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Abstract

We revisit the fundamental problem of determining seed length lower bounds for strong
extractors and natural variants thereof. These variants stem from a “change in quantifiers” over
the seeds of the extractor: While a strong extractor requires that the average output bias (over
all seeds) is small for all input sources with sufficient min-entropy, a somewhere extractor only
requires that there exists a seed whose output bias is small. More generally, we study what we
call probable extractors, which on input a source with sufficient min-entropy guarantee that a
large enough fraction of seeds have small enough associated output bias. Such extractors have
played a key role in many constructions of pseudorandom objects, though they are often defined
implicitly and have not been studied extensively.

Prior known techniques fail to yield good seed length lower bounds when applied to the
variants above. Our novel approach yields significantly improved lower bounds for somewhere
and probable extractors. To complement this, we construct a somewhere extractor that implies
our lower bound for such functions is tight in the high min-entropy regime. Surprisingly, this
means that a random function is far from an optimal somewhere extractor in this regime. The
techniques that we develop also yield an alternative, simpler proof of the celebrated optimal
lower bound for strong extractors originally due to Radhakrishnan and Ta-Shma (SIAM J.
Discrete Math., 2000).

1 Introduction

Strong seeded extractors are central objects in pseudorandomness that have found many ap-
plications in theoretical computer science and cryptography. Informally speaking, a function
Ext : {0, 1}n × [D] → {0, 1} is a strong extractor if for every source X of sufficiently high min-
entropy it holds that the average bias of Ext(X, i) over the seeds i ∈ [D] is small. More precisely,
we have the definition below. Throughout this paper, we focus on single-bit output extractors since
lower bounds in this setting immediately imply lower bounds for any m-bit output extractor.

Definition 1 ((k, ε)-strong extractor). For ε < 1/2, a function Ext : {0, 1}n× [D]→ {0, 1} is said
to be a (k, ε)-strong extractor if

E
i←[D]

[∆(Ext(X, i);U1)] ≤ ε (1)
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for every (n, k)-source1 X, where i← [D] means i is uniformly distributed over [D], and

∆(Ext(X, i);U1) = |Pr[Ext(X, i) = 1]− 1/2|

is the bias of Ext(X, i).

A fundamental parameter when studying strong extractors is the number of seeds D. Ideally,
one would like to construct strong extractors with D as small as possible. However, there exist
lower bounds on D depending on n, k, and ε. Nisan and Zuckerman [NZ96] showed that every
strong extractor must use D = Ω

(
n−k
ε

)
seeds. Later, in a seminal work, Radhakrishnan and

Ta-Shma [RT00] improved the lower bound above to2

D = Ω

(
n− k
ε2

)
. (2)

Notably, this turns out to be tight. In fact, a random function F : {0, 1}n × [D] → {0, 1} with
D = C · n−k

ε2
seeds, for a sufficiently large constant C > 0, is a (k, ε)-strong extractor with high

probability. An alternative proof of (2) for a limited range of k was given by Bar-Yossef, Kumar, and
Sivakumar [BKS01], based on the connection between extractors and averaging samplers [Zuc97]
and sampling lower bounds.

At the opposite end of the spectrum lies another well-known pseudorandom object, called a
somewhere extractor. While a strong extractor has small average bias, all we require of a somewhere
extractor is that its minimum bias over all seeds is small. More precisely, we have the following
definition.

Definition 2 ((k, ε)-somewhere extractor). For ε < 1/2, a function Ext : {0, 1}n × [D]→ {0, 1} is
said to be a (k, ε)-somewhere extractor if for every (n, k)-source X it holds that

min
i∈[D]

∆(Ext(X, i);U1) ≤ ε.

Somewhere extractors arise in a number of different contexts. In fact, many of the most impor-
tant applications of strong extractors (e.g., in the construction of multi-source extractors) actually
only require these potentially weaker objects. Given the complete picture we have of strong ex-
tractors, it is natural to wonder what kind of bounds we can prove on the number of seeds D for a
somewhere extractor Ext.

A simple averaging argument on the preimage sizes of Ext shows that D > n − k, but it is
possible to improve on this lower bound. If one considers somewhere extractors with m output
bits, then [AOR+20] showed that a connection to dispersers leads to the lower bound

D = Ω

(
n− k
ε+ 2−m

)
. (3)

While (3) was good enough in the context of [AOR+20], it is quite unsatisfactory in general for two
reasons: First, it is trivial for small m (e.g., in our setting, where m = 1). Second, even for larger
m, it does not scale with ε below 2−m. In the 1-bit output setting, which is the hardest for lower
bounds, the best known lower bound is given in [AOR+20] as

D = Ω(n− k + log(1/ε)).

1See Definition 6.
2The lower bound in (2) also holds for “non-strong” extractors, i.e., functions F : {0, 1}n × [D]→ {0, 1}d+1 such

that F (X,U[D]) ≈ε Ud+1, where d = logD. Note that in this case the lower bound only holds for output length at
least d+ 1; otherwise, one can just output the uniformly random seed.
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On the other hand, as we show in this work, a uniformly random function F : {0, 1}n× [D]→ {0, 1}
is a (k, ε)-somewhere extractor with non-negligible probability only when D = Ω

(
n−k
ε2

)
(we discuss

this in more detail below). Therefore, in contrast with strong extractors, there is a large gap
between upper and lower bounds on the number of seeds required by somewhere extractors, leaving
open the exciting possibility of better constructions.

One may also wonder whether the strong extractor lower bound techniques from [NZ96, RT00]
can be adapted to yield better lower bounds for somewhere extractors. However, it is not clear
how this can be done, since these techniques are fundamentally tailored for dealing solely with the
average bias as in Definition 1. Overall, current techniques seem incapable of yielding a sharp,
unconditional analysis of somewhere extractors.

1.1 Our contributions

In this work, we develop a novel approach towards proving lower bounds on the number of seeds
required by natural variants of strong extractors. We highlight our main results here.

1.1.1 Improved lower bounds for somewhere extractors

We significantly improve the lower bound for (k, ε)-somewhere extractors. More precisely, we prove
the following result.

Theorem 1. Every (k, ε)-somewhere extractor Ext : {0, 1}n × [D]→ {0, 1} must have

D ≥ ln 2

2
· n− k

ε
. (4)

Recall that the previous best lower bound was D = Ω(n− k+ log(1/ε)). Observe also that the
lower bound in (4) is a factor of ε smaller than the one in (2) for strong extractors. Remarkably,
we construct a (simple) (k, ε)-somewhere extractor that shows (4) is tight in the high min-entropy
regime.

Theorem 2. For every3 ε ≥ 1
2(1+2k)

, there exists a (k, ε)-somewhere extractor Ext : {0, 1}n× [D]→
{0, 1} with

D =
2n−k−1

ε
+ 1.

In particular, Theorem 2 shows that (4) is tight up to a constant factor when n− k is constant.
On the other hand, the existential result for strong extractors immediately implies that a uni-

formly random function F : {0, 1}n × [D] → {0, 1} with D = C · n−k
ε2

for a large enough constant
C > 0 is a (k, ε)-somewhere extractor with high probability. Interestingly, we show that this prob-
abilistic argument is tight up to a constant factor, in the sense that a uniformly random function
F : {0, 1}n × [D] → {0, 1} must have D = Ω

(
n−k
ε2

)
in order to be a (k, ε)-somewhere extractor

with non-negligible probability for essentially all regimes of k and ε. Given the above, we conclude
that a random function is far from an optimal (k, ε)-somewhere extractor in the high min-entropy
regime. This provides a rare example where an explicit construction actually yields a significantly
better extractor than a random function (at least for some parameters), and highlights a qualitative
difference with strong extractors.

To be more precise, we show the following.

3We note that there are no (k, ε)-somewhere extractors with ε < 1
2(1+2k)

. To see this, consider an (n, k)-source X

uniformly distributed over a set of size 2k + 1. Then, for every i, Pr[Ext(X, i) = 1] = C
2k+1

for some integer C ≥ 0,

and so Ext(X, i) has bias
∣∣∣ C

2k+1
− 1

2

∣∣∣ =
∣∣∣C−2k−1−1/2

2k+1

∣∣∣ ≥ 1
2(1+2k)

.
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Theorem 3. For large enough n, suppose that k ≤ n − 400, 2−0.24(n+k) ≤ ε ≤ c for a sufficiently
small constant c > 0, and

D ≤ n− k
400 · ε2

.

Then, a uniformly random function F : {0, 1}n × [D]→ {0, 1} is not a (k, ε)-somewhere extractor

with probability at least 1− 2−2
Ω(n)

.

1.1.2 Simple proof of the optimal lower bound for strong extractors

In the setting of strong extractors, we give an alternative proof of the tight lower bound (2). Our
proof is much simpler than those due to Radhakrishnan and Ta-Shma [RT00] and Bar-Yossef,
Kumar, and Sivakumar [BKS01]. To be precise, we prove the following result.

Theorem 4. For every n, k, ε > 0 satisfying n − k ≥ 39 and every (k, ε)-strong extractor Ext :
{0, 1}n × [D]→ {0, 1} it holds that

D ≥ ln 2

18
· n− k

ε2
.

1.1.3 Generalizing somewhere extractors and lower bounds

Finally, we initiate the systematic study of a meaningful generalization of somewhere extractors and
also obtain significantly improved lower bounds in that setting, as discussed below. A somewhere
extractor Ext can be generalized in a natural way by requiring that some fraction of the seeds of
Ext yield an unbiased output, instead of only a single seed. This leads to the following definition.

Definition 3 ((k, ε, δ)-probable extractor). For ε < 1/2, a function Ext : {0, 1}n × [D]→ {0, 1} is
said to be a (k, ε, δ)-probable extractor if

Pr
i←[D]

[∆(Ext(X, i);U1) > ε] < δ

for every (n, k)-source X.

We note that probable extractors have been defined explicitly before, but not studied in depth,
in [Rao07, BCD+18]. Observe that a (k, ε)-somewhere extractor corresponds to a (k, ε, δ = 1)-
probable extractor. Moreover, a (k, ε)-strong extractor lies somewhere between a (k, ε/2, ε/2)-
probable extractor and a (k,

√
ε,
√
ε)-probable extractor. More generally, every (k, ε)-strong ex-

tractor is a (k, ε/δ, δ)-probable extractor for every δ > 0 by Markov’s inequality. On the other
hand, we also have that every (k, ε, δ)-probable extractor is a (k, ε+ δ)-strong extractor.

Given our previous discussion, a natural question to ask about probable extractors is the fol-
lowing:

How do ε and δ influence the number of seeds D?

Our work leads to a better understanding of this behavior. Similarly to what was already
discussed in [BCD+18], by separating the maximum fraction of “bad” seeds δ and the maximum
bias of the “good” seeds ε, we are able to explore the explicit influence that each of these parameters
has on the number of seeds. Such a fine-grained analysis is not possible, for example, in the case of
strong extractors, since those properties are essentially merged into a single global error parameter.

Besides being interesting on its own, there are practical motivations for the question above. In
fact, several constructions of multi-source extractors make use of (k, ε)-strong extractors in scenarios

4



where a (k, ε/δ, δ)-probable extractor would suffice with δ much larger than ε. The reason for this
is simply that no better constructions of (k, ε/δ, δ)-probable extractors are known. However, it
could be a priori possible to design a (k, ε/δ, δ)-probable extractor requiring much fewer seeds
than a (k, ε)-strong extractor. In turn, this would lead to simpler constructions of, and improved
parameters for, several multi-source extractors. We expand on this in Section 1.2.

Lower bounds for probable extractors Lower bounds on the number of seeds required by
probable extractors can be derived directly from lower bounds for both strong and somewhere
extractors. Combining (2) with the fact that every (k, ε, δ)-probable extractor is a (k, ε+ δ)-strong
extractor immediately leads to the lower bound

D = Ω

(
n− k

(ε+ δ)2

)
.

However, note that the bound above becomes trivial whenever one of ε or δ is large.
To achieve a stronger bound, we observe that a (k, ε, δ)-probable extractor Ext : {0, 1}n× [D]→

{0, 1} must be a (k, ε)-somewhere extractor when restricted to the first δD seeds. Therefore, any
lower bound L for the number of seeds of (k, ε)-somewhere extractors immediately implies the lower
bound D ≥ L/δ for any (k, ε, δ)-probable extractor. Combining this with Theorem 1 leads to the
following result.

Theorem 5. Let Ext : {0, 1}n × [D]→ {0, 1} be a (k, ε, δ)-probable extractor. Then, it holds that

D ≥ ln 2

2
· n− k
ε · δ

. (5)

The lower bound in (5) significantly improves upon all previous bounds over a large range of
(ε, δ), namely when δ � ε or ε� δ. On the other hand, we show that a uniformly random function
F : {0, 1}n × [D]→ {0, 1} with D = O

(
n−k
ε2·δ
)

is a (k, ε, δ)-probable extractor with high probability.
It remains an open problem to close the gap between this upper bound and Theorem 5 in general.
While we know from our previous discussion that the lower bound in Theorem 5 is tight for δ = 1
and n− k = O(1), the behavior might change substantially for other parameters.

Given the gap between the bounds above, it is natural to ask whether a different probabilistic
argument could be used to show that a uniformly random function using fewer seeds is a (k, ε, δ)-
probable extractor with high probability. As before, we can easily extend Theorem 3 to the setting
of probable extractors to show the answer to the question above is negative. Namely, we have the
following result, which shows that our probabilistic construction is tight up to a constant factor.

Theorem 6. For any δ = δ(n) ∈ (0, 1] and large enough n, suppose that k ≤ n−400, 2−0.24(n+k) ≤
ε ≤ c for a sufficiently small constant c > 0, and

D ≤ n− k
400 · ε2 · δ

.

Then, a uniformly random function F : {0, 1}n × [D] → {0, 1} is not a (k, ε, δ)-probable extractor

with probability at least 1− 2−2
Ω(n)

.

1.2 Applications of somewhere- and probable- extractors

Besides the works we have already discussed, several others have either implicitly or explicitly used
probable extractors. Many constructions of seeded and multi-source extractors [Ta-96, LRVW03,
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Raz05, Rao09, Li11, Li13b, Li13a, Coh15, Li15, Li16, BCD+18, CZ19], along with some construc-
tions of dispersers [BRSW12] and non-malleable and affine extractors [CGL16, Li16], use probable
extractors (or slight variants of probable extractors) in their constructions.

In the literature, the output of the probable extractor (concatenated over all D seeds) is usually
called a somewhere-random source with D rows. The time complexity of the resulting extractor
constructions depends linearly on the complexity of enumerating the D seeds of the probable
extractor being used. This poses a problem because, even now, the best explicit probable extractor
we know of for a single weak source is simply a strong extractor. For such constructions, the lower
bound in (2) applies, and so extra assumptions must be made or parameters must be worsened in
order to ensure that seed enumeration can be done efficiently.

We present concrete examples of the compromise above. Some works settle for a large overall
1/poly(n) error of the resulting extractor to get around the seed enumeration problem [Rao09,
Li11, Li13b, Li13a, Li16]. On another front, many works use extra independent weak sources with
enough min-entropy as input to generate somewhere-random sources with fewer rows [BKS+10,
BRSW12, Coh15, Li15, Li16, CGL16, BCD+18, CZ19]. Moreover, the addition of a short uniformly
random seed to achieve this goal has also been considered [LRVW03]. Many works above can be
interpreted as constructing several types of randomness extractors for somewhere-random sources
(called mergers), a problem which was first studied by Ta-Shma [Ta-96]. Other works that have
studied mergers include [Raz05, Zuc06, DS07, DR08, DW11, DKSS13].

Prior to this work, we could not rule out a (k, ε, δ)-probable extractor for δ much larger than ε
with much fewer seeds than a (k, ε)-strong extractor. Given the discussion above, this would lead
not only to extractors with improved parameters, but also to conceptually simpler constructions,
since many tools and assumptions were introduced to deal with the fact that somewhere-random
sources generated by strong extractors have rather many rows. Our results preclude this possibility.

Finally, we note that many of the applications above still work if one considers an extractor that
outputs convex combinations of somewhere-random sources from (n, k)-sources instead. Our lower
bounds do not apply to this weaker setting. Therefore, we do not rule out the existence of methods
of generating a convex combination of somewhere-random sources from one weak source requiring
fewer seeds. Our results show that, without considering convex combinations, one cannot do too
much better than the naive and globally used method of enumerating over the seeds of a strong
extractor (although, surprisingly, we show that a polynomial improvement in 1/ε is possible). We
leave it as an interesting open problem to extend our new techniques and bounds to the setting of
convex combinations.

1.3 Technical overview

In this section, we provide a more detailed account of our contributions.

1.3.1 The high-level approach

Our extractor lower bounds can be unified under a common high-level approach. Fix an arbitrary
function F : {0, 1}n × [D] → {0, 1}. Our goal is to relate the number of seeds D to some measure
of the bias of F over all seeds, depending on the type of extractor we are dealing with. For the
remainder of this section, we focus on somewhere extractors and the minimum bias. However,
everything is equally applicable to strong extractors simply by replacing minimum bias by average
bias.

To prove a lower bound on D, we must show the existence of an input (n, k)-source X such that
P = (F (X, 1), F (X, 2), . . . , F (X,D)) is sufficiently biased. We do this by constructing the output
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distribution P directly, rather than trying to find an input distribution X that maps to P .
Throughout the remainder of this paper, we write

F (x) = (F (x, 1), F (x, 2), . . . , F (x,D)) ∈ {0, 1}D.

Then, for F and fixed k, we construct a distribution P = (P1, P2, . . . , PD) over {0, 1}D such that
the following two conditions hold.

1. There exists an (n, k)-source X such that F (X) = P ;

2. It holds that4

min
i∈[D]

∆(Pi;U1) ≥ α,

where α is some quantity depending on n, k, and D.

If F is a (k, ε)-somewhere extractor, the two conditions above imply that ε ≥ α. This relationship
then yields a lower bound on D.

The main novelty of our approach lies in the design of the output distribution P . The distri-
bution A = F (Un) takes on a special role in our construction of good choices of P . We begin by
showing that the first condition above automatically holds provided P satisfies a simple constraint
related to A, which is detailed in the following lemma (below and throughout the paper, we write
X(x) for the probability that a random variable/distribution X takes on value x).

Lemma 1. There exists an (n, k)-source X such that F (X) = P if

P (a) ≤ 2n−kA(a) (6)

for all a ∈ {0, 1}D.

Proof. It is enough to consider the source X ∈ {0, 1}n that picks each x ∈ {0, 1}n with probability

X(x) = 2−n · P (F (x))

A(F (x))
.

First, by (6) it follows that X(x) ≤ 2−n · 2n−k = 2−k for every x. Moreover, using the fact that
A(a) = 2−n · |F−1(a)|, it is easy to see that X is a valid probability distribution and F (X) = P .

Remark 1. It is easy to see that such an (n, k)-source exists if and only if (6) holds. However, in
this work, we only need the implication in one direction.

We construct distributions P implicitly in terms of the distribution A = F (Un). In fact,
Lemma 1 shows it is enough to restrict our attention to distributions P that can be written as

P (a) = A(a) · f(a)

for some non-negative function f satisfying f(a) ≤ 2n−k for all a ∈ {0, 1}D. As discussed in the
following sections, careful choices of f lead to good lower bounds on D with streamlined derivations.

4In the case of strong extractors, this condition is replaced by Ei←[D][∆(Pi;U1)] ≥ α.
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1.3.2 Improved lower bound for somewhere and probable extractors

We employ the high-level approach detailed in Section 1.3.1 to obtain improved lower bounds
for probable extractors. Namely, we prove Theorem 1, which states that every (k, ε)-somewhere
extractor must have D ≥ ln 2

2 ·
n−k
ε . In turn, this easily implies Theorem 5 for general (k, ε, δ)-

probable extractors.
Let Ext : {0, 1}n × [D] → {0, 1} be an arbitrary (k, ε)-somewhere extractor. In order to prove

Theorem 1 via the high-level approach from Section 1.3.1, we consider the family of distributions
P z parameterized by z ∈ {0, 1}D defined as

P z(a) =
1

Cz
·A(a) ·

D∏
i=1

[1 + (−1)ai+ziγ], a ∈ {0, 1}D,

where A = Ext(Un), γ ∈ (0, 1) is a parameter of our choice, and Cz is the normalizing factor.
We choose z? which maximizes Cz over all z ∈ {0, 1}D, and consider P = P z? . In particular,

this choice implies that Cz? ≥ 1, which allows us to take γ = Θ
(
n−k
D

)
while still satisfying (6). It

remains to lower bound ∆(Pi;U1) for every i ∈ [D] appropriately. The product structure of the
family of distributions we consider makes it amenable to a Fourier-analytic approach, which we
employ to show that for every i ∈ [D] we have

∆(Pi;U1) = Ω(γ) = Ω

(
n− k
D

)
.

This yields the desired lower bound on D. More details can be found in Section 3.1.

1.3.3 Tight upper bound for somewhere extractors

We design a somewhere extractor that shows our lower bound for (k, ε)-somewhere extractors
is tight (up to a multiplicative constant) in the high min-entropy regime where n − k = O(1).
More precisely, we prove Theorem 2, which states that there exists a (k, ε)-somewhere extractor

Ext : {0, 1}n × [D]→ {0, 1} with D = 2n−k−1

ε + 1 for all non-trivial ε.
This is accomplished by showing that the function Ext : [N ] × {0, 1, . . . , E} → {0, 1}, with

E = 2n−k−1

ε and N = 2n, defined as

Ext(x, i) = sign[(x+ i) mod 2E], i = 0, 1, . . . , E (7)

is a (k, ε)-somewhere extractor. In (7), we see x mod 2E as an integer in {−E, . . . , E − 1}, and
define sign(y) = 1{y≥0}. Intuitively, this simple function yields a good somewhere extractor because
the functions Ext(·, i) “transition smoothly” from Ext(·, 0) to its opposite, Ext(·, E) = 1− Ext(·, 0),
as shown in Figure 1.

In more detail, given an (n, k)-source X, we wish to prove that there is a seed i such that
∆(Ext(X, i);U1) ≤ ε. In order to show this, we will look at how the quantities

∆i = Pr[Ext(X, i) = 1]− Pr[Ext(X, i) = 0], i = 0, 1, . . . , E

behave. The desired result follows if we show that |∆i| ≤ 2ε for some i. In turn, this holds
because the ∆i’s satisfy two simple properties. First, we have ∆0 = −∆E . Second, when going
from Ext(·, i − 1) to Ext(·, i), by our choice of parameters at most 4ε · 2k elements of [N ] go from
1 to 0, and vice-versa. This implies that |∆i − ∆i−1| ≤ 4ε. Combining the two properties above
immediately ensures the existence of i? such that |∆i? | ≤ 2ε, as desired. For more details, see
Section 4.
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Figure 1: An illustration of the (k, ε)-somewhere extractor that shows our lower bound is tight in
the high min-entropy regime.

1.3.4 Simpler proof of the optimal lower bound for strong extractors

In this section, we discuss our alternative, simpler proof of the optimal lower bound on the number
of seeds for strong extractors, originally obtained by Radhakrishnan and Ta-Shma [RT00]. Namely,
we prove Theorem 4, which states that every (k, ε)-strong extractor must have D ≥ ln 2

18 ·
n−k
ε2

when
n− k ≥ 39.

As before, we follow the high-level approach introduced in Section 1.3.1. However, we consider a
different family of distributions. Fix an arbitrary (k, ε)-strong extractor Ext : {0, 1}n×[D]→ {0, 1},
and let A = Ext(Un). Then, for z ∈ {0, 1}D and t ≤ D define the distribution

P z,t(a) =
1

Cz,t
·A(a) · 1{‖z−a‖1≤t}, a ∈ {0, 1}D,

where Cz,t is the normalizing factor. The desired result now follows via two simple combinatorial
arguments, which guarantee that (i) for an appropriate t = D/2 − Θ(

√
(n− k)D), there exists a

choice of z such that P = P z,t satisfies (6), and (ii) the average bias of every distribution P z,t is at

least 1/2− t/D = Ω
(√

(n− k)/D
)

. More details can be found in Section 3.2.

1.3.5 Probabilistic constructions and lower bounds for random functions

We study for which values of D it holds that a uniformly random function F : {0, 1}n× [D]→ {0, 1}
is a (k, ε, δ)-probable extractor with non-negligible probability. To show an upper bound, we
consider a connection between probable extractors and strong two-source extractors, and then
invoke well-known existential results for the latter.5 This shows that, under a mild constraint on

5More direct approaches do not seem to work because the set of sources from which a somewhere extractor
successfully extracts is not necessarily convex (see Remark 2 in Section 5).
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k, ε, and δ, a uniformly random function is a (k, ε, δ)-probable extractor with probability at least,
say, 0.99 when D = C · n−k

ε2·δ for a sufficiently large constant C > 0.
We complement the upper bound in the previous paragraph via Theorem 6, which states that

a uniformly random function with D ≤ n−k
400·ε2·δ is not a (k, ε, δ)-probable extractor with probability

at least 1− 2−2
Ω(n)

. This means that our probabilistic construction above is tight up to a constant
factor. Similarly to Section 1.3.2, to prove this result it suffices to focus our attention on somewhere
extractors. We consider a source X ∈ {0, 1}n uniformly distributed over a set XF defined as

XF = {x ∈ {0, 1}n : ‖F (x)‖1 ≤ t}

for an appropriate t = D/2−Θ(
√

(n− k)D). Then, we show X satisfies two properties: First, by
a Chernoff bound, it holds that |XF | ≥ 2k with very high probability over the choice of F , and
hence X is an (n, k)-source with very high probability. Second, we show that, again with very
high probability, we have ∆(F (X, i);U1) > ε simultaneously for all i ∈ [D]. These two properties
immediately imply that F is not a (k, ε)-somewhere extractor with high probability. More details
can be found in Section 5.

1.4 Open questions

Besides the natural problem of improving upon our lower bounds in general, our work leaves open
other interesting avenues for further research.:

• Consider the special case of (k, ε, ε)-probable extractors. In this setting, the best lower bounds
only yield D = Ω

(
n−k
ε2

)
, while the probabilistic method requires D = Ω

(
1
ε3

)
to work with

non-negligible probability. We believe D = Θ
(
n−k
ε3

)
is the correct answer, and it would be

very interesting to prove (or disprove) this claim, as it showcases different behavior than
(k, ε, δ)-probable extractors for δ � ε;

• Show the existence of a (k, ε)-somewhere extractor Ext : {0, 1}n × [D] → {0, 1} using D =
O
(
n−k
ε

)
seeds. This would extend the tightness of our lower bound for somewhere extractors

below the high min-entropy regime;

• Extend our (k, ε)-somewhere extractor from Section 1.3.3 to output m > 1 bits with (roughly)
the same number of seeds;

• Extend our lower bounds to the setting where one is allowed to output convex combinations
of somewhere-random sources from one (n, k)-source (see Section 1.2).

1.5 Organization

We introduce basic notions and results that are useful throughout our work in Section 2. The
proofs of our extractor lower bounds are presented in Section 3. The matching upper bound on
the number of seeds of somewhere extractors can be found in Section 4. Finally, probabilistic
constructions of probable extractors, along with lower bounds on the number of seeds of uniformly
random functions are discussed in Section 5.

2 Preliminaries

2.1 Notation

Random variables and distributions are usually denoted by uppercase letters such as X, Y , and
Z. When context allows, we may confuse a random variable with its associated distribution. We
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write X(x) for the probability that X equals x, and denote the support of X by supp(X). The
uniform distribution over {0, 1}n is denoted by Un. We write i ← S to mean that i is sampled
uniformly at random from the set S. For a distribution X, we write x ∼ X to denote x is sampled
according to X. Given an event E, the indicator of E is denoted by 1{E}. The expected value of a
random variable X is denoted by E[X] or Ex∼X [x]. Sets are usually denoted by uppercase letters
such as S and T . The set {1, 2, . . . , D} is denoted by [D]. We will usually identify a set S with its
characteristic vector, so that we write Si = 1 if and only if i ∈ S. We write S+T for the symmetric
difference between two sets S and T (i.e., the modulo 2 sum of their characteristic vectors). We
denote the base-2 logarithm by log and the natural logarithm by ln. We write ‖x‖p for the p-norm
of a vector x. The inner product between two vectors x and y over some field is denoted by 〈x, y〉.

2.2 Probability theory

In this section, we introduce some basic notions and results from probability theory.

Definition 4 (Statistical distance). Given two distributions X and Y over a set X , the statistical
distance between X and Y , denoted by ∆(X;Y ), is defined as

∆(X;Y ) = max
S⊆X
|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
x∈X
|X(x)− Y (x)|.

We say that X and Y are ε-close, also written X ≈ε Y , if ∆(X;Y ) ≤ ε.

Definition 5 (Min-entropy). Given a distribution X over X , the min-entropy of X, denoted by
H∞(X), is defined as

H∞(X) = − log

(
max
x∈X

X(x)

)
.

Definition 6 ((n, k)-source). A distribution X supported on {0, 1}n is said to be an (n, k)-source
if H∞(X) ≥ k. An (n, k)-source is said to be flat if it is uniformly distributed over a subset of
{0, 1}n of size 2k.

The several notions of extractors that we focus on in this work were already covered in Defini-
tions 1, 2, and 3 in Section 1.

Later on, we will exploit the well-known (and not difficult to prove) fact that the Chernoff
bound is tight (up to constants in the exponent).

Lemma 2 (Inverse Chernoff bound, see, e.g., [KY15, Lemma 4, Part 1 with p = 1/2]). Suppose
γ,D > 0 are such that γ ≤ 1/2 and γ2D ≥ 6, and let Z denote a binomial distribution with D
trials and success probability 1/2. Then,

2−D ·
(1−γ)D/2∑

i=0

(
D

i

)
= Pr

[
Z ≤ (1− γ)D

2

]
≥ exp

(
−9γ2D

2

)
.

2.3 Basic boolean functional analysis

In this section, we briefly discuss basic notions from the analysis of boolean functions that we will
use later on.

Given a set S ⊆ [n], the Fourier character χS : {0, 1}n → {−1, 1} is defined as

χS(x) = (−1)〈x,s〉,

11



where s is the characteristic vector of S (i.e., si = 1 if and only if i ∈ S). The characters χS satisfy
χS(x+ y) = χS(x) ·χS(y) and form an orthonormal basis of the space of functions f : {0, 1}n → R.
Consequently, every such function f has a unique Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S) · χS(x),

where f̂(S) = Ex←{0,1}n [f(x) · χS(x)] is the Fourier coefficient of f on S.

3 Extractor lower bounds

3.1 A lower bound for probable extractors

In this section, we follow the high-level approach described in Section 1.3.1 to prove Theorem 1,
which we restate here for convenience. By the discussion in Section 1.3.2, this result immediately
implies the more general Theorem 5 for probable extractors.

Theorem (Theorem 1, restated). Every (k, ε)-somewhere extractor Ext : {0, 1}n × [D] → {0, 1}
must have

D ≥ ln 2

2
· n− k

ε
.

Fix a (k, ε)-somewhere extractor Ext : {0, 1}n × [D] → {0, 1}, and let A = Ext(Un). For
z ∈ {0, 1}D, consider the (unnormalized) distribution Pz defined as

Pz(a) = A(a) ·
D∏
i=1

[1 + (−1)ai+ziγ] = A(a)
∑
S⊆[D]

χS(a+ z)γ|S| (8)

for a ∈ {0, 1}D, where γ = (g/D) ln 2 and g = n − k is the min-entropy gap. The second equality
in (8) holds because for every S ⊆ [D] we have

E
a←{0,1}D

[
D∏
i=1

[1 + (−1)ai+ziγ] · χS(a)

]
=

D∏
i=1

E
ai←{0,1}

[(1 + (−1)ai+ziγ) · (−1)ai·Si ]

=
∏
i∈S

γ(−1)zi

= γ|S| · χS(z).

Observe that 0 < γ < 1 since we know D > g > 0. To see this, note that, if D ≤ g, a simple
averaging argument guarantees there is a ∈ {0, 1}D with |Ext−1(a)| ≥ 2k. This implies there is an
(n, k)-source X such that Ext(X) is constant. We can then define the normalizing constant

Cz =
∑

a∈{0,1}D
Pz(a) > 0,

and we set

P z(a) =
Pz(a)

Cz
.

We will fix z? to be a choice of z that maximizes Cz, and we let

P = P z? .

Note that P is a distribution over {0, 1}D. We denote the distribution of its i-th coordinate by Pi.
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Proof of Theorem 1 Our goal now is twofold: First, we must ensure that

P (a) ≤ 2gA(a) ∀a ∈ {0, 1}D. (9)

Second, we wish to show that
min
i∈[D]

∆(Pi;U1) ≥ γ/2. (10)

Since Ext is a (k, ε)-somewhere extractor, from (9) and (10) it follows that ε ≥ γ/2. By the choice
of γ above this immediately implies Theorem 1.

Lemma 3. Condition (9) holds for the choice of z? and γ above.

Proof. First, since z? = arg maxz Cz, we have

Cz? ≥ E
z←{0,1}D

[Cz]

=
∑

a∈{0,1}D
E

z←{0,1}D
[Pz(a)]

=
∑

a∈{0,1}D
A(a)

= 1.

Therefore, it suffices to show that

D∏
i=1

[1 + (−1)z
?
i +aiγ] ≤ 2g.

for every a ∈ {0, 1}D. This follows immediately from the fact that

(1 + γ)D =

(
1 +

g ln 2

D

)D
≤ exp(g ln 2) = 2g.

Lemma 4. We have
min
i∈[D]

∆(Pi;U1) ≥ γ/2.

Proof. In order to show the desired inequality, it suffices to prove that∣∣∣∣ Ea∼P [χ{i}(a)]

∣∣∣∣ ≥ γ (11)

for every i ∈ [D]. For any T ⊆ [D] and z ∈ {0, 1}D, we have

Cz · E
a∼P z

[χT (a)] =
∑

a∈{0,1}D
Pz(a) · χT (a)

=
∑

a∈{0,1}D

A(a)
∑
S⊆[D]

χS(a+ z)γ|S|

 · χT (a)

=
∑
S⊆[D]

χS(z)γ|S|
∑

a∈{0,1}D
A(a) · χS(a) · χT (a)
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= 2D
∑
S⊆[D]

χS(z)γ|S| · Â(S + T ), (12)

where the second equality follows from (8), the third equality is true because χS(a + z) = χS(a) ·
χS(z), and the last equality holds since χS(a) ·χT (a) = χS+T (a) and by the definition of Â(S+T ).

For i ∈ [D] and b ∈ {0, 1}, define

ab = 2D
∑

S⊆[D]:Si=b

χS(z?)γ|S| · Â(S).

By setting T = ∅ and z = z?, from (12) we obtain

Cz? = Cz? · E
a∼P

[χ∅(a)] = a0 + a1. (13)

Moreover, setting T = {i} and z = z? in (12) leads to

Cz? · E
a∼P

[χ{i}(a)] = 2D
∑
S⊆[D]

χS(z?)γ|S| · Â(S + {i})

= 2D
∑

S′:=S+{i}⊆[D]

χS′+{i}(z
?)γ|S

′+{i}| · Â(S′)

= χ{i}(z
?) · γ · 2D

∑
S′⊆[D]:S′i=0

χS′(z
?) · γ|S′|Â(S′)

+
χ{i}(z

?)

γ
· 2D

∑
S′⊆[D]:S′i=1

χS′(z
?) · γ|S′|Â(S′)

= χ{i}(z
?)

(
a0γ +

a1
γ

)
. (14)

Combining (14) with (13) implies that∣∣∣∣ Ea∼P [χ{i}(a)]

∣∣∣∣ =

∣∣∣∣a0γ + a1/γ

a0 + a1

∣∣∣∣. (15)

To conclude the proof, we show that a1 ≥ 0. Coupled with (15), this yields (11) because then we
have

|a0γ + a1/γ| ≥ γ(a0 + a1) = γ|a0 + a1|,
where the inequality follows from a1 ≥ 0 and the fact that 0 < γ < 1 (recall that D > g > 0), and
the equality holds because a0 + a1 = Cz? > 0.

It remains to show that a1 ≥ 0. Let ei ∈ {0, 1}D be the vector that is 1 at i and 0 elsewhere,
and set z′ = z? + ei. Then, by (12) with T = ∅ and z = z′ = z? + ei we have

Cz′ = 2D
∑

b∈{0,1}

∑
S⊆[D]:Si=b

χS(z? + ei)γ
|S| · Â(S)

= 2D
∑

b∈{0,1}

(−1)b
∑

S⊆[D]:Si=b

χS(z?)γ|S| · Â(S)

= a0 − a1,

where the second equality follows from the multiplicative property of χS and the fact that χS(ei) =
(−1)Si . Since z? = arg maxz Cz, we conclude that a0 + a1 = Cz? ≥ Cz′ = a0 − a1, and thus
a1 ≥ 0.

In Appendix A, we present an alternative proof of Lemma 4 which was suggested to us by an
anonymous reviewer.
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3.2 A lower bound for strong extractors

In this section, we prove Theorem 4 via the high-level approach in Section 1.3.1. This yields a
different, simpler proof of the optimal lower bound on the number of seeds of (k, ε)-strong extrac-
tors, originally obtained by Radhakrishnan and Ta-Shma [RT00]. We restate Theorem 4 here for
convenience.

Theorem (Theorem 4, restated). For every n, k, ε > 0 satisfying n−k ≥ 39 and every (k, ε)-strong
extractor Ext : {0, 1}n × [D]→ {0, 1} it holds that

D ≥ ln 2

18
· n− k

ε2
.

Fix a (k, ε)-strong extractor Ext : {0, 1}n × [D]→ {0, 1}, and let A = Ext(Un). For z ∈ {0, 1}D
and t ≤ D, define the (unnormalized) distribution Pz,t over {0, 1}D as

Pz,t(a) = A(a) · 1{‖z−a‖1≤t}.

The associated normalizing factor Cz,t is given by

Cz,t =
∑

a∈{0,1}D
Pz,t(a) = A(Bt(z)),

where Bt(z) denotes the Hamming ball of radius t centered at z, and A(Bt(z)) =
∑

a∈Bt(z)A(a)
denotes its measure under A. Provided that A(Bt(z)) > 0, we can then define the normalized
distribution P z,t by

P z,t(a) =
Pz,t(a)

Cz,t
.

Proof of Theorem 4 Taking into account Section 1.3.1, in order to prove Theorem 4 we will
show, via two easy lemmas, that P = P z?,t? for appropriate choices z? and t? satisfies

P (a) ≤ 2gA(a) ∀a ∈ {0, 1}D (16)

and

E
i←[D]

[∆(Pi;U1)] =
1

D

∥∥∥∥ Ea∼P [a]− (1/2, . . . , 1/2)

∥∥∥∥
1

≥ c
√
g/D, (17)

where g = n−k is the entropy gap, c =
√

ln 2
18 , and Pi denotes the distribution of the i-th coordinate

of P . Properties (16) and (17) imply there is an (n, k)-source X such that Ext(X) = P , and so
ε ≥ c

√
g/D. This immediately yields the desired lower bound on D.

Lemma 5. For c =
√

ln 2
18 and C = 39, if g = n− k ≥ C, there exists z? ∈ {0, 1}D such that (16)

is satisfied for t? = D/2− c
√
gD.

Proof. Note that (16) is equivalent to

A(Bt?(z
?)) ≥ 2−g.

Moreover, a simple averaging argument (based on the fact that every y ∈ {0, 1}D belongs to the
same number of Hamming balls) implies there is z? such that A(Bt?(z

?)) ≥ 2−D · Vt? (recall Vt?

denotes the volume of a Hamming ball of radius t?). Fix this choice of z?. From the choice of c
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and C above, and since D > g ≥ C, by the inverse Chernoff bound (Lemma 2 with γ = 2c
√
g/D)

we have
2−D · Vt? ≥ exp

(
−18c2g

)
= 2−g

for t? = D/2− c
√
gD.

By considering the shifted extractor Ext(x) = Ext(x) + z?, without loss of generality we can
assume that z? = 0. Then, we have the following result.

Lemma 6. For t = D/2− α, it holds that∥∥∥∥∥ E
a∼P 0,t

[a]− (1/2, . . . , 1/2)

∥∥∥∥∥
1

≥ α.

Proof. Note that Ea∼P 0,t
[a] is a convex combination of elements of supp(P 0,t). Since supp(P 0,t) ⊆

Bt(0), it follows that ∥∥∥∥∥ E
a∼P 0,t

[a]

∥∥∥∥∥
1

≤ t.

Moreover, it holds that ‖(1/2, . . . , 1/2)‖1 = D/2. Consequently, by the triangle inequality we have∥∥∥∥∥ E
a∼P 0,t

[a]− (1/2, . . . , 1/2)

∥∥∥∥∥
1

≥ D/2− t = α.

Combining Lemmas 5 and 6 immediately yields (16) and (17).

4 Matching upper bound for somewhere extractors

In this section, we prove Theorem 2, which we restate here.

Theorem (Theorem 2, restated). There exists a (k, ε)-somewhere extractor Ext : {0, 1}n × [D]→
{0, 1} with

D =
2n−k−1

ε
+ 1.

Combining this result with Theorem 1 in the high min-entropy regime (i.e., n − k = O(1))
immediately leads to the following corollary.

Corollary 1. The minimum number of seeds required for a (k, ε)-somewhere extractor Ext :
{0, 1}n × [D]→ {0, 1} when n− k = O(1) is D = Θ(1/ε).

It is instructive to compare Corollary 1 with analogous results for strong extractors and dis-
persers, since somewhere extractors lie between the two. With respect to dispersers, the optimal
number of seeds in the high min-entropy regime is also Θ(1/ε) [RT00]. Moreover, this is achieved
by a uniformly random function with high probability. For strong extractors, the optimal number
of seeds is Θ(1/ε2), again achieved by a uniformly random function with high probability. Re-
markably, by Corollary 1 the optimal number of seeds for (1-bit output) somewhere extractors is
Θ(1/ε), matching the behavior of dispersers. On the other hand, by Theorem 3, a uniformly random
function requires D = Θ(1/ε2) to be a (k, ε)-somewhere extractor with non-negligible probability,
similarly to strong extractors!
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We now proceed to define and analyze the relevant (k, ε)-somewhere extractor Ext that proves
Theorem 2. In this section, it will be useful to identify the set of inputs {0, 1}n with the set of
integers [N ] for N = 2n. For any N and D, we define the function Ext : [N ]×{0, 1, . . . , E} → {0, 1}
for E = 2n−k−1

ε via the simple expression

Ext(x, i) = sign[(x+ i) mod 2E]. (18)

In (18), we interpret (x+i) mod 2E as an integer in {−E,−E+1, . . . , E−1} and sign(y) = 1{y≥0}.

Proof of Theorem 2 In order to prove the desired statement for the choice of Ext above, we
need to show that for every (n, k)-source X there is i = 0, 1, . . . , E such that

∆(Ext(X, i);U1) =
1

2
|Pr[Ext(X, i) = 1]− Pr[Ext(X, i) = 0]| < ε.

Fix an arbitrary (n, k)-source X. For each seed i = 0, 1, . . . , E, define

∆i = Pr[Ext(X, i) = 1]− Pr[Ext(X, i) = 0].

The ∆i’s satisfy two important properties. First, observe that

∆0 = −∆E (19)

since
sign(x mod 2E) = 1− sign[(x+ E) mod 2E]

for every x. Second, for every i ∈ [E] it holds that

|∆i −∆i−1| ≤ 2−k ·
⌈
N

2E

⌉
= 2−k ·

⌈
ε2k
⌉
≤ 4ε. (20)

To see that (20) holds, it suffices to note that (i) there are at most d N2E e = dε2ke integers x ∈ [N ]
such that Ext(x, i − 1) = 0 but Ext(x, i) = 1 and vice-versa, (ii) X(x) ≤ 2−k for every integer x,
and (iii) we have ε ≥ 1

2(1+2k)
. Finally, combining (19) and (20) ensures the existence of i? such that

|∆i? | ≤ 2ε. Therefore, we have
∆(Ext(X, i?);U1) ≤ ε.

5 Probabilistic constructions and lower bounds

In this section, we begin by discussing probabilistic constructions of somewhere and probable ex-
tractors via the probabilistic method with a uniformly random function. Then, we derive lower
bounds on the number of seeds D required by a uniformly random function to be a (k, ε, δ)-probable
extractor with non-negligible probability.

As our first main result, we show that, under a very mild constraint on k, ε, and δ, a random
function F : {0, 1}n × [D] → {0, 1} is a (k, ε, δ)-probable extractor with high probability when
D = C · n−k

ε2·δ for a sufficiently large constant C > 0. More precisely, we have the following result.

Theorem 7. There exist absolute constants c1, c2 > 0 such that for every k ≤ n − 1 a random
function F : {0, 1}n × [D] → {0, 1} is a (k, ε, δ)-probable extractor with probability at least 0.99
provided that

k ≥ log log(2/δ) + 2 log(1/ε) + c1,

D ≥ c2 ·
n− k
ε2 · δ

.
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We prove Theorem 7 by relating probable extractors to strong two-source extractors. Then, we
invoke the well-known existence result for such objects obtained via the probabilistic method.

Definition 7 ((n1, k1, n2, k2, ε)-strong two-source extractor). A function Ext : {0, 1}n1×{0, 1}n2 →
{0, 1} is an (n1, k1, n2, k2, ε)-strong two-source extractor if

E
Y

[∆(Ext(X,Y );U1)] ≤ ε

for every independent (n1, k1)-sources X and (n2, k2)-sources Y .

Note that a function Ext is an (n1, k1, n2, k2, ε)-strong two-source extractor if and only if

E
i←S

[∆(Ext(X, i);U1)] ≤ ε (21)

for every set S ⊆ {0, 1}n2 of size |S| = 2k2 . This observation leads to the following result.

Lemma 7. Let d = logD. Then, every (n, k, d, d − log(1/δ), ε)-strong two-source extractor Ext :
{0, 1}n × [D]→ {0, 1} is a (k, ε, δ)-probable extractor.

Proof. Suppose Ext is not a (k, ε, δ)-probable extractor. Then, there exists an (n, k)-source X such
that

Pr
i←[D]

[∆(Ext(X, i);U1) > ε] ≥ δ.

This implies that there is a set S ⊆ [D] of size |S| ≥ δ·D = 2d−log(1/δ) such that ∆(Ext(X, i);U1) > ε
for every i ∈ S. Taking into account (21), this shows that Ext is not an (n, k, d, d−log(1/δ), ε)-strong
two-source extractor.

It is known [DO03, Theorem 1] that, for integers n1 > k1 and n2 > k2, a uniformly random
function F : {0, 1}n1 × {0, 1}n2 → {0, 1} is an (n1, k1, n2, k2, ε)-strong two-source extractor with
probability at least 0.99 if

k1 ≥ log(n2 − k2) + 2 log(1/ε) + c1,

k2 ≥ log(n1 − k1) + 2 log(1/ε) + c2,

for some absolute constants c1, c2 > 0. Setting n1 = n, k1 = k, n2 = d, and k2 = d − log(1/δ)
and combining the above with Lemma 7 implies the statement of Theorem 7 for all δ = 2−b for
some integer b ≥ 1 and integers k ≤ n − 1. The statement can be immediately extended to all
δ ∈ (0, 1] and, say, all k ≤ n − 1 (with slightly larger constants c1 and c2) by noting that every
(k, ε, δ)-probable extractor is also a (k′, ε, δ′)-probable extractor for δ′ > δ and k′ > k, and that for
every δ there is b ≥ 1 such that δ/2 ≤ 2−b ≤ δ.

Remark 2. One might wonder why we obtained a probabilistic construction for (k, ε, δ)-probable
extractors via a connection to strong two-source extractors and not by applying the probabilistic
method more directly. The reason for this is that, in contrast with strong extractors, the fact that
F : {0, 1}n × [D]→ {0, 1} satisfies

Pr
i←[D]

[∆(F (X, i);U1) > ε] < δ

for every flat (n, k)-source X is not sufficient to argue that F is a (k, ε, δ)-probable extractor. This
means there is not a natural small set of sources we can restrict our attention to for the union
bound.
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We restate and prove Theorem 6 below.

Theorem (Theorem 6, restated). For any δ = δ(n) ∈ (0, 1] and large enough n, suppose that
k ≤ n− 400, 2−0.24(n+k) ≤ ε ≤ c for a sufficiently small constant c > 0, and

D ≤ n− k
400 · ε2 · δ

.

Then, a uniformly random function F : {0, 1}n × [D] → {0, 1} is not a (k, ε, δ)-probable extractor

with probability at least 1− 2−2
Ω(n)

.

We prove the statement above for the particular case of (k, ε)-somewhere extractors (i.e., The-
orem 3). The statement for general (k, ε, δ)-probable extractors follows immediately because the
function F restricted to the first δD ≤ n−k

400·ε2 seeds (which is still a uniformly random function)
must be a (k, ε)-somewhere extractor in order for F to be a (k, ε, δ)-probable extractor.

We will take X to be the uniform distribution over some set XF which depends on the choice of
F , and show the following properties hold for large enough n with high probability over the choice
of F : (i) we have |XF | ≥ K, so that X is an (n, k)-source, and (ii) it holds that ∆(F (X, i);U1) > ε

for every i ∈ [D]. To that end, for t = D/2− c0
√

(n− k)D where c0 =
√

ln 2
36 , we define the set

XF = {x ∈ [N ] : ‖F (x)‖1 ≤ t},

and let X be uniformly distributed over XF . The desired result follows immediately by combining
the two lemmas below with a union bound. Throughout the remainder of this section, we set
N = 2n, K = 2k, and g = n − k. Without loss of generality, we may also assume that ε < 1/400
and D = g

400·ε2 ≥ 400g.

Lemma 8. With probability at least 1−2−N
Ω(1)

over the choice of F , it holds that |XF | ≥ 1
2

√
KN ≥

K. Hence, X is an (n, k)-source with probability at least 1− 2−N
Ω(1)

.

Proof. Note that |XF | is distributed according to a binomial distribution with N trials and success
probability 2−D · Vt. Therefore,

E[|XF |] = N · 2−D · Vt
≥ N · exp

(
−9/2 · 4c2g

)
=
√
KN,

where the first inequality follows from Lemma 2 with γ = 2c0
√
g/D (note that γ ≤ 2c0 ≤ 1/2 and

γ2D ≥ 6 since g ≥ 400) and the second equality holds by the choice of c0. By the Chernoff bound6,
it follows that

Pr

[
|XF | <

1

2
·
√
KN

]
≤ Pr

[
|XF | <

1

2
· E[|XF |]

]
≤ exp

(
−
√
KN

8

)
= 2−N

Ω(1)
.

6The version of the Chernoff bound we use here states that Pr[X ≤ (1−δ)E[X]] ≤ exp
(
− δ

2 E[X]
2

)
for X =

∑N
i=1 Xi

with Xi ∈ {0, 1} independent and any δ ∈ [0, 1].
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Lemma 9. Suppose XF has size |XF | ≥ 1
2

√
KN . Then, we have ∆(F (X, i);U1) > ε simultaneously

for all i ∈ [D] with probability at least 1− 2−N
Ω(1)

over the choice of F .

Proof. We prove that this holds with probability at least 1 − 2−N
Ω(1)

over the choice of F in the
case i = 1. The reasoning is analogous for all i ∈ [D], and a union bound over all i ∈ [D] then
yields the desired result, since D ≤ N0.99 for large enough N .

For b ∈ {0, 1}, define XF,b = {x ∈ XF : F (x, 1) = b}. Then, we have

∆(F (X, 1);U1) =
1

2
·
∣∣∣∣ |XF,0| − |XF,1||XF |

∣∣∣∣. (22)

Note that |XF,0| − |XF,1| =
∑

x∈XF Zx, where the Zx are i.i.d. and Zx = 1 if x ∈ XF,0 or Zx = −1
if x ∈ XF,1. Observe also that

Pr[Zx = 1|x ∈ XF ] =

∑t
i=0

(
D−1
i

)
Vt

, (23)

Pr[Zx = −1|x ∈ XF ] =

∑t−1
i=0

(
D−1
i

)
Vt

, (24)

recalling that Vt denotes the volume of the Hamming ball with radius t. As a result, defining(
a
b

)
= 0 for b < 0, we have

E[|XF,0| − |XF,1|] = |XF | ·
∑t

i=0

(
D−1
i

)
−
∑t−1

i=0

(
D−1
i

)
Vt

= |XF | ·

∑t
i=0

[(
D−1
i

)
−
(
D−1
i−1
)]

Vt

≥ |XF | ·
∑t

i=0

(
1− 2t

D

)(
D
i

)
Vt

= |XF |
(

1− 2t

D

)
= |XF | · 2c0

√
g/D.

The first equality follows from (23) and (24). The first inequality holds because(
D − 1

i

)
−
(
D − 1

i− 1

)
=

(
1− 2i

D

)(
D

i

)
≥
(

1− 2t

D

)(
D

i

)
for all 0 ≤ i ≤ t. The last equality follows from the choice of t.

By Hoeffding’s inequality, we have that

Pr
[
|XF,0| − |XF,1| ≤ |XF | · c

√
g/D

]
≤ Pr

[
|XF,0| − |XF,1|

|XF |
≤
E[|XF,0| − |XF,1|]

|XF |
− c
√
g/D

]
≤ exp

(
−|XF |c

2g

2D

)
= 2−N

Ω(1)
, (25)

where the last equality holds because D = O(g/ε2) = O((KN)0.49) and |XF | ≥ 1
2

√
KN by hypoth-

esis. From (22) and (25), we conclude that

∆(F (X, 1);U1) ≥
c0
√
g/D

2
> ε

holds with probability at least 1− 2−N
Ω(1)

.
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Combining Lemmas 8 and 9 with a union bound immediately implies Theorem 3, and therefore
also Theorem 6 by the discussion above.
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A Alternative proof of Lemma 4

In this section, we present an alternative proof of Lemma 4 that was suggested to us by an anony-
mous reviewer.

Recall that we defined P = Pz?
Cz?

for z? = arg maxz Cz, where for arbitrary z ∈ {0, 1}D we defined

Pz(a) = A(a) ·
D∏
i=1

[1 + (−1)zi+aiγ]

with A = Ext(Un), and

Cz =
∑

a∈{0,1}D
Pz(a).

Observe that P is a distribution over {0, 1}D, and we defined Pi as the distribution of its i-th
coordinate. Then, our goal is to show that for every i ∈ [D] we have

∆(Pi;U1) ≥ γ/2.

Equivalently, we must show that
|Pi(0)− Pi(1)| ≥ γ (26)

for all i ∈ [D].
Consider an arbitrary i ∈ [D]. Then, we have

Cz? = (1 + (−1)z
?
i γ)S0 + (1− (−1)z

?
i γ)S1

for
Sb =

∑
a:ai=b

A(a)
∏
j 6=i

[1 + (−1)z
?
j+aj ], b ∈ {0, 1}.

We proceed by cases.

• z?i = 0: Then, it holds that S0 ≥ S1. Indeed, if S0 < S1, we claim that z? does not maximize
Cz, a contradiction. To see this, consider z′i = z? + ei. Then, we would have

Cz′ = (1− γ)S0 + (1 + γ)S1

> (1 + γ)S0 + (1− γ)S1

= Cz.

As a result, we can compute

Pi(0)− Pi(1) =
(1 + γ)S0 − (1− γ)S1
(1 + γ)S0 + (1− γ)S1

≥ γ,

which follows by elementary algebra, using the fact that S0 ≥ S1 and 0 < γ < 1. This
implies (26), as desired.

23



• z?i = 1: The proof follows analogously, but symmetrically, to the previous case. First, in this
case we have S1 ≥ S0. Then, we have

Pi(1)− Pi(0) =
(1 + γ)S1 − (1− γ)S0
(1 + γ)S1 + (1− γ)S0

≥ γ,

again by elementary algebra, since S1 ≥ S0 and 0 < γ < 1. This implies (26), which concludes
the proof.
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