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Covering Codes for Insertions and Deletions
Andreas Lenz, Cyrus Rashtchian, Paul H. Siegel, and Eitan Yaakobi

Abstract—A covering code is a set of codewords with the
property that the union of balls, suitably defined, around these
codewords covers an entire space. Generally, the goal is to find the
covering code with the minimum size codebook. While most prior
work on covering codes has focused on the Hamming metric,
we consider the problem of designing covering codes defined in
terms of insertions and deletions. First, we provide new sphere-
covering lower bounds on the minimum possible size of such
codes. Then, we provide new existential upper bounds on the
size of optimal covering codes for a single insertion or a single
deletion that are tight up to a constant factor. Finally, we derive
improved upper bounds for covering codes using R ≥ 2 insertions
or deletions. We prove that codes exist with density that is only
a factor O(R logR) larger than the lower bounds for all fixed R.
In particular, our upper bounds have an optimal dependence on
the word length, and we achieve asymptotic density matching the
best known bounds for Hamming distance covering codes.

Index Terms—covering codes, insertions and deletions.

I. INTRODUCTION

Covering codes are a core object of study in coding theory
and discrete mathematics. They have found applications in
diverse areas such as data compression [1], football pools [2],
circuit complexity [3], lattice problems [4], and approximate
nearest neighbor search [5]. Previous work has mostly studied
covering codes with respect to substitutions (i.e., the Hamming
distance). Recently, due to the large amount of textual and
biological data, there has been a resurgence of interest in
the Levenshtein distance and in channels with insertion and
deletion errors (e.g., [6], [7], [8], [9], [10], [11], [12]). Despite
this substantial progress, the Levenshtein distance remains
poorly understood compared to other metrics on discrete
spaces, and many fundamental questions remain open.

In this paper, we study covering codes for insertions and
deletions. Loosely speaking, we aim to cover a space of words
by the union of balls around a minimum number of codewords.
Let Σnq denote the set of length-n words over a q-ary alphabet.
For the case of insertions and deletions, a codeword c ∈ Σnq
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covers a word y at radius R if y can be obtained from c by
inserting, or respectively deleting, exactly R symbols. This
means that the covering problem for insertions deals with
finding a small set of words of length n such that each
word of length n + R is a supersequence of a codeword.
Similarly, for the case of deletions, each word of length n−R
must be a subsequence of some codeword. In both cases, the
codewords are the centers of balls with radius R under the
Levenshtein distance. Notice, however, that the codewords and
the covered words reside in different spaces because they have
different lengths. Hence, the covering problem for insertions
and deletions is inherently asymmetric.

Although there is a rich literature on covering codes for
the Hamming distance [1], as well as recent improvements
for insertion/deletion error-correcting codes (e.g., [13], [14],
[15], [16], [17]), much less is known about covering codes
using insertions or deletions. Two key challenges are the
(ir)regularity of the balls and the asymmetry of the covering
problem. Insertion balls are regular, in the sense that for any
x ∈ Σnq and R ≥ 1, there are exactly

∑n+R
i=0

(
n+R
i

)
(q − 1)i

words of length n + R obtainable by inserting R symbols
into x (cf. [18]). In contrast, deletion balls are irregular, and
their sizes depend on many properties of their center, such as
the number of runs. In fact, a tractable exact formula remains
unknown for the size of the deletion balls with radius three or
greater. This irregularity and lack of an explicit formula for the
ball size means that, compared to the Hamming distance, it is
inherently more challenging to derive bounds on the minimum
covering code size, even asymptotically.

In some cases, we can infer results on covering codes
from the theory of error-correcting codes. This is due to the
existence of perfect error-correcting codes, for which the balls
of radius R around all codewords are not only distinct but
also cover each word once. For example, the Varshamov-
Tenengolts (VT) code is a perfect binary single-deletion-
correcting code [19]. It is known that the VT code is the largest
single-deletion-correcting code for n ≤ 14 [20], and this is
conjectured to be true for n > 14 (see Sloane [21, Conj. 2.6]).
This conjecture however remains open. Nevertheless, since the
VT code is indeed a perfect single-deletion-correcting code, it
is also a single-deletion-covering code.

While it has been shown that an R-deletion-correcting code
is equivalent to an R-insertion-and-deletion-correcting code
[26], this property does not hold for the case of covering
codes. This means that the VT codes are not single-insertion-
covering codes and thus also not perfect codes for correcting
a single insertion. In fact, it has been shown that the only
perfect single-insertion-correcting codes are binary and have
length two [19]. Therefore, the best possible size of a single-
insertion-covering code is unknown, and constructing optimal
covering codes in this case is a highly non-trivial problem,
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Table I. Upper and lower bounds for covering codes C ⊆ Σn
q using substitutions, insertions, and deletions. We let c denote a universal constant. We denote

the size of a radius-R Hamming ball by V q
H (n,R) =

∑R
i=0

(n
i

)
(q − 1)i, and the size of a radius-R insertion ball by V q

I (n,R) =
∑R

i=0

(n+R
i

)
(q − 1)i.

Entries marked with “(∞)” are asymptotic results for fixed R and large n, where a factor of 1± o(1) has been omitted for readability.

Covering Code Type Existence Size Lower Bound Reference

1-substitution
qn

(q − 1)n + 1
(∞) qn

(q − 1)n + 1
[22]

R-substitution
cR logR · qn

V q
H (n,R)

(∞) qn

V q
H (n,R)

[23]

1-insertion
7 · qn+1

(n + 1)(q − 1) + 1

qn+1

(n + 1)(q − 1) + 1
Theorem 6, Theorem 1

R-insertion
cR logR · qn+R

V q
I (n,R)

(∞) qn+R

V q
I (n,R)

Theorem 9, Theorem 1

1-deletion (binary)
2n

n + 1

2n

n + 1
(∞) [24], [25]

1-deletion
qn

(n + 1)bq/2c
qn(n− 2)

(q − 1)n(n + 1)
Theorem 5, Theorem 3

R-deletion
cR logR · qnR!

nR(q − 1)R
(∞) qnR!

nR(q − 1)R
(∞) Theorem 14, Theorem 3

which we address in this paper.
Afrati et al. have studied covering codes for insertions and

deletions, motivated by designing MapReduce algorithms for
similarity joins under the Levenshtein distance [24], [27]. They
show the existence of single-insertion-covering codes with size
O( q

n logn
n ), while they prove a lower bound stating that such

codes must have at least qn

(q−1)n+1 codewords. As one of our
contributions, we certify that the lower bound is nearly tight
by showing the existence of single-insertion-covering codes
with Θ( q

n

n ) codewords. Afrati et al. also provide explicit con-
structions, albeit using more codewords [24]. They construct
single-insertion-covering codes of size O(qn−2) and double-
insertion-covering codes of size O(qn−3). Afrati et al. also
provide an explicit construction of a single-deletion-covering
code with qn/n codewords. Finally, we note that tensorization
arguments may be used to build radius-R covering codes from
radius-one codes [1], but this approach introduces a factor
of RO(R) with respect to the sphere covering lower bound,
leading to larger covering codes than desired.

We mention that covering codes for insertions or deletions
are similar in spirit to asymmetric covering codes for substi-
tutions [28]. There, the goal is to find a code C ⊆ {0, 1}n
such that the Hamming distance of any word y ∈ {0, 1}n is
at most R from some c ∈ C, while satisfying y ≤ c in the
binary partial order. Asymmetric covering codes are related to
the Erdós-Hanani conjecture on hypergraph coverings, which
has been resolved affirmatively by Rödl [29], [30]. For more
information on covering codes, we refer the reader to the book
by Cohen, Honkala, Litsyn, and Lobstein [1].

A. Our Results
We provide new upper and lower bounds on the minimum

size of insertion-covering and deletion-covering codes. We

primarily consider the size of such codes for fixed alphabet
size q and covering radius R. Table I summarizes our results.
The bounds are stated separately for R = 1 and general R ≥ 1
because we obtain tighter bounds in the former case. The first
two rows of Table I also recap the best known bounds for
substitution-covering codes.1

For R-insertion-covering codes, the goal is to cover words
of length n + R using words of length n. In the case of
R = 1, we provide nearly matching upper and lower bounds
that differ only by a factor of seven. This improves upon the
upper bound result of Afrati et al. [24] by a Θ(log n) factor.
For R ≥ 2 insertions, we prove that R-insertion-covering
codes exist with size that is off by a factor of O(R logR)
from the lower bound (the dependence on the dimension n
and alphabet size q are optimal). We remark that the gap
between upper and lower bounds matches the state-of-the-art
for R-substitution-covering codes [23], and it seems beyond
our current techniques to obtain a tighter bound.

For the case of R-deletion-covering codes, the goal is to
cover words of length n − R by deleting R symbols from
codewords of length n. First, we provide a new lower bound
on the minimum size of R-deletion-covering codes. Then,
for words over a q-ary alphabet with q > 2, we provide a
new explicit construction of single-deletion-covering codes,
where the number of codewords is within a factor of two
from optimal. Finally, for R ≥ 2 deletions, we prove that
R-deletion-covering codes exist with size that is tight up to a
factor of O(R logR) compared to the lower bound.

We note that our upper bounds for R insertions (resp.
R deletions) will depend upon the size of covering codes
for a single insertion (resp. single deletion). In particular,

1We often refer to Hamming distance covering codes as R-substitution-
covering codes for consistency.



3

establishing a better upper bound for a single insertion/deletion
would immediately lead to smaller codes for radii R > 1.

B. Overview of Our Techniques

A lower bound on the necessary size of R-insertion-
covering codes can be derived from known bounds on the
number of words obtained by R insertions. For example, in
the case of a single insertion, each codeword of length n covers
(n+ 1)(q−1) + 1 distinct words. Thus, one would hope for a
code of size O(qn/n). A natural approach would be to adapt or
modify known codes, such as VT codes or Hamming codes.
Afrati et al. [24] take this approach. After converting q-ary
words to binary, they use O(log n) translates of a Hamming
code as the basis for their single-insertion-covering code with
O(qn log n/n) codewords.2 To remove the log n factor, we
use a combination of a random construction with a careful
inductive argument, inspired by the proof of Cooper, Ellis,
and Kahng on asymmetric covering codes [28]. We further
refine their technique to obtain explicit values on the resulting
code sizes. Our upper bound for R ≥ 2 insertions uses a
generalization of the previous argument. In particular, we will
roughly follow the high-level strategy used by Krivelevich,
Sudakov, and Vu to obtain the current best bounds on R-
substitution-covering codes [23]. The main idea is to first
cover a large fraction of words by randomly sampling a subset
of possible codewords (where codewords are included with
probabilities depending on certain deletion ball sizes). Then,
we use a direct-sum-type operation to cover the remaining
words (where this operation recursively utilizes covering codes
for smaller word lengths or covering radii).

Turning to deletions, we derive a precise lower bound
on the minimum size of deletion-covering codes. Obtaining
such a bound is somewhat involved because the sizes of
deletion balls are different even for words of the same length.
Hence, standard sphere-covering arguments to not apply. We
use a technique, due to Applegate, Reins, and Sloane [31],
which enables a covering lower bound, even though the
sizes of the balls are non-uniform. This technique uses an
integer programming approach to analyze a weighted covering.
To apply this, we construct a non-uniform weight function,
depending on the sizes of deletion balls. This approach is
related to bounding the size of deletion-correcting codes,
which requires a generalized sphere-packing bound [20], [32].
For our upper bounds, we have already noted that VT codes
provide asymptotically optimal single-deletion-covering codes
for binary words. Unfortunately, known non-binary single-
deletion-correcting codes [33] are not perfect, and thus, it
is non-trivial to obtain good covering codes for this case.
We provide a new generalization of VT codes to non-binary
alphabets, and we show that this leads to an explicit construc-
tion of nearly optimal covering codes for a single deletion.
For R ≥ 2 deletions, we use an analogous argument as for

2In fact, it is also possible to achieve the same asymptotic result by
analyzing a greedy algorithm that successively adds codewords based on how
many new words they cover. This algorithm yields a covering code and the
Johnson-Stein-Lovász theorem [1] gives an upper bound of O(qn log(n)/n)
for the size of single-insertion-covering codes.

insertion-covering codes, combining random sampling with a
recursive construction.

The rest of the paper is organized as follows. Section II
presents the notations and the definitions of covering codes
for insertions and deletions. Section III contains lower bounds
on the cardinality of insertion- and deletion-covering codes.
Section IV-A is dedicated to the case of single-deletion-
covering codes, and Section IV-B presents existence bounds
for single-insertion-covering codes. In Section V, we extend
the results to multiple insertions and multiple deletions. Lastly,
Section VI concludes the paper and discusses open problems.

II. NOTATIONS, DEFINITIONS, AND PRELIMINARIES

For an integer q ≥ 2, let Σq denote the q-ary alphabet
{0, 1, . . . , q−1} and Σ∗q =

⋃n
`=1 Σ`q . We use len(x) to denote

the length of x. For x = (x1, . . . , xn) ∈ Σnq , we let ρ(x)
denote the number of runs in x, that is,

ρ(x) := 1 + |{1 ≤ i < n : xi 6= xi+1}|.

For x,y ∈ Σ∗q , the notation xy denotes the concatenation of
x and y, where len(xy) = len(x) + len(y).

For x ∈ Σnq , we abbreviate the radius-t insertion ball
obtained after exactly t insertions by BallqI (x, t) and its size
is denoted by V qI (x, t). Similarly, the radius-t deletion ball
obtained after exactly t deletions is denoted by BallqD(x, t) and
its size is V qD (x, t). It is well known, see e.g. [18], that while
the size of a deletion ball depends heavily on its center x,
insertion balls are regular. Thus, we denote by V qI (n, t) the
insertion ball size of length-n words over Σnq .

We will consider two sub-problems, namely covering words
with only insertions or only deletions. We begin with in-
sertions, where codewords have length n and they cover
words of length n + R after R insertions. We seek codes
in Σnq of minimum cardinality such that the union of all
radius-R insertion balls around codewords contains the whole
hypercube Σn+R

q . More formally, we have the following.

Definition 1. A code C ⊆ Σnq is an R-insertion-covering
code, if for every y ∈ Σn+R

q , there exists a codeword c ∈ C
such that y ∈ BallqI (c, R). That is,

⋃
c∈C Ball

q
I (c, R) = Σn+R

q .

An R-deletion-covering code is defined similarly, but code-
words cover words of length n−R after R deletions.

Definition 2. A code C ⊆ Σnq is an R-deletion-covering code,
if for every y ∈ Σn−Rq , there exists a codeword c ∈ C such
that y ∈ BallqD(c, R). That is,

⋃
c∈C Ball

q
D(c, R) = Σn−Rq .

The insertion (resp. deletion) radius of a code C is
defined to be the smallest R such that C is an R-insertion-
covering (resp. R-deletion-covering) code. We also denote by
KqI (n,R) (resp. KqD(n,R)) the smallest cardinality of an R-
insertion-covering (resp. R-deletion-covering) code, of length
n over Σq . When discussing the binary case, i.e., q = 2, we
will typically remove q from the above notations.

III. LOWER BOUNDS

In this section, we establish lower bounds on the size
of insertion- and deletion-covering codes based on a sphere
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covering argument. As in the case of substitution-covering
codes, the argument relies on the union bound and an upper
bound on the number of words a codeword can cover. For
the case of insertions, the insertion-ball size is known and
independent of the ball center. The case of deletions is more
challenging due to the dependence of the deletion-ball size on
the ball center.

We start with the easier case of insertions.

Theorem 1. For all n and R, it holds that

KqI (n,R) ≥ qn+R

V qI (n,R)
=

qn+R∑R
i=0

(
n+R
i

)
(q − 1)i

. (1)

Furthermore, for fixed R and large n,

KqI (n,R) ≥ R!qn+R

nR(q − 1)R
(1− o(1)). (2)

Proof. Let C be any R-insertion-covering code. Hence, we
have that

⋃
c∈C Ball

q
I (c, R) = Σn+R

q . Computing the cardinal-
ities of both sets, we obtain

qn+R = |Σn+R
q | =

∣∣∣ ⋃
c∈C

BallqI (c, R)
∣∣∣

(a)

≤
∑
c∈C

V qI (c, R) = |C|
R∑
i=0

(
n+R

i

)
(q − 1)i,

where we used the union bound in inequality (a) and the
fact that for any x ∈ Σnq the size of the insertion balls only
depends on the length of x and is given by V qI (n,R) =∑R
i=0

(
n+R
i

)
(q− 1)i [18]. Reading the above inequality from

right to left, we obtain the bound (1).
The approximation (2) for large n is obtained by the

following standard inequality,

qn+R∑R
i=0

(
n+R
i

)
(q − 1)i

≥ R!qn+R

nR(q − 1)R
(1− o(1)),

which is proved in Proposition 18 in the appendix

For the case of deletions, deriving a sphere-covering lower
bound is more involved due to the fact that the size of the
deletion ball BallD(x, R) can be different for words of the
same length. To overcome this difficulty, we use a technique
due to Applegate et al. [31] that enables the computation of a
bound even though the ball sizes are irregular. We restate the
lemma from [31] in a form suited to our particular context.

Lemma 2 (cf. [31]). Assume that for R ≥ 1 and x ∈ Σ∗q , the
radius-R ball of x is defined by Ball(x, R). Let U ⊆ Σ∗q and
T =

⋃
x∈U Ball(x, R) be the union of all balls with centers

in U . Further let w : T → R be a weight function satisfying∑
y∈Ball(x,R)

w(y) ≤ 1 (3)

for all x ∈ U . Then any covering code C ⊆ U , which covers
T , i.e., T =

⋃
c∈C Ball(c, R), satisfies

|C| ≥
∑
y∈T

w(y).

We note that for error-correcting codes, in which the space is
replaced by Σ∗q , the analogous bound is called a generalized
sphere packing bound and has been studied in [20], [32].

The maximum possible sum weight w(y) that fulfills
(3) offers the best lower bound on the size of an R-
deletion-covering code. Finding it requires solving a linear
programming problem, as specified in Lemma 2. Here, we
choose the weight function to approximate the inverse of the
deletion-ball size, w(y) ≈ V qD (x, R)−1, where we recall that
V qD (x, R) = |BallqD(x, R)|. Under the assumption that for
y ∈ BallqD(x, R) the deletion balls have approximately the
same size, V qD (x, R) ≈ V qD (y, R), condition (3) is fulfilled
with sum-weight close to 1. We will provide a rigorous
derivation based upon this intuition in the following theorem.

Theorem 3. For all n and 0 < R < n, it holds that

KqD(n,R) ≥ q
n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) .

In particular, for R = 1 we get that

KqD(n, 1) ≥ qn(n− 2)

(q − 1)n(n+ 1)
.

Furthermore, for fixed R and large n, we have

KqD(n,R) ≥ R!qn

nR(q − 1)R
(1− o(1)) .

Proof. We will prove the theorem using Lemma 2. We take
U = Σnq and T = Σn−Rq . Define the weight function w : T →
R to be

w(y) =
1

max
x:y∈BallqD(x,R)

V qD (x, R)
,

for all y ∈ Σn−Rq . It follows that for all y ∈ BallqD(x, R),
w(y) ≤ 1

V qD (x,R)
, which implies that w satisfies (3), since∑

y∈BallqD(x,R)

w(y) ≤
∑

y∈BallqD(x,R)

1

V qD (x, R)
= 1

for all x ∈ Σnq . By Lemma 2 we obtain a lower bound on the
cardinality of any R-deletion-covering code C, as follows.

|C| ≥
∑

y∈Σn−R
q

w(y) =
∑

y∈Σn−R
q

1

max
x:y∈BallqD(x,R)

V qD (x, R)

(a)

≥
∑

y∈Σn−R
q

1

max
x:y∈BallqD(x,R)

(
ρ(x)+R−1

R

) ,
where in (a) we used the fact that the size of the radius-R
deletion ball is at most V qD (x, R) ≤

(
ρ(x)+R−1

R

)
[26]. More-

over, for all y ∈ BallqD(x, R) we have that ρ(x) ≤ ρ(y)+2R,
since each deletion can eliminate at most two runs. Thus,

|C| ≥
∑

y∈Σn−R
q

1(
ρ(y)+3R−1

R

) (b)
= q

n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) ,

where in (b) we used the fact that the number of words x ∈ Σnq
with ρ(x) = r runs is given by q(q−1)r−1

(
n−1
r−1

)
[26], and we

combined terms corresponding to y ∈ Σn−Rq with ρ(y) = r.
This concludes the proof for arbitrary R.
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For R = 1, we can use the refinement V qD (x, 1) = ρ(x)
and obtain, using the same arguments as above,

|C| ≥ q
n−1∑
r=1

(q − 1)r−1
(
n−2
r−1

)
r + 2

= q

n−1∑
r=1

(q − 1)r−1(n− 2)!

(r − 1)!(n− r − 1)!(r + 2)

=
q

(n− 1)n(n+ 1)

n−1∑
r=1

(q − 1)r−1r(r + 1)

(
n+ 1

r + 2

)
(c)
=

q

(q−1)2(n−1)n(n+1)

n+1∑
r=3

(q−1)r−1(r2−3r+2)

(
n+1

r

)
,

where (c) follows from a shift of the variable r inside the sum.
Using the equalities
m∑
i=0

(
m

i

)
xi−1 = (x+1)m/x,

m∑
i=0

i

(
m

i

)
xi−1 = m(x+1)m−1,

and
m∑
i=0

i(i− 1)

(
m

i

)
xi−1 = m(m− 1)x(1 + x)m−1,

we obtain by standard transformations after a few steps

KqD(n, 1) ≥ qn(n− 2)

(q − 1)n(n+ 1)
.

Finally, it remains to derive the asymptotic bound for fixed R
and large n. We will use the following inequality,

q

n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) ≥ R!qn

nR(q − 1)R
(1− o(1)) ,

whose standard, but rather technical, proof is deferred to
Proposition 19 in the appendix.

IV. SINGLE-INSERTION/DELETION-COVERING CODES

Having lower bounds on the sizes of R-insertion- and R-
deletion-covering codes in hand, we now prove existence of
these codes for single insertions and deletions for both binary
and non-binary alphabets. Surprisingly, finding covering codes
for insertions is harder than for deletions, which is in sharp
contrast with error-correcting codes, which have been proven
to be equivalent for insertion and deletion errors [26]. For
the case of deletions, we prove the existence of codes using
explicit constructions. For the case of insertions, due to the
lack of small explicit constructions, we resort to proving the
existence of codes based on a random construction and a
recursive construction.

A. Single-Deletion-Covering Codes
Let us recall the definition of the well-known Varshamov-

Tenengolts (VT) [25] codes and their role as single-deletion-
covering codes.

Definition 3. For all n and 0 ≤ a ≤ n, let CVT(n; a) ⊆
{0, 1}n be the Varshamov-Tenengolts code

CVT(n; a) =

{
c ∈ {0, 1}n |

n∑
i=1

ici ≡ a mod (n+ 1)

}
.

It is well known [19] that for all n and a the Varshamov-
Tenengolts code CVT(n; a) is a perfect code under deletions,
that is,

⋃
c∈CVT(n;a) BallD(c, 1) = {0, 1}n−1. The next corol-

lary is a direct result of this important property.

Corollary 4. For all n ≥ 1 it holds that

KD(n, 1) ≤ 2n

n+ 1
.

It is also known that the largest (resp. smallest) of the VT
codes is achieved for a = 0 (resp. a = 1) [34]. Hence,
while for deletion-correcting codes it is common to choose
the code CVT(n; 0), for the purpose of minimizing the size
of single-deletion-covering codes, one should choose the code
CVT(n; 1).

Unfortunately, the same property does not hold for inser-
tions, i.e., the VT code is not a perfect code for insertions.
In fact, this can be verified by simple counting arguments
using the VT code size and the single-insertion ball size: as
shown in Theorem 1, a lower bound on the size of any single-
insertion-covering code is 2n+1/(n + 2), which is roughly
twice the size of the VT codes. It can further be seen that,
while the tasks of correcting a fixed number of insertions,
deletions, or a combination of insertions and deletions are
all equivalent [35], this sort of equivalence does not extend
to covering codes. This makes the problem of finding good
single-insertion-covering codes an intriguing question that will
be addressed in Section IV-B.

VT codes have a non-binary extension, presented by Tenen-
golts in [33], which can correct a single deletion in the
non-binary case. However, this family of codes is no longer
perfect. In fact, their guaranteed size is qn

qn , while the upper
bound on a single-deletion-correcting code is approximately
qn

(q−1)n . This is also roughly the lower bound on a non-binary
single-deletion-covering code we derived in Theorem 3, which
confirms that these codes are not perfect and, therefore, are
not single-deletion-covering codes. Our main result in this
section is another non-binary extension of the binary VT
codes, which we will show does satisfy the single-deletion
covering property.

For an integer m, we denote by (m)2 the value of
(m mod 2) and for a vector x = (x1, . . . , xn), let (x)2 =
((x1)2, . . . , (xn)2).

Definition 4. For all positive n, q ≥ 2, 0 ≤ a ≤ n, and
0 ≤ b < bq/2c, let CqNBVT(n; a, b) ⊆ Σnq be the code

CqNBVT(n; a, b) =

{
c ∈ Σnq |

n∑
i=1

i(ci)2 ≡ a mod (n+ 1),

n∑
i=1

⌊ci
2

⌋
≡ b mod

(⌊q
2

⌋)}
.

The following theorem proves that the code CqNBVT(n; a, b)
is indeed a non-binary single-deletion-covering code.

Theorem 5. For all positive n, q ≥ 2, 0 ≤ a ≤ n, and
0 ≤ b < bq/2c, the code CqNBVT(n; a, b) is a single-deletion-
covering code. Furthermore,

KqD(n, 1) ≤ qn

(n+ 1)bq/2c
.
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Proof. Let x = (x1, . . . , xn−1) ∈ Σn−1
q . Since the binary VT

code CVT(n; a) is a covering code, it follows that there exist
1 ≤ i ≤ n and a binary value d such that

(x1, . . . , xi−1, d, xi, . . . , xn−1)2 ∈ CVT(n; a).

Let

s =

(
b−

n−1∑
i=1

⌊xi
2

⌋)
mod

(⌊q
2

⌋)
.

Then, it holds that

c = (x1, . . . , xi−1, 2s+ d, xi, . . . , xn−1) ∈ CqNBVT(n; a, b),

and x ∈ BallD(c, 1).

Lastly, we note that this construction improves upon the
construction in [24]3, which provides single-deletion-covering
codes of size qn/n.

B. Single-Insertion-Covering Codes

In this section, we study single-insertion-covering codes.
Our main result is stated in the following theorem.

Theorem 6. For all n ≥ 1 it holds that

KqI (n, 1) ≤ µI
qn+1

(n+ 1)(q − 1) + 1
,

where µI ≤ 7.

Note that our result is stated as a fraction of the sphere-
covering lower bound in Theorem 1 and implies that the
size of optimal single-insertion covering codes is at most
a factor of 7 from the theoretical lower limit. Our proof
is inspired by and follows the strategy of the existential
construction of asymmetric covering codes due to Cooper,
Ellis, and Kahng [28]. The argument proceeds in two main
steps. First, we use a random subset S ⊆ Σn1

q of an appropriate
size to cover all but a small fraction of words T ⊆ Σn1+1

q with
a single insertion. (This is analogous to the patched covering
code in [28].) Then, we “fix up” the set S using a “good”
single-insertion-covering code to generate a covering code
of larger codeword length. By picking the size of S and T
appropriately and using good codes inductively, we show that
we will not have to pay too much in efficiency in this process.

We begin by introducing the set operation that will be
used in the “fixing up” operation. The main utility of this
tensorization is that it allows us to handle the uncovered words
in an efficient manner.

Lemma 7. Let S ⊆ Σn1
q , T ⊆ Σn1+1

q be such that S covers
Σn1+1
q \T with a single insertion. Let Cn2

⊆ Σn2
q be a single-

insertion-covering code. Then, the code

(S ⊗ Σn2+1
q ) ∪ (T ⊗ Cn2

)

is a single-insertion-covering code of length n1 + n2 + 1
and of size at most |S| · qn2+1 + |T | · |Cn2 |, where

3The result is stated in Corollary 5.5 in [24]. However, note that the authors
of this paper refer to deletion-covering codes as insertion-covering code and
the result is stated over length-(n + 1) codes.

A⊗B = {ab | a ∈ A, b ∈ C} is the tensor product of two
sets and ab is the concatenation of a and b

Proof. Consider any xy ∈ Σn1+n2+2
q , where len(x) = n1 + 1

and len(y) = n2 + 1. We consider two cases. If x is covered
by s ∈ S, then xy is covered by sy ∈ S⊗Σn2+1

q . Otherwise,
x ∈ T . In this case, let c ∈ Cn2 be the word covering y ∈
Σn2+1
q . Then, xy is covered by xc, and xc ∈ T ⊗ Cn2 . The

size of the code directly follows from the definition of the
tensorization and the union bound.

We next find a suitable (S, T ) pair by randomly selecting
the subset S. The words in S are non-uniformly sampled from
Σn1
q , which will reduce the overall code size by a constant

factor compared to uniform sampling. The intuitive motivation
for this is that some words in Σn1+1

q are harder to cover
because their single-deletion balls are smaller. Non-uniform
sampling ensures that the words in S cover words in Σn1+1

q

in a more equitable fashion.
The following lemma provides a bound on the sizes of S

and T . Although we could bound the sizes of S and T directly,
the formulation in the lemma scales the size of the uncovered
set T by µI/V

q
I (n2, 1) because this is the factor saved by the

use of induction later in the construction.

Lemma 8. For all n ≥ 1 there exist integers n1, n2 with
n1 + n2 + 1 = n and sets S ⊆ Σn1

q , T ⊆ Σn1+1
q such that

S covers Σn1+1
q \ T , that is, T = Σn1+1

q \
⋃

s∈S Ball
q
I (s, 1),

while the sizes of S and T satisfy

|S|+ µI|T |
V qI (n2, 1)

≤ µIq
n1+1

V qI (n, 1)
,

where µI ≤ 7.

Proof. For n ≤ qµI−q
q−1 , the statement is fulfilled by S = Σn1

q

and T = ∅. Assume that n > qµI−q
q−1 . We prove the existence

of an (S, T ) pair with sizes satisfying the lemma by means of
a random construction. Include each word x ∈ Σn1

q in S with

probability qx
def
= cV qD (x, 1)−1 for a constant c > 0 to be set

later. Let T be all remaining words that are not covered by S,
i.e., T = Σn1+1

q \
⋃

s∈S Ball
q
I (s, 1).

For a fixed word y ∈ Σn1+1
q , we have that y is covered by S

unless all of the words covering y fail to be included in S. The
number of words that can cover y is exactly V qD (y, 1), the size
of the single-deletion ball. Note that V qD (y, 1) = ρ(y) [26],
and observe that for any x ∈ BallqD(y, 1) the number of runs
cannot increase as a result of the deletion, i.e., ρ(x) ≤ ρ(y).
Hence, qx = cV qD (x, 1)−1 = cρ(x)−1 ≥ cρ(y)−1 def

= qy . We
bound the probability that S misses y as follows:

P[y is uncovered] =
∏

x∈BallqD(y,1)

(1− qx)

(a)

≤
∏

x∈BallqD(y,1)

(1− qy) = (1− qy)V
q
D (y,1),

where (a) uses that qx ≥ qy , as discussed above.
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We now compute the expected weighted size of S and T
under the above random selection.

W
def
= E

[
|S|+ µI|T |

V qI (n2, 1)

]
= E[|S|] +

µIE[|T |]
V qI (n2, 1)

=
∑

x∈Σ
n2
q

qx +
µI

V qI (n2, 1)

∑
y∈Σ

n2+1
q

P[y is uncovered].

Plugging in the bound for P[y is uncovered] and recalling that
qx = cρ(x)−1, we obtain

W ≤
∑

x∈Σ
n1
q

c

ρ(x)
+

µI

V qI (n2, 1)

∑
y∈Σ

n1+1
q

(1− qy)V
q
D (y,1).

It is well-known [26] that the number of words x ∈ Σn1
q

with ρ(x) = r is given by q
(
n1−1
r−1

)
(q − 1)r−1, which allows

us to group terms in the first sum by ρ(x) = r. Using that
1−z ≤ e−z for all z ∈ R, we have that (1−qy)V

q
D (y,1) ≤ e−c

and we bound W by

W ≤ qc
n1∑
r=1

(
n1−1
r−1

)
(q − 1)r−1

r
+

µI

V qI (n2, 1)

∑
y∈Σ

n1+1
q

e−c

(b)
= qc

n1∑
r=1

(n1 − 1)!(q − 1)r−1

r!(n1 − r)!
+
qn1+1µIe

−c

V qI (n2, 1)

(c)
=

qc

n1(q − 1)

n1∑
r=1

(
n1

r

)
(q − 1)r +

qn1+1µIe
−c

V qI (n2, 1)
,

where in equality (b) and (c) we used the definition of the
binomial coefficient

(
n
k

)
= n!

k!(n−k)! . Finally, we use the
binomial identity

∑n
k=0

(
n
k

)
xk = (1 + x)n and obtain

W ≤ cqn1+1

n1(q − 1)
+
qn1+1µIe

−c

V qI (n2, 1)

=
µIq

n1+1

V qI (n, 1)

(
cV qI (n, 1)

µIn1(q − 1)
+
V qI (n, 1)e−c

V qI (n2, 1)

)
.

Abbreviating the term in round brackets by γ and setting n1 =
bβnc for some 0 ≤ β ≤ 1, we derive the upper bound

γ
def
=

cV qI (n, 1)

µIn1(q − 1)
+
V qI (n, 1)e−c

V qI (n2, 1)

≤
V qI (n, 1)

n(q − 1)

(
cn

µIn1
+

e−cn

n− n1

)
(d)

≤ µI

µI − 1

(
cn

µIbβnc
+

e−cn

n− bβnc

)
,

where we used in equality (d) that V qI (n, 1)/(n(q − 1)) is
monotonically decreasing in n and thus V qI (n, 1)/(n(q−1)) ≤
µI/(µI−1) for all n > (qµI−q)/(q−1). Note that this bound
is convenient to handle as it is independent of q. To conclude,
we find the smallest µI such that there exists some c > 0 and
0 ≤ β ≤ 1 for which γ ≤ 1 for all n > (qµI − q)/(q − 1). A
quick computer search yields that µI = 7, c = 3 and β = 3

4
fulfills this requirement. By definition of the random sets S
and T , any realization of them will have the desired property
that S covers Σn1+1

q \ T . As the expected weighted size W
is at most µIq

n1+1

V qI (n,1)
, it follows that there exists an (S, T ) pair

satisfying the desired bound.

Putting everything together, we prove Theorem 6 for single-
insertion-covering codes.

Proof of Theorem 6. We proceed by induction on n. As the
base case, for all n ≤ qµI−q

q−1 , it suffices to take Cn = Σnq .
Assume now that the statement is correct for all lengths up
to n − 1, so that there exist codes Cn2 with size at most
µIq

n2+1/V qI (n2, 1) for all 1 ≤ n2 ≤ n−1. Let n1+n2+1 = n
and S ⊆ Σn1

q and T ⊆ Σn1+1
q denote sets guaranteed by

Lemma 8. Note that clearly n2 < n in Lemma 8, which will
be useful later. As these sets S and T fulfill the requirement
of Lemma 7, we define

Cn = (S ⊗ Σn2+1
q ) ∪ (T ⊗ Cn2

),

and we have that there exists a single-insertion-covering code
Cn ⊆ Σnq of size

|Cn| ≤ qn2+1|S|+ |T | · |Cn2
|

(e)

≤ qn2+1

(
|S|+ µI

V qI (n2, 1)
|T |
)
,

where in (e) we used the existence of a covering code of
length n2 < n and size µIq

n2+1/V qI (n2, 1) by the induction
hypothesis. Using the existence of good sets S and T from
Lemma 8, we obtain the desired bound on the code size

|Cn| ≤ qn2+1 µIq
n1+1

V qI (n, 1)
=

µIq
n+1

V qI (n, 1)
.

Together with our existence result from Theorem 6, we can
infer that the size of the smallest single-insertion-covering
code lies between qn+1/V qI (n, 1) and 7qn+1/V qI (n, 1) and
thus is known up to a constant factor of 7.

V. MULTIPLE-INSERTION/DELETION-COVERING CODES

We now turn to the discussion of multiple-insertion/deletion
covering codes. We begin by defining the optimal density of
insertion- and deletion-covering codes, by analogy with the
notion of density often used in the context of classical covering
codes.

Definition 5. For R-insertion-covering codes of length n, the
optimal density µqI (n,R) is defined as

µqI (n,R) =
KqI (n,R)V qI (n,R)

qn+R
.

For R-deletion-covering codes of length n, we define the
optimal density µqD(n,R) as

µqD(n,R) =
KqD(n,R)nR(q − 1)R

qnR!
.

Finally, for fixed R, we define the corresponding asymptotic
optimal densities µq,∗I (R) and µq,∗D (R) as

µq,∗I (R) = lim sup
n→∞

µqI (n,R)

and

µq,∗D (R) = lim sup
n→∞

µqD(n,R).
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Note that we define the optimal density of deletion-covering
codes slightly differently than that of insertion-covering codes.
This is due to the fact that for deletions, the deletion balls are
non-uniform and the density is thus defined with respect to the
lower bound obtained in Theorem 3 for large n. A powerful
tool in building covering codes of larger radius is to take the
tensor product of two short covering codes of small radius.
For example, taking the tensor product of two covering codes
of length n and radius 1 gives a covering code of length 2n
and radius 2. However, a straightforward application of this
technique only gives covering codes whose density is at least
exponential in R. We therefore refine this technique to obtain
codes that have a density that is almost linear in R. Note that
in the following sections we prove our results for binary words
for simplicity. The proofs for q > 2 are obtained by only a
slight modification, which will be explained in more detail in
Remark 1 at the end of Section V-B.

A. Multiple-Insertion-Covering Codes

Our main result about R-insertion-covering codes is stated
in the following theorem.

Theorem 9. For any fixed R ≥ 2 and q ≥ 2,

µq,∗I (R) ≤ e(R logR+
√

2R logR+ 1)µq,∗I (1).

Recall that according to Theorem 6, we have that µq,∗I (1) ≤
7. Before proving the theorem, we give a short outline of the
proof, along with the intuition behind it. As in the proof of the
upper bound for single-insertion-covering codes, we start by
proving in Lemma 10 the existence of a small almost-covering
code S, i.e., a code that covers all words in {0, 1}n+R except
for a small subset T . Then, in Lemmas 11 and 12, we combine
this code with small covering codes to recursively build larger
codes. By computing the size of the resulting codes, we can
then prove Theorem 9.

The proof of the existence of small almost-covering codes
is again based on a random coding argument. Since we are
building covering codes for insertions, we must take into
account the fact that each word y ∈ {0, 1}n+R is covered
by a different number of potential codewords x ∈ {0, 1}n.
This is because the number of words that can cover y is given
by VD(y, R), which is known to depend on y. In our random
selection of codewords, we therefore need to favor codewords
that cover words with small VD(y, R) to ensure that each word
is covered with high enough probability. Our proof follows
the general idea of a recursive covering code construction
presented in [23], here modified to work for insertions. In
particular, we need to adapt the arguments for the random
construction and the recursive combination of almost-covering
codes with existing covering codes.

The following lemma gives an upper bound on the sizes
of the almost-covering code S and the complement T of its
coverage.

Lemma 10. For every n ≥ R and every positive constant
c > 0 there exists a set S ⊆ {0, 1}n−R of size at most

|S| ≤ c2n

VI(n−R,R)
fn,R

such that S covers {0, 1}n \T with R insertions for some set
T ⊆ {0, 1}n of size at most

|T | ≤ e−c2n,

for some function fn,R with limn→∞ fn,R = 1.

Proof. We prove the lemma by choosing a random set S and
computing the expected number of words that are not covered
by such a random choice. Let Xi = {x ∈ {0, 1}n−R :
VD(x, R) = i} be the set of all strings of length n, which
have a deletion ball size of exactly i. We construct S by
choosing S = S1 ∪ S2 ∪ · · · ∪ Sm, where Si ⊆ Xi and
m ≤

(
n
R

)
is the maximum size of the deletion ball of any

x ∈ {0, 1}n−R. Denoting mi = |Xi|, each Si is a uniformly
chosen random subset of Xi of cardinality |Si| = dcmi/ie, if
cmi/i ≤ mi, and mi otherwise. Hereby each such subset has
the same probability. By this choice of the sets S1, . . . , Sm,
the probability that any y ∈ {0, 1}n is not covered by S can
be bounded from above as follows. First, note that

P[y is uncovered] =

m∏
i=1

P[Si ∩ BallD(y, R) = ∅],

since the random sets Si are independent. Denote by γi =
|{Xi ∩ BallD(y, R)}| the number of words in Xi which can
cover y. With this notation, the individual probabilities in the
product can be expressed as

P[Si ∩ BallD(y, R) = ∅] =

(
mi−γi
|Si|

)(
mi
|Si|
) =

∏|Si|
j=0(mi − γi − j)∏|Si|
j=0(mi − j)

.

From the fact that mi−γi−jmi−j ≤ mi−γi
mi

for any 0 ≤ j < mi−γi,
we obtain

P[y is uncovered] ≤
m∏
i=1

(
mi − γi
mi

)|Si|
=

m∏
i=1

(
1− γi

mi

)|Si|
(a)

≤
m∏
i=1

e
− γi
mi
|Si| ≤ e−

∑m
i=1 c

γi
i ,

where we used in (a) that 1 − x ≤ e−x for any x ∈ R. Let
µ(y) = maxx∈BallD(y,R) VD(x, R) be the maximum deletion
ball size of any x ∈ BallD(y, R), which is obtained from y
by R deletions. Since γi = 0 for all i > µ(y), we can bound
the exponent from below by

m∑
i=1

γi
i

=

µ(y)∑
i=1

γi
i
≥
µ(y)∑
i=1

γi
µ(y)

=

∑µ(y)
i=1 γi
µ(y)

=
VD(y, R)

µ(y)

(b)

≥ 1,

where (b) follows from the fact that VD(x, R) ≤ VD(y, R) for
any x ∈ BallD(y, R). Hence, P[y is uncovered] ≤ e−c and the
expected size of T is consequently at most E[|T |] ≤ e−c2n.
Thus, there must exist a set S for which |T | ≤ e−c2n.

It remains to compute the size of S. By construction

|S| =
m∑
i=1

|Si| ≤ cm+c

m∑
i=1

mi

i
= cm+

∑
x∈{0,1}n−R

c

VD(x, R)
.
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Noting that VD(x, R) ≥
(
ρ(x)−R

R

)
and recalling that the

number of words of length n with r runs is 2
(
n−1
r−1

)
, we obtain

|S| ≤ cm+ c

n−R∑
r=1

2
(
n−R−1
r−1

)
max

{
1,
(
r−R
R

)}
≤ c
(
n

R

)
+ 2c

r∗∑
r=1

(
n−R− 1

r

)
+ 2c

n−R∑
r=r∗

(
n−R−1
r−1

)(
r∗−R
R

)
≤ c
(
n

R

)
+ 2c

r∗∑
r=1

(
n−R− 1

r

)
+ c

2n−R(
r∗−R
R

) ,
where r∗ = max{2R, n2 −

√
Rn log n}. For r∗ = 2R, we can

directly bound the second term by

2c

r∗∑
r=1

(
n−R− 1

r

)
≤ 2c

(
n−R+ r∗

r∗

)
= 2c

(
n+R

2R

)
On the other hand, for r∗ = n

2 −
√
Rn log n, applying

Chernoff’s inequality to the binomial tail, we obtain
r∗∑
r=1

(
n−R− 1

r

)
≤

r∗∑
r=1

(
n

r

)
≤ 2ne−2

(n/2−r∗)2

n =
2n

n2R
.

Hence, the overall size of S is bounded from above by

|S| ≤ c 2n

VI(n−R,R)
fn,R,

where fn,R is at most

fn,R ≤
(
n
R

)(
n+R
R

)
2n

+ 2

(
n+R

R

)
max

{(
n+R
2R

)
2n

,
1

n2R

}

+
2−R

(
n+R
R

)(
r∗−R
R

) ,

while we used that VI(n−R,R) ≤
(
n+R
R

)
.

Lastly, we bound the third summand in the bound on |S|.
For r∗ = 2R it is trivially bounded by 2−R

(
n+R
R

)
. When

r∗ = n
2 −
√
Rn log n, a quick calculation yields

2−R
(
n+R
R

)(
r∗−R
R

) ≤
2−R

(
n+R
R

)
R!

(n/2−
√
Rn log n− 2R)R

(a)

≤ 2−RnReR
2/n

(n2 )R(1− 2R
√
R log n/

√
n− 4R2/n)

=
neR

2/n

n− 2R
√
Rn log n− 4R2

,

where in inequality (a) we used that (1 + x)R ≥ 1 +Rx for
any x ≥ −1. Finally we obtain for n

2 −
√
Rn log n ≤ 2R,

fn,R ≤
(n+R)2R

2n
+

2(n+R)3R

2n
+

(
n+R
R

)
2R

,

and for n
2 −
√
Rn log n > 2R,

fn,R ≤
(n+R)2R

2n
+

2

nR
+

neR
2/n

n− 2R
√
Rn log n− 4R2

.

Here we additionally used
(
n
R

)
≤
(
n+R
R

)
≤ (n + R)R. Note

that for large enough n and any fixed R, n2 −
√
Rn log n > 2R

and it is directly verified that limn→∞ fn,R = 1.

Note that while the expression of fn,R looks quite involved,
we are interested in its asymptotic behavior and it will only
be important in the following that it approaches 1 for large n.

Lemma 11. Let S ⊆ {0, 1}n1−R1 , T ⊆ {0, 1}n1 be such that
S covers {0, 1}n1 \ T with R1 insertions. Denote by C1 ⊆
{0, 1}n2+R1 an R2-insertion-covering code of length n2 +R1

and by C2 ⊆ {0, 1}n2 an R-insertion-covering code of length
n2. We have that

(S ⊗ C1) ∪ (T ⊗ C2)

is an R = R1 + R2-insertion-covering code of length n =
n1 + n2 with size at most |S| · |C1|+ |T | · |C2|.

Proof. Consider any xy ∈ {0, 1}n+R, where len(x) = n1

and len(y) = n2 + R. We distinguish between two cases.
First consider the case where x is covered by s ∈ S with
R insertions. Denote by c1 ∈ C1 the word that covers y ∈
{0, 1}n2+R with R2 insertions. Note that such a word always
exists, as C1 is an R2-insertion-covering code. Then xy is
covered by sc1 ∈ S ⊗ C1 with a total of R = R1 + R2

insertions. Otherwise, x ∈ T . In this case, let c2 ∈ C2 be the
string covering y ∈ {0, 1}n2+R with R insertions. Then, xy
is covered by xc2, and xc2 ∈ T ⊗ C2. The size of the code
directly follows from the union bound.

Lemma 12. For any n ≥ R and c > 0,

µI(n,R) ≤ ceµI(n/R+R− 1, 1)
(1 + 2R/n)R

1−R2/n
fR−1

R n,R−1

+RRe−cµI(n/R,R)(1 + 2R/n)R.

Proof. Let S ⊆ {0, 1}n1−R1 , T ⊆ {0, 1}n1 with n1 ≥ R1 be
such that S covers {0, 1}n1 \ T with R1 insertions. Denote
by C1 ⊆ {0, 1}n2+R1 an R2-insertion-covering code of length
n2 + R1 and by C2 ⊆ {0, 1}n2 an R-insertion-covering code
of length n2, where n1 + n2 = n, n1 = y−1

y n, n2 = n
y ,

and R1 + R2 = R. We compute the size of the tensorization
(S ⊗ C1) ∪ (T ∪ C2), which, by Lemma 11, is an R-insertion
covering code of length n. To begin with, |(S ⊗ C1) ∪ (T ⊗
C2)| ≤ |S| · |C1| + |T | · |C2|. Using Lemma 10 and optimal
codes C1 and C2, we can bound the size of S and T to obtain

|(S ⊗ C1) ∪ (T ⊗ C2)| ≤ c2n+Rfn1,R1
µI(n2 +R1, R2)

VI(n1 −R1, R1)VI(n2 +R1, R2)

+
e−c2n+RµI(n2, R)

VI(n2, R)
.

Since (S ⊗C1)∪ (T ⊗C2) is a covering code of length n and
covering radius R, we obtain

µI(n,R)≤ cVI(n,R)fn1,R1
µI(n2+R1, R2)

VI(n1−R1, R1)VI(n2+R1, R2)
+
VI(n,R)µI(n2, R)

ecVI(n2, R)
(a)

≤ cR1!R2!(n+ 2R)RµI(n2 +R1, R2)

R!(n1 −R1)R1(n2 +R1)R2
fn1,R1

+ e−c
(
n+ 2R

n2

)R
µI(n2, R)

≤ cnRµI(n2 +R1, R2)

nR1
1 nR2

2

(
R
R1

) (1 + 2R/n)R

1−R2
1/n1

fn1,R1

+ e−c
(
n

n2

)R
(1 + 2R/n)RµI(n2, R),
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where in (a) we used the well-known inequalities
(
n+R
R

)
≤

VI(n,R) ≤
(
n+2R
R

)
and (n − R)R/R! ≤

(
n
R

)
≤ nR/R! .

Inserting R1 = R− 1, R2 = 1, and y = R yields the lemma.

With this recursive expression, we are ready to prove the
theorem with the help of the following lemma.

Lemma 13 (cf. [23]). Let (µn), (µ′n), (an) and (bn), n ∈ N
be sequences of positive numbers with

lim sup
n→∞

µ′n ≤ µ′, lim sup
n→∞

an ≤ a lim sup
n→∞

bn ≤ b

and
µn ≤ anµ′n/R + bnµn/R,

where R > 1. Then

lim sup
n→∞

µn ≤
aµ′

1− b
.

One convenient property of this lemma is that it incorporates
the recursive assembly of the covering codes, without having
to perform a thorough analysis of the induction start. We are
now in a position to prove Theorem 9.

Proof of Theorem 9. Using Lemma 12 and 13, we obtain
µ∗I (R) ≤ ce

1−RRe−c
µ∗I (1). Minimizing ce

1−RRe−c
over c, we

can directly verify that minc
ce

1−RRe−c
= e(c0 + 1), where c0

is the solution to c + 1 = ecR−R. Using standard bounds on
c0, we obtain the theorem.

B. Multiple-Deletion-Covering Codes

Proving the existence of small covering codes for deletions
follows basically the same steps as the proof for the case of
insertions. However, there are some subtle differences, such as
the different definition of density for deletion-covering codes.
Our main result is as follows.

Theorem 14. For any fixed R ≥ 2 and q ≥ 2,

µq,∗D (R) ≤ e(R logR+
√

2R logR+ 1)µq,∗D (1).

In particular, for q = 2,

µ∗D(R) ≤ e(R logR+
√

2R logR+ 1).

Note that compared to the case of insertions, we could use
in Theorem 14 that for the binary case µ∗D(1) = 1, which
results in a tighter bound also for the case of R > 1. Since
the outline of the proof for the case of deletions is similar to
that of insertions, we merely state the ingredients of the proof
to establish the analogy to the case of insertions. Again, we
prove the theorem for the binary case, however the extension
to non-binary alphabets is straight-forward.

Lemma 15. For every n and R and every positive constant
c > 0 there exist sets S ⊆ {0, 1}n+R and T ⊆ {0, 1}n with

|S| ≤ c2n+R(
n
R

)
such that S covers {0, 1}n \ T with R deletions for some set
T of size at most

|T | ≤ e−ce
VI(n,R)

2n+R 2n.

Proof. We prove the lemma using a random set S and then
compute the expected number of words that are not covered by
such a random choice. We choose S to be a uniformly random
set of cardinality |S| =

⌊
c2n+R/VI(n,R)

⌋
, where each subset

has the same probability. By this choice of S, the probability
for any y ∈ {0, 1}n to be not covered by S is given by

P[y is uncovered] =

(
2n+R−VI(n,R)

|S|
)(

2n+R

|S|
) ≤

(
2n+R − VI(n,R)

2n+R

)|S|

=

(
1− VI(n,R)

2n+R

)|S|
≤ e−ce

VI(n,R)

2n+R .

The bound on the size of S follows from VI(n,R) ≥
(
n
R

)
.

Lemma 16. Let S ⊆ {0, 1}n1+R1 , T ⊆ {0, 1}n1 be such that
S covers {0, 1}n1 \ T with R1 deletions. Denote by C1 ⊆
{0, 1}n2−R1 an R2-deletion-covering code of length n2 and
by C2 ⊆ {0, 1}n2 an R-insertion-covering code of length n2.
We have that

(S ⊗ C1) ∪ (T ⊗ C2)

is an R = R1 + R2-deletion-covering code of length n =
n1 + n2 with size at most |S| · |C1|+ |T | · |C2|.

We omit the proof here as it is proven in the same manner
as Lemma 11. Using this construction of codes, we can again
prove the following asymptotic relationship.

Lemma 17. For any n ≥ R and c > 0,

µD(n,R) ≤ ceµD(n/R+R− 1, 1)γD(n,R)

+RRe−cµD(n/R,R)γ′D(n,R),

for some functions γD(n,R) and γ′D(n,R) with

lim
n→∞

γD(n,R) = lim
n→∞

γ′D(n,R) = 1.

Proof. Let S ⊆ {0, 1}n1+R1 , T ⊆ {0, 1}n1 be such that
S covers {0, 1}n1 \ T with R1 deletions. Denote by C1 ⊆
{0, 1}n2−R1 an R2-deletion-covering code of length n2 −R1

and by C2 ⊆ {0, 1}n2 an R-deletion-covering code of length
n2, where n1 +n2 = n, n1 = y−1

y n, n2 = n
y , and R1 +R2 =

R. We compute the size of the tensorization (S⊗C1)∪(T⊗C2),
which, by Lemma 16, is an R-deletion-covering code of length
n. To begin with, |(S⊗C1)∪ (T ⊗C2)| ≤ |S| · |C1|+ |T | · |C2|.
Using Lemma 15, we can bound the size of S and T to obtain

KD(n,R) ≤ c2nµD(n2 −R1, R2)R2!(
n1

R1

)
(n2 −R1)R2

+
e−ce

VI(n,R)

2n+R 2nµD(n2, R)R!

nR2
.

Since (S ⊗C1)∪ (T ⊗C2) is a covering code of length n and
covering radius R, we obtain

µD(n,R)≤ cµD(n2−R1, R2)R2!nR(
n1

R1

)
(n2 −R1)R2R!

+
e−ce

VI(n,R)

2n+R µD(n2, R)nR

nR2

≤ cnRµD(n2 −R1, R2)

nR1
1 nR2

2

(
R
R1

) 1

(1−R2
1/n1)(1−R1R2/n2)

+ e−c
(
n

n2

)R
µD(n2, R)e

VI(n,R)

2n+R .
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Inserting R1 = R− 1, R2 = 1, and y = R yields the lemma.

Remark 1. Proving Theorem 9 for non-binary words follows
basically the same steps as for the binary case with only
slight differences. To start with, the q-ary version of Lemma
10 is obtained by replacing the binary expressions with their
q-ary analogues, and letting fn,R depend also on q, but
still converge to 1 for n → ∞. Lemma 11 directly extends
to the non-binary case and Lemma 12 can be extended by
allowing additional factors in the recursive expression that
depend on q and converge to 1 and using standard bounds on
V qI (n,R). The remaining steps are equivalent to the binary
case. The proof of Theorem 14 for q-ary words is obtained in
an analogous manner.

Remark 2. We note that Theorems 9 and 14 imply the
asymptotic bounds in Table I. More precisely, by the properties
of the lim sup, for any ε > 0, there exists a value n0, such
that for all n > n0, we have that µqI (n,R) ≤ µq,∗I (R)(1 + ε)
and µqD(n,R) ≤ µq,∗D (R)(1 + ε).

VI. CONCLUSION

This paper studied covering codes for insertions and dele-
tions. We proved general sphere-covering lower bounds on
the size of insertion- and deletion-covering codes. We gave
constructions for single-deletion- and single-insertion-covering
codes that implied improved upper bounds on the code size.
Finally, we presented upper bounds on the optimal density of
multiple-insertion- and multiple-deletion-covering codes.

There are many avenues for future work. There are gaps
between our lower and upper bounds for covering codes. For
large covering radius R, we expect that much smaller codes
should be possible, e.g., for R = εn with ε ∈ (0, 1/2). Many
of our proofs are existential in nature; it would be nice to have
explicit constructions. Establishing the exact size of deletion
balls is a long-standing open question with many implications.
On the practical side, there may be interesting applications of
covering codes based on insertions and deletions. Finally, it
would be worthwhile to extend these results to edit distance, in
which insertions, deletions, and substitutions are considered.
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APPENDIX

Proposition 18. For fixed R and large n, we have the
asymptotic relation

qn+R

V qI (n,R)
≥ R!qn+R

nR(q − 1)R
(1− o(1)).

Proof.

qn+R∑R
i=0

(
n+R

i

)
(q−1)i

=
qn+R(

n+R
R

)
(q−1)R

(
1+
∑R−1

i=0

(n+R
i )(q−1)i−R

(n+R
R )

)
(a)

≥ qn+R(
n+R
R

)
(q − 1)R

(
1−

R−1∑
i=0

(
n+R

i

)
(q − 1)i−R(
n+R
R

) )
(b)

≥ qn+R(
n+R
R

)
(q − 1)R

(
1−RR

R−1∑
i=0

(n+R)i(q − 1)i−R

(n+R)R

)
(c)

≥ qn+R(
n+R
R

)
(q − 1)R

(
1− RR+1(q − 1)−1

n+R

)
(d)

≥ R!qn+R

(n+R)R(q − 1)R

(
1− RR+1(q − 1)−1

n+R

)
=

R!qn+R

nR(1 + R
n
)R(q − 1)R

(
1− RR+1(q − 1)−1

n+R

)
(e)

≥ R!qn+R

nR(q − 1)R

(
1− R2

n

)(
1− RR+1(q − 1)−1

n+R

)
=

R!qn+R

nR(q − 1)R
(1− o(1)),

where we used in (a), (e) the inequality (1+x)r ≥ 1+rx for
any x > −1 and any r ≤ 0 or r ≥ 1. In inequalities (b), (d)
we used that nR/RR ≤

(
n
R

)
≤ nR/R!. Further, in (c) we used

that the largest of the terms in the sum is i = R− 1 to bound
the sum. Finally, the statement holds for fixed R and large n.

Proposition 19. For fixed R and large n, we have the
asymptotic relation

q

n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) ≥ R!qn

nR(q − 1)R
(1− o(1)) .

Proof. We first note that(
n−R− 1

r − 1

)
=

r(r + 1) · · · (r +R− 1)

(n− 1)(n− 2) · · · (n−R)

(
n− 1

r +R− 1

)
.

Hence,

q

n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

) =
q

(n− 1)(n− 2) · · · (n−R)

·
n−R∑
r=1

(q − 1)r−1r(r + 1) · · · (r +R− 1)(
r+3R−1

R

) (
n− 1

r +R− 1

)

≥ qR!

nR

n−R∑
r=1

(q − 1)r−1r(r + 1) · · · (r +R− 1)

(r + 2R) · · · (r + 3R− 1)

(
n− 1

r +R− 1

)
.

For 0 ≤ i ≤ R− 1, it holds that r+i
r+2R+i ≥

r
r+2R and so

r(r + 1) · · · (r +R− 1)

(r + 2R) · · · (r + 3R− 1)
≥
(

r

r + 2R

)R
=

(
1− 2R

r + 2R

)R
≥ 1− 2R2

r + 2R
,

where the last step holds by the the inequality (1−x)r ≥ 1−xr
for r ≥ 1.

Furthermore, for r ≥ 2R(
√
nR − 1) , b, we have that

1− 2R2

r+2R ≥ 1− 1√
n

, and thus we deduce that

q

n−R∑
r=1

(q − 1)r−1
(
n−R−1
r−1

)(
r+3R−1

R

)
≥ q(1− 1√

n
)
R!

nR

n−R∑
r=b

(q − 1)r−1

(
n− 1

r +R− 1

)

= q(1− 1√
n

)
R!

nR

n−1∑
r=b+R−1

(q − 1)r−R
(
n− 1

r

)

= q(1− 1√
n

)
R!

nR(q − 1)R

n−1∑
r=b+R−1

(q − 1)r
(
n− 1

r

)

= (1− 1√
n

)
R!

nR(q − 1)R

(
qn −

b+R−2∑
r=1

(
n− 1

r

))
≥ R!qn

nR(q − 1)R
(1− o(1)) .
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