
Matching Smolensky’s correlation bound with majority

Emanuele Viola∗

December 4, 2019

Abstract

We show that there are degree-d polynomials over F2 with correlation Ω(d/
√
n)

with the majority function on n bits. This matches the O(d/
√
n) bound by Smolensky.

The “correlation” between two boolean functions f, g : {0, 1}n → {0, 1}, when one function
is balanced, can be defined as

2−n
∑

x∈{0,1}n
(−1)f(x)(−1)g(x).

The study of correlation between explicit functions and low-degree polynomials p(x0, x1, . . . , xn−1)
over F2 = {0, 1} is the subject of intense study also because it is linked to many long-standing
questions in complexity theory. For a survey see [Vio09].

Building on Razborov [Raz87], Smolensky proved [Smo87, Smo93] that the correlation
between majority and degree-d polynomials is at most O(d/

√
n). In this paper O(.) and Ω(.)

denote absolute constants. Here we define the majority function Maj on n bits to output 0
if the input Hamming weight is ≥ n/2 (note (−1)0 = 1 and (−1)1 = −1).

Smolensky’s bound was known to be tight up to constant factors for d = Ω(
√
n), see

[Vio09]. It can also be verified to be tight for d = O(1) by considering the polynomial 1−x0.
But apparently it was not known to be tight for other values of d. Here we prove a matching
construction for any d, also recovering both previous constructions.

Theorem 1. There are degree-d polynomials over F2 with correlation Ω(d/
√
n) with the

majority function, for any n, d.

The rest of this paper is devoted to the proof of this theorem. The main proof is for odd
n. If n is even we can use the polynomial p′(x0, x1, . . . , xn−1) := p(x0, x1, . . . , xn−2)(1−xn−1)
where p is the polynomial with the highest correlation γ with majority on input length n−1.
The correlation of p′ is > γ/2.

We now proceed with the main proof. We can assume without loss of generality that d is
a power of 2 and ≤ 0.1

√
n. The polynomial witnessing the correlation will be symmetric. For

a symmetric function f : {0, 1}n → {0, 1} write fw : {0, 1, . . . , n} → {0, 1} for f(x) = fw(|x|)
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where |x| is the Hamming weight of x. The correlation between a symmetric polynomial p
and Majority can be written as

2−n
n∑

i=0

(
n

i

)
(−1)pw(i)(−1)Majw(i).

To construct p we use for ` = log2(2d) the following result which is Theorem 2.4 in
[BGL06] and follows from Lucas’ theorem.

Claim 2. Let fw : {0, 1, . . . , n} → {0, 1} depend only on the input modulo 2`. There is a
symmetric polynomial p : {0, 1}n → {0, 1} of degree 2` such that pw = fw.

The definition of fw and hence p is as follows. Define Block i to be the 2d integers
2di + 0, 2di + 1, . . . , 2di + 2d − 1. Let i∗ be the smallest i such that Block i contains an
integer larger than n/2. Let t be the number of integers less than n/2 in Block i. (If n + 1
is a power of 2 we have t = 0, and below there is no residual chunk.) Define fw to be 1 on
the smallest t inputs, 0 on the next t, 0 on the next d − t, and finally 1 on the next d − t.
Here’s an example for n = 17, d = 2, t = 1, i∗ = 2; the last row shows the division in blocks:

weight 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(−1)Majw - - - - - - - - - + + + + + + + + +
(−1)pw - + + - - + + - - + + - - + + - - +

Note that pw is by construction anti-symmetric in the sense, different from above, that:
pw(i) = 1 − pw(n − i). The same is true for Majw. Therefore g(i) := (−1)pw(i)(−1)Majw(i)

is symmetric, that is g(i) = g(n− i). Hence we only need to consider the bigger half of the
Hamming weights. Majority is always 1, and so we can rewrite the correlation as

2−n · 2 ·
(n−1)/2∑

i=0

(
n

(n+ 1)/2 + i

)
(−1)pw((n+1)/2+i).

Enumerate the Hamming weights starting from the biggest one i = 0. The term (−1)pw((n+1)/2+i)

will be +1 on the first t+ (d− t) = d Hamming weights, then −1 on the next d, then again
+1 on the next d, and so on. We group the Hamming weights in chunks of length 2d; in each
chunk the term is +1 for the first half and −1 for the second half. The number of Hamming
weights is (n + 1)/2. Hence we have b(n + 1)/4dc chunks, plus a residual truncated chunk
of length ` < 2d.

Hence we can write the correlation as follows.

2−n · 2 ·
b(n+1)/4dc−1∑

i=0

d−1∑
j=0

((
n

(n+ 1)/2 + 2di+ j

)
−
(

n

(n+ 1)/2 + 2di+ j + d

))

+ 2−n · 2 ·
`−1∑
i=0

(
n

n− i

)
(−1)pw((n+1)/2+i).

By, say, a Chernoff bound the absolute value of the latter summand +2−n · · · is at most
2−Ω(n), using that ` < 2d = O(

√
n). Now consider the first summand. Because the binomials
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are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce
the range of i. We reduce it to b

√
n/dc. So the correlation is at least

2−n · 2 ·
b
√
n/dc∑
i=0

d−1∑
j=0

((
n

(n+ 1)/2 + 2di+ j

)
−
(

n

(n+ 1)/2 + 2di+ j + d

))
− 2−Ω(n).

The next lemma bounds below the difference of two such binomial coefficients.

Lemma 3. For s ≤ 4
√
n and d ≤ 0.1

√
n we have: 2−n

((
n

n/2+s

)
−
(

n
n/2+s+d

))
≥ Ω(sd/n3/2).

We apply the lemma with s = 1/2 + 2di+ j which note is ≤ 1/2 + 2
√
n+ 0.1

√
n ≤ 3

√
n.

The correlation is at least

b
√
n/dc∑
i=0

d−1∑
j=0

Ω((1/2 + 2di+ j)d/n3/2)− 2−Ω(n) ≥
Ω(
√
n)∑

k=0

Ω(kd/n3/2)− 2−Ω(n) ≥ Ω(d/
√
n).

To justify the first inequality we use 1/2 + 2di + j ≥ di + j and then do the change of
variable k = di+ j. For the second we use that the sum of all k up to Ω(

√
n) is Ω(n). This

concludes the proof except for the lemma.

Proof of lemma We have(
n

n/2 + s

)
−
(

n

n/2 + s+ d

)
=

n!

(n/2 + s)!(n/2− s)!
− n!

(n/2 + s+ d)!(n/2− s− d)!

=
n!

(n/2 + s)!(n/2− s)!

[
1− (n/2− s)(n/2− s− 1) · · · (n/2− s− d+ 1)

(n/2 + s+ d)(n/2 + s+ d− 1) · · · (n/2 + s+ 1)

]
.

The ratio inside the square bracket is at most

(n/2− s)d

(n/2)d
= (1− 2s/n)d ≤ e−2sd/n ≤ 1− sd/n,

where the last inequality holds because 2sd/n ≤ 1.
The binomial coefficient outside of the square bracket is(

n

n/2 + s

)
≥ 2nh(1/2+s/n)√

8n(1/2 + s/n)(1/2− sn)
≥ Ω

(
2n(1−O(s2/n2))

√
n

)
≥ Ω

(
2n

√
n

)
.

Here h is the binary entropy function, and the first inequality can be found as Lemma
17.5.1 in [CT06]. The second and third inequalities follow from the approximation h(1/2 +
x) ≥ 1− 4x2, valid for every x, and s = O(

√
n).

The lemma follows by combining the two bounds.
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