Matching Smolensky's correlation bound with majority

Emanuele Viola*

December 4, 2019

Abstract

We show that there are degree- d polynomials over \mathbb{F}_{2} with correlation $\Omega(d / \sqrt{n})$ with the majority function on n bits. This matches the $O(d / \sqrt{n})$ bound by Smolensky.

The "correlation" between two boolean functions $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$, when one function is balanced, can be defined as

$$
2^{-n} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}(-1)^{g(x)}
$$

The study of correlation between explicit functions and low-degree polynomials $p\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ over $\mathbb{F}_{2}=\{0,1\}$ is the subject of intense study also because it is linked to many long-standing questions in complexity theory. For a survey see [Vio09].

Building on Razborov [Raz87], Smolensky proved [Smo87, Smo93] that the correlation between majority and degree- d polynomials is at most $O(d / \sqrt{n})$. In this paper $O($.$) and \Omega($. denote absolute constants. Here we define the majority function $M a j$ on n bits to output 0 if the input Hamming weight is $\geq n / 2$ (note $(-1)^{0}=1$ and $(-1)^{1}=-1$).

Smolensky's bound was known to be tight up to constant factors for $d=\Omega(\sqrt{n})$, see [Vio09]. It can also be verified to be tight for $d=O(1)$ by considering the polynomial $1-x_{0}$. But apparently it was not known to be tight for other values of d. Here we prove a matching construction for any d, also recovering both previous constructions.

Theorem 1. There are degree-d polynomials over \mathbb{F}_{2} with correlation $\Omega(d / \sqrt{n})$ with the majority function, for any n, d.

The rest of this paper is devoted to the proof of this theorem. The main proof is for odd n. If n is even we can use the polynomial $p^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right):=p\left(x_{0}, x_{1}, \ldots, x_{n-2}\right)\left(1-x_{n-1}\right)$ where p is the polynomial with the highest correlation γ with majority on input length $n-1$. The correlation of p^{\prime} is $>\gamma / 2$.

We now proceed with the main proof. We can assume without loss of generality that d is a power of 2 and $\leq 0.1 \sqrt{n}$. The polynomial witnessing the correlation will be symmetric. For a symmetric function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ write $f_{w}:\{0,1, \ldots, n\} \rightarrow\{0,1\}$ for $f(x)=f_{w}(|x|)$

[^0]where $|x|$ is the Hamming weight of x. The correlation between a symmetric polynomial p and Majority can be written as
$$
2^{-n} \sum_{i=0}^{n}\binom{n}{i}(-1)^{p_{w}(i)}(-1)^{M a j_{w}(i)}
$$

To construct p we use for $\ell=\log _{2}(2 d)$ the following result which is Theorem 2.4 in [BGL06] and follows from Lucas' theorem.
Claim 2. Let $f_{w}:\{0,1, \ldots, n\} \rightarrow\{0,1\}$ depend only on the input modulo 2^{ℓ}. There is a symmetric polynomial $p:\{0,1\}^{n} \rightarrow\{0,1\}$ of degree 2^{ℓ} such that $p_{w}=f_{w}$.

The definition of f_{w} and hence p is as follows. Define Block i to be the $2 d$ integers $2 d i+0,2 d i+1, \ldots, 2 d i+2 d-1$. Let i^{*} be the smallest i such that Block i contains an integer larger than $n / 2$. Let t be the number of integers less than $n / 2$ in Block i. (If $n+1$ is a power of 2 we have $t=0$, and below there is no residual chunk.) Define f_{w} to be 1 on the smallest t inputs, 0 on the next $t, 0$ on the next $d-t$, and finally 1 on the next $d-t$. Here's an example for $n=17, d=2, t=1, i^{*}=2$; the last row shows the division in blocks:

weight	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$(-1)^{M_{a} j_{w}}$	-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	+	+	+
$(-1)^{p_{w}}$	-	+	+	-	-	+	+	-	-	+	+	-	-	+	+	-	-	+

Note that p_{w} is by construction anti-symmetric in the sense, different from above, that: $p_{w}(i)=1-p_{w}(n-i)$. The same is true for $M a j_{w}$. Therefore $g(i):=(-1)^{p_{w}(i)}(-1)^{M a j_{w}(i)}$ is symmetric, that is $g(i)=g(n-i)$. Hence we only need to consider the bigger half of the Hamming weights. Majority is always 1 , and so we can rewrite the correlation as

$$
2^{-n} \cdot 2 \cdot \sum_{i=0}^{(n-1) / 2}\binom{n}{(n+1) / 2+i}(-1)^{p_{w}((n+1) / 2+i)}
$$

Enumerate the Hamming weights starting from the biggest one $i=0$. The term $(-1)^{p_{w}((n+1) / 2+i)}$ will be +1 on the first $t+(d-t)=d$ Hamming weights, then -1 on the next d, then again +1 on the next d, and so on. We group the Hamming weights in chunks of length $2 d$; in each chunk the term is +1 for the first half and -1 for the second half. The number of Hamming weights is $(n+1) / 2$. Hence we have $\lfloor(n+1) / 4 d\rfloor$ chunks, plus a residual truncated chunk of length $\ell<2 d$.

Hence we can write the correlation as follows.

$$
\begin{aligned}
2^{-n} \cdot 2 \cdot \sum_{i=0}^{\lfloor(n+1) / 4 d\rfloor-1} \sum_{j=0}^{d-1}\left(\binom{n}{(n+1) / 2+2 d i+j}\right. & \left.-\binom{n}{(n+1) / 2+2 d i+j+d}\right) \\
& +2^{-n} \cdot 2 \cdot \sum_{i=0}^{\ell-1}\binom{n}{n-i}(-1)^{p_{w}((n+1) / 2+i)} .
\end{aligned}
$$

By, say, a Chernoff bound the absolute value of the latter summand $+2^{-n} \cdots$ is at most $2^{-\Omega(n)}$, using that $\ell<2 d=O(\sqrt{n})$. Now consider the first summand. Because the binomials
are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce the range of i. We reduce it to $\lfloor\sqrt{n} / d\rfloor$. So the correlation is at least

$$
2^{-n} \cdot 2 \cdot \sum_{i=0}^{\lfloor\sqrt{n} / d\rfloor} \sum_{j=0}^{d-1}\left(\binom{n}{(n+1) / 2+2 d i+j}-\binom{n}{(n+1) / 2+2 d i+j+d}\right)-2^{-\Omega(n)} .
$$

The next lemma bounds below the difference of two such binomial coefficients.
Lemma 3. For $s \leq 4 \sqrt{n}$ and $d \leq 0.1 \sqrt{n}$ we have: $\left.2^{-n}\binom{n}{n / 2+s}-\binom{n}{n / 2+s+d}\right) \geq \Omega\left(s d / n^{3 / 2}\right)$.
We apply the lemma with $s=1 / 2+2 d i+j$ which note is $\leq 1 / 2+2 \sqrt{n}+0.1 \sqrt{n} \leq 3 \sqrt{n}$. The correlation is at least

$$
\sum_{i=0}^{\lfloor\sqrt{n} / d\rfloor} \sum_{j=0}^{d-1} \Omega\left((1 / 2+2 d i+j) d / n^{3 / 2}\right)-2^{-\Omega(n)} \geq \sum_{k=0}^{\Omega(\sqrt{n})} \Omega\left(k d / n^{3 / 2}\right)-2^{-\Omega(n)} \geq \Omega(d / \sqrt{n})
$$

To justify the first inequality we use $1 / 2+2 d i+j \geq d i+j$ and then do the change of variable $k=d i+j$. For the second we use that the sum of all k up to $\Omega(\sqrt{n})$ is $\Omega(n)$. This concludes the proof except for the lemma.

Proof of lemma We have

$$
\begin{aligned}
& \binom{n}{n / 2+s}-\binom{n}{n / 2+s+d} \\
= & \frac{n!}{(n / 2+s)!(n / 2-s)!}-\frac{n!}{(n / 2+s+d)!(n / 2-s-d)!} \\
= & \frac{n!}{(n / 2+s)!(n / 2-s)!}\left[1-\frac{(n / 2-s)(n / 2-s-1) \cdots(n / 2-s-d+1)}{(n / 2+s+d)(n / 2+s+d-1) \cdots(n / 2+s+1)}\right] .
\end{aligned}
$$

The ratio inside the square bracket is at most

$$
\frac{(n / 2-s)^{d}}{(n / 2)^{d}}=(1-2 s / n)^{d} \leq e^{-2 s d / n} \leq 1-s d / n
$$

where the last inequality holds because $2 s d / n \leq 1$.
The binomial coefficient outside of the square bracket is

$$
\binom{n}{n / 2+s} \geq \frac{2^{n h(1 / 2+s / n)}}{\sqrt{8 n(1 / 2+s / n)(1 / 2-s n)}} \geq \Omega\left(\frac{2^{n\left(1-O\left(s^{2} / n^{2}\right)\right)}}{\sqrt{n}}\right) \geq \Omega\left(\frac{2^{n}}{\sqrt{n}}\right)
$$

Here h is the binary entropy function, and the first inequality can be found as Lemma 17.5.1 in [CT06]. The second and third inequalities follow from the approximation $h(1 / 2+$ $x) \geq 1-4 x^{2}$, valid for every x, and $s=O(\sqrt{n})$.

The lemma follows by combining the two bounds.

References

[BGL06] Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric polynomials over Z_{m} and simultaneous communication protocols. J. of Computer and System Sciences, 72(2):252-285, 2006.
[CT06] Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, 2006.
[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Akademiya Nauk SSSR. Matematicheskie Zametki, 41(4):598-607, 1987. English translation in Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987.
[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In 19th ACM Symp. on the Theory of Computing (STOC), pages 77-82. ACM, 1987.
[Smo93] Roman Smolensky. On representations by low-degree polynomials. In 34th IEEE IEEE Symp. on Foundations of Computer Science (FOCS), pages 130-138, 1993.
[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations and Trends in Theoretical Computer Science, 5(1):1-72, 2009.

[^0]: *Supported by NSF CCF award 1813930 .

