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Abstract

We consider arithmetic circuits with arbitrary gates for computing Boolean functions that
are represented by low degree polynomials over GF(2). An adequate complexity measure for
such circuits is the maximum between the arity of the gates and their number. This model and
the corresponding complexity measure, called AN-complexity, were introduced by Goldreich
and Wigderson (ECCC, TR13-043, 2013), and it is meaningful only for low degree polynomials
(where the arity of a gate is not due to the degree of the polynomial that the gate computes
but rather to the number of variables in it).

The AN-complexity of a function yields an upper bound on the size of depth-three Boolean
circuits for computing the function. Specifically, the depth-three size of Boolean circuits is at
most exponential in the AN-complexity of the function. Hence, proving linear lower bounds
on the AN-complexity of explicit O(1)-linear functions is a essential step towards proving that
depth-three Boolean circuits for these functions requires exponential size.

In this work, we present explicit O(1)-linear functions that require depth-two arithmetic
circuits of almost linear AN-complexity. Specifically, for every ε > 0, we show an explicit
poly(1/ε)-linear function f : {0, 1}poly(1/ε)·n → {0, 1} such that any depth-two arithmetic circuit
that computes f must use gates of arity at least n1−ε. In particular, for every ε > 0 and
t = O(1/ε2), the Ω(n1−ε) lower bound holds also for the t-linear function

f(x(1), x(2), ..., x(t)) =
∑

i1,...,it−1∈[n]

 ∏
j∈[t−1]

x
(j)
ij

 · x(t)i1+i2+···+it−1

This improves over a corresponding lower bound of Ω̃(n2/3) that was known for an explicit
tri-linear function (Goldreich and Tal, Computational Complexity, 2018), but leaves open the
problem of showing similar AN-complexity lower bounds for arithmetic circuits of larger depth.

A key aspect in our proof is considering many (extremely skewed) random restrictions, and
contrasting the sum of the values of the original function and the circuit (which supposedly
computes it) taken over a (carefully chosen) subset of these random restrictions. We show that
if the original circuit has too low AN-complexity, then these two sums cannot be equal, which
yields a contradiction.
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1 Introduction

Providing exponential lower bounds on the size of constant-depth (unbounded fan-in) Boolean
circuits that compute explicit functions is a central problem of circuit complexity, even when
restricting attention to depth-three circuits (cf., e.g., [5, Chap. 11]). We stress that we refer to
lower bounds of the form exp(Ω(n)), when n is the input length, whereas the celebrated lower
bounds on the size of depth-three circuits for parity have the form exp(Ω(n1/2)).

Focusing on this challenge, Goldreich and Wigderson [4] made two suggestions. The first sug-
gestion was to consider, as potential candidates, explicit Boolean functions that can be represented
as low degree polynomials over GF(2), while admitting that it is not even known whether there
exist such functions that require exponential size depth-three Boolean circuits. The second sugges-
tion was to start by establishing a size lower bound in a restricted model of depth-three Boolean
circuits, which they called canonical. The latter model covers the standard construction of depth-
three Boolean circuits for parity, and seems quite natural in the context of computing low degree
polynomials.

More specifically, for small values of t (e.g., t = O(1) or t = poly(log(n))), we shall consider
functions over t · n variables, partitioned into t blocks, each containing n variables, such that the
function is a sum of monomials that contain a single variable from each block (see Eq. (1) coming
next). We call such functions t-linear. We shall prove lower bounds on the size of canonical depth-
three Boolean circuits that compute some explicit O(1)-linear functions; that is, we shall prove
lower bounds in a restricted but meaningful model of depth-three Boolean circuits.

Since the restricted model of (“canonical”) depth-three circuits and its previous studies are not
well-known, we start by reviewing this model and these results. Specifically, in Section 1.1 we
review the connection between canonical (depth-three) Boolean circuits and a model of arithmetic
circuits with general gates of bounded arity. In particular, the size of canonical circuits corresponds
to a complexity measure, called AN-complexity, of the arithmetic circuits. In Section 1.2 we review
the known results regarding the AN-complexity of functions, which lead to open problems that
are stated at the beginning of Section 1.3. Our results resolve one of these open problems, and in
Section 1.4 we outline our main proof ideas.

We stress that the current work actually studies the AN-complexity of some explicit O(1)-linear
functions. Hence, the actual setting of this work is the model of arithmetic circuits with general
gates and the AN-complexity of such circuits. The connection to (canonical) depth-three Boolean
circuits is one (and, in fact, the original) motivation for that study. An additional motivation
is provided by the gap between the known lower bounds on (the AN-complexity of) explicit and
non-explicit functions.

1.1 From canonical Boolean circuits to AN-complexity of multilinear circuits

As stated above, the original motivation for this work is the study of the size of depth-three Boolean
circuits of a restricted type that compute explicit O(1)-linear functions. The latter depth-three
Boolean circuits, called canonial, are obtained by a natural transformation of arithmetic circuits
with general gates (i.e., gates that compute arbitrary polynomials). The latter arithmetic circuits
are restricted only by the arity of these general gates and their numbers, where these quantitative
restrictions serve as the complexity measures of such circuits, called AN-complexity.1 The afore-
mentioned transformation is given in [4, Const. 2.8] and it yields (so-called canonical) Boolean

1Indeed, ‘A’ stands for arity and ‘N’ stands for number.
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circuits of depth three and size that is exponential in the AN-complexity of the arithmetic circuits.
Hence, the study of the size of canonical Boolean circuits that compute O(1)-linear functions is
actually a study of the AN-complexity of these functions.

Additional motivation for the study of the AN-complexity of functions arises from the fact
that it is a relatively natural and simple complexity measure that is also plagued by the typical
complexity theoretic curse: the known lower bounds on the complexity of explicit functions fall short
of the maximal complexity established by non-explicit functions.

1.1.1 The functions: t-linearity

As stated above, for small values of t (e.g., t = O(1) or t = poly(log(n))), we shall consider functions
over t · n variables, partitioned into t blocks, each containing n variables, such that the function
(viewed as a polynomial over GF(2)) is linear in each of the blocks. Such functions are usually
called set-multilinear [8] or block-multilinear, but for simplicity we shall call them multi-linear.
Specifically, we say that f : {0, 1}t·n → {0, 1} is t-linear if

f(x(1), x(2), ..., x(t)) =
∑

i1,i2,...,it∈[n]

fi1,...,it · x
(1)
i1
· x(2)

i2
· · ·x(t)

it
, (1)

where x(j) = (x
(j)
1 , ..., x

(j)
n ) is the jth block of n Boolean variables.

That is, f is the sum of monomials (or t-way products) such that each monomial takes a single
variable from each of the t blocks of variables. The t-ary array (fi1,...,it)i1,...,it∈[n] is the tensor that
represents the monomials of f ; that is, the tensor indicates which of the possible nt monomials are
actually included in the t-linear function. In the special case of t = 2 (i.e., bilinear functions), this
(two-dimensional) tensor is an n-by-n matrix.

(Jumping ahead, we mention that, as in [4, 3], we shall consider residual bilinear functions
obtained by random restrictions of explicit O(1)-linear functions, and relate the AN-complexity of
the original O(1)-linear functions to measures of the matrices that represent the residual bilinear
functions. In particular, we shall consider the rank of the aforementioned matrices.)

1.1.2 The arithmetic circuits: the multilinearity condition

We consider arithmetic circuits with arbitrary gates that compute multi-linear functions (or rather
polynomials). Each gate in such a circuit computes an arbitrary polynomial; the circuit is only
restricted by the arity of the gates that it uses and their number.

Following the norm in the study of arithmetic circuits, we actually consider the formal polyno-
mial computed by such an arithmetic circuit; that is, the circuit computes an element in the ring
of polynomials over the two-element field GF(2). Recall that in this ring x+ x = 0, but x2 and x
are different polynomials (i.e., different element of the ring). Furthermore, since we consider the
computation of multi-linear polynomials, it makes sense to assume that the circuits are multilinear
in the sense that each sub-circuit (rooted at any gate) computes a multi-linear function.

Definition 1.1 (multilinear circuits with general gates [4]): A multilinear circuit on t blocks of
inputs x(1), ..., x(t) ∈ {0, 1}n is a directed acyclic graph whose nodes are associated with arbitrary
arithmetic gates such that the arithmetic sub-circuit rooted at each gate computes a polynomial
over GF(2) that is a linear function in the variables of each block on which the polynomial depends;
that is, for every gate in a multilinear circuit, there exists a non-empty set B ⊆ [t] such that the
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arithmetic sub-circuit rooted at this gate computes a polynomial that is linear in the variables of
each block j ∈ B.

(Indeed, the underlying notion is of B-multilinearity, where an input-gate that is fed by the variable

x
(j)
i is {j}-multilinear, and each monomial computed by a B-multilinear (non-input) gate is the

product of the results fed by gates that are multilinear in sets that form a partition of B.)2

We mention that, when considering the computation of t-linear polynomials, the restriction
to multilinear circuits can be imposed by increasing the arity and number of gates in the general
arithmetic circuit by at most a factor of 2t, without increasing the depth of the circuit [4, Rem. 2.5].

1.1.3 The complexity measure: AN-complexity

Clearly, any t-linear function f : {0, 1}t·n → {0, 1} can be computed by a multilinear circuit having
a single gate of arity tn. But we are interested in circuits that use gates of bounded arity, and we
also bound the number of gates that they use.

Definition 1.2 (the AN-complexity of multilinear circuits with general gates [4]): The arity of a
multilinear circuit is the maximum arity of its (general) gates, and the number of gates counts only
the general gates and not the leaves (variables). The AN-complexity of a multilinear circuit is the
maximum between its arity and the number of its (general) gates.

• The general (or unbounded-depth) AN-complexity of a multi-linear function f , denoted AN(f),
is the minimum AN-complexity of a multilinear circuit that computes f .

• The depth-two AN-complexity of a multi-linear function f , denoted AN2(F ), is the minimum
AN-complexity of a depth-two multilinear circuit that computes f .

Indeed, when dealing with depth-two multilinear circuits, there is no need to upper-bound the
number of gates, since it is upper-bounded by the arity of the top gate (plus 1).

1.1.4 Obtaining canonical Boolean circuits

A straightforward implementation of general gates of arity m by CNFs (or DNFs) of size exp(m)
yields depth-three circuits of size exp(AN2(f)) for any multi-linear function f . (Indeed, we use a
CNF for emulating the top multi-linear gate, and DNFs for the intermediate multi-linear gates
(and then collapse the two adjacent layers of OR-gates).) The Boolean circuits obtained from this
transformation are considered canonical. Note that the upper bound on the size of depth-three
Boolean circuits computing Parity is obtained by a canonical circuit, which is derived by starting
from the depth-two arithmetic circuit that computes an n-way sum by summing up

√
n sums, each

depending on a different set of
√
n variables.

A more general notion of canonical circuits arises by transforming multilinear circuits of arbi-
trary depth and bounded AN-complexity. Specifically, applying a Valiant-like idea [10], which can
be actually traced to the reduction of Circuit-SAT to SAT, Goldreich and Wigderson [4] showed
the following.

2That is, for every such monomial, there is a partition, denoted (B1, ..., Bw), of B such that this monomial is a
product of w results and the ith result is fed by a Bi-multilinear gate.
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Theorem 1.3 (the size of depth-three Boolean circuits is at most exponential in the AN-complexity [4,
Sec. 2.2]): Any multilinear function f can be computed by a depth-three Boolean circuit of size
exp(AN(f)).

The Boolean circuits obtained from this transformation are called canonical.
Hence, establishing lower bounds on the AN-complexity of multi-linear functions is a necessary

condition for establishing lower bounds on the size of depth-three Boolean circuits for these func-
tions. In particular, seeking lower bounds of the form exp(ω(n1/2)) on the size of a depth-three
Boolean circuit computing the O(1)-linear function f : {0, 1}O(n) → {0, 1} requires proving that
AN(f) = ω(n1/2), which in turn requires AN2(f) = ω(n1/2).

1.2 Previous results regarding the AN-complexity of multi-linear functions

The following results provide the context for our work. For starters, note that the case of t = 1
corresponds to the n-bit parity function PARn, and in this case it is easy to verify that AN2(PARn) =
O(n1/2) and AN(PARn) = Ω(n1/2). Hence, we are interested in the case t > 1. Specifically, we seek
O(1)-linear functions that have AN-complexity ω(n1/2). We start with an upper bound that sets
the limit on such lower bounds.

Theorem 1.4 (a generic upper bound [4, Thm. 3.1]): For every t ≥ 2, every t-linear func-
tion f : ({0, 1}n)t → {0, 1} can be computed by depth-two mulitilinear circuit of AN-complexity
O((tn)t/(t+1)); that is, AN2(f) = O((tn)t/(t+1)).

For example, all bilinear functions have AN-complexity at most O(n2/3). (We stress that Theo-
rem 1.4 holds also for t that varies with n.) Hence, seeking a linear (in tn) lower bound, we must
use a logarithmic number of blocks (i.e., t = Ω(log n)). In fact, such lower bounds hold existentially.

Theorem 1.5 (existential lower bound [4, Thm. 4.1]): For every t ≥ 2, almost all t-linear functions
f : ({0, 1}n)t → {0, 1} have AN-complexity Ω((tn)t/(t+1)); that is,

Prf :({0,1}n)t→{0,1}[AN(f) = Ω(tn)t/(t+1))] = 1− o(1).

For example, almost all bilinear functions have AN-complexity at least Ω(n2/3). (Again, Theo-
rem 1.5 holds also for t that varies with n.)

Of course, the goal is obtaining lower bounds for explicit functions (and Theorems 1.4 and 1.5
merely set the target for such attempts). The only prior ω(n1/2) result of this type was proved by
Goldreich and Tal [3], by building on a connection between the AN-complexity of bilinear functions
and matrix rigidity (cf. [9]), which was established by Goldreich and Wigderson [4].

Theorem 1.6 (Ω̃(n1/2) lower bounds for explicit functions [3, Thm. 1.5&1.6]):

1. There exists a polynomial-time computable 4-linear function f4 : {0, 1}4n → {0, 1} having
AN-complexity Ω̃(n2/3); that is, AN(f4) = Ω̃(n2/3).

2. The 3-linear function f3(x, y, z) =
∑

i,j∈[n/2] xiyjzi+j satisfies AN2(f3) = Ω̃(n2/3).

We mention that the function f4(x, y, r, s) has the form
∑

i,j∈[n/O(1)] gi,j(r, s) · xiyj , where each

gi,j : {0, 1}2n → {0, 1} is a bilinear function that describes a bit in the output of a small bias
generator that stretches an 2n-bit long seed into an Ω(n2)-bit long sequence (see Definition A.1).
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1.3 Our results

The obvious open problems raised by the results reviewed in Section 1.2 are

Open Problem 1.7 (ω(n2/3) lower bounds for explicit functions):

1. Present an explicit O(1)-linear function f : {0, 1}O(n) → {0, 1} having AN-complexity ω(n2/3);
that is, AN(f) = ω(n2/3).

2. Present an explicit O(1)-linear function f : {0, 1}O(n) → {0, 1} satisfying AN2(f) = ω(n2/3).

We mention that the general AN-complexity of multi-linear functions may be lower than its depth-
two AN-complexity (cf. [4, Thm 2.3]). We resolve the second problem by proving the following –

Theorem 1.8 (almost linear lower bounds on AN2-complexity of explicit functions): For every ε >
0, letting t = poly(1/ε), there exists a polynomial-time computable t-linear function f : {0, 1}t·n →
{0, 1} such that AN2(f) = Ω(n1−ε).

We mention that the lower bound holds also when waiving the requirement that the circuit be
multilinear; that is, it holds for general depth-two arithmetic circuits that use general gates. This
is the case because general arithmetic circuits of AN-complexity m and depth d that compute a
t-linear function can be converted to multilinear circuits of AN-complexity 2t ·m and depth d that
compute the same function [4, Rem. 2.5].

A somewhat nicer result. Using the ideas that underlie the proof of Theorem 1.8, and triggered
by a discussion with Avi Wigderson, we also prove the following result that refers to a more explicit
function and a smaller value of t.

Theorem 1.9 (almost linear lower bounds on AN2-complexity of more explicit functions): For
every ε ∈ (0, 1/4], letting t = d4/ε2e, the t-linear function f : ({0, 1}n)t−1 × {0, 1}(t−1)n → {0, 1}

f(x(1), x(2), ..., x(t)) =
∑

i1,...,it−1∈[n]

 ∏
j∈[t−1]

x
(j)
ij

 · x(t)
i1+i2+···+it−1

satisfies AN2(f) = Ω(n1−ε).

Alternatively, we may partition the last block, which contains (t− 1) · n variables, to t− 1 blocks
holding n variables each.3 We note that this function can be computed in quadratic time (see
Remark 3.3).

We mention that the functions used in Theorems 1.8 and 1.9 are generalizations of the 4-linear
and trilinear functions used in establishing Part 1 and Part 2 of Theorem 1.6, respectively. Note
that all these lower bounds (i.e., Theorem 1.6 as well as Theorems 1.8 and 1.9) fall short of the
optimal bounds asserted in Theorems 1.4 and 1.5 (which use t = d1/εe − 1).

Since the proof of Theorem 1.8 is somewhat simpler than the proof of Theorem 1.9, we only
review the former in the introduction. The proof of Theorem 1.9 is quite similar, but involves some
additional details (see comment at the end of Section 1.4.4).

3As stated, this yields a non-homogenous function; that is, different monomials depend on different subsets of
the variable-blocks. To obtain a homogenous function we may augment each variable-block by an auxiliary variable
(which will be set to 1) and augment the monomials with these variables.
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1.4 Outline of the proof of Theorem 1.8

Let us take a look at a generic multilinear circuit of depth two and AN-complexity m that computes
a t-linear function f (and recall that our aim is to prove that m ≥ n1−ε, where ε = (1/t)Ω(1)). This
circuit has the form C(x) = H(G1(x), ..., Gm(x)), where me may assume (w.l.o.g.) that the top
gate H is only fed by gates (rather than also by variables).4 Hence, the polynomial computed by
this circuit has the form ∑

J∈C

∏
j∈J

Gj(x), (2)

where C is a collection of subsets of [m]. Furthermore, each of the intermediate gates (i.e., the Gi’s)
is fed by variables only; moreover, Gi is fed by at most m variables from each block.5

We consider the blocks of variables that feed each of the m intermediate gates, denoting by
Bi ⊆ [t] the set of variable-blocks that feed Gi. By the multilinearity of C, each monomial computed
by Gi is linear in the variables of each block in Bi and is independent of variables of blocks in [t]\Bi.
Furthermore, for every J = {j1, ..., jw} ∈ C (as in Eq. (2)), it holds that (Bj1 , ..., Bjw) is a partition
of [t].

It is instructive to distinguish between gates that are fed by many (e.g., more than 2/ε) blocks
and those fed by few blocks. We will handle gates Gi’s with large Bi’s by using a very sparse
random assignment to the first t− 2 blocks; specifically, in each of these t− 2 blocks, we assign a
single (random) variable the value 1 and set all other variables to 0. Hence, with high probability,
each gate Gi with large Bi will evaluate to 0 in the resulting simplified circuit. As shown in [4], the
simplified circuit computes a bilinear function that is represented by a matrix of rigidity smaller
than m3 for rank m, and this may (at best) lead to an AN2-complexity lower bound of Ω(n2/3),
which was essentially obtained in [3]. To do better, we consider many (i.e., more than m) random
restrictions (or assignments) of the foregoing type, and study a carefully chosen linear combination
of the corresponding simplified circuits (along with the corresponding slices of f).6

1.4.1 The random restriction and its effect on gates with many blocks

Suppose that we assign the variables in the first t−2 blocks at random such that for each j ∈ [t−2]
we set a single variable of block j to 1 and set all other variables to 0; that is, for each j ∈ [t−2], we
select ij ∈ [n] uniformly at random and set the jth block to 0ij−110n−ij . Then, the t-linear function
f : {0, 1}t·n → {0, 1} is (randomly) restricted to a bilinear function fi1,...,it−2 : {0, 1}n+n → {0, 1}
such that

fi1,...,it−2(y, z)
def
= f(0i1−110n−i1 , ..., 0it−2−110n−it−2 , y, z) (3)

which is supposedly computed by the simplified circuit (i.e., the circuit obtained from C by applying
the random restriction specified by (i1, ..., it−2)).

Terminology. Looking at Eq. (1), recall that the monomials of f are represented by the t-ary
array (fi1,...,it)i1,...,it∈[n], and note that fi1,...,it = f(0i1−110n−i1 , ..., 0it−110n−it). Analogously, for

4Indeed, for notational simplicity, we consider m intermediate gates, although the AN-complexity upper-bounds
their number by m− 1.

5Indeed, Gi is fed by at most m variables (total), but we only use the stated implication (i.e., that it is fed by at
most m variables from each block).

6We use d = Ω(1/ε) for handling gates that are fed by more than d blocks, whereas d = O(1/ε) is used for handling
the other gates (where we rely on nd/(t−2) � nε, which implies t = Ω(d/ε)).
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each (i1, ..., it−2) ∈ [n]t−2, the n-by-n matrix (fi1,...,it−2,it−1,it)it−1,it∈[n] represents the (monomials
of the) bilinear function fi1,...,it−2 : {0, 1}n+n → {0, 1}, and this matrix may be viewed as a slice
of the t-ary tensor that represents the monomials of f . Specifically, the matrix (fi1,...,it)it−1,it∈[n]

is obtained from the t-ary array (fi1,...,it)i1,...,it∈[n] by fixing the first t − 2 coordinates of the t-

ary array such that, for each j ∈ [t − 2], the jth coordinate is fixed to ij . Indeed, fi1,...,it =
fi1,...,it−2(0it−1−110it−1 , 0it−110it), which equals f(0i1−110n−i1 , ..., 0it−110n−it). Hence, we may also
view the bilinear functin fi1,...,it−2 as a slice of the t-linear function f .

We now look at the effect of the foregoing random restriction on the circuit C, which supposedly
computes f . Looking at the simplified circuit, observe that, for each i ∈ [m], the output of Gi is
identically 0 unless, for each j ∈ Bi, we set one of the variables of block j that feeds Gi to 1 (i.e.,
if ij is the index of one of the variables of block j that feeds Gi). Recalling that each block has at
most m variables that feed Gi, it follows that the output of Gi is identically 0 with probability at
least 1− (m/n)|Bi∩[t−2]|.

Now, if all Bi’s were of size at least d + 2 > 1/ε, then the entire circuit would simplify to the
constant 0, with probability at least 1 −m · (m/n)d. Hence, if all slices of f are non-trivial (i.e.,
none of fi1,...,it−2 ’s is identically 0), then we reach a contradiction unless m · (m/n)d ≥ 1, which
implies m ≥ nd/(d+1) > n1−ε, and Theorem 1.8 would follow (when we pick the best depth-two
circuit; i.e., m = AN2(f)).

1.4.2 Gates with few blocks: A special case

But what if some (or all) Bi’s are small? For simplicity, let us ignore the large Bi’s, and more
importantly assume that each of the remaining Bi’s is either contained in {t−1, t} or in [t−2] (i.e.,
if Gi is fed by some block in {t− 1, t}, then it is not fed by any block in [t− 2]). That is, here we
consider only a special case, which suffices for introducing one key idea. The general case, where
we handle all gates Gi that have a small Bi, is postponed to Section 1.4.3. Now, in the special case
(i.e., either Bi ⊆ {t− 1, t} or Bi ⊆ [t− 2]), the circuit C has the form

C(x(1), ..., x(t−2), y, z) =
∑
j∈J

Fj(x
(1), ..., x(t−2)) ·Gj(y, z) (4)

+
∑

(j1,j2)∈K

Fj1,j2(x(1), ..., x(t−2)) ·Gj1(y) ·Gj2(z), (5)

where the Fj ’s and Fj1,j2 ’s are (t−2)-linear functions, J ⊆ [m] and K ⊆ {(j1, j2)∈([m]\J)2 :j1<j2}.
(The foregoing form is obtained by recalling that C is a mulitilinear function of the various Gj ’s,
considering only the Gj ’s that satisfy Bj ⊆ {t − 1, t}, and letting Fj be the factor that multiplies
a bilinear Gj , and Fj1,j2 be the factor that multiplies Gj1 ·Gj2 .)

Recalling that, in order to get rid of the larger Bi’s, we picked a random assignment to the
variables in the blocks in [t− 2], it follows that each of the functions Fj ’s and Fj1,j2 ’s evaluates to
a constant. Now, if we are extremely lucky and all Fj ’s (but not necessarily the Fj1,j2 ’s)7 evaluate
to 0, then the bilinear function computed by the residual circuit simplifies to Eq. (5); that is, this
bilinear function equals

∑
j1∈[t]\J Gj1(y) ·

∑
j2:(j1,j2)∈K Gj2(z). One key observation (of [4]) is that

the matrix that represents the (monomials of the) latter bilinear function has rank at most m,

7Footnote 8 explains why we do not assume here that all Fj1,j2 evaluate to 0. Essentially, removing the unrealistic
assumption regarding the Fj ’s has a cost we can afford, whereas the cost of dealing similarly with the Fj1,j2 ’s cannot
be afforded (because their number may be much larger).
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because each Gj1(y) ·
∑

j2:(j1,j2)∈K Gj2(z) is represented by a matrix of rank at most 1. In this case
we reach a contradiction, provided that almost all slices of f correspond to matrices of higher rank
(i.e., rank higher than m). Hence, Theorem 1.8 would follow, provided that we select an adequate
function f (which is quite easy to do).

Of course, there is no reason to believe that we may be so extremely lucky (i.e., have all Fj ’s
evaluate to 0). What we do instead is select m + 1 random assignments to the variables of the
blocks in [t − 2], and take a suitable linear combinations of the m + 1 vectors that describes the
values of the Fj ’s under these assignments; that is, the ith vector describes the values of all Fj ’s
under the ith assignment. Specifically, we take a non-zero linear combination of these vectors that
sums-up to zero, and note that the corresponding linear combination of the simplied bilinear circuits
(obtained from C) is represented by a matrix of rank at most m (see details below). In contrast,
the corresponding linear combination of the residual bilinear functions derived from f (by these
random restrictions) will be shown to yield a matrix of high rank (i.e., rank greater m).8

Let us repeat and detail the argument. The key observation is that the foregoing linear combi-
nation of the computations of (the restricted) circuit C yields a bilinear function that is represented
by a matrix of rank at most m. This is the case because the contribution of

∑
j∈J Fj(· · ·)Gj(y, z)

cancels out (since, for each j ∈ J , the linear combination of the values of Fj under these assign-
ments sums-up to 0, whereas Gj is not affected by any of these assignments), and so we are left
with Eq. (5). Hence, if the corresponding linear combination of the (restricted) function f yields
a bilinear function that is represented by a matrix of higher rank (i..e, higher than m), then we
reach a contradiction (as above). For this to happen, it suffices that each linear combinations of
slices of f yields a matrix of rank higher than m, where a slice of f is the bilinear function fi1,...,it−2

defined in Eq. (3). Selecting f from a small-bias sample space comes to mind, and such a selec-
tion will be derandomized by using auxiliary variables (as done in the construction of f4 of [3]).
Furthermore, as in [3], we need a generator of such sequences (with larger stretch than in [3]) that
can be implemented by multi-linear functions of low degree. We present such a construction in the
appendix.

But wait: We have ignored the effect of using m + 1 random assignments, rather than one,
on the large Bi’s (i.e., |Bi| ≥ d + 2). Recall that when using a single random assignment of
the foregoing type, the contribution of the corresponding gate vanished with probability at least
1− (m/n)|Bi∩[t−2]|. But when selecting m+ 1 such assignments the corresponding gate vanishes on
all of them with probability at least 1− ((m+ 1) · (m/n))|Bi∩[t−2]|. This bound is useless, since we
aim at m�

√
n. However, we can do better by selecting the m+ 1 random assignments carefully.

Specifically, for each j ∈ [t − 2], we select a set Ij of b = (m + 1)1/(t−2) elements of [n] uniformly
at random, and consider the set of assignments specified by I1 × · · · × It−2. Observe that the ith

gate vanishes on all m + 1 assignments if for some j ∈ Bi ∩ [t − 2] it holds that Ij contains no
index of a variable of block j that feeds this gate, whereas this event occurs with probability at
least 1− (b · (m/n))|Bi∩[t−2]|. Hence, analogously to Section 1.4.1, we reach a contradiction unless
m · ((b ·m)/n)d ≥ 1. Recalling that b = (m+ 1)1/(t−2), we infer that m · ((m+ 1)(t−1)/(t−2)/n)d > 1,

8Indeed, we shall use the hypothesis that the linear combinations of the residual bilinear functions derived from f
(by these random restrictions) yield (n-by-n) matrices that are all of high rank (i.e., rank at least m). This hypothesis
will be established by relying on a union bound that can support at most 2O(n) different linear combinations, whereas
we aim at m = ω(n1/2). Hence, we can afford to consider all 2m+1− 1 non-zero linear combinations of m+ 1 residual

bilinear functions, but we can not afford to consider 2Ω(m2) linear combination of Ω(m2) residual bilinear functions.
This is the reason that this argument is applied to the Fj ’s, but not to the Fj1,j2 ’s.
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which implies that m+ 1 > n
(t−2)d

(t−1)(d+1)−1 > n1−ε, provided that min(d+ 1, t− 2) ≥ 2/ε.

1.4.3 Gates with few blocks: The general case

All the foregoing was done under the (unjustified) simplifying assumption that each of the small
Bi’s is either a subset of {t − 1, t} or a subset of [t − 2]. In the general case, we may have gates
with small Bi’s that intersect both {t− 1, t} and [t− 2].

We first consider the case of small Bi’s that contain both t − 1 and t (i.e., Bi ⊇ {t − 1, t}). A
generic gate Gi of this type depends on less than d blocks from [t− 2]; let us assume for simplicity
that these blocks are indexed 1, ..., d′ (and recall that d′ < d). Then, the contribution of Gi to the
computation of C has the form

Fi(x
(1), ..., x(t−2)) ·Gi(x(1), ..., x(d′), y, z), (6)

where Fi is an arbitrary (t−2)-linear function (analogously to Eq. (4), except that Gi also depends
on x(1), ..., x(d′)).9 Observe that fixing the values of x(1), ..., x(d′) simplifies Eq. (6) to a form that
is identical to Eq. (4). This means that for the sets I1, ..., It−2 selected as in Section 1.4.2, it
suffices to find a set S ⊆ I1 × · · · × It−2 such that for every gate Gi of the current form and every
(i1, ..., id′) ∈ I1 × · · · × Id′ , it holds that∑

(id′+1,...,it−2):(i1,...,id′ ,id′+1,...,it−2)∈S

Fi(0
i1−110n−i1 , ..., 0it−2−110n−it−2) = 0.

We can find such a set S, very much as we have done before, except that now we need the size
of each Ij (denoted b above) to be at least (m + 1)1/(t−2−d′) (rather than at least (m + 1)1/(t−2)),
because we need the number of non-zero linear combinations (i.e., bt

′−2 − 1) to exceed the number
of the foregiong conditions (i.e., bd

′ ·m). This means that we get m ·((m+1)1/(t−2−d′) ·m)/n)d
′ ≥ 1,

which gives us the desired lower bound (when using a larger t such that bd ·m < n/2).10

So we are left with the case of small Bi’s that intersect {t − 1, t} at a single point, where

d′
def
= |Bi ∩ [t − 2]| < d. The crucial observation here is that the probability that Gi does not

vanish under a random assignment of the foregoing type is at most (m/n)d
′
, and that this event

depends only on the variables in the blocks in Bi ∩ [t− 2]. Taking a union bound over all d′-tuples
in I1 × · · · × Id′ , it follows that the probability that Gi does not vanish under some of the bt−2

random assignment (specified by I1 × · · · × It−2) is at most

bd
′ · (m/n)d

′
= (m+ 1)d

′/(t−2−d) · (m/n)d
′
<

(
(m+ 1)1+ 1

t−2−d

n

)d′
(7)

Recalling that we aim to derive a contradiction to the hypothesis that m ≤ n
t−2−d
t−1−d , we observe

that Eq. (7) is maximized in the case d′ = 0. Hence, the contribution of such a gate to the rank
of the matrix that represents the bilinear function computed by the residual circuit is actually

9Actually, Fi does not depend on the first d′ blocks, but we do not use this fact.
10The added condition is used in the analysis of the pseudorandom function f , which is omitted here. Note

that, using d = 2/ε and t ≥ max(2d + 2, (d + 1)2), it holds that m1+ d
t−2−d

+d > nd implies m > n1−ε, whereas
bd = (m+ 1)d/(t−d−1) < n/2m holds for m = n1−ε.
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maximized in the case d′ = 0, which was considered in Section 1.4.2 (i.e., the special case (of the
cases considered here)).

This completes the rough sketch of the proof of Theorem 1.8, although a more clear and detailed
description is in place. In particular, we ignored the task of showing that for a pseudorandom (i.e.,
small-bias) function f , with high probability, any non-zero linear combination of the slices in
I1 × · · · × It−2 yields a bilinear function that is represented by a matrix of high rank.

1.4.4 Digest

To summarize, we started with an extremely skewed type of random restrictions, which assign
values to all but two of the variable blocks such that a single variable in each block is set to 1.
Hence, such random restrictions correspond to selecting, at random, a single variable in each of the
t − 2 blocks. Furthermore, we considered bt−2 such random assignments and contrasted the sum
of the corresponding restrictions of the original function f and of the circuit C (which supposedly
computes it), where the sum is taken over a subset of these assignments. Lastly, the bt−2 random
assignments are the Cartesian product of b assignments (of random n-bit strings of Hamming
weight 1) to each of the t− 2 blocks.

As mentioned briefly, the function f is a pseudorandom function, and we shall use a function
F that uses a small bias generator to specify a function f (see Eq. (8), coming next). Specifically,
we shall use an exp(−Ω(n))-bias generator that stretches a poly(t) ·n-bit long seed into a sequence
of nt bits (which specifies a t-linear function) such that each output bit can be computed by an
explicit poly(t)-linear function. (Recall that the small-bias feature means that each non-zero linear
combination of the output bits is exp(−Ω(n))-close to being unbiased.) An adequate construction
is presented in the appendix.

On the proof of Theorem 1.9. While Theorem 1.9 refers to a different function than Theo-
rem 1.8, the analysis of the multilinear depth-two circuit that supposedly computes this function
is almost identical, where the only difference is in an auxiliary condition that is imposed on the set
S (which specifies the linear combination used in Section 1.4.3). The main difference is in arguing
that a linear combination of slices of the corresponding tensor has high rank. In the case of The-
orem 1.8 this follows from the pseudorandomness of the tensor (see previous paragraph), whereas
in the proof of Theorem 1.9 we shall show that the relevant matrix is a random Toeplitz matrix.

1.5 Organization

The core of this paper is the proof of Theorem 1.8, which is presented in Section 2. Next, in
Section 3, we adapt this proof in order to establish Theorem 1.9. Although the function that
underlies Theorem 1.9 is simpler than the one used in the proof of Theorem 1.8, we believe that
the proof of Theorem 1.9 is slightly more complicated. In Section 4 we extend the main results to
any ε = ω(1/

√
log n) and discuss some concrete challenges.

2 Proof of Theorem 1.8

We start with an explicit presentation of the multi-linear functions that we shall analyze. The
presentation will use slightly different notations than those used in Section 1.4. In particular, in
this presentation, we explicitly include the pseudorandom generator that defines a pseudorandom
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function f , rather than push it under the rug (as done in Section 1.4). Specifically, we shall
present (t′+ t′′)-linear functions, where the first t′+ 2 blocks of variables correspond to the t blocks
in Section 1.4, the random restriction will be applied to the first t′ blocks, the residual bilinear
function that we shall analyze will depend on the variables of blocks t′+ 1 and t′+ 2, and the seed
of the pseudorandom generator will occupy the last t′′ − 2 blocks.11

For t′ and t′′ to be determined, we consider the (t′ + t′′)-linear function F : GF(2)(t′+t′′)·n →
GF(2) in which the first t′ + 2 coordinates of the tensor that represents F correspond to a pseu-
dorandom (i.e., small-bias) tensor, where the pseudorandomness is provided by the last t′′ − 2

coordinates. Specifically, we use an exp(−Ω(n))-bias generator, Gsb : GF(2)(t′′−2)·n → GF(2)n
t′+2

,
that is computed by (t′′ − 2)-linear functions; that is, the (i1, ..., it′+2)th bit in the output of Gsb,
denoted Gsb(x

(t′+3), ..., x(t′+t′′))(i1,...,it′+2), is computed by a (t′′ − 2)-linear function. Hence, the
function F is defined by

F (x(1), x(2), ..., x(t′+t′′)) =
∑

i1,...,it′+2∈[n]

Gsb(x
(t′+3), ..., x(t′+t′′))(i1,...,it′+2) ·

∏
j∈[t′+2]

x
(j)
ij

(8)

Fixing an arbitrary assignment s ∈ {0, 1}(t′′−2)n to the last t′′ − 2 blocks of variables of F (i.e.,
fixing a seed to the small-bias generator), we consider the resulting (t′ + 2)-dimensional tensor,
which represents a pseudorandom function Fs(· · ·) = F (· · · , s). Indeed, such a (t′ + 2)-linear
function Fs : {0, 1}(t′+2)n → {0, 1} corresponds to the function f in Eq. (1); in particular, the bit
Gsb(s)(i1,...,it′+2) correspond to the coefficient fi1,...,it in Eq. (1), where t = t′ + 2.

We shall consider the nt
′

bilinear functions that are obtained by restricting Fs by assignments
of unit vectors to its first t′ blocks. Each of these bilinear functions will be represented by an n-by-n
matrix that is a (two-dimensional) slice of the (t′+2)-dimensional tensor (Gsb(s)(i1,...,it′+2))i1,...,it′+2∈[n],

where the slices are aligned with coordinates t′+1 and t′+2. Specifically, the slice (i1, ..., it′) ∈ [n]t
′

of the (tensor of the) residual function Fs is the n-by-n matrix (Gsb(s)(i1,...,it′ ,j1,j2))j1,j2 ; that is,

the (j1, j2)th entry of this slice is Gsb(s)(i1,...,it′ ,j1,j2). Recall that, in general, a bilinear function

B : {0, 1}n+n → {0, 1} is represented by an n-by-n matrix such that the (i, j)th entry in the matrix
equals B(0i−110n−i, 0j−110n−j); that is, this entry is the coefficient of the monomial yizj in the
polynomial B(y, z).

In order to prove a lower bound of Ω(n1−ε), we shall pick a large enough t′ = Ω(1/ε), and this
will require setting t′′ − 2 = Ω(t′) so that the nt

′+2-long sample space can have small bias. As in
Section 1.4, most of our analysis (i.e., Sections 2.2 and 2.3) will refer to a generic (t′ + 2)-linear
function, which may be viewed as one of the possible residual function Fs. We shall return the
specific function F of Eq. (8) in Section 2.4.

2.1 The form of a depth-two multilinear circuit that computes F

Without loss of generality, the top gate in a generic depth-two circuit of AN-complexity m (which
computes F ) sums-up monomials that are products of up to t = t′+ t′′ of the m auxiliary functions,
denoted G1, ..., Gm. The Gi’s are computed by the m intermediate gates, which are each fed by
m original variables. A typical gate is associated with a subset B ⊂ [m] of size at most t, which
specify the variable-blocks that feed it; specifically, for each i ∈ [m], we denote by BL(i) ⊆ [t] the

11This specific choice of parameters is used because it will be more convenient to have a parameter (i.e., t′) that
equals the number of blocks that are randomly restricted.
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indices of the variable-blocks on which Gi depends, and we say that Gi is BL(i)-multilinear. The
multi-linearity condition implies that each monomial computed by the top gate induces a partition
on the t blocks of variables; that is, for a monomial of the form

∏
j∈[w]Gij computed by the top

gate it must hold that BL({i1, ..., iw})
def
= (BL(i1), ..., BL(iw)) is a partition of [t].

Letting Π denote the set of all partitions of [t] and C ⊆
⋃
w∈[t]

(
[m]
w

)
denote the collection of all

legal monomials (i.e., C = {I : BL(I) ∈ Π}), the fact that a depth-two circuit of AN-complexity m
computes F means that there exist constants (cI)I∈C such that

F =
∑
I∈C

cI ·
∏
i∈I

Gi (9)

=
∑

i∈[m]:BL(i)3t′+1

Gi ·
∑

I∈C:I3i
cI ·

∏
j∈(I\{i})

Gj , (10)

where Eq. (10) groups the monomials of Eq. (9) according to the function Gi that is fed by variables
of block t′+1 (where the choice of using block t′+1 rather than block t′+2 is arbitrary). Recall that
each Gi has arity at most m (and an empty product is defined as identical to 1 (i.e.,

∏
j∈∅Gj = 1)).

Letting

Fi
def
=

∑
I∈C:I3i

cI ·
∏

j∈(I\{i})

Gj , (11)

we write Eq. (10) as

F =
∑

i∈[m]:BL(i)3t′+1

Gi · Fi (12)

where we treat Fi as an arbitrary ([t] \ BL(i))-multilinear function. That is, while each Gi depends
on at most m variables (which reside in blocks in the corresponding BL(i)), no such restriction is
placed on the Fi’s (which arise from Eq. (10)).

Note that the r.h.s. of Eq. (12) depends on the (depth-two) circuit that supposedly computes
F , whereas the l.h.s. of Eq. (12) is oblivious of that circuit. We shall show that the equality
between the two sides of Eq. (12) cannot possibly hold if m is too small (i.e., if m = o(n1−ε), where
ε =

√
O(1)/t′).

2.2 Three types of gates and how they will be handled

For each fixing of values to the last t′′−2 blocks (i.e., a fixing of a seed for the small-bias generator),
we show that adequate random assignments to the first t′ blocks yield, with high probability, a
bilinear function that is represented by a matrix of rank O(m), where this bilinear function is
derived from the r.h.s. of Eq. (12). In contrast, considering the l.h.s. of Eq. (12), we shall later
show that this is unlikely to happen for a random seed (i.e., Fs is likely be represented by a matrix
of higher rank), unless m = Ω(n1−ε).

We start by analyzing the r.h.s. of Eq. (12), following the outline provided in Section 1.4 (but
using a slightly different organization).12 Towards this end, we fix such a seed s ∈ {0, 1}(t′′−2)·n,

12While in Section 1.4 the main distinction was between large and small Bi’s, here the main distinction is between
Bi 3 t′ + 2 and Bi 63 t′ + 2, where Bi 3 t′ + 1 always holds (by Eq. (12)). Next, for Bi ⊇ {t′ + 1, t′ + 2}, we
distinguish between large and small Bi’s. The special case considered in Section 1.4.2 does not appear in the high
level organization here.
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and for sake of simplicity omit it from the notation (i.e., we shall refer to the functions F,Gi, Fi as
if they only depend on the first t′ + 2 blocks). Fixing a sufficiently large constant d = O(1/ε), we
consider a partition of the Gi’s in Eq. (12) to three types:

1. Gates Gi that are not fed by variables from block t′ + 2 (but are fed by variables from block
t′+ 1); that is, t′+ 2 6∈ BL(i) (although t′+ 1 ∈ BL(i)). This means that the variables of block
t′ + 2 feed the corresponding function Fi (of Eq. (12)).

Each such gate Gi contributes to the rank of a matrix that represents the bilinear function
that is obtained from the r.h.s. of Eq. (12) by hitting the first t′ blocks with a random
restriction (which assigns each block a uniformly distributed unit vector). This contribution
will be bounded by taking into account the number of blocks in [t′] that feed Gi. Specifically,
if BL(i) ∩ [t′] = ∅, then Gi contributes at most one unit to the rank, and otherwise its
expected contribution to the rank (taken over a random restriction) vanishes exponentially
with |BL(i) ∩ [t′]| (see Section 1.4.3).

2. Gates Gi that are fed by variables from block t′+ 2 (as well as by variables from block t′+ 1)
along with variables from many blocks in [t′]; that is, t′+1, t′+2 ∈ BL(i) and |BL(i)∩ [t′]| ≥ d.

We shall show that, with high probability (over the choice of the random restriction), the
contribution of these gates vanishes; that is, these gates do not contribute to the rank of a
matrix that represents the bilinear function that is obtained from the r.h.s. of Eq. (12) by
hitting the first t′ blocks with a random restriction.

3. Gates Gi that are fed by variables from block t′+ 2 (as well as by variables from block t′+ 1)
along with variables from few blocks in [t′]; that is, t′ + 1, t′ + 2 ∈ BL(i) and |BL(i)∩ [t′]| < d.

We shall show that that these gates do not contribute to a suitable linear combination of
bilinear functions obtained by random restrictions as above, where the number of linear
combinations is kept small enough by relying on the hypothesis |BL(i)∩[t′]| < d. Consequently,
these gates do not contribute to the rank of the matrix that represent the resulting bilinear
function.

The fact that we consider several random restrictions rather than a single one will complicate
the analysis of the first two cases, but not in an unmanageable manner. In particular, as
discussed in Section 1.4, the different random restrictions will be related so that their effect
on the first two cases is relatively small.

Combining the analyses of the three types, we shall show that, with probability at least 2/3, the rank
of the matrix that represents the aforementioned bilinear function (i.e., a suitable linear combination
of bilinear functions obtained by several random restrictions) is O(m), unless m = Ω(n1−ε). The
lower bound on m will follow by showing that, with very high probability, the matrix obtained by
a corresponding linear combination of slices of the tensor that represents F itself has rank Ω(n).

2.3 The actual handling of the three types

Fixing an arbitrary i such that BL(i) 3 t′+1, we now consider in greater detail what happens in each
of the foregoing cases, when arbitrarily fixing of the values of the variables in blocks [t′+ 3, t′+ t′′].
(For notational simplicity, we shall ignore this fixing in the following discussion; that is, we shall
consider Gi and Fi as if they only depend on variables that reside in blocks in [t′ + 2].)
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Parameters that will be used: Recall that m is the AN-complexity of the circuit C, which
supposedly computes F , and that our aim is to prove that m = Ω(n1−ε) for some predetermined
ε > 0. Recall that t′ and t′′ will be determined as a function of ε. The same holds for d, which
is the threshold that distinguishes Type 2 from Type 3 gates, and b, which specifies the number
of random assignments we consider for each block in [t′]. We shall assume that these parameters
satisfy b ·m ≤ n and bt

′−d > m (whereas bt
′
< (n/2)− 2 will be assumed in Section 2.4).

2.3.1 Gates of Type 1: t′ + 2 6∈ BL(i)

For any fixing of the values of the variables in all blocks in [t′], the function Fi · Gi simplifies to
a bilinear function in x(t′+2) and x(t′+1); that is, Fi simplifies to a linear function that depends
only on x(t′+2) whereas Gi simplifies to a linear function depends only on x(t′+1). Consequently,
the n-by-n matrix that represents this residual bilinear function has rank at most 1, because it is
an outer product of two vectors (i.e., the vectors representing the simplified Fi and Gi). Letting T1

denote the set of all i’s of Type 1, we note that under the foregoing fixing of values (to all variables
in blocks in [t′]) the n-by-n matrix that represents the residual bilinear function resulting from∑

i∈T1
FiGi has rank at most |T1| ≤ m.

Foreseeing the treatment of Type 3, which was outlined in Section 1.4.3, we need to handle the
sum of Fi ·Gi taken over bt

′
random assignments to the variables (in the blocks in [t′]). The problem

is that each such random assignment may yield a different bilinear function in x(t′+1) and x(t′+2),
which is represented by a different matrix of rank at most 1. Our aim is to show that even in this
case, the expected rank of the sum of these matrices is at most 1. Intuitively, this is the case because
each of the foregoing bilinear functions vanishes with probability at least 1− b−|BL(i)∩[t′]|, where the
probability is taken over the choice of the bt

′
random assignments.13 Actually, we show that Gi

itself vanishes with such probability, and note that this event depends only of the assignment to the
blocks in BL(i)∩ [t′]. Using a specific set of bt

′
(related) random assignments, which is the Cartesian

product of b random assignments to each of the t′ blocks, the expected number of non-vanishing
bilinear functions is at most 1 (just as in the simple case that BL(i) ∩ [t′] = ∅). Details follow.

As stated above, our analysis relies on the specific set of bt
′

related random assignments that we
use. Each of these random assignments is a sequence of t′ random unit vectors (i.e., the sequence of n
variables of block j ∈ [t′] is assigned the unit vector 0ij−110n−ij , where ij is uniformly distributed in
[n]), but the different random assignments are related. Specifically, the bt

′
assignments are specified

by a random sequence of b-subsets, denoted I = (I1, ...., It′), such that for every (i1, ..., it′) ∈
I1 × · · · × It′ , we consider the assignment (u(i1), ..., u(it′)) ∈ {0, 1}t

′·n, where u(i) = 0i−110n−i is
the ith unit vector. We index each of these bt

′
random assignments with an t′-long sequence over

[b]. Specifically, for each j ∈ [t′] and k ∈ [b], we denote by Ij(k) the kth element in Ij . Hence, each
(k1, ..., kt′) ∈ [b]t

′
specifies one of the chosen random sequence (I1(k1), ..., It′(kt′)) ∈ [n]t

′
, which in

turn specifies a random assignment (u(I1(k1)), ..., u(It′(kt′))) ∈ {0, 1}t
′·n.

Digest of the new notations: Recall that each random assignment that we consider (to the
t′ first blocks) is a sequence of t′ random unit vectors, where each unit vector is specified by an
element of [n]. We shall consider a set of bt

′
random assignments that are specified by a t′-long

sequence of b-subsets of [n], where bt
′ � m (but bt

′
< n/2).

13This probability bound relies on m/n ≤ 1/b.
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1. For I ∈
([n]
b

)
and k ∈ [b], we let I(k) denote the kth element in I, where the order of elements

in I is arbitrary.

Actually, for concreteness and simplicity, we assume that the ordering is random; that is, for
every k ∈ [b], and a uniformly distributed I ∈

([n]
b

)
it holds that I(k) is uniformly distributed

in [n].

2. For I = (I1, ...., It′) ∈
([n]
b

)t′
, and (k1, ..., kt′) ∈ [b]t

′
, it holds that (I1(k1), ..., It′(kt′)) ∈ [n]t

′
.

3. For i ∈ [n], the ith unit vector is u(i) = 0i−110n−i.

Hence, for I = (I1, ...., It′) ∈
([n]
b

)t′
, and (k1, ..., kt′) ∈ [b]t

′
, it holds that (u(I1(k1)), ..., u(It′(kt′)))

is a sequence of t′ unit vectors such that the jth vector in this sequence is 0Ij(kj)−110n−Ij(kj).

Indeed, u(Ij(kj)) = 0i−110n−i if the kth
j element in Ij eqauls i.

We wish to upper-bound, for a random sequence I, and any S = S(I) ⊆ [b]t
′

which may depend
on I, the rank of the matrix that represents the bilinear function∑

(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2)) ·Gi(u(I1(k1)), ..., u(It′(kt′)), x

(t′+1)), (13)

where we omitted x(t′+1) (resp., x(t′+2)) from Fi (resp., from Gi) because this block is not fed to
that function. We shall show that, in expectation, this rank is at most (b ·m/n)|BL(i)∩[t′]|, which is
at most 1 when b ·m ≤ n (which is the setting that we shall use when handling Type 3). Hence,
we shall be accommodating the treatment of Type 3 at no real cost.

Claim 2.1 (the contribution of a gate of Type 1 (i.e., i ∈ T1)): For a uniformly distributed

I ∈
([n]
b

)t′
and any S = S(I) ⊆ [b]t

′
(which may depend on I), the expected rank of the matrix that

represents the monomials of the bilinear function given by Eq. (13) is at most (b ·m/n)|BL(i)∩[t′]|.

Note that b < n/m implies that (b ·m/n)d
′ ≤ 1, for every d′ ≥ 0, with equality holding only for

d′ = 0.

Proof: Recall that Gi depends only on blocks in BL(i), whereas Fi depends only on blocks not
in BL(i), and that t′ + 1 ∈ BL(i) but t′ + 2 6∈ BL(i). Hence, we may replace Gi by the actual
function, denoted G′i, that Gi applies to variables in BL(i); that is, assuming for simplicity that
BL(i) = [d′] ∪ {t′ + 1}, where d′ ≥ 0, we define G′i(y1, ..., yd′ , y) = Gi(y1, ..., yd, 0

n, ..., 0n, y), where
it actually does not matter if 0n is replaced by any other n-bit string.14 (We could have done the
same for Fi, but there is no benefit in doing so.) Then, still using the simplified assumption that
BL(i) = [d′] ∪ {t′ + 1}, we can re-write Eq. (13) as follows

∑
(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2)) ·G′i(u(I1(k1)), ..., u(Id′(kd′)), x

(t′+1))

=
∑

k1,...,kd′∈[b]

G′i(u(I1(k1)), ..., u(Id′(kd′)), x
(t′+1))

14In general, letting BL(i) = {i1, ..., id′ , t′ + 1}, where d′ ≥ 0, we define G′i(y1, ..., yd′ , y) = Gi(y
′
1, ...., y

′
t′ , y) such

that y′ij = yj if j ∈ [d′] and y′i = 0n otherwise (i.e., i 6∈ {i1, ..., id′}.
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·
∑

kd′+1,...,kt′∈[b]:(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2))

=
∑

k1,...,kd′∈[b]

G′i(u(I1(k1)), ..., u(Id′(kd′)), x
(t′+1)) · F (k1,...,kd′ )

i,S (x(t′+2)) (14)

where F
(k1,...,kd′ )
i,S (z) equals the sum∑

(kd′+1,...,kt′ )∈S
(k1,...,kd′ )

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2))

where S(k1,...,kd′ )
def
= {(kd′+1, ..., kt′) ∈ [b]t

′−d′ : (k1, ..., kt′) ∈ S}. Looking at Eq. (14), we observe
that the term corresponding to (k1, ..., kd′) ∈ [b]d

′
(in the sum) vanishes unless for every j ∈ [d′] it

holds that the kth
j variable of block j ∈ BL(i)∩ [t′] feeds Gi. Considering a random choice of I, the

probability that the term corresponding to (k1, ..., kd′) ∈ [b]d
′

does not vanish is at most (m/n)d
′
.

We stress that this vanishing is due to Gi, and so the fact that F
(k1,...,kd′ )

i,S(I)
(x(t′+2)) varies with I

is immaterial.15 Hence, the expected number of terms in Eq. (14) that do not vanish is at most
bd
′ · (m/n)d

′
, whereas each term may contribute at most one unit to the rank. It follows that the

expected rank of the matrix that represents the bilinear function of Eq. (14) is at most (b ·m/n)d
′
,

where the expectation is taken uniformly over the choices of I ∈
([n]
b

)t′
.

Digest (of the proof of Claim 2.1). The key point in the foregoing proof is that both the
number of terms in Eq. (14) and the probability that each term does not vanish are exponential in
d′ (i.e., they are bd

′
and (m/n)d

′
, respectively), and so the growth of the first is compensated by

the decline of the second. Indeed, the fact that S = S(I) is determined based on I is immaterial,
since we consider all bd

′
terms anyhow, and for each term we consider its vanishing due only to the

event G′i(u(I1(k1)), ..., u(Id′(kd′)), x
(t′+1)) ≡ 0.

Conclusion. We believe that the foregoing description would convince most readers of the fact
that, for a random sequence I = (I1, ..., Ik) of b-subsets, the expected rank of the matrix that
represents the bilinear function∑

i∈T1

∑
(k1,...,kt′ )∈S(I)

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2)) ·Gi(u(I1(k1)), ..., u(It′(kt′)), x

(t′+1)) (15)

is at most |T1| · (b · m/n)d
′ ≤ m, where the inequality uses b · m ≤ n. Such convinced readers

are advised to skip the following paragraph and proceed directly to the treatment of Type 2 gates
(provided in Section 2.3.2).

A more formal argument requires some additional notation. For each i ∈ T1, let di
def
= |BL(i)∩[t′]|

and BLj(i) be the jth element in BL(i)∩ [t′]. (In the foregoing simplified argument, we used d′ = di

15Recall that S = S(I) may depends on I, and that we are considering the term G′i(u(I1(k1)), ..., u(Id′(kd′)), x
(t′+1))·

F
(k1,...,kd′ )

i,S(I)
(x(t′+2)), for a fixed (k1, ..., kd′) ∈ [b]d

′
and random I.
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and assumed that BLj(i) = j.) Then, Eq. (14) is re-written as∑
kBL1(i),...,kBLdi

(i)∈[b]

G′i(u(IBL1(i)(kBL1(i))), ..., u(IBLdi (i)
(kBLdi (i)

)), x(t′+1)) ·F
(kBL1(i),...,kBLdi

(i))

i,S(I)
(x(t′+2)) (16)

where G′i and F
(k1,...,kdi )

i,S are defined in an analogous matter.16 Now, repeating the foregoing

argument for each i ∈ T1, we conclude that, for a random sequence I = (I1, ..., Ik) of b-subsets, the
expected rank of the matrix that represents the bilinear function of Eq. (15) is at most

∑
i∈T1

(b ·
m/n)di ≤ |T1| ≤ m, provided that b ·m ≤ n. (This can be seen by using Eq. (16).)17

2.3.2 Gates of Type 2: t′ + 2 ∈ BL(i) and |BL(i) ∩ [t′]| ≥ d

Recall that d will be set to equal Θ(1/ε). We consider the bt
′

random assignments that were defined
in Section 2.3.1; that is, we select a random sequence of b-subsets, denoted I = (I1, ...., It′), and
for every (i1, ..., it′) ∈ I1 × · · · × It′ , we consider the assignment (u(i1), ..., u(it′)) ∈ {0, 1}t

′·n, where
u(i) = 0i−110n−i.

Now, analogously to the argument in the proof of Claim 2.1, observe that Gi vanishes unless
for every j ∈ BL(i) ∩ [t′] it happens that Ij hits one of the (at most m) variables of block j that
feeds Gi. Noting that the probability of this event is at most (b · m/n)|BL(i)∩[t′]|, it follows that
Gi vanishes with probability at least 1 − (b ·m/n)|BL(i)∩[t′]|. Letting T2 denote the set of all i’s of
Type 2, it follows that, with probability at least 1−m · (b ·m)d, all Gi’s of Type 2 vanish, and we
can just ignore them, provided that m · (b ·m/n)d ≈ 0. We shall indeed use a setting that satisfies
this (e.g., m = n1−ε, b ≤ nε/2 and d ≥ 2/ε). We state this conclusion for sake of future reference.

Claim 2.2 (the contribution of a gate of Type 2 (i.e., i ∈ T2)): For a uniformly distributed

I ∈
([n]
b

)t′
, the probability that Gi does not vanish under some of the assignments specified by I is

at most (b ·m/n)|BL(i)∩[t′]| ≤ (b ·m/n)d.

16Specifically, G′i(y1, ..., ydi , y) equals the value of Gi(y
′
1, ...., y

′
t′ , y) where y′BLj(i) = yj for every j ∈ [di] and all other

y′k’s (which don’t effect Gi at all) are set arbitrarily (e.g., to 0n). Likewise F
(k1,...,kdi

)

i,S (z) equals the sum∑
(k′1,...,k

′
t′ )∈S:(k′

BL1(i)
,...,k′

BLdi
(i)

)=(k1,...,kdi
)

Fi(u(I1(k′1)), ..., u(It′(k
′
t′)), x

(t′+2)).

17Specifically, using∑
i∈T1

∑
(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+2)) ·Gi(u(I1(k1)), ..., u(It′(kt′)), x

(t′+1))

=
∑
i∈T1

∑
kBL1(i),...,kBLdi

(i)∈[b]

G′i(u(IBL1(i)(kBL1(i))), ..., u(IBLdi (i)(kBLdi (i))), x
(t′+1))

· F
(kBL1(i),...,kBLdi

(i))

i,S(I)
(x(t′+2)),

observe that for each i ∈ T1 and each (kBL1(i), ..., kBLdi (i)) ∈ [b]di , the corresponding term (which contains a multiple

of G′i(u(IBL1(i)(kBL1(i))), ..., u(IBLdi (i)(kBLdi (i))), x
(t′+1))) does not vanish with probability at most (m/n)di .
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2.3.3 Gates of Type 3: t′ + 2 ∈ BL(i) and |BL(i) ∩ [t′]| < d

We finally get to the case for which we were preparing all along. Note that we may have m gates of
Type 3, and under each random restriction of the foregoing form, each such gate may compute an
arbitrary bilinear function over Ω(m) variables of blocks t′ + 1 and t′ + 2, since it may not be fed
by any variables from other blocks (which may lead to its vanishing). Hence, for m = Ω(n2/3), the
n-by-n matrix that represents the sum of the m corresponding bilinear functions for each random
restriction may be arbitrary. The same holds for the sum of the sums that correspond to several
random restrictions, unless there are cancellations between these random restrictions. Indeed, the
entire point of choosing bt

′
random restrictions was to form such cancellations.

Whereas in the previous cases (of handling Types 1 and 2) the action focused on the Gi’s,
in the current case the action is focused on the Fi’s. Specifically, for any possible choice of the
random sequence of b-subsets, I = (I1, ..., It′), we consider, for each (k1, ..., kt′) ∈ [b]t

′
, the vector

vk1,...,kt′ representing the value of each Fi under the assignment (u(I1(k1)), ..., u(It′(kt′))); that is,

the ith entry of vk1,...,kt′ equals Fi(u(I1(k1)), ..., u(It′(kt′))). Actually, this description suffices only
the special case in which for each Gi of Type 3 it holds that BL(i) = {t′ + 1, t′ + 2}. Assuming this
special case as well as bt

′
> m, we may pick a non-empty subset S of these vectors that sums-up

to the all-zero vector. Then, for such a set S and for every i (of this type) it holds that∑
(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′))) = 0, (17)

where we rely on the fact that Fi is neither fed by variables of block t′ + 1 (since t′ + 1 ∈ BL(i) be
definition) nor fed by variables of block t′+2 (since t′+2 ∈ BL(i) by the hypothesis of Type 3). This
means that these i’s do not contribute to the corresponding bilinear function (i.e., Eq. (18)), since
the corresponding Gi’s are oblivious of the assignment to variables in blocks [t′] (by our assumption
that BL(i) = {t′ + 1, t′ + 2}). That is, letting T ′3 denote the set of all gates of this type (i.e.,
T ′3 = {i : BL(i) = {t′+ 1, t′+ 2}}) and using S as in Eq. (17), the following expression is identically
zero.

∑
i∈T ′3

∑
(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′))) ·Gi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+1), x(t′+2)) (18)

where Gi is actually oblivious of the assignment to the first t′ blocks.
Turning to the general case, let T3 denote the set of all i’s of Type 3; that is, T3 = {i : BL(i) ⊇

{t′ + 1, t′ + 2} & |BL(i)| < d+ 2}. We shall show that in this case we may pick a non-empty subset
S such that a sum analogous to Eq. (18), with T ′3 replaced by T3, is identically zero. Here we shall
use bt

′−d > m (rather than bt
′
> m), which is where we use an upper-bound on d.

Claim 2.3 (the contribution of gates of Type 3): Suppose that bt
′−d ≥ m. Then, for every I ∈([n]

b

)t′
there exists a set S = S(I) ⊆ [b]t

′
such that for every i ∈ T3 it holds that∑

(k1,...,kt′ )∈S

Fi(u(I1(k1)), ..., u(It′(kt′))) ·Gi(u(I1(k1)), ..., u(It′(kt′)), x
(t′+1), x(t′+2)) = 0. (19)

Proof: The problem we face here is that Gi may depend on variables from few blocks in [t′]; that
is, we are only guaranteed that |BL(i) ∩ [t′]| < d (whereas for i ∈ T ′3 we used dBL(i) ∩ [t′] = ∅).

18



Hence, establishing Eq. (19) must take into account the fact that Gi may vary among the different
terms in the sum (and so establishing Eq. (17) does not suffice).

Intuitively, using the upper bound on |BL(i)∩ [t′]|, we can afford to group the terms in Eq. (19)
according to the value assigned to the variables in BL(i) ∩ [t′], and make sure that each of these

b|BL(i)∩[t′]| sums vanishes. Specifically, letting di
def
= |BL(i) ∩ [t′]| and BLj(i) denote the jth element

of BL(j) ∩ [t′], for every (k′1, ..., k
′
di

) ∈ [b]di , we consider the partial sum of Eq. (17) taken over

(k1, ..., kt′) ∈ S such that kBLj(i) = k′j for every j ∈ [di], and pick S such that all these bdi partial
sums vanish (for all i ∈ T3). Hence, rather than picking S such that |T3| equations of the form of
Eq. (17) hold, we pick S such that

∑
i∈T3

bdi similar equations hold. The rather straightforward,
but tedious, implementation of this idea follows.

Notation (an auxiliary matrix). For any fixed choice of the random t′-long sequence of b-subsets,

I = (I1, ..., It′) ∈
([n]
b

)t′
, we consider an auxiliary |T3| ·

∑
d′∈[d−1] b

d′-by-bt
′

Boolean matrix in which

the rows correspond to pairs (i, (k′1, ..., k
′
d′)) ∈ T3×

⋃
d′∈[d−1][b]

d′ , the columns correspond to choices

of k = (k1, ..., kt′) ∈ [b]t
′
, and the value of the entry ((i, (k′1, ..., k

′
d′)), k) is determined according

to Fi(u(I1(k1)), ..., u(It′(kt′))), provided that (k′1, ..., k
′
di

) = kBL(i)∩[t′] (i.e., k′j = kBLj(i) for every
j ∈ [di]). Specifically:

• Recall that, for each i ∈ T3, we let di
def
= |BL(i)∩ [t′]| ≤ d− 1 and BLj(i) be the jth element in

BL(i) ∩ [t′].

• We allocate
∑

d′∈[d−1] b
d′ rows for each i ∈ T3, but actually use only bdi rows that correspond

to i (while setting each of the other rows to 0b
t′

).

Each of the foregoing bdi rows will correspond to a choice of (k′1, ..., k
′
di

) ∈ [b]di .

• Each column corresponds to a choice of (k1, ..., kt′) ∈ [b]t
′
, which represents a choice of a

sequence in I1 × · · · × It′ ; that is, the choice of (k1, ..., kt′) determines the t′-long sequence
(I1(k1), ..., It′(kt′)) ∈ [n]t

′
, which in turn determines the assignment (u(I1(k1)), ..., u(It′(kt′)))

to the first t′ blocks.

(Indeed, while the row-index (i, (k′1, ..., k
′
di

)) represents a choice made for the blocks appearing

in BL(i) ∩ [t′], the column-index k = (k1, ..., kt′) represent a choice made for all blocks in [t′].
Our focus will be on entries ((i, (k′1, ..., k

′
di

)), k)’s such that k′j = kBLj(i) for all j ∈ [di].)

• The value of entry ((i, (k′1, ..., k
′
d′)), k) in the matrix equals 1 if and only if

– Fi(u(I1(k1)), ..., u(It′(kt′))) = 1, and

– d′ = di and (k′1, ..., k
′
di

) = kBL(i)∩[t′]; that is, k′j = kBLj(i) for every j ∈ [di].

Note that this definition relies on the fact that Fi is not fed by variables of block t′+ 2, which
follows from the definition of Type 3 (by which t′ + 2 ∈ BL(i)).

We stress that the value of entry ((i, (k′1, ..., k
′
d′)), k) is 0 in case (k′1, ..., k

′
d′) 6= kBL(i)∩[t′] (i.e.,

either d′ 6= di or k′j 6= kBLj(i) for some j ∈ [di]). This means that when considering the row

(i, (k′1, ..., k
′
di

)) only columns k that are “fit” (i, (k′1, ..., k
′
di

)) matter.

Suppose, for simplicity, that the foregoing auxiliary matrix contains an all-zero column that is
indexed k. This means that, for every i ∈ T3, it holds that Fi(u(I1(k1)), ..., u(It′(kt′))) = 0, because
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the ((i, (kBL1(i), ..., kBLdi (i)
)), k)-entry of the matrix is 0 (although this row-index “fits” the column

index k). Using the notation

C
(k)
i (y, z)

def
= Fi(u(I1(k1)), ..., u(It′(kt′))) ·Gi(u(I1(k1)), ..., u(It′(kt′)), y, z) (20)

it follows that in this case C
(k)
i (y, z) is identically zero (for each i ∈ T3). In this case we establish

Eq. (19) by using S = {(k1, ..., kt′)}; that is, S consist of the index of the all-zero column.
In general, the matrix may contain no all-zero columns; still, using t′ ≥ d + logbm (equiv.,

bt
′−d ≥ m), there is a non-trivial linear combination of the columns that yields an all-zero vector,

because there are bt
′

columns and at most
∑

d′∈[d−1] b
d′ ·m < bt

′
rows. Denoting the set of columns

participating in this linear combination by S, for every i ∈ T3 and k′ = (k′1, ..., k
′
di

) ∈ [b]di , it holds
that ∑

k∈S:kBL(i)=k
′

C
(k)
i (y, z) (21)

= G′i(u(I1(k′1)), ..., u(Idi(k
′
di

)), y, z) ·
∑

k∈S:kBL(i)=k
′

Fi(u(I1(k1)), ..., u(It′(kt′))) (22)

where G′i(u(I1(k′1)), ..., u(Idi(k
′
di

)), y, z) equals Gi(u(I1(k1)), ..., u(It′(kt′)), y, z) for every (k1, ..., kt′)
that satisfies kBLj(i) = k′j for every j ∈ [di]. The key point is that Gi only depends on variables
of the blocks in BL(i), and so Gi is invariant under all assignments that fix the variablres in these
blocks.

The punch-line is that Eq. (22) is identically zero, because the (i, (k′1, ..., k
′
di

))th entry in the
corresponding sum of columns is zero, whereas the full row has 0-entries in columns that do not
“fit” (i, (k′1, ..., k

′
di

)), and holds the value of Fi(u(I1(k1)), ..., u(It′(kt′))) in each column k that does

“fit” (i, (k′1, ..., k
′
di

)) (i.e., satisfies kBL(i)∩[t′] = (k′1, ..., k
′
di

)). Formally, letting M(i,(k′1,...,k
′
di

)),k denote

the ((i, (k′1, ..., k
′
di

)), k)th entry in the foregoing matrix, for every i ∈ T3 and k′ = (k′1, ..., k
′
di

) ∈ [b]di ,
we have

∑
k∈S:kBL(i)=k

′

Fi(u(I1(k1)), ..., u(It′(kt′))) =
∑
k∈S

M(i,(k′1,...,k
′
di

)),k (23)

= 0. (24)

Combining Eq. (21)&(22) with Eq. (23)&(24), we get (for every i ∈ T3)

∑
k∈S

C
(k)
i (y, z) =

∑
(k′1,...,k

′
di

)∈[b]di

∑
k∈S:kBL(i)=k

′

C
(k)
i (y, z)

=
∑

(k′1,...,k
′
di

)∈[b]di

G′i(u(I1(k′1)), ..., u(Idi(k
′
di

)), y, z)

·
∑

k∈S:kBL(i)=k
′

Fi(u(I1(k1)), ..., u(It′(kt′)))

=
∑

(k′1,...,k
′
di

)∈[b]di

G′i(u(I1(k′1)), ..., u(Idi(k
′
di

)), y, z) · 0
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which establishes Eq. (19). The claim follows.

Conclusion. Claim 2.3 implies that for every I ∈
([n]
b

)t′
there exists a set S = S(I) ⊆ [b]t

′
such

that the Type 3 gates have no contribution to the bilinear function BS : GF (2)n+n → GF(2)
defined as

BS(y, z)
def
=

∑
k=(k1,...,kt′ )∈S

F (u(I1(k1)), ..., u(It′(kt′)), y, z) (25)

where F =
∑

i∈[m]:BL(i)3t′+1 Fi ·Gi is the function supposedly computed by the circuit.
Recall that the contribution of Type 2 gates vanishes with very high probability, and that the

contribution of Type 1 gates to BS(I)(y, z) is represented by a matrix of expected rank at most m,

where in both cases the probability space refers to the choice of I. Hence, with probability at least
2/3 over the choice of I, the bilinear function BS(I) is represented by a matrix of rank O(m). The
straightforward but tedious proof of the latter conclusion is detailed in Section 2.4.

2.4 Wrapping-up and reaching a contradiction

We have essentially established the following Lemma 2.4, except that our notations ignored (or hide)
the dependence of all residual functions (including S = S(I)) on the values of blocks t′+3, ..., t′+t′′.
(Recall that these values were fixed arbitrarily at the very beginning of Section 2.3.)

Lemma 2.4 (low AN2-complexity of F implies low rank of the matrix that represents BS): For
m, b, t′ such that b ≤ (n/m)1/2 and t′ ≥ 2 logn/m n + logbm, suppose that AN2(F ) ≤ m < n/10.

Then, for every s = (s(t′+3), ..., s(t′+t′′)) ∈ GF(2)(t′′−2)·n, with probability at least 2/3 over a random

choice of I = (I1, ..., It′) ∈
([n]
b

)t′
, there exists a non-empty set S ⊆ [b]t

′
such that the matrix that

represents the bilinear function BS of Eq. (25) has rank at most 5m. Formally, we refer to the
bilinear function

B
(s,I)
S (y, z)

def
=

∑
k=(k1,...,kt′ )∈S

F (u(I1(k1)), ..., u(It′(kt′)), y, z, s
(t′+3), ...., s(t′+t′′)), (26)

where u(i) = 0i−110n−i is the ith unit vector and Ij(k) denotes the kth element of Ij.

Proof: We merely summarize the contents of Section 2.3, while using the more explicit notations.
Recall that our starting point is a depth-two circuit of AN-complexity at most m that computes
F , which has a form as captured by Eq. (12). Recall that we have fixed s = (s(t′+3), ..., s(t′+t′′)) ∈
GF(2)(t′′−2)·n upfront, and the subsequent analysis referred to this fixed s (and holds for any such
s). We have broken the sum in Eq. (12) into three parts, corresponding to the three types of gates,
and analyzed each type separately.

For Type 1, we showed (in Claim 2.1) that, for a random choice of I = (I1, ...., It′) ∈
([n]
b

)t′
, and

for every S ⊆ [b]t
′

(which may depend on I), the contribution of gates of Type 1 to the bilinear

function B
(s,I)
S is represented by a matrix of expected rank at most m. (This used b ≤ (n/m),

which holds under the hypothesis.) Next, we showed (in Claim 2.2) that, over the same random

choice of I, and for every S ⊆ [b]t
′
, the contribution of gates of Type 2 to B

(s,I)
S is represented by

a matrix that is non-zero with probability at most m · (b ·m/n)d. Using b ≤ (n/m)1/2 and setting
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d = 2 logn/m n, we have m · (b ·m/n)d ≤ m · (m/n)d/2 = m/n < 1/10. Hence, with probability at

least 0.8−0.1 > 2/3, the contribution of gates of Types 1 and 2 to B
(s,I)
S is represented by a matrix

of rank at most 5m.
Lastly, considering the Type 3 gates, we showed (in Claim 2.3) that, for any choice of I, there

exists a non-empty set S = S(I) ⊆ [b]t
′

such that the contribution of functions of Type 3 to B
(s,I)
S

is represented by an all-zero matrix. Here we used t′ ≥ d + logbm, which holds by the hypothesis
(when using d = 2 logn/mm).

Recap. Formally, for s = (s(t′+3), ..., s(t′+t′′)), and I = (I1, ..., It′) ∈
([n]
b

)t′
, letting u◦I(k) =

(u(I1(k1)), ..., u(It′(kt′))), we re-write Eq. (26) as

B
(s,I)
S (y, z) =

∑
k=(k1,...,kt′ )∈S

F (u◦I(k), y, z, s(t′+3), ...., s(t′+t′′)). (27)

Hence, for the corresponding set S (which may depend on s and I), we have

B
(s,I)
S (y, z) =

∑
k∈S

∑
i∈[m]

Fi(u◦I(k), y, z, s) ·Gi(u◦I(k), y, z, s)

=
∑
k∈S

∑
i∈T1

Fi(u◦I(k), y, z, s) ·Gi(u◦I(k), y, z, s) (28)

+
∑
k∈S

∑
i∈T2

Fi(u◦I(k), y, z, s) ·Gi(u◦I(k), y, z, s), (29)

since the sum that corresponds to T3 is identically zero due to the choice of S. The lemma follows by
recalling that, with probability at least 4/5, the matrix representing the monomials of the bilinear
function captured by Eq. (28) has rank at most 5m, and that, with probability at least 9/10, the
matrix representing the monomials of the bilinear function captured by Eq. (29) is identically zero.

Reaching a contradiction. Lemma 2.4 implies that, with probability at least 2/3 over a random

choice of s = (s(t′+3), ..., s(t′+t′′)) ∈ GF(2)(t′′−2)·n and I = (I1, ..., It′) ∈
([n]
b

)t′
, there exists a non-

empty set S ⊆ [b]t
′

such that the matrix that represents the bilinear function B
(s,I)
S has rank at

most 5 ·AN2(F ), provided that b ≤ (n/AN2(F ))1/2 and t′ ≥ 2 logn/AN2(F ) n+logb AN2(F ). In contrast,

the following Lemma 2.5 implies that with probability at least 1− bt′ · 2−n/2 over the same random

choices, for every non-empty set S ⊆ [b]t
′
, the matrix that represents the bilinear function B

(s,I)
S

has rank Ω(n). Hence, we reach contradiction unless either AN2(F ) = Ω(n) or 2b
t′ · 2−n/2 > 1/3

(for b and t′ as above). As detailed below, this implies AN2(F ) = Ω(n1−ε) for ε = O(1/
√
t′), and

Theorem 1.8 follows. But let us first prove the following lemma.

Lemma 2.5 (typically the matrix that represents BS has high rank): Suppose that the generator

Gsb : GF(2)(t′′−2)·n → {0, 1}nt
′+2

has bias at most 2−n. Then, for every sequence of b-subsets

I = (I1, ..., It′) ∈
([n]
b

)t′
and any non-empty set S ⊆ [b]t

′
, with probability 1− 2−n/2 over the choice

of s = (s(t′+3), ..., s(t′+t′′)) ∈ GF(2)(t′′−2)·n, it holds that the matrix that represents the bilinear

function B
(s,I)
S of Eq. (27) has rank Ω(n).
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Proof: For every S ⊆ [b]t
′
, I ∈

([n]
b

)t′
and s = (s(t′+3), ...., s(t′+t′′)) ∈ GF(2)(t′′−2)·n, looking at the

value of B
(s,I)
S , while letting u◦I(k) = (u(I1(k1)), ..., u(It′(kt′))), observe that

B
(s,I)
S (y, z) =

∑
k∈S

F (u◦I(k), y, z, s)

=
∑
k∈S

∑
(i1,...,it′+2)∈I×[n]2

Gsb(s)(i1,...,it′+2) ·

∏
j∈[t′]

u(Ij(kj))ij

 · yit′+1
· zit′+2

(30)

where u(Ij(kj))ij denotes the ithj element in u(Ij(kj))ij , and the last equality uses Eq. (8). Observing

that, for each k ∈ S, only the t′-tuple (i1, ..., it′) that satisfies ij = Ij(kj) (for every j ∈ [t′])
contribute to Eq. (30), we get

B
(s,I)
S (y, z) =

∑
k∈S

∑
(it′+1,it′+2)∈[n]

Gsb(s)(I1(k1),...,It′ (kt′ ),it′+1,it′+2) · yit′+1
· zit′+2

(31)

The difference between Eq. (30) and Eq. (31) is that in the latter form it is evident that the
corresponding matrix is a non-zero linear combination of |S| matrices that correspond to disjoint
parts of the output of the small-bias generator Gsb; that is, the (it′+1, it′+2)th element in the matrix
that corresponds to k = (k1, ..., kt′) ∈ S equals the (I1(k1), ..., It′(kt′), it′+1, it′+2)th bit in the output
of Gsb.

Hence, for any fixed S and I, when s is uniformly distributed in {0, 1}(t′′−2)·n, the matrix

that represents B
(s,I)
S is an n-by-n matrix whose entries are distributed according to an 2−n-bias

sequence, because any sequence that is obtained by taking linearly independent non-zero linear-
combinations of elements in an ε-bias sequence is itself ε-bias. The lemma follows by using the fact
that, with probability at least 1−2−n/2, such a matrix has rank Ω(n). Specifically, we upper-bound
the probability that the matrix has rank at most n/10 by considering all linear combinations of up
to n/10 columns. Each such linear combination results in an n-long 2−n-bias sequence, and the
probability that such a sequence equals the all-zero sequence is at most 2−n + 2−n.18 Hence, the
probability of the bad event is upper-bounded by

∑
i∈[n/10]

(
n
i

)
· 2−n+1 < 2−n/2, and the lemma

follows.

Conclusion (re-iterated and detailed): Using a union bound on all possible S ⊆ [b]t
′
, Lemma 2.5

implies that, with probability at least 1− 2b
t′ · 2−n/2 over the choices of s = (s(t′+3), ..., s(t′+t′′)) ∈

GF(2)(t′−2)·n and I = (I1, ..., It′) ∈
([n]
b

)t′
, for every non-empty S ⊆ [b]t

′
, the matrix that represents

B
(s,I)
S has rank Ω(n). On the other hand, Lemma 2.4 implies that, under the same probability

space, with probability at least 2/3, there exists a set S such that the matrix that represents

B
(s,I)
S has rank at most 5 · AN2(F ). Hence, we reach contradiction unless either AN2(F ) = Ω(n) or

2b
t′ ·2−n/2 > 1/3. Using b = (n/AN2(F ))β, for β ≤ 1/2, and setting t′ = 2 logn/AN2(F ) n+logb AN2(F ),

18The max-norm difference between the resulting distribution and the uniform one is upper-bounded by the differ-
ence according to the L2-norm, which equals the bias of the sequence (cf., [2, Sec. 1.5]).
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we get

bt
′

= b2 logn/AN2(F ) n+logb AN2(F )

= n2β · AN2(F )

which means that 2b
t′ · 2−n/2 > 1/3 holds if and only if n2β · AN2(F ) > 0.5 · n − log2 3. Hence,

we reach contradiction unless AN2(F ) > 0.5 · n1−2β − o(1). Setting β = ε/2, we conclude that
AN2(F ) = Ω(n1−ε), with t′ ≤ 2 lognε n + log(nε)β n = O(1/ε2). Theorem 1.8 follows by using an
adequate small-bias generator, as provided by Theorem A.6.

Remark 2.6 (using rigidity rather than pure rank): We note that the proof of Lemma 2.4 can
be adapted to show that the corresponding matrix has rigidity O(bd ·md+3/nd) with respect to rank
5m. On the other hand, using [3, Footnote 13], one can adapt the proof of Lemma 2.5 to show
that the corresponding matrix has rigidity Ω(n3/m2) with respect to rank 5m. We stress that, like
the argument regarding rank, the argument regarding rigidity requires m · bd < 0.5n− 2 and b ≥ 2.

Using b = (n/m)β, the rigidity argument allows to infer that m = Ω(n
1− 2

(1−β)·d+5 ) rather than
m = Ω(n1−2β) as inferred by the foregoing rank argument, when using d = 2/ε = 1/β. Hence,
obtaining m = Ω(n1−ε) via the rigidity argument uses d such that 2

(1−β)·d+5 = ε, which yields

d = 2
ε −

8
2−ε . This modest gain (of approximately four units) in d translates to a similar gain in t′.

The foregoing comparison refers to the current setting of d and b, which is not optimal anyhow.
But it seems that t′ = Ω(1/ε2) will follow in any case.

3 Proof of Theorem 1.9

We adapt the techniques used in Section 2 in order to prove the same lower bound on a more
explicit function. Specifically, for t′ to be determined, we consider the (t′ + 3)-linear function
f : GF(2)(t′+2)·n+(t′+2)n → GF(2) defined as

f(x(1), x(2), ..., x(t′+3)) =
∑

i1,...,it′+2∈[n]

 ∏
j∈[t′+2]

x
(j)
ij

 · x(t′+3)
i1+i2+···+it′+2

(32)

where the last block of variables has length (t′ + 2) · n rather than n. (Alternatively, we may
partition the last block to t′ + 2 blocks holding n variables each.)19 We mention that this function
generalized the trilinear function of Part 2 of Theorem 1.6.

The analysis of depth-two multilinear circuits, which underlies the proof of Lemma 2.4 (i.e., the
“low AN2-complexity implies low rank”), remains almost intact, whereas the “high rank lemma” is
totally different. In order to fit the latter lemma, the “low rank lemma” is restricted in the choice
of a non-empty set S ⊆ [b]t

′
(such that the matrix that represents the bilinear function BS has low

rank). Specifically, rather than asserting (for every I = (I1, ..., It′)) the existence of an arbitrary
non-empty set S in [b]t

′
, we consider only non-empty sets S such that for every v there exists at most

19That is, the variable-block x(t′+2) = (x
(t′+2)
1 , ..., x

(t′+2)

(t′+2)n) is replaced by t′ + 2 variables-blocks

(x(t′+3), x(t′+4), ..., x(2t′+4)) such that the (j − 1) · n + kth bit of x(t′+3) is replaced by the kth bit of x(t′+2+j).
Strictly speaking, this yields a multilinear function that does not fit Eq. (1), but this can be corrected by augmenting
each variable-block with a dummy variable that will be set to 1.
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one (k1, ..., kt′) ∈ S such that
∑

j∈[t′] Ij(kj) = v (equiv., |{
∑

j∈[t′] Ij(kj) : (k1, ..., kt′) ∈ S}| = |S|).
That is, defining µI : [b]t

′ → [t′n] such that

µI(k1, ..., kt′)
def
=
∑
j∈[t′]

Ij(kj), (33)

we say that S ⊆ [b]t
′

is I-admissible if |{µI(k) : k ∈ S}| = |S|, which means that the function µI
is injective when restricted to S. With this definition in place, we adapt the “low rank lemma” as
follows.

Lemma 3.1 (low AN2-complexity of f implies low rank of the matrix that represents BS): For
m, b, t′ such that b ∈ [ω(1), (n/m)1/2] and t′ ∈ [2 logn/m n+ logbm+ 1, logb(n/2)− 1], suppose that

AN2(f) ≤ m < n/10. Then, for every w ∈ GF(2)(t′+2)·n, with probability at least 2/3 over a random

choice of I = (I1, ..., It′) ∈
([n]
b

)t′
, there exists a non-empty I-admissible set S ⊆ [b]t

′
such that the

matrix that represents the following bilinear function B
(w,I)
S has rank at most 5m.

B
(w,I)
S (y, z)

def
=

∑
k=(k1,...,kt′ )∈S

f(u(I1(k1)), ..., u(It′(kt′)), y, z, w), (34)

where u(i) = 0i−110n−i is the ith unit vector and Ij(k) denotes the kth element of Ij.

Recall that we were using bt
′
< n/2 (equiv., t′ < logb(n/2) − 1) anyhow (when contrasting the

“low rank lemma” with the “high rank lemma”), and so we lose nothing by the restriction t′ ≤
logb(n/2) − 1. Ditto regarding the condition b = ω(1), which is actually not essential (i.e., b ≥ C
for a sufficiently large constant C will do).

Proof: We note that the proof of Lemma 2.4 actually establishes its claim with probability at least
0.7 (rather than 2/3) over the choice of I, but it does not necessarily select an I-admissible set S.
Recall that the existence of a suitable set S ⊆ [b]t

′
is merely based on the fact that |[b]t′ | ≥ bd ·m,

and any subset U of [b]t
′

that has size at least bd ·m will do (i.e., allow us to argue that there exists
an adequate set S ⊆ U that satisfies the claim of the lemma).

Now, using the hypothesis bt
′ ≤ n/2b, we show that, with probability 1 − o(1) over the choice

of I, the set [b]t
′

contains an I-admissible set U of size at least bt
′
/2, and so we can afford to

restrict S to be a subset of U (since bt
′−1 ≥ bd ·m). To prove the foremer fact, observe that, for

every two distinct sequences k 6= k
′

in [b]t
′
, it holds that PrI [µI(k) =µI(k

′
)] ≤ 1/(n − 1), because

Pr
I∈([n]

b )[I(k) = I(k′)] = 1/(n − 1) for distinct k, k′ ∈ [b]. This implies that for every k ∈ [b]t
′
, we

have

PrI [|µ
−1
I

(µI(k))| > 1] ≤
∑

k
′∈[b]t′\{k}

PrI [µI(k
′
) = µI(k)] ≤ bt

′ − 1

n− 1
(35)

which is smaller than 1/2b since t′ ≤ logb(n/2) − 1. The claim follows, because the probability of
having more than half of the sequences k ∈ [b]t

′
violate the event at the l.h.s. of Eq. (35) is at most

1/b.
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The new “high rank lemma”. The key observation is that, for every fixed (i1, ..., it′) ∈ [n]t
′
, the

residual function f′(y, z, w)
def
= f(u(i1), ..., u(it′), y, z, w) is closely related to the trilinear function

of Part 2 of Theorem 1.6. In particular, for a uniformly distributed w ∈ GF(2)(t′+2)n, the matrix
that that represents the residual bilinear function f′(·, ·, w) is a random Toeplitz (or rather Hankel)

matrix. Furthermore, the same holds for B
(w,I)
S provided that the set S is I-admissible (and non-

empty). These observation allow us to prove the following lemma.

Lemma 3.2 (typically the matrix that represents BS has high rank): For every sequence of b-

subsets I = (I1, ..., It′) ∈
([n]
b

)t′
and any non-empty and I-admissible set S ⊆ [b]t

′
, with probability

1− 2−n/2 over the choice of w ∈ GF(2)(t′+2)·n, it holds that the matrix that represents the bilinear

function B
(w,I)
S of Eq. (34) has rank Ω(n).

Proof: For every S ⊆ [b]t
′
, I ∈

([n]
b

)t′
and w ∈ GF(2)(t′+2)·n, looking at the value of B

(w,I)
S , while

letting u◦I(k) = (u(I1(k1)), ..., u(It′(kt′))), we have

B
(w,I)
S (y, z) =

∑
k∈S

f(u◦I(k), y, z, w)

=
∑
k∈S

∑
i1,...,it′+2∈[n]

·

∏
j∈[t′]

u(Ij(kj))ij

 · yit′+1
· zit′+2

· wi1+i2+···+it′+it′+1+it′+2

=
∑
k∈S

∑
it′+1,it′+2∈[n]

yit′+1
· zit′+2

· wI1(k1)+I2(k2)+···+It′ (kt′ )+it′+1+it′+2

where the second equality is due to Eq. (32), and the third equality is due to the fact that assigning
u◦I(k) to the first t′ variable-blocks eliminates all terms in the inner sum that are not indexed by
(I1(k1), I2(k2), ..., It′(kt′), ·, ·), because

∏
j∈[t′] u(Ij(kj))ij = 0 if and only if there exists j ∈ [t′] such

that ij 6= kj . Using Eq. (33) (i.e.,
∑

j∈[t′] Ij(kj)) = µI(k1, k2, ..., kt′)), we obtain

B
(w,I)
S (y, z) =

∑
it′+1,it′+2∈[n]

yit′+1
· zit′+2

·
∑
k∈S

wµI(k1,...,kt′ )+it′+1+it′+2
(36)

Using the hypothesis that S is I-admissible, we observe that the w-variables in the inner sum are
distinct; that is, for every it′+1, it′+2 ∈ [n], different k’s yield different values of µI(k) + it′+1 + it′+2,
which implies that there are no cancellation among terms of the inner sum. Indeed, the key
observation is that, for every it′+1, it′+2 ∈ [n], the sum

∑
k∈S wµI(k)+it′+1+it′+2

does not vanish

when S 6= ∅ is I-admissible. Using S′ = {µI(k) : k ∈ S} (along with the foregoing observation),
Eq. (36) implies that that there exists a non-empty set S′ ⊆ [(t′ + 2) · n] such that

B
(w,I)
S (y, z) =

∑
it′+1,it′+2∈[n]

yit′+1
· zit′+2

·
∑
s∈S′

ws+it′+1+it′+2
(37)

Note that the bilinear function of Eq. (37) is represented by a Hankel matrix, since it has the form∑
i,j∈[n]w

′
i+j ·yi ·zj such that w′i,j is invariant when i+j is fixed. Specifically, we consider the n-by-n

matrix (w′i,j)i,j∈[n] such that w′i,j =
∑

s∈S′ ws+i+j . Furthermore, when selecting w ∈ GF(2)(t′+2)n
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uniformly at random, the bilinear function of Eq. (37) is represented by a random n-by-n Hankel
matrix; that is, the sequence (

∑
s∈S′ ws+2, ...,

∑
s∈S′ ws+2n) is uniformly distributed in GF(2)2n−1.

This is the case because the mapping w 7→ (
∑

s∈S′ ws+2, ...,
∑

s∈S′ ws+2n) is linear and onto.20

Finally, note that a random n-by-n Hankel matrix has rank at least n/10 with probability
at least 1 − 2−n/2. This is the case since each (non-trivial) linear combination of its columns is
uniformly distributed in GF(2)n, and so the probability that there exists a linear combination of at
most n/10 columns that equals the all-zero vector is upper-bounded by

∑
i∈[n/10]

(
n
i

)
· 2−n < 2−n/2.

The lemma follows.

Conclusion: As in Section 2.4, using a union bound on all possible S ⊆ [b]t
′
, Lemma 3.2 implies

that, with probability at least 1 − 2b
t′ · 2−n/2 > 1/2 over the choices of w ∈ GF(2)(t′+2)·n and

I = (I1, ..., It′) ∈
([n]
b

)t′
, for every non-empty and I-admissible S ⊆ [b]t

′
, the matrix that represents

B
(w,I)
S has rank Ω(n). On the other hand, Lemma 3.1 implies that, under the same probability

space, with probability at least 2/3, there exists a non-empty and I-admissible set S such that the

matrix that represents B
(w,I)
S has rank at most 5 · AN2(f). Hence, we reach contradiction unless

AN2(f) ≥ n1−ε, but this is all conditioned on 2b
t′ · 2−n/2 < 1/2. Using m = n1−ε and b = (n/m)0.4ε,

and setting t′ = 2 logn/m n+logbm+1, the foregoing condition holds (since bt
′

= n0.8ε ·m ·b = o(n)).

We conclude that AN2(f) ≥ n1−ε, where t′ = 2 lognε n+ log(nε)0.4ε n+ 1 = 2 · ε−1 + (0.4 · ε2)−1 + 1.

Noting that (2ε + (0.4)−1) · ε−2 + 1 < 4 · ε−2 − 3 holds for ε ≤ 1/4, we get t′ + 3 ≤ 4/ε2, and
Theorem 1.9 follows.

Remark 3.3 (computing f in quadratic time): For every t, n ∈ N and s ∈ [t, tn], consider the

function F
(t)
s : {0, 1}tn → {0, 1} defined by

F (t)
s (x(1), x(2), ..., x(t)) =

∑
i1,...,it∈[n]:

∑
j∈[t] ij=s

∏
j∈[t]

x
(j)
ij

(38)

and note that F
(t)
s (x(1), x(2), ..., x(t)) equals

∑
s′∈[s−n,s−1] F

(t−1)
s′ (x(1), x(2), ..., x(t−1)) · x(t)

s−s′. Hence,

the sequence (F
(t)
s )s∈[t,tn] can be computed in time t · tn · n (by Dynamic programming). Observing

that f(x(1), x(2), ..., x(t′+3)) equals
∑

s∈[t′+2,(t′+2)n] F
(t′+2)
s (x(1), x(2), ..., x(t′+2))·x(t′+3)

s , it follows that
Eq. (32) can be computed in quadratic-time.

In contrast, it is not clear whether the functions used in the proof of Theorem 1.8 can be computed
in fixed polynomial-time, rather than in O(npoly(1/ε))-time.

4 Extension to vanishing ε

Theorem 1.8 (and likewise Theorem 1.9) can be extended to ε = ε(n) that vanishes with n, provided
that ε(n) ≥

√
2/ log2 n (resp., ε(n) = ω(

√
1/ log2 n)), since the argument conditions ε only by

presupposing that b = nε·β = nε
2/2 is at least 2 (resp., ω(1)). Hence, we actually have

20This can be seen by considering the corresponding linear system
∑
s∈S′ xs+i = bi for i = 2, ..., 2n, and observing

that the corresponding (2n− 1)-by-|{s+ i :s∈S′& i∈ [2, 2n]}| matrix has full rank (due to columns s+ 2, ..., s+ 2n,
where s is the largest element in S′).
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Theorem 4.1 (Theorem 1.8, rephrased): For every ε : N → (0, 1) such that ε(n) ≥
√

2/ log2 n,
letting t(n) = poly(1/ε(n)), there exists a quasi-polynomial-time computable t(n)-linear function
f : {0, 1}t(n)·n → {0, 1} such that AN2(f) = Ω(n1−ε(n)).

An analogous result holds for Theorem 1.9, where we may use t(n) = O(1/ε(n)2) and have
quadratic-time. Note that the foregoing does not allow setting ε(n) = Ω(1/ log n) and deriving
an Ω(n) lower bound, and even such a lower bound would have missed the target of being truly
linear in the length of the input (i.e., poly(1/ε(n)) · n). This raises several challenges:

1. Prove that there exists a quasi-polynomial-time computable poly(log n)-linear function f :

{0, 1}Õ(n) → {0, 1} such that AN2(f) = Ω(n).

2. Improving over Item 1, prove that such a function can be computed in polynomial-time.

3. Improving over Item 1, for t(n) = poly(log n), prove that there exists a quasi-polynomial-time
computable t(n)-linear function f : {0, 1}t(n)·n → {0, 1} such that AN2(f) = Ω(t(n) · n).

As in Item 2, improve the running time to polynomial.

Of course, a more important challenge is to address the first part of Problem 1.7; that is, present-
ing an explicit O(1)-linear function f : {0, 1}O(n) → {0, 1} satisfying AN(f) = ω(n2/3), let alone
AN(f) = Ω(n0.99). Recall that the general AN-complexity of multi-linear functions may be lower
than its depth-two complexity; in fact, there exist bilinear functions f such that AN(f) = o(AN2(f));
specifically, AN(f) = O(n1/2) and AN2(f) = Ω(n2/3) [4, Thm 2.3].
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Appendix: On small-bias generators of large stretch

In this appendix we present explicit constructions of small-bias generators of arbitrary large (poly-
nomial) stretch that can be computed by O(1)-linear functions. Our start point is the generator of
of Mossel, Shpilka, and Trevisan [6], which has quadratic stretch and can be computed by bilinear
functions. We show that composing it with itself, which is a take on an idea of Naor and Naor [7],
yields the desired generators.

We first describe a generic composition lemma, which refers to generators of bounded locality,
and then set-up a simple iterative process that yields generators of increased stretch (and larger lo-
cality). Next, we present versions of these ingredients that refer to generators that can be computed
by polynomials of bounded degree. Lastly, we adapt the latter to support multilinear computation.

The notations used in this appendix are different from those used in the main text. The main
parameter is the seed length, denoted k, and throughout this appendix the stretch and bias will be
stated as functions of k. However, for the final application, given t′ ∈ N, we shall set t′′ = poly(t′)
and n = k/(t′′ − 2), and obtain a (t′′ − 2)-linear generator that outputs sequences of length nt

′+2

with bias at most 2−n, where n is as in the main text.

Notation. We shall extensively use the notation Um, which represents a random variable uni-
formly distributed over {0, 1}m ≡ GF(2)m. Throughout the text, we assume that the stretch
function is super-linear and monotonically increasing, and that the bias bound in monotonically
non-increasing. We recall the following standard definition.

Definition A.1 (generators of bounded bias w.r.t low-degree tests): We say that G : {0, 1}k →
{0, 1}s(k) has bias at most ε(k) with respect to tests of degree d if for every polynomial (test)
T : {0, 1}s(k) → {0, 1} of degree d it holds that

1

2
·
∣∣∣E [(−1)T (G(Uk))

]
− E

[
(−1)T (Us(k))

]∣∣∣ ≤ ε(k). (39)

The function s :N→N is called the stretch of G, and ε :N→ [0, 1] is called its bias.

The l.h.s. of Eq. (39) equals the total variation distance between the “verdict” of T in the two cases
(i.e., the statistical difference between T (G(Uk)) and T (Us(k))). Indeed, ε-bias generators (cf., [7]
and [1, Sec. 8.5.2]) correspond to the special case of linear tests (i.e., d = 1). In general, whenever
we talk of bias without specifying the degree, we mean bias with respect to linear tests.

A.1 A general composition lemma

Although we are interested in small-bias generators (i.e., bias w.r.t linear tests), it will be useful
to have the following composition result that refers to generators with respect to tests of bounded
degree. Specifically, we consider generators of bounded locality and specified stretch, which have
small bias with respect to polynomials of bounded degree. Recall that a function is said to have
locality ` if each bit in its output is a function of at most ` bits in its input (cf. [6]).

Lemma A.2 (composition of generators, a special case): For i ∈ {1, 2}, let di and `i be constants,
si : N → N be a stretch function, and εi : N → (0, 1] be a bias bound. Suppose that Gi : {0, 1}k →
{0, 1}si(k) has locality `i and bias at most εi(k) with respect to all tests (i.e., polynomials) of degree
di. Then, G = G2 ◦ G1 : {0, 1}k → {0, 1}s2(s1(k)) has locality `2 · `1 and bias at most ε(k) =
ε1(k) + ε2(s1(k)) with respect to all tests of degree d = min(d2, d1/`2).
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Hence, the degree of tests that the composed generator withstands is the minimum between the
degree withstand by the outer generator and a 1/`2 fraction of the degree withstand by the inner
generator, where `2 is the locality of the outer generator. A more general statement allows the degree
di and the locality `i to be functions of k; in this case, G has bias at most ε(k) = ε1(k) + ε2(s1(k))
with respect to all tests of degree d(k) = min(d2(s1(k)), d1(k)/`2(s1(k))).

Proof: We use a hybrid argument (cf. [1, Sec. 8.2.3.3]), while considering the following three
distributions:

1. The pseudorandom output G(Uk) = G2(G1(Uk)).

2. The intermediate hybrid G2(Us1(k)).

3. The uniform distribution Us2(s1(k)).

Let T be an arbitrary test of degree d. Then,∣∣∣E [(−1)T (G2(G1(Uk)))
]
− E

[
(−1)T (G2(Us1(k)))

]∣∣∣
=
∣∣∣E [(−1)T

′(G1(Uk))
]
− E

[
(−1)T

′(Us1(k))
]∣∣∣

≤ ε1(k),

since T ′ = T ◦G2 is a test of degree d · `2 ≤ d1 (and G1 has bounded bias w.r.t such tests). Using
the fact that d ≤ d2 (and the hypothesis regarding G2), we have∣∣∣E [(−1)T (G2(Us1(k)))

]
− E

[
(−1)T (Us2(s1(k)))

]∣∣∣ ≤ ε2(s1(k)).

Combining both bounds, the claim follows.

A.2 An iterative construction

The basic idea is to iteratively compose a small bias generator of constant locality, which fools linear
tests, with itself. But for the process to work we need the inner generator, in the composition, to
fool tests with degree that at least equals the locality of the outer generator (see Lemma A.2). Using
Viola’s result [11], we can get such an inner generator by taking the sum of a constant number of
instances of the current generator (which fool linear tests), and keep using the original generator
as the outer generator. Details follow.

The starting point. Let G be a small bias generator that has constant locality `, some stretch
s : N→ N, and bias ε : N→ (0, 1] with respect to linear tests. We shall use G as the outer generator
in all compositions. In addition, we shall use G as the inner generator in the first iteration; that
is, we let G(0) equal G; hence, G(0) has locality `(0) = `, stretch s(0)(k) = s(k) and bias at most
ε(0)(k) = ε(k).
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Iteration i ∈ N. Given an `(i−1)-local generator G(i−1) : {0, 1}k → {0, 1}s(i−1)(k) that fools linear

tests with bias ε(i−1)(k), we first obtain a generator Ĝ(i−1) : {0, 1}`·k → {0, 1}s(i−1)(k) that fools

degree ` tests with bias O(ε(i−1)(k)2−(`−1)
), by XORing ` instances of G(i−1) (see Viola [11]); that

is, Ĝ(i−1)(x1, ..., x`) =
⊕

j∈[`]G
(i−1)(xj). Hence, Ĝ(i−1) has locality `′ = ` · `(i−1), stretch s′(k) =

s(i−1)(k/`), and bias ε′(k) = O(ε(i−1)(k/`)2−(`−1)
) w.r.t tests of degree `. Next, applying Lemma A.2,

we obtain G(i) = G ◦ Ĝ(i−1), and observe that G(i) has locality `(i) = ` · `′ = `2 · `(i−1), stretch
s(i)(k) = s(s′(k)) = s(s(i−1)(k/`)), and bias at most ε(i)(k) = ε(s(k)) + ε′(k) = O(ε(i−1)(k/`)2−`)
with respect to linear tests (since the locality of G equals the degree that Ĝ(i−1) is guaranteed to
fool).

Hence, after τ ∈ N iterations, we obtain a generator (i.e., G(τ)) that has locality `(τ) = `2τ ·
`(0) = `2τ+1, bias at most ε(τ)(k) < O(1)τ · ε(k/`τ )(2−`)τ with respect to linear tests, and stretch
s(τ)(k) = s◦

τ+1
(k/`τ ), where s◦

τ
denotes s composed with itself τ times (i.e., s◦

i
(k) = s(s◦

i−1
(k))

and s◦
1
(k) = s(k)). Hence, we obtain the following result, which is not used in this work (and is

stated merely for sake of future reference).

Corollary A.3 (amplifying the stretch of small-bias generators of bounded locality): Let G be a
generator that has constant locality `, stretch s : N → N, and bias ε : N → (0, 1] with respect to
linear tests. Suppose that τ ≤ 0.5 log` k and that s(k) ≥ kα for some constant α > 1. Then, G(τ)

has locality `(τ) = `2τ+1, stretch s(τ)(k) ≥ kα
τ+1/2, and bias at most ε(τ)(k) < O(1)τ · ε(

√
k)(2τ )−`

with respect to linear tests.

A.3 Adaptation to constructions of bounded degree generators

We actually seek a construction of generators that can be computed by bounded degree polynomials
rather than by functions of bounded locality. The foregoing analysis extends in a straightforward
manner to the current case, yielding the following.

Lemma A.4 (Lemma A.2, revisited): For i ∈ {1, 2}, let di and Di be constants, si : N → N be a
stretch function, and εi : N→ (0, 1] be a bias bound. Suppose that Gi : {0, 1}k → {0, 1}si(k) can be
computed by a sequence of polynomials of degree Di and has bias at most εi(k) with respect to all
tests of degree di. Then, G = G2 ◦ G1 : {0, 1}k → {0, 1}s2(s1(k)) can be computed by a sequence of
polynomials of degree D2 ·D1 and has bias at most ε(k) = ε1(k) + ε2(s1(k)) with respect to all tests
of degree d = min(d2, d1/D2).

The proof is identical to the proof of Lemma A.2, and the iterative construction works as well.

Corollary. We obtain a concrete result that is analogous to Corollary A.3 by using the generator
of Mossel, Shpilka, and Trevisan [6], which has s(k) = Ω(k2) and ε(k) = 2Ω(k), with D = 2. Observe
that, after τ ∈ N iterations, we obtain a generator (i.e., G(τ)) that can be computed by a sequence
of polynomials of degree D(τ) = D2τ+1 = 22τ+1, has stretch s(τ)(k) = s◦

τ+1
(k/Dt) = Ω(k/2τ )2τ+1

,

and bias at most ε(τ)(k) = O(1)τ · ε(k/Dτ )(2−D)τ = exp(exp(−O(τ)) · k). Hence, seeking stretch of
the form nσ, we set τ = log2 σ, and obtain degree 2 · σ2 and bias at most 2−poly(1/σ)·k.

A.4 Adaptation to multilinear constructions of bounded degree

Actually, we need the construction to be multilinear; that is, we seek a construction of generators
that can be computed by bounded degree multi-linear functions. While the transformation from
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fooling linear tests to fooling tests of constant degree preserves the multilinearity of the generator
(since it XORs independently generated outputs of the original generator), the composition lemma
does not necessarily preserve multilinearity. That is, even if both Gi’s are computed by sequences of
multilinear functions (of bounded degree), their composition may not be so (since G2 may multiply
output bits of G1 that depend on the same variable-block of inputs in the seed of G1). Still, a small
modification suffices to provide multilinearity.

Lemma A.5 (Lemma A.4, revisited): For i ∈ {1, 2}, let di and Di be constants, si : N → N be
a stretch function, and εi : N → (0, 1] be a bias bound. Suppose that Gi : {0, 1}k → {0, 1}si(k)

can be computed by a sequence of Di-linear functions, where an m-linear function from GF(2)k

to GF(2) is linear in each of the m (equal-length) blocks of variables, and has bias at most εi(k)
with respect to all tests of degree di. Let G′1 : {0, 1}k → {0, 1}D2·s1(k/D2) be an algorithm that
partitions its input to D2 equal-length parts, applies G1 to each part, and concatenate the results.
Then, G = G2 ◦G′1 : {0, 1}k → {0, 1}s2(D2·s1(k/D2)) can be computed by a sequence of D2 ·D1-linear
functions and has bias at most ε(k) = D2 · ε1(k/D2) + ε2(s1(k)) with respect to all tests of degree
d = min(d2, d1/D2).

Proof: We first observe that, by construction, G is D2 ·D1-linear, since the different D2 (equal
length) blocks of the input to G2 depend on disjoint (k/D2)-bit long parts of the seed of G′1 (i.e.,
the ith block in the input to G2 depends on the ith part of the seed of G′1). Specifically, on
input x = (x1, ..., xD2) ∈ {0, 1}D2·(k/D2), each monomial in the computation of G(x) depends on
at most D2 bits of G′1(x), which by the D2-linearity of G2 occur in different parts in G′1(x) =
(G1(x1), ..., G1(xD2)), whereas each of these parts is computed by a D1-linear function of the
corresponding seed (i.e., the ith part of G′1(x) appears in G1(xi), and is computed by a D1-linear
function of xi).

All that remains is to observe that G′1 essentially inherits the bias bound of G1; specifically, we
show that G′1 has bias at most D2 · ε1(k/D2) with respect to tests of degree d1. This is shown using
a hybrid argument, where the ith hybrid, denoted Hi, consists of i independent copies of G1(Uk/D2

)
followed by D2−i independent copies of Us1(k/D2). (Indeed, H0 = UD2·s1(k/D2) and HD2 = G′1(Uk).)
Then, for any test T of degree d1, it holds that∣∣∣E [(−1)T (UD2·s1(k/D2)))

]
− E

[
(−1)T (G′1(Uk))

]∣∣∣
≤
∑
i∈[D2]

∣∣∣E [(−1)T (Hi−1)
]
− E

[
(−1)T (Hi)

]∣∣∣
=
∑
i∈[D2]

∣∣∣E [(−1)Ti(Us1(k/D2)))
]
− E

[
(−1)Ti(G1(Uk/D2

))
]∣∣∣

≤ D2 · ε1(n/D2),

where Ti(z), which may be viewed as a distribution over tests of degree d1, generates i−1 indepen-
dent copies of G1(Uk/D2

), denoted v1, ..., vi−1, and D2 − i independent copies of Us1(k/D2), denoted
u1, ..., uD2−i, and returns T (v1, ..., vi−1, z, u1, ..., uD2−i). Indeed, we use the fact that Hi−1 and Hi

differ only in their ith part (which is Us1(k/D2) in Hi−1 and G1(Uk/D2
) in Hi).

Conclusion. Starting with the generator of Mossel, Shpilka, and Trevisan [6], while noting that
it is actually bilinear, and using the iterative construction of Section A.2 with the composition of
Lemma A.5, we get the desired generator (which is stated in the terms used in the main text).
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Theorem A.6 (a small-bias generator of arbitrary large polynomial stretch that can be computed
by O(1)-linear functions): For every t′ ∈ N, there exist t′′ and an explicit construction of an

(t′′ − 2)-linear generator Gsb : GF(2)(t′′−2)·n → {0, 1}nt
′+2

has bias at most 2−n. Furthermore,
t′′ = O(t′)2.

Given all the foregoing, the following proof is straightforward. It is being detailed here for sake of
tedious verification.

Proof: We just mimic the argument of Section A.2, while using the generator of [6] as our “pivot”
generator, and using the composition result of Lemma A.5 in all iterations. Specifically, letting
ε(k) = 2Ω(k), we start with an ε-bias generator of stretch s(k) = Ω(k2) that is computed by bilinear
function. Recall that we let G(0) equal G, and so D(0) = D = 2, s(0)(k) = s(k) and ε(0)(k) = ε(k).

Next, given a D(i−1)-linear generator G(i−1) : {0, 1}k → {0, 1}s(i−1)(k) that fools linear tests with

bias ε(i−1)(k), we first obtain a 2 · D(i−1)-linear generator Ĝ(i−1) : {0, 1}2·k → {0, 1}s(i−1)(k) that
fools quadratic tests with bias O(ε(i−1)(k)1/2), by XORing two instances of G(i−1). Hence, Ĝ(i−1)

has stretch s′(k) = 2 · s(i−1)(k/2), and bias ε′(k) = O(ε(i−1)(k/2)1/2) w.r.t quadratic tests.
Next, applying Lemma A.5, we obtain G(i) = G ◦ G̃(i−1), where G̃(i−1) is obtained from Ĝ(i−1)

by partitioning the seed into two (equal-length) parts and applying Ĝ(i−1) on each part. Hence, G(i)

is D(i)-linear, for D(i) = 2 · 2D(i−1) = 22i+1, and has stretch s(i)(k) = s(s′(k)) = s(2 · s(i−1)(k/2)),
and bias at most ε(i)(k) = ε(s(k))+ε′(k) = O(ε(i−1)(k/2)1/2) with respect to linear tests. Assuming
that s(k) ≥ c · k2, for some constant c > 0, we have

s(i)(k) ≥ c · (2 · s(i−1)(k/2))2

= (4c)2i+1−1 · s(0)(k/2i)2i

= (4c)2i+1−1 · c · (k/2i)2i+1

= exp(−Õ(2i)) · k2i+1

and

ε(i)(k) = O(ε(i−1)(k/2)1/2)

= O(1) · ε(0)(k/2i)2−i

= exp(Ω(4−i · k)).

Hence, after τ ∈ N iterations, we obtain a 22τ+1-linear generator (i.e., G(τ)) that has stretch
s(τ)(k) > exp(−Õ(2τ )) · k2τ+1

and bias at most ε(τ)(k) < exp(Ω(4−τ · k)). Thus, seeking stretch of
the form kσ, we set τ = log2 σ, and obtain a 2 · σ2-linear generator with stretch exp(−Õ(σ)) · kσ2

and bias at most 2−Ω(1/σ)2·k. Letting n = k/O(σ2) (and using a finer partition of the k-bit long
input seed), we can view this generator as being (k/n)-linear and having bias at most 2−n. The
theorem follows.
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