Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 171 (2019)

Improved bounds on the AN-complexity of multilinear functions

Oded Goldreich*

January 11, 2020

Abstract

We consider arithmetic circuits with arbitrary large (multi-linear) gates for computing multi-
linear functions. An adequate complexity measure for such circuits is the maximum between
the arity of the gates and their number. This model and the corresponding complexity measure
were introduced by Goldreich and Wigderson (FCCC, TR13-043, 2013), and is called the AN-
complexity.

The AN-complexity of a multi-linear function yields an upper bound on the size of depth-
three Boolean circuits for computing the function, and it is not clear whether or not significantly
smaller depth-three Boolean functions exist. Specifically, the depth-three size of Boolean circuits
is at most exponential in the AN-complexity of the function. Hence, proving linear lower bounds
on the AN-complexity of explicit multi-linear function is a essential step towards proving that
depth-three Boolean circuits for these functions requires exponential size.

In this work we present explicit multi-linear functions that require depth-two multi-linear
circuits of almost linear AN-complexity. Specifically, for every € > 0, we show an explicit
poly(1/e)-linear function f : {0,1}P°W(/9n 5 £0 1} such that any depth-two circuit (with
general multi-linear gates) that computes f must use gates of arity at least n'=¢. This improves
over a corresponding lower bound of ﬁ(n” 3) that was known for an explicit tri-linear function
(Goldreich and Tal, Computational Complexity, 2018), but leaves open the problem of showing
similar AN-complexity lower bounds for multi-linear circuits of larger depth.

A key aspect in our proof is considering many (extremely skewed) random restrictions, and
contrasting the sum of the values of the original function and the circuit (which supposedly
computes it) taken over a (carefully chosen) subset of these random restrictions. We show that
if the original circuit has too low AN-complexity, then these two sums cannot be equal, which
yields a contradiction.

Additional result (added January 2020): For every ¢ > 0 and ¢t = O(1/€?), the
Q(n'=¢) lower bound holds also for the t-linear function

M, 2@ e®) = Z H 3755) 'mg?ﬂ'ﬁmﬂt_l

i1,.0-1€[0] \jE[t—1]

Keywords: Depth-three Boolean circuits, arithmetic circuits, multi-linear circuits, multi-linear
functions, random restrictions, small-bias generators.

*Department of Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. Work done while visiting
the Computer Science Department of Columbia University. E-mail: oded.goldreich@weizmann.ac.il

ISSN 1433-8092

Contents

1 Introduction 1
1.1 From canonical Boolean circuits to AN-complexity of multilinear circuits 1

1.2 Prior results regarding the AN-complexity of multi-linear functions 2

1.3 Ourresults e 3
1.4 Outline of the proof of Theorem 1.7 4
1.4.1 The random restriction and its affect on gates with large blocks 4

1.4.2 Gates with small blocks: A special case 4

1.4.3 Gates with small blocks: The general case 6

2 Proof of Theorem 1.7 7
2.1 The form of a depth-two multilinear circuit that computes F* 7
2.2 Three types of gates and how they will be handled 8
2.3 The actual handling of the three types, 9
2.4 Wrapping-up and reaching a contradiction L. 14

3 Proof of Theorem 1.8 17
4 Conclusions 19
Acknowledgements 21
References 21
Appendix: On small-bias generators of large stretch 22
A.1 A general composition lemma 22
A.2 An iterative construction 23
A.3 Adaptation to constructions of bounded degree generators 24

A.4 Adaptation to multilinear constructions of bounded degree 24

1 Introduction

Providing exponential lower bounds on the size of constant-depth Boolean circuits computing ex-
plicit functions is a central problem of circuit complexity, even when restricting attention to depth-
three circuits (cf., e.g., [5, Chap. 11]). We stress that we refer to lower bounds of the form exp(Q(n)),
when n is the input length, whereas the celebrated lower bounds on the size of depth-three circuits
for parity have the form exp(Q(n!/?)).

Focusing on this challenge, Goldreich and Wigderson [4] suggested to consider some explicit
multi-linear functions (as potential candidates for functions that require exponential-size depth-
three circuits), and to start by establishing a size lower bound in a restricted model of (“canon-
ical”) depth-three circuits. Needless to say, the latter model covers the standard construction of
depth-three Boolean circuits for parity, and seems quite natural (if not optimal) in the context of
computing multi-linear functions.

1.1 From canonical Boolean circuits to AN-complexity of multilinear circuits

The restricted model of depth-three canonical Boolean circuits is closely related to a model of
multi-linear arithmetic circuits with general multi-linear gates, and the complexity measure that is
related to the size of the former canonical depth-three Boolean circuits is the maximum between
the arity and number of gates in the multi-linear circuits. A few clarifications are in place.

e By multi-linear functions we mean functions of the form f : {0,1}'™ — {0, 1} such that

f(x(l)ax@)v“'aw(t)) = Z fi1,~~~,it xz(ll) .%'1(22)1'5?, (1)
11,02,...,0t €[n]
where z0) = (:cgj), ey :CT(f)) is the j' block of n Boolean variables.
That is, f is the sum of monomials such that each monomial takes a single variable from each
of the t blocks of variables. We often relate to such function as ¢-linear.

The t-ary array (fi,,...i)i;,...ise[n) 18 the tensor corresponding to f. The tensor indicate which
of the possible n! monomials are actually included in the function.

e An arithmetic circuit with arbitrary gates that computes a multi-linear function is called
multilinear if each of the monomials computed by each of its gates multiplies the results of
sub-circuits that depend on disjoint blocks of variables. Beyond this global (to the circuit)
syntactic requirement, the gates may be arbitrary.

Clearly, any multi-linear function f : {0,1}™ — {0,1} can be computed by a multi-linear circuit
having a single gate of arity tn. But we are interested in circuits that use gates of bounded arity,
and we also bound the number of gates that they use.

Definition 1.1 (the AN-complexity of multilinear circuits with general gates [4]): The arity of a
multilinear circuit is the mazimum arity of its (general) gates, and the number of gates counts only
the general gates and not the leaves (variables). The AN-complexity of a multilinear circuit is the
mazimum between its arity and the number of its (general) gates.

e The general (or unbounded-depth) AN-complexity of a multi-linear function f, denoted AN(f),
is the minimum AN-complexity of a multilinear circuit that computes F'.

e The depth-two AN-complexity of a multi-linear function f, denoted ANy(F'), is the minimum
AN-complexity of a depth-two multilinear circuit that computes F .

Indeed, when dealing with depth-two multilinear circuits, there is no need to upper-bound the
number of gates, since it is upper-bounded by the arity of the top gate (plus 1).

A straightforward implementation of general gates of arity m by CNF's (or DNFs) of size exp(m),
yields depth-three circuits of size exp(AN2(f)) for any multi-linear function f. (Indeed, we use a
CNF for emulating the top multi-linear gate, and DNF's for the intermediate multi-linear gates (and
then collapse the two adjacent layers of OR-gates).) Applying a Valiant-like idea [9], which can be
actually traced to the reduction of Circuit-SAT to SAT, Goldreich and Wigderson [4] showed the
following.

Theorem 1.2 (The size of depth-three Boolean circuits is at most exponential in the AN-complexity [4]):
Any multilinear function f can be computed by a depth-three Boolean circuit of size exp(AN(f)).

Hence, establishing lower bounds on the AN-complexity of multi-linear functions is a necessary con-
dition for establishing lower bounds on the size of depth-three Boolean circuits for these functions.
In particular, seeking lower bounds of the form exp(w(n'/?)) on the size of a depth-three Boolean
circuit computing the ¢-linear function f : {0, 1} — {0, 1} requires proving that AN(f) = w(n'/?).

1.2 Prior results regarding the AN-complexity of multi-linear functions

The following results provide the context for our work. For starters, note that the case of t = 1
corresponds to the n-bit parity function PAR,,, and in this case it is easy to verify that AN9(PAR,,) =
O(n'/?) and AN(PAR,,) = Q(n!/?). Our interest is in O(1)-linear functions that have AN-complexity
w(n'/?). (Note that such a result means that such a function does not have a canonical depth-three
Boolean circuit of size exp(O(n'/?)).) We start with an upper bound that sets the limit on such
lower bounds.

Theorem 1.3 (a generic upper bound [4]): For everyt > 2, every t-linear function f : ({0,1}")! —
{0,1} can be computed by depth-two mulitilinear circuit of AN-complexity O((tn)/H1); that is,
ANy (f) = O((tn)"/ (D).

For example, all bilinear functions have AN-complexity at most O(nQ/ 3). Hence, seeking a linear
(in tn) lower bound, we must use a logarithmic number of blocks (i.e., t = Q(logn)). In fact, such
lower bounds hold existentially.

Theorem 1.4 (existential lower bound [4]): For every t > 2, almost all t-linear functions f :
({0,1}")* — {0,1} have AN-complexity Q((tn)"/ 1), that is,

Pr 1, ((0,137)—{0.1} AN(f) = Q(tn)/TFD)] = 1 — o(1).

For example, almost all bilinear functions have AN-complexity at least Q(nQ/ 3). Of course, the goal
is obtaining lower bounds for explicit functions (and Theorems 1.3 and 1.4 merely set the target
for such attempts). The only prior w(n!/?) result of this type was proved by Goldreich and Tal [3],
by building on a connection between the AN-complexity of bilinear functions and matrix rigidity
(cf. [8]), which was established by Goldreich and Wigderson [4].

Theorem 1.5 (w(n'/?) lower bounds for explicit functions [3]):

1. There exists a polynomial-time computable 4-linear function fy : {0,1}*" — {0,1} having
AN-complezity Q(n?/3); that is, AN(f4) = Q(n?/?).

2. The function fs(x,y,z) = Zi,je[n/2] TiY;2it; satisfies ANo(f3) = §~2(n2/3).

We mention that the function fy(z,y,r, s) has the form Zije[n/O(l)] 9i,j(r, s) - x;y;, where g; ;(r, s)
is a bilinear form that describes a bit in the output of a small bias generator (see Definition A.1).

1.3 Our results

The obvious open problems raised by the results reviewed in Section 1.2 are

Open Problem 1.6 (w(n?/3) lower bounds for explicit functions):

1. Present an explicit O(1)-linear function f : {0,1}°™ — {0,1} having AN-complezity w(n?/3);
that is, AN(f) = w(n?/3).

2. Present an explicit O(1)-linear function f : {0,1}°0) — {0,1} satisfying ANa(f) = w(n?/3).
Our result resolves the second problem. Specifically, we prove the following result.

Theorem 1.7 (almost linear lower bounds on ANo-complexity of explicit functions): For every e >
0, letting t = poly(1/¢), there exists a polynomial-time computable t-linear function f:{0,1}'"™ —
{0,1} such that ANy(f) = Q(n'~c).

We mention that the lower bound holds also when waiving the requirement that the circuit be
multilinear; that is, it holds for general depth-two arithmetic circuits that use general gates. This
is the case because general arithmetic circuits of AN-complexity m and depth d that compute a
t-linear function can be converted to multilinear circuits of AN-complexity 2! - m and depth d that
compute the same function [4, Rem. 2.5].

Additional result (added January 2020): Using the ideas that underlie the proof of Theo-
rem 1.7, and triggered by discussion with Avi Wigderson, we also prove the following result that
refers to a more explicit function and smaller value of t.

Theorem 1.8 (almost linear lower bounds on ANg-complexity of a more explicit function): For
every € € (0,1/4], letting t = [3/€?], the t-linear function f : {0, 1}¢=D7 % {0, 1}¢Dn - (0,1}

i1,0t—1€[n] \JE[t—1]
satisfies ANo(f) = Q(n'™c).

Alternatively, we may partition the last block, which contains (¢ — 1) - n variables, to t — 1 blocks
holding n variables each.

We mention that the functions used in Theorems 1.7 and 1.8 aew generalizations of the 4-linear
and trilinear functions used in establishing Part 1 and Part 2 of Theorem 1.5, respectively.

1.4 Outline of the proof of Theorem 1.7

Let us take a look at a generic multilinear circuit of depth two and AN-complexity m that computes
f. This circuit has the form C(z) = H(G1(%), ..., Gn(T)), where me may assume (w.l.o.g.) that
the top gate H is only fed by gates (rather than also by variables). Furthermore, each of the
intermediate gates (i.e., the G;’s) is fed by variables only; moreover, G; is fed by at most m
variables from each block.

It is instructive to consider the blocks of variables that feed each of the intermediate gates. We
denote by B; C [t] the set of variable-blocks that feed G;, and note that each monomial computed
by G; is linear in the variables of each block in B; and is independent of variables of blocks in

[t] \ B;.

1.4.1 The random restriction and its affect on gates with large blocks

Now, suppose that we assign the variables in the first ¢ — 2 blocks at random such that for each
J € [t — 2] we set a single variable to 1 and set all other variables to 0; that is, for each j € [t — 2],
we select i; € [n] uniformly at random and set the j' block to 0%7110"7%. Then, the t-linear

function f is (randomly) restricted to a bilinear function f;, ;, , such that

Firomiva(y,2) % pOI110m0 02102y) (2)

that is supposedly computed by the simplified circuit (i.e., the circuit obtained from C by applying
the random restriction specified by (i1, ..., %—2)).

Looking at the simplified circuit, observe that, for each i € [m], the output of G; is identically 0
unless for each j € B; we set one of the variables of block j that feeds G; to 1. Recalling that each
block has at most m variables that feed G;, it follows that the output of G; is identically 0 with
probability at least 1 — (m/n)Binlt=2ll,

Now, if all B;’s were of size at least d + 2 > 1/¢, then the entire circuit would simplify to the
constant 0, with probability at least 1 —m-(m/n)?. Hence, if all “slices” of f are non-trivial (i.e., all
fir,...is_, are not identically 0), then we reach a contradiction unless m - (m/ n)® > 1, which implies
m > nd/ @+ > pl=c and Theorem 1.7 would follow (when we pick the best depth-two circuit, so

that m = ANy(f)).

1.4.2 Gates with small blocks: A special case

But what if some (or all) B;’s are small? For simplicity, let us ignore the large B;’s, and more
importantly assume that each of the remaining B;’s is either a subset of {t — 1,¢} or a subset of
[t —2]. Under this (unjustified) assumption, the circuit C' has the form

ClaW, ey 2) = 3 FiW, . 27)- Gy(y,) 3)
jeJ
+ Z Fj\ j (‘r(l)v "'7$(t_2)) -Gy (y) - Gj2(z)7 (4)
(J1.2)EK

where the F}’s and F}, j,’s are (¢ — 2)-linear functions, and J C [m] and K C [m]?. Recalling that,
in order to get rid of the larger B;’s, we picked a random assignment to the variables in the block
in [t — 2], it follows that each of the functions F}’s and F}, ;,’s evaluates to a constant. Now, if we

are extremely lucky and all F}’s (but not necasserily the F}, j,’s)! evaluate to 0, then the bilinear
function computed by the residual circuit corresponds to a matrix of rank at most m (since each
Gii(Y) - 2,1 ja)ei Giz(7) corresponds to a matrix of rank at most 1).2 In this case we reach a
contradiction, provided that almost all “slices” of f correspond to matrices of higher rank (i.e., rank
higher than m). Hence, Theorem 1.7 would follow, provided that we select an adequate function f
(which is quite easy to do).

Of course, there is no reason to believe that we may be so extremely lucky (and have all F}’s
evaluate to 0). What we do in this case is selected m+1 random assignments to the variables of the
blocks in [t — 2], and consider the m + 1 vectors of values of the F}’s (i.e., the i*! vector describes
the values of all F}’s under the i*" assignment).®> Now, we select a non-zero linear combination
of these vectors that sums-up to zero, and look at the corresponding linear combinations of the
computations of C' and the evaluations of f.

The key observation is that the linear combination of the computations of (the restricted)
circuit C yields a bilinear function that corresponds to a matrix of rank m, since the contribution
of the > jed F;Gj cancels out (because, for each j € J, the linear combination of the assignments
to Fj evaluates to 0). Hence, if the corresponding linear combinations of the evaluations of (the
restricted) function f yields a bilinear function of higher rank, then we reach a contradiction again.
For this to happen, it suffices that each linear combinations of slices of f corresponds to a matriz
of rank higher than m, where a slice of f is a bilinear function f;, _; _, (as in Eq. (2)). Selecting
f from a small-bias sample space comes to mind, and such a selection will be derandomized by
using auxiliary variables (as done in the construction of f4 of [3]). Furthermore, as in [3], we
need a generator of such sequences (with larger stretch than in [3]) that can be implemented by
multi-linear functions of low degree. We present such a construction in the appendix.

But wait: We have ignored the effect of using m + 1 random assignments, rather than one, on
the large B;’s (i.e., | Bi| > d+2). Recall that when using a random assignment of the foregoing type,
the contribution of the corresponding gate vanished with probability at least 1 — (m/n)'Bin[t_QH.
But when selecting m + 1 such assignments the corresponding gate vanishes on all of them with
probability at least 1 — ((m + 1) - (m/n))/PNt=2ll This bound is useless, since we aim at m > \/n.
However, we can do better by selecting the m + 1 assignments carefully. Specifically, for each
j € [t —2], we select a set I; of b = (m + 1)%/(=2) elements of [n] uniformly at random , and
consider the set of assignments specified by I; x --- x I;_5. Hence, the i*® gate vanishes on all
m + 1 assignments if for some j € B; N [t — 2] it holds that I; contains no variable that feeds this
gate. Observing that this event occurs with probability at least 1 — (b- (m/n))!B =2l Hence, we
t—2 d
—1

reach a contradiction unless m- ((b-m)/n)? > 1, which implies m > nt=1'7+1 > n!=¢ provided that
min(d + 1,t —2) > 2/e.

'Footnote 3 explains why we do not assume here that all F}, ;, evaluate to 0. Essentially, removing the unrealistic
assumption regarding the F;’s has a cost we can afford, whereas the cost of dealing similarly with the F}, ;,’s cannot
be afforded (because their number may be much larger).

2In general, each bilinear function that is a product of two linear functions corresponds to a matrix of rank 1
(unless it is identically zero). This correspondence is the pivot of the connection between the AN-complexity of
bilinear functions and matrix rigidity [4], which in turn is the starting point of [3].

3We can afford to consider all 2™*' — 1 linear combinations, but we can not afford to consider 2%m*) Jinear
combination, because we aim at m = w(nl/g). This is the reason that this argument is applied to the F}’s, but not
to the Fj, j,’s.

1.4.3 Gates with small blocks: The general case

All the foregoing was done under the (unjustified) simplifying assumption that each of the small
By’s is either a subset of {t — 1,¢} or a subset of [t — 2]. In the general case, we may have gates
with small B;’s that intersect both {t —1,¢} and [t — 2].

We first consider the case of small B;’s that contain both ¢ — 1 and ¢ (i.e., B; O {t — 1,t}). A
generic gate G; of this type depends on less than d blocks from [t — 2]; let us assume for simplicity
that these blocks are indexed 1,...,d" < d. Then, the contribution of this gate to the computation
of C' has the form

Fi(x(dlﬂ), v a:(t72)) . Gi(x(l), v x(dl), Yy 2),

where F; is an arbitrary (¢t — 2 — d’)-linear function (analogously to Eq. (3)). This means that for
the sets I, ..., I;_o selected as above, we have to find a set S C I1 X --- X I;_o such that for every
gate G of the current form and every (i1, ...,44) € Iy X -+ X Iy, it holds that

> F(077110m 1, L, 0727 110") = 0.

(id/+1,...,it_2):(i1,...,id/,’id1+1,...,it_2)€S

We can find such a set S, very much as we have done before, except that now we need the size
of each I; (denoted b above) to be at least (m + 1)/(=2=4) (rather than at least (m 4 1)%/(¢=2).
This means that we get m - ((m + 1)"/¢=2=4) . ;) /n)? > 1, which gives us the desired lower bound
(when using a larger ¢ such that % - m < n/2).4

So we are left with the case of small B;’s that intersect {t —1,t} at a single point. For simplicity
consider B; = {1,...,d,t} such that d < d. The crucial observation here is that the expected
number of variables from blocks [d] that will be set to 1 by any of the random assignments is
(m 4+ 1)¥/E=2=d) (/) < ((m + 1)1+ﬁ/n)d, < 1. Hence, the contribution of such a gate to
the rank of the matrix that corresponds to the bilinear function computed by the residual circuit
is actually maximized in the case d’ = 0, which was considered above.

This completes the rough sketch of the proof of Theorem 1.7, although a more clear and detailed
description is in place. In particular, we ignored the task of showing that for a pseudorandom (i.e.,
small-bias) function f, with high probability, any non-zero linear combination of the slices in
Iy X -+ X I;_9 yields a bilinear function that corresponds to a matrix of high rank.

To summarize, we started with an extremely skewed type of random restrictions, which assign
values to all but two of the variable blocks such that a single variable in each block is set to 1. Hence,
such random restrictions correspond to selecting, at random, a single variable in each of the t — 2
blocks. Furthermore, we considered b2 such random assignments and contrasted the sum of the
corresponding restrictions of the original function f and the circuit C' (which supposedly computes
it), where the sum is taken over a subset of these assignments. Lastly, the b'~2 random assignments
are the Cartesian product of b assignments (of random n-bit strings of Hamming weight 1) to each
of the ¢ — 2 blocks.

As mentioned briefly, the function f is a pseudorandom function, and we shall use a function F
that uses a small bias generator to specify a function f (see Eq. (5), coming next). Specifically, we
shall use a small bias pseudorandom generator that can be evaluated by a multi-linear function. In
particular, we use an exp(—{2(n))-bias generator that stretches poly(#)-n bits into n! bits such that

4The added condition is used in the analysis of the psedorandom function f, which is omitted here. Note that,
d
using d = 2/¢ and t > max(2d + 2, (d + 1)?), it holds that m'T#=2=a "% > n¢ implies m > n'~¢, whereas b® =
(m + 1) ¢=4=D < 5 /2m holds for m = n' .

each output bit can be computed by an explicit poly(¢)-linear function. (Recall that the small-bias
feature means that each non-zero linear combination of the output bits is exp(—(n))-close to being
unbiased.) An adequate construction is presented in the appendix.

2 Proof of Theorem 1.7

We start with an explicit presentation of the multi-linear functions that we shall analyze. For ¢’ and
t" to be determined, we consider the (# + t”)-linear function F : GF(2)*'**")" — GF(2) defined as

F(zW,2®) | gE+)) = Z Gop(zV')., x(tlHN) H x (5)

21, ,1t/+2
150841 4 9 €[N] JE[E'+2]

where Ggp : GF(2)#" =27 G‘:F(2)”tur2 is an exp(—£2(n))-bias generator that is computed by (¢’ —
2)-linear functions. Specifically, the (iy, ..., iy2)™ bit in the output of Ggp, denoted Ggp (23, ..., 2(t'+1"))
is computed by a (¢ — 2)-linear function.

Intuitively, the first ¢ 4+ 2 coordinates of the tensor that describes the function computed by F
correspond to a pseudorandom (i.e., small-bias) tensor, where the pseudorandomness is provided
by the last t/ —2 coordinates. We shall consider the n' two-dimensional slices of the former (t'+2)-
dimensional tensor, where the slices are aligned with coordinates ' + 1 and ¢’ + 2. That is, fixing
an arbitrary assignment s € {0, 1}(1‘//*2)” to the last ¢’ — 2 blocks of variables (i.e., fixing a seed
to the small-bias generator), the slice (iy,...,iy) € [n]* of the (the tensor of the) residual function
Fy(-+) = F(--+,5) is the matrix (Gsb(8)(iy,....i,0j1,j2))1 s that is, the (41, 72)™" entry of this slice is
Gsb(8) (i1,0nnyiyr 1 o)

We shall need to pick a large enough ' for the analysis of these slices, and this will require
setting ¢ — 2 = Q(t') so that the n*+2-long sample space can have small bias.

(i1, 7Zt/+2

2.1 The form of a depth-two multilinear circuit that computes [

Without loss of generality, the top gate in a generic depth-two circuit of AN-complexity m (which
computes F') sums-up monomials that are products of up to t = ¢/ + t” of m auxiliary functions,
denoted Gfi,...,Gp,. The G;’s are computed by the m intermediate gates, which are each fed
by m original variables. That is, a typical gate is associated with a subset B C [m] of size at
most ¢, which specify the variable-blocks that feed it. Specifically, for each ¢ € [m], we denote
by BL(i) C [t] the indices of the variable-blocks on which G; depends, and we say that G; is
BL(i)-linear. Each monomial computed by the top gate induces a partition on the ¢ blocks of
variables; that is, for a monomial of the form Hje[w] Gi; computed by the top gate it must hold

that BL({i1, ... zw}) (BL(zl) .yBL(iy)) is a partition of [t].

Letting II denote the set of all partitions of [t] and C C {J,,¢py (}) denote the collection of all
legal monomials (i.e., C = {I : BL() € II}), the fact that a depth-two circuit of AN-complexity m
computes F' means that there exist constants (cy)rec such that

F =Y ¢]]6 (6)

IeC icl
Y @ Y I o)
1€[m|:BL(¢)2t'+1 IeC:I>i Je(I\{:})

where each G; has arity at most m (and an empty product is defined as identical to 1 (and
[[icoGi = 1)).5 Hence, each G; depends on at most m variables in each of the blocks in the

corresponding BL(7). Letting
def
FE<S DY o] 6 (8)
IeC:I>i je(I\{i})

we get

F= > G;-F, 9)

i€[m|:BL(i) >t/ +1

where we treat F; as arbitrary ([¢] \ BL(¢))-linear functions.

2.2 Three types of gates and how they will be handled

For each fixing of values to the last t” —2 blocks (i.e., a fixing of a seed for the small-bias generator),
we show that adequate random assignments to the first ¢’ blocks yield, with high probability, a
bilinear function that corresponds to a matrix of rank O(m), where this bilinear is derived from
the r.h.s. of Eq. (9). In contrast, considering the Lh.s. of Eq. (9), we shall later show that this
is unlikely to happen for a random seed, unless m = Q(n'~¢). Here we focus on the former part
(which was sketched in Section 1.4).

Towards this end, we fix such a seed s € {0, 1}(”*2)'", and for sake of simplicity omit it from
the notation (i.e., we shall refer to the functions F, G;, F; as if they only depend on the first ¢’ + 2
blocks). Fixing a sufficiently large constant d = O(1/¢), we consider a partition of the monomials
in Eq. (6) (equiv., the G;’s in Eq. (9)) to three types:

1. Monomials in which variables from blocks ¢ + 1 and ' + 2 are fed to different auxiliary
functions; equivalently, functions G; such that ¢’ 4+ 2 & BL(7), which means that the variables
of block #' 4 2 feed the corresponding function F; (of Eq. (9)).

Such monomials (resp., functions) contribute to the rank of a matrix corresponding to a
related bilinear function (which depends on variables in blocks ¢’ + 1 and ¢’ + 2), and this
contribution will be bounded by taking into account the number of blocks in [t'] that feed
G;. Specifically, if BL(z) N [t'] = (), then G; contributes at most one unit, and otherwise we
will bound the contribution of G; in expectation by using the fact that it gets simplified by
a random restriction (of the type discussed in Section 1.4).

2. Monomials in which variables from blocks ¢ + 1 and ' + 2 are fed to the same auxiliary
function along with variables from many blocks in [t']; equivalently, functions G; for which
t'+1,¢' +2 € BL(7) and |BL(i) N [']] > d.

Such monomials (resp., functions) contribute to the non-zero entries of a matrix corresponding
to a related bilinear function, and this contribution will be bounded by using d blocks in [¢/].

Specifically, we will bound the contribution of G; in expectation by using the fact that it gets
simplified by a random restriction.

®Indeed, for each monomial in Eq. (6), we focus on the function G; that is fed by variables of block ¢’ + 1, where
the choice of using block ¢’ + 1 rather than block ¢’ + 2 is arbitrary.
SRecall that throughout this section, we focus on G;’s such that ¢’ + 1 € BL(4).

3. Monomials in which variables from blocks ¢ + 1 and ¢’ + 2 are fed to the same auxiliary

function along with variables from few blocks in [t']; equivalently, functions G; for which
t'+1,¢ +2 € BL(7) and |BL(7)| < d.
We shall show that such monomials (resp., functions) can be ignore viz a viz the aforemen-
tioned matrices. This will be done by taking a suitable linear combination of relatively few
slices that correspond to different random restrictions of the circuit. Doing so will indeed
complicate the analysis of the first case, but not in an unmanageable manner. In particular,
as discussed in Section 1.4, the different random restrictions will be related so that their effect
on the first two cases is relatively small.

A contradiction will follow by showing that the corresponding matrix in the tensor that is associated
with F itself has higher rank than the upper bound established above. (A slightly better result can
be obtained by considering the rigidity of both matrices with respect to this rank (see Remark 2.3),
but this is not really necessary.)

2.3 The actual handling of the three types

Fixing an arbitrary ¢ such that BL(7) 5 ¢4+ 1, we now consider in greater detail what happens in each
of the foregoing cases, when arbitrarily fixing of the values of the variables in blocks [t + 3,t" 4 "].
(For notational simplicity, we shall ignore this fixing in the following discussion; that is, we shall
consider G; and F; as if they only depend on variables that reside in blocks in [¢' + 2].)

Gates of Type 1: t' +2 ¢ BL(i). For any fixing of the values of the variables in all blocks in
[t'], the resulting residual function Fj - G; is a bilinear function in z('+2) and z(*'+1). Furthermore,
the n-by-n matrix that corresponds to this residual bilinear function has rank at most 1 (since it is
an outer product of two vectors (i.e., the vectors representing the residual F; and G;)). Letting T3
denote the set of all i’s of Type 1, we note that under the foregoing fixing of values (to all variables
in blocks in [t']) the n-by-n matrix that corresponds to the residual bilinear function » ;. FiG;
has rank at most |71 < m.

Foreseeing the treatment of Type 3, which was outlined in Section 1.4, we need to handle the
sum of F; - G; taken over many random assignments. These assignments are specified by a random
sequence of b-subsets, denoted I = (Iy,...., Iy), such that for every (i,...,ig) € I1 X -+ X Iy,
we consider the assignment (u(i1),...,u(iy)) € {0,1}*™, where u(i) = 0°~110" is the i*" unit
vector. For each j € [t'] and k € [b], we denote by I;(k) the k'™ element in I;. Hence, each
(ki,....,ky) € [b]" specifies one of the chosen random sequence (Iy(ki), ..., Iy (ky)) € [b]*, which in
turn specifies a random assignment (u(Iy(k1)), ..., u(Iy (ky))) € {0,137

We wish to bound, for a random sequence I, and any S = S(I) C [b]*, which may depend on
1, the contribution of the bilinear function

> Fiui(k)), . ully (ky)), 22 - Gi(u(L(ky)), ..o Ty (k)) (10)
(K1, k) ES

to the rank of the corresponding matrix. Recall that G; depends only on blocks in BL(7) (whereas
F; depends only on blocks not in BL(7)), and so we may replace GG; by the actual function, denoted
G, that this gate applies to variables in BL(i). (We could do the same for Fj, but there is no
instructive benefit in doing so.) For sake of simplicity, assume that BL(i) = [d'] U {¢' 4+ 1}, for some
d' > 0. Then, we can re-write Eq. (10) as follows

Z Gi(u(I1 (1)), .oy u(Iy (kg)), D)

> Fi(a(11(k1)), woosul Ty (k) 24 H2)

k)d/+1,...,]€t1E[b]!(kl,...,kt/)GS

= S Guli(kr), (T (k) 2 D) - Bk (3042)) (11)
K1,k g €[b]

where Fi(lgl""’kd')(z) equals the sum

2. Fi(a(h (k). -y uly (k)2 2)
(Bgr g 10k) €SEL)
with SCreka) € e, k) € B4 ¢ (i, ky) € S}. Looking at Eq. (11), we observe
that the term corresponding to (ki, ..., ka) € [b]* (in the sum) vanishes unless for every j € [d] it
holds that the k‘;h variable of block j € BL() N ['] feeds G;. Considering a random choice of I, the

probability that the term corresponding to (ki, ..., k) € [b]% does not vanish is at most (m/n)? .

We stress that this cancelation is due to Gj, and so the fact that Fi(gl(%)"kd’)(x(t'+ 2)) varies with T

is immaterial.” Hence, the expected number of terms in Eq. (11) that do not vanish is at most
b . (m/n)?, which means that the expected rank of the matrix corresponding to Eq. (11) is at
' = t’

most (b-m/n)?, where the expectations are taken uniformly over the choices of I € ([Z]) .

(Indeed, the fact that S = S(I) is determined based on I is immaterial, since anyhow we consider
all b’ terms, and for each term we only consider its vanishing due to G (u(I1(k1)), ..., u(Ig (ka)), z¢'+D) =
0.) Note that b < n/m implies that (b-m/n)¢ <1, for every d’ > 0, with equality holding only for
d =0.

We believe that the foregoing description would convince most readers of the fact that, for a
random sequence I = (I, ..., I) of b-subsets, the expected rank of the matrix that corresponds to
the bilinear form

YooY Bl(k), e ulle(ke)),) - Gia(n (k1)) ullo (k) 2FY) - (12)

1€Ty (kl,.‘.,kt/)es

is at most |T1| - (b- m/n)* < m, provided that b-m < n. Such readers are advised to skip the

following paragraph and proceed directly to the treatment of Type 2 gates.

A more formal argument requires some additional notation. For each i € T7, let d; o |BL(2)N[t']]

and BL; (i) be the j*® element in BL(i) N [t/]. Then, Eq. (11) is re-written as
(kBLl(i)z---kaLdi(i))

Z G;(u(IBLl(i)(kBLl(i)))v) u(IBLdi (i)(kBLdi(i)))v $(t/+1))‘Fi7S(7) (ﬁ(t/—ﬂ)) (13)
kBLl(i)a---kaLdi(i)G[b}

"Recall that S = S(I) may depends on I, and that we are considering the term G;(u(Iy(k1)), ..., u(Ly (kar)), m(tl+1)).
(K1yeens kd/)(l‘(tl+2)).

10

where G/ and FZ.(Sl 4 are defined in an analogous matter.® Now, repeating the foregoing ar-

gument for each i € Tj, we conclude that, for a random sequence I = (I, ..., I;) of b-subserts,
the expected rank of the matrix that corresponds to the bilinear form of Eq. (12) is at most
> i (b-m/n)% < |Ty| < m, provided that b-m < n. (This can be scen by using Eq. (13).)°

Gates of Type 2: ' +2 € BL(i) and |BL(i) N [t/]| > d. We consider the same b* random assign-
ments as before. Recall that we select a random sequence of b-subsets, denoted I = (Iy,...., Iy/),
and for every (i1, ...,iy) € I X --- x Iy, we consider the assignment (u(i1),...,u(iy)) € {0,1}*"",
where u(i) = 0°7110"%. Recall that, for each j € BL(i) N [t'], the probability that I; hits any of the
variables of block j that feeds G; is at most b-m/n, and so G; vanishes with probability at least
1— (b-m/n)BLON Letting T denote the set of all #’s of Type 2, it follows that, with probability
at least 1 —m - (b-m)?, all G;’s of Type 2 vanish, and we can just ignore them, provided that
m - (b-m/n)® ~ 0. We shall indeed use a setting that satisfies this (e.g., m = n'~¢, b < n/? and
d>2/e).

(As in the analysis of Type 1, each gate G; of Type 2 vanishes under all b random assignment
with probability at least 1 — (b - m/n)BYO] Here, being guaranteed that |BL(7) N [t']| > d, for a
sufficiently large constant d, allows us to totally ignore all these gates.)

(We finally get to the case for which we were preparing all along. Note that we may have
m gates of Type 3, and under each random restriction of the foregoing form, each such gate may
compute an arbitrary bilinear form over Q(m) variables of blocks t'+1 and ' 42, since it may not be
fed by any variables from other blocks (which may lead to its vanishing). Hence, for m = Q(n?/?),
the corresponding n-by-n matrix may be arbitrary, unless there are cancellations between the b’
random restrictions. Indeed, the entire point of choosing many random restrictions was to form
such cancellations.)

Gates of Type 3: t'+2 € BL(i) and [BL(i)N[t']| < d. Whereas in the previous cases (of handling
Types 1 and 2), the action focused on the G;’s, in the current case the action is focused on the F;’s.
Specifically, for any possible choice of the random sequence of b-subsets, I = (I1, ..., Iy/), we consider,

8Specifically, G%(y1, -, yd;, y) equals the value of G;(y1, ..., yj/,y) where y];Lj(i) = y; for every j € [d;] and all other

,,,,,,

Z Fi(u(Ii(kY)), ...,u([t,(ké,))7x(t’+2)).

(. k;,)eS:(kéLl(i) ,,,,, kéLdi(i)):(kl ,,,,, ka;)

9Specifically, using

S Y Fa(hk) e ull (k) 2 - Giu(hi (k). o u(d (k) 2 0)

i€TY (ki,....ky)ES

= > > G Tsey (i) (Kowy (1)) -+ 0(Tse (i) (R, i) 2 TY)

1€T1 kgry (i) kBLdi(i)e[b]
(kpLy (i)se- ke, (i))(w(t/+2>)
4,8 (1) ?
observe that for each ¢ € T1 and each (kgr, (s), .., koL, (5)) € [b]%, the corresponding term (which contains a multiple

of G} (u(Isr, (5) (Kery (1)) ...,u(IBLdi(i)(kBLdi@))), ;r(t/“))) does not vanish with probability at most (m/n)%.

11

for each (ki,...,ky) € [b]t', the vector vy, .k, representing the value of each Fj under the assign-
ment (u(Iy(k1)),...,u(Zy(kp))); that is, the i*" entry of vy, .k, equals Fy(u(l1(k1)),...,u(Zly (ky))).
Actually, this description suffices only the special case in which for each G; of Type 3 it holds that
BL(i) = {¢' +1,¢' 4+ 2}. Assuming that b > m, we may pick a non-empty subset S of these vectors
that sums-up to the all-zero vector. Then, for such a set S and for every i (of this type) it holds
that

> FEi(k)),...u(ly (k) =0,

(k1,..skp)€ES
where we rely on the fact that F; is not fed by variables of block #' + 2 (since t' + 2 € BL(7) by
definition of Type 3). This means that these G;’s do not contribute to the corresponding bilinear
form, since the G;’s are oblivious of the assignment to variables in blocks [¢'] (by our assumption
that BL(z) = {t' + 1,/ + 2}). That is, letting T3 denote the set of all gates of this type (i.e.,
Ty = {i:BL(z) = {t' + 1,t' + 2}}), the following expression is identially zero.

S Y E@E))ul (k) - Gilalh (k). o uly (), 2@, 20FD) (14)

€T, (kiyky)ES

where G; is actually oblivious of the assignment to the first ¢’ blocks.

Turning to the general case, let T3 denote the set of all i’s of Type 3; that is, T3 = {i : BL(i) 2
{t' +1,¢' + 2} & |BL(i)| < d+ 2}. We shall show that in this case we may pick a non-empty subset
S such that a sum analogous Eq. (14), with T3 replaced by T3, is identically zero. Here we shall
use b’ ~4 > m (rather than b > m), which is where we use an upper-bound on d.

Specifically, for any fix choice of the random sequence of b-subsets, I = (I, ..., I/), we consider
an auxiliary b%1-|T3|-by-b!" Boolean matrix in which the rows correspond to pairs (i, (Kp, ...k,) €
T3 x [b]*"", the columns correspond to choices of k = (ky,...,ky) € [b]Y', and the value of entry
((4, (kY ...y k1)), k) is determined according to Fi’(u(kgal)), ...,u(kt(,gt'))), provided that (k{, ..., k), ;)
fits & (i.e., K = kg, (s) for every j € [d;]). Specifically:

o For cach i € Ty, let d; % IBL(7) N [']] < d and BL;(i) be the j*® element in BL(i) N [t']. We
actually consider only b% rows that correspond to i (and let the other b4~ — b% rows be set
to 0°). These rows will correspond to all choices of (K, ..., kj.)) € [b]%.

e Each column corresponds to a choice of (ki,...,ky) € [b]t/, which respresents a choice of a
sequence in I; X --- X Iy (i.e., the choice that determines the sequence (I (k1), ..., Iy (ky)) €
[n]", which in turn determines the assignment (u(Iy(k1)), ..., u(Zy (kp)))).

(Indeed, while the foregoing (k1 ..., k:il) represents the choices made for the blocks appearing

in BL(i) N [t'], the choices k = (K1, ..., ki) represent the choices made for all blocks in [¢']. Our
focus will be on (7, ..., kj.)’s that fit the various &’s.)

e The value of entry ((7, (K], ..., k(lib))%) in the matrix equals 1 if and only if

~ Fy(u(li(k1)), oy u(Ty (k) = 1, and
— Kk} = kgp, () for every j € [di] (i.e., (K, ..., K},) fits k).

12

Note that this definition relies on the fact that F; is not fed by variables of block ' + 2, which
follows from the definition of Type 3 (by which ¢’ + 2 € BL(i)).

We stress that the value of entry ((i, (K], ..., kﬁil)),%) is 0 in case (K}, ...,k}; ;) does not fits k
(i-e., kj # kgL, (;) for some j € [d;]). This means that when considering the row (i, (K1, ..., kg)

only columns k; that are fit by (kf,...,k},_;) matter.

Suppose, for simplicity, that the foregoing auxiliary matrix contains an all-zero column that is
indexed k. This means that for every i € T3 and the unique (K, -, k) that fits k (i.e., K =
ker;(s) for every j € [d;]), it holds that F;(u(l1(k1)),...,u({y(kv))) = 0, because the corresponding
(@, (k15 s kgy,)), k)-entry of the matrix is 0 (whereas (K], ..., ky,) does fit k). Using the notation

F®(y, 2y

Ei(u(l1(k1)), -y ully (ker))) - Gi(a(L1(k1))s oo ully (ki) s 2) (15)
iE)(y, z) is identically zero.

In general, the matrix may contain no all-zero columns; still, assuming ¢’ > d + log, m (equiv.,
p'—d > m), there is a non-trivial linear combination of the columns that yields an all-zero vec-

tor. Denoting the set of columns participating in this combination by S, for every i € T3 and
(kl,..., k) € [b]%, it holds that

it follows that), F,

3 FP(y,2) (16)

keS:(Vjie(d;)) ks (i) =k;

= G;(u(ll(k/l))ﬂ"'7u(Idi(kdz‘))?y7z)' Z Fi(u(Il(kl))?”'7u(It’(kt’))) (17)

keS:(Vjie(d;]) ks (i) =k;

where G} (u(I1(k))),,u(Zy, (ka,)), v, 2) equals G;(u(l1(k1)), ...,u(ly (kv)), y, z) for every (ki,..., ky)
that is fit by (k,..., k)) (i.e., K = kg (s for every j € [d;]).

The punch-line is that Eq. (17) is identically zero, because the (i, (K], ..., kéli)th entry in the
corresponding sum of columns is zero, whereas the full row has 0-entries in columns that do not
fit (ky,..., k)), and holds the value of F;(u(/1(k1)),...,u(ly(ky))) in each column k that does fit

(K}, ..., k).)). Formally, letting M it VT denote the ((4, (K], ..., k;;li))j)th entry in the foregoing

matrix, for every i € T3 and (&, ..., k:&i)7 we have

> Fy((Li(k1)), o ullu (ki) = > Mg, K,

17 7
EES(VJE[dID kBL]- (z):k; kesS
= 0

Hence, Type 3 gates have no contribution to the bilinear function Bg : GF(2)"™" — GF(2) defined
as

Bs(y,2) = > Fahi(k)), . u(ly(ke)),y, 2) (18)

k=(k1,....ky)ES

where ' = Z L()5t+1 F; - G; is the function supposedly computed by the circuit, and S =

S(I) is chosen based on 1.

13

Recall that the contribution of Type 2 gates vanishes with very high probability, and the
contribution of Type 1 gates corresponds to a matrix of expected rank at most m, where in both
cases the probability space refers to the choice of I. Hence, with probability at least 2/3 over the
choice of I, the bilinear function BS(T) corresponds to a matrix of rank at most 5m.

2.4 Wrapping-up and reaching a contradiction

We have essentially established the following Lemma 2.1, except that our notations ignored (or hide)
the dependence of all residual functions (including S = S(I)) on the values of blocks t'43, ..., ¢’ +t".
(Recall that these values were fixed arbitrarily at the very beginning of Section 2.3.)

Lemma 2.1 (low AN2-complexity of F implies low rank of Bg): For m,b,t' such that b <
(n/m)Y/? and t' > 2log,, /m, + logym, suppose that ANa(F) < m < n/10. Then, for every
5= (sWH3) sy € GF2) =2 with probability at least 2/3 over a random choice of a
t'-long sequence of b-subsets, I = (I1,...,Iy/), there exists a non-empty set S C [b]t/ such that the
matrix corresponding to the bilinear function Bg of Eq. (18) has rank at most 5m. Formally, we
refer to the bilinear form

By, S P(Ii(k), e u(To (b)), g, 2 s sEH) (1)
k=(k1,....ky)€S

where u(i) = 07711077 is the i'h unit vector and I;(k) denotes the k'™ element in I;.

Proof: We merely summarize the contents of Section 2.3, while using the more explicit notations.
Recall that our starting point is a depth-two circuit of AN-complexity at most m that computes
F, which has a form as captured by Eq. (9). Recall that we have fixed 5 = (s*'+3), .. s'+")) ¢
GF(2)#"=2" upfront, and all we did referred to that fixed 5 (and holds for any such 5). We have
broken the sum in Eq. (9) into three parts, corresponding to the three types of gates, and analyzed
each type separately.

_ t
For Type 1, we showed that for a random choice of I = (Iy,....,Iy) € ([Z]) , and for every

S C [b]t/ (which may depend on T), the contribution of gates of Type 1 to ng) corresponds to a
matrix of expected rank at most m. (This used b < (n/m), which holds under the hypothesis.) Next,
we showed that, over the same random choice of I, and for every S C [b]t/, the contribution of gates

of Type 2 to Bg’j) corresponds to a matrix that is non-zero with probability at most m - (b-m/n)?.
Using b < (n/m)"/? and setting d = 2log,, /y, 1, we have m-(b-m/n)¢ < m-(m/n)¥? =m/n < 1/10.
Hence, with probability at least 0.8 — 0.1, the contribution of gates of Types 1 and 2 to Bg’I)
corresponds to a matrix of rank at most 5m.

Lastly, considering the Type 3 gates, we showed that, for any choice of I, there exists a non-

empty set S = S(I) C [b]t/ such that the contribution of functions of Type 3 to BE’I) corresponds to

an all-zero matrix. Here we used t' > d + log, m. Hence, using b < (n/m)/? (and d = 210, /m 1),

it suffices to have t' > 2log,, /m T+ log, m, which holds by the hypothesis.
Formally, for 5 = (s'*3), . s+ and T = (I, ..., I;/) € ([Z])t ,letting (k) = (u(lh(k1)), ..., u(Iy (k))),
we re-write Eq. (19) as

B0 = Y @)y z st), (20)

14

Hence, for the corresponding set S (which may depend on 5 and I), we have

BgE,I)(y’z) — Z Z F y,Z 8) Gi(ﬁ(ﬁ)yyazvg)

keSi€[m
= ZZFl ﬁ ay)z7§)'Gi(ﬁ(E)7y727§) (21)
kesi€
+ ZZFi(ﬁ(E),y,Z,E) 'Gi(ﬁ(E)vvaag)’ (22)
EGSiGTZ

since the sum that corresponds to T3 is identically zero due to the choice of S. Recalling that,
with probability at least 4/5, the matrix corresponding to Eq. (21) has rank at most 5m, and that

with probability at least 9/10 the matrix corresponding to Eq. (22) is identically zero, the lemma
follows. W

Reaching a contradiction. Lemma 2.1 implies that, with probability at least 2/3 over a random

choice of 5 = (s'+3), .. s+ € GF(2)" =2 and T = (I,..., Iy) € ([Z])t , there exists a non-
empty set S C [b]t/ such that the matrix corresponding to the bilinear function Bég’f) has rank at
most 5- ANy (F), provided that b < (n/ANy(F))Y/? and ¢’ > 210g,, /an, () 1+ 10gy, AN2(F). In contrast,

2-1/2 gver the same random

(5.1)

the following Lemma 2.2 implies that With probability at least 1 — bt -
choices, for every non-empty set S C [b] the matrix corresponding to the blhnear function By
has rank (n). Hence, we reach contradiction unless either ANs(F') = Q(n) or b’ .9=n/2 5 1 /3 (for

b and t' as above). As detailed below, this implies ANg(F) = Q(n!~¢), and Theorern 1.7 follows.
But let us first prove the following lemma.

Lemma 2.2 (typically Bg has high rank): Suppose that the generator Gg, : GF(2)t"~271
{0, 1}”t/+2 has bias at most 27™. Then, for every sequence of b-subsets I = (I, ..., Iy) € ([z])t/ and
any non-empty set S C [b], with probability 1 — 22 over the choice of 5 = (s'+3), .., st'+")) ¢
GF(2)®" =2 it holds that the matriz corresponding to the bilinear function B 5.0) of Eq (20) has
rank Q(n).

!

Proof: For every I € ([Z]) and 5 = (sW+3) . sFH)) € GF(2)("=2" looking at the value of
Bg’l), while letting @(k) = (u(f1(k1)1),...,u(Iy (ky))), observe that

B (y.2) = S F(k).y,23)

keS

= Z Z Gsb(g)(il,...,it/+2) ’ H (u(Ij(k])))Zj “Yiy g Ry, (23)
k€S (i1,iyo)ElX[n]? JE']

= Z Z GSb(g)(Il(kl)v"'vlt’(kt’)vit’+1vit’+2) “Yip gy T i, (24)
keS (i yq5iyy2)€lN]

where the last equality holds because only t'-tuples (i1, ...,%y) that satisfy i; = I;(k;) contribute
to Eq. (23). The difference between Eq. (23) and Eq. (24) is that in the latter form it is evident

15

that the corresponding matrix is a non-zero linear combination of |S| matrices that correspond to
disjoint parts of the output of the small-bias generator Ggp; that is, the (iy.q,% 1) element in
the matrix that corresponds to k = (ky,...,ky) € S equals the (Iy(k1),..., Iy (ky),dgra1, ipqo)™ bit
in the output of Ggp.

Hence, for any fixed S and I, when 3 is uniformly distributed in {0, 1}(t”_2)’”, the matrix that

corresponds to Bgs’l) is an n-by-n matrix whose entries are distributed according to an 27"-bias
sequence, because any sequence that is obtained by taking linearly independent non-zero linear-
combinations of elements in an e-bias sequence is itself e-bias. The lemma follows by using the fact
that, with probability at least 1 —27"/2, such a matrix has rank Q(n) Specifically, we upper-bound
the probability that the matrix has rank at most n/10 by considering all linear combinations of up
to n/10 columns. Each such linear combination results in an n-long 2~ "-bias sequence, and the
probability that such a sequence equals the all-zero sequence is at most 27" 4+ 2710 Hence, the
probability of the bad event is upper-bounded by Zie[n /10] (7;) L2t < 9271/2 gnd the lemma
follows. I}

Conclusion (re-iterated and detailed): Using a union bound on all possible S C [b]"', Lemma 2.2
implies that, with probability at least 1 — 2" - 277/2 gver the choices of 5 = (s(t'+3), . s(t'+t")) ¢

GF2) =D and T = (I, ..., Iy) € ([Z])t , for every non-empty S C [b]*’, the matrix corresponding to

Bg’l) has rank Q(n). On the other hand, Lemma 2.1 implies that, under the same probability space,
with probability at least 2/3, there exists a set S such that the matrix corresponding to Bg’l) has
rank at most 5m. Hence, we reach contradiction unless either ANy(F) = Q(n) or 20" .277/2 > 1/3.

Using b = (n/ANo(F))?, for B < 1/2, and setting ¢’ = 2108, /an, () 7 + log, AN2(F), we get

pt' = p2108n gy (r) ntlog, AN2(F)

n?8 . ANy (F)

which means that 2°° . 2772 > 1/3 holds if and only if n?? - ANo(F) > 0.5 - n — logy 3. Hence,
we reach contradiction unless ANa(F) > 0.5 - n'=2% — o(1). Setting B = ¢/2, we conclude that
AN3(F) = Q(n'~9), with ¢ = 2log,.n + log(peys n = O(1/€?). Theorem 1.7 follows by using an
adequate small-bias generator, as provided by Theorem A.6.

Remark 2.3 (using rigidity rather than pure rank): We note that the proof of Lemma 2.1 can
be adapted to show that the corresponding matriz has rigidity O(b® - m9+3 /n?) with respect to rank
5m. On the other hand, using [3, Footnote 13/, one can adapt the proof of Lemma 2.2 to show
that the corresponding matriz has rigidity Q(n3/m?) with respect to rank 5m. We stress that, like
the argument regarding rank, the argument regarding rigidity requires m - b* < 0.5n — 2 and b > 2.
Using b = (n/m)P, the rigidity argument allows to infer that m = Q(nl_m) rather than
m = Q(n'=28) as inferred by the foregoing rank argument, when using d = 2/e = 1/8. Hence,

obtaining m = Q(n'~=) wvia the rigidity argument uses d such that m = €, which yeelds
d= % — 255' This modest gain (of approximately four units) in d translates to a similar gain in t'.

10The max-norm difference between the resulting distribution and the uniform one is upper-bounded by the differ-
ence according to the L2-norm, which equals the bias of the sequence (cf., [2, Sec. 1.5]).

16

The foregoing comparison refers to the current setting of d and b, which is not optimal anyhow.
But it seems that ¢’ = Q(1/€?) will follow in any case.

3 Proof of Theorem 1.8

We adapt the techniques used in Section 2 in order to prove the same lower bound on a more
explicit function. Specifically, for ¢ to be determined, we consider the (¢’ + 3)-linear function
£ : GF(2) 2+ +2)n _, GF(2) defined as

£z, 2@, W)y = Z H 20|) (25)

i i1+ig++iy o
150041 1 9 €[N] \JE[H'+2]
where the last block of variables has length (¢ + 2) - n rather than n. (Alternatively, we may
partition the last block to ¢’ 4 2 blocks holding n variables each.)!! We mention that this function
generalized the trilinear function of Part 2 of Theorem 1.5.

The analysis of depth-two multilinear circuits, which underlies the proof of Lemma 2.1 (i.e., the
“low AN2-complexity implies low rank”), remains almost intact, whereas the “high rank lemma” is
totally different. In order to fit the latter lemma, the “low rank lemma” is restricted in the choice
of a non-empty set S C [b]* (such that the matrix corresponding to the bilinear function Bg has
low rank). Specifically, rather than asserting the existence of an arbitrary non-empty set S in [b]*,
we consider only sets for which the mapping (ki,...,ky) — > et I;(k;) is one-to-one. That is,
defining 7 : [b)" — [t'n] such that

def
Jelt']

we say that S C [b]" is T-admissible if [{u7(k) : k € S}| = |S|. With this definition in place, we
adapt the “low rank lemma” as follows.

Lemma 3.1 (low AN2-complexity of f implies low rank of Bg): Form,b,t' such thatb € [w(1), (n/m)'/?]
and t' € [2log,, ,, n + logy, m + 1,log,(n/2) — 1], suppose that ANa(£) < m < n/10. Then, for ev-

ery w € GF(2)(’5/+2)'", with probability at least 2/3 over a random choice of a t'-long sequence of
b-subsets, I = (I1,...,Iy), there exists a non-empty I-admissible set S C [b]t/ such that the matrix

corresponding to the following bilinear function Bg’l) has rank at most 5m.

5.1 ef
BE(y,) S ti(k))s e u(Tp (ki) ys 2 w), (27)
k=(k1,....k;)ES

where u(i) = 077110"% is the i'" unit vector and I;(k) denotes the k™ element in I;.

N That is, the variable-block PG (xgt,+2),...,a:$:i§;n) is replaced by t + 2 wvariables-blocks

(m(t/+3),x<t/+4>,...,x(zt/+4)) such that the (j — 1) - n + k'™ bit of PAUREET replaced by the k™ bit of gt +2H9),
Strictly speaking, this yields a multilinear function that does not fit Eq. (1), but this can be corrected by augmenting
each variable-block with a dummy variable that will be set to 1.

17

Recall that we were using b* < n/2 anyhow, when contrasting the “low rank lemma” with the
“high rank lemma” (so we lose nothing by the restriction ¢’ < log;(n/2) — 1). Ditto re requiring
b = w(1), which is actually not essential (i.e., b > C for a sufficiently large constant C' will do).

Proof: The proof of Lemma 2.1 actually establishes its claim with probability at least 0.7 (rather
than 2/3), but it does not necessarily select an I-admissible set S. Recall that the existence of a
set S C [b]* is merely based on the fact that |[b]'| > b - m, and any subset U of [b]* that has size
at least b? - m will do (i.e., allow us to argue that there exists an adequate set S C U that satisfies
the claim of the lemma).

Now, using the hypothesis b < n/2b, we observe that with probability 1 — o(1), the set [o]"
contains an I-admissible set U of size at least b /2, and we can afford to restrict S to be a subset
of U (since b*'~1 > b%.m). To see this note that, for every two distinct sequences k # k in b)), it
holds that Pry[uz(k) = MT(E,) (mod n)] = 1/n, which implies that Prf[\,u%l(,uf(g)ﬂ > 1] < 1/2b for
every k € [b]"". The claim follows. [l

The new “high rank lemma”. The key observation is that, for every fixed (iy,...,iy) € [n]t/,

the residual function £/(y, z, w) def f(i1,...,i¢,y, 2z, w) is closely related to the trilinear function of
Part 2 of Theorem 1.5. In particular, for a uniformly distributed w € GF(2)*'*2" the matrix
that corresponds to the residual bilinear function £'(, -, w) is a random Toeplitz (or rather Hankel)
matrix. Furthermore, the same holds for ng’l) provided that the set S is T-admissible (and non-
empty).

Lemma 3.2 (typically Bs has high rank): For every sequence of b-subsets I = (I, ..., I;/) € ([Z])t

/ .
t 27"/2 oyer the choice of

&) of Ba. (27)

and any non-empty and I-admissible set S C [b]", with probability 1 —

w € GF(Q)WJFQ)' , it holds that the matriz corresponding to the bilinear function Bg
has rank Q(n).

Proof: For every I € ([Z])t and w € GF(2)(t/+2)'", looking at the value of ng), while letting
u(k) = (u(l1(k1)1),...,u(ly(ky))), we have

B (y,2) = 3 t@(k),y, 2 w)

kes

= § : 2 : yit’+1) Zit’+2 'wfl(k1)+f2(k2)+"'+1t’(kt’)+it’+1+it’+2
keS iy yqsig,0€[M]

= E yit/H : Zit/+2 : E w;,cf(k‘l,...,kt1)+it/+1+it/+2

it’+1vit/+2€[n] kesS

where the second equality is due to the fact that assigning @(k) to the first ¢ variable-blocks
eliminates all terms that are not of the form (I;(k1), I2(k2), ..., Iy (kv), -, -, -), and the third equality
uses Eq. (26) (i.e., (I1(k1),l2(k2), ..., Iy (ky)) = pg(k1, k2, ..., ky)). Using the hypothesis that S is
non-empty and I-admissible, we conclude that there exists a set S’ C [(#'+2)n] (indeed, S’ = u7(S))

such that 1
ST
Bés (y,2) = Z Yip g Zipyg Z Wstiy g +iy gy (28)

iy 415ty o€ ses’

18

Note that the bilinear function of Eq. (28) corresponds to a random Hankel matrix, since it has
the form Ez}je[n} wgﬂ- i zj (e, Y e Wiy, +iy, o 1S iNvariant when 4y 41 + iy is fixed). The
key observation is that when selecting w € GF(2)®'+2" uniformly at random, the bilinear function
of Eq. (28) corresponds to a random Hankel matrix. This is the case because the linear mapping
w = (D ses Wstj)jel2,...2n} 19 onto.'?

Finally, note that a random n-by-n Hankel matrix has rank at least n/10 with probability at
least 1 — 27™. This is the case since each (non-trivial) combination of its columns is uniformly
distributed in GF(2)", and so the probability that there exists a linear combination of at most
n/2 columns that equals the all-zero vector is upper-bounded by Zie[n /10] (T:) .27 < 27/2 The
lemma follows. Wl

Conclusion: As in Section 2.4, using a union bound on all possible .S C [b]t/, Lemma 3.2 implies

that, with probability at least 1 — oV gn/2 5 1/2 over the choices of w € GF(2)#+2" and
I=({17, v Iy) € ([Z])t , for every non-empty and T-admissible S C [b]"’, the matrix corresponding
to Bgs’l) has rank (n). On the other hand, Lemma 3.1 implies that, under the same probability
space, with probability at least 27/ 3, there exists a non-empty and I-admissible set S such that

the matrix corresponding to Bg’j) has rank at most 5m. Hence, we reach contradiction unless

AN (£) > n'~¢, but this is all conditioned on oV’ .9=n/2 < 1/2. Using m = n'=¢ and b = (n/m)04%
and setting ¢’ = 2log,, ;,,, n +log, m + 1, the foregoing condition holds (since b =nc-m-b=o(n)).
We conclude that ANy(£) > n'=¢ where t' = 2log, n+ log(peyoa9e n+1=2- €1 4+(049-€3)—1+1.
Noting that (2¢+(0.49)71)-e 241 < 3-¢ 2 —3 holds for € < 1/4, we get t' < 3/e2, and Theorem 1.8
follows.

4 Conclusions

Theorem 1.7 can be extended to € = e¢(n) that vanishes with n, provided that e¢(n) > /2/logy n,
since the argument presupposes that b = n? = ne/? is at least 2. Hence, we actually have

Theorem 4.1 (Theorem 1.7, rephrased): For every ¢ : N — (0,1) such that e(n) > +/2/logyn,
letting t(n) = poly(1/e(n)), there exists a quasi-polynomial-time computable t(n)-linear function
f {0,130 5 10,1} such that ANy (f) = Q(n!—<M),

Theorem 4.1 does not allow setting e(n) = Q(1/logn) and deriving an Q(n) lower bound, but such
a lower bound would have missed the target of being truly linear in the length of the input (i.e.,
poly(1/e(n)) - n) and being truly explicit (i.e., the function is nP°Y(1/¢(™)_time computable). This
raises several challenges:

1. Prove that there exists a quasi-polynomial-time computable poly(log n)-linear function f :
{0,139 — {0, 1} such that ANy (f) = Q(n).

12This can be seen by considering the corresponding linear system Yoscs Tstj = bj for j = 1,...,2n — 1, and
observing that the corresponding n-by-|{s+j : s € S’ & j € [n]}| matrix has full rank (due to columns s+ 1, ..., s+ n,
where s is the largest element in S”).

19

2. Improving over Item 1, prove that such a function can be computed in polynomial-time.
For starters, show that functions as in Theorem 1.7 can be computed in fixed polynomial-time,
rather than in O(nP°Y(1/9)-time.

3. Improving over Item 1, for ¢(n) = poly(logn), prove that there exists a quasi-polynomial-time
computable ¢(n)-linear function f : {0, 1}*()™ — {0,1} such that ANy(f) = Q(t(n) - n).

As in Item 2, improve the running time to polynomial.
Of course, a more pressing challenge is to address the first part of Problem 1.6; that is, presenting

an explicit O(1)-linear function f : {0,1}°() — {0, 1} satisfying AN(f) = w(n?/3), let alone AN(f) =
Q(n%9).

20

Acknowledgements

I am deeply indebted to Avishay Tal for finding a flaw in my original argument and showing me
how to fix it. In my opinion, his contribution to the current work fully justifies his co-authoring it,
but he refused to do so.

I am also grateful to Benny Applebaum for information and advice regarding the construction
of small-bias generators in the current setting.

I am indebt to Avi Wigderson for a discussion that led to the phrasing and proving of Theo-
rem 1.8, which is presented in Section 3.

References

1]

2]

[10]

O. Goldreich. Computational Complezity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

O. Goldreich. Three XOR-Lemmas: An Exposition. In Studies in Complexity and Cryp-
tography, Lecture Notes in Computer Science (Vol. 6650), Springer, 2011. Preliminary
version in FCCC, TR95-056, 1995.

O. Goldreich and A. Tal. Matrix rigidity of random Toeplitz matrices. Computational
Complezity, Vol. 27 (2), pages 305-350, 2018. Preliminary versions in 48th STOC (2016)
and ECCC TR15-079 (2015).

O. Goldreich and A. Wigderson. On the Size of Depth-Three Boolean Circuits for Com-
puting Multilinear Functions. ECCC, TR13-043, 2013.

S. Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and Com-
binatorics, Vol. 27, Springer, 2012.

E. Mossel, A. Shpilka, and L. Trevisan. On epsilon-biased generators in NC0. Random
Structures and Algorithms, Vol. 29 (1), pages 56-81, 2006. Preliminary version in 44th
FOCS, 2003.

J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions and Appli-
cations. SIAM Journal on Computing, Vol 22, 1993, pages 838-856, 1993. Preliminary
version in 22nd STOC, 1990.

L.G. Valiant. Graph-theoretic arguments in low-level complexity. Mathematical Founda-
tions of Computer Science, Lecture Notes in Computer Science (Vol. 53), pages 162-176,
Springer, 1977.

L.G. Valiant. Exponential lower bounds for restricted monotone circuits. In 15th ACM
Symposium on the Theory of Computing, pages 110-117, 1983.

E. Viola. The Sum of D Small-Bias Generators Fools Polynomials of Degree D. Com-
putational Complexity, Vol. 18 (2), pages 209-217, 2009. Preliminary version in FCCC,
TRO7-132, 2007.

21

Appendix: On small-bias generators of large stretch

In this appendix we present explicit constructions of small-bias generators of arbitrary large (poly-
nomial) stretch that can be computed by O(1)-linear functions. Our start point is the generator of
of Mossel, Shpilka, and Trevisan [6], which has quadratic stretch and can be computed by bilinear
functions. We show that composing it with itself, which is a take on an idea of Naor and Naor [7],
yields the desired generators.

We first describe a generic composition lemma, which refers to generators of bounded locality,
and then set-up a simple iterative process that yields generators of increased stretch (and larger
locality). Next, we present versions of these ingrediants that refer to generators that can be
computed by polynomials of bounded degree. Lastly, we adapt the latter to support multilinear
computation.

The notations used in this appendix are different from those used in the main text. The main
parameter is the seed length, denoted k, and throughout this appendix the stretch and bias will be
stated as functions of k. However, for the final application, given ¢’ € N, we shall set ¢ = poly(t’)
and n = k/(t” — 2), and obtain a (¢” — 2)-linear generator that outputs sequences of length nt'*2
with bias at most 27", where n is as in the main text.

We shall extensively use the notation U,,, which represents a random variable uniformly dis-
tributed over {0, 1} = GF(2)™. Throughout the text, we assume that the stretch function is super-
linear and monotonically increasing, and that the bias bound in monotonically non-increasing. We
recall the following standard definition.

Definition A.1 (generators of bounded bias): We say that G : {0,1}* — {0,1}**) has bias at
most e(k) with respect to tests of degree d if for every polynomial (test) T : {0,1}*%) — {0,1} of
degree d it holds that

% . ‘E {(_1)T(G(Uk))} _E |:(_1)T(Us(k)):| ‘ < e(k). (29)
The function s:N—N is called the stretch of G, and e:N— [0, 1] is called its bias.

The Lh.s. of Eq. (29) equals the total variation distance between the “verdict” of T' in the two cases
(i-e., the statiustical difference between T'(G(Uy)) and T'(Uyyy)). Indeed, e-bias generators (cf., [7]
and [1, Sec. 8.5.2]) correspond to the special case of linear tests (i.e., d = 1). In general, whenever
we talk of bias without specifying the degree, we mean bias with respect to linear tests.

A.1 A general composition lemma

Although we are interested in small-bias generators (i.e., bias w.r.t linear tests), it will be useful
to have the following composition result that refers to generators with respect to tests of bounded
degree. Specifically, we consider generators of bounded locality and specified stretch, which have
small bias with respect to polynomials of bounded degree. Recall that a function is said to have
locality ¢ if each bit in its output is a function of at most ¢ bits in its input (cf. [6]).

Lemma A.2 (composition of generators, a special case): Fori € {1,2}, let d; and ¢; be constants,
s; : N = N be a stretch function, and ¢; : N — (0,1] be a bias bound. Suppose that G; : {0,1}F —
{0,1}*%) has locality ¢; and bias at most ¢;(k) with respect to all tests (i.c., polynomials) of degree
di. Then, G = Goo Gy : {0,1}F — {0,1}9261(0) has locality €y - €1 and bias at most e(k) =
€1(k) + e2(s1(k)) with respect to all tests of degree d = min(da, d;/{2).

22

Hence, the degree of tests that the composed generator withstands is the minimum between the
degree withstand by the outer generator and a 1/¢5 fraction of the degree withstand by the inner
generator, where /5 is the locality of the outer generator. The general case allows the degree d; and
the locality ¢; to be functions of k. In this case, G has bias at most €(k) = €1(k) + e2(s1(k)) with
respect to all tests of degree d(k) = min(da(s1(k)),d1(k)/l2(s1(k))).

Proof: We use a hybrid argument (cf. [1, Sec. 8.2.3.3]), while considering the following three
distributions:

1. The pseudorandom output G(Uy) = G2(G1(Uyg)).-
2. The intermediate hybrid G2 (Us, 1))-
3. The uniform distribution U, s, (x))-
Let T be an arbitrary test of degree d. Then,
’E [(_1)T<GQ(G1<U;€)>>} _E [(_1)T<G2(Usl(k)>>} ‘
— }E {(_1)T'<Gl(w@)>} _E [(_1)T'<Usl<k>>} ‘
< ex(k),
since T/ = T o G9 is a test of degree d - {2 < d; (and G7 has bounded bias w.r.t such tests). Using
the fact that d < ds (and the hypothesis regarding G2), we have

’E [(_HT(Gz(Usl(k)))} - E [(—1)T(US2<51<’“>>)} ’ < ea(s1(k)).

The claim follows. |

A.2 An iterative construction

The basic idea is to iteratively compose a small bias generator of constant locality, which fools linear
tests, with itself. But for the process to work we need the inner generator, in the composition, to
fool tests with degree that at least equals the locality of the outer generator (see Lemma A.2). Using
Viola’s result [10], we can get such an inner generator by taking the sum of a constant number of
instances of the current generator (which fool linear tests), and keep using the original generator
as the outer one. Details follow.

The starting point. Let G be a small bias generator that has constant locality ¢, some stretch
s: N — N, and bias € : N — (0, 1] with respect to linear tests. We shall use G as the outer generator
in all compositions. In addition, we shall use G as the inner generator in the first iteration; that
is, we let G(© equal G; hence, G(¥) has locality £(°) = ¢, stretch s(¥) (k) = s(k) and bias at most
€O (k) = e(k).

23

Iteration i € N. Given an ¢(~1-local generator G~ : {0,1}* — {0, 1}3 V() that fools linear
tests with bias €Y (k), we first obtain a generator G(l D {0,134 = {o, 1}3(2 V() that fools
degree (tests with bias O(e(i_l)(k)r(hl)), by XORing ¢ instances of GU~1 (see Viola [10]); that
is, @(Fl)(aﬁl, o) = Bje G("*l)(aﬁj). Hence, G has locality ¢ = ¢ (G stretch s'(k) =
(=1)(k/¢), and bias € '(k) = O~V (k/0)* “n) w.r.t tests of degree ¢. Next, applying Lemma A.2,
we obtain G = G o G~ D, and observe that G has locality ¢®) = ¢.¢ = ¢2. (0= stretch
sO(k) = s(s'(k)) = s(st=D (k:/ﬁ)), and bias at most € (k) = e(s(k)) + € '(k) = O(el=1) (k‘/f)zfe)
with respect to linear tests (since the locality of G equals the degree that G- ig guaranteed to
fool).
Hence, after 7 € N iterations, we obtain a generator (i.e. G(T)) that has locality ¢(7) = ¢27 .
6(0) (21 bias at most (7)(k) <o) - e(k/ET)(z_Z)T w1th respect to linear tests, and stretch
) (k) = OTH(I{:/ET), where s° denotes s composed with itself 7 times (i.e., s° (k) = s(s° (k)
and s°' (k) = s(k)). Hence, we obtain the following result, which is not used in this work (and is
stated merely for sake of future reference).

Corollary A.3 (amplifying the stretch of small-bias generators of bounded locality): Let G be a
generator that has constant locality ¢, stretch s : N — N, and bias € : N — (0, 1] with respect to
linear tests. Suppose that 7 < 0.5log, k and that s(k) > k% for some constant o > 1. Then, G
has locality () = 271 stretch s (k) > k@ /2, and bias at most €7 (k) < O(1)7 - e(vk)@) ™"
with respect to linear tests.

A.3 Adaptation to constructions of bounded degree generators

We actually seek a construction of generators that can be computed by bounded degree polynomials
rather than by functions of bounded locality. The foregoing analysis extends in a straightforward
manner to the current case, yielding the following.

Lemma A.4 (Lemma A.2, revisited): Fori € {1,2}, let d; and D; be constants, s; : N — N be a
stretch function, and €; : N — (0,1] be a bias bound. Suppose that Gy : {0,1}* — {0,1}%*) can be
computed by a sequence of polynomials of degree D; and has bias at most €;(k) with respect to all
tests of degree d;. Then, G = Go o Gy : {0,1}% — {0,1}3261(5) can be computed by a sequence of
polynomials of degree Dy - D1 and has bias at most (k) = €1(k) + €2(s1(k)) with respect to all tests
of degree d = min(dz, d1/D2).

The proof is identical to the proof of Lemma A.2, and the iterative construction works as well.

Here we can use the generator of Mossel, Shpilka, and Trevisan [6], which has s(k) = Q(k?)
and e(k) = 20k) with D = 2. Observe that, after 7 € N iterations, we obtain a generator (i.e.,
G()) that can be computed by a sequence of polynomials of degree D(7) = D?7+1 = 227+1 hag
stretch s (k) = s° 7 (k/D') = Q(k/27)2"", and bias at most €™ (k) = O(1)7 - e(k/D7)&)"
exp(exp(—O(7)) - k). Hence, seeking stretch of the form n?, we set 7 = log, o, and obtain degree
2. 02 and bias at most 2-Pely(1/o)k,

A.4 Adaptation to multilinear constructions of bounded degree

Actually, we need the construction to be multilinear; that is, we seek a construction of generators
that can be computed by bounded degree multi-linear functions. While the transformation from

24

fooling linear tests to fooling tests of constant degree preserves the multilinearity of the generator
(since it XORs independently generated outputs of the original generator), the composition lemma
does not necessarily preserve multilinearity. That is, even if both G;’s are computed by sequences of
multilinear functions (of bounded degree), their composition may not be so (since G may multiply
output bits of G; that depend on the same variable-block). Still, a small modification suffices to
provide multilinearity.

Lemma A.5 (Lemma A.4, revisited): For i € {1,2}, let d; and D; be constants, s; : N — N be
a stretch function, and ¢ : N — (0,1] be a bias bound. Suppose that G; : {0,1}* — {0,1}%®)
can be computed by a sequence of D;-linear functions, where an m-linear function from GF(2)F
to GF(2) is linear in each of the m (equal-length) blocks of variables, and has bias at most €;(k)
with respect to all tests of degree d;. Let G : {0,1}F — {0,1}P21(k/D2) be an algorithm that
partitions its input to Do equal-length parts, applies G1 to each part, and concatenate the results.
Then, G = G 0G" : {0,1}* — {0, 1}52(D2es1(k/D2)) can be computed by a sequence of Dy - Dy -linear
functions and has bias at most €(k) = Ds - €1(k/D2) + e2(s1(k)) with respect to all tests of degree
d= min(dg, dl/Dg)

Proof: We first observe that, by construction, G is Dy - Dj-linear, since the different Dy (equal
length) blocks of the input to Gy depend on disjoint (k/Ds)-bit long parts of the seed of G} (i.e.,
the i'" block in the input to G2 depends on the i*" part of the seed of G}). Specifically, on
input 7 = (x1,...,xp,) € {0,1}P2#/P2) " each monomial in the computation of G(Z) depends on
at most Do bits of G (), which by the Ds-linearity of Gy occur in different parts in G} (Z) =
(G1(z1),...,G1(xp,)), whereas each of these parts is computed by a Dj-linear function of the
corresponding seed (i.e., the i*" part of G (Z) appears in Gy (z;), and is computed by a D;-linear
function of ;).

All that remains is to observe that G’ has bias at most D - €1(k/D3) with respect to tests
of degree di. We just use a hybrid argument, where the i** hybrid, denoted H;, consists of i
independent copies of G1(Uy,p,) followed by Ds — i independent copies of Uy, (x/p,)- Then, for any
test T’ of degree dy, it holds that

E [(_UT(UDQASl(k/DQ)))} _R [(_1)T(G’1(Uk))”

< 3 [eficum] g [
1€[Da]

— _N\WUs, (k/pgy))) | _ _1\1i(G1(Uk/Dy,))
D R

< D3 -e1(n/Ds),

where T;(z), which may be viewed as a distribution over tests of degree d;, generates i — 1 inde-
pendent copies of G1(Uk/D2), denoted wv1,...,v;-1, and Dy — i independent copies of Uy, (x/D,)s
denoted wuy,...,up,—;, and returns T'(vy,...,v;—1, 2, U1,...,up,—;). Indeed, we use the fact that
Ho = Up,.s,(k/Dy) and Hp, = G1(Uy), whereas H;_1 and H; differ only in their ¢*" part (which is
Usl(k/Dz) in Hi—l and Gl(Uk/DQ) in Hz) .

Conclusion. Starting with the generator of Mossel, Shpilka, and Trevisan [6], while noting that
it is actually bilinear, and using the iterative construction of Section A.2 with the composition of
Lemma A.5, we get the desired generator (which is stated in the terms used in the main text).

25

Theorem A.6 (a small-bias generator of arbitrary large polynomial stretch that can be computed
by O(1)-linear functions): For every t' € N, there exist t” and an explicit construction of an
(t" — 2)-linear generator Ggp : GF(2)"=2 — {0, 1} ™ has bias at most 27". Furthermore,
= O(t/)2.

Given all the foregoing, the following proof is straighhtforward. It is being detailed here for sake
of tedious verification.

Proof: We just mimic the argument of Section A.2, while using the generator of [6] as our “pivot”
generator, and using the composition result of Lemma A.5 in all iterations. Specifically, letting
e(k) = 22F) we start with an e-bias generator of stretch s(k) = Q(k?) that is computed by bilinear
function. Recall that we let G equal G, and so D(© = D =2, s (k) = s(k) and €O (k) = (k).

Next, given a DU~V linear generator G~ : {0,1}* — {0, l}s(i_l)(k) that fools linear tests with
bias (=D (k), we first obtain a 2 - D~D-linear generator G(=Y : {0,1}2*% — {0, 1}5@71)('“) that
fools quadratic tests with bias O(e#~1(k)/2), by XORing two instances of G¢~1). Hence, GG
has stretch s'(k) = 2 - s~V (k/2), and bias € (k) = O(e""~D(k/2)/?) w.r.t quadratic tests.

Next, applying Lemma A.5, we obtain G®) = G o é(ifl), where G~ is obtained from G(—1)
by partitioning the seed into two (equal-length) parts and applying G(=1) on each part. Hence, G
is D®-linear, for D& = 2.2D0=1) = 22i+1 and has stretch s (k) = s(s'(k)) = s(2- s~V (k/2)),
and bias at most € (k) = e(s(k))+€ (k) = O(e"~V(k/2)/?) with respect to linear tests. Assuming
that s(k) > c- k2, for some constant ¢ > 0, we have

sO(k) > c- (250D (k/2))

(46)2i+1—1) S(o)(k/Qi)Qi
= (4o (k20T
= exp(-0(2)) - k¥

and

eD(k) = O N(k/2)'7?)
= 0(1)- €O(k/21)2"
= exp(Q47 k).

Hence, after 7 € N iterations, we obtain a 227*l-linear generator (i.e., G(T)) that has stretch
s (k) > exp(—O0(27)) - k" and bias at most €7 (k) < exp(Q(4™" - k)). Thus, secking stretch of
the form &, we set 7 = log, o, and obtain a 2 - o2-linear generator with stretch exp(—O(c)) - k%
and bias at most 2-21/9)*% Letting n = k/O(0?) (and using a finer partition of the k-bit long
input seed), we can view this generator as being (k/n)-linear and having bias at most 27". The
theorem follows. [

26

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

