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A Separator Theorem for Hypergraphs and a CSP-SAT
Algorithm
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Abstract

We show that for every r > 2 there exists €, > 0 such that any r-uniform hy-
pergraph on m edges with bounded vertex degree has a set of at most (% —€.)m
edges the removal of which breaks the hypergraph into connected components
with at most m/2 edges. We use this to give an algorithm running in time
d=¢)™ that decides satisfiability of m-variable (d, k)-CSPs in which every
variable appears in at most r constraints, where ¢, depends only on r and
k € o(y/m). We will also show that CNF representations of unsatisfiable (2, k)-
CSPs with variable frequency r can be refuted in tree-like resolution in size
2(1=¢x)m - Furthermore for Tseitin formulas on graphs with degree at most k
(which are (2, k)-CSPs) we give a deterministic algorithm finding such a refu-
tation.

1 Introduction

The (d, k)-SAT problem which naturally generalizes k-SAT is the problem of de-
ciding whether a system of constraints on m variables from an alphabet of size d,
where each constraint is on at most k variables, can be satisfied. We will call such a
system of constraints a (d, k)-CSP and we will assume that when given as input it is
represented by the set of truth tables of its constraints. Therefore the satisfiability
of a (d,k)-CSP ¥ can be checked by exhaustive search in time |¥|9M)d™, where m
is the number of variables. Therefore it makes sense to look for exponential time
algorithms beating this trivial running time.

For the usual k-SAT problem, where d = 2, there is a plethora of such algorithms
(see e.g. [PPZ99, PPSZ05, DGH'02]). When the CSP encodes a certain structured
problem we can also find improved algorithms. The notable example here is the
graph d-coloring problem which is a special case of (d,2)-SAT and which can be
solved in time O(2™) [BHKO09]. More generally (d,2)-SAT also admits non-trivial
algorithms [BEO5].
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For the general (d,k)-SAT we are interested in finding algorithms running in
time d1=9™ for some € > 0. We call the parameter € the savings of the algorithm,
and we would like these savings to be as large as possible. Note that any k-SAT
algorithm can be easily converted to a (d, k)-SAT algorithm. For each of the original
variables, introduce log d boolean variables representing the original value in binary,
and then express each constraint as a klog d-CNF. The conjunction of these CNFs is
satisfiable if and only if the original CSP is satisfiable. Assuming that we can solve k-
SAT in time 2™ this yields an algorithm running in time d(=¢1za)™  That is
any non-trivial savings for k-SAT yields non-trivial savings for (d, k)-SAT. However
these savings deteriorate as d grows. This turns out to be case also for algorithms
which are directly designed to solve (d, k)-SAT. Schoning’s seminal algorithm runs
in time O( (@)m) Similarly a generalization of PPSZ analyzed by Hertli et al.
[HHM™16] has the same shortcoming. The central question is then whether it is
possible to obtain savings independent of the domain size d.

Let us define
oq) = sup{d : (d, k)-SAT can be solved in time O(d!=9™)}.

The argument above gives o4k > 09 ploga- Furthermore Traxler [Tra08] shows that
for all d, o9 > 04%. Therefore it follows that under Strong Exponential Time
Hypothesis, for all d, limy_,o 045 = 0. Our central question can be rephrased as
follows.

Question 1. Is it the case that for every k, limg_,oo 045 > 07

Currently, we are unable to answer this question. However we show that if
each variable appears in a small number of constraints then it is possible to decide
satisfiability with savings independent of d. This can be considered as an extension
of a result of Wahlstrom [Wah05] who gave such an algorithm for CNF-SAT when
variables have bounded occurrences. However our argument is entirely different.

Theorem 2 (Main result, informally stated). There ezists an algorithm which de-
cides satisfiability of an m variable (d, k)-CSP in which every variable appears in at
most r constraints in time d2=9™ where ¢ depends only on r, provided that k does
not grow too fast (that is k € o(y/m)).

One can show that ¢ > (2% The algorithm follows a simple branching strategy.
At every step we find a small set of variables that once given a value, the CSP breaks
into disjoint parts each with at most half of the original variables. For every assign-
ment on these variables we recursively solve the problem on the resulting smaller
instances. To prove that such a small set of variables exists, we associate a natural
hypergraph to the CSP. Then we prove a structural result for these hypergraphs:
We show that in every r-uniform hypergraph on m edges of small vertex degree,
there exists a small set of hyperedges the removal of which breaks the hypergraph
into connected components with at most m/2 hyperedges.



Theorem 3 (Hypergraph separator theorem, informally stated). Let H = (V, E) be
an r-uniform hypergraph on m hyperedges and maximum vertex degree k. Provided
that k does not grow too fast as a function of m, there exists a set of (1 —¢€)m/2
hyperedges the removal of which breaks the hypergraph into connected components
with at most m/2 hyperedges. Furthermore, € depends only on r.

We provide yet another application of Theorem 3 which concerns proof complex-
ity of unsatisfiable k-CNF formulas. Recall that k-TAUT is the language of k-DNF
tautologies (or equivalently the language of unsatisfiable k-CNF's). Define

Vg := sup{d : k-TAUT can be solved in non-deterministic time O(201=9™)}

Observe that v, > o5} as any k-SAT algorithm in particular refutes unsatisfiable
k-CNF's formulas. The best known lower bound for oy is Q(1/k) and thus v, €
Q(1/k). We now raise a very natural question. Is it possible to prove that vy >
1/k, that is can we use non-determinism to beat the best known savings of k-SAT
algorithms?

We can think of two ways to make progress towards this question. In the first
direction we could try to obtain lower bounds on v directly by proving upper
bounds on the size of refutation of k-CNF's. Interestingly (but not surprisingly) the
Q(1/k) bound can already be achieved by tree-like resolution [BT16], that is every
unsatisfiable k-CNF formula in m variables can be refuted by a tree-like resolution
proof of size 200—21/k)m

In the second direction we can consider general enough families of k-CNF's and try
to obtain non-trivial refutations for them in as weak as possible a proof system. Here
by general enough families we mean families of formulas which naturally contain a
wide spectrum of easy to hard instances. An example of such families is the set of
k-CNF's encoding systems of linear equations over Fo each on at most k variables.
Indeed such systems can easily be refuted using Gaussian elimination. But for
k = O(1), if the underlying system is minimally unsatisfiable, then there are even
non-trivial regular resolution refutations of size 2"/2+°(™) [BI10]. Such a bound
cannot be obtained in tree-like resolution [PI00].

However here using our separator theorem we show that if we restrict ourselves to
Tseitin formulas over bounded degree graphs (which are also minimally unsatisfiable
linear systems), then we do have tree-like resolution refutations of size 2" for a
universal constant ¢ < 1. It seems plausible that using non-determinism we might
be able to find combinatorial structures on which tools such as our separator theorem
can be applied and hence we can obtain better savings.

2 Hypergraph Separator Theorem

In this section we present our main technical tool concerning the structure of hy-
pergraphs.



A connected component in a hypergraph H = (V, E) is a maximal subset of
vertices S C V such that for every pair u,v € S there exists a sequence of edges
€1,-...,€; only on vertices in S with u € e; and v € e; and e; Ne;11 # O for every
ieft—1].

Definition 4. Let H = (V, E) be a hypergraph. A balanced separator for H is a
set R C E such that any connected component in (V, E '\ R) is incident to at most
|E|/2 edges from E\ R.

Note that any set R C E of size |E|/2 is trivially a balanced separator. Therefore
the question is whether it is possible to get balanced separators of size strictly less
than |F|/2. We show that when the hypergraph has bounded vertex degree this is
indeed possible. Let us first fix some notation. For any S C V' we denote by E(S)
the set of edges induced on S, i.e., all edges from E which are entirely on vertices
in S. For S, T CV we define E(S,T)={e€ E:enS#0,enT # 0}.

We will first show that when the maximum vertex degree of the hypergraph is
small enough, small balanced separators do exist. We then show that our bound is
quantitatively tight.

2.1 Small Separators

We need the following concentration bound. This is a consequence of an inequality
due to Alon, Kim and Spencer [AKS97] which was used by Dellamonica and Rédl
[DR19].

Lemma 5 ([AKS97, DR19]). Let Xi,...,X, be independent Bernoulli variables
with Pr[X; = 1] = p for all i € [n]. Let ¢ > 0 and assume that there is a function
f:4{0,1}" — R such that for all (x1,...,z,) € {0,1}" and every i € [n],

lf(z1, .. zn) — fo1, .y i1, L — 2, Tty - )| < e
Then for 0% := nc?p(1 — p) and any 0 < a < 20 /¢, we have
Pr[|X — E[X]| > ao] < 2¢7/4,
where X = f(X1,...,X,).

Theorem 3. Let r > 2 be fized and let H = (V, E) be a hypergraph with mazimum
vertex degree k on m edges where each hyperedge has size at most r. Assume that
k € o(y/m). Then H has a balanced separator of size at most (1 — €,)m + o(m),
where €, = (1 — 27Y7)". Furthermore such a balanced separator can be found by a

randomized algorithm in expected polynomial time and by a deterministic algorithm
in time mPMo(l—2e)mto(m)

For any 1 < k < m the proof of the theorem actually gives a balanced separator
of size at most (% —e.)m+ Crky/m, where C,. > 0 is a universal constant depending



only on r. We will use this bound later to bound the size of tree-like resolution of
Tseitin formulas.

Notice, €. > ﬁ, as for z € [0,1], 27" < 1—- 2% so 27r <1- % and thus

_1 1y _ 1

[\

Proof. We first observe that with a small modification we may assume without loss
of generality that the hypergraph is r-uniform and contains no isolated vertices. To
make the hypergraph r-uniform we partition the hyperedges of size less than r into
blocks of size k. For each of these blocks we introduce r new vertices and we add
sufficiently many of them to the hyperedges in the block to make them r-uniform.
This guarantees that the maximum degree remains at most k and we have added
at most mr/k new vertices. We then remove isolated vertices if any exists. We will
denote by n the new number of vertices. As there are no isolated vertices n < mr.

The main idea for building the separator is to find a set S of vertices such that
|E(S)| = m/2+0(m) and |E(S, S)| < (3 —€-)m=Eo(m). Observe that for such S, we

also have |E(S)| < m/2+0(m). Furthermore note that E(S) and E(S) are separated
by R := E(S,S), i.e., every connected component in (V, E'\ R) is entirely contained
in S or in S. Then we arbitrarily select two sets W7 C E(S) and Wo C E(S) with
|[W1l|, [Wa| < o(m) such that |E(S)\ Wi| < m/2 and |E(S) \ Wa| < m/2 (which
is possible by the assumption on S). It follows that R U W7 U Ws is a balanced
separator of size at most (1 — e,.)m/2 + o(m).

We pick the set S C V by including each vertex in .S independently at random
with probability p := 271/7. Let V = [n]. For each vertex i € [n], let X; be the
random variable which takes value 1 if vertex ¢ is included in S, and it takes value
0 otherwise. Thus we have S = {i € [n] : X; = 1}. We define two functions f; and

f as follows:
H(Xy,. o X)) = [E({i € [n]: Xi = 1})] = [E(S)]
and
Fo(X1,. . X)) = |E({i €[] : X =1}, {i € [n] : X; = 0})] = |E(S. 9)].

Hence observe that
E[fi(X1,...,Xn)]=p"m=

m
2

and

E[fo(X1,. . X)) = (1—p" — (1= p)")m = @ - er) m.

We would like to apply Lemma 5 on f; and f;. Note that since the maximum
degree of H is at most k, for any b € [2] and i € [n],

|fo(X1, oo Xn) = fo(Xa, oo XKoo, 1= X5, X, X)) S K



Setting a = 4, ¢ = k and 02 = nk?p(1 — p) we apply Lemma 5 on f; and f; and

obtain
m
Pr[|fi(X1, o, X) = 2| > dko/np(1 )| < 2™
and

Pr [|f2(X1, LX) — (; — er> m| > 4k\/m] < 2e7%

Since r is fixed, n < mr and k € o(y/m) we have 4k\/np(1 —p) < 4k/mr =
o(m). Therefore with probability at least 1 — 4e=* > 0, |E(S)| = m/2 £ o(m) and
|E(S,S)] < (3 — e-)m + o(m) and hence there exists a choice of S satisfying these
properties. As explained earlier by adding at most o(m) edges to E(S, S) we obtain
a balanced separator of size (3 — €,)m + o(m).

It is clear that the above argument also yields a randomized algorithm for finding
such a balanced separator. The probability that S satisfies our desired properties is
at least a constant and in polynomial time we can verify whether it indeed satisfies
both those properties. Thus by repeating the random choice of S, in expected
polynomial time we find our balanced separator.

The deterministic algorithm exhaustively checks all sets of at most (3 — e,)m +

o(m) edges to find a balanced separator. This has running time m©®) ( (Loe ):7”1 +o(m)) <
2 s

mOMgh(1/2=er)mto(m) - \where h(-) is the binary entropy function. Using h(1/2 —
2/2) <1 — 22/2, we can bound the running time by m©®)2(-2e)mto(m), O

2.2 Optimality of the Separator Theorem

We now show that Theorem 3 is tight.

Lemma 6. For every fited o < 1 and r > 2 and k,n — oo with k € o(n), there
exists an r-uniform hypergraph H = (V, E) with the following properties:
1. |B| = (1£o(1))2k

2. A(H) = O(k)
3. For every S CV with |S| > an, |E(S)| = (1 io(l))(%)ﬂE\.

nk/r
(7)
of edges is ”7’“ Thus by Chernoff’s bound with probability at least 1 — 27%(")
1] = (14 o(1)) .

Next we bound the number of edges which are incident to vertices of degree at
least 2ek. For every vertex the probability that it has degree at least ¢ is at most
((:;;))qt. Note that for t > 2ek this probability is at most 27¢. Therefore we can
upper bound the expected number of edges incident with some vertex of degree at
least 2ek by

Proof. We first sample G from G(") (n,q) where q =

The expected number

n i 27t = O(nk/2").

t=2ek



Therefore by Markov’s inequality with constant probability the number of edges
incident with some vertex of degree at least 2ek is at most O(nk/2%).

Let S C V be any set of size an. The expected number of edges in S is (O‘Tn)q
Let 6 = k~1/3 = o(1). By Chernoff’s bound

IA

prls) £ 0o )d < 2ew-02( )

— 2exp(—d? (i”) nk /3r <Z>)

< 2exp(—(1+o(1))a"nk/3/3r),

()
()
there are (OZZ) choices for S, the probability that there exists S C V of size an with
|E(S)| # (1£6)(%")q is at most

where in the last inequality we use = (1 £ o(1))a"n since r is fixed. Since

<a”n> x 2exp(—(1 + o(1))a"nkY3/3r) = o(1).

It follows that there exists an r-uniform hypergraph G with (1 £0(1))%k edges,
at most yn of which are incident with some vertex of degree at least 2ek, where
v = O(k/2¥). Furthermore for every S C V with |S| = an, |E(S)| = (1£0)(%")q.
We remove at most yn edges to make the maximum vertex degree at most O(k).
Call the resulting hypergraph H = (V, E). Note that [E(H)| = (1 & o(1))%k. Let
&' =& +v. We have in H for every S C V with |S| = an, |[E(S)] = (1+§)(%")q.
A simple averaging argument further gives that for every S C V with |S| > an,
B(S) = (1£8)(F)g = (1= o(1) (T =

Theorem 7. For every fized r > 2 and k,m — oo with k € o(m), there exists an
r-uniform hypergraph with vertex degree O(k) and m edges such that any balanced
separator of H has size at least (3 — e;)m(1 £ o(1)), where €, := (1 — 2~ 1/myr,

We will show that the hypergraph H = (V| E) given by Lemma 6 with a :=
1 — 2717 satisfies this property. Note that €, = o’ and (1—a)” = 1/2. Let m = |E).
The following fact proves the result for the case when the balance separator is a
bipartition. As it turns out and which we will show later, this is also the core of the
argument for the general case.

Fact 1. Let (A, B) be a bipartition of H with min{|A|, |B|} > an. Then |E(A, B)| >
(1/2 — e,)m(1 £ o(1)).

Proof. Assume |A| < |B| and |A| = yn. Since 7 > «, Lemma 6 guarantees that
|E(A)] =~4"m(1 £0(1)) and |E(B)| = (1 —v)"m(1 £ o(1)) and hence



[E(A,B)] = (1-7"=(1-9)")
> 1—-a"—(1—-a))m(1l+o(1))
1

= (3 —e)m(l+o(1),

3
—~
—_
-
Q
—_
~—
~—

where the inequality follows since the function 1 — 2" — (1 — x)" is increasing for
z€(0,3). O

Proof of Theorem 7. Let R C E be a balanced separator in H of minimum size.
The removal of edges in R breaks H into two or more connected components each
with at most m/2 edges. By minimality of R these connected components are
induced subgraphs. We group these connected components in two parts A and B
such that ||A| — |B|| is minimized. Assume that |A| < |B|. We have two cases.
Either B is connected or it contains more than one connected component. Note
that R O E(A, B). Assume first that B is connected. We have |A| > (a + o(1))n
since otherwise |B| > (1 — a + p)n for some p > 0 and hence |E(B)| > (1 — a +
u+o(1))'m(1£0(1)) > m/2, contradicting that |E(B)| < m/2. Fact 1 then implies
that |[R| > |E(A, B)| > (5 — e-)m(1 £ o(1)).

Now assume that B contains more than one connected component. Thus we can
write B = B1UBs, where By and By is an arbitrary bipartition of these components.
Assume |B;| > |Ba|. We show that |A| > |Bi|. Assume for a contradiction that
this is not the case. Then |A| < min{|A U Bs|,|Bi1|} and further we have max{|A U
Bs|,|Bi1|} < |B1 U Bg|. This means that A U By and B; give a more balanced
bipartition, contradicting the minimality of ||A| — |B||. Since |A|+ |Bi|+ |B2| =n
and |A| > |Bi| > |Bs|, we have |A| > n/3 > an (recall that « = 1 — 21"
and o < 1/3 when r > 2). Once again we can apply Fact 1 to conclude that
B > [B(A,B)| > (4 — e)m(1 £ o(1)).

O

3 A CSP-SAT Algorithm

A (d,k)-CSP ¥ is defined by a set of variables X taking values in an alphabet ¥
of size d and a set C of constraints each on most k£ of these variables. We write
U = (X,C) to specify the variables and the constraint set. We will assume that
the CSP is represented by the set of truth tables of its constraints. Observe that a
(2, k)-CSP can be represented as a k-CNF. An assignment to the variables satisfies
¥ if it satisfies every constraint. The variable frequency of ¥ is the largest number
of constraints that any variable appears in. Given a partial assignment p which
gives values to a set Y C X, the restriction of ¥ by p is denoted by ¥|, which is a
CSP on X \ Y and each constraint is restricted by fixing the values of variables in
Y by p.



Let ¥ = (X,C) be a CSP. We construct a hypergraph Hy = (V, E) as follows.
We set V' = C, that is every constraint is represented by a vertex in H. For every
variable x € X we create a hyperedge e, := {C € C : x € C}, that is the set of
constraints containing x form a hyperedge.

Proposition 8. Assume that Hyg consists of connected components Hq,..., Hy.
Then ¥ can be expressed as /\le\Ili where Hy, = H; for each 1 < i <t.

Proof. This is immediate once we observe that for any constraints C and C” which
are represented in H; and Hj, respectively, for some i # j, C' and C’ do not have
any variable in common. O

Proposition 9. Let ¥ = (X,C) be a CSP and Hy = (V,E) be the corresponding
hypergraph. Let p be a partial assignment which gives values to a set’ Y C X. Then
Hy,, is obtained by removing all e; with x € Y from Hy. Furthermore, if ¥ is
unsatisfiable so is ¥|, and consequently if V|, breaks into Ai_,¥; as in Proposition
8, then at least one of V;s is unsatisfiable.

Proof. After restricting some of the variables, those variables disappear and some
constraints get simplified. But no new constraint is introduced and hence the hyper-
graph is obtained by removing the corresponding hyperedges. If a CSP is unsatisfi-
able, obviously it is unsatisfiable under any partial assignment. If an unsatisfiable
CSP is decomposed into disjoint CSPs, at least one of these CSPs is unsatisfiable,
since otherwise we can take a satisfying assignment from each part and since they
are on disjoint sets of variables together they form a satisfying assignment of the
whole CSP. O

We are now ready to describe our algorithm CSP-SAT.

Algorithm 1 CSP-SAT (V)
Construct Hy = (V, E).
Construct a small balanced separator R as in Theorem 3 (either probabilistically
or deterministically).
for all p € ©f do
Let ¥|, = Al_,T; as in Proposition 9.
for all i € [t] do
Exhaustively check if ¥; is satisfiable.
end for
if all ¥;’s are satisfiable then return satisfiable.
end if
end for
return unsatisfiable.

Theorem 2. Let r > 2 be a fized integer, m,d,k > 1 be integers such that k €
o(y/m). Let e, = (1 —27Y")". Let U be an m-variable (d,k)-CSP with variable



frequency at most r. CSP-SAT (W) correctly decides the satisfiability of ¥. Moreover,
if d > 3 then it runs deterministically in time dA—er)mto(m) it d — 9 then it runs
in expected time 200=e)mto(m) it we find R randomly, and in deterministic time
2(1-2¢7)m+o(m) if we find R deterministically.

Proof. The correctness of the algorithm follows immediately from Proposition 9. In
polynomial time we can construct Hy = (V, E'). Observe that Hyg has m edges each
of size at most r and it has vertex degree at most k. By Theorem 3, we can find a
balanced separator of size (1 —¢,)m+o(m) deterministically in time 2(1=2e})m+o(m) o
probabilistically in expected polynomial time in m. After having found the balanced
separator R, there are at most d—erm+o(m) 1ung of the for loop over p. For each
restriction p we spend \\11\0(1) time to compute the decomposition of ¥. Then for
each of these parts we exhaustively check its satisfiability in time at most d™/2.
Since ¥ breaks into at most m := |V| parts the total running time after finding
R is at most |\I»'|O(1)al(%_ET)’”J’O(m)er/2 = |w|OM)g(t=er)mtolm)  For d > 3, since
2m < 3(1=er)m the total running time including finding the separator is bounded by
| @ |0 g=er)mto(m)  The claim follows by noting that |¥| < O(mrd*®) < d°™. For
d = 2, if we use the randomized procedure to find R, the total expected running time
will be at most |W|OM20—er)m+o(m) "and if we run the deterministic procedure to
find R, the total running time is at most [¥|O()(2(1=2e)m+o(m) | 9(1—er)mto(m)y <

‘\11‘0(1)2(172e$)m+o(m). n

Remark. We can slightly modify the algorithm and instead of performing exhaus-
tive search on the disjoint parts of the CSP we can make a recursive call to the
algorithm. It is easy to verify that this improves the savings by a factor of two.

Corollary 10. Letr > 1 be a fized real, m,d, k > 1 be integers such that k € o(y/m).
Let ¢, = (1 —27Y")". Let U be an m-variable (d,k)-CSP with average variable
frequency at most r. CSP-SAT (W) correctly decides the satisfiability of V. Moreover,
if d > 3 then it runs deterministically in time d—€r2n/2m+om) ir g — 9 then it
runs in expected time 20— ¢r2r1/2m+o(m) if we find R randomly, and in deterministic

2(1—5%2T] Yym+o(m

time ) if we find R deterministically.

Proof. Consider the case d > 3. There are at most m/2 variables with frequency >
[2r]. For all possible settings of those variables run the CSP-SAT (V) algorithm on ¥
restricted to that setting. In such a restricted formula all variables have frequency at
most [2r]. By the previous theorem the running time will be d™/2.d(1~¢r2r1)m/2+o(m)
The case for d = 2 is analogous. ]

4 Upper Bounds for Tree-like Resolution

In this section we use our separator theorem to give non-trivial refutations of CNF
representations of unsatisfiable (2, k)-CSPs with bounded variable frequency. Recall
that a (2, k)-CSP with n constraints can be represented by a k-CNF with n2* clauses.
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(We assume the reader is familiar with basic proof complexity, see [Juk12, Kral9]
for more background.) This class of CSPs includes the extensively studied Tseitin
formulas which essentially encode that in a simple graph the number of odd degree
vertices is even. Here we consider a more general definition for hypergraphs due to
Pudldk and Impagliazzo [PI00].

Definition 11. Let H = (V, E) be a hypergraph and let A : V' — {0,1}. The Tseitin
formula on H, T(H,)\), has a variable x. for every edge e € E and states that for
every v € V, @espe = A(v). When @pey A(v) = 1 we call X an odd charge labelling.

When A is an odd charge labelling and each edge has even cardinality, T'(H, \) is
unsatisfiable. When H has maximum degree k, T'(H, \) is a (2, k)-CSP. From here
on we will use T'(H, A) to denote both the CSP and its CNF representation when it
is clear from the context which one we refer to.

Theorem 12. Let ¥ be an unsatisfiable (2, k)-CSP with variable frequency at most
r on m variables. If r is fived and k € o(v/m), then there exists a tree-like resolution
refutation of the CNF representation of U of size 200—er)mto(m) = yyhere ¢ = (1-
2—1/7‘)7"'

Proof. Tt is useful to think of a tree-like resolution proof as a Prover-Delayer game
(due to Urquhart [Urqll]). The players maintain a partial assignment p which is
initially empty. At every step Prover queries a variable x which is not given a
value by p. Delayer then assigns a value b € {0,1} to . Then p is extended by
(x = b) and they continue. The game stops when p falsifies some constraint. Note
that this will eventually happen since W is unsatisfiable and that at this point some
clause in the CNF representation of W is falsified. It is easy to see that if there is a
strategy for Prover which can always force a contradiction in at most ¢ steps, then
there exists a tree-like resolution refutation of size 2 for the CNF representation of
V. We therefore give a strategy for Prover which forces contradiction in at most
(1 — €-)m + o(m) steps.

We will make use of Theorem 3 applied to Hg and the strategy is quite imme-
diate. Prover queries all variables corresponding to the hyperedges in the balanced
separator R given by Theorem 3 of size at most (% — €,)m + o(m). Delayer assigns
a value to these variables. Call the resulting partial assignment p. By the separator
property, Proposition 9 and Proposition 8 we can write ¥|, = Al_;¥; for some ¢,
where U;s are on disjoint sets of at most m /2 variables. Furthermore at least one of
W;s is unsatisfiable. Prover then queries all the variables in ¥;. It is clear that once
Delayer assigns values to these variables a contradiction is forced. The total number
of queried variables is at most (3 — €,)m + o(m) + m/2 = (1 — &,)m + o(m). O

Corollary 13. Let ¥ be an unsatisfiable (2, k)-CSP with variable frequency at most r
on m variables. If r is fized and k € o(\/m), then there exists a resolution refutation
of the CNF representation of ¥ of width (1 — e, )m + o(m), where e, = (1 —27Y/7)".
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Proof. This is immediate from Theorem 12 and the seminal result of Ben-Sasson and
Wigderson [BWO01] which states that if a k-CNF formula has a tree-like resolution
refutation of size 2%, then it has a width w + k resolution refutation. ]

Corollary 14. Let H = (V, E) be an r-uniform hypergraph of mazimum degree k
where r is even and let X : V' — {0, 1} be an odd charge labelling. If r is fized and k €
o(\/|E|) then T(H,\) can be refuted in tree-like resolution in size 2(=¢r)IEIFTo(E]),
where €, = (1 — 271/,

Proof. Observe that each variable appears in r constraints. ]

The case r = 2 corresponds to the the usual Tseitin tautologies on simple graphs.
We give a finer analysis for this case which also involves a sharper derandomization.

Theorem 15. There exists a deterministic algorithm which on input T'(G, \) where
graph G = (V, E) is of mazimum degree A(G) € o(\/|E|) and X is any odd charge
labelling, produces a tree-like resolution refutation of T (G, \) in time

|00 (1=20=JPIEo(IBl)  g0.8315]

Proof. We will use a finer way of characterizing tree-like resolution size. A decision
tree refuting an unsatisfiable CNF ¢, is a decision tree on variables from ¢ and each
leaf is labelled by a clause from ¢ with the condition that every branch viewed as
partial assignment falsifies the clause at the corresponding leaf. It is known and easy
to show that there is a tree-like resolution refutation of ¢ of the same size as the
decision tree (see e.g. [BGL13]). Thus it is sufficient to construct a small decision
tree which identifies a falsified constraint.

Let n = |V|, m = |E|, k = A(G). We will build the decision tree inductively.
Each node of the decision tree will be labelled by a pair (G’, '), where G’ = (V' E’),
V' CV, E CFE and )X is an odd charge labelling of G’. At each node of the
decision tree, we query the value of some edge e = (u,v) € E’, and depending on
the value b € {0, 1} of the variable corresponding to the edge e we descend to a child
labelled by ((V', E'\ {e}), N'*?). Here, N¢? equals \ except N*(v) = b® X (v) and
Neb(u) = b@® N (u). Hence, if ) is an odd charge labelling so is A*’. (In some nodes
we will reduce G’ even more as explained below.) The root of the decision tree is
labelled by (G, A).

A node of the decision tree labelled by (G, \') will be a leaf if there is a degree
zero vertex v in G’ with ' (v) = 1. In this case the constraint corresponding to v
is falsified, and so some CNF clause associated to that constraint is also falsified.
If G’ contains a vertex v of degree 1, we query the value b of the incident edge
e = (u,v) € E' and we descend to children labelled by ((V’, E \ {e}), N*?). Notice,
(V' E"\ {e}), N®?) violates the parity constraint at v either for b= 0 or b= 1. So
one of the children is a leaf.

If G’ contains a vertex v of degree 2, we query the value of one of the incident
edges e = (u,v) € E, and the two children are labelled by ((V/, E'\ {e}), N¢?). If

12



G’ does not contain any vertex of degree less than 3, we find a balanced separator
Rin G’ of size at most (3 — €2)|E'| + Cok+/|E’| where €3 = (1 — %)2 (To find the
separator we use an algorithm described later. The separator exists by a remark
after Theorem 3.) We query all the edges e € R one by one and after each query
we descend from ((V/,E’),\) to (V',E"\ {e}, N'**) via an edge labelled by b.
After asking the last edge e of R, instead of descending to ((V/, E"\ {e}), N'®*) we
descend to ((V", E"),\") where E"” C (E'\ {e}) forms a connected component on
which \¢? is an odd charge labelling. We let V" be the vertices belonging to that
component and we set X’ to N restricted to V”. We repeat the whole process
until |E’'| < ky/m at which point we query all the remaining edges one by one to
identify a vertex violating its parity constraint.

To find the balanced separator we proceed as follows: If G’ has minimum degree
at least 3 we have |V’/| < 2|E’|/3. As every balanced separator corresponds to a
cut in G’, we look for a small balanced separator by exhaustively checking all cuts
S C V' whether they define a small balanced separator. This will be done in time
|E/|O(1)22|El|/3.

We prove by induction on the height of a node that the subtree of a node labelled
by ((V', E’),X') has at most 9(1=26)| E'[+4C2k/|E'[+kVm Joaves. If the node is a leaf
of the decision tree, the bound holds. If |E’| < ky/m then the bound holds as well.
If (V', E") contains a vertex of degree 1, then one of its children is a leaf and by the
induction on the non-leaf descendant we have: 142(1=2e2)([F/|=D)+4C2k/|E[—1+kVim
9(1-263) . 9(1=2€2)(|B|-1)+4Csk/[E/[—1+ky/m < 9(1—2¢2)| E'[+4C2k/|E' [+ky/m  1¢ (V', E')
contains a vertex of degree 2, then its children are labelled by sub-graphs containing
a degree one vertex, so the number of leaves in the entire sub-tree is bounded by
induction by:

2492. 2(1—262)(‘E/|—2)+402k\/|E,|—2+k\/ﬁ < 2(1—252)\E/|+4Cgk\/\E’|+k\/ﬁ

as desired. If (V’, E’) has minimum degree at least three, then we find a sep-
arator R of size at most (3 — e2)|E'| + C2k/|E’| and we descend to 2/f! nodes
labelled by sub-graphs on at most |E’|/2 edges. By induction the size of the sub-
tree will be at most 217l . 2(1=2e2)[E1/2+4C2k /1B 24k < 9(1=2¢2)| | /2+Caker/ ']
o(1—-262)|E'| /24+4Cok/|E'| [2+k/m < o(1=2¢2)| B/ [+4C2k\/|E'[+kyv/m og required.

Hence, for k£ € o(y/m), the size of the decision tree is 9(1=2(1=75)")Elo(| )
Descendants of each node of the tree can be determined in time |E|°() given the
balanced separators so to bound the overall running time we only need to bound the
time spent in search for the balanced separators. If we process the graphs (V', E')
labelling the decision tree always in some canonical way (we pick the edge to query
irrespective of X'), then we get at most n distinct graphs at a given level of the
decision tree, each on a disjoint set of vertices. Hence, there will be at most |V|-|E|
distinct graphs in total. For each of them we need to call the balanced separator
procedure only once. Hence, the time spent in them will be at most \E\O(l) - 22IEl/3,

As (1-2(1—- %)2) > 2/3 the claim follows.
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5 Conclusion

We showed that we can remove a small number of edges from r-uniform hypergraphs
with bounded vertex degree to break them into connected components each with at
most half of the edges. This was used to solve the satsifiability of sparse CSPs. It
would be interesting to find other applications of this separator theorem.
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