 63.4 (2001), pp. 512-530.

R. Impagliazzo and A. Wigderson. “Randomness vs. Time: De-Randomization
Under a Uniform Assumption”. In: Proc. 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1998, pp. 734—.

Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1999, pp. 220-229.

Valentine Kabanets. “Easiness assumptions and hardness tests: trading time
for zero error”. In: vol. 63. 2. 2001, pp. 236-252.

R. Kannan. “Circuit-size lower bounds and non-reducibility to sparse sets”.
In: Information and Control 55.1-3 (1982), pp. 40-56.

Adam Klivans, Pravesh Kothari, and Igor Oliveira. “Constructing Hard
Functions Using Learning Algorithms”. In: Proc. 28th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2013, pp. 86-97.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. “Lower bounds based
on the exponential time hypothesis”. In: Bulletin of the European Association
for Theoretical Computer Science (EATCS) 105 (2011), pp. 41-71.

Chi-Jen Lu. “Derandomizing Arthur-Merlin games under uniform assump-
tions”. In: Computational Complexity 10.3 (2001), pp. 247-259.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Alge-
braic methods for interactive proof systems”. In: Journal of the Association
for Computing Machinery 39.4 (1992), pp. 859-868.

Richard J. Lipton and Ryan Williams. “Amplifying circuit lower bounds
against polynomial time, with applications”. In: Computational Complexity
22.2 (2013), pp. 311-343.

Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeter-
ministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018.

Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149-167.

Igor C. Oliveira. “Algorithms versus Circuit Lower Bounds”. In: Electronic
Colloguium on Computational Complexity: ECCC 20 (2013), p. 117.

Igor C. Oliveira and Rahul Santhanam. “Conspiracies between learning
algorithms, circuit lower bounds, and pseudorandomness”. In: Proc. 32nd
Annual IEEE Conference on Computational Complexity (CCC). Vol. 79. 2017,
Art. No. 18, 49.

66

[PF79]

[San09]

[Sha92]
[Sho90]

[STVO1]

[SU07]

[SW13]

[Tel19]

[TV07]

[Uma03]

[Vad12]

[Wil13]

[Wil14]

[Wil15]

[Will6]

Nicholas Pippenger and Michael J. Fischer. “Relations among complexity
measures”. In: Journal of the ACM 26.2 (1979), pp. 361-381.

Rahul Santhanam. “Circuit lower bounds for Merlin-Arthur classes”. In:
SIAM Journal of Computing 39.3 (2009), pp. 1038-1061.

Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869-877.

Victor Shoup. “New algorithms for finding irreducible polynomials over
finite fields”. In: Mathematics of Computation 54.189 (1990), pp. 435-447.

Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236-266.

Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs.
randomness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on
Theory of Computing (STOC). 2007, pp. 430-439.

Rahul Santhanam and Ryan Williams. “On medium-uniformity and cir-
cuit lower bounds”. In: Proc. 28th Annual IEEE Conference on Computational
Complexity (CCC). 2013, pp. 15-23.

Roei Tell. “Proving that prBPP = prP is as hard as proving that “almost
NP” is not contained in P/poly”. In: Information Processing Letters 152
(2019), p. 105841.

Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case
Complexity Via Uniform Reductions”. In: Computational Complexity 16.4
(2007), pp. 331-364.

Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419-440.

Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

Ryan Williams. “Improving Exhaustive Search Implies Superpolynomial
Lower Bounds”. In: SIAM Journal of Computing 42.3 (2013), pp. 1218-1244.

Ryan Williams. “Algorithms for circuits and circuits for algorithms: Con-
necting the tractable and intractable”. In: Proc. International Congress of
Mathematicians (ICM). 2014, pp. 659-682.

Virginia V. Williams. “Hardness of easy problems: basing hardness on pop-
ular conjectures such as the Strong Exponential Time Hypothesis”. In: Proc.
10th International Symposium on Parameterized and Exact Computation. Vol. 43.
2015, pp. 17-29.

Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur: short
non-interactive proofs of batch evaluation”. In: Proc. 31st Annual IEEE Con-
ference on Computational Complexity (CCC). Vol. 50. 2016, Art. No. 2, 17.

67

[Will8] Virginia Vassilevska Williams. On some fine-grained questions in algorithms
and complexity. Accessed at https://people.csail .mit .edu/virgi/
eccentri.pdf, October 17, 2019. 2018.

[Woe03] Gerhard J. Woeginger. “Exact algorithms for NP-hard problems: a survey”.
In: Combinatorial optimization—Eureka, you shrink! Vol. 2570. Lecture Notes
in Computer Science. Springer, Berlin, 2003, pp. 185-207.

A On implications of MAETH

Consider the hypothesis MAETH, which asserts that co-3SAT cannot be solved by
Merlin-Arthur protocols running in time 2¢", for some € > 0. Recall that the “strong”
version of this hypothesis is false (since Williams [Will6] showed that #CircuitSAT
can be solved by a Merlin-Arthur protocol in time O(2"/2)), but there is currently no
evidence against the “non-strong” version.

As mentioned in Section 1.3, the assumption MAETH can be easily shown to imply
strong circuit lower bounds and derandomization of prBPP (and thus also of pr M A).
Specifically, the following more general (i.e., parametrized) result relies on a standard
Karp-Lipton-style argument, which originates in [Bab+93]. We note in advance that
after the proof of this result we prove another result, which shows a very different
tradeoff between M A lower bounds (specifically, lower bounds for fixed-polynomial-
time verifiers) and derandomization.

Theorem A.1 (lower bounds for MA algorithms imply non-uniform circuit lower
bounds). There exists L € £ and a constant k > 1 such that for any time-computable func-
tion S : N — IN such that S(n) > n the following holds. Assume that DTIME[2"| £
MATIME[S'], where S'(n) = S(k-n)*. Then, L ¢ STZEIS].

Note that, using Corollary 3.3, under the hypothesis of Theorem A.1 we have that
CAPP € i.0.prDTIME]T], where T(n) = 2061 ("°) I particular, under MAETH
(which refers to S(n) = 22(/108(1)) we have that prBPP C i.o.prDT ZME [nOloglog(n))],

Proof of Theorem A.1. Let L be the problem from Proposition 3.12. Assuming to-
wards a contradiction that L € STZ£[S]|, we show that DTZME[2"] C MATIME[S'].

Let Ly € DTZME[2"]. We construct a probabilistic verifier that gets input xy €
{0,1}™, and if xp € Ly then for some non-deterministic choices the verifier accepts
with probability one, and if xo ¢ Lo then for all non-deterministic choices the verifier
rejects, with high probability. The verifier first reduces Ly to L, by computing x €
{0,1}" of length n = O(ng) such that xg € Lo if and only if x € L.

Let n’ = ¢(n) = O(n) = O(np). By our hypothesis, there exists a circuit over n’
input bits of size S(n’) that decides L,.. The verifier guesses a circuit C; : {0,1}" —
{0,1} of size S(n’), and simulates the machine M from Proposition 3.12 on input x,
while resolving its oracle queries of using Cr. The verifier accepts if and only if M
accepts. Note that if xo € Ly and the verifier’s guess was correct (i.e., C; decides L),
then the verifier accepts with probability one. On the other hand, if xy ¢ L, then for

68

https://people.csail.mit.edu/virgi/eccentri.pdf
https://people.csail.mit.edu/virgi/eccentri.pdf

every guess of Cy, (i.e., every oracle for M) the verifier rejects, with high probability.
The running time of the verifier is poly(n) - poly(S(n’)) = S(O(n))o(l). [|

In the following result, instead of assuming strong (e.g., super-polynomial) lower
bounds for MATZIME against £, we assume fixed polynomial lower bounds for
MATIME against P, and deduce both a sub-exponential derandomization of BPP,
and a polynomial-time derandomization of BPP with n® advice, for an arbitrarly
small constant € > 0.%

Theorem A.2 (fixed-polynomial-size lower bounds for M .4 = derandomization and
circuit lower bounds). Assume that for every k € N it holds that P Z i.0. MATZME[n*).
Then, for every € > 0 it holds that prBPP C (prP/n N prDTIME[2™)).

Proof. In high-level, we want to use our hypothesis to deduce that there exists a
polynomial-time algorithm that outputs the truth-table of a “hard” function, and then
use that “hard” function for derandomization. Loosely speaking, the following claim,
whose proof is a refinement of on an argument from [Che+19], asserts that if the out-
put string of every polynomial-time algorithm has circuit complexity at most 1k, then

all of P can be decided by M A verifiers running in time n°®).

Claim A.2.1. Assume that there exists k € IN such that for every deterministic polynomial-
time machine M there exists an infinite set S C IN such that for every n € S the following
holds: For every x € {0,1}", when the output string M(x) is viewed as a truth-table of a
function, this function has circuit complexity at most n*. Then, P C i.0. M AT ZME[nOW).

Proof. Let L € P, and let M be a polynomial-time machine that decides L. Our goal is
to decide L in MATZME[n*] on infinitely-many input lengths.

For every x € {0,1}", let Ty : {0, 1}P°1Y(”) — {0,1} be a polynomial-sized circuit
that gets as input a string I1, and accepts if and only if IT is the computational his-
tory of M(x) and M(x) = 1. Note that the mapping of x — T, can be computed
in polynomial time (since M runs in polynomial time). Also, fix a PCP system for
CircuitSAT with the following properties: The verifier runs in polynomial time and
uses O(log(n)) randomness and O(1) queries; the verifier has perfect completeness
and soundness error 1/3; and there is a polynomial-time algorithm W that maps any
circuit C and a satisfying assignment for C (i.e, y € C71(1)) to a PCP proof that the
verifier accepts. For every x € {0,1}" and every input IT € {0,1}P°Y(®") for T, let
W(Ty,IT) be the corresponding PCP proof that W produces.

Observe that there is a polynomial-time algorithm A that gets as input x € {0,1}",
produces the computational history of M(x), which we denote by H;(,), produces the
circuit Ty, and finally prints the PCP witness W(Ty, H M(x)). Thus, by our hypothesis,
there exists an infinite set S C IN such that for every n € S and every x € {0,1}" there
exists a circuit Cy : {0,1}0008(1) — £0,1} of size n* whose truth-table is W(Ty, H M(x))-

3Recall that, by Adleman’s theorem [Ad178; BG81], we can derandomize prBPP with poly(n) bits of
non-uniform advice (and even with O(n) bits, using Theorem 3.5). However, an unconditional deran-
domization of prBPP with o(n) bits of non-uniform advice is not known.

69

The M A verifier V gets input x, and expects to get as proof a circuit C : {0,1}°0o8(m)
{0,1} bits. The verifier V now simulates the PCP verifier, while resolving its queries
to the PCP using the circuit C. Note that for every n € S and every x € {0,1}" the
following holds: If M(x) = 1 then there exists a proof (i.e., a circuit Cy) such that the
verifier accepts with probability one; on the other hand, if M(x) = 0, then T, rejects
all of its inputs, which implies that for every proof, with probability at least 2/3 the
M A verifier rejects. O

Using our hypothesis that for every k € N it holds that P Z i.0. MATZME[n¥],
and taking the counter-positive of Claim A.2.1, we deduce that:

Corollary A.2.2. For every k € IN there exists a polynomial-time machine M such that for
every sufficiently large n € IN there exists an input x € {0,1}" such that M(x) is the truth-
table of a function with circuit complexity more than n*,

Now, fix € > 0, let L € prBPP, and let R be a probabilistic polynomial-time ma-
chine that decides L. Given input x € {0,1}", we decide whether x € L in polynomial-
time and with n€ advice, as follows. Consider the circuit R, that computes the decision
of R at x as a function of the random coins of R, and let ¢ > 1 such that the size of R, is
at most n°. We instantiate Corollary A.2.2 with k = ¢’ /€, where ¢’ > c is a sufficiently
large constant. We expect as advice an input y of length n¢ to the machine M such
that M(y) has circuit complexity n¢. We then use M(y) to instantiate Theorem 3.2
with seed length O(log(n)) and error 1/10 and for circuits of size n° (such that the
PRG “fools” the circuit Ry), and enumerate its seeds to approximate the acceptance
probability of R, (and hence decide whether or not x € L).

We now also show that L € prDTZME[2"]. To do so, consider the foregoing
algorithm, and assume that it gets no advice. Instead, it enumerates over all 2" pos-
sible advice strings to obtain 2™ truth-tables, each of size poly(n). We know that at
least one of these truth-tables has circuit complexity n¢'. Now the algorithm constructs
the truth-table of a function f over n 4+ O(log(n)) bits, which uses the first n bits to
“choose” one of the 2™ truth-tables, and uses the O(log()) bits as an index to an entry
in that truth-table (i.e., for i € {0,1}" and z € O(log(n)) it holds that f(i,z) = g;(z),
where g; is the function that is obtained from the it" advice string). Note that, since
at least one of the 2 functions had circuit complexity ¢, it follows that f also has
circuit complexity #¢. Thus, this algorithm can use f to instantiate Theorem 3.2 with
seed length n€ + O(log(n)) and for circuits of size n° to “fool” the circuit R,. W

B Polynomials are sample-aided worst-case to average-case re-
ducible

Recall that in Section 4.1 we defined the notion of sample-aided worst-case to é-average-
case-reducible function (see Definitions 4.2 and 4.3), following [GR17]. In this appendix
we explain why labeled samples can be helpful for uniform worst-case to “rare-case”

70

reductions, and show that low-degree polynomials are indeed sample-aided worst-
case to average-case-reducible.

Consider a function f whose truth-table is a codeword of a locally list-decodable
code, and also assume that f is randomly self-reducible (i.e., computing f in the worst-
case is reducible to computing f on, say, .99 of the inputs). Then, for every circuit C
that agrees with f on a tiny fraction of inputs (i.e., C computes a “corrupt” version of
f), we can efficiently produce a small list of circuits with oracle gates to C such that one
of these circuits correctly computes f on all inputs. The main trouble is that we don’t
know which candidate circuit in this list to use. This is where the labeled samples
come in: We can iterate over the candidates in the list, use the labeled samples to test
each candidate circuit for agreement with f, and with high probability find a circuit
that agrees with f on (say) .99 of the inputs. Then, using the random self-reducibility
of f, we obtain a circuit that correctly computes f on each input, with high probability.

The crucial property that we need from the code in order to make the foregoing
algorithmic approach work is that the local list-decoding algorithm will efficiently pro-
duce a relatively short list. Specifically, recall that by our definition, a sample-aided
worst-case to d-average-case reduction needs to run in time poly(1/6). Hence, we
need a list-decoding algorithm that runs in time poly(1/4) (and indeed produces a list
of such size). A suitable local list-decoding algorithm indeed exists in the case that the
code is the Reed-Muller code, which leads us to the following result:

Proposition B.1 (low-degree polynomials are uniformly worst-case to average-case
reducible with a self-oracle). Let ¢ : N — IN be a field-size function, let £ : N — IN
such that n > ¢ -log(q), and let d,p : N — IN such that 10\/d(n)/q(n) < p(n) <
(q(n))~2MW) = o(1). Let f = {fy : {0,1}" — {0,1} },ew be a sequence of functions such
that f, computes a polynomial]Fﬁ(") — IF, of degree d(n) where |F,| = q(n). Then f is
sample-aided worst-case to p-average-case reducible.

Proof. We construct a probabilistic machine M that gets input 1", and oracle access to
a function f, that agrees with f, on p(n) of the inputs, and also poly(1/p(n)) labeled
samples for f,, and with probability 1 — p(n) outputs a circuit C : F* — T such that
for every x € ' it holds that Pr,[C/*(x,7) = f,(x)] > 2/3.

The first step of the machine M is to invoke the local list-decoding algorithm
of [STV01, Thm 29], instantiated with degree parameter d = d(n) and agreement
parameter p = p(n). The algorithm runs in time poly(¢(n),d,log(q(n)),1/p) =
poly(n,1/p) and outputs a list of O(1/p) probabilistic oracle circuits Cy, ..., Co(1/p) :
{0,1}" — {0,1}" such that with probability at least 2/3 there exists i € [O(1/p)] sat-

isfying Pr[le "(x) = fu(x)] > 2/3 for all x € {0,1}". We call any circuit that satisfies
the latter condition good. By invoking the algorithm of [STVO01] for poly(1/p) times,
we obtain a list of t = poly(1/p) circuits Cjy, ..., C; such that with probability at least
1 —poly(p) there exists i € [t] such that C; is good.

The second step of the machine is to transform the probabilistic circuits into deter-
ministic circuits such that, with high probability, the deterministic circuit correspond-
ing to the “good” circuit C; will correctly compute f, on .99 of the inputs (when given

71

oracle access to ﬁl). Specifically, by implementing naive error-reduction in all circuits,

we can assume that for every x € F' it holds that Prr[CZf "(x,7) = fu(x)] > .995. Now
the machine M creates O(log(1/p)) copies of each circuit in the list, and for each copy
M “hard-wires” a randomly-chosen fixed value for the circuit’s randomness. The re-
sult is a list of ' = poly(1/p) deterministic circuits D1, ..., Dy such that with probability

1 —poly(p) there exists a circuit D; satisfying Prx[le "(x) = fu(x)] > .99.
The third step of the machine M is to “weed” the list in order to find a single circuit
D; that (when given access to f,) correctly computes f on .95 of the inputs. To do so

M iterates over the list, and for each circuit D; estimates the agreement of D{ " with f,
with error .01 and confidence 1 — poly(p), using the random samples.

The final step of the machine M is to use the standard random self-reducibility
of the Reed-Muller code to transform the circuit D; into a probabilistic circuit that
correctly computes f at each input with probability at least 2/3. Specifically, the
probabilistic circuit implements the standard random self-reducibility algorithm for
the (gq,¢,d) Reed-Muller code (see, e.g., [AB09, Thm 19.19]), while resolving its oracle
queries using the circuit D;. The standard algorithm runs in time poly(q,¢,d), and
works whenever D; agrees with f, on at least 1 — # < .95 +d/q of the inputs,
which holds in our case since d/q < 6 =o0(1). W

C An &-complete problem with useful properties

In this appendix we prove Proposition 3.12, which asserts the existence of an &-
complete problem (under linear-time reductions) that is randomly self-reducible, has
an instance checker with linear-length queries, and such that both the random self-
reducibility algorithm and the instance checker use a linear number of random bits.

Proposition C.1 (an £-complete problem that is random self-reducible and has a good
instance checker). For every i > 0 there exists L*°® € DTZME[O(2")] such that:

1. Any L € DTZME[2"] reduces to L**°® in polynomial time with a multiplicative blow-
up of at most 1+ n in the input length. Specifically, for every n there exists n' <
(1+n) - n such that any n-bit input for L is mapped to an n'-bit input for L.

2. The problem L™ is randomly self-reducible by an algorithm Dec that on inputs of
length n uses n + polylog(n) random bits.

3. There is an instance checker IC for L*°® that on inputs of length n uses n + O(log(n))
random bits and makes O(1) queries of length {(n), where {(n) < (2+1) - n.

Proof. For a sufficiently small § < /7, let L = {((M),x) : M accepts x in 21"l steps}.
Let fie: {0,1}* — {0,1}* be the low-degree extension of L¢ such that inputs of length
no for L are mapped to inputs in IF", where m = § - Uogn(if;o” and |F| = 2(1/¢+1)-log(mo)]

for a polynomial of individual degree d = [(19)!/?]. Note that (d +1)" > 2" (ie.,

72

there is a unique extension of L¢ with these parameters), and that |F| > m-d (i.e.,
the polynomial is indeed of low degree). Finally, let L*°® be the set of pairs (z,i) €
{0,1}m108(IF)) (0,1} Moglos(IFD)1 such that f;s(z); = 1 (i.e., the i bit in the binary
representation of f;¢(z) € F equals one).

Note that L¢ is reducible in polynomial time to f;¢, which is in turn reducible in
polynomial time to L*°®; and that inputs of length 1y € IN for L¢ are mapped to
inputs of length n = m - log(|F|) + [loglog(|F|)] +1 < (1 + 26) - ny for L**¢. Thus
any L € DTZME[2"] is reducible in polynomial time to L**°® with a multiplicative
overhead of at most 1+ 34 in the input length. Also note that L*¢¢ € DTZME[O(2")],
since the polynomial f;¢ can be evaluated in such time.

Let us now prove that L*°® is randomly self-reducible with at most (1 +) - n
random bits. Let Decg be the standard random self-reducibility algorithm for f;¢,
which uses less than # random bits.*? Given input (z,i) € {0, 1} [108([F[)+[loglog([F])]
and oracle access to some L' C {0,1}", we simulate Decy at input z and with oracle
access to a function induced by L’ (as detailed below), and then output the it" bit of
its answer. Specifically, we initially choose a random permutation 7z of {0, 1}°slg([F)),
using polylog(n) < ¢ - n random coins, and whenever Decy makes a query q; € F",
we query L’ at all inputs {(41,92)} 42€{0,1)} Moglog((F))T ordered according to 71, and answer
Decg accordingly. Note that each of our queries is uniformly distributed: This is since
for every query (g1,42) we have that g7 is uniform (because Decy’s queries are uniform)
and that ¢; is uniform and independent from g; (because we chose a random 7). Also
note that if L' (g1, q2) = L™°®(g1, q2) for every query (g1, 42), then each query g; of Decy
is answered by f1¢(g1), in which case we output f;¢(z); = L*°®(z,1).

Finally, to see that L*°® has an instance checker that uses n + O(log(n)) random
bits and issues O(1) queries of length (2 4+ 75) - n, fix a PCP system for DTZME[T],
where T(n) = O(2"), with the following specifications: The verifier V runs in polyno-
mial time, uses 1 + O(log(n)) bits of randomness, issues O(1) queries, and has perfect
completeness and soundness error 1/6; and there is an algorithm P that gets an input
x € {0,1}" and outputs a proof for x in this PCP system (or L, if x ¢ L) in determinis-
tic time O(2") (for a suitable PCP system, see [BS+13, Thm 1]). We will instantiate this
PCP system for the set L3i° = {(z,1,b) : L*¥°®(z,i) = b}, which is in DTZME[O(2")].

The instance checker IC for L™ gets input (z,i) € {0,1}" and simulates the
verifier V for L¥*°® on inputs (z,7,0) and (z,i,1). Whenever V(z,i,b) queries its proof
at location j € [O(2")], the instance checker IC uses its oracle to try and decide the
problem IT at input (z,i,b, /), where IT = {((z,i,b),j) : P(z,i,b); = 1}. Specifically,
since IT € DTZME[O(2"/?)] € DTIME[O(2")] it holds that IT reduces to L*® in
polynomial time and with multiplicative blow-up of 1 + 34 in the input length; hence,
IC reduces ((z,i,b),j) to an input for L™ of length /(n) < (1+36) - 2n+1) <
(24 76) - n and uses its oracle to try and obtain II((z,i,b),j). For o € {0,1}, the
instance checker IC outputs ¢ if and only if V(z,i,0) =1 and V(z,i,1 —0c) = 0, and
otherwise outputs L. Note that el (z,i) = L™*°®(z,i), with probability one; and

40Recall that Decy chooses a random vector i € ", which requires m - log(|F|) < n random bits, and
queries its oracle on a set of points on the line corresponding to ii; see, e.g., [Gol08, Sec. 7.2.1.1].

73

that IC errs when given oracle L' # L (i.e., IC"(z,i) = 1 — L*°®(z,i)) only when
V accepts (z,1,1 — L™°®(z,i)) ¢ L**°®, which happens with probability at most 1/6 for
any L. W

74

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

