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Abstract

We show that any Algebraic Branching Program (ABP) computing the polynomial ∑n
i=1 xn

i
has at least Ω(n2) vertices. This improves upon the lower bound of Ω(n log n), which fol-
lows from the classical result of Baur and Strassen [Str73a, BS83], and extends the results in
[Kum19], which showed a quadratic lower bound for homogeneous ABPs computing the same
polynomial.

Our proof relies on a notion of depth reduction which is reminiscent of similar statements
in the context of matrix rigidity, and shows that any small enough ABP computing the polyno-
mial ∑n

i=1 xn
i can be depth reduced to essentially a homogeneous ABP of the same size which

computes the polynomial ∑n
i=1 xn

i + ε(x), for a structured “error polynomial” ε(x). To complete
the proof, we then observe that the lower bound in [Kum19] is robust enough and continues to
hold for all polynomials ∑n

i=1 xn
i + ε(x), where ε(x) has the appropriate structure.

We also use our ideas to show an Ω(n2) lower bound of the size of algebraic formulas com-
puting the elementary symmetric polynomial of degree 0.1n on n variables. This is a slight
improvement upon the prior best known formula lower bound (proved for a different polyno-
mial) of Ω(n2/ log n) [Nec66, Kal85, SY10]. Interestingly, this lower bound is asymptotically
better than n2/ log n, the strongest lower bound that can be proved using previous methods.
This lower bound also matches the upper bound, due to Ben-Or, who showed that elementary
symmetric polynomials can be computed by algebraic formula (in fact depth-3 formula) of size
O(n2). Prior to this work, Ben-Or’s construction was known to be optimal only for algebraic
formulas of depth-3 [SW01].
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1 Introduction

Proving that there are explicit polynomials which are hard to compute is the template of many
open problems in algebraic complexity theory. Various instances of this problem involve different
definitions of explicitness, hardness and computation.

In the most general form, this is the well known VP vs. VNP question, which asks whether
every “explicit” polynomial has a polynomial-size algebraic circuit. An algebraic circuit is a very
natural (and the most general) algebraic computational model. Informally, it is a computational
device which is given a set of indeterminates {x1, . . . , xn}, and it can use additions and multipli-
cations (as well as field scalars) to compute a polynomial f ∈ F[x1, . . . , xn]. The complexity of the
circuit is then measured by the number of operations the circuit performs.

It is trivial to give an explicit n-variate polynomial which requires circuits of size Ω(n). It is
also not hard to show that a degree-d polynomial requires circuits of size Ω(log d), since the degree
can at most double in each operation. Thus, one trivially obtains a max{n, log d} = Ω(n + log d)
lower bound for an n-variate degree-d polynomial.

A major result of Baur and Strassen [Str73a, BS83] gives an explicit n-variate degree-d polyno-
mial which requires circuits of size at least Ω(n · log d). On the one hand, this is quite impressive
since when d = poly(n), this gives lower bound which is super-linear in n. Such lower bounds
for explicit functions in the analogous model of boolean circuits are a long-standing and important
open problem in boolean circuit complexity. On the other hand, this lower bound is barely super-
linear, whereas ideally one would hope to prove super-polynomial or even exponential lower
bounds (indeed, it can be proved that “most” polynomials require circuits of size exponential in
n).

Despite decades of work, this lower bound has not been improved, even though it has been
reproved (using different techniques [Smo97, Ben83]). Most of the works thus deal with restricted
models of algebraic computation. For some, there exist exponential or at least super-polynomial
lower bounds. For other, more powerful models, merely improved polynomial lower bound. We
refer the reader to [Sap15] for a comprehensive survey of lower bounds in algebraic complexity.

One such restricted model of computation for which we have better lower bounds is algebraic
formulas. Formulas are simply circuits whose underlying graph is a tree. Kalorkoti [Kal85] has
shown how to adapt Nechiporuk’s method [Nec66], originally developed for boolean formulas,
to prove an Ω(n2/ log n) lower bound for an n-variate polynomial. 1

1Since this exact statement appears to be folklore and is not precisely stated in Kalorkoti’s paper, we give some more
details about this result in Section 1.4.
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1.1 Algebraic Branching Programs

Algebraic Branching Programs (ABPs, for short), defined below, are an intermediate model between
algebraic formulas and algebraic circuits. To within polynomial factors, algebraic formulas can be
simulated by ABPs, and ABPs can be simulated by circuits. It is believed that each of the reverse
transformations requires a super-polynomial blow-up in the size (for some restricted models of
computation, this is a known fact [Nis91, Raz06, RY08, DMPY12, HY16]).

Polynomial families which can be efficiently computed by algebraic branching programs form
the complexity class VBP, and the determinant is a complete polynomial for this class under an
appropriate notion of reductions. Thus, the famous Permanent vs. Determinant problem, unbe-
knownst to many, is in fact equivalent to showing super-polynomial lower bound for ABPs. In
this paper, we focus on the question of proving lower bounds on the size of algebraic branching
programs for explicit polynomial families. We start by formally defining an algebraic branching
program.

Definition 1.1 (Algebraic Branching Programs). An Algebraic Branching Program (ABP) is a layered
graph where each edge is labeled by an affine linear form and the first and the last layer have one vertex each,
called the “start” and the “end” vertex respectively.

The polynomial computed by an ABP is equal to the sum of the weights of all paths from the start vertex
to the end vertex in the ABP, where the weight of a path is equal to the product of the labels of all the edges
on it.

The size of an ABP is the number of vertices in it. ♦

While Definition 1.1 is quite standard, there are some small variants of it in the literature which
we now discuss. These distinctions make no difference as far as super-polynomial lower bounds
are concerned, since it can be easily seen that each variant can be simulated by the other to within
polynomial factors, and thus the issues described here are usually left unaddressed. However,
it seems that we are very far from proving super-polynomial lower bounds for general algebraic
branching programs, and in this paper we focus on proving polynomial (yet still super-linear)
lower bounds. In this setting, those issues do affect the results.

Layered vs. Unlayered. In Definition 1.1, we have required the graph to be layered. We also
consider in this paper ABPs whose underlying graphs are unlayered, which we call unlayered
ABPs. We are able to prove super-linear (but weaker) lower bounds for this model as well.

One motivation for considering layered graph as the “standard” model is given by the follow-
ing interpretation. From the definition, it can be observed that any polynomial computable by an
ABP with d layers and `i vertices in the i-th layer can be written as the (only) entry of the 1× 1
matrix given by the product M := ∏d−1

i=1 Mi, where Mi is an `i × `i+1 matrix with affine forms
as entries. One natural complexity measure of such a representation is the total number of non-
zero entries in those matrices, which is the number of edges in the ABP. Another natural measure,
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which can only be smaller, is the sums of dimensions of the matrices involved in the product,
which is the same as the number of vertices in the underlying graph.

Branching programs are also prevalent in boolean complexity theory, and in particular in the
context of derandomizing the class RL. In this setting again it only makes sense to talk about
layered graphs.

Unlayered ABPs can also be thought of as (a slight generalization of) skew circuits. These are
circuits in which on every multiplication gate, at least one of the operands is a variable (or more
generally, a linear function).

Edge labels. In Definition 1.1 we have allowed each edge to be labeled by an arbitrary affine
linear form in the variables. This is again quite standard, perhaps inspired by Nisan’s charac-
terization of the ABP complexity of a non-commutative polynomial as the rank of an associated
coefficients matrix [Nis91], which requires this freedom. A more restrictive definition would only
allow each edge to be labeled by a linear function in 1 variable. On the other hand, an even more
general definition, which we sometimes adopt, is to allow every edge to be labeled by an arbitrary
polynomial of degree at most ∆. In this case we refer to the model as an ABP with edge labels
of degree at most ∆. Thus, the common case is ∆ = 1, but our results are meaningful even when
∆ = ω(1). Note that this is quite a powerful model, which is allowed to use polynomials with
super-polynomial standard circuit complexity “for free”.

We will recall some of these distinctions in Section 1.4, where we discuss previous results,
some of which apply to several of the variants discussed here.

1.2 Lower bounds for algebraic branching programs.

Our first result is a quadratic lower bound on the size of any algebraic branching program com-
puting some explicit polynomial.

Theorem 1.2. Let F be a field and n ∈ N such that char(F) - n. Then any algebraic branching program
over F computing the polynomial ∑n

i=1 xn
i is of size at least Ω(n2).

When the ABP’s edge labels are allowed to be polynomials of degree at most ∆, our lower bound is
Ω(n2/∆).

For the unlayered case, we prove a weaker (but still superlinear) lower bound.

Theorem 1.3. Let F be a field and n ∈N such that char(F) - n. Then any unlayered algebraic branching
program over F with edge labels of degree at most ∆ computing the polynomial ∑n

i=1 xn
i is of size at least

Ω(n log n/(log log n + log ∆)).

4



1.3 Lower bounds for algebraic formulas.

Recall that an algebraic formula is an algebraic circuit where the underlying graph is a tree. For
polynomials like ∑n

i=1 xn
i , a quadratic lower bound on the formula size is immediate. This is be-

cause the degree of the polynomial in every variable is n, and hence there must be at least n leaves
which are labeled by xi for every i. Therefore, for a formula lower bound to be non-trivial it should
hold for a polynomial with bounded individual degrees (we discuss this further in Section 1.4).

As our next result, we show an Ω(n2) lower bound for a multilinear polynomial.

Theorem 1.4. Let n ∈ N and let F be a field of characteristic greater than 0.1n. Then any algebraic
formula over F computing the elementary symmetric polynomial

ESYM(n, 0.1n) = ∑
S⊆[n],|S|=0.1n

∏
j∈S

xj ,

is of size at least Ω(n2).

As we describe in Section 1.5, even though formulas can be simulated by ABPs with little
overhead, and despite the fact that both proofs use similar ideas, this theorem is not an immediate
corollary of Theorem 1.2, but requires some work.

1.4 Previous work

ABP lower bounds. The best lower bound known for ABPs prior to this work is a lower bound of
Ω(n log n) on the number of edges for the same polynomial ∑n

i=1 xn
i . This follows from the classical

lower bound of Ω(n log n) by Baur and Strassen [Str73a, BS83] on the number of multiplication
gates in any algebraic circuit computing the polynomial ∑n

i=1 xn
i and the observation that when

converting an ABP to an algebraic circuit, the number of product gates in the resulting circuit is at
most the number of edges in the ABP. Theorem 1.2 improves upon this bound quantitatively, and
also qualitatively, since the lower bound is on the number of vertices in the ABP.

For the case of homogeneous ABPs,2 a quadratic lower bound for the polynomial ∑n
i=1 xn

i was
shown by Kumar [Kum19], and the proofs in this paper build on the ideas in [Kum19]. In a
nutshell, the result in [Kum19] is equivalent to a lower bound for ABPs computing the polynomial

∑n
i=1 xn

i when the number of layers in the ABP is at most n. In this work, we generalize this to
proving essentially the same lower bound as in [Kum19] for ABPs with an unbounded number of
layers.

In general, an ABP computing an n-variate homogeneous polynomial of degree poly(n) can be
homogenized with a polynomial blow-up in size. This is proved in a similar manner to the stan-

2An ABP is homogeneous if the polynomial computed between the start vertex and any other vertex is a homogeneous
polynomial. This condition is essentially equivalent to assuming that the number of layers in the ABP is upper bounded
by the degree of the output polynomial.
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dard classical result which shows this statement for algebraic circuits [Str73b]. Thus, much like the
discussion following Definition 1.1, homogeneity is not an issue when one considers polynomial
vs. super-polynomial sizes, but becomes relevant when proving polynomial lower bounds. In
other contexts in algebraic complexity this distinction is even more sharp. For example, exponen-
tial lower bounds for homogeneous depth-3 circuits are well known and easy to prove [NW97],
but strong enough exponential lower bounds for non-homogeneous depth-3 circuits would sepa-
rate VP from VNP [GKKS16].

For unlayered ABPs, the situation is more complex. If the edge labels are only functions of one
variable, then (for the same reasons discussed in Section 1.3) we need to only consider multilinear
polynomials for the lower bound to be non-trivial. It is possible to adapt Nechiporuk’s method
[Nec66] in order to obtain a lower bound of Ω̃(n3/2) for a multilinear polynomial in this model.
This is an argument attributed to Pudlák and sketched by Karchmer and Wigderson [KW93] for
the boolean model of parity branching programs, but can be applied to the algebraic setting. How-
ever, this argument does not extend to the case where the edge labels are arbitrary linear or low-
degree polynomials in the n variables. The crux of Nechiporuk’s argument is to partition the
variables into m disjoint sets, to argue (using counting or dimension arguments) that the number
of edges labeled by variables from each set must be somewhat large,3 and then to sum the con-
tributions over all m sets. This is hard to implement in models where a single edge can have a
“global” access to all variables, since it is not clear how to avoid over-counting in this case.

As mentioned above, the lower bound of Baur-Strassen does hold in the unlayered case, as-
suming the edge labels are linear functions in the variables. However, when we allow edge labels
of degree at most ∆ for some ∆ ≥ 2, their technique does not seem to carry over. Indeed, even
if we equip the circuit with the ability to compute such low-degree polynomials “for free”, a key
step in the Baur-Strassen proof is the claim that if a polynomial f has a circuit of size τ, then there
is a circuit of size O(τ) which computes all its first order partial derivatives, and this statement
does not seem to hold in this new model.

It is possible to get an Ω(n log n/ log ∆) lower bound for this model, for a different polynomial,
by suitably extending the techniques of Ben-Or [Ben83, Ben94]. Our lower bounds are weaker by
at most a doubly-logarithmic factor; however, the techniques are completely different. Ben-Or’s
proofs rely as a black-box on strong modern results in algebraic geometry, whereas our proofs are
much more elementary.

Formula lower bounds. Before discussing prior results on formula lower bounds, we mention
again that it is easy to see that any algebraic formula computing the polynomial ∑n

i=1 xn
i has at

least n2 leaves, as since the degree of the polynomials in each of the variables xi is n, there must

3This is usually guaranteed by constructing a function or a polynomial with the property that given a fixed set S in
the partition, there are many subfunctions or subpolynomials on the variables of S that can be obtained by different
restrictions of the variables outside of S.
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be at least n leaves in the formula which are labeled by xi. Thus, the number of leaves is at least
n× n = n2. Therefore, for lower bounds for algebraic formulas to be interesting and non-trivial,
they must be asymptotically larger than the sum of the individual degrees of the variables. One
particularly interesting regime of parameters is when the target hard polynomial has constant
individual degree (which can be taken to be 1, essentially without loss of generality).

The first non-trivial lower bound for algebraic formulas was shown by Kalorkoti [Kal85] who
proved a lower bound of Ω(n3/2) for an n-variate multilinear polynomial (in fact, for the

√
n ×

√
n determinant). Kalorkoti’s proof is essentially an algebraic version of Nechiporuk’s proof

[Nec66] of Ω(n2/ log n) lower bound on the size of Boolean formula in the full binary basis
(gates are allowed to be all Boolean functions on 2 variables). Using very similar arguments,
it is possible to show an Ω(n2/ log n) lower bound for a different multilinear polynomial (the
construction we describe here is based on a non-multilinear construction given in [SY10]): let{

x(j)
i : i ∈ [log n], j ∈ [n/ log n]

}
and {yk : k ∈ [n]} be two sets of n variables each, and fix a bijec-

tion ι : 2[log n] → [n]. The hard multilinear polynomial will be

n/ log n

∑
j=1

 ∑
S⊆[log n]

yι(S) ·∏
i∈S

x(j)
i

 .

It turns out that in general, this technique of Nechipurok and Kalorkoti cannot prove a lower
bound which is asymptotically better than

(
n2/ log n

)
(see Remark 6.18 in [Juk12]).

In Theorem 1.4, we adapt the ideas used in Theorem 1.2 to prove an Ω(n2) lower bound for
an explicit n variate multilinear polynomial. Thus, while the quantitative improvement over the
previous lower bound is by a mere log n factor, it is interesting to note that Theorem 1.4 gives an
asymptotically better lower bound than the best bound that can be proved using the classical, well
known techniques of Nechiporuk and Kalorkoti.

Our lower bound is for one of the elementary symmetric polynomials, which, due to a well
known observation of Ben-Or, are also known to be computable by a formula (in fact, a depth-3
formula) of size O(n2) over all large enough fields. For a large regime of parameters, this construc-
tion was shown to be tight for depth-3 formulas (even depth-3 circuits) by Shpilka and Wigder-
son [SW01]. Theorem 1.4 shows that elementary symmetric polynomials do not have formulas of
size o(n2) regardless of their depth.

Prior to this work, the only super linear lower bound on the general formula complexity of
elementary symmetric polynomials we are aware of is the Ω(n log n) lower bound of Baur and
Strassen [BS83], which as we mentioned earlier is in fact a lower bound on the stronger notion of
circuit complexity. As far as we understand, Kalorkoti’s proof directly does not seem to give any
better lower bounds on the formula complexity of these polynomials.

As another mildly interesting point, we note that Baur and Strassen [BS83] also proved an upper
bound of O(n log n) on the circuit complexity of the elementary symmetric polynomials. Hence,
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our lower bound implies a super-linear separation between the formula complexity and the circuit
complexity of an explicit polynomial family.

1.5 Proof Overview

ABP lower bounds. The first part in the proof of Theorem 1.2 is an extension of the lower bound
proved in [Kum19] for ABPs with at most n layers. This straightforward but conceptually impor-
tant adaptation shows that a similar lower bound holds for any polynomial of the form

n

∑
i=1

xn
i + ε(x) ,

where the suggestively named ε(x) should be thought of as an “error term” which is “negligible”
as far as the proof of [Kum19] is concerned. The exact structure we require is that ε(x) is of the
form ∑r

i=1 PiQi + R, where Pi, Qi are polynomials with no constant term and deg(R) ≤ n− 1. The
parameter r measures the “size” of the error, which we want to keep small, and the lower bound
holds if, e.g., r ≤ n/10.

To argue about ABPs with d layers, with d > n, we show that unless the size τ of the ABP is
too large to begin with (in which case there is nothing to prove), it is possible to find a small set of
vertices (of size about η = τ/d) whose removal adds a small error term ε(x) as above with at most
η summands, but also reduces the depth of the ABP by a constant factor. Repeatedly applying
this operation O(log n) times eventually gives an ABP of depth at most n while ensuring that we
have not accumulated too much “error”,4 so that we can apply the lower bound from the previous
paragraph.

In the full proof we have to be a bit more careful when arguing about the ABP along the steps
of the proof above. The details are presented in Section 3.

The proof of Theorem 1.3 follows the same strategy, although the main impediment is that
general undirected graphs can have much more complex structure then layered graphs. One of
the main ingredients in our proof is (a small variant of) a famous lemma of Valiant [Val77], which
shows that for every graph of depth 2k with m edges, it is possible to find a set of edges, of size at
most m/k, whose removal reduces the depth of the graph to 2k−1. This lemma helps us identify
a small set of vertices which can reduce the depth of the graph by a constant factor while again
accumulating small error terms.

Interestingly, Valiant originally proved this lemma in a different context, where he showed
that linear algebraic circuits of depth O(log n) and size O(n) can be reduced to a special type of
depth-2 circuits (and thus strong lower bounds on such circuits imply super-linear lower bounds

4It takes some care in showing that the total number of error terms accumulated is at most n/10 as opposed to the
obvious upper bound of O(n log n). In particular, we observe that the number of error terms can be upper bounded by
a geometric progression with first term roughly τ/n and common ratio being a constant less than 1.
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on circuits of depth O(log n)). This lemma can be also used to show that boolean circuits of
depth O(log n) and size O(n) can be converted to depth-3 circuits of size 2o(n), and thus again
strong lower bounds on depth-3 circuits will imply super-linear lower bounds on circuits of depth
O(log n). Both of these questions continue to be well known open problems in algebraic and
boolean complexity, and to the best of our knowledge, our proof is the first time Valiant’s lemma
is successfully used in order to prove circuit lower bounds for explicit functions or polynomials.

Formula lower bounds. The proof of Theorem 1.4 follows along the lines of the proof of Theo-
rem 1.2 but needs a few more ideas. A natural attempt at recovering formula lower bounds from
ABP lower bounds is to convert the formula to an ABP and then invoke the lower bound in The-
orem 1.2. However, while it is easy to see that a formula can be transformed into an ABP with
essentially no blow up in size, the ABP obtained at the end of this transformation is not necessar-
ily layered. Therefore, we cannot directly invoke Theorem 1.2. We can still invoke Theorem 1.3,
but the lower bound thus obtained is barely super-linear and in particular weaker than the known
lower bounds [Kal85, SY10].

For the proof of Theorem 1.4, we apply the ideas in the proof of Theorem 1.2 in a non black-box
manner. The proof is again in two steps, where in the first step, we show a lower bound of Ω(n2)

for polynomials of the form ESYM(n, 0.1n)+ ε(x) for formulas of formal degree at most 0.1n. Here,
ε(x) should again be thought of as an error term as in the outline of the proof of Theorem 1.2.

For formulas of formal degree greater than 0.1n, we describe a simple structural procedure to
reduce the formal degree of a formula, while maintaining its size. The cost of the procedure is
that the complexity of error terms increases in the process. We argue that starting from a formula
of size at most n2 (since otherwise, we are already done) computing ESYM(n, 0.1n), we can re-
peatedly apply this degree reduction procedure to obtain a formula of formal degree at most 0.1n
which computes the polynomial ESYM(n, 0.1n) + ε(x), where the error terms is not too complex.
Combining this with the robust lower bound for formulas of formal degree at most 0.1n completes
the proof of Theorem 1.4.

Elementary symmetric vs power symmetric polynomials. We remark that the lower bound in
Theorem 1.2 also holds for elementary symmetric polynomials of degree 0.1n on n variables. How-
ever, the proof seems a bit simpler and more instructive for the case of power symmetric polyno-
mials and so we state and prove the theorem for these polynomials. As discussed in Section 1.4,
for the case of lower bounds for formulas, we are forced to work with multilinear polynomials
and hence Theorem 1.4 is stated and proved for elementary symmetric polynomials. In general,
these lower bounds hold for any family of polynomials of high enough degree whose zeroes of
multiplicity at least two lie in a low dimensional variety, or more formally, an analog of Claim 3.5
or Lemma 5.6 is true.
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2 Notations and Preliminaries

All logarithms in the paper are base 2.
We use some standard graph theory terminology: If G is a directed graph and (u, v) is an

edge, v is called the head of the edge and u the tail. Our directed graphs are always acyclic with
designated source vertex s and sink vertex t. The depth of a vertex v, denoted depth(v), is the
length (in edges) of a longest path from s to v. The depth of the graph, denoted by depth(G), is the
depth of t.

For any two vertices u and v in an ABP, the polynomial computed between u and v is the sum
of weights of all paths between u and v in the ABP. We denote this by [u, v].

The formal degree of a vertex u in an ABP denoted fdeg(u), is defined inductively as follows:
If s is the start vertex of the ABP, fdeg(s) = 0. If u is a vertex with incoming edges from u1, . . . , uk,
labeled by non-zero polynomials `1, . . . , `k, respectively, then

fdeg(u) = max
i∈[k]
{deg(`i) + fdeg(ui)} .

It follows by induction that for every vertex u, deg([s, u]) ≤ fdeg(u) (however, cancellations can
allow for arbitrary gaps between the two). The formal degree of the ABP is the maximal formal
degree of any vertex in it.

We sometimes denote by x the vector of variables (x1, . . . , xn), where n is understood from the
context. Similarly we use 0 to denote the n-dimensional vector (0, 0, . . . , 0).

2.1 A decomposition lemma

The following lemma gives a decomposition of a (possibly unlayered) ABP in terms of the inter-
mediate polynomials it computes. Its proof closely resembles that of Lemma 3.5 of [Kum19]. For
completeness we prove it here for a slightly more general model.

Lemma 2.1 ([Kum19]). Let B be a (possibly unlayered) algebraic branching program whose edge la-
bels are arbitrary polynomials of degree at most ∆ ≤ n/10, which computes a degree d polynomial P ∈
F[x1, . . . xn], and has formal degree d. Set d′ = bd/∆c.

For any i ∈ {1, 2, . . . , d′ − 1}, let Si = {ui,1, ui,2, . . . , ui,m} be the set of all vertices in B whose formal
degree is in the interval [i∆, (i + 1)∆).

Then, there exist polynomials Qi,1, Qi,2, . . . , Qi,m and Ri, each of degree at most d− 1 such that

P =
m

∑
j=1

[s, ui,j] ·Qi,j + Ri .

Proof. Fix i as above and set Si = {ui,1, ui,2, . . . , ui,m} as above (observe that since each edge label
is of degree at most ∆, Si is non empty). Further suppose, without loss of generality, that the
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elements of Si are ordered such that there is no directed path from ui,j to ui,j′ for j′ > j.
Consider the unlayered ABP B1 obtained from B by erasing all incoming edges to ui,1, and

multiplying all the labels of the outgoing edges from ui,1 by a new variable y1. The ABP B1 now
computes a polynomial of the form

P′(y1, x1, . . . , xn) = y1 ·Qi,1 + Ri,1

where P = P′([s, ui,1], x1, . . . , xn). Ri,1 is the polynomial obtained from B1 by setting y1 to zero,
or equivalently, removing ui,1 and all its outgoing edges. We continue in the same manner with
ui,2, . . . , ui,m to obtain

P =
m

∑
j=1

[s, ui,j] ·Qi,j + Ri.

Indeed, observe that since there is no path from ui,j to ui,j′ for j′ > j, removing ui,j does not change
[s, ui,j′ ]. The bound on the degrees of Qi,j is immediate from the fact that the formal degree of the
ABP is at most d and fdeg(ui,j) ≥ 1. It remains to argue the deg(Ri) ≤ d− 1.

The polynomial Ri is obtained from B by erasing all the vertices in Si and the edges touching
them. We will show that every path in the corresponding ABP computes a polynomial of degree
at most d − 1. Let s = v1, v2, . . . , vr = t be such a path, which is also a path in B. Let vk be
the minimal vertex in the path whose degree (in B) is at least (i + 1)∆ (if no such vk exists, the
proposition follows). As vk−1 6∈ Si, the formal degree of vk−1 is at most i∆− 1. The degree of the
polynomial computed by this path is thus at most i∆− 1 + ∆ + D = (i + 1)∆− 1 + D, where D is
the degree of product of the labels on the path vk, vk+1, . . . , t. To complete the proof, it remains to
be shown that D ≤ d− (i + 1)∆.

Indeed, if D ≥ d− (i + 1)∆ + 1 then since the degree of vk is at least (i + 1)∆, there would be
in B a path of formal degree at least (i + 1)∆ + D ≥ d + 1, contradicting the assumption on B.

3 A lower bound for Algebraic Branching Programs

In this section we prove Theorem 1.2. We start by restating it.

Theorem 1.2. Let F be a field and n ∈ N such that char(F) - n. Then any algebraic branching program
over F computing the polynomial ∑n

i=1 xn
i is of size at least Ω(n2).

When the ABP’s edge labels are allowed to be polynomials of degree at most ∆, our lower bound is
Ω(n2/∆).

For technical reasons, we work with a slightly more general model which we call multilayered
ABPs, which we now define.

Definition 3.1 (Multilayered ABP). Let A1, . . . ,Ak be k ABPs with d1, . . . , dk layers and τ1, . . . , τk

vertices, respectively. A multilayered ABP A, denoted by A = ∑k
i=1Ai, is the ABP obtained by placing
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A1,A2, . . . ,Ak in parallel and identifying their start and end vertices respectively. Thus, the polynomial
computed by A is ∑k

i=1[Ai], where [Ai] is the polynomial computed by Ai.
The number of layers of A is d := max {d1, . . . , dk}. The size of A is the number of vertices in A, and

thus equals
|A| := 2 + ∑

i
(τi − 2) . ♦

This model is an intermediate model between (layered) ABPs and unlayered ABPs: given a
multilayered ABP of size τ it is straightforward to construct an unlayered ABP of size O(τ) which
computes the same polynomial.

3.1 A robust lower bound for ABPs of formal degree at most n

In this section, we prove a lower bound for the case where the formal degree of every vertex in
the ABP is at most n. In fact, Kumar [Kum19] has already proved a quadratic lower bound for this
case.

Theorem 3.2 ([Kum19]). Let n ∈ N and let F be a field such that char(F) - n. Then any algebraic
branching program of formal degree at most n which computes the polynomial ∑n

i=1 xn
i has at least Ω(n2)

vertices.

However, to prove Theorem 1.2, we need the following more “robust” version of Theorem 3.2,
which gives a lower bound for a larger class of polynomials. For completeness, we also sketch an
argument for the proof which is a minor variation of the proof of Theorem 3.2.

Theorem 3.3. Let n ∈N and let F be field such that char(F) - n. Let A1(x), . . . , Ar(x), B1(x), . . . , Br(x)
and R(x) be polynomials such that for every i, Ai(0) = Bi(0) = 0 and R is a polynomial of degree at most
n− 1. Then, any algebraic branching program over F, of formal degree at most n and edge labels of degree
at most ∆ ≤ n/10, which computes the polynomial

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R

has at least (n/2−r)n
2∆ vertices.

The proof of the theorem follows from Lemma 2.1 and the following lemma which is a slight
generalization of Lemma 3.1 in [Kum19]. We include a proof for completeness.

Lemma 3.4. Let n ∈ N, and let F be an algebraically closed field such that char(F) - n. Let
{P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br} be a set of polynomials in F[x1, . . . , xn] such that the
set of their common zeros

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br) ⊆ Fn

12



is non-empty. Finally, suppose R is a polynomial in F[x] of degree at most n− 1, such that

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj = R +
m

∑
i=1

Pi ·Qi.

Then, m ≥ n
2 − r.

Proof. Since V 6= ∅, dim(V) ≥ n− 2m− 2r (see, e.g., Section 2.8 of [Smi14]). Thus, the set of zeros
with multiplicity two of

n

∑
i=1

xn
i − R =

m

∑
i=1

Pi ·Qi −
r

∑
j=1

Aj · Bj,

has dimension at least n− 2m− 2r. In other words, if S is the set of common zeros of the set of
all first order partial derivatives of ∑n

i=1 xn
i − R, then dim(S) ≥ n− 2m− 2r. Up to scaling by n

(which is non-zero in F, by assumption), the set of all first order partial derivatives of ∑n
i=1 xn

i − R
is given by {

xn−1
i − 1

n
∂xi R

}
i∈[n]

.

Thus, the statement of this lemma immediately follows from the following claim.

Claim 3.5 (Lemma 3.2 in [Kum19]). Let F be an algebraically closed field, and D a positive natural
number. For every choice of polynomials g1, g2, . . . gn ∈ F[x] of degree at most D− 1, the dimension of the
variety

V(xD
1 − g1, xD

2 − g2, . . . , xD
n − gn)

is zero.

Indeed, the above claim shows that 0 = dim(S) ≥ n − 2m − 2r, and so m ≥ n
2 − r. This

completes the proof of Lemma 3.4.

We now use Lemma 2.1 and Lemma 3.4 to complete the proof of Theorem 3.3.

Proof of Theorem 3.3. Let B be an algebraic branching program of formal degree at most n, edge
labels of degree at most ∆ ≤ n/10, and with start vertex s and end vertex t, which computes

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R.

We may assume without loss of generality that F is algebraically closed, by interpreting B as an
ABP over the algebraic closure of F, if necessary.

Let n′ = bn/∆c, fix k ∈ {1, 2, . . . , n′ − 1}, and let Vk = {vk,1, vk,2, . . . , vk,m} be the set of all
vertices in B whose formal degree lies in the interval [k∆, (k + 1)∆). Letting P′j = [s, vk,j], by
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Lemma 2.1, there exist polynomials Q′1, Q′2, . . . , Q′m and R′, each of degree at most n− 1 such that

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R =
m

∑
j=1

P′j ·Q′j + R′ .

Let αj, β j be the constant terms in P′j , Q′j respectively. Then by defining

Pj = P′j − αj and Qj = Q′j − β j,

we have that
n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj = R′′ +
m

∑
j=1

Pj ·Qj.

Here, R′′ = −R + R′ + ∑m
j=1(αj · Q′j + β j · P′j + αjβ j). We now have that for every i, the constant

terms of Pi, Qi are zero and deg(R′′) ≤ n− 1. Let

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br).

Then 0 ∈ V , and so V 6= ∅. Thus by Lemma 3.4, we know that m ≥ n
2 − r.

Finally, for k 6= k′ ∈ {1, 2, . . . , n′ − 1}, Vk ∩Vk′ = ∅ if d 6= d′. Thus, the number of vertices in B
must be at least (n

2
− r
)
· (n′ − 1) ≥

(n
2
− r
)
· n

2∆
.

3.2 A lower bound for the general case

The following lemma shows how we can obtain, given an ABP with d layers which computes a
polynomial F, a multilayered ABP, whose number of layers is significantly smaller, which com-
putes F plus a small “error term”.

Lemma 3.6. Let A be an ABP over a field F with d layers, which computes the polynomial F and has m
vertices. Let s and t be the start and end vertices of A respectively, and let L =

{
u1, u2, . . . , u|L|

}
be the

set of vertices in the `-th layer of A. For every i ∈ {1, 2, . . . , |L|}, let αi and βi be the constant terms of
[s, ui] and [ui, t] respectively. Furthermore, let Pi and Qi be polynomials such that [s, ui] = Pi + αi and
[ui, t] = Qi + βi.

Then, there is a multilayered ABPA′, with at most max{`, d− `+ 1} layers and size at most |A| that
computes the polynomial

F−
|L|

∑
i=1

Pi ·Qi +
|L|

∑
i=1

αi · βi.

14



Proof. Let u1, u2, . . . , u|L| be the vertices in L as described, so that

F = [s, t] =
|L|

∑
i=1

[s, ui] · [ui, t] .

Further, for every i ∈ {1, 2, . . . , |L|}, [s, ui] = Pi + αi and [ui, t] = Qi + βi, where the constant
terms of Pi and Qi are zero (by definition). Having set up this notation, we can thus express the
polynomial F computed by A as

F = [s, t] =
|L|

∑
i=1

(Pi + αi) · (Qi + βi) .

On further rearrangement, this gives

F−
(
|L|

∑
i=1

Pi ·Qi

)
+

(
|L|

∑
i=1

αi · βi

)
=

(
|L|

∑
i=1

αi · (Qi + βi)

)
+

(
|L|

∑
i=1

(Pi + αi) · βi

)
.

This is equivalent to the following expression.

F−
(
|L|

∑
i=1

Pi ·Qi

)
+

(
|L|

∑
i=1

αi · βi

)
=

(
|L|

∑
i=1

αi · [ui, t]

)
+

(
|L|

∑
i=1

[s, ui] · βi

)
.

Now, observe that the polynomial ∑|L|i=1[s, ui] · βi is computable by an ABP B with ` + 1 layers,
obtained by just keeping the vertices and edges within first ` layers of A and the end vertex t,
deleting all other vertices and edges, and connecting the vertex ui in the `-th layer to t by an edge
of weight βi. Similarly, the polynomial ∑|L|i=1 αi · [ui, t] is computable by an ABP C with at most
(d− `+ 1) + 1 layers, whose set of vertices is s along the vertices in the layers `, `+ 1, `+ 2, . . . , d
of A. From the definition of B and C, it follows that the multilayered ABP Ã obtained by taking
the sum of B and C has at most max {`+ 1, d− `+ 2} layers.

We are almost done with the proof of the lemma, except for the upper bound on the number
of vertices of the resulting multilayered ABP Ã, and the fact that the upper bound on the depth is
slightly weaker than claimed. Both these issues can be solved simultaneously.

The vertices in L appear in both the ABP B and the ABP C and are counted twice in the size of
Ã. However, every other vertex is counted exactly once. Hence,

|B|+ |C| = |A|+ |L| . (3.7)

In order to fix this issue, we first observe that the edges between the vertices in the `-th layer of B
and the end vertex t are labeled by β1, β2, . . . , β|L|, all of which are field constants. In the following
claim, we argue that for ABPs with this additional structure, the last layer is redundant and can
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be removed.

Claim 3.8. LetM be an ABP over F with k + 1 layers and edge labels of degree at most ∆ such that the
labels of all the edges between the k-th layer ofM and its end vertex are scalars in F. Then, there is an ABP
M′ with k layers computing the same polynomial asM, with edge labels of degree at most ∆, such that

∣∣M′∣∣ ≤ |M| − |V| ,

where V is the set of vertices in the k-th layer ofM.

An analogous statement, with an identical proof, is true if we assume that all edge labels
between the first and second layer are scalars in F.

We first use Claim 3.8 to complete the proof of the lemma. As observed above, the edge labels
between the last layer L of B and its end vertex are all constants. Hence, by Claim 3.8, there is an
ABP B′ which computes the same polynomial as B such that |B′| ≤ |B| − |L|, and B′ has only `

layers. Similarly, we can obtain an ABP C ′ with at most d− `+ 1 layers.
We consider the multilayered ABP A′ by taking the sum of B′ and C ′. Clearly, the number of

layers in A′ is at most max{`, d− `+ 1} and the size is at most

∣∣A′∣∣ ≤ ∣∣B′∣∣+ ∣∣C ′∣∣ ≤ (|B| − |L|) + (|C| − |L|) ≤ |A| .

Here, the second inequality follows by Claim 3.8 and the last one follows by Equation 3.7. To
complete the proof of the lemma, we now prove Claim 3.8.

Proof of Claim 3.8. For the proof of the claim, we focus on the k-th and (k − 1)-st layer ofM. To
this end, we first set up some notation. Let {v1, v2, . . . , vr} be the set of vertices in the k-th layer of
M, {u1, u2, . . . , ur′} be the set of vertices in (k− 1)-st layer ofM, and a, b denote the start and the
end vertices ofM respectively. Then, the polynomial computed byM, can be decomposed as

[a, b] =
r

∑
i=1

[a, vi] · [vi, b] .

Note that (vi, b) is an edge in the ABP. Similarly, the polynomial [a, vi] can be written as

[a, vi] =
r′

∑
j=1

[a, uj] · [uj, vi] .

Combining the two expressions together, we get

[a, b] =
r

∑
i=1

[vi, b] ·
(

r′

∑
j=1

[uj, vi] · [a, uj]

)
,
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which on further rearrangement, gives us

[a, b] =
r′

∑
j=1

(
r

∑
i=1

[vi, b][uj, vi]

)
· [a, uj] . (3.9)

From the hypothesis of the claim, we know that for every i ∈ [r], the edge label [vi, b] is a field
constant, and the edge label [uj, vi] is a polynomial of degree at most ∆. Thus, for every j ∈ [r′],
the expression

(
∑r

i=1[ui, b][uj, vi]
)

is a polynomial of degree at most ∆.
This gives us the following natural construction for the ABPM′ fromM. We delete the ver-

tices v1, v2, . . . , vr inM (and hence, all edges incident to them), and for every j ∈ {1, 2, . . . , r′}, we
connect the vertex uj with the end vertex b using an edge with label

(
∑r

i=1[vi, b][uj, vi]
)
. The upper

bound on the size and the number of layers ofM′ is immediate from the construction, and that it
computes the same polynomial asM follows from Equation 3.9.

We now state and prove a simple generalization of Lemma 3.6 for a multilayered ABP.

Lemma 3.10. Let A = ∑m
i=1Ai be a multilayered ABP with d layers over a field F computing the polyno-

mial F, such that each Ai is an ABP with di layers. Also, let `i,j be the number of vertices in the j-th layer
of Ai (`i,j = 0 if Ai has fewer than j layers), and ` = minj∈(d/3,2d/3)

{
∑m

i=1 `i,j
}

.
Then, there is a multilayered ABP with at most 2d/3 layers and size at most |A| that computes a

polynomial of the form

F−
`

∑
i=1

Pi ·Qi + δ ,

where {P1, . . . , P`, Q1, . . . , Q`} is a set of non-constant polynomials with constant term zero and δ ∈ F.

Proof. Let j0 ∈ (d/3, 2d/3) be the natural number which minimizes the quantity ∑m
i=1 `i,j, and

let S ⊆ [m] be the set of all indices i such that Ai has at least j0 layers. Let A′ = ∑i∈SAi and
A′′ = ∑i/∈SAi. Thus,

A = A′ +A′′.

Here,A′′ = ∑i/∈SAi is a multilayered ABP with at most 2d/3 layers. Moreover, |A| = |A′|+ |A′′|.
To complete the proof of this lemma, we will now apply Lemma 3.6 to every ABP in A′. For

every i ∈ S, we know that there exist some polynomials Pi,1, . . . , Pi,`i,j0
, Qi,1, . . . , Qi,`i,j0

with constant
terms zero and a constant δi, such that

Fi −
`i,j0

∑
r=0

Pi,rQi,r + δi

can be computed by a multilayered ABP. Let us denote this multilayered ABP by Bi. From
Lemma 3.6, we know that Bi has at most max{j0, di − j0 + 1} ≤ 2d/3 layers and size at most |Ai|.

17



Taking a sum over all i ∈ S and re-indexing the summands, we get that there exist polynomials
P1, . . . , P`, Q1, . . . , Q` with constant terms zero and a constant δ such that the polynomial

∑
i∈S

Fi −
`

∑
r=0

PrQr + δ

is computable by a multilayered ABP B = ∑i∈S Bi with at most 2d/3 layers and size at most

∑i∈S |Ai| ≤ |A′|. Now, by combining the multilayered ABPs B andA′′, we get that the polynomial

F−
`

∑
r=0

PrQr + δ

is computable by a multilayered ABP with at most 2d/3 layers and size at most |A|.

We now use Lemma 3.10 to prove Theorem 1.2.

Proof of Theorem 1.2. Let A be a multilayered ABP with d0 layers which computes the polynomial

∑n
i=1 xn

i . As before we may assume without loss of generality that the underlying field F is alge-
braically closed. Note that if d0 is at most n/∆, then by Theorem 3.3, we know that |A| is at least
Ω(n2) and we are done. Also, if d0 > n2/∆, then again we have our lower bound since each layer
of Amust have at least one vertex. Thus, we can assume that n/∆ ≤ d0 ≤ n2/∆.

The proof idea is to iteratively make changes to A till we get a multilayered ABP A′ of formal
degree at most n that computes a polynomial of the type

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R

where r ≤ n/10 and A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R has degree at most n− 1. Once we have this, we can invoke Theorem 3.3
and get the required lower bound.

We now explain how to iteratively obtain A′ from A. In one step, we ensure the following.

Claim 3.11. Let Ak be a multilayered ABP with edge labels of degree at most ∆, dk ≥ n/∆ lay-
ers and size at most τ that computes a polynomial of the form ∑n

i=1 xn
i + ∑r

j=1 Aj · Bj + R where
A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every j, Aj(0) = Bj(0) = 0 and
R has degree at most n− 1.

If τ ≤ 0.001n2/∆, then there exists a multilayered ABP Ak+1 with at most 2dk/3 layers and size at
most τ which computes a polynomial of the form

n

∑
i=1

xn
i +

r′

∑
j=1

A′j · B′j + R′ ,
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such that r′ ≤ r + 0.005 n2

∆·dk
and A′1(x), . . . , A′r′(x), B′1(x), . . . , B′r′(x), R′(x) are polynomials such that for

every i, A′i(0) = B′i(0) = 0 and R′ has degree at most n− 1.

Before moving on to the proof of Claim 3.11, we first use it to complete the proof of Theo-
rem 1.2. Let us set A0 = A. Then, A0 is a multilayered ABP with d0 layers and size at most τ that
computes the polynomial ∑n

i=1 xn
i .

If τ ≥ 0.001n2/∆, the statement of the theorem follows. Otherwise, we apply Claim 3.11 itera-
tively K times, as long as the number of layers is more than n/∆, to eventually get a multilayered
ABP A′ = AK with d′ ≤ n/∆ layers. Let d0, . . . , dK−1, dK denote the number of layers in each ABP
in this sequence, so that dK−1 > n/∆, and dk ≤ 2dk−1/3 for k ∈ [K]. A′ is an ABP with at most
n/∆ layers and size at most τ, which by induction, computes a polynomial of the form

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R ,

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i, Ai(0) =

Bi(0) = 0 and R has degree at most n− 1. Further, the number of error terms, r, is at most

0.005n2

∆

(
1

dK−1
+

1
dK−2

+ · · ·+ 1
d0

)
.

Since dk ≤ 2
3 · dk−1, we have that 1

dk−1
≤ 2

3 ·
1
dk

for all k ∈ [K], so that

r ≤ 0.005n2

∆
· 1

1− 2/3
· 1

dK−1
≤ n

10

as dK−1 ≥ n/∆.
At this point, since the formal degree is at most n, using Theorem 3.3 we get

τ ≥
∣∣A′∣∣ ≥ (n/2− r)n

2∆
= Ω

(
n2

∆

)
.

To complete the proof of Theorem 1.2, we now prove Claim 3.11.

Proof of Claim 3.11. Let Ak = ∑m
i=1Ak,i, and for j ∈ [dk], let `i,j be the number of vertices in layer j

of Ak,i. Recall that if the number of layers in Ak,i is strictly less than j, then we set `i,j = 0. Let ` be
the total number of vertices in the middle layers of Ak, defined as

` =
m

∑
i=1

 ∑
j∈(dk/3,2dk/3)

`i,j

 .
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Since ` ≤ τ ≤ 0.001n2

∆ , by averaging, we know that there is a j0 ∈ (dk/3, 2dk/3), such that

`j0 =
m

∑
i=1

`i,j0 ≤
`

dk/3
≤ 0.001n2

∆
· 1

dk/3
≤ 0.005

n2

∆ · dk
.

This condition, together with Lemma 3.10, tells us that there is a multilayered ABP A′k+1 with at
most 2dk/3 layers and size at most τ that computes a polynomial of the form

n

∑
i=1

xn
i +

r

∑
j=1

Aj · Bj + R−
`j0

∑
i=1

Pi ·Qi + δ ,

where P1, . . . , P`, Q1, . . . , Q` are a set of non-constant polynomials with constant term zero and
δ ∈ F. Since `j0 ≤ 0.005 n2

∆·dk
, the claim follows.

4 Unlayered Algebraic Branching Programs

In this section, we prove Theorem 1.3. We begin with the following definition.

Definition 4.1. Let A be an unlayered ABP over F. Let s and t denote the start and end vertices of A,
respectively, and let v 6= s, t be a vertex in A. Denote by α ∈ F the constant term of [s, v] and by β ∈ F

the constant term of [v, t].
The cut of A with respect to v, denoted cut(A, v), is the unlayered ABP obtained from A using the

following sequence of operations:

1. Duplicate the vertex v (along with its incoming and outgoing edges). Let v1, v2 denote the two copies
of v.

2. Erase all outgoing edges of v1, and connect v1 to t by a new edge labeled β.

3. Erase all incoming edges of v2, and connect s to v2 by a new edge labeled α. ♦

We now prove some basic properties of the construction in Definition 4.1.

Claim 4.2. Let A be an unlayered ABP over F computing a polynomial F, and let v be a vertex in A.
Denote A′ = cut(A, v). Denote by d the depth of A and by dv the depth of v in A. Then the following
properties hold:

1. A′ has 1 more vertex and 2 more edges than A.

2. The depth of A′ is at most

max {depth(A \ {v}), dv + 1, d− dv + 1} ,

where A \ {v} is the ABP obtained from A by erasing v and all of its adjacent edges.
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3. A′ computes a polynomial of the form F − P · Q − δ where P and Q have no constant term, and
δ ∈ F.

Proof. The first property is immediate from the construction. The second property follows from
the following reasoning: each path in A′ is of exactly one of the following types: (a) misses both
v1 and v2, (b) passes through v1, or (c) passes through v2. In case (a), the path also appears in the
graph of A \ {v}. In case (b), the only edge going out of v1 is to t, and all other edges in the path
appear in A, hence the length is at most dv + 1. In case (c), the only edge entering v2 is from s,
hence similarly the path is of length at most d− dv + 1.

It remains to show the last property. Let P′ = [s, v] and Q′ = [v, t] (as computed in A). Denote
P′ = P + α where P has no constant term and α ∈ F and similarly Q′ = Q + β. One may write
F = P′ · Q′ + R = (P + α)(Q + β) + R where R is the sum over all paths in A which do not pass
through v. In A′, we have that [s, v1] = P′ and [v2, t] = Q′, and thus A′ computes the polynomial

R + α ·Q′ + P′ · β = F− P ·Q + αβ.

Our goal is to perform cuts on a strategically chosen set of vertices. In order to select them,
will use the following well known lemma of Valiant [Val77], simplifying and improving an earlier
result of Erdős, Graham and Szemerédi [EGS75]. For completeness, we also sketch a short proof.

Lemma 4.3 ([Val77]). Let G be a directed acyclic graph with m edges and depth d ≥
√

n. Then, there
exists a set E′ of at most 4m/ log n edges such that removing E′ from G results in a graph of depth at most
d/2.

Proof. Let d′ ≥ d ≥
√

n be a smallest power of 2 larger than d, so that d′ ≤ 2d. Let k = log d′.
A valid labeling of a directed graph G = (V, E) is a function f : V → {0, . . . , N − 1} such that
whenever (u, v) is an edge, f (u) < f (v). Clearly if G had depth d then there is a valid labeling
with image {0, . . . , N − 1} = {0, . . . , d− 1} by labeling each vertex by its depth. Conversely, if
there is a valid labeling with image {0, . . . , N − 1} then depth(G) ≤ N.

Let f be a valid labeling of G with image {0, . . . , d′ − 1} and for i ∈ [k] let Ei be the set of edges
such that the most significant bit in which the binary encoding of the labels of their endpoints dif-
fer is i. If Ei is removed, we can obtain a valid relabeling of the graph with image {0, . . . , d′/2− 1}
by removing the i-th bit from all labels.

The two smallest sets among the Ei-s have size at most 2m/k ≤ 4m/ log n (since k = log d′ ≥
log n/2), and removing them gives a valid labeling with image {0, . . . , d′/4− 1}, and therefore a
graph with depth at most d′/4 ≤ d/2.

We need a slight variation of this lemma, in which we do not pick edges whose endpoints have
too small or too large a depth in the graph.
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Lemma 4.4. Let G be a directed acyclic graph with m edges and depth d ≥
√

n. Then, there exist a set U
of vertices, of size at most 4m/ log n, such for every v ∈ U we have that d/9 ≤ depth(v) ≤ 8d/9, and
removing U (and the edges touching those vertices) results in a graph of depth at most 3d/4.

Proof. Let E denote the set of edges of G and E′ ⊆ E be the set of edges guaranteed by Lemma 4.3.
Let E1 ⊆ E′ be the edges in E′ whose heads have depth at most d/9, and E2 be the edges in E′

whose heads have depth at least 8d/9. Let E′′ = E′ \ (E1 ∪ E2). Clearly, |E′′| ≤ |E′| ≤ 4m/ log n.
Let U be the set of heads of vertices in E′′.

Consider now any path in the graph obtained from G by removing U (and hence in particular
E′′). Given such a path, let e1 be the last edge from E1 in the path which appears before all edges
from E2 (if there exists such an edge), and let e2 the first edge from E2 (if any) in the path. We
partition the path into three (possibly empty) parts: the first part is all the edges which appear
until e1 (including e1); the second part is all the edges after e1 and before e2; the last part consists
of all the edges which appear after e2 (including e2). Because the head of e1 is a vertex of depth
at most d/9, the first part can contribute at most d/9 edges. The second part includes only edges
from E \ E′, and thus its length is at most d/2. The last part again has depth at most d/9 + 1, as
any path leaving a vertex of depth at least 8d/9 can have at most that many edges (here we add 1
to account for the edge e2 itself, since the assumption is on the depth of the head of e2). Thus, the
total length of the path is at most

d/9 + d/2 + d/9 + 1 ≤ 3d/4 .

The set of vertices given by the lemma above will be the vertices according to which we will
cut the ABP. We describe it in the following lemma, and prove some properties of this operation.

Lemma 4.5. Let A be an ABP over a field F of depth d ≥
√

n computing a polynomial F. Let τ be the
number of vertices and m be the number of edges inA. Then, there exist an unlayered ABPA′, with at most
τ + 4m/ log n vertices, at most m + 8m/ log n edges, and depth at most 9d/10, computing a polynomial
of the form F − ∑r

i=1 PiQi − δ where δ ∈ F is a field constant, the Pi, Qi’s have no constant term, and
r ≤ 4m/ log n.

Proof. Let G be the underlying graph of the ABP A. Let U = {u1, . . . , ur} be the set of vertices
guaranteed by Lemma 4.4, such that r ≤ 4m/ log n. We perform the following sequence of cuts on
A. Set A0 := A and for i ∈ [r], Ai = cut(Ai−1, ui). Finally A′ = Ar.

The statements of the lemma now follow from the properties of cuts as proved in Claim 4.2.
The bound on the number of vertices and edges in A′ is immediate. The claim on the polynomial
computed by A′ follows by induction on i.

Finally, by induction on i, we have that the depth of A′ is at most

max{depth(A \U), depth(u1) + 1, . . . , depth(ur) + 1, d− depth(u1) + 1, . . . , d− depth(ur) + 1} ,
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where A \U is the ABP obtained by removing all vertices in U.
By the choice of U as in Lemma 4.4, for every i ∈ [r] we have that d/9 ≤ depth(ui) ≤ 8d/9,

and depth(A \U) ≤ 3d/4, which implies the required upper bound on the depth of A′ (assuming
n, and hence d, are large enough).

Repeated applications of Lemma 4.5 give the following statement.

Corollary 4.6. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1), computing
an n-variate polynomial F. Further suppose A has depth at least

√
n, and that the number of edges in A is

at most n log n/(1000(log log n + log ∆)). Let τ denote the number of vertices in A.
Then, there exists an ABP A′, whose depth is at most n/∆, which computes a polynomial of the form

F−∑r
i=1 PiQi − δ, such that Pi, Qi are all polynomials without a constant term, δ ∈ F is a field constant,

and r ≤ n/10. The number of vertices in A′ is at most τ + n/10.

Proof. Observe that the depth of A is at most d := n log n. As long as the depth is at least
√

n,
apply Lemma 4.5 repeatedly at most k := 7(log log n + log ∆) times, to obtain an ABP of depth at
most (0.9)k · d ≤ n/∆.

The upper bound on the number of summands PiQi and the number of vertices after each
application is given as a function of the number of edges, which increases in the process. Hence,
we first provide a crude estimate on the number of edges at each step. For i ∈ [k], let Ai denote
the ABP obtained after the i-th application of Lemma 4.5, and let mi be the number of edges in
that ABP.

We claim that by induction on i, mi ≤ m0 · (1 + 8/ log n)i. This is true for i = 0 by definition.
For i ≥ 1, since we maintain the invariant that the depth is at least

√
n, it follows from Lemma 4.5

that

mi ≤ mi−1 + 8mi−1/ log n = mi−1(1 + 8/ log n) ≤ m0(1 + 8/ log n)i−1 · (1 + 8/ log n) ,

where the last inequality uses the induction hypothesis. Thus, the final ABP has at most

mk ≤ m0(1 + 8/ log n)k ≤ 2m0 = n log n/(500(log log n + log ∆)) =: M

assuming n is large enough (recall that by assumption we have that log ∆ = o(log n), so that
limn→∞(1 + 8/ log n)o(log n) = 1). It is convenient to now use M as a uniform upper bound on the
number of edges in all stages of this process, so that each step adds at most 4M/ log n summands
and vertices. It now follows that r is at most

4kM
log n

≤ 7(log log n + log ∆) · 4n
500(log log n + log ∆)

≤ n/10,

and similarly the total number of vertices added throughout the process is at most n/10.
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The lower bound given in Theorem 1.3 now follows by a simple win-win argument. For con-
venience, we restate the theorem.

Corollary 4.7. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1), computing

∑n
i=1 xn

i . Then A has at least Ω(n log n/(log log n + log ∆) edges.

Proof. Let τ denote the number of vertices in A. If the number of edges is at least
n log n/(1000(log log n + log ∆)), then we already have our lower bound. Else, the number of
edges is at most n log n/(1000(log log n + log ∆)). Now, by Corollary 4.6, there exists an ABP A′,
with τ + n/10 vertices and depth at most n/∆, computing ∑n

i=1 xn
i −∑r

j=1 PiQi− δ, such that Pj, Qj

have no constant term, r ≤ n/10, and δ ∈ F.
It thus follows that A′ has formal degree at most n. By Theorem 3.3, it has Ω(n2/∆) vertices,

thus τ = Ω(n2/∆), so that the number of edges is also Ω(n2/∆).

5 A Lower bound for formulas

In this section we prove Theorem 1.4, which we restate below.

Theorem 5.1. Any algebraic formula computing the polynomial ESYM(n,0.1n) over a field of characteristic
greater than 0.1n has size at least Ω

(
n2) .

Recall that the polynomial we prove the lower bound for is the elementary symmetric polyno-
mial on n-variables of degree 0.1n, which is defined as follows.

ESYM(n, 0.1n) = ∑
S⊆[n],|S|=0.1n

∏
j∈S

xj

A few properties of the elementary symmetric polynomials are needed for our proof, and we first
discuss them. These seem to be well known and are not original to this work.

5.1 Properties of elementary symmetric polynomials

Lemma 5.2 ([MZ17, LMP19] ). Let n, d ∈ N be natural numbers with 2 ≤ d ≤ n. Then, over any field
of characteristic at least d + 1, the dimension of the variety V defined as

V = V
({

∂xi ESYM(n,d) : i ∈ [n]
})

is at most d− 2. Here, ∂xi ESYM(n,d) is the partial derivative of ESYM(n,d) with respect to the variable xi.

We quickly sketch the outline of a proof of this lemma from [MZ17] for completeness. The
following claim immediately implies the lemma.
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Claim 5.3. Let a ∈ Fn be a point in the variety V as defined in Lemma 5.2. Then, at least n− (d− 2)
coordinates of a are equal to 0.

To see that the lemma follows from the claim, observe that Claim 5.3 implies that the variety V
is a subset of set of ∪S⊆n,|S|=d−2VS, where VS(⊆ Fn) is the set of points in Fn where the coordinates
in S are all set to zero, and the other coordinates take all possible values in F. Thus, each VS

is a variety of dimension d − 2, and V is contained in a union of such varieties. Therefore, the
dimension of V cannot exceed d− 2. We now sketch the proof of the claim. For that we need the
following folklore fact, often attributed to Euler.

Fact 5.4 (Euler’s formula for differentiation of homogeneous polynomials). Suppose A(x1, . . . , xk)

is a homogeneous polynomial of degree t. Then ∑k
i=1 xi · ∂A

∂xi
= t · A(x1, . . . , xk).

Proof of Claim 5.3. The proof is via an induction on the degree d of the elementary symmetric
polynomials being considered. Note that we only consider the cases when 2 ≤ d ≤ n.

For the base case, we observe that the claim is true whenever d = 2 and n ≥ 2. In this case, the
partial derivative ∂xi ESYM(n,1) = ∑j 6=i xj. Now for any a ∈ Fn, all these linear forms ∑j 6=i aj for
i ∈ [n] can vanish if and only if each aj is zero, thus implying the claim.

For the induction step, let us fix d > 2 and assume that the claim holds for ESYMn,r for all
r ∈N with 2 ≤ r ≤ d− 1 and n ≥ r. We then prove the claim for ESYM(n,d) for every n ≥ d.

For any n ≥ d, from the definition of elementary symmetric polynomials, observe that

∂xi ESYM(n,d) = ESYM(n,d−1) − xi · ∂xi ESYM(n,d−1) . (5.5)

If we add up the equations above for each i ∈ [n], we get

∑
i∈[n]

∂xi ESYM(n,d) = n · ESYM(n,d−1) − ∑
i∈[n]

xi · ∂xi ESYM(n,d−1) .

From Fact 5.4, this can be simplified to

∑
i∈[n]

∂xi ESYM(n,d) = n · ESYM(n,d−1) − (d− 1) · ESYM(n,d−1) .

Thus, it follows that for every a ∈ Fn where all the first order partial derivatives of ESYM(n,d)

vanish, it must be the case that ESYM(n,d−1) is also zero at a. Moreover, from Equation 5.5, this
implies that each of the polynomials in the set{

xi · ∂xi ESYM(n,d−1) : i ∈ [n]
}

must also vanish at a. Now if k of the coordinates of a are equal to 0, and S is the subset of non-zero

25



coordinates of a, it must be the case that the polynomials{
∂xi ESYM(n−k,d−1) : i ∈ S

}
vanish at the point aS ∈ Fn−k, where aS is the n− k dimensional vector obtained by projecting a
to the set S of its coordinates.

By the induction hypothesis, we know that for every r ≤ d − 1 and m ≥ r, any common
zero of all the first order partial derivatives of ESYM(m,r) must be zero in at least m − (r − 2)
coordinates. But aS is a common zero with support n− k of all the first order partial derivatives of
ESYM(n−k,d−1).

Thus, if n− k ≥ d− 1( =⇒ k ≤ (n− d + 1)), then by the induction hypothesis,

no. of zero co-ordinates in aS = 0 ≥ n− k− (d− 3) =⇒ k ≥ n− d + 3

which would lead to a contradiction. The only other case then, is that

d− 1 > n− k =⇒ k ≥ n− (d− 2).

Thus, a is zero on at least n− (d− 2) of its coordinates.

We will need the following strengthening of this lemma by Limaye, Mittal and Pareek [LMP19].

Lemma 5.6 ([MZ17, LMP19]). Let n, d ∈ N be natural numbers with 2 ≤ d ≤ n and let F be a field of
characteristic greater than d. Let R1, R2, . . . , Rn ∈ F[x] be polynomials of degree at most d− 2. Then, the
dimension of the variety V defined as

V = V
({

∂xi ESYM(n,d) − Ri : i ∈ [n]
})

is at most d− 2.

For the sake of completeness, we provide a proof for a slightly more general statement. In this
regard, we first introduce a couple of notations.

Notation 5.7. For a polynomial f , let Homd( f ) denote the d-th homogeneous component of f . Also,
suppose we fix an ordering < on the monomials in F[x] that is graded according to degree. Then for any
ideal I ⊆ F[x], we denote by LM(I) the leading monomial ideal of I. That is,

LM(I) = {m : m is a leading monomial (w.r.t. <) for some polynomial in I} . ♦

Lemma 5.8. Let { f1, . . . , fk} be a set of homogeneous polynomials such that deg( fi) = di. Let R1, . . . , Rk
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be polynomials such that deg(Ri) < di, and let I = 〈 f1, . . . , fk〉 and I ′ = 〈 f1 + R1, . . . . fk + Rk〉. Then,

dim(V(I′)) ≤ dim(V(I))

Proof. The proof follows from the following claim.

Claim 5.9. If { f1, . . . , fk} are homogeneous polynomials and deg( fi) = di, and let I, I′ as in Lemma 5.8.
Then LM(I) ⊆ LM(I′).

Indeed, by the statement of the claim,

LM(I) ⊆ LM(I′) =⇒ V(LM(I′)) ⊆ V(LM(I)) (see, e.g., Section 4.2 of [CLO07])

=⇒ dim(V(LM(I′))) ≤ dim(V(LM(I)))

=⇒ dim(V(I′)) ≤ dim(V(I)).

The last implication follows from the fact that dim(V(LM(J))) = dim(V(J)) for any ideal J (see,
e.g., Section 9.3 of [CLO07]).

Thus, to finish the proof of Lemma 5.8, we need to prove Claim 5.9.

Proof of Claim 5.9. Let m ∈ LM(I) be the leading monomial in ∑k
i=1 gi · fi, and let d = deg(m). Since

fi is homogeneous of degree di, m continues to be the leading monomial in ∑k
i=1 Homd−di(gi) · fi,

and hence in ∑k
i=1 Homd−di(gi) · ( fi + Ri). This shows that m ∈ LM(I′).

Combining Lemma 5.2 and Lemma 5.8, it is easy to see that Lemma 5.6 holds.

5.2 A degree reduction procedure

We will now prove a statement similar to Lemma 3.10 for the case of formulas. We start with a
few preliminary remarks. It is common to define the size of the formula as the number of leaves
(which is, up to a factor of 2, the total number of vertices in the formula). For us it is a bit more
convenient to define the size of the formulas as the number of leaves labeled by variables (rather
than field constants), and prove a lower bound on this measure.

The formal degree of a vertex in the formula is defined by induction in the natural way. If v is
a leaf labeled by variable, its formal degree is 1. If v is a leaf labeled by a field constant, its formal
degree is 0. The formal degree of a sum gate is the maximum between the formal degree of its
children, and the formal degree of a product gate is the sum of the formal degrees of its children.

The formal degree of the formula is the formal degree of its output gate.
We start by a simple observation which can be proved by induction on the structure of the

formula.

Observation 5.10. The size of a formula is at least as large as its formal degree.
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To avoid cumbersome notation, we identify a formula Φ with the polynomial it computes. For
a vertex v in the formula Φ, we denote by Φv subformula rooted at v (and similarly identify Φv

with the polynomial it computes).

Lemma 5.11. Let Φ ∈ F[x] be a formula of formal degree equal to d. Then, for every t ∈ N such that
2t ≤ d, there is a vertex v in Φ of formal degree at least t and at most 2t− 1.

Moreover, there are polynomials h, f ∈ F[x] such that Φ ≡ h · Φv + f and for every γ ∈ F, the
polynomial γh + f ∈ F[x] can be computed by a formula of size at most |Φ| − |Φv|.

Proof. From the definition of formal degree, recall that for every + gate of formal degree k, at least
one of its children also has formal degree k, and for every × gate of formal degree k, at least one
of its children has formal degree at least dk/2e. To get our hands on the vertex v of formal degree
in the interval [t, 2t − 1] in the formula Φ, we start from the root of Φ and traverse down, such
that in every step if the degree of the current vertex w is at least 2t, then we traverse down to its
child with the larger degree (breaking ties arbitrarily). We stop the first time we reach a vertex v
of formal degree at most 2t− 1. The claim is that such a vertex must have formal degree at least t.

To see the lower bound of t on the degree of v, recall that the formal degree of Φ is at least
2t and by definition, v is the first vertex on the unique path from v to the root of Φ with formal
degree at most 2t− 1. Thus, the parent of v must have formal degree at least 2t. We also know
that at any stage of this walk down from the root, we go from a vertex to its child with the higher
formal degree. Therefore, the formal degree of v is at least half of the degree of its parent, i.e., at
least 1

2 · 2t = t.
Consider now that formula obtained from Φ by replacing all the subtree rooted at v with a leaf

labeled by a new variable y. This new formula Φ′ computes a polynomial of the form h · y + f ,
and by replacing y with Φv we recover the formula Φ, thus Φ ≡ h ·Φv + f .

The size of Φ′ is |Φ| − |Φv| + 1. For every fixed γ ∈ F we can actually compute γh + f by
replacing the leaf labeled y in Φ′ by the constant γ (recall that we do not count leaves labeled by
constant in or definition of size).

We now use Lemma 5.11 inductively to get the following decomposition of a formula.

Lemma 5.12. Let Φ be a formula of size s and formal degree at most d. Then, there exist k ∈N, polynomials
g1, g2, . . . , gk, h1, h2, . . . , hk and a formula Φ′ such that the following are true.

• The degree of each gi is at least bd/3c and at most 2bd/3c − 1 and each hi has degree at least 1.

• Φ′ has formal degree at most 2bd/3c and size at most s.

• The constant term of each gi and hi is zero.
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• There exists a constant c ∈ F such that

Φ ≡ Φ′ +
k

∑
i=1

gihi + c .

• kbd/3c ≤ s.

Proof. For brevity, let us assume that d is divisible by 3, and let t = d/3. The proof of the lemma
essentially follows from a repeated application of Lemma 5.11, where we keep extracting vertices
of degree at least t till the total degree becomes smaller than 2t. We now give the details.

Since, the formal degree of Φ is at least 2t, from Lemma 5.11, we know that there is a vertex
v1 in Φ with formal degree in the interval [t, 2t − 1] and polynomials h′1 and f1 satisfying the
following properties.

• Φ ≡ h′1 ·Φv1 + f1.

• For every γ ∈ F, γh′1 + f1 can be computed by a formula of size at most |Φ| − |Φv1 |.

Let g′1 = Φv1 and s1 = |Φv1 |. Let α, β ∈ F be the constant terms of g′1 and h′1 respectively, and let g1

and h1 be polynomials with constant term zero such that g′1 = g1 + α and h′1 = h1 + β. We know
that Φ ≡ h′1 · g′1 + f1, or in other words, Φ ≡ (h1 + β) · (g1 + α) + f1. Rearranging the terms, we
get

Φ ≡ g1h1 + β(g1 + α) + α(h1 + β) + f1 − αβ .

This can be re-written as
Φ ≡ g1h1 + βg′1 +

(
αh′1 + f1

)
+ αβ .

Observe that αh′1 + f1 can be computed by a formula Φ1 of size at most s− s1. Also, the constant
terms of g1, h1 are both zero and βg′1 is computable by a formula Φ′v1

≡ β · Φv1 of formal degree
at most 2t− 1 and size s1 (which is also a sub-formula of Φ). In a nutshell, in one application of
Lemma 5.11, we have decomposed Φ into a sum of a formula Φ′v1

of size s1 and formal degree at
most 2t − 1, a formula Φ1 of size at most s − s1, a constant term and a product of two constant
free polynomials g1h1, where g1 has degree at least t and h1 has degree at least 1. To see the lower
bound on the degree of h1, note that if h1 is of degree zero, then it must be identically zero (since
it is constant free), and this term just vanishes.

Now, consider the formula Φ1. If the formal degree of Φ1 is at most 2t− 1, then we are already
done by letting Φ′ in the statement of the theorem be the sum of Φ1 and Φ′v1

(indeed, the size of
Φ′ is at most (s− s1) + s1 = s). Else, observe that the size of Φ1 is strictly smaller than the size of
Φ. All the items of the lemma (except the last item) now follow from a simple induction on the
formula size.

To see the upper bound on k given by the last item, note that the formulas for the polynomials
g′1, g′2, . . . , g′k obtained in each of the steps, whose sizes are s1, . . . , sk, respectively, are all disjoint
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subformulas of Φ and have formal degree at least t each. Thus, by Observation 5.10, si ≥ t for all
i ∈ [k], and hence, the size of Φ is at least kt = kbd/3c.

5.3 A quadratic lower bound for formulas

We are now ready to prove the lower bound on the formula size computing ESYM(n,0.1n). As was
the case with ABPs, before we prove Theorem 5.1, we need to prove the lower bound for formulas
whose formal degree is at most 0.1n.

Theorem 5.13. Let n ∈ N, and let F be a field of characteristic greater than 0.1n. Let
A1(x), . . . , Ar(x), B1(x), . . . , Br(x) and R(x) be polynomials such that for every i, Ai(0) = Bi(0) = 0
and R is a polynomial of degree at most 0.1n− 1. Then, for every r ≤ 0.1n, any formula over F, of formal
degree at most 0.1n which computes the polynomial

ESYM(n,0.1n) +
r

∑
j=1

Aj · Bj + R

has at least 0.001n2 vertices.

Proof. Let F be a size s formula that computes a polynomial of the form

ESYM(n,0.1n) +
r

∑
j=1

Aj · Bj + R

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x) and R(x) are as in the statement of the lemma.
By Lemma 5.12, we know that the polynomial computed by F has the form

R′ +
k

∑
i=1

gihi + c

where R′ has degree at most 2 b0.1n/3c ≤ 0.1n− 1, the constant terms of gi and hi are zero, and
s ≥ k · b0.1n/3c.
Thus,

ESYM(n,0.1n) +
r

∑
j=1

Aj · Bj + R = R′ +
k

∑
i=1

gihi + c =⇒ ESYM(n,0.1n) + R′′ =
k

∑
i=1

gihi −
r

∑
j=1

Aj · Bj

where R′′ = R− R′ − c has degree at most 0.1n− 1. This shows that if we consider

V = V
({

∂xi ESYM(n,0.1n) − ∂xi R
′′ : i ∈ [n]

})
V ′ = V

({
gi, hi, Aj, Bj : i ∈ [k], j ∈ [r]

})
,

then V ′ ⊆ V and V ′ 6= ∅. Now by Lemma 5.6, we know that dim(V) ≤ 0.1n− 2 and since V ′ 6= ∅,
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dim(V ′) ≥ n− 2k− 2r (see, e.g., Section 2.8 of [Smi14]). Hence,

n− 2k− 2r ≤ 0.1n− 2 =⇒ k ≥ n− 0.1n− 2r + 2
2

= 0.45n− r + 1 ≥ 0.35n.

This implies that s ≥ 0.35n ·
⌊ 0.1n

3

⌋
≥ 0.035n2

6 ≥ 0.001n2.

Finally, let us recall the main theorem of this section and complete its proof.

Theorem 5.1. Any algebraic formula computing the polynomial ESYM(n,0.1n) over a field of characteristic
greater than 0.1n has size at least Ω

(
n2) .

Proof. Let F be a formula with formal degree d0 which computes the polynomial ESYM(n,0.1n).
We assume without loss of generality that the underlying field F is algebraically closed. If d0 is
at most 0.1n, then by Theorem 5.13, we know that |F | is at least Ω(n2) and we are done. Also, if
d0 > n2, then we again have the required lower bound by Observation 5.10. Thus, we may assume
that 0.1n ≤ d0 ≤ n2.

From this point, the proof is exactly along the same lines as that of Theorem 1.2. We iteratively
make changes to F , reducing its formal degree geometrically in each step, via Lemma 5.12, till we
get a formula F ′ of formal degree at most 0.1n that computes a polynomial of the form

ESYM(n,0.1n) +
r

∑
j=1

Aj · Bj + R

where r ≤ 0.1n and A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R has degree at most 0.1n− 1. Once we have this, Theorem 5.13 gives the
required lower bound. As before, in one step we ensure the following.

Claim 5.14. Let Fk be a formula with formal degree dk > 0.1n and size at most τ, that computes a
polynomial of the form ESYM(n,0.1n) + ∑rk

j=1 Aj · Bj + R where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x)
are polynomials such that for every j, Aj(0) = Bj(0) = 0 and R has degree at most 0.1n− 1.

If τ ≤ 0.001n2, then there exists a formula Fk+1 with formal degree at most 2dk/3 and size at most τ

which computes a polynomial of the form

ESYM(n,0.1n) +
rk+1

∑
j=1

A′j · B′j + R′ ,

such that rk+1 ≤ rk +
0.0033n2

dk
and A′1(x), . . . , A′rk+1

(x), B′1(x), . . . , B′rk+1
(x), R′(x) are polynomials such

that for every i, A′i(0) = B′i(0) = 0 and R′ has degree at most 0.1n− 1.

Before proving Claim 5.14, we first complete the proof of Theorem 5.1 assuming the claim.
Set F0 = F . Then, F0 is a formula with formal degree d0 and size at most τ that computes the
polynomial ESYM(n,0.1n). If τ ≥ 0.001n2, the statement of the theorem follows.
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Otherwise, applying Claim 5.14 iteratively as long as the formal degree remains > 0.1n, we
eventually get a formula F ′ with formal degree d′ ≤ 0.1n. Let the number of steps taken be K,
and so let FK = F ′. Further, let d0, . . . , dK−1, dK denote the formal degree of each formula in this
sequence. Thus dK−1 > 0.1n, and dk ≤ 2dk−1/3 for every k ∈ [K]. Now F ′ has formal degree at
most 0.1n, size at most τ, and computes a polynomial of the form

ESYM(n,0.1n) +
rK

∑
j=1

Aj · Bj + R ,

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i, Ai(0) =

Bi(0) = 0 and R has degree at most 0.1n− 1. Further, the number of error terms, rK, is at most

0.0033n2
(

1
dK−1

+
1

dK−2
+ · · ·+ 1

d0

)
.

Since dk ≤ 2
3 · dk−1, we have that 1

dk−1
≤ 2

3 ·
1
dk

for all k ∈ [K]. This implies that

rK ≤ 0.0033n2 · 1
1− 2/3

· 1
dK−1

=
0.0099n2

0.1n
= 0.099n ≤ 0.1n

as dK−1 ≥ 0.1n.
Finally, since the formal degree is at most 0.1n, using Theorem 5.13 we get

τ ≥
∣∣F ′∣∣ ≥ 0.001n2 = Ω(n2) .

We now prove Claim 5.14. Again the proof is exactly along the lines of Claim 3.11.

Proof of Claim 5.14. Let Fk be a formula with formal degree dk > 0.1n and size at most τ, that com-
putes a polynomial of the form ESYM(n,0.1n) + ∑rk

j=1 Aj · Bj + R. Here R has degree at most 0.1n− 1
and A1(x), . . . , Ar(x), B1(x), . . . , Br(x) are polynomials such that for every j, Aj(0) = Bj(0) = 0.
Then, for Φ = Fk, Lemma 5.12 says that there exists a formula Fk+1 = Φ′ of formal degree at most
2dk/3 and size at most τ that computes a polynomial of the form

ESYM(n,0.1n) +
rk

∑
j=1

Aj · Bj + R−
`k

∑
i=1

gi · hi + c ,

where `k ≤ τ
bdk/3c ≤

3.3×0.001n2

dk
= 0.0033n2

dk
for large enough n. Further, g1, . . . , g`k , h1, . . . , h`k are a

set of non-constant polynomials with constant term zero and c ∈ F. Thus, if we set R′ = R + c,
A′i = Ai, B′i = Bi for every i ∈ [rk] and A′rk+j = gj, B′rk+j = hj for every j ∈ [`k], the claim
follows.
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6 Open problems

We conclude with some open problems.

• A natural open question here is to prove an improved lower bound for unlayered algebraic
branching programs. In particular, in the absence of an obvious non-trivial upper bound, it
seems reasonable to conjecture that any unlayered ABP computing the polynomial ∑n

i=1 xn
i

has size at least Ω(n2−o(1)).

• Yet another question which is natural in the context of this work and remains open is to prove
stronger lower bounds for ABPs. As a first step towards this, the question of proving super-
quadratic lower bound for homogeneous algebraic formulas might be more approachable.
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