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Abstract

The query model offers a concrete setting where quantum algorithms are provably
superior to randomized algorithms. Beautiful results by Bernstein-Vazirani, Simon,
Aaronson, and others presented partial Boolean functions that can be computed
by quantum algorithms making much fewer queries compared to their randomized
analogs. To date, separations of O(1) vs.

√
N between quantum and randomized

query complexities remain the state-of-the-art (where N is the input length), leaving
open the question of whether O(1) vs. N1/2+Ω(1) separations are possible?

We answer this question in the affirmative. Our separating problem is a variant of
the Aaronson-Ambainis k-fold Forrelation problem. We show that our variant:

1. Can be solved by a quantum algorithm making 2O(k) queries to the inputs.

2. Requires at least Ω(N2(k−1)/(3k−1)) queries for any randomized algorithm.

For any constant ε > 0, this gives a O(1) vs. N2/3−ε separation between the quantum
and randomized query complexities of partial Boolean functions.

Our proof is Fourier analytical and uses new bounds on the Fourier spectrum of
classical decision trees, which could be of independent interest.

Looking forward, we conjecture that the Fourier bounds could be further improved
in a precise manner, and show that such conjectured bounds imply optimal O(1) vs.
N1−ε separations between the quantum and randomized query complexities of partial
Boolean functions.
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1 Introduction

The query model (or black-box model) offers a concrete setting where quantum algorithms are
provably superior to their randomized counterparts. Many well-known quantum algorithms
can be cast in this model, such as Grover’s search [Gro96], Deutsch-Jozsa’s algorithm [DJ92],
Bernstein-Vazirani’s algorithm [BV97], Simon’s algorithm [Sim97], and Shor’s period-finding
algorithm (which is a major component in Shor’s factoring algorithm [Sho97]). In the query
model, we seek to answer a question about the input by making as few queries to it as
possible. For deterministic algorithms, this is also known as the decision tree model, where
the decision tree depth equals the number of queries. The randomized and quantum versions
of this model are very well-studied with many known connections and separations between
the models in different settings (cf. the wonderful survey of [BdW02] or the more recent
work of [ABK16]).

A beautiful line of work showed that for partial Boolean functions on N variables, the
quantum query complexity could be exponentially smaller (or even less) than the randomized
query complexity. Separations of O(logN) vs.

√
N date back to the work of Simon [Sim97]

and similarly for a problem introduced by Childs et al. [CCD+03]. In [Aar10, AA15], it

was shown that the problem of Forrelation exhibits a 1 vs. Ω(
√
N) separation between the

quantum and randomized query complexities.
Buhrman et al. [BFNR08] and Aaronson and Ambainis [AA15] asked what are the best

possible separations between quantum and randomized query complexities? Aaronson and
Ambainis presented this question as a fundamental question whose answer will shed light on
the differences between the two models and gave several results towards its answer.

On the one hand, they ruled out O(1) vs. Ω(N) separations. More precisely, they showed
that for any constant t, any quantum algorithm that makes t queries can be simulated (up to

small error) by a randomized algorithm making O(N1−1/2t) non-adaptive queries. For t = 1,
this shows that Forrelation is an extremal separation.

On the other hand, towards obtaining optimal t vs. Ω(N1−1/2t) separations, they
suggested a candidate: the k-fold Forrelation problem (to be defined shortly), where
k = 2t. They showed that a quantum algorithm making ⌈k/2⌉ = t queries can solve k-
fold Forrelation. Moreover, they conjectured that any randomized algorithm would require
Ω(N1−1/k) = Ω(N1−1/2t) queries. While Aaronson and Ambainis proved the case k = 2
in their conjecture, they left all other cases wide open. For k > 2, the lower bounds they
obtained on k-fold Forrelation are of the form Ω(

√
N/(logN)7/2).

Aaronson and Ambainis further noted that in all of the above exponential separations,
the randomized query complexity did not surpass

√
N . They asked whether separations of

polylog(N) vs. N1/2+Ω(1) are possible?
We answer their question in the affirmative. We revisit their candidate, changing it in a

way that would be crucial for our analysis. First, we define the Rorrelation of k vectors,
with respect to an N -by-N orthogonal matrix U .

Definition 1.1. Let U ∈ RN×N be an orthogonal matrix. The k-fold Rorrelation of vectors
z(1), . . . , z(k) ∈ RN with respect to U is defined as

φU(z
(1), . . . , z(k)) =

1

N
·

n

i1=1

. . .

n

ik=1

z
(1)
i1

· Ui1,i2 · z
(2)
i2

· Ui2,i3 · · ·Uik−1,ik · z
(k)
ik

.
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One can pick U to be the N -by-N Hadamard matrix, as suggested by Aaronson and
Ambainis. We, however, pick U uniformly at random from all N -by-N orthogonal matrices.1

This will play a major role later on, since we rely on properties that hold with high probability
for a random orthogonal matrix, but do not hold for the Hadamard matrix (see Def. 5.5).

It is not hard to show that the k-fold Rorrelation of any vectors z(1), . . . , z(k) ∈ {−1, 1}N
is at most 1 in absolute value. The computational task we consider in this paper, called the
k-fold Rorrelation Problem, asks to distinguish between the following two cases:

YES Instances: vectors z(1), . . . , z(k) ∈ {−1, 1}N with φU(z
(1), . . . , z(k)) ≥ 2−k, and

NO Instances: vectors z(1), . . . , z(k) ∈ {−1, 1}N with |φU(z
(1), . . . , z(k))| ≤ 1

2
· 2−k.

We shall show that while the k-fold Rorrelation problem is easy in the quantum query model
(for any choice of U), it requires many queries in the classical setting (for most choices of
U). Namely, our main separation will show that:

1. For any N -by-N orthogonal matrix U , there exists a quantum algorithm making at
most 2O(k) queries that solves the k-fold Rorrelation problem (with respect to U) with
success probability at least 2/3.

2. For most N -by-N orthogonal matrices U , any randomized algorithm that solves the
k-fold Rorrelation problem (with respect to U) with success probability at least 2/3,
must make at least Ω(N2(k−1)/(3k−1)/k logN) queries to the inputs.

So far, we left the choice for the value of k to be arbitrary. We think of k as either a fixed
constant or a slow-growing function of N , in particular k = o(logN). By picking k to be a
large constant, the above discussion gives a O(1) vs. Ω(N2/3−ε) separation of quantum and
randomized query complexities, for any small constant ε > 0. By picking k = O(log logN),
we get a O(logN) vs. N2/3−o(1) separation of the two measures.

Before explaining more about our techniques and the potential room for improvement,
we describe an application of our results to another setting.

Application: Power-(2 + 2/3) Separations for Total Boolean Functions. While for
partial Boolean functions (or promise problems) exponential separations are possible between
randomized and quantum query complexities, for total functions (i.e., Boolean functions
that are defined on the entire domain {−1, 1}N) the picture is quite different. The seminal
work of Beals et al. [BBC+01] showed (among others) that quantum query complexity and
randomized query complexity are at most power-6 apart. That is, R(f) ≤ O(Q(f)6) for any
total Boolean function f , where R(f) and Q(f) denote the randomized and quantum query
complexities of f , respectively.

On the other hand, Grover’s search demonstrated that for the OR function R(f) ≥
Ω(Q(f)2) [Gro96], and this is tight [BBBV97]. Two decades later, Aaronson, Ben-David,
Kothari [ABK16] exhibited the first super-quadratic separations between Q(f) and R(f) for

1Aaronson Ambainis called their variant Forrelation, as in the case k = 2 it measures correlation after
applying the Fourier/Hadamard transform on z(1). We measure correlation after applying a Randomly
chosen orthogonal matrix, hence the name Rorrelation.
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total functions, surprisingly improving Grover’s separation that was believed to be optimal.
Their work presented a power-2.5 separation based on the “cheat-sheet” technique applied to
2-fold Forrelation. More generally, they showed that any N o(1) vs. N c−o(1) separation between
the quantum and randomized query complexities of partial functions, implies a power-(2+c)
separation for total Boolean functions. Plugging in our result, yields a power-(2 + 2/3)
separation for total Boolean functions. In other words, the transformation of [ABK16]

applied to k-fold Rorrelation yields a total function fCS such that R(fCS) ≥ Q(fCS)
2+ 2

3
−o(1).

1.1 Our Techniques

Quantum Query Complexity of the k-fold Rorrelation Problem.

A simple adaptation of the algorithm suggested by Aaronson and Ambainis [AA15] shows
the existence of a ⌈k/2⌉-query quantum algorithm on inputs z(1), . . . , z(k) ∈ {−1, 1}N , whose
acceptance probability equals

1 + φU(z
(1), . . . , z(k))

2

This shows that there’s a gap of 1+2−k

2
vs. 1+2−(k+1)

2
between the acceptance probabilities in

the YES instances and NO instances. For k a fixed constant this gives a constant difference
between the acceptance probabilities of the YES and NO instances. If k = ω(1) or if we insist
on getting a 2/3 vs. 1/3 separation between the acceptance probabilities of YES and NO
instances, then one apply simple amplification techniques repeating the quantum algorithm
for 2O(k) times, and check whether the number of accepting trials exceeds a certain threshold.

Randomized Query Complexity of the k-fold Rorrelation Problem.

Towards showing that the randomized query complexity of the k-fold Rorrelation problem
is large, we construct a hard-distribution, and show that it is hard to solve the Rorrelation
problem on instances sampled from this distribution. By Yao’s minimax principle, it suffices
to show that a deterministic decision tree cannot solve the Rorrelation problem on the
hard-distribution with high probability. We take the hard-distribution to be the convex
combination (i.e., average) of two distributions: (1) the uniform distribution on k vectors
z(1), . . . , z(k) ∈ {−1, 1}N , denoted Uk, and (2) a distribution DU,k that often produces k
vectors with large k-fold Rorrelation. On the one hand, we show that Uk produces NO
instances with very high probability whereas DU,k produces YES instances with not too
small probability.2 On the other hand, we show that any depth-d deterministic decision tree
fails to distinguish between Uk and DU,k, as long as d = o(N2(k−1)/3(k−1)/ logN). Combining
the two facts together, we deduce that the distribution 1

2
DU,k+

1
2
Uk is a hard-distribution for

depth d decision trees. That is, any depth-d decision tree errs with not too small probability
in computing the Rorrelation problem on instances sampled from this distribution.

We view the construction of a hard-distribution as an important contribution to the
project set up by Aaronson and Ambainis. They were able to analyze 2-fold Forrelation by

2We believe that DU,k samples YES instances with very high probability, but since this seems technically
involved, and since it is not required to complete the proof, we left this question open.
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presenting a hard-distribution for that case, but no candidate hard-distribution was suggested
for the case k > 2 prior to this work. We believe that our distribution is hard even for decision
trees of depth N1−1/k/polylog(N) and pose a conjecture that would imply such a result.

By the above discussion, proving that 1
2
DU,k +

1
2
Uk is a hard-distribution boils down to

showing that:

1. Uk samples NO-instances with very high probability.

2. DU,k samples YES-instances with not too small probability (to be precise, at least 2−k).

3. Any deterministic decision tree of depth d = o(N2(k−1)/3(k−1)/ logN) cannot distinguish
between inputs sampled from Uk and inputs sampled from DU,k. Put differently, the
acceptance probability of any such deterministic decision tree, will be the same in both
cases, up to an additive small error o(1/2k).

Item 1 holds regardless of the choice of DU,k, and is simple to prove. To obtain Item 2, we
start by recalling the hard distribution that Aaronson and Ambainis suggested for the case
k = 2. They first defined a multi-variate Gaussian distribution G2 on 2N dimensions, where
the first N variables are simply standard independent Gaussians, and the latter N variables
are obtained by applying the Fourier (or Hadamard) transform on the first N variables.
Then, to get a distribution D2 over the Boolean domain, they took the signs of these multi-
variate Gaussians. They then show that the expected Forrelation value of vectors sampled
from D2 is at least (2/π).

We generalize this hard distribution to k-fold Rorrelation, replacing the Hadamard matrix
with the orthogonal matrix U , and handling arbitrary k ∈ N rather then just k = 2.

The Distributions Gk and DU,k

Let N, k ∈ N. First, we define a continuous distribution Gk over RkN (in which every
coordinate will be either a Gaussian random variable or a product of two independent
Gaussian random variables), and then derive from it a discrete distribution over {−1, 1}kN
by taking signs.

The definition of Gk and DU,k will rely on the N -by-N orthogonal matrix U from the
definition of Rorrelation. For i = 1, . . . , k − 1 let X(i) ∼ N (0, 1)N and sample all the
vectors X(1), . . . , X(k−1) independently. Denote by Y (1), . . . , Y (k−1) the vectors defined by
Y (i) = UT ·X(i). Define Z(1), . . . , Z(k) as follows:

1. Z(1) = X(1)

2. For i = 2, . . . , k − 1, let Z(i) = Y (i−1) ⊙ X(i) (where ⊙ denotes point-wise product of
two vectors of length N).

3. Z(k) = Y (k−1).

We denote by Z = (Z(1), . . . , Z(k)) the concatenation of all the k vectors. This defines the
distribution Gk over RkN . The distribution DU,k over {±1}kN will simply be the distribution

of sgn(Z) = (sgn(Z
(1)
1 ), sgn(Z

(1)
2 ), . . . , sgn(Z

(k)
N )).
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DU,k produces vectors with large Rorrelation:

In section 4.1, we show that Ez∼DU,k
[φU(z)] ≥ (2/π)k−1. Based on that, a simple Markov’s

inequality shows that with probability at least 2−k, DU,k samples a YES-instance for the
Rorrelation problem. This will complete Item 2 in the aforementioned scheme, and we are
left to prove the third item, which is the core of our argument.

The Core of the Argument: DU,k is Pseudorandom against Shallow
Decision Trees

We are left to prove that for any depth d = o(N2(k−1)/3(k−1)/ logN) decision tree F , we have
 E
z∼Uk

[F (z)]− E
z∼DU,k

[F (z)]

 ≤ o(1/2k)

We call
Ez∼Uk

[F (z)]− Ez∼DU,k
[F (z)]

 the advantage of F distinguishing between Uk and
DU,k. Intuitively, a small advantage means that F behaves similarly in both cases. To bound
the advantage of F , we apply a straight-forward Fourier analytical approach, as follows. Since
F is defined over the Boolean domain, it can be represented as a multilinear polynomial,
also known as the Fourier transform. That is, we may write

F (z) =


S⊆{1,...,kN}

F (S) ·


i∈S

zi.

where F (S) are the real-valued Fourier coefficients of F . Observe that Ez∼Uk
[F (z)] = F (∅),

whereas

E
z∼DU,k

[F (z)] =


S⊆{1,...,kN}

F (S) · E
z∼DU,k




i∈S

zi


.

To make our notation shorter, we denote by DU,k(S) = Ez∼DU,k


i∈S zi


. Thus, the

advantage of F can be expressed as

 E
z∼Uk

[F (z)]− E
z∼DU,k

[F (z)]

 =





S⊆{1,...,kN}:S ∕=∅

F (S) · DU,k(S)


,

which by the triangle inequality is at most


S⊆{1,...,kN}:S ∕=∅

 F (S) · DU,k(S)
 . (1)

We bound the sum in Eq. (1), by accounting for each degree ℓ ∈ [kN ],d the contribution of
sets of size ℓ to the sum. Namely,



S⊆{1,...,kN}:S ∕=∅

 F (S) · DU,k(S)
 =

kN

ℓ=1



S:|S|=ℓ

 F (S) · DU,k(S)
 .

To bound each internal sum


S:|S|=ℓ

 F (S) · DU,k(S)
 it suffices to show that:
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1. For every set S ⊆ {1, . . . , kN} of size ℓ, the coefficient |DU,k(S)| is sufficiently small.

2. The sum


S:|S|=ℓ | F (S)| is not too large.

This suffices to bound


S:|S|=ℓ

 F (S) · DU,k(S)
, by the following the simple inequality



S:|S|=ℓ

 F (S) · DU,k(S)
 ≤






S:|S|=ℓ

| F (S)|



 ·


max
S:|S|=ℓ

|DU,k(S)|

.

The proofs of both Parts 1 and 2 in the above plan are technically involved.

Part 1: Moment Bounds on DU,k. Part 1 boils down to showing that all moments of the
distribution DU,k are sufficiently small, where the bounds improve as the degree increases.
This is where the properties of random orthogonal matrices play their role. In particular we
are able to show the following bound.

Theorem 1.2. With high probability over the choice of a uniformly random orthogonal
matrix U ∈ RN×N , for all ℓ ∈ {1, . . . , kN} and all sets S ⊆ {1, . . . , kN} of size ℓ it holds
that

|DU,k(S)| ≤

c · ℓ · logN

N

ℓ·(1−1/k)/2

(2)

where c is some universal constant. Moreover, DU,k(S) = 0 for all non-empty sets S of size
less than k.

For example for k = ℓ = 2 the theorem shows that any second moment of DU,2 is at most
O(1/

√
N). For any constant k and ℓ = k, the theorem shows that the k-th moment of DU,k

is at most O(1/
√
Nk−1).

We remark that replacing U with the Hadamard matrix, one gets much worse bounds for
high moments, that would not allow to prove better than

√
N lower bounds on the decision

tree depth using our approach. Furthermore, we believe our bounds on |DU,k(S)| are tight.

Part 2: Level-ℓ Fourier Bounds on F . We return to Part 2 above, bounding the sum
S:|S|=ℓ | F (S)| where F is a decision tree of depth d. The work of O’Donnell and Servedio

[OS07] obtained a tight O(
√
d) bound for the case ℓ = 1 (which was later extended by Blais,

Tan, and Wan [BTW15] to parity decision trees). This allowed O’Donnell and Servedio to
obtain a polynomial-time algorithm for learning monotone decision trees under the uniform
distribution. To the best of our knowledge, the question about higher Fourier levels of
decision trees was not explicitly raised in the literature prior to this work.

We denote by L1,ℓ(F ) =


S:|S|=ℓ | F (S)|. Bounds of the quantity L1,ℓ(F ) were proved
for several well-studied classes of Boolean functions such as bounded-width DNF formulas
[Man95], bounded depth circuits [Tal17], read-once branching programs [RSV13, CHRT18],
functions with low sensitivity [GSTW16], and low-degree polynomials over finite fields
[CHHL18]. Furthermore, it was conjectured in [CHLT19] that stronger classes of Boolean
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functions, such as AC0[⊕] circuits, have low L1,ℓ(F ). Moreover, the work of [CHHL18]
showed how to generically construct pseudorandom generators assuming only bounds on the
L1,ℓ(F ) of functions in the family (or even assuming only bounds on L1,2(F ) [CHLT19]).

The quantity L1,ℓ(F ) captures the “sparsity” of the Fourier spectrum. Intuitively, this

is due to the known fact that the sum of squares


S:|S|=ℓ | F (S)|2 is at most 1. Hence,
having the sum of absolute values small, means that most of the Fourier mass sits on a few
coefficients.

We prove new bounds on the L1,ℓ(F ) of any decision tree F of depth d.

Theorem 1.3. Let F be a decision tree on kN input variables of depth d. Then,

∀ℓ :


S⊆{1,...,kN}:|S|=ℓ

| F (S)| ≤


dℓ ·O(log kN)ℓ−1 (3)

In particular, for ℓ = 1, we match the tight O(
√
d) bound of [OS07]. Moreover, for

constant ℓ, our bounds are nearly tight as exhibited by the composition of the Address and
the Majority functions (see Section 7.1). However, for higher values of ℓ, our bounds get
sloppier and we believe that they can be further improved as follows.

Conjecture 1.4. Let F be a decision tree on kN input variables of depth d. Then,

∀ℓ :


S⊆{1,...,kN}:|S|=ℓ

| F (S)| ≤


d

ℓ


· (log kN)ℓ−1

We remark that for non-adaptive decision trees, namely juntas, the conjecture holds.3

Combining the bounds in Eq. (2) with Eq. (3) gives





S:|S|=ℓ

| F (S)|



 ·


max
S:|S|=ℓ

|DU,k(S)|


≤ o(1/2ℓ)

for all ℓ ≤


d/ log n and all d = o(N2(k−1)/3(k−1)/ logN). For larger degrees ℓ >


d/ log n,

we use a much simpler bound, L1,ℓ(F ) ≤

d
ℓ


, to obtain similarly






S:|S|=ℓ

| F (S)|



 ·


max
S:|S|=ℓ

|DU,k(S)|


≤ o(1/2ℓ).

Summing over all sets of size at least k we get

 E
z∼Uk

[F (z)]− E
z∼DU,k

[F (z)]

 ≤
kN

ℓ=k






S:|S|=ℓ

| F (S)|



 ·


max
S:|S|=ℓ

|DU,k(S)|


≤ o(1/2k),

which completes the proof.
We remark that assuming Conjecture 1.4, the same strategy would work for any decision

tree of depth at most N1−1/k/polylog(N).

3If F is a Boolean d-junta, then there are at most

d
ℓ


non-zero Fourier coefficients of degree ℓ, thus by

Cauchy-Schwarz


S:|S|=ℓ | F (S)| ≤


d
ℓ


·


S:|S|=ℓ | F (S)|2 ≤


d
ℓ


.
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1.2 Digest - Degree and Sparsity

We seek to pinpoint the key differences between the quantum and randomized query models
that allowed us to get this separation.

The seminal result of Beals et al. [BBC+01] showed that the acceptance probability of any
t query quantum algorithm can be expressed as a degree-2t multilinear polynomial. Thus
quantum algorithms making few queries can be approximated by low-degree polynomials.
This is also the case for randomized decision trees, as observed by [NS94]. But, if both
models are approximated by low-degree polynomials, what is the difference between them?

We suggest sparsity, or more precisely L1,ℓ(·), as a measure to separate the two models.
This is evident from our proof, which strongly exploits the smallness of L1,ℓ(F ) for shallow
randomized decision trees. On the other hand, one can show that the L1,ℓ(·) of quantum
algorithms making a few queries could be quite large. As mentioned above, for any quantum
algorithm making t queries, there exists a multilinear polynomial p of degree 2t capturing
the acceptance probability of the algorithm. With this in mind, one can analyze the
L1,ℓ(·) of p, i.e., the sum of absolute values of the degree ℓ terms in the polynomial p.
Indeed, the polynomial that arises from Aaronson-Ambainis algorithm (Claim 3.1) is exactly
1
2
(1 + φU(z

(1), . . . , z(k))). Observe that for a random orthogonal matrices U , entries in the

matrix U are of magnitude roughly 1/
√
N , with high probability, and thus the sum of

absolute values of the degree-k coefficients in φU is quite large, Θ(N (k−1)/2).
This captures the difference between the models. Indeed, to get such large L1,k measure

for randomized decision tree, one needs their depth to be at least Ω(N (1−1/k)).
We remark however that differences in L1,ℓ(·) alone are not sufficient to show a difference

between the computational abilities of the two models. Indeed, two polynomials with very
similar values on the entire Boolean domain can get very different L1,ℓ norms. This is why
it is non-trivial to find and prove that a computational task demonstrates these differences.
As we show in this paper, the k-Fold Rorrelation problem is such a task.

1.3 Related Work

We would like to comment about the relation of this work with our prior joint work with
Raz [RT19]. In [RT19], a separation between quantum algorithms, making a few queries,
and AC0 circuits was obtained. This, in turn, implied an oracle separation between BQP
and the Polynomial Hierarchy. The question in [RT19] boiled down to whether a distribution
similar4 to D2 is pseudorandom against AC0 circuits. While the proof strategy in [RT19]
starts similarly to the one laid out here, it takes a sharp turn early on. Namely, there,
the approach of bounding the contribution of each level separately, simply does not work.
To overcome this hurdle, one needs to rely on techniques from stochastic calculus, viewing
the Gaussian distribution as a result of a random walk that makes many tiny steps, and
analyzing each step separately. Surprisingly, the result of [RT19] relies only on bounds on
the second-level of the Fourier spectrum of AC0 (i.e., only bounds on L1,2(F )).

Here, we exploit delicate bounds on all levels of the Fourier spectrum of depth-d decision
trees (i.e., bounds on L1,ℓ(F ) for all ℓ, where F is a depth-d decision tree), as well as tight

4A major difference, though, is that when discretizing the Gaussian distribution, [RT19] used randomized
rounding whereas we take signs.
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moment bounds on the distribution DU,k. So far, despite initial attempts, we were unable
to exploit techniques from stochastic calculus to analyze Ez∼DU,k

[F (z)]. One difficulty arises
from the fact that the continuous distribution Gk, which we discretize to get DU,k, involves
products of Gaussians, rather than just Gaussians. It seems tempting to wonder whether
only a bound on the k-th Fourier level would suffice to analyze k-fold Rorrelation. If so, this
would give a completely different proof, with possibly optimal quantitative bounds.

2 Preliminaries

For N ∈ N, we denote by [N ] = {1, . . . , N}. We denote by IN the identity matrix of order
N . For A ∈ Rm×n, we denote by A the matrix norm given by A = supx ∕=0 Ax2/x2.

Quantum Query

A quantum query to an input z ∈ {±1}kN performs the diagonal unitary transformation Uz,
defined by |i, w〉 → zi|i, w〉, where i ∈ [kN ] and w represents the auxiliary workspace that
does not participate in the query.

Fourier Representation of Boolean Functions

Let f : {±1}N → R be a Boolean function on N variables. The Fourier transform of f is
the unique multilinear polynomial that agrees with f on {±1}N . Such a polynomial exists
and is unique. We write the Fourier transform as

f(x) =


S⊆[N ]

f(S) ·


i∈S

xi

where f(S) ∈ R are the Fourier-coefficients, that could be easily computed from the function

f by f(S) = Ex∈{±1}N [f(x) ·


i∈S xi]. Parseval’s identity shows that Ex∈{±1}N [f(x)
2] =


S⊆[N ]

f(S)2. For ℓ ∈ [N ], we denote by

L1,ℓ(f) ≜


S⊆[N ]:|S|=ℓ

| f(S)|.

Moments of Distributions

Let D be a distribution over {−1, 1}N . For any subset S ⊆ [N ] we denote by

D(S) = E
x∼D




i∈S

xi


.
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3 Quantum Algorithm for the k-fold Rorrelation

Problem

Aaronson and Ambainis [AA15] presented an algorithm that solves Forrelation (the special
case of Rorrelation when U is the Hadamard matrix) with only ⌈k/2⌉ queries. It is
straightforward to extend their algorithm to solve the Rorrelation problem.

Claim 3.1. Let N be a power of 2. Let U be an N-by-N orthogonal matrix. Then, there
exists a quantum algorithm making ⌈k/2⌉ quantum queries, whose acceptance probability is
1
2
+ 1

2
φU(z

(1), . . . , z(k)) where recall that

φU(z
(1), . . . , z(k)) =

1

N
·


i1,...,ik

z
(1)
i1

· Ui1,i2 · z
(2)
i2

· Ui2,i3 · · ·Uik−1,ik · z
(k)
ik

.

For completeness, we give the proof that naturally extends [AA15, Prop. 6] in
Appendix A. Note that Claim 3.1 means that the adaptation of Aaronson-Ambainis’s
algorithm accepts YES-instances with probability at least 1+2−k

2
and accepts NO-instances

with probability at most 1+2−(k+1)

2
.

This can be amplified to a 2/3 vs. 1/3 separation as explained next. Denote by ε the

difference of the two fractions 1+2−k

2
− 1+2−(k+1)

2
and by α their average. By the standard

amplification technique of repeating an algorithm for m = O(1/ε2) = O(4k) times and
checking whether the number of successful trials exceeds m ·α, we strengthen the separation
between the acceptance probabilities of YES and NO instances to 2/3 vs. 1/3.

Corollary 3.2. Let N be a power of 2. Let U be an N-by-N orthogonal matrix. Then, there
exists a quantum algorithm making O(k · 4k) quantum queries, that solves k-fold Rorrelation
problem with respect to U with success probability at least 2/3.

We remark that while the algorithms mentioned in Claim 3.1 or Corollary 3.2 make only a
few quantum queries, they are not necessarily efficient in terms of running time as they apply
an arbitrary orthogonal transformation U to the quantum register. It remains an important
open problem to show that one can get similar separations for orthogonal matrices U that
can be implementable efficiently, say by quantum circuits with at most polylog(N) many
gates. This boils down to showing the existence of efficiently implementable matrices U that
satisfy the pseudorandomness condition in Def. 5.5.

4 The Rorrelation of Vectors Sampled from DU,k and Uk

In this section, we show that:

1. Vectors z(1), . . . , z(k) that are sampled from the distribution DU,k have expected
Rorrelation value at least (2/π)k−1.

2. Vectors z(1), . . . , z(k) that are sampled from the uniform distribution Uk have expected
Rorrelation value 0. Furthermore, the variance of their Rorrelation value is 1/N , thus
it is highly concentrated around 0.
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This shows that the algorithm from Claim 3.1 distinguishes between DU,k and Uk as its
acceptance probability differs by at least 1

2
· (2/π)k−1 between the two cases. Then, in

Section 5 we show that bounded-depth randomized decision trees fail to distinguish between
DU,k and Uk, for most orthogonal matrices U . This, in turn, leads to the conclusion that
bounded-depth randomized decision trees fail to solve the Rorrelation problem, for most
orthogonal matrices U .

4.1 The Rorrelation of Vectors Sampled from DU,k

Claim 4.1. Let U be an N-by-N orthogonal matrix. Then,

E
z∼DU,k

[φU(z
(1), . . . , z(k))] ≥ (2/π)k−1.

Proof. The expectation of φU on the distribution DU,k is

E
z∼DU,k

[φU(z
(1), . . . , z(k))] = E

Z∼Gk

[φU(sgn(Z
(1)), . . . , sgn(Z(k)))]

=
1

N
·


i1,...,ik

E[sgn(X
(1)
i1

) · Ui1,i2 · sgn(Y
(1)
i2

) · sgn(X(2)
i2

) · Ui2,i3 · · ·Uik−1,ik · sgn(Y
(k−1)
ik

)]

=
1

N
·


i1,...,ik

E[sgn(X
(1)
i1

) · Ui1,i2 · sgn(Y
(1)
i2

)] · · ·E[sgn(X(k−1)
ik−1

)Uik−1,ik · sgn(Y
(k−1)
ik

)].

In the following Lemma 4.2, we show that for any j ∈ {1, . . . , k − 1} and any ij ∈ [N ] and
ij+1 ∈ [N ] the expectation of

E[sgn(X
(j)
ij
) · Uij ,ij+1

· sgn(Y (j+1)
ij+1

)] ≥ 2

π
· U2

ij ,ij+1
,

relying on the fact that the covariance of X
(j)
ij

and Y
(j+1)
ij+1

equals Uij ,ij+1
. This gives

E
z∼DU,k

[φU(z
(1), . . . , z(k))] ≥ 1

N
·


i1,...,ik

U2
i1,i2

· · ·U2
ik−1,ik

·

2

π

k−1

=
1

N
·N ·


2

π

k−1

(since U is orthogonal)

=


2

π

k−1

.

Lemma 4.2. Let ρ ∈ [−1, 1]. Let (X, Y ) be two-dimensional multi-variate Gaussian

distribution with zero-means and covariance matrix


1 ρ
ρ 1


. Then,

ρ · E[sgn(X) · sgn(Y )] ≥ 2

π
· ρ2.
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Proof. Let u1 = (1, 0) and u2 = (ρ,


1− ρ2). We can retrieve such a distribution (on (X, Y ))
by considering two independent standard Gaussians Z = (Z1, Z2) and taking X = 〈Z, u1〉
and Y = 〈Z, u2〉. Thus, the probability that sgn(X) = sgn(Y ) is the same as the probability
over a random Z = (Z1, Z2) that sgn(〈Z, u1〉) = sgn(〈Z, u2〉), which is the same if we sample
Z according to the uniform distribution on the sphere. The latter probability is exactly
1 − α/π where α is the angle between u1 and u2. Thus, the probability is 1 − arccos(ρ)/π,
and

E[sgn(X) · sgn(Y )] = 2Pr[sgn(X) = sgn(Y )]− 1 = 1− 2 arccos(ρ)/π.

For ρ ≥ 0 we have E[sgn(X) · sgn(Y )] ≥ 2
π
ρ and for ρ ≤ 0 we get E[sgn(X) · sgn(Y )] ≤ 2

π
ρ.

Thus, in both cases, ρ · E[sgn(X) · sgn(Y )] ≥ 2
π
ρ2.

4.2 The Rorrelation of Vectors Sampled from Uk

We begin with the following simple claim.

Claim 4.3. Let U be an N-by-N orthogonal matrix. Then,

E
z∼Uk


φU(z

(1), . . . , z(k))

= 0

Proof.

E
z∼Uk

[φU(z
(1), . . . , z(k))] =

1

N
·


i1,...,ik

E[z
(1)
i1
] · Ui1,i2 · E[z

(2)
i2
] · Ui2,i3 · · ·Uik−1,ik · E[z

(k)
ik

] = 0.

Furthermore, we show that for z(1), . . . , z(k) drawn from the uniform distribution, the
value of φU(z

(1), . . . , z(k)) is concentrated around 0. To show that it suffices to bound the
variance of φU(z

(1), . . . , z(k)) under the uniform distribution, as we do next.

Claim 4.4. Let U be an N-by-N orthogonal matrix. Then,

Varz∼Uk


φU(z

(1), . . . , z(k))

= E

z∼Uk


(φU(z

(1), . . . , z(k)))2

= 1/N.

Proof. Since φU is multilinear we can apply Parseval’s identity to get

Varz∼Uk


φU(z

(1), . . . , z(k))

= E

z∼Uk

,






1

N
·


i1,...,ik

z
(1)
i1

· Ui1,i2 · z
(2)
i2

· Ui2,i3 · · ·Uik−1,ik · z
(k)
ik

2




=
1

N2



i1,...,ik

U2
i1,i2

U2
i2,i3

· · ·U2
ik−1,ik

= 1/N.

Overall, we get that a vector z, drawn from the uniform distribution, satisfies
|φU(z

(1), . . . , z(k))| ≤ 2−(k+1) with high probability (at least 1− 4(k+1)/N) .
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5 DU,k is Pseudorandom for Randomized Decision

Trees

5.1 Fourier Growth of Decision Trees

We start by stating two bounds on the Fourier coefficients of decision trees. These bounds
capture the fact that the Fourier spectrum of deterministic and randomized decision trees
is “sparse”. More precisely, we bound the sum of absolute values of coefficients of degree ℓ,
and since the sum of squares is at most 1, this means that within the ℓ-th level, the Fourier
mass is concentrated on a small fraction of the coefficients.

Theorem 5.1 (Level-ℓ Inequality for Decision Trees – Version 1). Let f be a (deterministic)
decision tree of depth d over m variables x1, . . . , xm. Then,

∀ℓ ∈ {0, 1, . . . , d} : L1,ℓ(f) =


S⊆[m]:|S|=ℓ

| f(S)| ≤


O(d)ℓ ·O(logm)ℓ−1

The above inequality is tight for small values of ℓ. In particular, it gives a O(
√
d) bound

on the first level – a result that was previously obtained by [OS07, BTW15] and is known
to be tight (see Section 7.1 for examples demonstrating its tightness). For higher values of
ℓ though, the inequality gets sloppier, and for ℓ ≥ Ω(


d/ log n) a much simpler argument

gives better bounds.

Claim 5.2 (Level-ℓ Inequality for Decision Trees - Version 2). Let f be a (deterministic)
decision tree of depth d over m variables x1, . . . , xm. Then,

∀ℓ ∈ {0, 1, . . . , d} : L1,ℓ(f) =


S⊆[m]:|S|=ℓ

| f(S)| ≤

d

ℓ



We defer the proofs of Theorem 5.1 and Claim 5.2 to Section 7. We get the following
corollary.

Corollary 5.3. Let F be a randomized decision tree of depth d over m variables x1, . . . , xm.
Then,

∀ℓ ∈ {0, 1, . . . , d} : L1,ℓ(F ) =


S⊆[m]:|S|=ℓ

| F (S)| ≤


O(d)ℓ ·O(logm)ℓ−1 (4)

and

∀ℓ ∈ {0, 1, . . . , d} : L1,ℓ(F ) =


S⊆[m]:|S|=ℓ

| F (S)| ≤

d

ℓ


(5)

Proof. A randomized decision tree is a convex combination of deterministic decision trees.
Since L1,ℓ(·) is convex, the bounds follow.

We conjecture that the right bounds are better for higher levels:

Conjecture 5.4 (Conjectured Level-ℓ Inequality for Decision Trees). Let f be a
(deterministic/randomized) decision tree of depth d over m variables x1, . . . , xm. Then,

∀ℓ ∈ {0, 1, . . . , d} : L1,ℓ(f) =


S⊆[m]:|S|=ℓ

| f(S)| ≤


d

ℓ


·O(logm)ℓ−1
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5.2 Moment Bounds on DU,k

Good Orthogonal Matrices. We define a pseudorandomness property of orthogonal
matrices, from which we will deduce moment bounds on the distribution DU,k.

Definition 5.5 (Good Orthogonal Matrices). Let U be an N-by-N orthogonal matrix.
We say that U is good if for all k, ℓ ∈ [N ], any k-by-ℓ sub-matrix W of U satisfies

W ≤


100(k+ℓ) lnN
N

.

It is not difficult to see that the Hadamard matrix is not good. For example, the
Hadamard matrix has a

√
N ×

√
N sub-matrix W , all whose entries equal +1/

√
N , and

thus the norm of W equals 1 ≫


100(
√
N+

√
N) lnN

N
. On the other hand, we prove that most

orthogonal matrices are good.

Lemma 5.6 (Most Orthogonal Matrices are Good). Let U be a random orthogonal N-by-N
matrix. Then, with high probability over the choice of U , U is good.

Furthermore, we show that whenever U is good, we get moment bounds on the
corresponding distribution DU,k, defined with respect to U .

Lemma 5.7 (Moment Bounds for Good Matrices). Suppose that U is a good orthogonal
matrix and DU,k is defined with respect to U . Then, there exists a universal constant c, such
that for any ∅ ∕= S ⊆ [kN ],

|DU,k(S)| ≤

c · |S| · logN

N

|S|·(1−1/k)/2

,

and for any non-empty set S of size less than k, we have DU,k(S) = 0.

We defer the proofs of both lemmata to Section 6.

5.3 Pseudorandomness of DU,k

Theorem 5.8. Suppose that U is a good orthogonal matrix and DU,k is defined with respect
to U . Let F be a randomized decision tree of depth d over kN variables. Suppose that
d = o(N2(k−1)/(3k−1)/ log(kN)). Then,

E[F (Uk)− F (DU,k)] ≤


O(d · log(kN))(3k−1)/2

Nk−1

Proof. We have

|E[F (Uk)− F (DU,k)]| =



S ∕=∅

F (S) · DU,k(S)


≤
kN

ℓ=k



|S|=ℓ

| F (S) · DU,k(S)|
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≤
kN

ℓ=k


max
|S|=ℓ

|DU,k(S)|

·


|S|=ℓ

| F (S)|

≤
kN

ℓ=k


c · ℓ · lnN

N

ℓ·(1−1/k)/2

· L1,ℓ(F )

Now we break the right hand side above to two sub-sums:

1. for ℓ ≤


d/ log(kN) we will use the bounds on L1,ℓ(F ) from Eq. (4).

2. for ℓ >


d/ log(kN) we will use the bounds on L1,ℓ(F ) from Eq. (5).

That is, we bound the lower order terms by

√
d/ log(kN)

ℓ=k


c · ℓ · lnN

N

ℓ·(1−1/k)/2

· L1,ℓ(F )

≤

√
d/ log(kN)

ℓ=k


c · ℓ · lnN

N

ℓ·(1−1/k)/2

·O(d · log(kN))ℓ/2

≤

√
d/ log(kN)

ℓ=k


c ·


d/ log(kN) · lnN

N

ℓ·(1−1/k)/2

·O(d · log(kN))ℓ/2

≤

√
d/ log(kN)

ℓ=k

O


(d · log(kN))1+(1−1/k)/2

N1−1/k

ℓ/2

≤ O


(d · log(kN))1+(1−1/k)/2

N1−1/k

k/2

=


O(d · log(kN))(3k−1)/2

Nk−1

where in the last inequality, the assumption that d = o(N2(k−1)/(3k−1)/ log(kN)) is used to
deduce that this is a decreasing geometric progression. We bound the higher order terms by



ℓ>
√

d/ log(kN)


c · ℓ · lnN

N

ℓ·(1−1/k)/2

· L1,ℓ(F )

≤


ℓ>
√

d/ log(kN)


c · ℓ · lnN

N

ℓ·(1−1/k)/2

·

d

ℓ



≤


ℓ>
√

d/ log(kN)


c · ℓ · lnN

N

(1−1/k)/2

· e · d
ℓ

ℓ

≤


ℓ>
√

d/ log(kN)

O


logN

N

(1−1/k)/2

· d

ℓ1−(1−1/k)/2

ℓ
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≤


ℓ>
√

d/ log(kN)

O


logN

N

(1−1/k)/2

· d


d/ log(kN)
1−(1−1/k)/2

ℓ

≤


ℓ>
√

d/ log(kN)

O


(d · log(kN))1+(1−1/k)/2

N1−1/k

ℓ/2

≤ O


(d · log(kN))1+(1−1/k)/2

N1−1/k

k/2

=


O(d · log(kN))(3k−1)/2

Nk−1
.

Similarly, in Appendix B, we show that assuming Conjecture 1.4, for any good U , the
distribution DU,k is pseudorandom against any depth N1−1/k/polylog(N) decision tree.

5.4 Shallow Randomized Decision Tree Cannot Solve the k-fold
Rorrelation Problem

We prove the following lower bound on the depth of randomized decision trees solving the
k-fold Rorrelation Problem.

Theorem 5.9. Let U be a good orthogonal N-by-N matrix. Let k ≥ 2 be such that 16 · 8k ≤
N . Suppose that F is a randomized decision tree of depth d solving the k-fold Rorrelation
problem with success probability at least 2/3. Then, d ≥ Ω(N2(k−1)/(3k−1)/(k log(kN))).

Towards proving Theorem 5.9, we show that 1
2
Uk+

1
2
DU,k is a somewhat hard-distribution

for any depth-d randomized decision trying to solve the Rorrelation problem, as long as
d = o(N2(k−1)/(3k−1)/ log(kN)).

Claim 5.10. Assume that 16 · 8k ≤ N , and U is a good orthogonal N-by-N matrix. Let F
be a randomized decision tree of depth d = o(N2(k−1)/(3k−1)/ log(kN)). Then,

Pr[z is legal input to Rorrelation, and F misclassifies z] ≥ 1

8
· 2−k (6)

where the probability is taken over the randomness of z ∼ 1
2
Uk + 1

2
DU,k and the internal

randomness of F .

Before proving Claim 5.10, we show that it implies Theorem 5.9.

Proof of Thm. 5.9. Suppose that F is a depth d randomized decision tree with success
probability at least 2/3. Then, one can amplify the success probability to at least 1− 1

10
·2−k,

by running F sequently Θ(k) many times and taking the majority vote. Thus, we get a
randomized decision tree F ′ of depth d′ = Θ(d · k) such that

• On any YES instance, F ′ accepts with probability at least 1− 1
10

· 2−k.

• On any NO instance, F ′ accepts with probability at most 1
10

· 2−k.

In particular, Eq. (6) does not hold for F ′, which by Claim 5.10 implies d′ ≥
Ω(N2(k−1)/(3k−1)/ log(kN)). Recalling that d′ = Θ(d · k) completes the proof.
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Proof of Claim 5.10. Assume by contradiction that this is not the case. Then, there exists
a randomized decision tree F , with

Pr[z is legal input to Rorrelation, and F misclassifies z] <
1

8
· 2−k.

By averaging, there exists a deterministic decision tree f with

Pr
z∼ 1

2
Uk+

1
2
DU,k

[z is legal input to Rorrelation, and f misclassifies z] <
1

8
· 2−k.

In particular, this means that on the uniform distribution

Pr
z∼Uk

[z is legal input to Rorrelation, and f misclassifies z] ≤ 1

4
· 2−k

and on the distribution DU,k we have

Pr
z∼DU,k

[z is legal input to Rorrelation, and f misclassifies z] ≤ 1

4
· 2−k.

We will show that f distinguishes between DU,k and Uk which will be a contradiction to
Theorem 5.8.

For z ∼ Uk we have that with probability at least 1 − 4(k+1)/N , |φU(z)| ≤ 2−(k+1).
This is a consequence of the concentration inequality we got in Claim 4.4 stating that
Ez∼Uk

[φU(z)
2] = 1/N . Thus, with probability at least 1 − 4(k+1)/N we have that z is a

NO instance to the Rorrelation problem, and by the assumption on f with probability at
least 1− 4(k+1)/N − 1

4
· 2−k it answers NO. That is,

E
z∼Uk

[f(z)] ≤ 4k+1

N
+

1

4
· 2−k. (7)

For z ∼ DU,k we have that Ez∼DU,k
[φU(z)] ≥ (2/π)k−1 > 2−(k−1). Since |φU(z)| ≤ 1 for

all binary vectors, this means that, for z ∼ DU,k, with probability at least 2−k, we have
φU(z) ≥ 2−k (as otherwise the expectation would be less than 2−(k−1)). Put differently, when
sampling from DU,k with probability at least 2−k we get a YES instance for Rorrelation. By
that f errs on at most 1

4
· 2−k of the probability mass of DU,k, it means that

E
z∼DU,k

[f(z)] ≥ 2−k − 1

4
· 2−k. (8)

Combining Equations (7) and (8), we get that

E[f(DU,k)]− E[f(Uk)] ≥
1

2
· 2−k − 4k+1

N
≥ 1

4
· 2−k, (9)

where in the last inequality we used the assumption N ≥ 16 · 8k. On the other hand,
Theorem 5.8 shows that

E[f(DU,k)]− E[f(Uk)] ≤


O(d · log(kN))(3k−1)/2

Nk−1
≤ o(2−k). (10)

where in the last inequality we used the assumption that d = o(N2(k−1)/3(k−1)/ log(kN)).
This yields a contradiction, completing the proof.
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6 Bounding the Moments of the Distribution DU,k

Recall the definition of a good orthogonal matrix from Section 5. In this section, we will
prove that most uniform matrices are good (Lemma 5.6), and that for any good uniform
matrices, the corresponding distribution DU,k has bounded moments (Lemma 5.7).

We start with Lemma 5.7. Let U be an N -by-N orthogonal matrix (as in

the definition of k-fold Rorrelation). For S, T ⊆ [N ], we denote by U(S, T ) ≜
EX


sgn


i∈S Xi


j∈T (U

TX)j


where X ∼ N (0, 1)N is a standard N -dimensional multi-

variate Gaussian random vector.
We state our main technical lemma, that connects the property of being good (namely

small norms of sub-matrices of U), with bounds on |U(S, T )|.

Lemma 6.1. Let S, T ⊆ [N ]. Then:

• For any orthogonal matrix U , if |S|+ |T | is odd, then U(S, T ) = 0.

• For any orthogonal matrix U , if |S|+ |T | is even, then

|U(S, T )| ≤ (50 · US,T)max{|S|,|T |},

where US,T denotes the sub-matrix of U with rows in S and columns in T .

We defer the proof of Lemma 6.1 to the next subsection. From Lemma 6.1, and the
definition of good matrices, the following corollary is immediate.

Corollary 6.2. Suppose that U is a good orthogonal matrix and DU,k is defined with respect
to U . Then, there exists a universal constant c > 0 such that

|U(S, T )| ≤

c(|S|+ |T |) lnN

N

max{|S|,|T |}/2

. (11)

for all S, T ⊆ [N ].

Furthermore, from corollary 6.2, we derive bounds on the moments of DU,k for good
matrices.

Lemma (Lemma 5.7, restated). Suppose that U is a good orthogonal matrix and DU,k is
defined with respect to U . Then, there exists a universal constant c, such that for any
∅ ∕= S ⊆ [kN ],

|DU,k(S)| ≤

c · |S| · logN

N

|S|·(1−1/k)/2

,

and for any non-empty set S of size less than k, we have DU,k(S) = 0.

Proof. Recall that DU,k is a distribution over k blocks of N variables each. We write
S = S1∪S2∪ . . .∪Sk where Si denotes the intersection of S with the i-th block of variables.

DU,k(S) = E



sgn






i1∈S1

X
(1)
i1



i2∈S2

X
(2)
i2

Y
(1)
i2

· · ·


ik−1∈Sk−1

X
(k−1)
ik−1

Y
(k−2)
ik−2



ik∈Sk

Y
(k−1)
ik
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= E


sgn




i1∈S1

X
(1)
i1



i2∈S2

Y
(1)
i2


· · · E



sgn






ik−1∈Sk−1

X
(k−1)
ik−1



ik∈Sk

Y
(k−1)
ik









= U(S1, S2) · U(S2, S3) · · · U(Sk−1, Sk).

So we see that DU,k(S) ∕= 0 only if all |Si| have the same parity. In particular, it equals 0 for
any set S of size between 1 and k − 1. In the case where all the |Si|’s have the same parity,

|DU,k(S)| ≤
k−1

i=1


c · (|Si|+ |Si+1|) · logN

N

 1
2
·max{|Si|,|Si+1|}

≤

c · |S| · logN

N

 1
2
·(max{|S1|,|S2|}+max{|S2|,|S3|}+...+max{|Sk−1|,|Sk|})

≤

c · |S| · logN

N

 1
2
·|S|·(k−1)/k

where the last inequality is justified in the following lemma (Lemma 6.3).

Lemma 6.3. Let a1, a2, . . . , ak ∈ R. Then,

max(a1, a2) + max(a2, a3) + . . .+max(ak−1, ak) ≥ (a1 + a2 + . . .+ ak) ·
k − 1

k
.

Proof. Let i ∈ [k] be an index such that ai = min(a1, . . . , ak). We claim that

max(a1, a2)+max(a2, a3)+ . . .+max(ak−1, ak) ≥ a1+ a2+ . . .+ ai−1+ ai+1+ . . .+ ak. (12)

This is true since for every j ≤ i−1 we have max(aj, aj+1) ≥ aj and for every j ∈ {i, . . . , k−1}
we have max(aj, aj+1) ≥ aj+1. Combining these inequalities together gives Eq. (12). Finally,
observe that if s ≜ a1 + . . .+ ak, then ai ≤ s/k and thus

max(a1, a2) + max(a2, a3) + . . .+max(ak−1, ak) ≥ s− s/k,

which completes the proof.

6.1 Proof of Lemma 6.1

Proof. We denote by Yi = (UTX)i for i ∈ [N ]. The multivariate Gaussian distribution
(X1, . . . , XN , Y1, . . . YN) is symmetric around 0. Thus, when |S| + |T | is odd, the product
(


i∈S Xi


j∈T Yj) is an odd function, and hence the expectation of its sign equals 0.

For the rest of the proof, we assume that |S|+ |T | = 2ℓ is even. We assume without loss
of generality that |S| ≥ |T |, and denote by ℓ′ = max{|S|, |T |} = |S|. We also assume without

loss of generality that US,T ≤ 1/50 since otherwise the claim is trivial. We compute U(S, T )
as a Lebesgue integral. For brevity, we denote by dXS =


i∈S dXi and by dYT =


i∈T dYj.

We also denote by XS the vector (Xi)i∈S and by YT the vector (Yi)j∈T and by XS and Y T

the products


i∈S Xi and


i∈T Yj respectively.
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The covariance matrix of the Gaussian random variables {Xi}i∈S and {Yj}j∈T is given

by Σ =


IS US,T

UT
S,T IT


. Due to the assumption US,T ≤ 1/50 we get that Σ is non-singular.

Moreover, since US,T ≤ 1/50, all eigenvalues of Σ are in the range [0.98, 1.02], and we get
that the determinant of Σ, denoted |Σ|, is in the interval [0.982ℓ, 1.022ℓ].

Next, we write Σ−1 in terms of US,T . By the matrix inversion formula of block matrices

Σ−1 =


(IS − US,TU

T
S,T )

−1 −US,T · (IT − UT
S,TUS,T )

−1

−UT
S,T · (IS − US,TU

T
S,T )

−1 (IT − UT
S,TUS,T )

−1


≜


A C
CT B


.

By Woodbury matrix identity

A = IS + US,T


IT − UT

S,TUS,T

−1
UT
S,T = IS + US,T · B · UT

S,T ≜ IS + A′ (13)

and
B = IT + UT

S,T


IS − US,TU

T
S,T

−1
US,T = IT + UT

S,T · A · US,T ≜ IT +B′ (14)

where A,B,A′, B′ are symmetric PSD matrices. Furthermore, observe that

C = −US,TB (15)

and that B ≤ 1.01. We are ready to start analyzing U(S, T ) as a Lebesgue integral:

 U(S, T )
 =

 EX,Y


sgn


XSY T



=
1

|Σ| · (2π)2ℓ
·



(−∞,∞)2ℓ
sgn(XSY T ) · e

−XS22−YT 22
2 · e−(XT

SA
′XS/2 + Y T

T B′YT /2 + XT
SCYT ) dXS dYT



Now,



(−∞,∞)2ℓ
sgn(XSY T ) · e

−XS22−YT 22
2 · e−(XT

SA
′XS/2 + Y T

T B′YT /2 + XT
SCYT ) dXS dYT



=





a∈{−1,1}S ,
b∈{−1,1}T

aS · bT


[0,∞)2ℓ

e
−XS22−YT 22

2 · e−((a.X)TSA
′(a.X)S/2 + (b.Y )TTB′(b.Y )T /2 + (a.X)TSC(b.Y )T ) dXS dYT



≤


[0,∞)2ℓ

e
−XS22−YT 22

2 ·





a∈{−1,1}S ,
b∈{−1,1}T

aS · bT · e−((a.X)TSA
′(a.X)S/2 + (b.Y )TTB′(b.Y )T /2 + (a.X)TSC(b.Y )T )



dXS dYT

≤


[0,∞)2ℓ

e
−XS22−YT 22

2



b∈{−1,1}T
e

−(b.Y )TTB′(b.Y )T
2 ·





a∈{−1,1}S
aS · e−((a.X)TSA

′(a.X)S/2 + (a.X)TSC(b.Y )T )


dXS dYT

≤


[0,∞)2ℓ

e
−XS22−YT 22

2



b∈{−1,1}T





a∈{−1,1}S
aS · e−((a.X)TSA

′(a.X)S/2 + (a.X)TSC(b.Y )T )


dXS dYT (16)
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where in the last inequality we used the fact that B′ is PSD. Fix b ∈ {−1, 1}T , YT and XS.
We analyze the internal sum



a∈{−1,1}S
aS · e−((a.X)TSA

′(a.X)S/2 + (a.X)TSC(b.Y )T )

using Taylor expansion. For each a ∈ {−1, 1}S, we develop the Taylor series of

eQ(a)+L(a) where Q(a) = −((a.X)S)
TA′(a.X)S/2, L(a) = −(a.X)TSC(b.Y )T

and obtain



a∈{−1,1}S
aS·eQ(a)+L(a) =



a∈{−1,1}S
aS·

∞

i=0

(Q(a) + L(a))i

i!
=



a∈{−1,1}S
aS·



0≤i1,i2


i1 + i2
i1


Q(a)i1L(a)i2

(i1 + i2)!

Observe that Q(a)i1 · L(a)i2 is a polynomial of degree 2i1 + i2 in the variables a. Summing
over all a ∈ {−1, 1}S, the terms corresponding to (i1, i2) with 2i1 + i2 < ℓ′ cancel out, and
we are left only with the terms corresponding to i1, i2 such that 2i1 + i2 ≥ ℓ′. Thus, we get




a∈{−1,1}S
aS · e−((a.X)TSA

′(a.X)S/2 + (a.X)TSC(b.Y )T )


≤



a∈{−1,1}S



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


|Q(a)i1 · L(a)i2 |

(i1 + i2)!

Plugging this bound in Eq. (16) gives

|U(S, T )| ≤ 1
|Σ|(2π)2ℓ



[0,∞)2ℓ

e
−XS22−YT 22

2 ·


a,b



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


|Q(a)i1 · L(a)i2 |

(i1 + i2)!
dXS dYT

=
1

|Σ|(2π)2ℓ



(−∞,∞)2ℓ

e
−XS22−YT 22

2 ·


i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


· |(X

T
SA

′XS/2)
i1 · (XT

SCYT )
i2 |

(i1 + i2)!
dXS dYT

=
1
|Σ|



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1

 

(−∞,∞)2ℓ

1
(2π)2ℓ

· e
−XS22−YT 22

2 · |(X
T
SA

′XS/2)
i1 · (XT

SCYT )
i2 |

(i1 + i2)!
dXS dXY

where in the last equality we used Fubini’s theorem. Observe that in the right hand side, each
internal integral is with respect to 2ℓ independent standard Gaussians. To avoid confusion,
we denote these 2ℓ standard Gaussians by { Xi}i∈S and {Yj}j∈T . We get that

|US,T | ≤
1
|Σ|



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


· E

X,Y


|( XT

SA
′ XS/2)

i1 · ( XT
SC

YT )
i2 |

(i1 + i2)!



≤ 1
|Σ|



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


·
A′i1 · Ci2 · E


 XS2i1+i2YTi2



2i1 · (i1 + i2)!

21



≤ 1
|Σ|



i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


·
A′i1 · Ci2 ·


E[ XS4i1+2i2 ]E[YT2i2 ]

2i1 · (i1 + i2)!

Now,  XS22 is χ-squared random variable with |S| degrees of freedom. It is known that
its 2i1 + i2 moment equals |S| · (|S| + 2) · · · (|S| + 4i1 + 2i2 − 2) ≤ (|S| + 2i1 + i2)

2i1+i2 ≤
(4i1+2i2)

2i1+i2 . Similarly, YT22 is χ-squared random variable with |T | degrees of freedom. It
is known that its i2 moment equals |T |·(|T |+2) · · · (|T |+2i2−2) ≤ (|T |+i2)

i2 ≤ (4i1+2i2)
i2 .

Overall, we get

|U(S, T )| ≤ 1
|Σ|



i1,i2:2i1+i2≥ℓ′


i1 + i2
i1


· A

′i1 · Ci2
2i1

·


4i1 + 2i2
(i1 + i2)/e

i1+i2

.

Recall that A′ ≤ US,T2 · B and C ≤ US,T · B (by Equations (13) and (15))
where B ≤ 1.01. This gives

|U(S, T )| ≤ 0.98−ℓ ·


i1,i2:
2i1+i2≥ℓ′


i1 + i2
i1


· US,T2i1+i2 · (1.01)i1+i2

2i1
· (4e)i1+i2

≤ 1.03ℓ ·


i1,i2:
2i1+i2≥ℓ′


2i1 + i2

i1


· US,T2i1+i2 · (4.04e)

2i1+i2

(8.08e)i1

= 1.03ℓ ·
∞

d=ℓ′

(4.04e)d · US,Td


i1≤d/2


d

i1


· 1

(8.08e)i1

≤ 1.03ℓ ·
∞

d=ℓ′

(4.04e)d · US,Td · (1 + 1
(8.08e)

)d

≤ 1.03ℓ · 2 · (12US,T)ℓ
′ ≤ (50US,T)ℓ

′
.

6.2 Most Orthogonal Matrices are Good

We obtain Lemma 5.6 by applying a union bound over all possible sub-matrices of a random
orthogonal matrix U . We start by showing that for a fixed subset of rows S ⊆ [N ] and a
fixed set of columns T ⊆ [N ], the norm of US,T has sub-Gaussian tails.

Claim 6.4. Let U be a random orthogonal N-by-N matrix. Let S, T ⊆ [N ] be some fixed
sets. Then, for all t > 0,

Pr
U
[US,T ≥ 2t/

√
N ] ≤ 2 · 9|S|+|T | · e−t2/8.

Proof. Let ε = 1/4. For brevity, denote by U ′ = US,T . We take an ε-net X over the unit
sphere S |S|−1 and an ε-net Y over the unit sphere S |T |−1. A simple volume argument shows
that there exist such ε-nets with size at most (1 + 2/ε)|S| and (1 + 2/ε)|T | respectively (cf.
[Ver10, Lemma 5.2]). Another simple argument shows that

max
x∈X ,y∈Y

(xTU ′y) ≥ (1− 2ε)U ′ = U ′/2.
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To see this note that U ′ is the maximal (x′)TU ′y′ taken over all unit vectors x′ ∈ RS and
y′ ∈ RT . Let x′ and y′ be vectors that attain this maximum. Let x be the closest vector to
x′ in X . Let y be the closest vector to y′ in Y . By the definition of ε-nets, x− x′ ≤ ε and
y − y′ ≤ ε. Thus,

xTU ′y = (x′)TU ′y′ + (x− x′)TU ′y′ + xTU ′(y − y′) ≥ U ′ − U ′ · ε− U ′ · ε .

Now, for any fixed unit vectors x ∈ X and y ∈ Y , the next claim shows that
Pr[xTUy ≥ t/

√
N ] ≤ 2 · e−t2/8. Note that xTUy is the same as xTU ′y. Hence, by a

simple union bound and Claim 6.5, we have

Pr[∃x ∈ X , y ∈ Y : xTU ′y ≥ t/
√
N ] ≤ |X ||Y| · 2 · e−t2/8 = 9|S| · 9|T | · 2 · e−t2/8.

Overall, we get that

Pr[U ′ ≥ 2t/
√
n] ≤ Pr[∃x ∈ X , y ∈ Y : xTU ′y ≥ t/

√
N ] ≤ 9|S| · 9|T | · 2 · e−t2/8.

Claim 6.5. Let U be a random orthogonal N-by-N matrix. Let x ∈ RN and y ∈ RN be any
two fixed unit vectors. Then, for all t > 0,

Pr
U
[xTUy ≥ t/

√
N ] ≤ 2 · e−t2/8.

Proof. The main observation is that for a fixed vectors x and y, the distribution of xTUy is the
same as the distribution of the first coordinate of a random vector on the (N−1)-dimensional
sphere. To see it, first note that Z = Uy is a uniform vector on the (N − 1)-dimensional
sphere. Furthermore, the inner product of Z with any fixed unit vector x is the same no
matter which vector x is chosen. In particular, it is the same as the inner product with e1,
or in other words, it is distributed the same as Z1.

To finish the proof we show that if Z is a uniformly random vector on the (N − 1)-
dimensional sphere, then

Pr[Z1 ≥ t/
√
N ] ≤ 2e−t2/8.

Note that Z can be sampled by taking N independent Gaussian variables (Z ′
1, . . . , Z

′
N) with

mean 0 and variance 1 and normalizing them. Thus Z1 is distributed as Z ′
1/


i(Z
′
i)

2. Thus

Pr[Z1 ≥ t/
√
N ] ≤ Pr


|Z ′

1| ≥ t/2 ∨
N

i=1

(Z ′
i)

2 ≤ N/4



≤ Pr [|Z ′
1| ≥ t/2] +Pr


N

i=1

(Z ′
i)

2 ≤ N/4


.

The first summand Pr[|Z ′
1| ≥ t/2] is bounded by e−t2/8. As for the second summand, the

random variable
N

i=1 (Z
′
i)

2

is distributed according to a χ2-distribution with parameter

N , and Chernoff bounds on such distributions show that Pr[
N

i=1(Z
′
i)

2 ≤ N/4] ≤
(e1/4/4)N/2 ≤ e−N/2. Overall, we get Pr[Z1 ≥ t/

√
N ] ≤ e−t2/8+ e−N/2. Now, if t >

√
N then

the probability Pr[Z1 ≥ t/
√
N ] equals 0, since a vector of norm 1 cannot have a coordinate

with value larger than 1. So we only need to consider the case where t ≤
√
N , in which case

e−N/2 ≤ e−t2/2, which completes the proof.
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We are ready to prove Lemma 5.6, which we restate next.

Lemma (Lemma 5.6, restated). With high probability over the choice of a random orthogonal
N-by-N matrix U , we have

US,T <


100(|S|+ |T |) lnN

N

1/2

for all non-empty S, T ⊆ [N ]. In other words, with high probability U is good (as in Def. 5.5).

Proof. For any specific S, T ⊆ [N ], by Claim 6.4, the probability that

US,T ≥

100(|S|+ |T |) lnN

N

1/2

is at most 2 · 9|S|+|T | · e−(25(|S|+|T |) lnN)/8 ≤ N−2(|S|+|T |). This allows a union bound over all
non-empty sets as


∅∕=S⊆[N ]


∅∕=T⊆[N ] N

−2(|S|+|T |) = O(1/N2).

7 Fourier Coefficients of Decision Trees

In this section, we treat Boolean function as functions mapping {−1, 1}n to {0, 1}, which
will be a lot more convenient in the proofs.5 We will prove the bounds on


S:|S|=ℓ | f(S)| by

induction on ℓ. We start with a bound on the first level, i.e., a bound on


S:|S|=1 | f(S)|,
that was previously given in [OS07, BTW15]. Our proof, however, gets a tight dependency
on the acceptance probability of the function (improving upon [BTW15]) that will later play
a crucial role in the induction.

Theorem 7.1 (Level-1 Inequality for Decision Trees). Let T be a decision tree of depth d
computing a Boolean function f : {−1, 1}n → {0, 1} with p = Pr[f(x) = 1]. Then,

n

i=1

| f({i})| ≤ O(
√
d · p ·


ln(e/p)) .

Proof. Since we may negate input bits, without loss of generality all Fourier coefficients f(i)
are non-negative and it suffices to bound the quantity


i
f(i). We may also assume without

loss of generality that T is a full binary tree. We can ensure this by querying additional
variables in case we have a leaf at depth smaller than d.

For every leaf λ in T , we associate a vector vλ ∈ {−1, 0, 1}n such that (vλ)i = 1 if the
i-th bit was queried on the path to v and equaled 1, (vλ)i = −1 if the i-th bit was queried
on the path to v and equaled −1, and (vλ)i = 0 otherwise.

Denote by sλ =


i(vλ)i the sum of fixed variables in leaf λ. The crucial observation is
that if λ is a random leaf, then sλ is distributed as the sum of d independent uniformly random

5Note that we can transform any function f : {−1, 1}n → {−1, 1} to a function f ′ : {−1, 1}n → {0, 1} by

taking f ′(x) = 1−f(x)
2 . Thus, any bounds on


S:|S|=ℓ |f ′(S)| can be translated to bounds on


S:|S|=ℓ | f(S)|

with a multiplicative factor of 2.
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{−1, 1} variables. (This can be easily verified by induction on d.) Thus, by Chernoff’s bound
we have Pr[sλ ≥ t] = e−t2/2d. Now, note that

n

i=1

f({i}) =
n

i=1

E
x
[f(x) · xi] = E

x


f(x) ·

n

i=1

xi


= E

λ
[f(λ) · sλ],

for a random leaf λ. To finish the proof, we will use the tail bounds on sλ and the fact that
Pr[f(λ) = 1] = p to get a bound on Eλ[f(λ) · sλ]. Set t =


2d ln(e/p). We can rewrite

E
λ
[f(λ) · sλ] = E[f(λ) · t] + E

λ
[f(λ) · (sλ − t)] ≤ p · t+ E

λ
[max(0, sλ − t)],

and note that

E
λ
[max(0, sλ − t)] ≤

∞

x=⌈t⌉

Pr[sλ ≥ x] ≤
∞

x=⌈t⌉

e−x2/2d ≤ O(pd/⌈t⌉) ≤ O(pt) .

Overall, we get
n

i=1
f(i) ≤ O(pt), which completes the proof as we assumed w.l.o.g. that

all f(i) are non-negative.

The rest of the proof will build on this base case by decomposing a decision tree into
smaller pieces. The proof strategy follows the one laid in [CHRT18] for constant-width
read-once oblivious branching programs (ROBPs, in short), in the following aspects: (i)
it is carried by induction on ℓ, (ii) it relies on decomposition results, (iii) we get bounds
with respect to the probability of acceptance, which allows for the induction to be effective,
and (iv) it uses the relabeling technique. Despite those similarities, there are key differences
between the models of constant-width ROBPs and decision trees. For example, in the former
the total number of nodes is linear in n, whereas in the latter we think of the number of nodes
as exponential in the depth d (which we think of as larger than

√
n). It is thus surprising

that one can import the techniques to our setting. In addition, while in ROBPs the variables
are read in an oblivious order, in the case of decision tree the order is selected adaptively
and may change between different paths of the same tree. One technique that we could
not manage to transfer from the ROBPs case is the “bootstrapping” lemma of Reingold,
Steinke, and Vadhan [RSV13], that showed that bounds on the first Θ(log n) levels implies
similar bounds on all levels. We believe that this is the main reason we could not achieve
the conjectured bounds for high levels, as our bounds for lower levels are nearly tight.

Notation: For every vertex v in the decision tree, we denote by Bv(x) the indicator that
the path determined by x passes through v. We denote by Av(x) the function computed by
the subtree rooted at v.6 We denote by Next(v) the index of the variable being read in the
node v. In the case where v is a leaf, we write Next(v) = ⊥.

Lemma 7.2 (Decomposition Lemma). Let S ⊆ [n] be a non-empty subset. Then,

f(S) =


j∈S



v:Next(v)=j

Bv(S \ {j}) · Av({j}) . (17)

6We use Bv and Av as shorthand to “before v” and “after v”.
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Proof. For each j ∈ [n], we denote by Vj the set of vertices v for which Next(v) = j and all
other variables in {xi : i ∈ S \ {j}} have been queried on the path reaching v. Observe that
the sets {Vj}j∈S are pairwise disjoint and that the set of nodes


j∈S Vj forms a frontier

in the sense that no vertex in this set is a descendant of another. Denote by L⊥ the set of
leaves on which we have not queried all the variables in S. Observe that any path in the
tree must reach exactly one node in either


j∈S Vj or L⊥. Thus, we may write

f(x) =


λ∈L⊥

Bλ(x) · f(λ) +


j∈S



v∈Vj

Bv(x) · Av(x)

Taking the inner product of both sides with


i∈S xi, we get

f(S) =


λ∈L⊥

Bλ(S) · f(λ) +


j∈S



v∈Vj

Bv(S \ {j}) · Av({j}).

Since Bλ(S) = 0 for λ ∈ L⊥, the first sum can be omitted and we get

f(S) =


j∈S



v∈Vj

Bv(S \ {j}) · Av({j}).

Fix j. Observe that for any v such that Next(v) = j, either v ∈ Vj, or Bv does not depend

on some xi for i ∈ S \ {j}. In the latter case Bv(S \ {j}) = 0, which means that



v:Next(v)=j

Bv(S \ {j}) · Av({j}) =


v∈Vj

Bv(S \ {j}) · Av({j})

and proves the validity of Eq.(17).

For any vertex v in the tree, we denote by pv the probability of reaching v under a
uniformly chosen input. Alternatively, pv = Prx∈{−1,1}n [Bv(x) = 1] = Bv(∅). As a special
case of Eq. (17) we get

f({j}) =


v:Next(v)=j

pv · Av({j}). (18)

Thus, a bound on


j
f({j}) implies a bound on

n
j=1


v:Next(v)=j pv · Av({j}). However,

in the sequel we will need a stronger version of the bound, where Av({j}) are taken with
absolute values. We obtain such a bound as a corollary of Theorem 7.1.

Corollary 7.3 (Refinement of Level-1 Inequality for Decision Trees).



j



v:Next(v)=j

pv · |Av(j)| ≤ O(
√
d · p ·


ln(e/p))

Proof. Given a decision tree T of depth d for f , we generate a new decision T ′ of depth d
that computes another Boolean function f ′ : {−1, 1}n → {0, 1}. We obtain T ′ from T by

relabeling some of the edges. For every non-leaf v, with j = Next(v), if Av({j}) < 0, then
we relabel the two edges going from v. That is, we swap the labels on the edges marked
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by xj = −1 and xj = 1. This procedure generates a decision tree T ′, with the same graph
structure, but with different edge labels, and in particular it would most likely compute
a different function f ′ ∕= f . Nonetheless, the relabeling does not change the probability
of reaching any vertex v, pv, or the probability of acceptance. Denote by A′

v and B′
v the

indicators associated with v in the tree T ′. We have that Pr[B′
v(x) = 1] = Pr[Bv(x) = 1] =

pv. In addition, if Next(v) = j, then A′
v({j}) = |Av({j})|. Thus, all the coefficients A′

v({j})
are positive and we conclude that

n

j=1



v:Next(v)=j

pv · |Av({j})| =
n

j=1



v:Next(v)=j

pv · A′
v({j})

=
n

j=1

f ′({j}) (Eq. (18) on f ′)

≤ O(
√
d · p ·


ln(e/p)). (Thm. 7.1 on f ′)

Corollary 7.4 (Further Refinement of Level-1 Inequality for Decision Trees). Let T be a
decision tree of depth at most d computing a Boolean function f . Let V0, V1, . . . , Vd denote
the set of vertices of depth 0, 1, . . . , d in T respectively. Let 0 ≤ d′ < d′′ ≤ d. Then,



v∈(Vd′∪Vd′+1∪...∪Vd′′−1)

pv · |Av({Next(v)})| ≤ O(
√
d′′ − d′ · p ·


ln(e/p))

Proof. We replace the tree T with a probabilistic tree T ′ of depth d′′ with the same acceptance
probability, and the same coefficients pv and Av({Next(v)}) for v ∈ (Vd′∪Vd′+1∪ . . .∪Vd′′−1).
To do so, whenever we reach a node v′ in layer d′′, we flip a coin and accept with probability
Pr[Av′(x) = 1]. This yields a randomized decision tree with the same parameters mentioned
above. We note that since p ·


ln(e/p) is concave for p ∈ [0, 1], it suffices to prove the bound

for any deterministic decision tree of depth d′′. Thus, for the rest of the proof let us assume
that d′′ = d.

Now, for any fixed vertex v in the d′-th layer, Vd′ , we use Corollary 7.3 to bound the
contribution of all descendants of v. Denote by qv = Pr[Av(x) = 1]. We get



v′:v →v′

pv′ · |Av′({Next(v′)})| = pv ·


v′:v →v′

Pr[v → v′] · |Av′({Next(v)})|

= pv ·O(
√
d′′ − d′ · qv ·


ln(e/qv)).

(Corollary 7.3 on the subtree rooted at v)

Summing over all v ∈ Vi we get


v′∈(Vd′∪Vd′+1∪...∪Vd′′−1)

pv′ · |Av′({Next(v′)})| ≤


v∈Vd′

pv ·O(
√
d′′ − d′ · qv ·


ln(e/qv))

≤ O(
√
d′′ − d′ · p ·


ln(e/p))

where the last inequality follows from the fact that x ·


ln(e/x) is concave in [0, 1] and the
expectation of qv equals p. This completes the proof.
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Next, we use Corollary 7.4 to get a bound on all levels of the Fourier transform.

Theorem 7.5 (Level-ℓ Inequality for Decision Trees). Let T be a decision tree of depth d
computing a Boolean function f : {−1, 1}n → {0, 1} with p = Pr[f(x) = 1]. Then, for ℓ ≤ d,



S:|S|=ℓ

| f(S)| ≤



cℓ ·

d

ℓ


· p ·

ℓ−1

i=0


log(4ni/p)

where c is a universal constant.

Proof. We wish to bound


|S|=ℓ | f(S)|. Note however, that this is equivalent to bounding


|S|=ℓ
f(S) · aS for all {−1, 1} valued vectors of coefficients {aS}S:|S|=ℓ. Fix such a vector of

coefficients {aS}S:|S|=ℓ. Using Eq. (17), we may write



S:|S|=ℓ

f(S) · aS =


j



v:Next(v)=j

Av({j}) ·


S1:|S1|=ℓ−1

aS1∪{j} · Bv(S1)

Fix two depths d′ and d′′ such that 0 ≤ d′ < d′′ ≤ d. We wish to bound the contribution
of all nodes v of depth between d′ and d′′ to the above sum. To do so, we note that the
Fourier coefficients |Av({j})| are integer multiples of 2−d. For each j ∈ [n] and t ∈ {1, . . . , d}
we consider all vertices v of depth between d′ and d′′ with Next(v) = j, for which the t-th

bit in binary representation of |Av(j)| equals 1. We take

V +
j,t = {v : depth(v) ∈ [d′, d′′),Next(v) = j,Av(j) > 0, |Av(j)|t = 1},

and
V −
j,t = {v : depth(v) ∈ [d′, d′′),Next(v) = j,Av(j) < 0, |Av(j)|t = 1}.

Let
B+

j,t(x) =


v∈V +
j,t

Bv(x) and B−
j,t(x) =



v∈V −
j,t

Bv(x).

Note that both B+
j,,t and B−

j,t can be computed by decision trees of depth at most d′′ − 1.
Thus, by the induction hypothesis, we have that




S1:|S1|=ℓ−1

aS1∪{j} · B+
j,t(S1)


≤



cℓ−1 ·

d′′ − 1

ℓ− 1


·Pr[B+

j,t = 1] ·
ℓ−2

i=0


ln(e · ni/Pr[B+

j,t]).

and similarly for B−
j,t. Now,



j



v:Next(v)=j,
depth(v)∈[d′,d′′)

Av(j) ·


|S1|=ℓ−1

aS1∪{j} · Bv(S1)

=


j



t

2−t ·


S1

aS1∪{j} ·






v∈V +
j,t

Bv(S1)−


v∈V −
j,t

Bv(S1)
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=


j



t

2−t ·


S1

aS1∪{j} ·

B+

j,t(S1)− B−
j,t(S1)



≤


j



t

2−t ·



cℓ−1 ·

d′′ − 1

ℓ− 1


·





Pr[B+
j,t] ·

ℓ−2

i=0


ln(e · ni/Pr[B+

j,t]) +

Pr[B−
j,t] ·

ℓ−2

i=0


ln(e · ni/Pr[B−

j,t])





Since x·
ℓ−2

i=0


ln(e · ni/x) is monotone increasing for x ∈ [0, 1], the contribution of (j, t) with

Pr[B+
j,t] ≤

p
n
is at most


cℓ−1 ·


d′′−1
ℓ−1


·p ·

ℓ−2
i=0


ln(e · ni+1/p). Similarly, the contribution of

(j, t) with Pr[B−
j,t] ≤

p
n
is at most


cℓ−1 ·


d′′−1
ℓ−1


·p ·

ℓ−2
i=0


ln(e · ni+1/p). For (j, t) and sg ∈

{+,−} with Pr[Bsg
j,t] ≥

p
n
, we have that

ℓ−2
i=0


ln(e · ni/Pr[Bsg

j,t]) ≤
ℓ−2

i=0


ln(e · ni+1/p)

so we can conclude that


j



v:Next(v)=j,
depth(v)∈[d′,d′′)

Av(j) ·


|S1|=(ℓ−1)

aS1∪{j} · Bv(S1)

≤



cℓ−1 ·

d′′ − 1

ℓ− 1


·
ℓ−2

i=0


ln(e · ni+1/p) ·


p+ p+



j



t

2−t(Pr[B+
j,t = 1] +Pr[B−

j,t = 1])



=



cℓ−1 ·

d′′ − 1

ℓ− 1


·
ℓ−2

i=0


ln(e · ni+1/p) ·



2p+


j



v:Next(v)=j,
depth(v)∈[d′,d′′)

|Av(j)| · pv





≤



cℓ−1 ·

d′′ − 1

ℓ− 1


·
ℓ−2

i=0


ln(e · ni+1/p) ·


2p+ c′ ·

√
d′′ − d′ · p ·


ln(e/p)



(Corollary 7.4)

≤



cℓ−1 ·

d′′ − 1

ℓ− 1


·
ℓ−1

i=0


ln(e · ni/p) · (c′ + 2) ·

√
d′′ − d′ · p .

To finish the proof we define the sequence of depths d0, d1, d2, . . . dℓ by di = ⌊(d · i)/ℓ⌋ for
i = 0, . . . , ℓ. We have that



S:|S|=ℓ

f(S) · aS =
ℓ

i=1



j



v:Next(v)=j,
depth(v)∈[di−1,di)

Av(j) ·


|S1|=(ℓ−1)

aS1∪{j} · Bv(S1)

≤
ℓ

i=1



cℓ−1 ·

di − 1

ℓ− 1

 ℓ−1

i=0


ln(e · ni/p) · (c′ + 2) ·


di − di−1 · p

≤
√
cℓ−1 ·

ℓ−1

i=0


ln(e · ni/p) · (c′ + 2) · p ·

ℓ

i=1


di − 1

ℓ− 1


· (di − di−1)
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where the only term that depends on the sequence of depths is the sum
ℓ

i=1


di−1
ℓ−1


· (di − di−1). A small calculation shows that

ℓ

i=1


di − 1

ℓ− 1


· (di − di−1) ≤

ℓ

i=1


d− 1

ℓ− 1


·

di
d

ℓ−1

·

1 +

d

ℓ



≤



2 ·

d

ℓ


·

ℓ

i=1


i/ℓ

ℓ−1
≤ O


d

ℓ


,

which completes the proof provided that c is a big enough constant.

Corollary 7.6. For any decision tree f of depth d on n variables, and every ℓ ≤ d, we have


S:|S|=ℓ

| f(S)| ≤


dℓ ·O(log n)ℓ−1 ,

Proof. Using Theorem 7.5 and relying on the monotonicity of x ·
ℓ−1

i=0


ln(e · ni/x) in [0, 1]

we get



S:|S|=ℓ

| f(S)| ≤



cℓ ·

d

ℓ


·
ℓ−1

i=0


ln(e · ni)

≤


O(d/ℓ)ℓ · (ℓ− 1)! · lnℓ−1(e · n)

≤


dℓ ·O(log n)ℓ−1 .

For large ℓ (namely ℓ = Ω(


d/ log n)) we achieve better bounds by a much simpler
argument.

Claim 7.7. For any decision tree f of depth d, and every ℓ ≤ d, we have



S:|S|=ℓ

| f(S)| ≤

d

ℓ


.

Proof. As in the proof of Theorem 7.1, for every leaf λ, we associate a vector vλ ∈ {−1, 0, 1}n.
We have (vλ)i = 1 if the i-th bit was queried on the path to v and equaled 1, (vλ)i = −1 if
the i-th bit was queried on the path to v and equaled −1, and (vλ)i = 0 otherwise.

For every fixed set S ⊆ [n] the Fourier coefficient f(S) equals

f(S) = E
x


f(x) ·



i∈S

xi


= E

λ


f(λ) · E

x



i∈S

xi | x leads to λ


= E

λ


f(λ) ·



i∈S

(vλ)i



Thus,



S:|S|=ℓ

| f(S)| =


S:|S|=ℓ

Eλ


f(λ) ·



i∈S

(vλ)i

 ≤


S:|S|=ℓ

E
λ




i∈S

(vλ)i




= E

λ






S:|S|=ℓ




i∈S

(vλ)i







Since every leaf λ has at most d nonzero coordinates in vλ, there are at most

d
ℓ


of the

subsets S of size ℓ with


i∈S(vλ)i
 = 1. This shows that


S:|S|=ℓ | f(S)| ≤


d
ℓ


.
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7.1 Lower Bounds on the L1,ℓ of depth-d decision trees

We present examples demonstrating the tightness of our bounds on the L1,ℓ(·) of depth-d
decision trees, for small ℓ. In addition, our latter two examples show that one cannot extend

the bound L1,ℓ(f) ≤


d
ℓ


from the non-adaptive case (i.e., d-juntas) to the adaptive case

(i.e., depth-d decision trees). That is, we show that one must incur a multiplicative factor
of roughly


(log n)ℓ−1 going from the non-adaptive to the adaptive case.

Example 7.8. The Majority of d variables can be computed by a depth d decision tree. This

function has L1,ℓ(MAJd) =
1

poly(ℓ)
·


d
ℓ


for odd ℓ (cf. [O’D14, Chapter 5.3]).

Example 7.9. The address function on n = 2d + d variables, denoted by Addd can be
computed by a depth d + 1 decision tree. In the address function we divide the input to two
parts: the first d bits (x1, . . . , xd), called the “index”, and the latter 2d bits (y1, . . . , y2d),
called the “array”. We treat x as representing an index between 1 and 2d that points to
the array, and return the coordinate yx. It is easy to see that L1,ℓ(Addd) =


d

ℓ−1


exactly.

This may seem to rule out any significant improvement over the simple upper bound given
in Claim 7.7, namely,


d
ℓ


. Note, however, that in the address function d = ⌊log n⌋, so in

fact this example is consistent with an asymptotic behavior of


d
ℓ


·O(log n)ℓ−2.

Example 7.10. Let D = 2d. Take the address function Addd and replace each variable in
the array part with the Majority function on d distinct new variables. Denote the resulting
function by f . Then, f is a function on d + 2d · d variables, which can be computed by a
depth-2d decision tree, and has L1,ℓ(f) ≥ Ω(

√
d ·


d

ℓ−1


). Again, as in the previous example

d = Θ(log n) so the behavior is consistent with a


d
ℓ


·O(log n)ℓ−1 bound.

8 Open Questions

We would like to highlight several open questions that were mentioned throughout the
manuscript. The first is stated as Conjecture 1.4, namely what are the tight bounds on
the L1,ℓ(·) of shallow decision trees? Our conjectured bounds would imply a Ω(N1−1/k)
lower bound on the randomized query complexity of the k-fold Rorrelation problem, which
would be tight due to the upper bounds in [AA15].

The second question asks whether one can use tools from stochastic calculus to analyze
E[f(DU,k)] − E[f(Uk)]. Such analysis could potentially rely only on level-k bounds on the
Fourier spectrum of f (and its restrictions) as done in [RT19] for 2-fold Forrelation.

The third question asks whether one can exhibit an explicit family of orthogonal
matrices {UN}N for infinitely many input lengths N , such that (1) UN can be implemented
by polylog(N) size quantum circuits and (2) UN are good orthogonal matrices as in
Definition 5.5. Our current separation uses random orthogonal matrices, that are non-
explicit, and cannot be implemented efficiently.
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A Proof of Claim 3.1

Proof. Suppose that N is a power of two, and denote by n = log2(N). We follow the
algorithm suggested by Aaronson and Ambainis [AA15] but replace the Hadamard transform
(in some of the places) with the orthogonal transform U .

Let H⊗n be the Hadamard transform on RN , let U be the orthogonal transform on RN

from the definition of k-fold Rorrelation. For i ∈ [k] let Uz(i) be the query transformation
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that maps |j〉 to z
(i)
j · |j〉 for all j ∈ [N ] (recall that z(i) ∈ {−1, 1}N , thus this is a unitary

transformation).
We start with the initial state |0〉⊗n, in addition to a control qubit in the state

|+〉 = |0〉+|1〉√
2

. Then, conditioned on the control qubit being |0〉, we apply the following
sequence of operations to the initial state:

H⊗n → Uz(1) → UT → Uz(2) → · · ·UT → Uz(⌈k/2⌉) → UT

Meanwhile, conditioned on the control qubit being |1〉, we apply the following sequence of
operations:

H⊗n → Uz(k) → U → Uz(k−1) → · · ·U → Uz(⌈k/2⌉+1)

Finally, we measure the control qubit in the {|+〉, |−〉} basis, and accept if and only if we
find it in the state |+〉.

It remains to show that the acceptance probability equals 1+φU (z(1),...,z(k))
2

, as we do next:

• Conditioned on the control qubit being |0〉, the quantum state can be written in vector
form as

a = UT · Uz(⌈k/2⌉) · UT · · ·UT · Uz(2) · UT · vz(1)
where vz(1) is the N -dimensional vector with i-th entry 1√

N
· z(1)i .

• Conditioned on the control qubit being |1〉, the quantum state can be written in vector
form as

b = Uz(⌈k/2⌉+1) · U · · ·U · Uz(k−1) · U · vz(k)
where vz(k) is the N -dimensional vector with i-th entry 1√

N
· z(k)i .

Overall, our combined quantum state is

1√
2

N

i=1

ai · |i〉|0〉+
1√
2

N

i=1

bi · |i〉|1〉 =
1

2

N

i=1

(ai + bi) · |i〉|+〉+ 1

2

N

i=1

(ai − bi) · |i〉|−〉

Measuring the control bit in the {|+〉, |−〉} basis yields |+〉 with probability

1

4

N

i=1

(ai + bi)
2 =

1

4


a22 + b22 + 2〈a,b〉



Observe that both a and b are unit vectors, since they are generated by applying orthogonal
matrices to the unit vectors vz(1) and vz(k) , correspondingly. Furthermore, observe that

〈a,b〉 = aT ·b
=


vTz(1) · U · Uz(2) · U · · ·U · Uz(⌈k/2⌉) · U


· (Uz(⌈k/2⌉+1) · U · · ·U · Uz(k−1) · U · vz(k))

=
1

N
·


i1,...,ik

z
(1)
i1

· Ui1,i2 · z
(2)
i2

· Ui2,i3 · · ·Uik−1,ik · z
(k)
ik

= φU(z
(1), . . . , z(k)).

Thus, overall we got that the algorithm’s acceptance probability is

1 + 1 + 2〈a,b〉
4

=
1 + φU(z

(1), . . . , z(k))

2
.
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B Pseudorandomness of DU,k Based on Conjecture 1.4

Theorem B.1. Assume that Conjecture 1.4 holds. Suppose that U is a good orthogonal
matrix and DU,k is defined with respect to U . Let F be a randomized decision tree of depth
d over kN variables. Then,

E[F (Uk)− F (DU,k)] ≤ O


d · (log kN)2−1/k

N1−1/k

k/2

.

In other words, assuming the conjecture, for good U , DU,k is pseudorandom against any
depth N1−1/k/polylog(kN) randomized decision tree.

Proof. Without loss of generality d·(log kN)2−1/k

N1−1/k ≪ 1 as otherwise the claim is trivial. We have

|E[F (Uk)− F (DU,k)]| = |


S ∕=∅

F (S) · DU,k(S)|

≤
kN

ℓ=k



|S|=ℓ

| F (S) · DU,k(S)|

≤
kN

ℓ=k


max
|S|=ℓ

|DU,k(S)|

·


|S|=ℓ

| F (S)|

≤
kN

ℓ=k


c · ℓ · lnN

N

ℓ·(1−1/k)/2

·


d

ℓ


·O(log kN)ℓ

≤
kN

ℓ=k

O


ℓ · lnN

N

1−1/k

· d · log(kN)

ℓ

ℓ/2

≤
kN

ℓ=k

O


d · (log kN)2−1/k

N1−1/k

ℓ/2

≤ O


d · (log kN)2−1/k

N1−1/k

k/2

.

Based on that, the lower bound on the randomized decision tree complexity of k-fold
Rorrelation can be improved to N1−1/k/(k · polylog(N)), by simply replacing Theorem 5.8
with Theorem B.1 in the proof of Claim 5.10.
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