
Pseudo-deterministic Streaming

Shafi Goldwasser∗ Ofer Grossman† Sidhanth Mohanty‡ David P. Woodruff§

December 6, 2019

Abstract

A pseudo-deterministic algorithm is a (randomized) algorithm which, when run multiple
times on the same input, with high probability outputs the same result on all executions.
Classic streaming algorithms, such as those for finding heavy hitters, approximate counting,
`2 approximation, finding a nonzero entry in a vector (for turnstile algorithms) are not pseudo-
deterministic. For example, in the instance of finding a nonzero entry in a vector, for any known
low-space algorithm A, there exists a stream x so that running A twice on x (using different
randomness) would with high probability result in two different entries as the output.

In this work, we study whether it is inherent that these algorithms output different values
on different executions. That is, we ask whether these problems have low-memory pseudo-
deterministic algorithms. For instance, we show that there is no low-memory pseudo-deterministic
algorithm for finding a nonzero entry in a vector (given in a turnstile fashion), and also that
there is no low-dimensional pseudo-deterministic sketching algorithm for `2 norm estimation.
We also exhibit problems which do have low memory pseudo-deterministic algorithms but no low
memory deterministic algorithm, such as outputting a nonzero row of a matrix, or outputting
a basis for the row-span of a matrix.

We also investigate multi-pseudo-deterministic algorithms: algorithms which with high prob-
ability output one of a few options. We show the first lower bounds for such algorithms. This
implies that there are streaming problems such that every low space algorithm for the problem
must have inputs where there are many valid outputs, all with a significant probability of being
outputted.

1 Introduction

Consider some classic streaming problems: heavy hitters, approximate counting, `p approximation,
finding a nonzero entry in a vector (for turnstile algorithms), counting the number of distinct
elements in a stream. These problems were shown to have low-space randomized algorithms in
[CCFC04, Mor78, Fla85, AMS99, IW05, MW10], respectively. All of these algorithms exhibit the

∗Supported by NSF CNS-1413920, DARPA/NJIT 491512803, Sloan Foundation 996698, and MIT/IBM W1771646.
This work was done at the Simons Institute for the Theory of Computing.
†Supported by the Fannie and John Hertz Foundation fellowship, an NSF GRFP award, NSF CNS-1413920,

DARPA/NJIT 491512803, Sloan Foundation 996698, and MIT/IBM W1771646. This work was done in part at the
Simons Institute for the Theory of Computing.
‡EECS Department, University of California Berkeley. Supported by NSF grant CCF-1718695
§Supported by the National Science Foundation under Grant No. CCF-1815840. This work was done in part at

the Simons Institute for the Theory of Computing.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 177 (2019)

property that when running the algorithm multiple times on the same stream, different outputs
may result on the different executions.

For the sake of concreteness, let’s consider the problem of `2 approximation: given a stream
of poly(n) updates to a vector (the vector begins as the zero vector, and updates are of the form
“increase the ith entry by 1” or “decrease the jth entry by 1”), output an approximation of the
`2 norm of the vector. There exists a celebrated randomized algorithm for this problem [AMS99].
This algorithm has the curious property that running the same algorithm multiple times on the
same stream may result in different approximations. That is, if Alice runs the algorithm on the
same stream as Bob (but using different randomness), Alice may get some approximation of the
`2 norm (such as 27839.8), and Bob (running the same algorithm, but with your own randomness)
may get a different approximation (such as 27840.2). The randomized algorithm has the guarantee
that both of the approximations will be close to the true value. However, interestingly, Alice and
Bob end up with slightly different approximations. Is this behavior inherent? That is, could there
exist an algorithm which, while being randomized, for all streams with high probability both Alice
and Bob will end up with the same approximation for the `2 norm?

Such an algorithm, which when run on the same stream multiple times outputs the same output
with high probability is called pseudo-deterministic. The main question we tackle in this paper is:

What streaming problems have low-memory pseudo-deterministic algorithms?

1.1 Our Contributions

This paper is the first to investigate pseudo-determinism in the context of streaming algorithms. We
show certain problems have pseudo-deterministic algorithms substantially faster than the optimal
deterministic algorithm, while other problems do not.

1.1.1 Lower Bounds

Find-Support-Elem: We show pseudo-deterministic lower bounds for finding a nonzero entry in
a vector in the turnstile model. Specifically, consider the problem Find-Support-Elem of finding
a nonzero entry in a vector for a turnstile algorithm (the input is a stream of updates of the form
“increase entry i by 1” or “decrease entry j by 1”, and we wish to find a nonzero entry in the final
vector). We show this problem does not have a low-memory pseudo-deterministic algorithm:

Theorem 1.1. There is no pseudo-deterministic algorithm for Find-Support-Elem which uses
õ(n) memory.

This is in contrast with the work of [MW10], which shows a randomized algorithm for the
problem using polylogarithmic space.

Theorem 1.1 can be viewed as showing that any low-memory algorithm A for Find-Support-
Elem must have an input x where the output A(x) (viewed as a random variable depending on the
randomness used by A) must have at least a little bit of entropy. The algorithms we know for Find-
Support-Elem have a very high amount of entropy in their outputs (the standard algorithms, for
an input which is the all 1s vector, will find a uniformly random entry). Is this inherent, or can the
entropy of the output be reduced? We show that this is inherent: for every low memory algorithm
there is an input x such that A(x) has high entropy.

2

Theorem 1.2. Every randomized algorithm for Find-Support-Elem using o(s) space must have

an input x such that A(x) has entropy at least log
(

n
s logn

)
.

So, in particular, an algorithm using n1−ε space must have outputs with entropy Ω(log n), which
is maximal up to constant factors.

We also show analogous lower bounds for the problem Find-Duplicatein which the input is a
stream of 3n/2 integers between 1 and n, and the goal is to output a number k which appears at
least twice in the stream:

Theorem 1.3. Every randomized algorithm for Find-Duplicate using o(s) space must have an

input x such that A(x) has entropy at least log
(

n
s logn

)
.

Techniques To prove a pseudo-deterministic lower bound for Find-Support-Elem, the idea
is to show that if a pseudo-deterministic algorithm existed for Find-Support-Elem, then there
would also exist a pseudo-deterministic one-way communication protocol for the problem One-
Way-Find-Duplicate, where Alice has a subset of [n] of size 3n/4, and so does Bob, and they
wish to find an element which they share.

To prove a lower bound on the one-way communication problem One-Way-Find-Duplicate,
we show that if such a pseudo-deterministic protocol existed, then Bob can use Alice’s message to
recover many (n/10) elements of her input (which contains much more information than one short
message). The idea is that using Alice’s message, Bob can find an element they have in common.
Then, he can remove the element he found that they have in common from his input, and repeat
to find another element they have in common (using the original message Alice sent, so Alice does
not have to send another message). After repeating n/10 times, he will have found many elements
which Alice has.

It may not be immediately obvious where pseudo-determinism is being used in this proof.
The idea is that because the algorithm is pseudo-deterministic, the element which Bob finds as
the intersection with high probability does not depend on the randomness used by Alice. That
is, let b1, b2, . . . be the sequence of elements which Bob finds. Because the algorithm is pseudo-
deterministic, there exists a specific sequence b1, b2, . . . such that with high probability this will be
the sequence of elements which Bob finds. Notice that a randomized (but not pseudo-deterministic)
algorithm for One-Way-Find-Duplicatewould result in different sequences on different execu-
tions.

When the sequence b1, b2, . . . is determined in advance, we can use a union bound and argue that
with high probability, one of Alice’s messages will likely work on all of Bob’s inputs. If b1, b2, . . . is
not determined in advance, then it’s not possible to use a union bound.

Proving a lower bound on the entropy of the output of an algorithm for Find-Support-
Elem uses a similar idea, but is more technically involved. It is harder to ensure that Bob’s
later inputs will be able to succeed with Alice’s original message. The idea, at a very high level, is
to have Alice send many messages (but not too many), so that Bob’s new inputs will not strongly
depend on any part of Alice’s randomness, and also to have Alice send additional messages to keep
Bob from going down a path where Alice’s messages will no longer work.

This lower bound technique may seem similar to the way one would show a deterministic lower
bound. It’s worth noting that for certain problems, deterministic lower bounds do not generalize to
pseudo-deterministic lower bounds; see our results on pseudo-deterministic upper bounds for some

3

examples and intuition for why certain problems remain hard in the pseudo-deterministic setting
while others do not.

Sketching lower bounds for pseudo-deterministic `2 norm estimation: The known ran-
domized algorithms (such as [AMS99]) for approximating the `2 norm of a vector x in a stream
rely on sketching, i.e., storing Sx where S is a d× n random matrix where d� n and outputting
the `2 norm of Sx. More generally, an abstraction of this framework is the setting where one has
a distribution over matrices D and a function f . One then stores a sketch of the input vector
Sx where S ∼ D and outputs f(Sx). By far, most streaming algorithms fall into this frame-
work and in fact some recent work [LNW14,AHLW16] proves under some caveats and assumptions
that low-space turnstile streaming algorithms imply algorithms based on low-dimensional sketches.
Since sketching-based streaming algorithms are provably optimal in many settings, it motivates
studying whether there are low-dimensional sketches of x from which the `2 norm can be estimated
pseudo-deterministically.

We prove a lower bound on the dimension of sketches from which the `2 norm can be estimated
pseudo-deterministically:

Theorem 1.4. Suppose D is a distribution over d× n matrices and f is a function from Rd to R
such that for all x ∈ Rn, when S ∼ D:

• f(Sx) approximates the `2 norm of x to within a constant factor with high probability,

• f(Sx) takes a unique value with high probability.

Then d must be Ω (n).

As an extension, we also show that

Theorem 1.5. For every constant ε, δ > 0, every randomized sketching algorithm A for `2 norm
estimation using a O(n1−δ)-dimensional sketch, there is a vector x such that the output entropy
of A(x) is at least 1 − ε. Furthermore, there is a randomized algorithm using a O(poly log n)-
dimensional sketch with output entropy at most 1 + ε on all input vectors.

Techniques The first insight in our lower bound is that if there is a pseudo-deterministic stream-
ing algorithm A for `2 norm estimation in k space, then that means there is a fixed function g such
that g(x) approximates ‖x‖2 and A is a randomized algorithm to compute g(x) with high proba-
bility. The next step uses a result in the work of [HW13] to illustrate a (randomized) sequence of
vectors x(1), . . . ,x(t) only depending on g such that any linear sketching-based algorithm that uses
sublinear dimensional sketches outputs an incorrect approximation to the `2 norm of some vector
in that sequence with constant probability, thereby implying a dimension lower bound.

1.1.2 Upper Bounds

On the one hand, all the problems considered so far were such that

1. There were “low-space” randomized algorithms.

2. The pseudo-deterministic and deterministic space complexity were “high” and equal up to
logarithmic factors.

4

This raises the question if there are natural problems where pseudo-deterministic algorithms
outperform deterministic algorithms (by more than logarithmic factors). We answer this question
in the affirmative.

We illustrate several natural problems where the pseudo-deterministic space complexity is
strictly smaller than the deterministic space complexity.

The first problem is that of finding a nonzero row in a matrix given as input in a turnstile
stream. Our result for this problem has the bonus of giving a natural problem where the pseudo-
deterministic streaming space complexity is strictly sandwiched between the deterministic and
randomized streaming space complexity.

In the problem Find-Nonzero-Row, the input is an n× d matrix A streamed in the turnstile
model, and the goal is to output an i such that the ith row of the matrix A is nonzero.

Theorem 1.6. The randomized space complexity for Find-Nonzero-Row is Θ̃(1), the pseudo-
deterministic space complexity for Find-Nonzero-Row is Θ̃(n), and the deterministic space com-
plexity for Find-Nonzero-Row is Θ̃(nd).

The idea behind the proof of Theorem 1.6 is to sample a random vector x, and then deter-
ministically find a nonzero entry of Ax. With high probability, if a row of A is nonzero, then the
corresponding entry of Ax will be nonzero as well.

Discussion: Roughly speaking, in this problem there is a certain structure that allows us to
use randomness to “hash” pieces of the input together, and then apply a deterministic algorithm
on the hashed pieces. The other upper bounds we show for pseudo-deterministic algorithms also
have a structure which allows us to hash, and then use a deterministic algorithm. It is interesting
to ask if there are natural problems which have faster pseudo-deterministic algorithms than the
best deterministic algorithms, but for which the pseudo-deterministic algorithms follow a different
structure.

The next problems we show upper bounds for are estimating frequencies in a length-m stream
of elements from a large universe [n] up to error εm, and that of estimating the inner product of
two vectors x and y in an insertion-only stream of length-m up to error ε · ‖x‖1 · ‖y‖1. We show
a separation between the deterministic and (weak) pseudo-deterministic space complexity in the
regime where m� n.

Theorem 1.7. There is a pseudo-deterministic algorithm for point query estimation and inner

product estimation that uses O
(

logm
ε + log n

)
bits of space. On the other hand, any deterministic

algorithm needs Ω
(

logn
ε

)
bits of space.

1.2 Related work

Pseudo-deterministic algorithms were introduced by Gat and Goldwasser [GG11]. Such algorithms
have since been studied in the context of standard (sequential algorithms) [Gro15, OS16], average
case algorithms [Hol17], parallel algorithms [GG15], decision tree algorithms [GGR13, Gol19], in-
teractive proofs [GGH17], learning algorithms [OS18], approximation algorithms [OS18, DPV18],
and low space algorithms [GL19]. In this work, we initiate the study of pseudo-determinism in the
context of streaming algorithms (and in the context of one-way communication complexity).

5

The problem of finding duplicates in a stream of integers between 1 and n was first considered
by [GR09], where an O(log3 n) bits of space algorithm is given, later improved by [JST11] to
O(log2 n) bits. We show that in contrast to these low space randomized algorithms, a pseudo-
deterministic algorithm needs significantly more space in the regime where the length of the stream
is, say, 3n/2. [KNP+17] shows optimal lower bounds for randomized algorithms solving the problem.

The method of `p-sampling to sample an index of a turnstile vector with probability proportional
to its `p mass, whose study was initiated in [MW10], is one way of outputting an element from the
support of a turnstile stream. A line of work [FIS08, MW10, JST11, AKO10], ultimately leading
to an optimal algorithm in [JW18] and tight lower bounds in [KNP+17], characterizes the space
complexity of randomized algorithms to output an element from the support of a turnstile vector
as Θ(poly log n), in contrast with the space lower bounds we show for algorithms constrained to a
low entropy output.

1.3 Open Problems

Morris Counters: In [Mor78], Morris showed that one can approximate (up to a multiplicative
error) the number of elements in a stream with up to n elements using O(log log n) bits of space.
Does there exist an O(log log n) bits of space pseudo-deterministic algorithm for the problem?

`2-norm estimation: In this work, we show that there are no low-dimensional pseudo-deterministic
sketching algorithms for estimating the `2-norm of a vector. However, we do not show a turnstile
streaming lower bound for pseudo-deterministic algorithms, which motivates the following question.
Does there exist a O(poly log n) space pseudo-deterministic algorithm for `2-norm estimation?

Multi-pass streaming lower bounds: All the streaming lower bounds we prove are in the
single pass model, i.e., where the algorithm receives the stream exactly once. How do these lower
bounds extend to the multi-pass model, where the algorithm receives the stream multiple times?
All of the pseudo-deterministic streaming lower bounds in this paper do not even extend to 2-pass
streaming algorithms.

1.4 Table of complexities

In the below table, we outline the known space complexity of various problems considered in our
work.

Problem Randomized Deterministic Pseudo-deterministic

Morris Counters Θ(log log n) Θ(log n) O(log n), Ω(log log n)

Find-Duplicate Θ(log n) Θ(n) Θ̃(n)

`2-approximation (streaming)
Θ(log n) Θ̃(n)

Θ̃(n)

`2-approximation (sketching) Õ(n), Ω̃(log n)

Find-Nonzero-Row Θ̃(1) Θ̃(nd) Θ̃(n)

Table 1: Table of space complexities.

6

2 Preliminaries

A randomized algorithm is called pseudo-deterministic if for every valid input x, when running the
algorithm twice on x, the same output is obtained with probability at least 2/3. Equivalently (up
to amplification of error probabilities), one can think of an algorithm as pseudo-deterministic if for
every input x, there is a unique value f(x) such that with probability at least 2/3 the algorithm
outputs f(x) on input x

Definition 2.1 (Pseudo-deterministic). A (randomized) algorithm A is called pseudo-deterministic
if for all valid inputs x, the algorithm A satisfies

Pr
r1,r2

[A(x, r1) = A(x, r2)] ≥ 2/3.

An extension of pseudo-determinism is that of k-entropy randomized algorithms [GL19]. Such
algorithms have the guarantee that for every input x, the distribution A(x, r) (over a random choice
of randomness r) has low entropy, in particular bounded by k.

Another extension of pseudo-determinism is that of m-pseudo-deterministic algorithms, from
[Gol19]. Intuitively speaking, any algorithm is k-pseudo-deterministic if for every valid input, with
high probability the algorithm outputs one of k options (so, a 1-pseudo-deterministic algorithm is
the same as a standard pseudo-deterministic algorithm, since it outputs the one unique option with
high probability):

Definition 2.2 (k-pseudo-deterministic). We say that an algorithm A is k-pseudo-deterministic if
for all valid inputs x, there is a set S(x) of size at most k, such that Prr[A(x, r) ∈ S(x)] ≥ k+1

k+2

For the purposes of this work, we define a simple notion that we call a k-concentrated algorithm.

Definition 2.3. We say that an algorithm A is k-concentrated if for all valid inputs x, there is
some output F (x) such that Prr[A(x, r) = F (x)] ≥ 1

k .

The reason for making this definition is that any log k-entropy randomized algorithm, and any
(k+ 2)-pseudo-deterministic algorithm is k-concentrated. Thus, showing an impossibility result for
k-concentrated algorithms also shows an impossibility result for log k-entropy and (k + 2)-pseudo-
deterministic algorithms. Indeed, in this work, we use space lower bounds against k-concentrated
algorithms to simultaneously conclude space lower bounds against low entropy and multi-pseudo-
deterministic algorithms.

Definition 2.4. A turnstile streaming algorithm is one where there is a vector v, and the input is a
stream of updates of the form “increase the ith coordinate of v by r” or “decrease the ith coordinate
of v by r′”. The goal is to compute something about the final vector, after all of the updates.

We use a pseudorandom generator for space-bounded computation due to Nisan [Nis92], which
we recap below.

Theorem 2.5. There is a function G : {0, 1}s log r → {0, 1}r such that

1. Any bit of G(x) for any input x can be computed in O(s log r) space.

2. For all functions f from {0, 1}r to some set A such that f is computable by a finite state
machine on 2s states, the total variation distance between the random variables f(x) and
f(G(y)) where x is uniformly drawn from {0, 1}r and y is uniformly drawn from {0, 1}s log r

is at most 2−s.

7

3 Find-Duplicate: Pseudo-deterministic lower bounds

Consider the following problem: the input is a stream of 3n/2 integers between 1 and n. The
goal is to output a number k which appears at least twice in the stream. Call this problem
Find-Duplicate. Recall that this problem has been considered in the past literature, specifically
in [GR09, JST11, KNP+17], where upper and lower bounds for randomized algorithms have been
shown.

Indeed, we know the following is true from [GR09,JST11].

Theorem 3.1. Find-Duplicate has an algorithm which uses O(poly log n) memory and succeeds
with all but probability 1

poly(n) .

We formally define a pseudo-deterministic streaming algorithm and show a pseudo-deterministic
lower bound for Find-Duplicate to contrast with the randomized algorithm from Theorem 3.1.

Definition 3.2 (Pseudo-deterministic Streaming Algorithm). A pseudo-deterministic streaming
algorithm is a (randomized) streaming algorithm A such that for all valid input streams s =
〈x1, . . . , xm〉, the algorithm A satisfies Prr1,r2 [(A(x, r1) = A(x, r2)] ≥ 2/3.

One can also think of a pseudo-deterministic streaming algorithm as an algorithm A such that
for every valid input stream s, there exists some valid output f(s) such that the algorithm A
outputs f(s) with probability at least 2/3 (one would have to amplify the success probability using
repetition to see that this alternate notion is the same as the definition above).

Definition 3.3 (Find-Duplicate). Define Find-Duplicate to be the streaming problem where
the input is a stream of length 3n/2 consisting of up to n, and the output must be an integer which
has occured at least twice in the string.

Theorem 3.4. Find-Duplicate has no pseudo-deterministic algorithm with memory o(n).

Proof Overview: In order to prove Theorem 3.4, we introduce two communication complexity
problems — One-Way-Find-Duplicate and One-Way-Partial-Recovery:

In the One-Way-Find-Duplicate problem, Alice has a list of 3n/4 integers between 1 and n,
and so does Bob. Alice sends a message to Bob, after which Bob must output an integer which is
in both Alice’s and Bob’s list. Formally:

Definition 3.5 (One-Way-Find-Duplicate). Define One-Way-Find-Duplicate to be the one-
way communication complexity problem where Alice has input SA ⊆ [n] and Bob has input SB ⊆
[n], where |SA|, |SB| ≥ 3n/4. The goal is for Bob to output an element in SA ∩ SB.

The idea is that one can reduce One-Way-Find-Duplicate to Find-Duplicate. So, our
new goal will be to show that One-Way-Find-Duplicate requires high communication. To do
so, we will show that it is possible to reduce a different problem, denoted One-Way-Partial-
Recovery(defined below), to One-Way-Find-Duplicate. Informally, in the One-Way-Partial-
Recovery problem, Alice has a list of 3n/4 integers between 1 and n. Bob does not have an input.
Alice sends a message to Bob, after which Bob must output n/10 distinct elements which are all
in Alice’s list. Formally:

8

Definition 3.6 (One-Way-Partial-Recovery). Define One-Way-Partial-Recovery to be
the one-way communication complexity problem where Alice has input SA ⊆ [n] and Bob has no
input. The goal is for Bob to output a set S satisfying S ⊆ SA and |S| ≥ n/10.

We will show in Claim 1 that a low memory pseudo-deterministic algorithm for Find-Duplicate im-
plies a low-communication pseudo-deterministic algorithm for One-Way-Find-Duplicate, and in
Claim 2 that a low-communication pseudo-deterministic algorithm for One-Way-Find-Duplicate im-
plies a low communication algorithm for One-Way-Partial-Recovery. Finally, in Claim 3, we
show that One-Way-Partial-Recovery cannot be solved with low communication. Combining
the claims yields Theorem 3.4.

Proof of Theorem 3.4.

Claim 1. A pseudo-deterministic algorithm for Find-Duplicate with space S and success proba-
bility p implies a pseudo-deterministic communication protocol for One-Way-Find-Duplicate with
communication S and success probability at least p.

Proof. To prove the above claim, we construct a protocol for One-Way-Find-Duplicate from
a streaming algorithm for Find-Duplicate. Given an instance of One-Way-Find-Duplicate,
Alice can stream her input set of integers in increasing order, and simulate the streaming algorithm
for Find-Duplicate. Then, she sends the current state of the algorithm (which is at most S
bits) to Bob, who continues the execution of the streaming algorithm. At the end, the streaming
algorithm outputs a repetition with probability p, which means the element showed up in both
Alice and Bob’s lists. Note that for a given input to Alice and Bob, Bob outputs a unique element
with high probability because the streaming algorithm is pseudo-deterministic.

Claim 2. A pseudo-deterministic one-way communication protocol for One-Way-Find-Duplicate with
S communication and failure probability O

(
1
n2

)
implies a pseudo-deterministic communication pro-

tocol for One-Way-Partial-Recovery with S communication and O
(

1
n

)
failure probability.

Proof. We will show how to use a protocol for One-Way-Find-Duplicate to solve the instance
of One-Way-Partial-Recovery.

Suppose we have an instance of One-Way-Partial-Recovery. Alice sends the same message
to Bob as if the input was an instance of One-Way-Find-Duplicate, which is valid since in both
of these problems, Alice’s input is a list of length 3n/4 of integers between 1 and n.

Now, Bob’s goal is to use the message sent by Alice to recover n/10 elements of Alice. Let X
be the (initially empty) set of elements of Alice’s input that Bob knows and let B be a set of 3n/4
elements in {1, . . . , n} disjoint from X, where we initially set B to {1, 2, . . . , n}. While the size of X
is less than n/10, Bob simulates the protocol of One-Way-Find-Duplicate with Alice’s message
and input B. This will result in Bob finding a single element x in Alice’s input that is (i) in B, and
(ii) not in X. Bob adds x to X, and deletes x from B. Once the size of X is n/10, Bob outputs X.

If Alice has the set A as her input, define fA(B) to be the output which the pseudo-deterministic
algorithm for One-Way-Find-Duplicate outputs with high probability when Alice’s input is A
and Bob’s input is B. Now, set B0 = {1, 2, . . . , n}, and Bi = Bi−1 \ {fA(B)}. Note that these Bi
(for i = 0 through n/10) are the sets which, assuming the pseudo-deterministic algorithm never
errs during the reduction (where we say the algorithm errs if it does not output the unique element
which is guaranteed to be output with high probability), Bob will use as his inputs for the simulated
executions of One-Way-Find-Duplicate. The pseudo-deterministic algorithm does not err on

9

any of the Bi except with probability at most 1/n, by a union bound. If Bob succeeds on all of the
Bi, that means that the sequence of inputs which will be his inputs for the simulated executions
of One-Way-Find-Duplicate are indeed B0, B1, . . . , Bn/10. So, since we have shown with high
probability the algorithms succeeds on all of the Bi, and therefore with high probability the Bi
are also Bob’s inputs for the simulated executions of One-Way-Find-Duplicate, we see that
with high probability Bob will succeed on all of the n/10 inputs he tries to simulate executions of
One-Way-Find-Duplicate with.

Note that we used the union bound over all the Bi for i = 1 through n/10. All of these Bi are
a function of A. In particular, notice that by definition, the Bi do not depend on the randomness
chosen by Alice.

Claim 3. Every pseudo-deterministic One-Way-Partial-Recovery protocol which succeeds with
probability at least 2

3 requires Ω(n) bits of communication.

Proof. We prove this lower bound by showing that a protocol for One-Way-Partial-Recovery can
be used to obtain a protocol with exactly the same communication for the problem where Alice is
given a string x in {0, 1}Cn as input, she sends a message to Bob, and Bob must exactly recover x
from Alice’s message with probability at least 2/3. This problem has a lower bound of Ω(n) bits
of communication.

Suppose there exists a pseudo-deterministic algorithm for One-Way-Partial-Recovery. Given
such a pseudo-deterministic protocol that succeeds with probability at least 2/3, there is a function
F such that F (S) (a set with n/10 elements) is Bob’s output after the protocol with probability at
least 2/3 when Alice is given S as input.

We will construct sets S1, . . . , St to be subsets of [n] of size 3n/4 such that for any i 6= j, F (Si)
is not a subset of Sj . To do so, we use the probabilistic method: set S1, . . . , St be random subsets

of [n] of size 3n/4. The probability that F (Si) is contained Sj for fixed i 6= j is at most
(

3
4

)n/10
.

Thus, by a union bound, the probability that for any i 6= j, F (Si) is contained Sj is at most

t2
(

3
4

)n/10
, a quantity which is strictly less than 1 when t is

(
4
3

)n/100
, so S1, . . . , St satisfying the

desired guarantee exist.
Alice and Bob can (ahead of time) agree on an encoding of blog tc-bit strings that is an injective

function G from {0, 1}blog tc to {S1, . . . , St}. Now, if Alice is given a blog tc-bit string x as input, she
can send a message to Bob according to the pseudo-deterministic protocol for One-Way-Partial-
Recovery by treating her input as G(x). Bob then recovers F (G(x)) with probability at least
2/3, and can use it to recover G(x) since there is unique Si in which F (G(x)) is contained. Since
G is injective, Bob can also recover x with probability 2/3.

This reduction establishes a lower bound of Ω(blog tc) on the pseudo-deterministic communica-
tion complexity of One-Way-Partial-Recovery, which is an Ω(n) lower bound.

Combining Claim 1, Claim 2 and Claim 3 completes the proof of Theorem 3.4.

It is worth noting that the problem has pseudo-deterministic algorithms with sublinear space
if one allows multiple passes through the input. Informally, a p-pass streaming algorithm is a
streaming algorithm which, instead of seeing the stream only once, gets to see the stream p times.

Claim 4. There is a p-pass deterministic streaming algorithm that uses Õ(n1/p) memory for the
Find-Duplicate problem.

10

Proof. At the start of t-th pass, the algorithm maintains a candidate interval I of width n1−(t−1)/p

from which it seeks to find a repeated element. At the very beginning, this candidate interval is
[1, n]. In the t-th pass, first partition the interval into n1/p equal sized intervals I ′1, . . . , I

′
n1/p , each

of whose width (the width of an interval [a, b] is b− a) is n1−t/p and count the number of elements
of the stream that lie in each such subinterval – this count must exceed the width of at least one
subinterval I ′t. Update I to I ′t and proceed to the next pass. After p passes, this interval will
contain at most 1 integer.

4 Entropy Lower Bound for Find-Duplicate

Theorem 4.1. Every zero-error randomized algorithm for Find-Duplicate that is n
s -concentrated

must use Ω
(

s
logn

)
space.

By zero error, we mean that the algorithm never outputs a number k which is not repeated.
With probability one it either outputs a valid output, or ⊥.

Proof. We use a reduction similar to that of the pseudo-deterministic case (cf. Proof of Claim 2).
Using the exact same reduction from the proof of Claim 1, we get that a n

s -concentrated stream-
ing algorithm for Find-Duplicate using T space must give us a n

s -concentrated protocol for
One-Way-Find-Duplicate with communication complexity T . If we can give a way to convert

such a protocol for One-Way-Find-Duplicate into an O
(
Tn logn

s

)
-communication protocol for

One-Way-Partial-Recovery, the desired lower bound on T follows from the lower bound on
communication complexity of One-Way-Partial-Recovery from Claim 3. We will now show
how to make such a conversion by describing a protocol for One-Way-Partial-Recovery.

Alice sends Bob Θ(n log n/s) messages according to the protocol for One-Way-Find-Duplicate (that
is, she simulates the protocol for One-Way-Find-Duplicate a total of Θ(n log n/s) times). Bob’s
goal is to use these Θ(n log n/s) messages to recover at least n/10 input elements of Alice. Towards
this goal, he maintains a set of elements recovered so far, X (initially empty), and a family of
‘active sets’ B (initially containing the set {1, 2, . . . , n}). While the size of X is smaller than n/10,
Bob simulates the remainder of the One-Way-Find-Duplicate protocol on every possible pair
(B,M) where B is a set in B and M is one of the messages of Alice. For each such pair (B,M)
where the protocol is successful in finding a duplicate element x, Bob adds x to X, removes B from
B and adds B \ {x} to B.

We now wish to prove that this protocol indeed lets Bob recover n/10 elements of Alice. Suppose
Alice has input A. For each set S, define fA(S) be an element of A∩S that has probability at least
s/n of being outputted by Bob on input S at the end of a One-Way-Find-Duplicate protocol.
Let S0 := {1, 2, . . . , n} and Si := Si−1 \ {fA(Si)} be defined for 0 ≤ i ≤ n/10. Note that Si are
predetermined: it is a function of Alice’s input (and, in particular, not a function of the randomness
she uses when choosing her messages). For a fixed i, the probability of failure to recover fA(Si)
from any of Alice’s messages is at most 1/n2. A failure to fill in X with n/10 elements implies that
for some i, Bob failed to recover fA(Si) from all of Alice’s messages. The probability that such a
failure happens for a specific i is at most (1− s/n)Θ(n logn/s). By setting the constant in the Θ to
be large enough, we can have this be at most 1

n2 , and so by a union bound the probability that
there is an i such that fA(Si) is not recovered by Bob is at most 1/n.

11

Thus, we obtain a protocol for One-Way-Partial-Recovery with communication complexity
O(Tn log n/s), and so T ≤ s/ log n, completing the proof.

We obtain the following as immediate corollaries:

Corollary 4.2. Any zero-error log
(
n
s

)
-entropy randomized algorithm for Find-Duplicate must

use Ω
(

s
logn

)
space.

Corollary 4.3. Any zero-error O
(
n
s

)
-pseudo-deterministic algorithm for Find-Duplicate must

use Ω
(

s
logn

)
space.

Below we show that the above lower bound is tight up to log factors.

Theorem 4.4. For all s, there exists a zero-error randomized algorithm for Find-Duplicate using
Õ(s) space (where Õ hides factors polylogarithmic in n) that is O

(
n
s

)
-concentrated.

Proof. Define the following algorithm A for Find-Duplicate: pick a random number i in [3n/2],
then remember the ith element a of the stream, and see if a appears again later in the stream. If
it does, return x. Otherwise return ⊥.

The O
(
n
s

)
-concentrated algorithm algorithm is as follows: Run s log n copies of Algorithm A

independently (in parallel), and then output the minimum of the outputs.
We are left to show that this algorithm is indeed O

(
n
s

)
-concentrated.

Define f to be a function where f(i) is the total number of times which i shows up in the
stream, and define g(i) = max((f(i) − 1), 0). Note that then, the probability that i is outputted
by algorithm A is g(i)/(3n/2), since i will be outputted if A chooses to remember one of the first
i− 1.

Consider the smallest a such that
∑a

i=1 g(i) ≥ n/(2s). We will show that the probability that the
output is less than a with high probability. It will follow that the algorithm is s-concentrated, since
of the a−1 smallest elements, at most

∑a−1
i=1 g(i) outputs are possible (since if g(i) = 0, then i is not

a possible output). So, we will see that with high probability, one of at most
∑a−1

i=1 g(i)+1 ≤ n/(2s)
outputs (namely, the valid outputs less than or equal to a) will be outputted with high probability.
And hence, at least one of them will be outputted with probability at least s

n .
The probability that the output is at most a in a single run of algorithm A is 3n

2

∑a
i=1 g(i) ≥

3/(4s). So, the probability that in s log n runs of algorithm, in at least one of them an element
which is at most a is outputted is 1− (1− 3

4s)
s logn, which is polynomially small in n. Hence, with

high probability an element which is at most a (and there are n/(2s) valid outputs less than a) will
be outputted.

4.1 Getting Rid of the Zero Error Requirement

A downside of Theorem 4.1 is that it shows a lower bound only for zero-error algorithms. In this
section, we strengthen the theorem by getting rid of that requirement:

Theorem 4.5. Every randomized algorithm for Find-Duplicate that is n
s -concentrated and errs

with probability at most 1
n2 must use Ω̃

(
s1−ε) space (for all ε > 0).

12

Proof overview: We begin by outlining why the approach of Theorem 4.1 does not work without
the zero-error requirement. Recall that the idea in the proof was to have Alice send many messages
(for One-Way-Find-Duplicate) to Bob, and Bob simulates the One-Way-Find-Duplicate al-
gorithm (using simulated inputs he creates for himself) using these messages to find elements in
Alice’s input.

The problem is that the elements we end up removing from Bob’s simulated input1 depend
on Alice’s messages, and therefore we can’t use a union bound to bound the probability that the
protocol failed for a certain simulated input. So, we want the elements we remove from Bob’s fake
input not to depend on the inputs Alice sent. One idea to achieve this is to have Alice send a bunch
of messages (for finding a shared element), and then Bob will remove the element that gets output
the largest number of times (by simulating the protocol with each of the many messages Alice
sent). The issue with this is that if the two most common outputs have very similar probability,
the outputted element depends not only on Alice’s input, but also on the randomness she uses when
choosing what messages to send to Bob. This makes it again not possible to use a union bound.

There are two new ideas to fix this issue. The first is to use the following “Threshold” technique:
Bob will pick a random “threshold” T between ks/(2n) and ks/(4n) (where we wish to show a lower
bound on n/s-concentrated algorithms, and k is the total number of messages Alice sends to Bob).
He simulates the algorithm for One-Way-Find-Duplicate with all k messages Alice sent him,
and gets a list L of k outputs. Then, he will consider the “real” output to be the lexicographically
first output y ∈ L where there are more than T copies of y in the list L (note that since the
algorithm is n/s-concentrated, its very unlikely for no such element to exist).

Now, it follows that with high probability, the shared element does not really depend on the
messages. This is because with all but probability approximately 1/

√
ks/n, the threshold is far

(more than
√
ks/n log2 ks/n away) from the the frequency of every element in L. We note that

we pick
√
ks/n log2 ks/n since from noise we would expect to have the frequencies of elements in

L change by up to
√
ks/n log2 ks/n, depending on the randomness of A. We want the threshold

to be further than that from the expected frequencies, so that with high probability there will be
no element which sometimes has frequency more than T and sometimes has frequency less than
T , depending on Alice’s messages (recall that the goal is to make the outputs depend as little as
possible on Alice’s messages, but to only depend on shared randomness and on Alice’s input).

This is still not enough for us: we still cannot use a union bound, as 1/
√
ks/n fraction of the

time Bob’s output will depends on Alice’s message (and not just her input). The next idea resolves
this. What Alice will do is send n/

√
ks/n additional pieces of information: telling Bob where the

chosen thresholds are bad, and what threshold to use instead. We assume that we have shared
randomness so Alice knows all of the thresholds that will be chosen by Bob (note heavy-recovery
is hard, even in the presence of shared randomness, so the lower bound is sufficient with shared
randomness). Now, Alice can tell for which executions there the threshold chosen will be too close
to the likelihood of an element. So, Alice will send approximately n/

√
ks/n additional pieces of

information: telling Bob where the chosen thresholds are bad, and what threshold to use instead.
By doing so, Alice has guaranteed that a path independent of her messages will be taken.

To recap, idea 1 is to use the threshold technique so that with probability 1 − 1/
√
ks/n what

Bob does doesn’t depend on Alice’s messages (only on her input). Idea 2 is to have Alice tell Bob
where these 1/

√
ks/n bad situations are, and how to fix them.

1recall that Bob simulates an input to the One-Way-Find-Duplicate problem, and then he repeatedly finds
elements he shares with Alice, removes them from the “fake” input, and reconstructs a large fraction Alice’s inputs

13

The total amount of information Alice sends (ignoring logs) is Θ̃(kb + n/
√
ks/n), (where b is

the message size we are assuming exists for pseudo-deterministically finding a shared element, and
k is the number of messages Alice sends). The factor n/

√
ks/n follows since 1/

√
ks/n of the times,

short messages will be sent to Bob due to a different threshold. A threshold requires log n bits
to describe, which can be dropped since we are ignoring log factors. Setting n/s � k � n/b, we
conclude that Alice sends a total of õ(n) bits. This establishes a contradiction, since we need Θ̃(n)
bits to solve One-Way-Partial-Recovery. So, whenever s = ω̃(b), we can pick a k such that
we get a contradiction.

Proof. Below we write the full reduction written out as an algorithm for One-Way-Find-Duplicate.

• Alice Creates k = n/
√
sb messages for One-Way-Find-Duplicate, and sends them to Bob

(Call these messages of type A).

• Additionally, Alice looks at the thresholds in the shared randomness. every time there is a
threshold that is close (within

√
ks/n log2 ks/n) of the expected number of times a certain y

will be outputted on the corresponding input (that is, for each fake input Bob will try, Alice
checks if the probability of outputting some y is close to T – to be precise, say she checks if
its probability of being outputted, assuming a randomly chosen message by Alice, is close to
T), she sends a message to Bob informing him about the bad threshold, and suggests a good
threshold to be used instead (call these messages of type B). Notice that these messages do
not depend on the messages of type A that Alice sends, and that each such message is of size
O(log n).

• Bob sets B to be the simulated input {1, ..., n}

• Bob uses each of the messages of type A that Alice sent, along with B, to construct a list of
outputs.

• Bob looks at the shared randomness to find a threshold T (if Alice has informed him it is a
bad threshold, use the threshold Alice suggests instead), and consider the lexicographically
minimal output y that is contained in the multiset more than T times.

• Bob removes y from the fake input and repeat the last three steps of the algorithm (this time
using a new threshold).

Claim 5. The above protocol solves One-Way-Partial-Recoverywith high probability using õ(n)
bits.

Proof. First we show that the total number of bits communicated is õ(n). Notice that the total
number of messages of type A that are sent is n/

√
sb. We assume that each of these is of size at

most b, giving us a total of n
√
b/
√
s bits sent in messages of type A. Under the assumption that

b = õ(n), we see that this is õ(n) total bits for messages of type A.
We now count the total number of bits communicated in messages of type B. Each message of

type B is of size O(log n) (it is describing a single element, and a number corresponding to which
execution the message is relevant for, each requiring O(log n) bits). So, we wish to show that with
high probability the total number of messages of type B is õ(n). The total number of messages
of type B that will be sent is O(n√

ks/n
), since for every input, the probability that the randomly

14

chosen threshold (which is sampled using public randomness) is more than
√
ks/n log2 ks/n away

from the frequency of every output is O(1√
ks/n

). Note that n√
ks/n

= õ(n) since ks = n
√

s
b , and we

assume b = õ(s).
We are now left to show the protocol correctly solves One-Way-Partial-Recovery with high

probability. We will first show that, after fixing Alice’s input and the public randomness, with high
probability there will be a single sequence of inputs that Bob will try that will occur with high
probability (that is, there is a sequence of y’s that Bob goes through with high probability). To
do this, consider a certain input that Bob tries. We will bound the probability that there are two
values y and y′ such that both y and y′ have probability at least 1

n of being outputted. Suppose
there exists two such y and y′ that means that at least one of them (say y, without loss of generality)
has to be the output of more than T of the k executions with probability more than 1

n , but less
than n−1

n . Additionally, we know that the expected number of times that y will be outputted of

the k times is more than
√
ks/n log2 ks/n away from T (otherwise Alice will pick a different value

of T such that this will be true, and send that value to Bob in a message of type B). However, the

probability of being more than
√
ks/n log2 ks/n = Θ(

(
s
b

)1/4
log2 s/b) = Θ(nε/4 log2 n) away from

the expectation, by a Chernoff bound, is (asymptotically) less than 1
n .

Notice also, that by the assumption that the algorithm in n/s-concentrated, there will always
be an output ymax which is expected to appear at least s

n of the time. Also, since the threshold
T is at most ks/2n, the probability that ymax appeared fewer than T times is exponentially low
in ks/n =

√
s/b = Θ̃(nε/2), and so with high probability there will always exist a y which was

outputted on more than T of the executions, so in the second to last step, the multiset will always
have an element that appears at least T1 times.

Hence, by a union bound over all inputs that Bob tries, with high probability there will be a
single sequence of inputs which Bob goes through (which depends only only on the public thresholds
and Alice’s input).

We will show that each y generated by Bob is an element in Alice’s input with high probability.
Notice that the y that Bob picks has appeared more than T times out of k, where T is at least
ks/(4n). If y is not a valid output then its probability of being outputted is 1

n2 . The probability it

is outputted at least once is at most k
n2 ≤ 1

n . Taking a union bound over the inputs that Bob tries
(of which there are n/10), we get that the probability that there is an invalid y at any point is at
most 1/10. So, with probability 9/10, no invalid y is ever outputted.

5 Entropy lower bounds for finding a support element

Consider the turnstile model of streaming, where a vector z ∈ Rn starts out as 0 and receives
updates of the form ‘increment zi by 1’ or ‘decrement zi by 1’, and the goal of outputting a
nonzero coordinate of z. This is a well studied problem and a common randomized algorithm
to solve this problem in a small amount of space is known as `0 sampling [FIS08]. `0 sampling
uses polylogarithmic space and outputs a uniformly random coordinate from the support of z. A
natural question one could ask is whether the output of any low space randomized algorithm is
necessarily close to uniform, i.e., has high entropy. We answer this affirmatively and show a nearly
tight tradeoff between the space needed to solve this problem and the entropy of the output of a

15

randomized algorithm under the assumption that the algorithm is not allowed to output anything
outside the support2

Theorem 5.1. Every zero-error randomized algorithm for Find-Support-Elem that is n
s -concentrated

must use Ω
(

s
logn

)
space.

We only provide a sketch of the proof and omit details since they are nearly identical to the
proof of Theorem 4.1.

Proof Sketch. Let A be such an algorithm that uses T space. Just like the proof of Theorem 4.1,

the way we show this lower bound is by illustrating that A can be used to obtain an O
(
Tn logn

s

)
-

communication protocol for One-Way-Partial-Recovery, which combined with Claim 3 yields
the desired result.

For every element a in Alice’s input set A, she streams ‘increment za by 1’ and runs Θ
(
n
s log n

)
independent copies of A on the input. She then sends the states of each these independent runs of
A to Bob, which is at most Tn logn

s bits, to Bob. Bob maintains a set of states M, initially filled
with all of Alice’s messages. While he has not yet recovered n/10 elements, Bob picks a message
M ∈ M and recovers x in A using algorithm A. And for each M ∈ M, Bob resumes A on state
M and streams ‘decrement zx by 1’ and adds the new state to M, and deletes M from M.

The proof of correctness for why Bob indeed eventually recovers n/10 elements of A is identical
to that in the proof of Theorem 4.1, thus giving a protocol for One-Way-Partial-Recovery and
proving the statement.

We can immediately conclude the following.

Corollary 5.2. Any zero-error log
(
n
s

)
-entropy randomized algorithm for Find-Support-Elem must

use Ω
(

s
logn

)
space.

Corollary 5.3. Any zero-error O
(
n
s

)
-pseudo-deterministic algorithm for Find-Support-Elem must

use Ω
(

s
logn

)
space.

This lower bound is also tight up to polylogarithmic factors due to an algorithm nearly identical
to the one from Theorem 4.4. In particular, we have:

Theorem 5.4. For all s, there exists a zero-error randomized algorithm for Find-Duplicate using
O(s) space that is O

(
n
s

)
-concentrated.

6 Space complexity of pseudo-deterministic `2-norm estimation

In this section, we once again consider the pseudo-deterministic complexity of `2 norm estimation
in the sketching model. The algorithmic question here is to design a distribution D over s × n
matrices along with a function f : Rs → R so that for any x ∈ Rn:

Pr
S∼D

[f(Sx) 6∈
[

1

α
‖x‖2, α‖x‖2

]
≤ 1

poly(n)
.

2We note that using similar ideas to those in Subsection 4.1, the zero error requirement could be removed. We
omit this adaptation since it is very similar to that of Subsection 4.1.

16

Further, we want f(Sx) to be a pseudo-deterministic function; i.e., we want f(Sx) to be a unique
number with high probability.

Theorem 6.1. The pseudo-deterministic sketching complexity of `2 norm estimation is Ω(n).

The following query problem is key to our lower bound.

Definition 6.2 (`2 adaptive attack). Let α > 0 be some constant. Let S be an s× n matrix with
real-valued entries and f : Rs → R be some function. Now, consider the query model where an
algorithm is allowed to specify a vector x ∈ Rn as a query and is given f(Sx) as a response. The
goal of the algorithm is to output y such that

f(Sy) /∈
[

1

α
‖y‖2, α‖y‖2

]
in as few queries as possible. We call this algorithmic problem the `2-adaptive attack problem.

We use a theorem on adaptive attacks on `2 sketches proved in [HW13].

Theorem 6.3. There is a poly(n)-query protocol to solve the `2 adaptive attack problem with
probability at least 9/10, i.e., the problem in Definition 6.2 when s = o(n).

We remark that there is an analogous theorem to Theorem 6.3 that applies to the `2 heavy hitters
(i.e., compressed sensing) problem, so it is likely that one can also prove a pseudo-deterministic
lower bound for the heavy hitters problem in an analogous way.

Proof of Theorem 6.1. Suppose D is a distribution over s×n sketching matrices and f is a function
mapping Rs to R with the property that the pair (D, f) gives a pseudo-deterministic sketching
algorithm for `2 norm estimation. Henceforth, we use S to denote a random matrix sampled from
D. Then there is a function g : Rn → R such that:

1. g is an α-approximation of the `2 norm.

2. On every input x, f(Sx) = g(x) with probability at least 1− 1
nc for some constant c.

We will show that s must be Ω(n) by deducing a contradiction when k = o(n). Let r be a
parameter to be chosen later. Let x(1),x(2), . . . ,x(r) be the (random) sequence of vectors in Rn
obtained by the adaptive query protocol from Theorem 6.3 based on responses g(x(0)), . . . , g(x(r))
where r = poly(n), and let y be the (random) output of the protocol. Note that the guarantee that
r = poly(n) hinges on assuming s = o(n). From the guarantees of Theorem 6.3, for any fixed matrix
B and function h such that h(Bx(i)) = g(x(i)) for all i, it is true with probability at least 9/10 that
h(By) 6= g(y). On the other hand, for any sequence of r+2 fixed vectors v0, . . . , vr+1, f(Svi) = g(vi)
for all i with probability at least 1 − 1

poly(n) . Call the event {f(Sx(0)) = g(x(0)), . . . , f(Sx(r)) =

g(x(r)), f(Sy) = g(y)} as E . Let pS be the probability density function of S and let pT be the
probability density function of (x(0), . . . ,x(r),y). This results in the following two estimates of
Pr[E].

17

On the one hand,

Pr[E] =

∫
S

Pr[E|S]pS(S)

≤
∫
S

1

10
pS(S)

=
1

10
,

and on the other hand,

Pr[E] =

∫
x(0),...,x(r),y

Pr[E|x(0), . . . ,x(r),y]pT (x(0), . . . ,x(r),y)

≥
∫
x(0),...,x(r),y

(
1− 1

poly(n)

)
pT (x(0), . . . ,x(r),y)

= 1− 1

poly(n)
.

The contradiction arises since Pr[E] cannot simultaneously be at least 1 − 1
poly(n) and at most

1
10 , and hence s cannot be o(n).

Corollary 6.4. For any constant δ > 0, any (2−δ)-concentrated sketching algorithm that where the
sketching matrix is s×n can be turned into a pseudo-deterministic one by running log n independent
copies of the sketch and outputting the majority answer. Thus, as an upshot of Theorem 6.1 we

obtain a lower bound of Ω
(

n
logn

)
on (2 − δ)-concentrated algorithms for pseudo-deterministic `2-

norm estimation in the sketching model.

In contrast to Corollary 6.4 which says that (2−δ)-concentrated algorithms for `2 estimation in
the sketching model need near linear dimension, we show that there is an O(poly log n)-dimension
(2 + δ)-concentrated sketching algorithm to solve the problem, thus exhibiting a ‘phase transition’.

Theorem 6.5. There is a distribution D over s× n matrices and a function f : Rs → R when s =
O(poly log n) For every constant δ > 0, there is an O(poly(logn, logm))-space (2 + δ)-concentrated
sketching algorithm for `2-norm estimation.

Proof. Let the true `2 norm of the input vector be r. Run the classic sketching algorithm of [AMS99]
for randomized `2 norm estimation with error min{1/220, ε4} and failure probability 1

poly(n) where

(1 + ε) is the desired approximation ratio. This uses a sketch of dimension O(poly log n). Now, we
describe the function f we use. Take the output of the sketching algorithm of [AMS99] and return
the number obtained by zeroing out all its bits beyond the first max{2 log

(
1
ε

)
, 5} significant bits.3

First, the outputted number is a (1 + ε) approximation. Further, for each input, the output is one
of two candidates with probability 1− 1

poly(n) > 1−δ for every constant δ. This is because [AMS99]

produces a (1 + ε4)-approximation to r, and there are only two candidates for the 2 log
(

1
ε

)
most

significant bits of any real number that lies in an interval [(1− ε4)r, (1 + ε4)r].

3The parameters 1/220, 5 and ε4 are chosen purely for safety reasons

18

7 Pseudo-deterministic Upper Bounds

7.1 Finding a nonzero row

Given updates to an n×d matrix A (where we assume d ≤ n) that is initially 0 in a turnstile stream
such that all entries of A are always in range [−n3, n3], the problem Find-Nonzero-Row is to
either output an index i such that the ith row of A is nonzero, or output none if A is the zero
matrix.

Theorem 7.1. The randomized space complexity for Find-Nonzero-Row is Θ̃(1), the pseudo-
deterministic space complexity for Find-Nonzero-Row is Θ̃(n), and the deterministic space com-
plexity for Find-Nonzero-Row is Θ̃(nd).

Proof. We first will show a randomized Θ̃(1) space algorithm for the problem, then we will show
pseudo-deterministic upper and lower bounds, and then show the deterministic lower bound.

Randomized algorithm for Find-Nonzero-Row. A randomized algorithm for this problem
is given below. Note that the version of the algorithm as stated below does not have the desirable
Õ(1) space guarantee, but we will show how to use a pseudorandom generator of Nisan [Nis92] to
convert the below algorithm to one that uses low space.

1. Sample a random d-dimensional vector x where each entry is an independently drawn integer
in [−n3, n3] and store it.

2. Simulate a turnstile stream which maintains Ax. In particular, consider the n-dimensional
vector y, which is initially 0, and for each update to A of the form “add ∆ to Aij”, add ∆xj
to yi. We run an `0-sampling algorithm [FIS08] on this simulated stream updating y, and
return the output of the `0-sampler, which is close in total variation distance to a uniformly
random element in the support of y.

In the above algorithm, step 1 is not low-space as stated. Before we give a way to perform step 1
in Õ(1) space, we prove the correctness of the above algorithm. Suppose Ai is a nonzero row of
A, then let j be an index where Ai is nonzero. Suppose all coordinates of x except for the j-th
coordinate have been sampled, there is at most one value C for xj for which 〈Ai,x〉 is 0, and there
is at most a 1/n3 probability that xj equals C, which means if i is a nonzero row, then (Ax)i is
nonzero except with probability at most 1/n3. In fact, by taking a union bound over all nonzero
rows we can conclude that the set of nonzero rows and the set of nonzero indices of Ax are exactly
the same, except with probability bounded by 1/n2.

Now we turn our attention to implementing step 1 in low space. Towards doing so we use Nisan’s
pseudorandom generator for space bounded computation in a very similar manner to [Ind06].

Instead of sampling 3d log n+ 1 bits to store x, we sample and store a uniformly random seed
w of length O(poly log(n, d)) and add ∆G(w)j to yi when an update “add ∆ to Aij” is received,
where G is the function from Theorem 2.5 that maps the random seed to a sequence 3d log n + 1
bits. To prove the algorithm is still correct if we use the pseudorandom vector G(w) instead of the
uniformly random vector x, we must show that when Ai is nonzero, then 〈Ai, G(w)〉 is nonzero
with probability at least 1 − O(1/n3). Towards this, for a fixed d-dimensional vector q, consider
the following finite state machine. The states are labeled by pairs (i, a) where i is in {0, 1, . . . , d}
and a is in [−n6d, n6d]. The FSM takes a d-dimensional vector r as input, starts at state (0, 0),

19

and transitions from state (i, a) to (i + 1, a + qi+1 · ri+1) until it reaches a state (d, `). The FSM
then outputs `. This establishes that for a fixed q, the function f(x) := 〈q, x〉 is computable by
an FSM on poly(d, n) states, and hence from Theorem 2.5, f(x) and f(G(w)) are 1/dn6 close in
total variation distance, which means when Ai is nonzero, then 〈Ai, G(w)〉 is nonzero except with
probability bounded by O(1/n3).

A pseudo-deterministic algorithm and lower bound for Find-Nonzero-Row The pseudo-
deterministic algorithm is very similar to the randomized algorithm from the previous section.

1. Sample a random d-dimensional vector x where each entry is an independently drawn integer
in [−n3, n3]. Store x and maintain Ax.

2. Output the smallest index i such that (Ax)i is nonzero.

Storing x takes O(d log n) space, and maintaining Ax takes O(n log n) space. Recall from the
discussion surrounding the randomized algorithm that the set of nonzero indices of Ax and the set
of nonzero rows were equal with probability 1 − 1/n2, which establishes correctness of the above
pseudo-deterministic algorithm. The space complexity is thus O((d + n) log n), which is equal to
O(n log n) from the assumption that d ≤ n.

A pseudo-deterministic lower bound of Ω̃(n) follows immediately from Corollary 5.3 since Find-
Nonzero-Row specialized to the d = 1 case is the same as Find-Support-Elem.

Lower Bound for deterministic algorithms. An Ω(nd log n) bit space lower bound for deter-
ministic algorithms follows from a reduction to the communication complexity problem of Equal-
ity. Alice and Bob are each given nd log n bit strings as input, which they interpret as n × d
matrices, A and B respectively, where each entry is a chunk of length log n. Suppose a determinis-
tic algorithm A takes S bits of space to solve this problem. We will show that this can be converted
to a S-bit communication protocol to solve Equality. Alice runs A on a turnstile stream updating
matrix X initialized at 0 by adding Aij to Xij for all (i, j) in [n]× [d]. Alice then sends the S bits
corresponding to the state of the algorithm to Bob and he continues running A on the updates
‘add −Bij to Xij ’. A outputs none if and only if A = B and thus Bob outputs the answer to
Equality depending on the output of A. Due to a communication complexity lower bound of
Ω(nd log n) on Equality, S must be Ω(nd log n).

7.2 Point Query Estimation and Inner Product Estimation

In this section, we give pseudo-deterministic algorithms that beat the deterministic lower bounds
for two closely related streaming problems — point query estimation and inner product estimation.

Point Query Estimation. Given a parameter ε and a stream of m elements where each element
comes from a universe [n], followed by a query i ∈ [n], output f ′i such that |fi − f ′i | ≤ εm where fi
is the frequency of element i in the stream.

20

Inner Product Estimation. Given a parameter ε and a stream of m updates to (initially 0-
valued) n-dimensional vectors x and y in an insertion-only stream4, output estimate e satisfying
|e− 〈x, y〉| < ε · ‖x‖1 · ‖y‖1.
In the above problems, we will be interested in the regime where m� n.

Our main result regarding a pseudo-deterministic algorithm for point query estimation is:

Theorem 7.2. There is an O
(

logm
ε + log n

)
-space pseudo-deterministic algorithm A for point

query estimation with the following precise guarantees. For every sequence s1, . . . , sm in [n]m,
there is a sequence f ′1, . . . , f

′
n such that

1. For all i, |f ′i − fi| ≤ εm where fi is the frequency of i in the stream.

2. Except with probability 1/m, for all i ∈ [n] A outputs f ′i on query i.

We remark that the deterministic complexity of the problem is Ω(logn
ε (see Theorem 7.7).

Towards establishing Theorem 7.2, we recall two facts.

Theorem 7.3 (Misra–Gries algorithm [MG82]). Given a parameter ε and a length-m stream

of elements in {1, . . . , d}, there is a deterministic O
(

log d+logm
ε

)
-space algorithm that given any

query s ∈ [d], outputs f ′s such that |f ′s − fs| ≤ εm where fs is the number of occurrences of s in
the stream. An additional guarantee that the algorithm satisfies is the following, which we call
permutation invariance. Consider the stream

s1, s2, . . . , sm

and for any permutation π : [d]→ [d], consider the stream

π(s1), π(s2), . . . , π(sm).

When the algorithm is given the first stream as input, let f ′s denote its output on query s, and
when the algorithm is given the second stream as input, let g′π(s) denote its output on query π(s).

The algorithm has the guarantee that f ′s = g′π(s).

Theorem 7.4 (Pairwise independent hashing, [V+12, Corollary 3.34]). Assume d � n. There is
a pairwise independent hash function h : [n] → [d], which can be sampled using O(log n) random
bits and also can be stored in O(log n) bits.

Proof of Theorem 7.2. The algorithm is as follows.

• Sample a random pairwise independent hash function h : [n] → [m3], which can be sampled
and stored in O(log n) bits.

• Run the Misra–Gries algorithm with the following simulated stream as input: for each s
streamed as input, stream h(s) to the simulation.

• Given any query s, perform query h(s) to the Misra–Gries algorithm running on the simulated
stream, and return its output.

4A stream where only increments by positive numbers are promised.

21

Let S be the collection of elements of [n] that occur in the input stream s1, . . . , sm. Assuming h
maps S into [m3] without any collisions5, it follows from the permutation invariance property of
the Misra–Gries algorithm from Theorem 7.3 the output of the above algorithm on any query q is
equal to F (s1, . . . , sm, q) for a fixed function F . Thus if we show that h indeed maps S into [m3]
injectively pseudo-determinism of the given algorithm would follow.

Given i, j ∈ S, due to pairwise independence of h, the probability that h(i) = h(j) is equal to
1/m3. A union bound over all pairs of elements in S tells us that h is collision-free except with
probability at most 1/m, which implies that the above algorithm is indeed pseudo-deterministic.

Theorem 7.5. There is a (weakly) pseudo-deterministic algorithm for inner product estimation

that uses O
(

logm
ε + log n

)
space.

The algorithm for inner product estimation is based on point query estimation, and towards
stating the algorithm we first state a known result that helps relate the two problems.

Lemma 7.6 (Easily extracted from the proof of [NNW14, Theorem 1]). Let x, y, x′, y′ be vectors
such that ‖x − x′‖∞ ≤ ε‖x‖1 and ‖y − y′‖∞ ≤ ε‖y‖1. Now, let x′′ (and respectively y′′) denote x′

with everything except the maximum 1/ε entries zeroed out. Then the following holds:

|〈x′′, y′′〉 − 〈x, y〉| ≤ ε · ‖x‖1 · ‖y‖1.

Proof of Theorem 7.5. Given a stream of updates to x and y, run two instances of the point query
estimation algorithm from Theorem 7.2 — one for updates to x and one for updates to y. There
are x′ and y′ that only depend on the stream such that

‖x− x′‖∞ ≤ ε · ‖x‖1 and ‖y − y′‖∞ ≤ ε · ‖y‖1

and except with probability O(1/m) both point query algorithms respond to any query i with x′i
(and y′i respectively). Maintaining these two instances takes O

(
logm
ε + log n

)
space.

Next, enumerate over elements of [n] and for each i ∈ [n] query both instances with i, and
store the running max-1/ε answers to queries to each instance along with the hashed identities of

the indices of entries that are part of the running max. Storing the running max takes O
(

logm
ε

)
space, and storing a counter to enumerate over [n] takes log n space. Thus, at the end of this
routine, except with probability O(1/m) our two lists are equal to (x′i1 , h(i1)), . . . , (x′i1/ε , h(i1/ε))

and (y′j1 , h(j1)), . . . , (y′j1/ε , h(j1/ε)) respectively where x′i1 , . . . , xi1/ε are the max-1/ε entries of x′

and y′j1 , . . . , yj1/ε are the max-1/ε entries of y′.
Finally, if there is t, u such that h(it) = h(iu) or h(jt) = h(ju), return ‘fail’; otherwise output∑

`∈{h(it)}t=1,...,1/ε∩{h(jt)}t=1,...,1/ε

x′`y
′
`.

With probability at least 1 − 2/m, the above quantity is equal to 〈x′′, y′′〉 from Lemma 7.6,
which lets us conclude via Lemma 7.6 that the output is within ε · ‖x‖1 · ‖y‖1 of the true inner
product.

Finally, we remark that the following lower bounds can be proved for deterministic algorithms.

5I.e. the restriction of h to domain S is an injective function.

22

Theorem 7.7. Any deterministic algorithm for point query estimation and inner product estima-

tion needs Ω
(

logn
ε

)
space.

Proof. We prove a lower bound for point query estimation via a reduction from Equalityin com-
munication complexity. Alice encodes a log

(
n

1/(3ε)

)
bit string as a subset S of [n] of size 1/(3ε) and

runs the point query streaming algorithm on the input where she streams each element of this sub-
set 3εm times. She then sends the state of the algorithm to Bob, who can query every index in the
universe and learn S (the element corresponding to the query is in S if and only if the response to
the query is at least 2ε ·m), decode S back to a log

(
n

1/(3ε)

)
and check if it is equal to his own input.

The space lower bound from the theorem statement then follows since log
(

n
1/(3ε)

)
= Ω

(
logn
ε

)
.

A space lower bound for inner product estimation follows from the lower bound for point query
estimation since the latter is a special case of the former when x is the vector of frequencies and y
is a standard unit vector ei corresponding to query i.

7.3 Retrieving a Basis of a Row-space

We now work in a ‘mixed’ model, where an input n × d matrix A of rank-≤ k is given to us via
a sequence of updates in a turnstile stream, and each entry at all times in the stream can be
represented by an O(log n)-bit word. During this phase, there is an upper bound T on the number
of bits of space an algorithm is allowed to use. In the “second phase”, we are allowed to perform
arbitrary computation and the goal is to output a basis for the row-span of A

We show a lower bound on T of Ω̃(nd) for deterministic algorithms, and a pseudo-deterministic
algorithm that uses Õ(poly(k) · d) space in the streaming phase.

Theorem 7.8. Any deterministic streaming algorithm for RecoverBasis needs Ω̃(nd) space.

Proof. Suppose the matrix A is 0, then the algorithm would have to output the empty set. A T
space streaming algorithm for this problem could be used to solve the communication complexity
problem of equality Equality using T bits of communication. In particular, Alice and Bob could
encode their respective inputs x and y as matrices Mx and My. Alice can then run the T -space
algorithm on adding Mx in a turnstile stream, and send Bob the state of the algorithm. Bob can
then resume running the algorithm from Alice’s state on updates that subtract My. If Bob outputs
the empty set, then x = y and Bob outputs ‘yes’. Otherwise, Bob outputs ‘no’.

While the deterministic complexity is Ω̃(nd), there is a pseudo-deterministic streaming algo-
rithm which uses only Õ(poly(k) + k · d) in its streaming phase:

Theorem 7.9. There is a pseudo-deterministic algorithm for RecoverBasis that uses Õ(poly(k)+
k · d) space in its streaming phase, where the Õ(·) hides factors of poly log n.

Towards giving a pseudo-deterministic algorithm, we first state a result about pseudorandom
matrices that is a special case of [CW09, Lemma 3.4].

Theorem 7.10. There is a distribution D over m × n matrices where m = O(k log n) with ±1
entries such that for any n × m matrix U with orthonormal columns and S ∼ D, the following
holds with probability 1− 1/poly(n):

‖UTSSTU − I‖2 ≤ 1/2.

23

Further, the rows of S are independent and each row can be generated by a (k + log n)-wise
independent hash family.

Theorem 7.11 (t-wise independent hash families [V+12, Corollary 3.34]). There is a t-wise in-
dependent hash family H of functions from [n] → {±1} such that sampling a uniformly random
h from H can be done using a poly(log n, t)-length random seed, and h(x) for any x ∈ [n] can be
computed in poly(log n, t) time and space from the random seed used to sample it.

As a consequence we have:

Corollary 7.12. Let A be a n×d matrix of rank k and let D be the distribution over O(k log n)×n
matrices from the statement of Theorem 7.10. Then, for S ∼ D, SA has rank k with probability
1− 1/poly(n).

Proof. We start by writing A in its singular value decomposition UΣV T . Since A has rank k, U is a
n×k matrix with orthonormal columns and ΣV T surjectively maps Rd to Rk. From Theorem 7.10,
SA is also full rank, which means the collection of vectors

{SAx : x ∈ Rd} = {SUΣV Tx : x ∈ Rd} = {SUx : x ∈ Rk}

is a k-dimensional space, and hence SA has rank k.

Proof of Theorem 7.9. Begin by sampling S ∼ D via a seed s of length O(poly(k) · poly log(n))
from which entries of S can be efficiently computed where D is the distribution over matrices given
by Corollary 7.12, and maintain the sketch SA in the stream.

The row-span of SA is exactly the same as that of A assuming the two matrices have equal
rank, which happens with probability 1− 1/poly(n).

SA is an O(k)× d matrix and each entry is a signed combination of at most n entries of A and
hence there is a bit complexity bound of Õ(kd) on the space used to store SA.

In the second phase (i.e., after the stream is over) of the algorithm, we first find an orthonormal
basis Q for the row-span of SA and compute Π̃A = QQT . And finally, use a deterministic algorithm
to compute the singular value decomposition ŨΣṼ T of Π̃A and output the rows of Ṽ T .

The row-span of SA and A are equal except with probability 1/poly(n); assuming this happens,
Π̃A is exactly equal to ΠA, the unique projection matrix onto the row-span of A. Write ΠA in its
singular value decomposition UΣV T . If Π̃A = ΠA, Ṽ T is exactly equal to V T . Since V T is given
by a deterministic function of A, and the output of the algorithm Ṽ is equal to V T with high
probability, our algorithm is pseudo-deterministic.

References

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile
streams with applications. In 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
from precision sampling. arXiv preprint arXiv:1011.1263, 2010.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and system sciences, 58(1):137–147, 1999.

24

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theoretical Computer Science, 312(1):3–15, 2004.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the forty-first annual ACM symposium on Theory of comput-
ing, pages 205–214. ACM, 2009.

[DPV18] Peter Dixon, A Pavan, and NV Vinodchandran. On pseudodeterministic approxima-
tion algorithms. In 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. International Journal of Computational Geometry & Applications,
18(01n02):3–28, 2008.

[Fla85] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathe-
matics, 25(1):113–134, 1985.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers
and their cryptographic applications. In Electronic Colloquium on Computational Com-
plexity (ECCC), volume 18, page 136, 2011.

[GG15] Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-
deterministic RNC. In Electronic Colloquium on Computational Complexity (ECCC),
volume 22, page 208, 2015.

[GGH17] Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs.
arXiv preprint arXiv:1706.04641, 2017.

[GGR13] Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, pages 127–138. ACM, 2013.

[GL19] Ofer Grossman and Yang P Liu. Reproducibility and pseudo-determinism in log-space.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 606–620. SIAM, 2019.

[Gol19] Oded Goldreich. Multi-pseudodeterministic algorithms. In Electronic Colloquium on
Computational Complexity (ECCC), 2019.

[GR09] Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream.
In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,
pages 402–411. Society for Industrial and Applied Mathematics, 2009.

[Gro15] Ofer Grossman. Finding primitive roots pseudo-deterministically. In Electronic Collo-
quium on Computational Complexity (ECCC), volume 22, page 207, 2015.

[Hol17] Dhiraj Holden. A note on unconditional subexponential-time pseudo-deterministic al-
gorithms for BPP search problems. arXiv preprint arXiv:1707.05808, 2017.

25

[HW13] Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs?
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
121–130. ACM, 2013.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 202–208. ACM, 2005.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the thirtieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
49–58. ACM, 2011.

[JW18] Rajesh Jayaram and David P Woodruff. Perfect lp sampling in a data stream. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
544–555. IEEE, 2018.

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P Woodruff,
and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers
and finding duplicates in streams. In Foundations of Computer Science (FOCS), 2017
IEEE 58th Annual Symposium on, pages 475–486. Ieee, 2017.

[LNW14] Yi Li, Huy L Nguyen, and David P Woodruff. Turnstile streaming algorithms might
as well be linear sketches. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 174–183. ACM, 2014.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of computer
programming, 2(2):143–152, 1982.

[Mor78] Robert Morris. Counting large numbers of events in small registers. Communications
of the ACM, 21(10):840–842, 1978.

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error l p-sampling with
applications. In Proceedings of the twenty-first annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 1143–1160. Society for Industrial and Applied Mathematics,
2010.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[NNW14] Jelani Nelson, Huy L Nguyn, and David P Woodruff. On deterministic sketching and
streaming for sparse recovery and norm estimation. Linear Algebra and its Applications,
441:152–167, 2014.

[OS16] Igor C Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexpo-
nential time. arXiv preprint arXiv:1612.01817, 2016.

26

[OS18] Igor C Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approxima-
tion. In LIPIcs-Leibniz International Proceedings in Informatics, volume 116. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[V+12] Salil P Vadhan et al. Pseudorandomness. Foundations and Trends R© in Theoretical
Computer Science, 7(1–3):1–336, 2012.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

