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Abstract

We show that the size of any regular resolution refutation of Tseitin formula T(G, c) based
on a graph G is at least 2Ω(tw(G)/ log n), where n is the number of vertices in G and tw(G) is the
treewidth of G. For constant degree graphs there is known upper bound 2O(tw(G)) [1, 13], so
our lower bound is tight up to a logarithmic factor in the exponent.

In order to prove this result we show that any regular resolution proof of Tseitin formula
T(G, c) of size S can be converted to a read-once branching program computing satisfiable
Tseitin formula T(G, c′) of size SO(log n). Then we show that any read-once branching program
computing satisfiable Tseitin formula T(G, c′) has size at least 2Ω(tw(G)); the latter improves the
recent result of Glinskih and Itsykson [15].

1 Introduction

In this paper we study Tseitin formulas encoding in CNF the following parity principle: any graph
has an even number of vertices with an odd degree. Tseitin formula is based on an undirected graph
G(V,E) and a charge function c : V → {0, 1}, the variables of T(G, c) correspond to the edges of
the graph. The formula itself is the conjunction of the parity conditions of the vertices of G stating
that the sum of the variables of the edges incident to v equals c(v) modulo 2. We assume (and this
is quite usual assumption) that degrees of all vertices of G do not exceed a constant. In that case
the Tseitin formula T(G, c) has O(|V |) clauses and O(|V |) variables. There is a simple criterion for
the satisfiability: a Tseitin formula T(G, c) is satisfiable iff for every connected component of G the
sum of the values of c(v) is even [28].

Unsatisfiable Tseitin formulas are widely studied in proof complexity. For specific families of
graphs Tseitin formulas require exponentially long proofs in many proof systems [28, 4, 24, 18, 9, 16].
In this paper we consider resolution proof system and two its subsystems: regular resolution and
tree-like resolution. For unsatisfiable CNF formula ϕ we denote by S(ϕ), SR(ϕ) and ST (ϕ) the
minimal size of unrestricted, regular and tree-like resolution proof of ϕ respectively. The following
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inequalities trivially hold: ST (ϕ) ≥ SR(ϕ) ≥ S(ϕ). Let w(ϕ) denote the minimal resolution width
of ϕ.

Galesi, Toran and Talebanfard [13] study the characterizations of resolution width, variable
space and depth of Tseitin formulas in terms of cop-robber games on the underlying graph. The
results of [13] imply that for constant degree graphs the resolution width of T(G, c) equals the
treewidth of G up to a constant factor:

w(T(G, c)) = Θ(tw(G)).

In this paper we are interested in the shortest proof size of Tseitin formulas and our goal is
to determine its dependence from properties of graphs. For tree-like proofs the size-width relation
by Ben-Sasson and Wigderson [5] implies the lower bound ST (T(G, c)) ≥ 2Ω(tw(G)). There is also
known upper bound ST (T(G, c)) ≤ 2O(tw(G) log |V |) [3, 21]; notice that the upper and the lower
bounds do not match.

Alekhnovich and Razborov [1] proved that SR(T(G, c)) ≤ 2O(tw(G))poly(|V |) and, moreover,
they showed that a regular resolution proof of T(G, c) can be generated in 2O(tw(G))poly(|V |) steps.
The size-width relation [5] implies that the lower bound S(T(G, c)) ≥ 2Ω(tw(G)) holds for graphs with
large treewidth tw(G) = Ω(|V |). On the one hand, random constant-degree graphs are expanders
with high probability, hence with high probability they have tw(G) = Ω(|V |). On the other hand,
this approach, for example, does not yield lower bounds for n×n grid graphs. In 2001 Dantchev and
Riis [11] proved that S(T(Gridn×n, c)) = 2Ω(n). Alekhnovich and Razborov [1] proved the inequality
S(T(G, c)) ≥ 2Ω(tw(G)) for graphs that can be covered by cycles of constant length such that every
edge is covered at most constant number of times (notice that Gridn×n has this property). However,
for other graphs such lower bounds are not known even for regular resolution.

There is known approach that allows to estimate the resolution complexity of Tseitin formulas
using treewidth of the underlying graph and the improved Grid Minor Theorem. The latter states
that every graph G has a t× t grid as a minor, where t = Ω(tw(G)δ) and δ is a constant; the latest
improvement [10] establishes the theorem for δ = 1/10, however, it is known that δ can not be
greater than 1/2. H̊astad [18] proved that any d-depth Frege refutation of Tseitin formulas based
on an n × n grid graph has size 2n

Ω(1/d) for d ≤ c logn
log logn , where c is a constant. Galesi et al. [12]

have recently shown that any d-depth Frege refutation of a Tseitin formula T(G, c) has size at least
2tw(G)Ω(1/d) using the Grid Minor Theorem and H̊astad’s lower bound. The same technique can be
directly applied to the resolution and it leads to the lower bound S(T(G, c)) ≥ 2Ω(tw(G)δ).

Our contributions. In this paper we prove a stronger lower bound for regular resolution, namely
for an arbitrary graph G(V,E),

SR(T(G, c)) ≥ 2Ω(tw(G)/ log |V |).

For constant degree graphs this bound is tight up to a log |V | factor in the exponent.
We propose a new method of proving lower bound on the size of a regular resolution refutation

of a Tseitin formula. The method is based on a transformation of a regular resolution proof of an
unsatisfiable Tseitin formula into a read-once branching program (1-BP) computing a satisfiable
Tseitin formula based on the same graph. Namely, we show that if there exists a regular resolution
refutation of an unsatisfiable T(G, c) of size S then there exists a 1-BP computing a satisfiable
Tseitin formula T(G, c′) of size SO(logn) where n is the number of vertices in G. Using the similar
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idea we show how to transform a tree-like resolution refutation of an unsatisfiable Tseitin formula
T(G, c) of size S into a 1-BP computing a satisfiable Tseitin formula T(G, c′) of size S + 1.

The complexity of read-once branching programs computing satisfiable Tseitin formulas has
been studied in [20, 14, 15]. Glinskih and Itsykson [14] proved that any read-once nondeterministic
branching program (1-NBP) computing satisfiable Tseitin formula based on a spectral expander with
n vertices has size at least 2Ω(n). In the more recent paper [15] Glinskih and Itsykson proved that
the size of any 1-NBP computing a satisfiable Tseitin formula based on n× n grid is at least 2Ω(n).
This result combined with the Grid Minor Theorem implies that any 1-NBP computing a satisfiable
Tseitin formula T(G, c) has size at least 2Ω(tw(G)δ). It is also shown in [15] that every satisfiable
T(G, c) can be computed by a 1-BP of size 2O(tw(G) log |V |). In this paper we show a stronger
lower bound 2Ω(tw(G)) on the size of a nondeterministic read-once branching program computing a
satisfiable T(G, c). In our proof we explicitly construct a tree decomposition of G given a 1-NBP
computing T(G, c). In order to do it we introduce a new graph measure, the component width. On
the one hand, the component width of a graph G is very close to the logarithm of the size of the
smallest 1-NBP computing a satisfiable formula T(G, c), on the other hand, we will show that the
component width of G is, roughly speaking, between the treewidth and the pathwidth of G.

We also show that there exists a family of constant degree graphs Gn(Vn, En) such that any
1-NBP computing satisfiable T(Gn, c) has size at least 2Ω(tw(Gn) log |Vn|). This example implies the
following:

• The upper bound 2O(tw(G) log |V |) on the size of 1-BP computing satisfiable T(G, c) proven in
[15] can not be improved.

• It is impossible to eliminate log |V | factor from the exponent in the transformation of reg-
ular resolution proofs of an unsatisfiable Tseitin formula to a read-once branching program
computing a satisfiable formula. Here we use the mentioned upper bound SR(T(Gn, c

′)) =
2O(tw(Gn))poly(|Vn|) [1].

• The upper bound ST (T(G, c′)) ≤ 2O(tw(G) log |V |) from [3, 21] can not be improved. Here we
use that tree-like resolution of T(G, c′) of size S can be transformed to a 1-BP for satisfiable
T(G, c) of size S + 1.

• Since ST (T(Gn, c
′)) = 2Ω(tw(Gn) log |V |) and SR(T(Gn, c

′)) ≤ 2tw(Gn)poly(|Vn|), regular and
tree-like resolutions may be superpolynomially separated on Tseitin formulas.

Organization of the paper. In Section 2 we give the basic definitions, preliminaries and detailed
descriptions of our contribution. In Section 3 we describe the transformation of a regular resolution
proof to a 1-BP computing a satisfiable Tseitin formula. In Section 4 we prove the lower bound
for a 1-NBP computing a satisfiable Tseitin formula. The construction of graphs Gn is given in
Subsection 4.4.

2 Preliminaries and results

Basic graph notation. Throughout the paper, we consider undirected graphs with no self-loops
but possibly with parallel edges. We use G(V,E) to denote a graph G with a vertex set V and an
edge set E. By a connected component of a graph G we mean an inclusion-wise maximal connected
subgraph of G. For example, it can be denoted as C(U,EU ), where U ⊆ V (G). By #G we denote
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the number of connected components in G. For the maximum degree of a graph G, we use the
standard notion ∆(G).

Resolution refutations. A resolution refutation of an unsatisfiable CNF formula ϕ is a sequence
of clauses C1, C2, . . . , Cs such that 1) Cs is the empty clause (identically false), 2) for all i ∈ [s], the
clause Ci is either a clause of ϕ, or can be obtained by the resolution rule from two clauses with
lesser numbers, where the resolution rule allows to derive A∨B from A∨x and B∨¬x. A resolution
refutation is tree-like if every derived clause can be used as a premise of the resolution rule at most
once. A resolution refutation is regular if for every increasing sequence 1 ≤ i1 < i2 < · · · < ik ≤ s
such that for all j ∈ {2, . . . , k} the clause Cij is obtained by the resolution rule applied to Cij−1

as one of the premises (let xj denote the resolved variable), all variables xj for j ∈ {2, . . . , k} are
distinct. The number s is the size of the resolution refutation. For an unsatisfiable CNF formula
ϕ we denote by S(ϕ) the minimum size of resolution refutations of ϕ, by SR(ϕ) the minimum
size of regular resolution refutations of ϕ, and by ST (ϕ) the minimum size of tree-like resolution
refutations of ϕ. The inequality ST (ϕ) ≥ SR(ϕ) is well-known and the inequality SR(ϕ) ≥ S(ϕ) is
straightforward.

The width of a clause is the number of literals in it. The width of a resolution refutation
C1, C2, . . . , Cs is the maximum width of Ci for i ∈ [s]. The resolution width of an unsatisfiable
CNF formula ϕ is the minimum possible width among all its resolution refutations. We denote the
resolution width of ϕ by w(ϕ).

Theorem 1 (Size-width relation [5]). Let ϕ be an unsatisfiable formula in k-CNF with n variables.
Then

• ST (ϕ) ≥ 2w(ϕ)−k;

• S(ϕ) ≥ 2Ω((w(ϕ)−k)2/n).

Tseitin formulas. Let G(V,E) be a graph. Let c : V → {0, 1} be a charge function. A Tseitin
formula T(G, c) depends on the propositional variables xe for e ∈ E. For each vertex v ∈ V we
define the parity condition of v as Pv := (

∑
e is incident to v xe ≡ c(v) mod 2). The Tseitin formula

T(G, c) is the conjunction of parity conditions of all the vertices:
∧
v∈V Pv. Tseitin formulas is

represented in CNF as follows: we represent Pv in CNF in the canonical way for all v ∈ V .
In this paper we define a connected component of a graph G as an inclusion-wise maximal

connected subgraph of G. Assume that G consists of connected components H1, H2, . . . ,Ht. Then
a Tseitin formula T(G, c) is equivalent to the conjunction

∧t
i=1 T(Hi, c). In the last formula we

abuse the notation since c is defined not only on the vertices of Hi and, thus, we implicitly use the
corresponding restriction on the set of vertices.

Lemma 2 ([28]). A Tseitin formula T(G, c) is satisfiable if and only if for every connected compo-
nent C(U,EU ) of the graph G, the condition

∑
u∈U c(u) ≡ 0 mod 2 holds.

Theorem 3 ([1]). Let T(G, c) be an unsatisfiable Tseitin formula. Then there exists a regular
resolution refutation of T(G, c) of size at most 2O(w(T(G,c))) · |T(G, c)|.

Theorem 4 ([3, 21]). Let T(G, c) be an unsatisfiable Tseitin formula based on a graph G(V,E).
Then there exists a tree-like resolution refutation of T(G, c) of size at most 2O(w(T(G,c)) log |V |).
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Tree and path decompositions. A tree decomposition of an undirected graph G(V,E) is a tree
T (VT , ET ) such that for every vertex u ∈ VT there is a corresponding set Xu ⊆ V and it satisfies
the following properties:

1. The union of Xu for u ∈ VT equals V .

2. For every edge (a, b) ∈ E there exists u ∈ VT such that a, b ∈ Xu.

3. If a vertex a ∈ V is contained in the sets Xu and Xv for some u, v ∈ VT , then it is also
contained in Xw for all vertices w on the unique path between u and v in T .

The sets Xu are called bags of the tree decomposition. The width of a tree decomposition is the
maximum bag size |Xu| for u ∈ VT minus one. A treewidth of a graph G, denoted by tw(G), is the
minimum width among all tree decompositions of the graph G.

A path decomposition of a graph G is a tree decomposition of G such that the underlying tree
T is a simple path. A pathwidth of a graph G, denoted by pw(G), is the minimum width among all
path decompositions of the graph G.

A line graph of a graph G(V,E) is a graph L(G) with the set of vertices E such that two different
edges e1, e2 ∈ E are connected in L(G) iff they have a common endpoint.

Theorem 5 (Corollary 8 and Corollary 16 in the ECCC version of [13]). Let G(V,E) be a graph
and T(G, c) be an unsatisfiable Tseitin formula. Then w(T(G, c)) = max{tw(L(G)),∆(G)}.

Proposition 6 (see [6, 2] for the upper bound and [17] for the lower bound). Let G(V,E) be a
graph. Then 1

2(tw(G) + 1)− 1 ≤ tw(L(G)) ≤ (tw(G) + 1) ·∆(G)− 1.

Branching programs. A branching program is a representation of a function f : {0, 1}n → K,
where K is a finite set. A branching program for the function f(x1, x2, . . . , xn) is a directed acyclic
graph with |K| sinks, sinks are labeled with different elements of the set K, each of the remaining
nodes is labeled with a variable from {x1, x2, . . . , xn} and has exactly two outgoing edges, the first
is labeled with 0, the second is labeled with 1. Each node v of a branching program computes a
function fv : {0, 1}n → K. For a k ∈ K, the sink s labeled with k, computes the function fs ≡ k.
Assume that a node v is labeled with xi, the outgoing edge from v labeled with 0 ends in a node v0

and the outgoing edge labeled with 1 ends in a node v1. Then fv(x1, . . . , xn) equals fv1(x1, . . . , xn)
if xi = 1 and equals fv0(x1, . . . , xn) if xi = 0. The size of a branching program is the number of
nodes in it.

It is usually assumed that a branching program has only one source, in that case we say that
the branching program computes the function computed in its source. We refer to a sink labeled
with k ∈ K as k-sink. We say that a branching program with unique source is a decision tree if
every node of it except sinks has at most one incoming edge.

We say that a branching program computes a relation Q ⊆ {0, 1}n×K if it computes a function
f : {0, 1}n → K such that for every x ∈ {0, 1}n the condition (x, f(x)) ∈ Q holds.

A branching program is (syntactic) read-once if every path in it contains at most one occurrences
of each variable.

One of the important concepts in proof complexity is the search problem Searchϕ based on an
unsatisfiable CNF-formula ϕ: given the values of the variables of ϕ, find a clause of ϕ that is falsified
by these values. In many cases one can reduce proving lower bounds for proof systems to proving
lower bounds on computing Searchϕ in a related model of computation.
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Theorem 7 ([22]). 1. The length of the shortest tree-like resolution refutation of ϕ (ST (ϕ))
equals the size of the smallest decision tree for Searchϕ.

2. The length of the shortest regular resolution refutation of ϕ (SR(ϕ)) equals the size of the
smallest read-once branching program computing Searchϕ.

Main result. Our main result is the following theorem.

Theorem 8. Let T(G, c) be an unsatisfiable Tseitin formula based on a graph G(V,E). Then
SR(T(G, c)) ≥ 2Ω(tw(G)/ log(|V |)).

Theorem 5, Theorem 3 and Proposition 6 imply that for constant degree graphs the bound from
Theorem 8 is tight up to a logarithmic factor in the exponent.

The proof of Theorem 8 can be divided into two parts, and each of them is of independent
interest:

1. We show that a regular resolution proof of an unsatisfiable Tseitin formula T(G, c) of size S
can be transformed to a 1-BP computing satisfiable Tseitin formula T(G, c′) of size SO(log |V |).

2. We prove that the size of any 1-BP computing а satisfiable T(G, c′) is 2Ω(tw(G)).

2.1 From unsatisfiable to satisfiable Tseitin formulas

In the first part we prove the following theorem.

Theorem 9. Let T(G, c) be an unsatisfiable Tseitin formula. If there exists a regular resolution
refutation of T(G, c) of size S, then for every c′ such that T(G, c′) is satisfiable, there exists a 1-BP
computing T(G, c′) of size SO(logn), where n is the number of vertices in G.

2.1.1 Falsified vertex vs falsified clause

For a graph G(V,E) and a charge function c : V → {0, 1} we define a relation SearchVertex(G, c)
consisting of the pairs (σ, v) where σ : {xe | e ∈ E} → {0, 1} and v ∈ V such that∑

e is incident to v σ(xe) 6≡ c(v) mod 2. If a Tseitin formula T(G, c) is unsatisfiable then the rela-
tion SearchVertex(G, c) is total i.e. for every σ : {xe | e ∈ E} → {0, 1} there exists v ∈ V such that
(σ, v) ∈ SearchVertex(G, c). We consider this relation as the following search problem: given the
values of the variables find a vertex with the parity condition violated.

The problem SearchVertex(G, c) differs from SearchT(G,c) in the granularity of the encoding:
in the first case we search for a vertex with violated parity condition and in the second case
we search for a falsified clause from a CNF representation of a violated parity condition. The
problem SearchVertex(G, c) is not harder than SearchT(G,c) since given a falsified clause it is
easy to find a vertex with violated parity condition. It is easy to see that for decision trees
the problems SearchVertex(G, c) and SearchT(G,c) are equivalent. However, 1-BP complexities of
SearchVertex(G, c) and SearchT(G,c) are different. We will prove the following proposition in Sub-
section 3.5.

Proposition (Proposition 31). 1. There is a graph Gn with 2n + 1 vertices and maximal de-
gree 2n such that there is a 1-BP for SearchVertex(Gn, c

′) of size poly(n) but any 1-BP for
SearchT(Gn,c′) has size at least 2n.
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2. Let Klogn be a complete graph on log n vertices. Then SearchVertex(Klogn, c
′) has 1-BP of

size poly(n) but any 1-BP for SearchT(Klogn,c′) has size at least 2Ω(log2 n).

We do not know how the complexity of these problems behave for constant degree graphs. We
conjecture that SearchVertex(G, c) and SearchT(G,c) have polynomially related 1-BP complexities.
The following proposition (proved in Subsection 3.5), however, shows that this conjecture implies
the stronger statement than Theorem 8.

Proposition (Proposition 32). Assume that for every d there exists a polynomial qd such that for
every graph G with degrees at most d if there exists a 1-BP computing SearchVertex(G, c) of size
S, then there exists a 1-BP computing SearchT(G,c) of size qd(S). Then for every constant-degree
graph G, SR(T(G, c)) ≥ 2Ω(w(T(G,c′))).

2.1.2 Well-structured BPs

The problem SearchVertex(G, c) looks more essential than the problem SearchT(G,c) since the second
problem is dependent on the particular encoding of the Tseitin formula. We will prove lower bound
on 1-BP complexity of SearchVertex(G, c), and it will imply a lower bound on 1-BP complexity of
SearchT(G,c) and, thus, by Theorem 7, it will imply a lower bound on regular resolution refutations
of T(G, c).

At first we show that the minimum-size read-once branching programs computing satisfiable
T(G, c) and SearchVertex(G, c) have good structure. Namely every node of a 1-BP solves the same
problem but for some other graphs and charge function. We define this structure below.

Definition 10. We say that a branching program D is a well-structured branching program com-
puting satisfiable Tseitin formulas if the following conditions hold:

• D has two sinks: one labeled with 0 and one labeled with 1 (all the other nodes of D are
called inner nodes);

• There exists a finite set of vertices V and a map µ defined on the set of the nodes of D
except the 0-sink that maps a node s to a pair (Gs, cs), where Gs(V,Es) is a graph on the
set of vertices V and cs : V → {0, 1} is a charge function such that the formula T(Gs, cs) is
satisfiable. Every node s except the sinks is labeled with a variable xe, where e ∈ Es.

• (Sink condition) µ(1-sink) = (G∅(V, ∅),0), where G∅ is the graph without edges and 0 is
identically zero function.

• (Local condition) Let s be a node labeled with xe and let si be the end of the i-labeled edge
outgoing from s for i ∈ {0, 1}. Let c0 be equal to cs and c1 be obtained from cs by flipping
the charges at the endpoints of the edge e.

– If e is not a bridge of Gs, then Gs0 = Gs1 = G− e, cs0 = c0 and cs1 = c1.

– If e is a bridge of Gs, let VA be the set of vertices of a connected component of Gs − e
that has a vertex incident to e. Let γ =

∑
v∈VA cs(v). (Since T(Gs, cs) is satisfiable, then

by Lemma 2, γ does not depend on the choice of the component VA.)
Then Gsγ = G− e, csγ = cγ and s1−γ is the 0-sink.
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Assuming that D has the unique source r and µ(r) = (G, c), we verify in Proposition 16 that
D computes T(G, c).

We also define well-structured branching programs computing SearchVertex.

Definition 11. Let G(V,E) be a connected graph and T(G, c) be unsatisfiable. LetD is a branching
program with the unique source. We say that D is a well-structured branching program computing
SearchVertex(G, c) if the following conditions hold:

• D has exactly |V | sinks and each of them is labeled with a distinct element of V (all other
nodes of D are called inner nodes);

• There exists a map ν from the nodes of D that maps a node s to a pair (Gs, cs), where
Gs(Vs, Es) is a connected subgraph of G and cs : Vs → {0, 1} is a charge function such that
T(Gs, cs) is unsatisfiable. Every node s except the sinks is labeled with a variable xe for some
edge e ∈ Es. The source is mapped by ν to the pair (G, c).

• (Sink condition) The sink labeled with v is mapped by ν to a graph with a single vertex v
and a charge function that equals 1 on v.

• (Local condition) Let node s be labeled with a variable xe and let si be the end of the i-labeled
edge outgoing from s for i ∈ {0, 1}. Let c0 be equal to cs and c1 be obtained from cs by flipping
the charges of c at the endpoints of e.

– If e is not a bridge of Gs, then Gs0 = Gs1 = G− e, cs0 = c0 and cs1 = c1.

– If e is a bridge of Gs, then G−e can be represented as the disjoint union of two connected
subgraphs of Gs: A(VA, EA) and B(VB, EB). Let γ =

∑
v∈VA cs(v). Then Gsγ = B, csγ

equals cγ restricted to VB, Gs1−γ = A and cs1−γ equals c1−γ restricted to VA.

The following Proposition 16 shows the correctness of this definition (i.e. that D indeed computes
SearchVertex(G, c)).

Proposition (Proposition 16). 1. If D is a well-structured branching program computing satisfiable
Tseitin formulas then a) D is a 1-BP and b) each node s of D except the 0-sink computes T(Gs, cs),
where (Gs, cs) = µ(s).

2. If D is a well-structured branching program computing SearchVertex(G, c), then a) D is a
1-BP and b) each node s of D computes SearchVertex(Gs, cs), where (Gs, cs) = ν(s). In particular
the source of D computes SearchVertex(G, c).

The following lemma is rather easy:

Lemma 12 (partial case of ([14], Claim 15)). Let D be a minimal 1-BP computing a satisfiable
Tseitin formula T(G, c). Then D is a well-structured branching program computing T(G, c).

The similar lemma for SearchVertex is not so straightforward, we will prove it in Subsection 3.2.
We say that a read-once branching program D is locally minimal satisfying some property if for

any non-sink node s and any its direct successor t, if all edges incoming to s we redirect to t and
remove s, then the resulting read-once branching program D′ does not satisfy the same property.
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Lemma (Lemma 17). Let G(V,E) be a connected graph, and let c be such that T(G, c) is unsatisfi-
able. Let D be a locally-minimal 1-BP computing SearchVertex(G, c). Then D is a well-structured
branching program computing SearchVertex.

Using Lemma 17, we prove the following theorem in Subsection 3.3:

Theorem (Theorem 14). Let G(V,E) be a connected graph and a Tseitin formula T(G, c) be satis-
fiable and T(G, c′) be unsatisfiable. Assume that there exists a 1-BP computing SearchVertex(G, c′)
of size S. Then there exists a 1-BP computing T(G, c) of size at most SO(log |V |).

Notice that Theorem 14 and Theorem 7 imply Theorem 9.
Let us sketch the proof idea of Theorem 14. By Lemma 17 we may assume that a 1-BP

computing SearchVertex(G, c′) is well structured. Since definitions of well-structured branching
programs are similar for computing satisfiable Tseitin formulas and SearchVertex, we will transform
one branching program to another by induction in the reverse topological order. The only essential
difference between well-structured branching programs for two problems is the local condition in
the case when e is a bridge of Gs. In this case it cause that we can not just transform branching
program, we need replicate some nodes (since they may be needed several times), and this is the
reason of the increment of the size.

In case when a 1-BP computing SearchVertex(G, c′) is a decision tree, one could eliminate
replications and in Subsection 3.4 we prove the following theorem.

Theorem (Theorem 29). Let G(V,E) be a connected graph and a Tseitin formula T(G, c) be
satisfiable and T(G, c′) be unsatisfiable. Assume that there exists a decision tree computing
SearchVertex(G, c′) of size S. Then there exists a 1-BP computing T(G, c) of size at most S + 1.

One would expect that a decision tree computing SearchVertex(G, c′) of size S may be converted
to a decision tree computing satisfiable T(G, c) of size poly(S). However, we prove the following
proposition in Subsection 3.4.

Proposition (Proposition 30). Let Pn be a path of length n with doubled edges between every pair
of consecutive vertices. Then there is a decision tree of size O(n2) computing SearchVertex(Pn, c

′)
for unsatisfiable T(Pn, c

′), but every decision tree for a satisfiable formula T(Pn, c) has size at least
2n.

2.2 Lower bound on the size of 1-NBP computing satisfiable Tseitin formulas

Nondeterministic branching programs. A nondeterministic branching program (NBP) repre-
sents a Boolean function f : {0, 1}n → {0, 1}. A nondeterministic branching program for a function
f(x1, x2, . . . , xn) is a directed a cyclic graph with one source and two sinks labeled with 0 and 1,
each of the remaining nodes is either labeled with a variable from {x1, x2, . . . , xn} and has exactly
two outgoing edges. The first edge is labeled with 0, the second is labeled with 1 or the node is a
guessing node that is unlabeled and has two outgoing unlabeled edges. So nondeterministic branch-
ing programs have three types of nodes: guessing nodes, nodes labeled with a variable (we call them
just labeled nodes) and two sinks; the source is either a guessing node or a labeled node. The value
of every node is defined recursively. The value of sinks and nodes labeled with a variable is defined
as in case of deterministic programs. Assume that a node v is a guessing node and v0 and v1 are
two direct successors of v. Then fv(x1, . . . , xn) equals fv1(x1, . . . , xn) ∨ fv0(x1, . . . , xn). Note that
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deterministic branching programs with binary outputs constitute a special case of nondeterministic
branching programs.

A nondeterministic branching program is (syntactic) read-once (1-NBP) if every path in it
contains at most one occurrence of each variable.

Ordered binary decision diagrams. Let π be a permutation of the set {1, . . . , n} (an order). A
π-ordered (nondeterministic) binary decision diagram or π−OBDD (π−NOBDD) is a 1-BP (1-NBP)
such that on every path from the source to a sink variable xπ(i) can not appear before xπ(j) if
i > j. A (nondeterministic) ordered binary decision diagram or OBDD (NOBDD) is a π-ordered
(nondeterministic) binary decision diagram for some π.

Our goal is to prove the following theorem.

Theorem 13. Any 1-NBP computing satisfiable Tseitin formula T(G, c) has size at least 2Ω(tw(G)).

An OBDD is a particular case of 1-NBP, however in Subsection 4.1 we prove the following
lemma.

Lemma (Lemma 39). The size of any 1-NBP computing a satisfiable T(G, c) is at least the minimal
size of OBDD computing T(G, c).

In order to estimate the size of an OBDD computing satisfiable T(G, c) we introduce a new
graph measure, the component width. For a graph G(V,E), we define a game between Alice and
Bob: Alice has a graph GA and Bob has a graph GB, both these graphs are on the same set of
vertices V , and at the start of the game GA has no edges and GB equals G. On each turn, Bob
chooses an edge e of GB, remove it from GB and add it to GA. The game ends when GB has no
more edges. At every moment in the game we compute the value #GA + #GB, in the beginning
this value equals |V |+ #G, the goal of Bob is to prevent this value from becoming too small. We
say that Bob pays Alice the difference between the initial value |V |+#G and the minimum value of
#GA + #GB that occurs during the game. The component width of G (we denote it by compw(G))
is defined as the minimum amount that Bob can pay in this game.

In Subsection 4.1 we prove the following theorem.

Theorem (Theorem 41). The size of any 1-NBP computing a satisfiable T(G, c) is at least
2compw(G).

By Lemma 39, it is sufficient to prove Theorem 41 for a minimal OBDD computing T(G, c).
The order of variables in a minimal OBDD corresponds to the strategy of Bob in the game
defining compw(G), and the number of nodes in a minimal OBDD on every level is precisely
2|V |+#G−(#GA+#GB) (see Section 4.1 for details). We also prove an upper bound:

Proposition (Proposition 42). There exists an OBDD computing a satisfiable formula T(G, c)
based on G(V,E) of size at most |E| · 2compw(G) + 2.

It was proved in [15] that for any satisfiable Tseitin formula T(G, c) there is an OBDD computing
it that has at most 2pw(G)+1 nodes on every level. It implies the following corollary.

Corollary (Corollary 45). For any graph G, compw(G) ≤ pw(G) + 1.

In Subsection 4.3 we prove the lower bound:
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Theorem (Theorem 52). For any graph G, compw(G) ≥ 1
2(tw(G)− 1).

The proof of Theorem 52 is based on an explicit construction of an appropriate tree decompo-
sition based on a Bob’s strategy.

Theorem 52 and Theorem 41 implies Theorem 13.

2.3 Component width can be close to pathwidth

In Subsection 4.4 we show that if a graph G has specific properties (it can be represented as a strong
product with a complete graph), then the component width of G is Ω(pw(G)). Using this we prove
the following theorem.

Theorem (Theorem 63). There exists a family of constant-degree graphs Gm such that Gm has
n vertices, where n = Ω(m3) and n = O(m4), tw(Gm) = Θ(m), pw(Gm) = Θ(m logm) and
compw(Gm) = Θ(m logm).

The following corollary shows that it is impossible to eliminate logarithmic factor in Theorem 9.

Corollary (Corollary 64). Let S be the size of the smallest 1-BP computing SearchVertex(Gm, c
′
m).

Then size of any 1-BP computing a satisfiable T(Gm, cm) is at least SΩ(logm).

The following corollary implies at first, that the upper bound in Theorem 4 can not be improved,
at second, that tree like resolution does not simulates regular resolution on Tseitin formulas.

Corollary (Corollary 65). Size of any decision tree computing SearchVertex(Gm, c
′
m) is at least

2Ω(tw(Gm) logm).

3 From unsatisfiable to satisfiable Tseitin formulas

In this section we prove the following theorem.

Theorem 14. Let G(V,E) be a connected graph and a Tseitin formula T(G, c) be satisfiable and
T(G, c′) be unsatisfiable. Assume that there exists a 1-BP computing SearchVertex(G, c′) of size S.
Then there exists a 1-BP computing T(G, c) of size at most SO(log |V |).

In the next two subsections we study the structure of 1-BPs computing SearchVertex. In Sub-
section 3.3 we prove Theorem 14 itself, in Subsection 3.4 we prove the version of this theorem
for decision trees and in Subsection 3.5 we compare complexities of searching falsified clause and
falsified vertex.

3.1 Well-structured branching programs

Lemma 15. The result of the substitution xe := b to T(G, c) where b ∈ {0, 1} is a Tseitin formula
T(G′, c′) where G′ = G− e and c′ differs from c on the endpoints of the edge e by b and equals c for
every other vertex.

Proof. The proof is straightforward.
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Proposition 16. 1. If D is a well-structured branching program computing satisfiable Tseitin
formulas then a) D is a 1-BP and b) each node s of D except the 0-sink computes T(Gs, cs), where
(Gs, cs) = µ(s). 2. If D is a well-structured branching program computing SearchVertex(G, c), then
a) D is a 1-BP and b) each node s of D computes SearchVertex(Gs, cs), where (Gs, cs) = ν(s). In
particular the source of D computes SearchVertex(G, c).

Proof. a) The proof of read-once property is the same for the both cases. Assume that there exists
a path from s to an inner node t 6= s. Let s be labeled with xe and t with xe′ . Let us show that
e 6= e′. It follows from the local condition that Gt is a subgraph of Gs and that e does not belong
to Gt. Since e′ is an edge of Gt, e 6= e′.

b) For the both cases the proof is by induction on the vertices of branching programs in the
reverse topological order. The base case follows from the sink conditions.

Inductive step. Let a node s be labeled with xe. If e is not a bridge of Gs, then the local
condition for s and the inductive hypothesis for the direct successors of s imply the statement for
s.

Assume now that e is a bridge of Gs. Let s0 and s1 be the direct successors of s, where si is the
endpoint of i-labeled edge outgoing from s.

1. The case of satisfiable Tseitin formulas. Let VA be a set of vertices of a connected component
of Gs − e that have common vertex with e and let γ =

∑
v∈VA cs(v). Let σ be a satisfying

assignment of T(Gs, cs). Consider the sum
∑

v∈VA
∑

j∈Es(v) σ(xj), where Es(v) is the set of
all edges of Gs adjacent with v. Since σ satisfies T(Gs, cs), this sum equals

∑
v∈VA cs(v) = γ;

from the other hand, this sum equals σ(xe) since σ(xe) appears in this sum once while all other
variables appears twice. Hence, there are no satisfying assignments of T(Gs, cs) assigning xe
to 1− γ. By the inductive hypothesis, the node sγ computes T(Gsγ , csγ ), where Gsγ = Gs− e
and csa differs from cs on γ in the endpoints of e, hence s computes T(Gs, cs).

2. The case of SearchVertex. By the inductive hypothesis s computes SearchVertex(Gs0 , cs0) if
xe = 0 and SearchVertex(Gs1 , cs1) if xe = 1. Consider some assignment σ and let s returns a
vertex v on σ. Denote a := σ(xe), then v is a vertex of Gsa . If v is not incident to e, then σ
falsifies the parity condition of T(Gs, cs) of the vertex v since the sets of edges of Gs and Gsa
that are incident to v coincide. If v is incident to e, let us consider the sum

∑
j∈Esa (v) σ(xj),

where Esa(v) is the set of all edges incident to v in Gsa . This sum equals 1 + csa(v) since
by the inductive hypothesis the assignment σ falsifies the parity condition for the vertex v in
T(Gsa , csa). By the local condition, csa(v) = cs(v) + a. Hence, σ falsifies the parity condition
for v in T(Gs, cs).

3.2 The structure of 1-BP computing SearchVertex

Let F (V,E) be an undirected (not necessary connected) graph and let H be a connected component
of F . We say that H is a satisfiable component of a formula T(F, c) if the formula T(H, c) is
satisfiable. Otherwise we say that H is an unsatisfiable component of the formula T(F, c).

In this subsection we prove the following lemma.
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Lemma 17. Let G(V,E) be a connected graph, and let c be such that T(G, c) is unsatisfiable. Let
D be a locally-minimal 1-BP computing SearchVertex(G, c). Then D is a well-structured branching
program computing SearchVertex(G, c).

Moreover, for every node s, ν(s) = (H, f) and for every partial assignment α corresponding to
a path from the source of D to s, H is the only unsatisfiable component of the formula T(G, c)|α
and f is the restriction of the charge function of T(G, c)|α to the vertices of H.

Let D be a 1-BP that computes SearchVertex(G, c), where G(V,E) is a connected graph and
T(G, c) is unsatisfiable. For any internal node s of D we denote by h(s) the set of labels of sinks
reachable from s. We denote by P (s) the set of partial assignments corresponding to the paths from
the source of D to s.

The plan of the proof of Lemma 17 is the following.
1. The crucial point of the proof is the focus on the set h(s) defined above. Proposition 19 shows

that for every node s all partial assignments from P (s) change charges of vertices from h(s)
in the same way.

2. The main technical part of the proof is the statement that if D is locally minimal 1-BP,
then for its every node s, for all α ∈ P (s), T(G, c)|α has the unique unsatisfiable connected
component and its set of vertices is precisely h(s). In order to prove this we prove intermediate
statements: (a) Proposition 20 shows that if D is a locally minimal 1-BP, then every its node
s is labeled with an edge incident to h(s). (b) Proposition 22 shows that if D is a locally
minimal 1-BP, then every its node s is labeled with an edge from an unsatisfiable component
of T(G, c)|α that lies in h(s) for all α ∈ P (s) (by Proposition 19 this component does not
depend on α). (c) Proposition 24 shows that if D is a locally minimal 1-BP, then for every
its node s, h(s) is the union of one or several unsatisfiable components of T(G, c)|α for all
α ∈ P (s). (d) Proposition 25 finishes the proof of this item.

3. We prove Lemma 17 using the results of items 1 and 2.
We will use the following lemma about Tseitin formulas.

Lemma 18 ([19], Lemma 2.3). Let G(V,E) be a connected graph and let c : V → {0, 1} be a charge
function. Let U ( V and Φ =

∧
v∈U Pv be the conjunction of the parity conditions for all vertices

from U . Then Φ is satisfiable.

Proposition 19. Let s be an internal node of D. Let α1 and α2 be the assignments from P (s).
Then the following conditions hold: 1. For every edge e ∈ E incident to a vertex in h(s), α1 assigns
a value to the variable xe iff α2 does. 2. For every v ∈ h(s) the charge of v in T(G, c)|α1 is equal to
the charge of v in T(G, c)|α2 .

Proof. Consider a vertex v ∈ h(s) and consider some sink t labeled with v that is reachable from s.
Let β be a partial assignment corresponding to a path from s to t. Notice that the set of variables
assigned by β does not intersect the set of variables assigned by αi for i ∈ {1, 2} since D is a 1-BP.
Let us define ρi = αi ∪ β for i ∈ {1, 2}.

Both the assignments ρ1 and ρ2 falsify the vertex v. Thus, for every edge e incident to v the
value for xe is assigned by ρ1 and by ρ2. Thus α1 and α2 assign values to the same subset of
variables among {xe | e is incident to v} and the sums modulo 2 of the values assigned to these
variables by α1 and α2 are the same.

Proposition 20. Let D be a locally minimal 1-BP that computes SearchVertex(G, c). Then any
internal node s of D is labeled with an edge incident to h(s).
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Proof. Assume that for an inner node s labeled with xe the statement is false i.e. e connects two
vertices outside h(s). Let t0 and t1 be the direct successors of s such that the edge (s, ti) is labeled
with i. Let us modify D as follows: remove the edge (s, t0) and contract the edge (s, t1). We denote
the result of the contraction by s′ and label it with the label of t1 in D. We claim that D′ also
computes SearchVertex(G, c). Consider a full assignment β. Let β′(xq) = β(xq) for q 6= e and
β′(xe) = 1.

If the path in D corresponding to β does not pass through s, then exactly the same path with
the same labels is contained in D′, thus D′(β) = D(β). Hence, it is sufficient to consider the case
where the path in D corresponding to β passes through the node s. In this case the path in D
corresponding to β′ passes through s as well, because among the nodes of any path from the source
to s only s is labeled with xe. Then D(β′) ∈ h(s). The edge e is not incident to any vertex from
h(s) thus e is not incident to the vertex D(β′). Since the vertex D(β′) is falsified by β′ and e is
not incident to D(β′), then D(β′) is falsified by β as well. By the construction of D′, the equality
D(β′) = D′(β) holds. Thus, β falsifies D′(β). Therefore, D′ correctly computes SearchVertex(G, c)
and this is a contradiction with the local minimality of D.

By Lemma 15, the result of the substitution of a value to a variable of a Tseitin formula is a
Tseitin formula as well. For an arbitrary assignment α from P (s) we denote by Gs,α and cs,α a
graph and a charge function such that T(G, c)|α is precisely T(Gs,α, cs,α).

Notice that if for some α ∈ P (s), C is an unsatisfiable component of T(Gs,α, cs,α) and all
its vertices are contained in h(s), then by Proposition 19, C is an unsatisfiable component with
respect to all partial assignments from P (s). Let U(s) be the set of all unsatisfiable components
of T(Gs,α, cs,α) contained in h(s), where α is some partial assignment from P (s). By the remark
above U(s) does not depend on α.

Definition 21. Consider some α ∈ P (s). Let H(VH , EH) be a connected component of Gs,α
that contains at least one vertex from h(s). Then there are three possible cases (three types of
a component H with respect to a node s and a partial assignment α): (1) VH ⊆ h(s) and H
is unsatisfiable connected component of T(Gs,α, cs,α). I.e. H ∈ U(s); (2) VH ⊆ h(s) and H is
satisfiable connected component of T(Gs,α, cs,α); (3) VH 6⊆ h(s).

Proposition 22. Let D be a locally minimal 1-BP that computes SearchVertex(G, c). Then any
internal node s of D is labeled with a variable xe, where e connects two vertices of a component
from the set U(s).

Proof. By Proposition 20, we may assume that for every node l of D if l is labeled by xe, then e is
incident to a vertex of h(l).

Assume that the statement of the proposition is false. Let us fix the deepest (i.e. the farthest
from the source) node s of D violating the statement. Let s be labeled by xe. Let t0 and t1 be the
direct successors of s and the edge (s, ti) be labeled with i for i ∈ {0, 1}. Let α be an assignment
corresponding to some path from the source to s.

Since s violates the statement, e connects two vertices of a satisfiable component of Gs,α or
connects two vertices of a component containing a vertex outside h(s).

Let C(VC , EC) be the connected component of Gs,α containing the edge e.
Let us consider an arbitrary partial assignment θ which satisfies all vertices from VC ∩ h(s) and

does not assign any variable corresponding to an edge of Gs,α outside C (if C is satisfiable, θ exists
by definition and if C contains a vertex from the outside of h(s), θ exists by Lemma 18).
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Claim 23. Consider a path τ = (τ1, . . . , τm) in D from tθ(xe) to a sink node. Then for every label
xe′ of a node of τ , e′ is not incident to a vertex from C.

Proof. Assume for the sake of contradiction that there exists a node violating the statement. Let
i ∈ [m] be the smallest index such that τi is labeled by xe′ and e′ is incident to a vertex from C.

Since τi is a successor of s, h(τi) ⊆ h(s). By Proposition 20, the edge e′ is incident to h(τi).
We are going to show that e′ is not contained in an unsatisfiable component inside h(τi) and get
a contradiction with the assumption that s is the deepest node violating the statement of the
proposition.

Assume that e′ is contained in an unsatisfiable component C ′ ⊆ h(τi). As it was mentioned
before, the structure of such components is independent of a path from the source to τi, thus we
choose a path that agrees with α on the path from the source to s and then continues as τ1, . . . , τi.
Let µ be the partial assignment corresponding to this path. µ extends α, hence the graph Gτi,µ is a
subgraph of Gs,α. C is a connected component of Gs,α. C and C ′ has a common edge e′. Thus C ′

is a subgraph of C. The assignment θ satisfies the Tseitin formula corresponding to the connected
component C and the charge function cs,α. Moreover, θ and µ have only one common variable in
their domains. That variable is xe and µ agrees with θ on xe by the construction. Therefore, µ has
a full extension that agrees with θ. But that extension satisfies all parity conditions of the vertices
from C ′ which contradicts unsatisfiability of C ′ with respect to τi.

The remaining part of the proof is similar to the proof of Proposition 20. Consider a diagram
D′ obtained by the removing the edge (s, t1−θ(e)) and the contraction of the edge (s, tθ(e)), where
ti is as before. Since D is a locally minimal 1-BP computing SearchVertex(G, c), there exists a full
assignment β such that the vertex D′(β) is not falsified by β. The path in D′ corresponding to β
passes through s since otherwise D′(β) = D(β) which is falsified by β.

Let β′(xq) = β(xq) for q 6= e, β′(xe) = θ(xe) and v = D′(β).
As in the proof of Proposition 20, D(β′) = D′(β) = v and by the correctness of D, β′ falsifies

v. On the other hand, β does not falsify v by the choice of β. Since β′ and β differ only on e, e is
incident to v.

Since v is incident to e and e connects two vertices from C, v ∈ C. By Claim 23, the part of
β′ that corresponds to the path from tθ(xe) to a sink does not substitute values to edges that are
incident to C, and since β′ falsifies v, we get that v is a leaf in Gs. But the value β′(xe) was chosen
according to the assignment θ satisfying all vertices in VC ∩ h(s) 3 v and, thus, β′ satisfies v that
leads to a contradiction.

Proposition 24. Let D be a locally minimal 1-BP computing SearchVertex(G, c), where T(G, c)
is unsatisfiable. Let s be a node of D. Let α be a partial assignment from the set P (s). Then each
vertex v from h(s) is contained in an unsatisfiable component of T(Gs,α, cs,α) which is contained in
h(s).

Proof. We prove the proposition by induction on the distance d from s to the furthest sink reachable
from s.

Base case: d = 0, i.e. s is a sink. h(s) consists of the only vertex v, the parity condition of v is
falsified by the assignment α, then the component {v} is unsatisfiable.

Induction step. Assume for the sake of contradiction that v is a vertex from h(s) contained in
a connected component C(VC , EC) of type (2) or (3) (see Definition 21) with respect to the node
s and the assignment α ∈ P (s). Let t0 and t1 be the direct successors of the node s. Notice that
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h(s) = h(t0)∪ h(t1) by the definition of h, thus there exists i ∈ {0, 1} such that v ∈ h(ti). Consider
βi ∈ P (ti) that extends α.

Let s be labeled with a variable xe; by Proposition 22, the edge e is contained in an unsatisfiable
component of T(G, c)|α, thus, e is not contained in the component C. If VC \ h(ti) 6= ∅, then v
belongs to a connected component of type (3) with respect to the node ti and the assignment βi. If
VC ⊆ h(ti), then, since e is not contained in C, the connected component C equals the corresponding
connected component of T(G, c)|βi contained in h(ti), moreover, the charges of the vertices of C are
the same in the formulas T(G, c)|βi and T(G, c)|α. Thus, in this case v is contained in a component
of type (2) with respect to the node ti and the assignment βi.

But all vertices of h(ti) are contained in components of type (1) with respect to the node ti and
the assignment βi by the induction hypothesis. This is a contradiction, hence all the vertices of h(s)
are contained in unsatisfiable components.

Proposition 25. Let D be a locally minimal 1-BP computing SearchVertex(G, c), where T(G, c)
is unsatisfiable and G is connected. Let s be a node of D. Then U(s) consists of a single connected
component with the set of vertices h(s). Moreover, for every α ∈ P (s), the single component from
U(s) is the only unsatisfiable component of T(G, c)|α.

Proof. We prove the statement by induction on the distance d from the source to s.
Base case: d = 0, i.e. s is the source of D. Since G is connected, it consists of the only

unsatisfiable component of T(G, c). Lemma 18 implies that for every vertex v ∈ V there exists a
full assignment such that the parity condition of v is violated, but the parity condition of any other
vertex is satisfied. Therefore, h(s) = V .

Induction step. Let α be a partial assignment from P (s). Let r be the direct predecessor of s
according to the path corresponding to α. Let β ∈ P (r) agree with α. By the induction hypothesis,
U(r) consists of a single connected component C(VC , HC) of the formula T(G, c)|β with the vertex
set h(r). Let xe be the label of the node r. By Proposition 22, the edge e is contained in C. We
consider the following two cases.

If e is not a bridge of C, then for the substitution xe := α(xe) to T(G, c)|β the resulting formula
has the only unsatisfiable component C − e. Lemma 18 implies that every vertex of VC can be the
only vertex, where the parity condition of T(G, c)|α is violated. Therefore, h(s) = h(r) = VC .

Assume that e is a bridge of C. Let A,B be the connected components of C − e. The result
of the substitution xe := α(xe) to T(G, c)|β (which is T(G, c)|α) has the connected components A
and B instead of C. Lemma 2 implies that exactly one of the components A and B is unsatisfiable.
W.l.o.g. we assume that A is unsatisfiable component of T(G, c)|α. By Lemma 18, every vertex of
A can be the only vertex with violated parity condition, thus h(s) contains all vertices of A. h(s)
does not contain any vertex of B since by Proposition 24 it can only contain vertices of unsatisfiable
components. A is the single unsatisfiable component of T(G, c)|α since the substitution of any value
to xe in T(G, c)|β does not affect any component except C. So, the induction step is proved.

Proof of Lemma 17. Consider an arbitrary node s of D. By Proposition 25 for every α ∈ P (s) a
Tseitin formula T(Gs,α, cs,α) which is the result of substitution α to T(G, c) has the only unsatisfiable
component H ∈ U(s) with the set of vertices h(s). Moreover, by Proposition 19, H and the
restriction of cs,α to the vertices of H does not depend on the choice of α. We denote by f the
restriction of cs,α to h(s).
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Fix α ∈ P (s) and consider an arbitrary path from s to a sink in D. Let θ be the partial
assignment corresponding to this path. Let γ be the union of θ and α. Let v = D(γ). Then γ
falsifies the parity condition in the vertex v of T(G, c). Thus, θ falsifies the parity condition in the
vertex v of the formula T(H, f) as well. Therefore the node s of D computes SearchVertex(H, f).

Let us verify that D is a well-structured branching program. We define ν(s) = (H, f), H is a
connected subgraph ofG and T(H, f) is unsatisfiable. If s is labeled with xe, when by Proposition 22,
e is an edge of H. Sink conditions are trivially satisfied. Local conditions can be verified in a
straightforward manner since we know what is computed in every node of D.

3.3 Proof of Theorem 14

Proposition 26. Let G(V,E) be a connected graph and let c1, c2 : V → {0, 1} be charge functions.
If Tseitin formulas T(G, c1) and T(G, c2) are both satisfiable or both unsatisfiable, then one of them
can be obtained from another by replacing some variables with their negations.

Proof. A replacement xe with ¬xe in a Tseitin formula corresponds to the flipping of the charges of
the endpoints of the edge e. Since G is connected and T(G, c1) and T(G, c2) are both satisfiable or
both unsatisfiable, then by Lemma 2 the charge functions c1 and c2 have even number of differences.
Let v1, v2, . . . , v2k be the vertices where c1 differs from c2. Let pi be a simple path connecting v2i−1

and v2i for i ∈ [k]. Let us modify T(G, c1) in the following way: for each of the paths p1, . . . , pk we
replace the variables corresponding to the edges of a path with their negations (if several paths pass
through an edge e we will replace xe with its negation as many times as the number of paths that
pass through e). The resulting formula is T(G, c2) since charges of the ends of the paths (i.e. in the
vertices v1, . . . , v2k) have been changed and charges of all other vertices have not been changed.

Proof of Theorem 14. Let D be a minimum-size 1-BP computing SearchVertex(G, c) and let S be
its size. By Lemma 18, every vertex of G can be the unique unsatisfied vertex of T(G, c), hence D
contains at least |V | sinks and, thus, |S| ≥ |V |. By Lemma 17, D is a well-structured branching
program computing SearchVertex(G, c).

By the item (1) of Proposition 16 and by Proposition 26, it is sufficient to construct a well-
structured 1-BP computing a satisfiable T(G, c′) of size SO(log |V |).

If VH is a subset of V , then for a graph H(VH , EH) we denote by Ĥ(V,EH) a graph that is
obtained from H by adding isolated vertices V \ VH . For a charge function cH : VH → {0, 1} we
denote by ĉH a charge function V → {0, 1} that extends cH to V by zero. For a vertex w ∈ V we
denote by 1w : V → {0, 1} the charge function that equals 1 only on vertex w.

Enumerate the nodes of D in a reverse topological order u1, u2, . . . , uS , i.e. such that every
edge of D is directed from a node with the greater number to a node with the less number. We
assume that ν(ui) = (Gi(Vi, Ei), ci) for all i ∈ [S]. For k from 0 to S we iteratively construct a
well-structured branching program D(k) computing a satisfiable Tseitin formula such that for every
i ∈ [k], for every charge function c′i : Vi → {0, 1} that differs from ci for exactly one vertex of Vi,
there exists a node s of D(k) such that µ(s) = (Ĝi, ĉ′i).

For k = 0, the program D(0) consists of the 0-sink and the 1-sink and µ(1-sink) = (G∅(V, ∅),0).
Assume that D(k−1) is constructed. We show how to add several nodes to D(k−1) and define µ

for them such that the resulting program D(k) will be a correct well-structured branching program
computing satisfiable Tseitin formulas satisfying the conditions for uk.
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If uk is a sink labeled with a vertex v, then the graph Gk consists of the only vertex v and
ck(v) = 1. In that case we do not need to add any nodes to D(k−1) since the 1-sink satisfies the
conditions for uk.

Now assume that uk is a non-sink node labeled with a variable xe. Let the edge outgoing
from uk labeled with 0 end in a node uk0 and the other edge outgoing from uk end in a node
uk1 . For every vertex w of the graph Gk we will add a node sw to D(k) and extends µ such that
µ(sw) = (Ĝk, ĉk + 1w),

We consider two cases:
(1): e is not a bridge of Gk. The local condition for D implies that the graphs Gk0 and Gk1 are

equal to Gk−e. Let w be a vertex Gk, then it is a vertex of Gk0 and Gk1 . By the induction hypothesis
for k0 and k1 there exist such nodes s0

w and s1
w in D(k−1) such that µ(s0

w) = (Ĝk0 , ĉk0 + 1w) and
µ(s1

w) = (Ĝk1 , ĉk1 + 1w). We add to D(k) a node sw, we label it with xe and add an edge (sw, s
0
w)

labeled with 0 and an edge (sw, s
1
w) labeled with 1, we define µ(sw) = (Ĝk, ĉk + 1w). Notice that

by the local condition for D, ck0 equals ck, and ck1 differs from ck only in the endpoints of e, thus
the same statement is true for the charge functions ĉk0 , ĉk1 and ĉk with flipped value at the vertex
w. Therefore the local condition is satisfied for the node sw in D(k) as well.

w

BA

xe
a b

w

A

a

B

b

graph of the node uk graph of sγw graph of s1−γb

Figure 1: The graphs of the nodes (for γ = 1);
nodes with the charge different from ck are black,
nodes with the same charge as in ck are white.
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Figure 2: Copying.

(2): e is a bridge of Gk. Then Gk − e can be represented as the disjoint union of two connected
subgraphs of Gk: A(VA, EA) and B(VB, EB). Assume w.l.o.g. that A contains the vertex w. Let
a ∈ A, b ∈ B be the endpoints of the edge e.

Let γ =
∑

v∈VA ck(v). We add to the program D(k) a node sw labeled with xe and define
µ(sw) = (Ĝk, ĉk + 1w), the edge outgoing from sw labeled with γ ends in the 0-sink, and the edge
labeled with γ will go to a node `′ such that µ(`′) = ((Ĝk − e, ĉk + 1w + (1− γ)(1a + 1b))). Local
conditions for sw will be satisfied, but we have to explain how to get such a node `′.

By the local condition for D, Gk1−γ = A and Gkγ = B. By the induction hypothesis D(k−1)

contains a node s1−γ
w such that µ(s1−γ

w ) = (Â, ĉk1−γ +1w) and a node sγb such that µ(sγb ) = (B̂, ĉkγ +
1b) (see Fig. 1).

Proposition 27. Let VH and VF be two disjoint subsets of V , h : VH → {0, 1} and f : VF →
{0, 1} be two charge functions and H(VH , EH) and F (VF , EF ) be two graphs such that Tseitin
formulas T(H,h) and T(F, f) are satisfiable. Let DH and DF supplied with mappings µH and µF be
well-structured branching programs with disjoint set of nodes computing satisfiable Tseitin formulas
T(Ĥ, ĥ) and T(F̂ , f̂). Consider a branching program DH∪F which is obtained by redirecting edges
of DH going to the 1-sink to the source of the program DF (and by deletions of 1-sink of DH and
merging two 0-sinks into a single 0-sink). Let us define a mapping µH∪F defined on the nodes of

18



DH∪G except the 0-sink as follows. If s is a node of DF , we define µH∪F (s) = µF (s). If s is a node
of Hs and µH(s) = (Hs, cs), then we define µH∪F (s) = (Hs ∪ F, cs + t̂), where Hs ∪ F is a graph
that is obtained from Hs by the addition of all edges from EF . Then DH∪F supplied with µH∪F is
a well-structured branching programs computing T(Ĥ ∪ F , ĥ+ f̂).

Proof. Follows by the straightforward verification of local conditions.

Proposition 27 explains how to create a node mapped by µ to (Â ∪B, ĉk1−γ + 1w + ĉkγ + 1b).
Notice that by local properties of D, ĉk1−γ + ĉkγ = ĉk+(1−γ)1a+γ1b, hence ĉk1−γ +1w+ ĉkγ +1b =
ĉk + 1w + (1 − γ)(1a + 1b) and, thus, this node can be served as `′. But the construction in
Proposition 27 can not be used directly since it changes value of µ for several vertices and this can
break the desired properties of D(k). So we have to copy several nodes.

If the number of vertices in the graph A is less or equal than the number of vertices in B, we
denote ` = s1−γ

w and r = sγb , otherwise we denote ` = sγb and r = s1−γ
w . We copy the subprogram

of ` (i.e. all successors of ` except the sinks) and add it to D(k). For every edge from the copied
nodes to the 1-sink we redirect it to the node r. The edges to the 0-sink remain unchanged. We
denote the source of the copied subprogram of ` by `′ (see Fig. 2). As we already discussed above,
by Proposition 27, `′ satisfies all necessary properties.

Finally, we have that D(S) is a well-structured branching program computing satisfiable Tseitin
formulas and contains a node s computing T(G, c′), where c′ differs from c in one vertex. We have
to estimate the number of nodes in D(k). Notice that if we have two nodes with the same values of
µ, then one of them may be deleted and all incoming edges may be redirected to the other. So we
assume that all values of µ are different and we estimate the number of its possible values.

Claim 28. Let s be a node of D(S) and µ(s) = (Q, q). Consider all connected components of Q with
size at least two: C1(VC1 , EC1), C2(VC2 , EC2), . . . , Cm(VCm , ECm) and assume that |VC1 | ≤ |VC2 | ≤
· · · ≤ |VCm |. Then 1. |VCi | ≥ |VC1 | + · · · + |VCi−1 | for every i ∈ [m]. 2. For every i ∈ [m] there
exists a node s of the program D such that ν(s) = (Ci, h), where h differs from q in exactly one
vertex from VCi .

Proof. We prove the statement by the induction on k for all nodes of D(k). D(0) consists of only
sinks, hence the statement is true for l = 0. When we introduce the node sw we always have
that µ(sw) = (Ĝk, ĉk + 1w), recall that ν(uk) = (Gk, ck) and, thus, Ĝk has at most one connected
component of size at least 2. And ĉk + 1w differs from ck on V only in w. The only remaining case
where we introduce a node of D(k) is one when we copy nodes and then use the transformation from
Proposition 27.

Consider the transformation from Proposition 27 applied for nodes ` and r of D(k−1). Let
µ(r) = (F̂ , f̂), µ(`) = (Ĥ, ĥ), where F (VF , EF ), H(VH , EH) are connected, f : VF → {0, 1},
h : VH → {0, 1} and VF ∩VH = ∅. Consider a node t from the subprogram of `. Since ` is in D(k−1),
t is also in D(k−1). Let t′ be the copy of t introduced during this step; let us verify the condition
for t′. The local conditions of D(k−1) imply that µ(t) = (Ĥt, ht), where Ht is a subgraph of H. The
new node t′ will have µ(t′) = (Ht′ , ht′), where Ht′ is obtained from Ĥt by adding a new connected
component F (VF , EF ), notice that all vertices of VF are isolated in Ĥt. Notice that |VF | ≥ |VH |;
since Ht is a subgraph of H, |VF | is at least the total size of all connected components of Ht with at
least two vertices. The function ht′ differs from ht only on VF and coincides with f on VF . Hence,
the statement for t′ follows from the inductive hypothesis for nodes r and t.
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Consider some node s ofD(S), let µ(s) = (H, f). If v isolated vertex ofH, then f(v) = 0. Assume
that H consists ofm connected components with at least two vertices. By the first item of Claim 28,
m ≤ log |V |. Consider some connected component C(VC , EC) of H with at least two vertices. By
the second item of Claim 28, there are at most S|V | different values of the pair (C, f |VC ). Hence, the
number of different values of µ(s) is at most

∑blog |V |c
m=0 (|V |S)m ≤ log |V |(|V |S)log |V | = SO(log |V |).

3.4 Case of decision tree

Theorem 29. Let G(V,E) be a connected graph and a Tseitin formula T(G, c) be satisfiable and
T(G, c′) be unsatisfiable. Assume that there exists a decision tree computing SearchVertex(G, c′) of
size S. Then there exists a 1-BP computing T(G, c) of size at most S + 1.

Proof. The proof is a slight modification of the proof of Theorem 14. We use notations from that
proof. Let T be a minimal decision tree computing SearchVertex(G, c) and let S be its size. By
Lemma 17, T is a well-structured branching program computing SearchVertex(G, c).

We are going to construct a well-structured branching program computing a satisfiable T(G, c′)
of size at most S + 1. The theorem will follow by Proposition 16.

Enumerate the nodes of T in a reverse topological order u1, u2, . . . , uS . We assume that ν(ui) =
(Gi(Vi, Ei), ci) for all i ∈ [S].

By induction on k from 1 to S we show that for all w ∈ Vk there exists a well-structured
branching program D

(k)
w with the only source skw such that µ(skw) = (Ĝk, ĉk + 1w) and the size of

D(k) is at most the size of the subtree of uk in T .
If uk is a sink labeled with a vertex v, then D

(k−1)
v consists of the 1-sink and µ(1-sink) =

(G∅(V, ∅),0).
Now assume that uk is a non-sink node labeled with a variable xe. Let the 0-labeled edge

outgoing from uk end in a node uk0 and the other edge outgoing from uk end in a node uk1 . For
each w ∈ Vk we are going to construct a well-structured branching program D

(k)
w with the source

skw such that µ(skw) = (Ĝk, ĉk + 1w).
We consider two cases:
(1): e is not a bridge of Gk. The local condition for T implies that the graphs Gk0 and

Gk1 are equal to Gk − e. By the induction hypothesis there exist such well-structured branching
programs D(k0)

w and Dk1
w with sources sk0

w and sk1
w such that µ(sk0

w )) = (Ĝk0 , ĉk0 +1wk) and µ(sk1
w ) =

(Ĝk1 , ĉk1 + 1wk). Let us define D(k)
w as follows it has a source skw, we label it with xe and add an

edge (skw, s
k0
w ) labeled with 0 and an edge (skw, s

k1
w ) labeled with 1, we define µ(skw) = (Ĝk, ĉk + 1w).

Notice that by the local condition for T , ck0 equals ck, and ck1 differs from ck only in the endpoints
of e, thus the same statement is true for the charge functions ĉk0 , ĉk1 and ĉk with flipped value
at the vertex w. Therefore the local condition is satisfied for the node skw in D

(k)
w as well. And

|D(k)
w | ≤ |D(k1)

w |+ |D(k0)
w |+ 1, hence |D(k)

w | is at most the size of the subtree of uk.
(2): e is a bridge of Gk. Then Gk − e can be represented as the disjoint union of two connected

subgraphs of Gk: A(VA, EA) and B(VB, EB). Assume w.l.o.g. that A contains the vertex w. Let
a ∈ A, b ∈ B be the endpoints of the edge e. Let γ =

∑
v∈VA ck(v). We construct a program

D
(k)
w with a source skw labeled with xe and define µ(skw) = (Ĝk, ĉk + 1w), the edge outgoing from

skw labeled with γ ends in the 0-sink, and the edge labeled with γ will go to a node ` such that
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µ(`) = ((Ĝk − e, ĉk + 1w + (1− γ)(1a + 1b))). Local conditions for skw will be satisfied, but we have
to explain how to get such a node `.

By the local condition for T , Gk1−γ = A and Gkγ = B. By the induction hypothesis there are
a well-structured branching programs D(k1−γ)

w and D(kγ)
b with the sources sk1−γ

w and skγb such that
µ(s(k1−γ) = (Â, ĉk1−γ+1w) and a node skγb such that µ(s

kγ
b ) = (B̂, ĉkγ+1b). We apply Proposition 27

to branching programs of s(k0) and s(k1) and denote the source of the resulting program by `.
By Proposition 27, µ(`) = (Â ∪B, ĉk1−γ + 1w + ĉkγ + 1b). Notice that by local properties of T ,
ĉk1−γ + ĉkγ = ĉk + (1− γ)1a + γ1b, hence ĉk1−γ + 1w + ĉkγ + 1b = ĉk + 1wk + (1− γ)(1a + 1b).

D
(k)
w is obtained from D

(k1−γ)
w and D

(kγ)
b , we also add its source and possibly add the 0-sink,

but we delete one of 1-sinks, hence |D(k)
w | ≤ |D(k1−γ)

w |+ |D(kγ)
b |+ 1, hence by induction hypothesis

|D(k)
w | is at most the size of the subtree of uk.
Consider a vertex w ∈ V , we have that D(S)

w is a well-structured branching program computing
satisfiable Tseitin formulas computing T(G, c+ 1w) of size at most S + 1.

Proposition 30. Let Pn be a path of length n with doubled edges between every pair of the con-
secutive vertices. Then there is a decision tree of size O(n2) computing SearchVertex(Pn, c

′) for
unsatisfiable T(Pn, c

′), but every decision tree for a satisfiable formula T(Pn, c) has size at least 2n.

Proof. T(Pn, c) is satisfiable and has exactly 2n satisfying assignments (an assignment satisfies
T(Pn, c) iff parallel edges have the same values). Any two different accepting paths in a decision tree
have different penultimate nodes. Every satisfying assignment of T(Pn, c) is realized by an accepting
path, we mark the penultimate nodes on these paths. A Tseitin formula can not be satisfied by
a partial assignment, hence no two satisfying assignments correspond to the same accepting path.
Thus, any decision tree for T(Pn, c) has at least 2n marked nodes.

We claim that SearchVertex(Pn, c
′) can be solved by a decision tree of size O(n2). Indeed, we

branch on the values of two central edges and for each of the four cases we get only one connected
component that is unsatisfiable, so we will search for a falsified vertex in a graph of twice smaller
size. The size of the resulting decision tree can be determined by the recurrence S(n) = 4S(n/2),
hence S(n) = O(n2).

3.5 Falsified vertex vs falsified clause

In this section we compare 1-BP complexity of SearchVertex(G, c) and SearchT(G,c).
We show that SearchVertex(G, c) can be much easier than SearchT(G,c) for large and logarithmic

degrees.

Proposition 31. 1. There is a graph Gn with 2n+1 vertices and maximal degree 2n such that there
is a 1-BP for SearchVertex(Gn, c

′) of size poly(n) but any 1-BP for SearchT(Gn,c′) has size at least
2n. 2. Let Klogn be a complete graph on log n vertices. Then SearchVertex(Klogn, c

′) has 1-BP of
size poly(n) but any 1-BP for SearchT(Klogn,c′) has size at least 2Ω(log2 n).

Proof. 1. Consider a graph Gn that consists of n triangles ai, bi, v for i ∈ [n] sharing the common
vertex v. It is easy to see that there is a 1-BP for SearchVertex(Gn, c

′) of size O(n). Indeed, we
query edges of the first triangle and check parity conditions of vertices a1, b1, then we query edges
of the second triangle and etc. We also save the current parity of vertex v; in order to do it we
create for all i ∈ [n − 1] two nodes of 1-BP corresponding to different values of the current parity.
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On the other hand, there are at least 2n clauses from the parity condition of v in T(Gn, c
′) that can

be uniquely falsified, hence any 1-BP for SearchT(G,c′) has at least 2n sinks.
2. Using the technique connecting the expansion of a graph with the resolution width of the

corresponding Tseitin formula [5] it is easy to show that the length of the shortest resolution refu-
tation of T(Klogn, c

′) is 2Ω(log2 n) (see [8] for details), thus the size of any 1-BP for SearchT(Klogn,c′)

is 2Ω(log2 n). On the other hand, the 1-BP complexity of SearchVertex(Klogn, c
′) is poly(n): chose

an arbitrary order on edges of Klogn and query variables according to the chosen order. We save
the current parities for all vertices, since there are log n vertices, we need only n nodes on every
level.

We do not know what happens for constant degree graphs. We conjecture that
SearchVertex(G, c) and SearchT(G,c) have polynomially connected 1-BP complexities. The following
proposition, however, shows that this conjecture implies the stronger statement than Theorem 8.

Proposition 32. Assume that for every d there exists a polynomial qd such that for every graph
G with degrees at most d if there exists a 1-BP computing SearchVertex(G, c) of size S, then there
exists a 1-BP computing SearchT(G,c) of size qd(S). Then for every constant degree G, SR(T(G, c)) ≥
2Ω(w(T(G,c′))).

Proof. Recall that the xorification of CNF formula ϕ is a formula ϕ⊕ that can be obtained from ϕ
as follows: 1) we substitute xor of two fresh variables instead of every variable and then 2) translate
every substituted clause to CNF. Alekhnovich and Razborov noticed that for every unsatisfiable
CNF formula ϕ, S(ϕ⊕) ≥ 2Ω(w(ϕ)) (the proof of this result can be found in [4]).

Let a graph G⊕ be obtained from a graph G(V,E) by the doubling of every edge in E (we add
a parallel copy for every edge of G). Notice that the formula T(G⊕, c) is the xorification of T(G, c).
Hence, S(T(G⊕, c)) ≥ 2Ω(w(T(G,c))), and, thus, SR(T(G⊕, c)) ≥ 2Ω(w(T(G,c))). Since degrees of G are
at most D, degrees of G⊕ are at most 2d, hence any 1-BP computing SearchVertex(G⊕, c) has size
at least 2Ω(w(T(G,c))).

Notice that if there exists a read-once branching program D of size S computing
SearchVertex(G, c), then there exists a read-once branching program D⊕ of size at most 3S for
the problem SearchVertex(G⊕, c). Indeed, assume that for all e ∈ E we add a parallel edge e′.
Let us perform the following modification of D consequently for all edges e ∈ E: for every node s
labeled with xe we create two nodes s0 and s1 labeled with xe′ . If an edge (s, s′) in D was labeled
by a, we add two edges: (s0, s

′) with label a and (s1, s
′) with label 1 − a. We also add two edges:

from s to s0 labeled with 0 and to s1 labeled with 1.
Thus we get that size of any 1-BP for SearchVertex(G, c) is at least 2Ω(w(T(G,c))). Hence, the

size of any 1-BP computing SearchT(G,c) is at least 2Ω(w(T(G,c))). The statement now follows from
Theorem 7.

4 Lower bound on 1-NBP computing satisfiable Tseitin formulas

The goal of this section is to prove a lower bound on size of 1-NBP computing satisfiable Tseitin
formulas. In Subsection 4.1 we show that the minimal 1-NBP computing satisfiable Tseitin formula
is an OBDD, in Subsection 4.2 we define the notion of component width and connect it with the
OBDD complexity of Tseitin formulas, in Subsection 4.3 we prove the lower bound on the component
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width via the treewidth and in Subsection 4.4 we show that the component width may be close to
the pathwidth.

4.1 Minimal read-once branching program for satisfiable Tseitin formulas is
OBDD

In this subsection we prove that for a satisfiable Tseitin formula T(G, c) the minimal size of a non-
deterministic read-once branching program computing it is at least the minimal size of an OBDD
computing T(G, c). We also introduce a new graph measure, the component width, that approxi-
mate the logarithm of the minimal size of an OBDD computing T(G, c).

Let for a graph G the number #G denote the number of connected components in G.

Lemma 33 ([14]). If a Tseitin formula T(G, c) is satisfiable, then it has 2|E|−|V |+#G satisfiable
assignments.

Let G(V,E) be a graph. We denote by AG,c the set of satisfying assignments of T(G, c).
For every J ⊆ E and every α ∈ AG,c we denote a partial assignment αJ that restricts α to the

set of variables {xe | e ∈ J}.
Let FJ(G, c) be the set of Boolean functions that can be obtained from T(G, c) by application

of αJ for α ∈ AG,c: FJ(G, c) = {T(G, c)|αJ | α ∈ AG,c}. Notice that all functions from FJ(G, c) are
obtained from the Tseitin formula by substitutions, hence, by Lemma 15, they can be represented
by Tseitin formulas.

For every J ⊆ E we denote by GJ(V, J) a subgraph of G that is based on the set of edges J .
The next proposition estimates the number of ways to get every function from FJ(G, c).

Proposition 34. For every f ∈ FJ(G, c) the size of the set {α ∈ AG,c | f = T(G, c)|αJ} equals
2|E|−2|V |+#GE\J+#GJ .

Proof. Consider an assignment β ∈ AG,c such that f = T (G, c)|βJ . Notice that βE\J satisfies f .
Let c′ be a charge function such that f = T(GE\J , c

′). Notice that βJ is a satisfying assignment of
T(GJ , c+ c′).

Notice that if γ is a satisfying assignment of T(GJ , c+ c′) and δ is a satisfying assignment of f ,
then γ∪δ is a satisfying assignment of T(G, c). Thus, the size of the set {α ∈ AG,c | f = T(G, c)|αJ}
equals the product of the number of satisfying assignments of f and the number of satisfying
assignments of T(GJ , c+ c′). By Lemma 33, the latter product equals 2|E|−2|V |+#GE\J+#GJ .

Remark 35. Let D be an arbitrary 1-NBP computing a satisfiable T (G, c). Since every satisfying
assignment of T(G, c) assigns values to all variables, any accepting path (a path from the source of
D to 1-sink) must contain all variables among labels of nodes.

The following proposition was explicitly proved in [14].

Proposition 36. Let D be a 1-NBP computing a satisfiable T(G, c). Let s be a node of D such
that there is an accepting path passing through s. Then the following holds: 1) every two paths from
the source to s assign values to the same set of variables {xe | e ∈ J}, where J ⊆ E; 2) the maximal
number of accepting paths passing through s corresponding to different satisfying assignments of
T(G, c) is at most 2|E|−2|V |+#GE\J+#GJ .
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Proof. Consider an accepting path α passing through s. Let α1 be a part of α from the source to s
and α2 — from s to 1-sink. Consider a path β1 from the source to s. Notice that the path β1α2 is
also an accepting path. Since by Remark 35, every satisfying assignment of T(G, c) assigns values to
all variables and every variable appears at most once on every path of D, sets of edges corresponding
to variables assigned along α1 and β1 coincide; we denote this set of edges by J . Let for a path γ
in D, ργ denotes the partial assignment corresponding to γ. Both T(G, c)|ρα1 and T(G, c)|ρβ1 are
Tseitin formulas based on the same graph G−E and since they have common satisfying assignment
ρα2 , they coincide. Hence, the number of accepting paths (corresponding to different assignments)
passing through s does not exceed 2|E|−2|V |+#GE\J+#GJ by Proposition 34.

For a graph G(V,E) and a set of edges J ⊆ E we introduce the notation

compJ(G) = |V | −#GE\J −#GJ + #G.

Proposition 37. The size of the set FJ(G, c) is equal to 2compJ (G).

Proof. By Lemma 33, the number of satisfying assignments of T(G, c) equals 2|E|−|V |+#G. Ev-
ery satisfying assignment of T(G, c) corresponds to a function from FJ(G, c); every function from
FJ(G, c) corresponds to 2|E|−2|V |+#GE\J+#GJ satisfying assignments of T(G, c) by Proposition 34.
Hence, FJ(G, c) contains exactly 2|V |−#GE\J−#GJ+#G = 2compJ (G) elements.

Let D be a nondeterministic OBDD using the order of variables xπ(1), xπ(2), . . . , xπ(n). For every
i ∈ [n], the i-th level of D is the set of nodes labeled with variable xπ(i).

Lemma 38. Let T(G, c) be a satisfiable Tseitin formula based on a graph G(V,E). Let π be a
permutation of [|E|]. For every i from 0 to |E| we denote by Ji the set {eπ(1), eπ(2), . . . , eπ(i)} of the
first i edges according to permutation π. 1) Let D be a nondeterministic π-ordered OBDD computing
T(G, c). Then for every i from [|E|], the i-th level of D contains at least 2

compJi−1
(G) nodes. 2) If

D is a minimal π-OBDD computing T(G, c), then the i-th level of D has exactly 2compJi (G) nodes
and for every node s from the i-th level of D there are exactly 2

|E|−2|V |+#GE\Ji−1
+#GJi−1 accepting

paths going through s.

Proof. 1) By Remark 35, every accepting path of D contains a node from the i-th level. Since D
is a NOBDD, for every path p from the source to a node from the i-th level, the set of labels of
nodes from p is exactly xeπ(1)

, . . . , xeπ(i)
. Hence, the i-th level of D should contain nodes computing

all different functions that can be obtained from T(G, c) by the substitution of values of variables
xeπ(1)

, . . . , xeπ(i−1)
according to a satisfying assignment of T(G, c). By Proposition 37, there are

exactly 2
compJi−1

(G) such functions.
2) Since D is a minimal π-OBDD, for every node s (except the 0-sink), there is an accepting

path p passing through s. Let p correspond to a satisfying assignment α of T(G, c). Also by
the minimality of D, there are no two nodes in the i-th level computing the same function, since
otherwise these two nodes may be joined and it will decrease the size of D. Hence, by the first part
of the proof, i-th level contains exactly 2

compJi−1
(G) nodes.

Since D is a deterministic OBDD and by Remark 35 every accepting path of D contains all
variables, every satisfying assignment of T(G, c) corresponds to exactly one accepting path in D. By
Proposition 34, there are exactly 2

|E|−2|V |+#GE\Ji−1
+#GJi−1 satisfying assignments β of T(G, c) such

that T (G, c)|αJi−1
= T (G, c)|βJi−1

. Hence, there are exactly 2
|E|−2|V |+#GE\Ji−1

+#GJi−1 accepting
paths going through s.
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Lemma 39. The size of any 1-NBP computing a satisfiable T(G, c) is at least the minimal size of
OBDD computing T(G, c).

Proof. Consider a minimal read-once nondeterministic branching program D computing T(G, c).
For every satisfying assignment of T(G, c) there exists a corresponding accepting path in D. Con-
sider a set of accepting paths P that contains exactly one path for every satisfying assignment.
Notice that in 1-NBP one assignment may correspond to multiple paths. For every node v of D
except the 0-sink there is at least one path of P , since otherwise v can be joined with 0-sink and it
will decrease the size of D.

For every node v of D we denote by q(v) the number of paths from P passing through v. For
every p ∈ P , we consider the value γ(p) =

∑
v∈p

1
q(v) , where summation goes over all vertices of p.

Notice that
∑

p∈P γ(p) = |D|−1, since every node v except the 0-sink was calculated q(v) times
with weight 1

q(v) . Hence, |D| − 1 ≥ |P |min
p∈P

γ(p). Let min
p∈P

γ(p) be achieved on a path p∗ ∈ P . Let π
be a permutation corresponding to the order of the edges in p∗ in the direction from the source to the
1-sink. Let D′ be a minimal π−OBDD computing T (G, c). For any node v of D′ we denote by q′(v)
the number of accepting paths passing through v. For any path p in D′ we define γ′(p) =

∑
v∈p

1
q′(v) .

By Lemma 38, the number of accepting paths passing through a vertex D′ on a given level depends
only on the number of this level and does not depend on particular node from it. Hence, γ′(p)
does not depend on p. Let P ′ be a set of accepting paths in D′, then |P | = |P ′| = |AG,c|. Thus,
|D′| − 1 =

∑
p∈P ′ γ

′(p) = |P ′|γ(p′), where p′ is the path in D′ corresponding to the path p∗ in D.
Consider the path p∗ in D and enumerate all nodes labeled with variables: v1 is labeled with xeπ(1)

,
v2 is labeled with xeπ(2)

, etc., v|E| is labeled with xeπ(|E|) . Similarly consider the path p′ in D′; it
contains the following nodes: u1 labeled with xeπ(1)

, u2 labeled with xeπ(2)
, and etc., u|E| labeled

with xeπ(|E|) . By Lemma 38 and Proposition 36, for all i ∈ [|E|] the inequality q(vi) ≤ q′(ui) holds.
Hence, γ(p′) ≤ γ(p∗), and, thus, |D| ≥ |D′|.

Remark 40. Notice that the proof of Lemma 39 in fact gives a polynomial-time algorithm that
given a nondeterministic read-once branching program D computing T(G, c) produces an ordered
binary decision diagram D′ computing T(G, c) such that |D′| ≤ |D|. Indeed, for any node v of D
we can easily compute q(v): we compute number of paths from the source of D to v and from v to
the 1-sink by dynamic programming. Then we use dynamic programming again in order to find a
minimum-weight path p∗ from the source of D to the 1-sink. Thus, we construct the permutation
π corresponding to the path p∗. Now we just need to show that we can build a minimal π−OBDD
computing T(G, c) in time that is polynomial of its size. We build π−OBDD level by level. On each
level we join any two nodes that compute the same function. To do this we match each node with a
Tseitin formula computed in this node, and join two nodes if and only if their Tseitin formulas are
equal. It is easy to see that all this work can be performed in time poly(|D|).

4.2 The component width

Let π be a permutation of the set [|E|]. We define π-compw(G) as a maximum over all i from 0
to |E| of the value compJi(G), where Ji = {eπ(1), . . . , eπ(i)}. We define the component width of the
graph G (compw(G)) as the minimum over all permutations π of the value π-compw(G).

Theorem 41. The size of any 1-NBP computing a satisfiable T(G, c) is at least 2compw(G).
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Proof. By Lemma 39, the size of 1-NBP computing T(G, c) is at least the minimal size of OBDD
computing T(G, c). Let D be a minimal OBDD computing T(G, c). Let π be a permuta-
tion corresponding to the order of variables in D. By Lemma 38, the size of D is at least
2 +

∑|E|−1
i=0 2compJi (G) >

∑|E|
i=0 2compJi (G) ≥ 2π-compw(G) ≥ 2compw(G), in the first inequality we

use that compJ|E|(G) = 0.

On the other hand we can easily show the following.

Proposition 42. There exists an OBDD computing a satisfiable formula T(G, c) based on G(V,E)
of size at most |E|2compw(G) + 2.

Proof. Let π be a permutation of [|E|] such that compwG = π-compwG. Let D be a minimal
π−OBDD computing a satisfiable Tseitin formula T (G, c). By Lemma 38, every level of D consists
of at most 2compw(G) nodes. There are |E| levels and two sinks, hence the size of D is at most
|E|2compw(G) + 2.

Recall that a graph H is a minor of a graph G if H can be obtained from G by the sequence of
the following three operations: edge deletion, edge contraction and vertex deletion. The following
lemma verifies that the component width is minor-monotone.

Lemma 43. Let G′(V ′, E′) be a minor of a graph G(V,E), then compw(G′) ≤ compw(G).

Proof. Let π be a permutation of [|E|] such that compwG = π-compwG. Let D be a minimal
π−OBDD computing a satisfiable Tseitin formula T (G, c). By Lemma 38, every level of D consists
of at most 2compw(G) nodes.

It is sufficient to prove the lemma under the assumption that G′ is obtained from G by one of
the following three operations: edge deletion, edge contraction and vertex deletion. We consider
these three operations separately.

Edge deletion. Let G′ be obtained from G by the deletion of edge e. Assume that there exists
a satisfying assignment of T(G, c) that substitutes value a ∈ {0, 1} to xe. Consider a branching
program D′ that can be obtained from D as follows: we delete from D all nodes labeled with xe.
Consider a node s of D labeled with xe and let us denote by s′ the endpoint of the edge outgoing
from s labeled with a. If s is the source of D, then the source of D′ is s′. Otherwise, we take all
edges incoming to s in D and redirect them to s′ in D′. Note that D′ is obtained from D by the
deletion of all nodes from some level and redirection of several edges, hence every level of D′ contains
at most 2compw(G) nodes. On the other hand D′ computes a satisfiable Tseitin formula T(G′, c′),
thus by Lemma 38, D′ has a level of size at least 2compw(G′). Hence, compw(G′) ≤ compw(G).

Edge contraction. Let G′ be obtained from G by the contraction of an edge e connecting
vertices u and v. Let c′ be a charge function defined on the vertices of G′ that coincides with c on
all vertices except the new vertex {u, v} and c′({u, v}) = c(u) + c(v). It is proved in the paper [15]
(see Lemmas 4.1 and 4.2 in ECCC version of [15]) that if we change all nodes in an 1-NBP computing
T(G, c) labeled with xe to guessing nodes, we obtain an 1-NBP computing T(G′, c′). Let D be the
minimal π−OBDD computing T (G, c), and let a nondeterministic branching programD′ be obtained
from D by the changing of all nodes labeled with xe by guessing nodes. This transformation does
not change the order of all other variables on every path, hence D′ is a nondeterministic OBDD
computing T(G′, c′). Every level of D′ contains at most 2compw(G) nodes. On the other hand,
D′ computes the satisfiable formula T(G′, c′), thus by Lemma 38, it has a level of size at least
2compw(G′). Hence, compw(G′) ≤ compw(G).
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Vertex deletion. The deletion of a vertex v can be represented as consequential deletion of all
edges incident to v and the deletion of isolated vertex. Notice that the deletion of an isolated vertex
decreases |V |,#GJ ,#GE\J and #G by 1, hence this operation does not change compJ(G).

Proposition 44 (Theorem 4.5 in ECCC version of [15]). For any satisfiable Tseitin formula T(G, c)
there is an OBDD computing it that has at most 2pw(G)+1 nodes on every level.

Corollary 45. For any graph G, compw(G) ≤ pw(G) + 1.

Proof. Consider a satisfiable Tseitin formula T(G, c). By Proposition 44, there is an OBDD com-
puting T(G, c) such that every level contains at most 2pw(G)+1 nodes. By Lemma 38, it has a level
of size at least 2compw(G). Thus, compw(G) ≤ pw(G) + 1.

4.3 Component-width is at least half of treewidth

In this subsection we prove that the component width of a graph G is Ω(tw(G)).
Consider a graph G(V,E) and let J ⊆ E, let us denote by PJ(G) the set of vertices that are not

isolated in both GJ and GE\J .
For a graph H we denote by H̃ a graph that is obtained from H by the removal of all isolated

vertices.

Lemma 46. Let G(V,E) be a connected graph with at least two vertices. For any J ⊆ E,

compJ(G) = |PJ(G)|+ 1−#G̃J −#G̃E\J .

Proof. Since G is connected, compJ(G) = |V |+ 1−#GJ −#GE\J . Note that V \PJ(G) is the set
of vertices that are isolated either in GJ or in GE\J . Since G is connected and it has at least two
vertices, there are no vertices that are isolated in both GJ and GE\J simultaneously. Hence,

|V \ PJ(G)| =
(

#GJ −#G̃J

)
+
(

#GE\J −#G̃E\J

)
.

The statement of the lemma follows.

Recall that a vertex v of a graph H is a cut vertex if #H − v > #H. A graph H is biconnected
if H is connected and H does not have cut vertices.

Lemma 47. Let G(V,E) be a biconnected graph and J ⊆ E. Then for any connected component C
of G̃J ,

|C ∩ PJ(G)| ≥ 2.

Proof. If J = ∅ or J = E, then G̃J is an empty graph and it has no connected components. It
follows that we can assume that J 6= ∅ and J 6= E and, thus, G̃J is non-empty. Since G̃J contains
no isolated vertices, all connected components of G̃J are of size at least 2.

Let C be a connected component of G̃J . If C = V , then consider an edge e ∈ E \ J . Both of
its endpoints are not isolated in both GJ and GE\J , hence |C ∩ PJ(G)| = |PJ(G)| ≥ 2. We now
assume that C 6= V .

Since G is connected, there is an edge e ∈ E connecting C with V \ C. Since C is a connected
component in GJ , e ∈ E \ J , hence the endpoint of e from C is in PJ(G). Hence, C ∩ PJ(G) 6= ∅.
Suppose that C ∩ PJ(G) consists of exactly one vertex u. Then any edge connecting C and V \ C
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has u as one of its endpoints, since otherwise its endpoint from C should be also in C ∩ PJ(G).
Thus, there is no edge between C \ {u} (that is nonempty since |C| ≥ 2) and V \C, hence G− u is
disconnected which contradicts the biconnectivity of G. Hence, |C ∩ PJ(G)| ≥ 2.

Lemma 48. Let G(V,E) be a connected graph without cut vertices and J ⊆ E be a subset of its
edges. If S ⊆ PJ(G) is such that all vertices in S are from the same connected component of G̃J ,
then compJ(G) ≥ 1

2 · |S|.

Proof. By Lemma 46, compJ(G) = |PJ(G)|+ 1−#G̃J −#G̃E\J . By Lemma 47, every connected
component of G̃E\J has at least two vertices in PJ(G), thus, #G̃E\J ≤

|PJ (G)|
2 .

By the condition of the lemma, one of the connected components of G̃J , say C, has at least |S|
vertices in PJ(G). By Lemma 47, each other connected component of G̃J , has at least two vertices
in PJ(G). Since each of them is disjoint with C, every connected component of G̃J except C has at
least two vertices in PJ(G) \ S. Hence, #G̃J ≤ 1 + |PJ (G)\S|

2 .
We finally get that

compJ(G) = |PJ(G)|+1−#G̃J −#G̃E\J ≥ |PJ(G)|+1−
(

1 +
|PJ(G) \ S|

2

)
− |PJ(G)|

2
=
|S|
2
.

Lemma 49. Let G(V,E) be a biconnected graph with m edges and π be a permutation of [m]. G
admits a tree decomposition with the maximum bag size at most 2 · π-compw(G) + 2.

Proof. We provide an explicit construction of a tree decomposition of G based on a given permu-
tation π of [m]. We will use Lemma 48 to show that the maximum bag size of the constructed tree
decomposition of G is at most π-compw(G) · 2 + 2.

For i ∈ [m] we denote Ji = {eπ(1), eπ(2), . . . , eπ(i)}. Let us consider the sequence
PJ1(G), PJ2(G), . . . , PJm(G). For each i ∈ [m], we denote the connected components of G̃Ji by
Ci,1, Ci,2, . . . , Ci,ti , where ti = #G̃Ji . Let us denote T ′i,j = Ci,j ∩ PJi(G) for all i ∈ [m], j ∈ [ti].

We shall now ensure that both endpoints of eπ(i) are contained in some set of this partition. Let
eπ(i) connect u and v. The vertices u and v are from the same connected component of G̃Ji , hence
u, v ∈ Ci,ki for the unique ki ∈ [ti]. Let Ti,j = T ′i,j for each j ∈ [ti] \ {ki} and Ti,ki = T ′i,ki ∪ {u, v}.

Claim 50. For all i ∈ [m], Ti,1, Ti,2, . . . , Ti,ti is a partition of the set PJi(G) ∪ {u, v}, where u and
v are the endpoints of eπ(i).

Proof. Let us fix i ∈ [m]. Notice that Ti,j ⊆ Ci,j for all j ∈ [ti]. Since Ci,j are disjoint for all j ∈ [ti],
Ti,j are also disjoint for j ∈ [ti]. Let w be a vertex from PJi(G)∪{u, v}. The graph G̃Ji contains w.
Hence, there exists j ∈ [ti] such that w ∈ Ci,j . Since Ti,j = (PJi(G) ∪ {u, v}) ∩ Ci,j , w ∈ Ti,j .

The constructed sets Ti,j for i ∈ [m] and j ∈ [ti] are the bags of our desired tree decomposition.
Now we describe the edges between these bags. For each i ∈ [m− 1] and j ∈ [ti], we will introduce
an edge between the bag Ti,j and a bag Ti+1,p(i,j) for some p(i, j) ∈ [ti+1]. Thus, the resulting
tree can be viewed as a tree rooted in the bag Tm,1 (note that tm = 1), and for each i ∈ [m] and
j ∈ [ti], Ti,j is a node of this tree that is at the distance m − i from the root. In other words,
{Tm,1}, {Tm−1,1, . . . , Tm−1,tm−1}, . . . , {T1,1, . . . , T1,t1} are the layers of this tree from the root to the
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leaves. An edge from Ti,j to Ti+1,p(i,j) is an edge going from a child node to its parent node in this
rooted tree.

Now we define p(i, j) for each i ∈ [m − 1] and j ∈ [ti]. Recall that Ti,j ⊆ Ci,j , where Ci,j is a
connected component of G̃Ji .

There is the unique connected component Ci+1,j′ of G̃Ji+1 that contains Ci,j . Let p(i, j) = j′.
Let us verify that the bags Ti,j with described edges between them form the tree decomposition

of G (which we call T ).
Firstly, note that endpoints of each edge of G appear simultaneously in some bag of T . Indeed,

any edge of G can be represented as eπ(i) for the unique i ∈ [m] and endpoints of eπ(i) are in Ti,ki
by the construction.

Secondly, let us prove that for all v ∈ V the set of bags of T containing v forms a path in T .
Let ` be the minimal i such that eπ(i) is incident to v and let r be the maximal such i.

Claim 51. For each i ∈ [m], i ∈ [`, r] iff v ∈ PJi(G) ∪ {u,w}, where u and w are the endpoints of
eπ(i).

Proof. Assume that i < ` or i > r. Then v /∈ PJi(G), since v is isolated in GJi or GE\Ji . Also v is
not an endpoint of eπ(i) by the definition of ` and r. Thus, v /∈ PJi(G) ∪ {u,w}. Now, assume that
i ∈ [`, r]. If i = r, then v ∈ {u,w} ⊆ PJi(G) ∪ {u,w}. If i ∈ [`, r − 1], v ∈ PJi(G) since Ji contains
at least one edge incident to v but not all of them.

By Claims 51 and 50, for all i ∈ [`, r] there exists the unique ji ∈ [ti] such that v ∈ Ti,ji . In other
words, v is contained in the bags T`,j` , T`+1,j`+1

, Tr,jr and only in them. In order to show that these
bags form a path, we have to verify that p(i, ji) = ji+1 for all i ∈ [`, r− 1]. Indeed, v ∈ Ti,ji ⊆ Ci,ji .
Analogously, v ∈ Ci+1,ji+1 , hence Ci,ji ⊆ Ci+1,ji+1 and, thus, p(i, ji) = ji+1. Hereby, T is a tree
decomposition of G.

Now we estimate the size of the bags in T . Consider some i ∈ [m] and j ∈ [ti], |Ti,j | is at
most |Ci,j ∩ PJi(G)| + 2. By Lemma 48 applied to S = Ci,j ∩ PJi(G) and J = Ji, we get that
2 · compJi(G) ≥ |Ci,j ∩ PJi(G)|. Hence, |Ti,j | ≤ 2 · compJi(G) + 2 ≤ 2 · π-compw(G) + 2.

Notice that a tree decomposition constructed in Lemma 49 is a special tree decomposition, i.e.
for every vertex the set of bags contained it forms a path.

Theorem 52. For any graph G, compw(G) ≥ 1
2(tw(G)− 1).

Proof. Recall that a block of G is a maximal biconnected subgraph of G. Let B1, B2, . . . , Bk be the
blocks of G.

The treewidth of a graph is equal to the maximum treewidth of its blocks [7], so tw(G) =
maxki=1 tw(Bi). Thus, tw(G) = tw(Bj) for some j ∈ [k]. By Lemma 43, compw(G) ≥ compw(Bj).
On the other hand, by Lemma 49, tw(Bj) ≤ 2 · minπ∈Sm π-compw(Bj) + 1 = 2 · compw(Bj) + 1.
Finally obtain that tw(G) = tw(Bj) ≤ 2 · compw(Bj) + 1 ≤ 2 · compw(G) + 1.

4.4 Component width may be close to pathwidth

In Corollary 45 we notice that compw(G) ≤ pw(G) + 1. It is well-known that tw(G) ≤ pw(G) ≤
O(tw(G) log n). A well-known example of graphs with logarithmic multiplicative gap between
treewidth and pathwidth are complete binary trees. A complete binary tree of height h has 2h+1−1
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vertices, treewidth 1 and pathwidth dh2 e [26]. It is easy to see that the component width of any
tree equals zero. Indeed, if G(V,E) is a tree, then for every J ⊆ E, #GJ = |V | − |J |; hence
compJ(G) = |V | −#GJ −#GE\J + 1 = |V | − (|V | − |J |)− (|V | − |E|+ |J |) + 1 = 0.

In this section we give an example of family of constant-degree graphs Gn such that
compw(Gn) = Ω(tw(Gn) log n), where n is the number of vertices in Gn. Our construction uses the
following plan:

1. We show that if a graph has the specific form (it can be represented by the strong product
of some graph with a clique), the the component width is lower bounded by the pathwidth
(Theorem 59).

2. We consider the strong product of a complete binary tree and a complete graph. We will see
that such graph has almost all desired properties but it has unbounded degrees. In order to
bound the degrees we use the result of [23] (see Proposition 61 for the statement).

Lemma 53. Let graph G(V,E) have m edges and π be a permutation of [m]. We use the notation
Ji = {eπ(1), . . . , eπ(i)}. Let ui and vi be the endpoints of eπ(i). Then the sequence of sets PJ1(G) ∪
{u1, v1}, PJ2(G) ∪ {u2, v2}, . . . , PJm(G) ∪ {um, vm} forms a path decomposition of G.

Proof. By the construction, the endpoints of every edge appear simultaneously in PJi(G) ∪ {ui, vi}
for some i. It is left to show that each vertex appears in a consecutive interval of bags. Consider
an arbitrary vertex v ∈ V . Let ` be the minimum number such that eπ(`) is incident to v, and r
be the maximum such number. By the definition of PJi(G), v ∈ PJi(G) if and only if i ≥ ` and
i < r. If v ∈ {ui, vi}, then v is incident to eπ(i), hence ` ≤ i ≤ r. Also note that v ∈ {ur, vr}.
Thus, v ∈ PJi(G)∪ {ui, vi} if and only if i ≥ ` and i ≤ r. So we get that v appears in a consecutive
interval of bags.

Definition 54 ([25]). A strong product of graphs G(VG, EG) and H(VH , EH) is a graph G�H such
that

• The set of vertices of G�H is VG × VH

• There is an edge between (u, v) and (u′, v′) in G�H if and only if

– u = u′ and (v, v′) ∈ EH or

– v = v′ and (u, u′) ∈ EG or

– (u, u′) ∈ EG and (v, v′) ∈ EH .

Proposition 55. For any graph G, tw(G � Kk) + 1 ≤ k(tw(G) + 1) and pw(G � Kk) + 1 ≤
k(pw(G) + 1), where Kk is the complete graph on the set of vertices [k].

Proof. Consider a tree decomposition of G of width tw(G) and replace each vertex v in each bag of
the tree decomposition with all vertices in the set {v} × [k]. It is easy to verify that as the result
we obtain a tree decomposition of G�Kk.

The proof for pathwidth and path decompositions is the same.

Lemma 56. Let G(V,E) be a graph and k ≥ 1 be an integer. Let B1, B2, . . . , Bt be an arbitrary
path decomposition of G�Kk. There is an integer i ∈ [t] and a set S ⊆ V such that |S| = pw(G)+1
and S × [k] ⊆ Bi.
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Proof. For each vertex (u, v) of the graph (G�Kk), we denote by [`(u,v), r(u,v)] the interval of indices
i such that Bi contains (u, v).

We will now modify the path decomposition B1, B2, . . . , Bt in such a way that for each u ∈ V
and each v, v′ ∈ [k], vertices (u, v) and (u, v′) appear in the same set of bags.

We will use several times the 1-dimensional Helly’s theorem: given a set of intervals on a line if
any two of them have a common point, then all intervals has a common point.

For any vertex u ∈ V , vertices of the set {u} × [k] induce a clique in G �Kk, hence for every
v, v′ ∈ [k] the intervals [`(u,v), r(u,v)] and [`(u,v′), r(u,v′)] have a common point. Thus, the intersection
of all intervals [`(u,v), r(u,v)] for v ∈ [k] is a nonempty interval [Lu, Ru]. We replace each of these k
intervals with their intersection. In other words, for each u ∈ V we remove all vertices in {u} × [k]
from Bi for each i /∈ [Lu, Ru]. Let us denote the resulting sequence of bags by B′1, B′2, . . . , B′t.

Let us verify that the endpoints of every edge of G � Kk appear in B′i for some i ∈ [t]. Let
(u′, v′) be a neighbor of (u, v). If u = u′, then both (u, v) and (u′, v′) are contained in some B′i for
some i ∈ [Lu, Ru]. We now assume that u 6= u′. Then for any w,w′ ∈ [k], (u,w) is a neighbor of
(u′, w′). Hence, for any w,w′ ∈ [k] the intervals [`(u,w), r(u,w)] and [`(u′,w′), r(u′,w′)] have a common
point. Thus, for all w ∈ [k] the interval [`(u,w), r(u,w)] has a common point with [Lu′ , Ru′ ]. Finally,
[Lu, Ru] has a common point i with [Lu′ , Ru′ ]. We get that (u, v), (u′, v′) ∈ B′i. Thus, we have
verified that B′1, B′2, . . . , B′t is a path decomposition of G�Kk.

Note that for each i ∈ [t], B′i can be represented as B′′i × [k] for the unique B′′i ⊆ V . It is
easy to see that B′′1 , B′′2 , . . . , B′′t is a path decomposition of G. Then there exists i ∈ [t] such that
|B′′i | ≥ pw(G) + 1. Since B′i ⊆ Bi, we get that B′′i × [k] ⊆ Bi. This completes the proof.

Corollary 57. For any graph G and any integer k ≥ 1, pw(G�Kk) + 1 = k(pw(G) + 1).

The following lemma extends Lemma 48.

Lemma 58. Let G(V,E) be a biconnected graph and J ⊆ E be a subset of its edges. If C1, C2, . . . , Ck
are disjoint subsets of PJ(G) such that for each j ∈ [k], Cj consists of vertices belonging to the same
connected component of either G̃J or G̃E\J , then

compJ(G) ≥ 1

2
·
k∑
j=1

|Cj | − k + 1.

Proof. By Lemma 46, compJ(G) = |PJ(G)|+ 1−#G̃J −#G̃E\J .
Without loss of generality, assume that for each i ∈ [t], vertices in Ci belong to the same

connected component of G̃J , and for each i ∈ {t+ 1, t+ 2 . . . , k} vertices in Ci belong to the same
connected component of G̃E\J . Let S1 =

⋃t
i=1Ci and S2 =

⋃k
i=t+1Ci. Since C1, . . . , Ck are pairwise

disjoint, |S1|+ |S2| =
∑k

i=1 |Ci|.
By Lemma 47, every connected component of G̃J has at least two vertices in PJ(G). Every

connected component of G̃J either contains Ci for some i ∈ [t] or has at least two common vertices
with PJ(G) \ S1, hence #G̃J ≤ t+ |PJ (G)\S1|

2 . Analogously, #G̃E\J ≤ (k − t) + |PJ (G)\S2|
2 .
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We finally get that

compJ(G) = |PJ(G)|+1−#G̃J−#G̃E\J ≥ |PJ(G)|+1−
(
t+
|PJ(G) \ S1|

2

)
−
(

(k − t) +
|PJ(G) \ S2|

2

)
=

|S1|
2

+
|S2|
2

+ 1− k =
1

2

k∑
i=1

|Ci| − k + 1.

Theorem 59. For any connected graph H and any integer k ≥ 3,

compw(H �Kk) ≥
1

2
pw(H �Kk)− pw(H).

Proof. Let G = H � Kk. It is sufficient to prove that π-compw(G) ≥ 1
2pw(G) − pw(H) for each

permutation π of the edges of G.
Take an arbitrary permutation π ∈ Sm, where m is the number of edges of G. Denote the

edges of G by e1, e2, . . . , em. Let Ji = {eπ(1), . . . , eπ(i)}. By Lemma 53, PJ1(G) ∪ {u1, v1}, PJ2(G) ∪
{u2, v2}, . . . , PJm(G) ∪ {um, vm} is a path decomposition of G, where ui, vi are the endpoints of
eπ(i). By Lemma 56, there exists an integer i ∈ [m] and a set S ⊆ VH , such that |S| = pw(H) + 1
and S × [k] ⊆ PJi(G) ∪ {ui, vi}.

We claim that either PJi(G) or PJi−1(G) contains all vertices of S × [k] except, perhaps, one
(note that J0 = ∅, hence PJ0(G) = ∅). Indeed, if PJi(G) contains at least one endpoint of eπ(i), the
claim holds true. Otherwise, no endpoint of eπ(i) is contained in the set PJi(G), hence eπ(i) is the
last edge incident to both ui and vi according to the permutation π. Since G is a graph of minimum
degree at least k−1 ≥ 2, both these endpoints should be contained in PJi−1(G) = PJi(G)∪{ui, vi}.

Thus, for some t ∈ {i− 1, i}, PJt(G) contains at least |S| · k − 1 = (pw(H) + 1) · k − 1 vertices
of S × [k]. For each vertex v ∈ S, we denote

Cv := ({v} × [k]) ∩ PJt(G).

Note that for each v ∈ S, |Cv| = k, except for, perhaps, some u ∈ S with |Cu| = k − 1. Also, for
each v ∈ S, Cv induces a complete graph in G. It is easy to see that the edge set of a complete
graph cannot be partitioned in two edge sets each forming a disconnected graph. Thus, all vertices
in Cv belong to the same connected component at least in one of G̃Jt and G̃E\Jt .

It is easy to see that G is biconnected graph, so we may apply Lemma 58 to G and the sets Cv.

π-compw(G)
(Lemma 58)

≥ 1

2

∑
v∈S
|Cv| − |S|+ 1 ≥

1

2
(k · (pw(H) + 1)− 1)− (pw(H) + 1) + 1 =

k

2
(pw(H) + 1)− 1

2
− pw(H)

(Cor. 57)
=

1

2
(pw(G) + 1)− 1

2
− pw(H) =

1

2
pw(G)− pw(H).
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Corollary 60. For any connected graph H and any integer k ≥ 3,

compw(H �Kk) ≥
(

1

2
− 1

k

)
· pw(H �Kk) +

k − 1

k
.

Proof. Follows from Corollary 57 and Theorem 59.

In order to implement the second part of the plan we require the following useful result.

Proposition 61 (Theorem 3.1 in [23]). For any connected graph H(VH , EH), there exists a graph
G(VG, EG) of maximum degree three, such that

• H is a minor of G;

• |VG| ≤ 2|EH |;

• tw(G) ≤ tw(H) + 1.

Lemma 62. For any integer k ≥ 3 and any odd integer h ≥ 1, there exists an n-vertex graph G of
maximum degree three, such that

• k(2h+1 − 1) ≤ n < 4k2(2h+1 − 1);

• tw(G) ≤ 2k;

• pw(G) ≥ k
2 · log n

k2 − 1;

• compw(G) ≥ k−2
4 · log n

k2 .

Proof. Let h ≥ 1 be an arbitrary odd integer and let T (VT , ET ) be a complete binary tree of height
h. Thus, |VT | = 2h+1 − 1 and |ET | = 2h+1 − 2, tw(T ) = 1 and pw(T ) = dh2 e = h+1

2 .
Let H(VH , EH) = T � Kk. Note that |VH | = k ·

(
2h+1 − 1

)
, |EH | = k2|ET | +

(
k
2

)
|VT | =

k2(2h+1−2)+
(
k
2

)
(2h+1−1) < 2k · |VH |, and by Proposition 55, tw(H) ≤ (tw(T )+1) ·k−1 = 2k−1.

By Corollary 57,

pw(H) = (pw(T ) + 1) · k − 1 =

(
h+ 1

2
+ 1

)
· k − 1 ≥ log

(
|VH |
k

)
· k

2
+ k − 1.

Now apply Proposition 61 to H and obtain graph G of maximum degree three, such that
tw(G) ≤ tw(H) + 1 ≤ 2k. Let n = |VG|. Then n ≤ 2|EH | < 4k · |VH |. Since H is a minor of G and
it is well-known that pathwidth may only decrease when taking minors, and |VH | > n

4k ,

pw(G) ≥ pw(H) > log
( n

4k2

)
· k

2
+ k − 1 =

k

2
· log

n

k2
− log 4

2
k + k − 1 =

k

2
· log

n

k2
− 1.

Since H = T � Kk, by Corollary 60, compw(H) ≥ k−2
2k pw(H) + k−1

k . Also, by Lemma 43,
compw(G) ≥ compw(H). Then

compw(G) ≥ k − 2

2k
pw(H) +

k − 1

k
>
k − 2

2k

(
k

2
· log

n

k2
− 1

)
+
k − 1

k
>
k − 2

4
· log

n

k2
.
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Model
Graph

n× n grid n-vertex expander Constant-degree n-vertex graph

Tree-like
resolution

LB 2Ω(n) [5] 2Ω(n) [5] ? 2Ω(tw(G)) [5] F
UB 2O(n) (folklore) 2O(n logn) [21, 3] ? 2O(tw(G) logn) [21, 3] F

Regular
resolution

LB nω(1) [27];
2Ω(n) [11]

2Ω(n) [5] 2twΩ(1)(G) [12];
2Ω(tw(G)/ logn) ?

UB 2O(n) (folklore) 2O(n) [1] 2O(tw(G))) [1] F
General
resolution

LB 2Ω(n) [11] 2Ω(n) [5] 2twΩ(1)(G) [12] ?
UB 2O(n) (folklore) 2O(n) [1] 2O(tw(G))) [1] F

1-BP computing a
satisfiable T(G, c)

LB 2Ω(n) [15] 2Ω(n) [14] 2twΩ(1)(G) [15];
2Ω(tw(G)) F

UB 2O(n) [15] 2O(n) [15] 2O(tw(G) logn) [15] F

Figure 3: LB stands for lower bound, UB stands for upper bound; our results are highlighted with
blue; if upper and lower bounds do not match, we label a bound by F if this bound can be achieved
and we label a bound by ? if we do not know, whether this bound can be achieved or not.

Theorem 63. There exists a family of constant-degree graphs Gm such that Gm has n vertices,
where n = Ω(m3) and n = O(m4), tw(Gm) = Θ(m), pw(Gm) = Θ(m logm) and compw(Gm) =
Θ(m logm).

Proof. Lemma 62 for k = m and h = 2blogmc + 1 yields a graph Gm with n vertices such
that n = O(m4) and n = Ω(m3) with tw(Gm) = O(m), compw(Gm) = Ω(m logm) and
pw(Gm) = Ω(m logm). Since pw(Gm) ≥ Ω(m logm), tw(Gm) = Ω (pw(Gm)/ log n) = Ω(m).
On the other hand, since tw(Gm) = O(m), pw(Gm) = O(tw(Gm) logm) = O(m logm). By Corol-
lary 45, compw(Gm) = Ω(tw(Gm)) = Ω(m logm).

Corollary 64. Let S be the size of the smallest 1-BP computing SearchVertex(Gm, c
′
m). Then size

of any 1-BP computing a satisfiable T(Gm, cm) is at least SΩ(logm).

Proof. By Theorem 63, tw(Gm) = O(m). By Theorem 5, w(T(Gm, c
′
m)) = Θ(tw(L(Gm))). By

Theorem 6, O(tw(L(Gm))) = O(tw(Gm)∆(Gm)) = O(tw(Gm)) = O(m). Thus, by Theorem 3,
there exists a regular resolution refutation of T(Gm, c

′
m) of size 2O(m). Therefore, S = 2O(m).

On the other hand by Theorem 41 the size of any 1-NBP computing T(Gm, cm) is
2Ω(compw(Gm)) = 2Ω(m logm) = SΩ(logm).

Corollary 65. Size of any decision tree computing SearchVertex(Gm, c
′
m) is at least 2Ω(tw(Gm) logm).

Proof. By Theorem 41, the size of any 1-NBP computing T(Gm, cm) is 2Ω(compw(Gm)) = 2Ω(m logm).
Suppose there exists a decision tree of size S computing SearchVertex(Gm, c

′
m). Then by Theorem 29

there exists a 1-BP of size S + 1 computing T(Gm, cm). Therefore, S = 2Ω(tw(Gm) logm).

5 Conclusion

Our results are illustrated on Figure 3.
Open questions:
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• Is it possible to prove that SR(T(G, c)) ≥ 2Ω(tw(G))?

• Is it possible to prove a similar lower bound for unrestricted resolution?

• Is it possible to separate SearchT(G, c) and SearchVertex(G, c) for constant degree graphs?
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