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Abstract

The two-way finite automaton with quantum and classical states (2QCFA), defined by Am-
bainis and Watrous, is a model of quantum computation whose quantum part is extremely
limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a
single-qubit can recognize the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} with bounded
error in expected time 2O(n), on inputs of length n.

We prove that their result essentially cannot be improved upon: a 2QCFA (of any size)
cannot recognize Lpal with bounded error in expected time 2o(n). To our knowledge, this is
the first example of a language that can be recognized with bounded error by a 2QCFA in
exponential time but not in subexponential time. Moreover, we prove that a quantum Turing

machine (QTM) running in space o(log n) and expected time 2n
1−Ω(1)

cannot recognize Lpal with
bounded error; again, this is the first lower bound of its kind.

Far more generally, we establish a lower bound on the running time of any 2QCFA or o(log n)-
space QTM that recognizes any language L in terms of a natural “hardness measure” of L. This
allows us to exhibit a large family of languages for which we have asymptotically matching lower
and upper bounds on the running time of any such 2QCFA or QTM recognizer.

1 Introduction

Quantum algorithms, such as Shor’s quantum polynomial time integer factorization algorithm [39],
Grover’s algorithm for unstructured search [15], and the linear system solver of Harrow, Hassidim,
and Lloyd [16], provide examples of natural problems on which quantum computers seem to have
an advantage over their classical counterparts. However, these algorithms are designed to be run
on a quantum computer that has the full power of a quantum Turing machine, whereas current
experimental quantum computers only possess a rather limited quantum part.

This naturally motivates the study of models of quantum computation that are far weaker than a
polynomial time quantum Turing machine, such as the two-way finite automaton with quantum and
classical states (2QCFA), originally defined by Ambainis and Watrous [2]. Informally, a 2QCFA is a
two-way deterministic finite automaton (2DFA) that has been augmented by a quantum register of
constant size; we define the 2QCFA model formally in Section 2.2. 2QCFA are surprisingly powerful,
as originally demonstrated by Ambainis and Watrous, who showed that a 2QCFA, with only a
single-qubit quantum register, can recognize, with bounded error, the language Leq = {ambm : m ∈
N} in expected time O(n4) and the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected
time 2O(n). In a recent paper [33], we presented further evidence of the power of few qubits by
showing that 2QCFA are capable of recognizing many group word problems with bounded error.
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It is known that 2QCFA are more powerful than 2DFA and two-way probabilistic finite automata
(2PFA). A 2DFA can only recognize regular languages [32]. A 2PFA can recognize some nonregular
languages with bounded error, given sufficient running time: in particular, a 2PFA can recognize
Leq with bounded error in expected time 2O(n) [11]. However, a 2PFA cannot recognize Leq with
bounded error in expected time 2o(n), by a result of Greenberg and Weiss [12]; moreover, a 2PFA
cannot recognize Lpal with bounded error in any time bound [10]. More generally, the landmark
result of Dwork and Stockmeyer [9] showed that a 2PFA cannot recognize any nonregular language

in expected time 2n
o(1)

. In order to prove this statement, they defined a particular “hardness
measure” DL : N→ N of a language L. They showed that, if a 2PFA recognizes some language L
with bounded error in expected time at most T (n) on all inputs of length at most n, then there
is a positive real number a (that depends only on the number of states of the 2PFA), such that
T (n) = Ω

(
2DL(n)a

)
[9, Lemma 4.3]; we will refer to this statement as the “Dwork-Stockmeyer

lemma.”
Very little was known about the limitations of 2QCFA. Are there any languages that a single-

qubit 2QCFA can recognize with bounded error in expected exponential time but not in expected
subexponential time? In particular, is it possible for a single-qubit 2QCFA to recognize Lpal with
bounded error in expected subexponential time, or perhaps even in expected polynomial time?
More generally, are there any languages that a 2QCFA (that is allowed to have a quantum register
of any constant size) can recognize with bounded error in expected exponential time but not in
expected subexponential time? These natural questions, to our knowledge, were all open (see, for
instance, [2, 3, 46] for previous discussions of these questions).

In this paper, we answer these and other related questions. In particular, we show that a
2QCFA (of any size) cannot recognize Lpal with bounded error in expected time 2o(n). Far more
generally, we prove an analogue of the Dwork-Stockmeyer lemma for 2QCFA: if a 2QCFA recognizes
some language L with bounded error in expected time at most T (n) on all inputs of length at
most n, then there a positive real number a (that depends only on the number of states of the
2QCFA), such that T (n) = Ω (DL(n)a). We note that, while our lower bound on the running
time of a 2QCFA is exponentially weaker than the lower bound on the running time of a 2PFA
provided by the Dwork-Stockmeyer lemma, both lower bounds are in fact (asymptotically) tight;
the exponential difference provides yet another example of a situation in which quantum computers
have an exponential advantage over their classical counterparts. We also establish a lower bound
on the expected running time of a 2QCFA recognizer of L in terms of the one-way deterministic
communication complexity of testing membership in L.

Furthermore, we show that the class of languages recognizable with bounded error by a 2QCFA
in expected polynomial time is contained in L/poly. This result, which shows that the class of
languages recognizable by a particular quantum model is contained in the class of languages rec-
ognizable by a particular classical model, is a type of dequantumization result. It is (qualitatively)
similar to the Adleman-type [1] derandomization result BPL ⊆ L/poly, where BPL denotes the class
of languages recognizable with bounded error by a probabilistic Turing machine (PTM) that uses
O(log n) space and runs in expected polynomial time. The only previous dequantumization result
that we are aware of was of a very different type: the class of languages recognizable by a 2QCFA,
or more generally a quantum Turing machine (QTM) that uses O(log n) space, with algebraic num-
ber transition amplitudes (even with unbounded error and with no time bound), is contained in
DSPACE(O(log2 n)) [43]. This dequantumization results is analogous to the derandomization re-
sult: the class of languages recognizable by a PTM that uses O(log n) space (even with unbounded
error and with no time bound), is contained in DSPACE(O(log2 n)) [6].

We then generalize our results to prove a lower bound on the expected running time T (n) of a
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QTM that uses sublogarithmic space (i.e., o(log n) space) and recognizes a language L with bounded
error, where this lower bound is also in terms of DL(n). In particular, we show that Lpal cannot
be recognized with bounded error by a QTM that uses sublogarithmic space and runs in expected
time 2n

1−Ω(1)
. This result is particularly intriguing as Lpal can be recognized by a deterministic

TM in O(log n) space (and, trivially, polynomial time); therefore, Lpal provides an example of a
natural problem for which polynomial time quantum TMs have no (asymptotic) advantage over
polynomial time deterministic TMs in terms of the needed amount of space.

We also investigate which group word problems can be recognized by 2QCFA, or sublogarithmic-
space QTM, with particular resource bounds. Informally, the word problem of a finitely generated
group is the problem of determining if the product of a sequence of elements of that group is equal
to the identity element. There is a deep connection between the algebraic properties of a finitely
generated group G and the complexity of its word problem WG, as has been demonstrated by many
famous results; for example, WG ∈ REG ⇔ G is finite [4], WG ∈ CFL ⇔ G is virtually free [8, 28],
WG ∈ NP⇔ G is a subgroup of a finitely presented group with polynomial Dehn function [5]. We
have recently shown that if G is virtually abelian, then WG may be recognized with bounded error
by a single-qubit 2QCFA in expected polynomial time, and that, for any group G in a certain broad
class of groups of exponential growth, WG may be recognized with bounded error by a 2QCFA (in
many cases a single-qubit 2QCFA) in expected time 2O(n) [33].

We now show that, if G has exponential growth, then WG cannot be recognized by a 2QCFA
with bounded error in expected time 2o(n), thereby providing a broad and natural class of languages
that may be recognized with bounded error by a 2QCFA in expected time 2O(n) but not 2o(n). We
also show that, if WG is recognizable by a 2QCFA with bounded error in expected polynomial
time, then G must be virtually nilpotent (i.e., G must have polynomial growth), thereby obtaining
progress towards an exact classification of those word problems recognizable by a 2QCFA in ex-
pected polynomial time. Furthermore, we show analogous results for sublogarithmic-space QTMs.

One of the key tools used in our proof is a quantum version of Hennie’s [17] notion of a crossing
sequence, which may be of independent interest. Crossing sequences played an important role in
the aforementioned 2PFA results of Dwork and Stockmeyer [9] and of Greenberg and Weiss [12]. In
particular, we show that the computation of a 2QCFA on a particular portion of the input string
can be modeled by an operator that is, in fact, a quantum channel. This allows us to bring the
tools of quantum information theory to bear to analyze the behavior of a 2QCFA.

The remainder of this paper is organized as follows. In Section 2, we briefly recall the funda-
mentals of quantum computation and the definition of 2QCFA. In Section 3, we develop our notion
of a quantum crossing sequence. The Dwork-Stockmeyer hardness measure DL of a language L, as
well as several other related hardness measures of L, play a key role in our lower bounds; we recall
the definitions of these hardness measures in Section 4.1. Then, in Section 4.2, using our notion of
a quantum crossing sequence, we prove an analogue of the Dwork-Stockmeyer lemma for 2QCFA.
Using this lemma, in Section 4.3, we establish various lower bounds on the expected running time of
2QCFA for particular languages and prove certain complexity class separations and inclusions. In
Section 5, we establish lower bounds on the expected running time of sublogarithmic-space QTMs.
In Section 6, we study group word problems and establish lower bounds on the expected running
time of 2QCFA and sublogarithmic-space QTMs that recognize certain word problems. Finally, in
Section 7, we discuss several interesting open problems related to our work.
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2 Preliminaries

2.1 Quantum Computation

In this section, we briefly recall the fundamentals of quantum computation needed in this paper
(see, for instance, [23, 30, 44] for a more detailed presentation of the material in this section). We
begin by establishing some notation. Let V denote a finite-dimensional complex Hilbert space with
inner product 〈·, ·〉 : V × V → C. The dual space V ∗ of V is the C-vector space consisting of all
linear functionals on V (i.e., all C-linear maps of the form f : V → C). We use the standard Dirac
bra-ket notation throughout this paper. We denote elements of V by kets: |ψ〉, |ϕ〉, |q〉, etc. For
the ket |ψ〉 ∈ V , we define the corresponding bra 〈ψ| ∈ V ∗ to be the linear functional on V given
by 〈|ψ〉, ·〉 : V → C (i.e, for any |ϕ〉 ∈ V , we have 〈ψ|(|ϕ〉) = 〈|ψ〉, |ϕ〉〉). For notational clarity and
brevity, we write 〈ψ|ϕ〉 in place of 〈ψ|(|ϕ〉).

Let L(V ) denote the C-vector space consisting of all C-linear maps of the form A : V → V . For
|ψ〉, |ϕ〉 ∈ V , we define |ψ〉〈ϕ| ∈ L(V ) in the natural way: for |ρ〉 ∈ V , |ψ〉〈ϕ|(|ρ〉) = |ψ〉〈ϕ|ρ〉 =
〈ϕ|ρ〉|ψ〉. For A,A′ ∈ L(V ) and |ψ〉 ∈ V , we, again for the sake of notational clarify and brevity,
write A|ψ〉 to denote the element A(|ψ〉) ∈ V obtained by applying the map A to the element |ψ〉
and write AA′ to denote the composition A ◦ A′. Let 1V ∈ L(V ) denote the identity operator on
V (i.e., 1V |ψ〉 = |ψ〉, ∀|ψ〉 ∈ V ) and let 0V ∈ L(V ) denote the zero operator on V (i.e., 0V |ψ〉 = 0
(the zero vector in V ), ∀|ψ〉 ∈ V ). For A ∈ L(V ), we define A† ∈ L(V ), the Hermitian transpose of
A, to be the unique element of L(V ) such that 〈A|ψ1〉, |ψ2〉〉 = 〈|ψ1〉, A†|ψ2〉, ∀|ψ1〉, |ψ2〉 ∈ V . Let
Herm(V ) = {A ∈ L(V ) : A = A†} denote the set of Hermitian operators on V , let Pos(V ) = {A†A :
A ∈ L(V )} ⊆ Herm(V ) denote the set of positive semi-definite operators on V , let Proj(V ) = {A ∈
Pos(V ) : A2 = A} denote the set of projection operators on V , let U(V ) = {A ∈ L(V ) : AA† = 1V }
denote the set of unitary operators on V , and let Den(V ) = {A ∈ Pos(V ) : Tr(A) = 1} denote the
set of density operators on V .

A quantum register is specified by a finite set of quantum basis states Q = {q0, . . . , qk−1}.
Corresponding to these k quantum basis states is an orthonormal basis {|q0〉, . . . , |qk−1〉} of the
finite-dimensional complex Hilbert space Ck. The quantum register stores a superposition |ψ〉 =∑
q∈Q

αq|q〉 ∈ Ck, where each αq ∈ C and
∑
q∈Q
|αq|2 = 1; in other words, a superposition |ψ〉 is simply

an element of Ck of norm 1. Let CQ denote the C-vector space consisting of all functions from Q
to C. Of course, CQ ∼= Ck; it will often be more convenient to think of superpositions as being
elements of CQ of norm 1.

A 2QCFA may only interact with its quantum register in two ways: by applying a unitary
transformation or performing a quantum measurement. If the quantum register is currently in
the superposition |ψ〉 ∈ CQ, then after applying the unitary transformation T ∈ U(CQ), the
quantum register will be in the superposition T |ψ〉. A von Neumann measurement is specified
by some P1, . . . , Pl ∈ Proj(CQ), such that PiPj = 0CQ , ∀i, j with i 6= j, and

∑
j Pj = 1CQ .

Quantum measurement is a probabilistic process where, if the quantum register is currently in the
superposition |ψ〉, then the result of the measurement has the value r ∈ {1, . . . , l} with probability
‖Pr|ψ〉‖2; if the result is r, then the quantum register collapses to the superposition 1

‖Pr|ψ〉‖Pr|ψ〉.
We emphasize that performing a quantum measurement changes the state of the quantum register.
We note that all results in this paper would also follow if we allowed the more general notion of
quantum measurement where we now only require that P1, . . . , Pl ∈ L(CQ) and

∑
j Pj = 1CQ ; see,

for instance, [30, Section 2.2.3] for a more detailed discussion of the varying types of quantum
measurements).

Let V and V ′ denote a pair of finite-dimensional complex Hilbert spaces. Let T(V, V ′) denote
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the C-vector space consisting of all C-linear maps (i.e., operators) of the form Φ : L(V ) → L(V ′).
Define T(V ) = T(V, V ) and let 1L(V ) ∈ T(V ) denote the identity operator. Consider some Φ ∈
T(V, V ′). We say that Φ is positive if, ∀A ∈ Pos(V ), we have Φ(A) ∈ Pos(V ′). We say that Φ is
completely-positive if, for every finite-dimensional complex Hilbert space W , Φ⊗ 1L(W ) is positive,
where ⊗ denotes the tensor product. We say that Φ is trace-preserving if, ∀A ∈ L(V ), we have
Tr(Φ(A)) = Tr(A). If Φ is both completely-positive and trace-preserving, then we say Φ is a
quantum channel (what some call a completely-positive superoperator). Let Chan(V, V ′) = {Φ ∈
T(V, V ′) : Φ is a quantum channel} denote the set of all such channels, and define Chan(V ) =
Chan(V, V ).

Throughout the paper, we write N≥1 to denote the positive natural numbers, R≥0 to denote
the nonnegative real numbers, and so on. For p ∈ N≥1, we define the Schatten p-norm ‖·‖p :

L(V ) → R≥0, where ‖Z‖p = (Tr((Z†Z)
p
2 ))

1
p , ∀Z ∈ L(V ). Observe that the Schatten p-norm is

indeed a norm, for every p. We also use the term trace norm to refer to the Schatten 1-norm,
and we note that ‖Z‖1 is given by the sum of the singular values of the operator Z ∈ L(V ).
Similarly, we use the term Hilbert-Schmidt norm to refer to the Schatten 2-norm, and we note that

‖Z‖2 =
√ ∑
i,j∈B
|〈ei|Z|ej〉|2, ∀Z ∈ L(V ), where {|ei〉 : i ∈ B} is an orthonormal basis of V . We define

the induced trace norm ‖·‖1 : T(V, V ′)→ R≥0, where ‖Φ‖1 = sup{‖Φ(Z)‖1 : Z ∈ L(V ), ‖Z‖1 ≤ 1},
for any Φ ∈ T(V, V ′). Observe that the induced trace norm is also a norm.

2.2 Definition of the 2QCFA Model

In this section, we define two-way finite automata with quantum and classical states (2QCFA),
essentially following the original definition given by Ambainis and Watrous [2]. Informally, a
2QCFA is a two-way DFA that has been augmented with a quantum register of constant size; the
machine may apply unitary transformations to the quantum register and perform (perhaps many)
measurements of its quantum register during its computation. Formally, a 2QCFA is a 10-tuple,

N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej),

where Q is a finite set of quantum basis states, C is a finite set of classical states, Σ is a finite
input alphabet, δtype, δtransform, and δmeasure collectively specify the transition function, qstart ∈ Q
is the quantum start state, cstart ∈ C is the classical start state, and cacc, crej ∈ C, with cacc 6= crej,
specify the classical accept and reject states, respectively. We define #L,#R 6∈ Σ, with #L 6= #R,
to be special symbols that serve as a left and right end-marker, respectively; we then define the
tape alphabet Σ+ = Σ t {#L,#R}. Let Ĉ = C \ {cacc, crej} denote the non-halting classical

states. The components of the transition function are specified as follows. Firstly, δtype : Ĉ ×
Σ+ → {transform,measure} specifies whether N performs a unitary transformation or a quantum
measurement when reading the symbol σ ∈ Σ+ while in classic state c ∈ Ĉ. In the cases in which N
performs a unitary transformation, δtransform : δ−1

type(transform)→ U(CQ)×C×{−1, 0, 1} specifies
the particular transformation to be performed to the quantum register, the new classical state, and
the direction in which the head is to move. If, instead, δtype(c, σ) = measure, then δmeasure(c, σ)
is of the form (P1, . . . , Pl, f) where P1, . . . , Pl specifies some von Neumann measurement and f :
{1, . . . , l} → C × {−1, 0, 1} is a function that specifies the new classical state and the direction in
which the head is to move for each possible outcome of that measurement.

On an input w = w1 · · ·wn ∈ Σ∗, with each wi ∈ Σ, the 2QCFA N operates as follows. The
machine has a read-only tape that contains the string #Lw1 · · ·wn#R. Initially, the classic state
of N is cstart, the quantum register is in the superposition |qstart〉, and the head is at the left
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end of the tape, over the left end-marker #L. On each step of the computation, if the classic
state is currently c ∈ Ĉ and the head is over the symbol σ ∈ Σ+, N behaves as follows. First,
suppose δtype(c, σ) = transform and δtransform(c, σ) = (t, c′, d), for some t ∈ U(CQ), c′ ∈ C, and
d ∈ {−1, 0, 1}; then N applies the transformation t to its quantum register, enters the classic state
c′, and moves its head left (resp. right) if d = −1 (resp. d = 1), keeping its head stationary if
d = 0. If, instead, δtype(c, σ) = measure, then if δmeasure(c, σ) = (P1, . . . , Pl, f), N performs the
quantum measurement specified by P1, . . . , Pl, producing the result r ∈ {1, . . . , l}; if f(r) = (c′, d),
then N enters the classic state c′ ∈ C and moves its head according to d ∈ {−1, 0, 1}. We assume
that δtransform and δmeasure are both defined such that N will never attempt to move its head off
the tape (i.e., N will never move its head left when reading #L or right when reading #R) and
that N will keep its head stationary when transitioning to either cacc or crej. If, at any point in the
computation, N enters the classical state cacc (resp. crej), then (that branch of the computation)
halts and immediately accepts (resp. rejects) its input.

Due to the fact that quantum measurement is a probabilistic process, the computation of N
on an input w is probabilistic. For any language L and any ε ∈ [0, 1

2), we say that a 2QCFA N
recognizes L with two-sided bounded error ε if, ∀w ∈ L, Pr[N accepts w] ≥ 1 − ε, and, ∀w 6∈ L,
Pr[N accepts w] ≤ ε. Then, for any function T : N → N, we define B2QCFA(k, d, T (n), ε) as the
class of languages L for which there is a 2QCFA, with at most k quantum basis states and at most
d classical states, that recognizes L with two-sided bounded error ε, and has expected running time
at most T (n) on all inputs of length at most n.

In order to make our lower bound as strong as possible, we do not require N to halt with
probability 1 on all w ∈ Σ∗ (i.e., we permit N to reject an input by looping) and we permit
language recognition under the more relaxed condition of two-sided bounded error. The bounds
that we show for this 2QCFA model of course also apply to the 2QCFA model as originally defined
by Ambainis and Watrous [2], which required N to halt with probability 1 on all inputs and operated
under the more restrictive negative one-sided bounded error recognition condition.

3 2QCFA Crossing Sequences

In this section, we develop a generalization of Hennie’s [17] notion of crossing sequences to 2QCFA,
in which we make use of several ideas from the 2PFA results of Dwork and Stockmeyer [9] and
Greenberg and Weiss [12]. This notion will play a key role in our proof of a lower bound on the
expected running time of a 2QCFA.

Consider a 2QCFA N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej). Let Ψ = {|ψ〉 ∈
CQ : ‖|ψ〉‖ = 1} denote the set of possible superpositions of the quantum register of N . Consider
an input w = w1 · · ·wn ∈ Σ∗, where each wi ∈ Σ. When N is run on input w, the tape consists
of #Lw1 · · ·wn#R; for convenience, we define w0 = #L and wn+1 = #R. One may describe the
total configuration of a single probabilistic branch of N at any particular point in time by a triple
(|ψ〉, c, h), where the quantum register is currently in the superposition |ψ〉 ∈ Ψ, the classical state
is currently c ∈ C, and the head is currently over tape cell h ∈ {0, . . . , n+ 1}.

We partition the input as w = xy, where x = w1 · · ·wn′ and y = wn′+1 · · ·wn for some n′ ∈
{0, . . . , n}. We then imagine running N beginning in the configuration (|ψ〉, c, n′), for some |ψ〉 ∈ Ψ
and c ∈ Ĉ = C \ {cacc, crej} (i.e., the head is initially over the rightmost symbol of #Lx). We wish
to describe the configuration (or, more accurately, ensemble of configurations) that N will be in
when it “finishes computing” on the prefix #Lx, either by “leaving” the string #Lx (where here we
say that N “leaves” #Lx if N moves its head right when over the rightmost symbol of #Lx), or by
accepting or rejecting its input. Of course, N may leave #Lx, then later reenter #Lx, then later
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leave #Lx again, and so on, which will naturally lead to our notion of a crossing sequence. Note
that the particular choice of the string y does not affect this subcomputation as it occurs entirely
within the prefix #Lx.

More generally, we consider the case in which N is run on the prefix #Lx, where N starts
in some ensemble of configurations {(pi, (|ψi〉, ci, n′)) : i ∈ I}, where the probability of being in
configuration (|ψi〉, ci, n′) is given by pi (note that the head position in each configuration is over
the rightmost symbol of #Lx); we call this ensemble a starting ensemble. We then wish to describe
the ensemble of configurations that N will be in when it “finishes computing” on the prefix #Lx,
(essentially) as defined above; we call this ensemble a stopping ensemble1. However, we do not
wish to use the large (potentially infinite) ensemble of configurations as the basis of our definition
of a 2QCFA crossing sequence, as they would not be suitable for the type of analysis we wish to
perform. Instead, we will describe an ensemble of configurations using density operators.

3.1 Describing Ensembles of Configurations of 2QCFA

Let |x| denote the length of a string x, let Ĥx = {0, . . . , |x|} denote the head positions corresponding
to the prefix #Lx, and let Hx = {0, . . . , |x|+ 1} denote the set of possible positions the head of N
may be in when N is run on the prefix #Lx until N “finishes computing” on the prefix #Lx. We now
establish some notation that will allow us to (non-uniquely) describe ensembles of configurations
of N .

We first consider an ensemble of pure states of the quantum register of N . In particular, we
consider the ensemble {(pi, |ψi〉) : i ∈ I}, for some index set I, where pi ∈ [0, 1] denotes the
probability of the quantum register of N being in the superposition |ψi〉 ∈ Ψ, and

∑
i pi = 1. This

ensemble corresponds to the density operator A =
∑

i pi|ψi〉〈ψi| ∈ Den(CQ). Of course, many
distinct ensembles correspond to the density operator A; however, all ensembles that correspond to
a particular density operator will behave the same, for our purposes (see, for instance, [30, Section
2.4] for a detailed discussion of this phenomenon, and of the following claims). That is to say,
for any ensemble described by a density operator A ∈ Den(CQ), applying the transformation
T ∈ U(CQ) produces an ensemble described by the density operator TAT †. Similarly, consider
the von Neumann measurement specified by some P1, . . . , Pl ∈ Proj(CQ). Then for any ensemble
described by the density operator A, the probability that the result of this measurement is r is
given by Tr(PrAP

†
r ), and if the result is r then the ensemble collapses to an ensemble described

by the density operator 1

Tr(PrAP
†
r )
PrAP

†
r . As N performs only a (classically controlled) sequence of

unitary transformations and quantum measurements of its quantum register, the behavior of N is
well-defined on density operators.

Remark. We note that the quantum register of any 2QCFA at any particular point in time is
described by an ensemble of pure states (i.e., the quantum register is in a mixed state). However,
the ensembles of pure states of the quantum register that we will consider when defining the
crossing sequence of a 2QCFA do not describe the quantum register at a particular time; instead,
the ensembles that we study consist of all the possible states of the quantum register at particular
important events (such as the jth time the head crosses the boundary between #Lx and y#R). We
elaborate on this issue in Section 3.3.

We then consider an ensemble of configurations {(pi, (|ψi〉, ci, hi)) : i ∈ I}, for some index set I,
where |ψi〉 ∈ Ψ, ci ∈ C, and hi ∈ Hx, ∀i ∈ I, and where the probability of N being in configuration
(|ψi〉, ci, hi) is given by pi. Let î(c, h) = {i ∈ I : ci = c and hi = h} denote the indices of those

1We use the terms “starting ensemble” and “stopping ensemble” to make clear the similarity to the notion of a
“starting condition” and of a “stopping condition” used by Dwork and Stockmeyer [9] in their 2PFA result.
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configurations in classical state c and with head position h. We describe the ensemble by means
of the pair of functions p : C ×Hx → [0, 1] and A : C ×Hx → Den(CQ), where p(c, h) denotes the
probability of the classical state being c and the head position being h, and A(c, h) is a density
operator that describes the ensemble of quantum register superpositions restricted to configurations
in classical state c and head position h, where we assign an arbitrary value to A(c, h) if there are
no such configurations. To be precise, we have

p(c, h) =
∑

i∈̂i(c,h)

pi and A(c, h) =


∑

i∈̂i(c,h)

pi
p(c,h) |ψi〉〈ψi|, if p(c, h) 6= 0

|qstart〉〈qstart|, if p(c, h) = 0.

The 2QCFA N posseses both a constant-sized quantum register, that stores a superposition
|ψ〉 ∈ CQ, and a constant-sized classical register, that stores a classical state c ∈ C. We can
naturally interpret each c ∈ C as an element |c〉 ∈ CC , of a special type; that is to say, each
classical state c corresponds to some element |c〉 in the natural orthonormal basis of CC , whereas
each superposition |ψ〉 of the quantum register corresponds to an element of CQ of norm 1. One
may also view N as possessing a head register that stores a (classical) head position h ∈ Hx (when
computing on the prefix #Lx); of course, the size of this pseudo-register grows with the input prefix
x. We analogously interpret a head position h ∈ Hx as being the “classical” element |h〉 ∈ CHx ,
in the same way as we have done for the classical state c ∈ C. A configuration (|ψ〉, c, h) of N is
then simply a state of the combined register, which consists of the quantum, classical, and head
registers; we then naturally interpret a configuration as an element of CQ⊗CC ⊗CHx , of a special
form, in the obvious way. Let Den(CQ ⊗ CC ⊗ CHx) denote the set of all density operators on the
combined space CQ ⊗ CC ⊗ CHx . For a pair (p,A) that describes an ensemble of configurations,
the element Z =

∑
c∈C,h∈Hx

p(c, h)A(c, h)⊗ |c〉〈c| ⊗ |h〉〈h| ∈ Den(CQ⊗CC ⊗CHx) describes the same

ensemble. Let D̂en(CQ ⊗ CC ⊗ CHx) denote the set of all density operators given by some Z of
the above form (i.e., those density operators that respect the fact that both the classical state and
head position are classical). We write (p,A) ↔ Z to denote this correspondence between a pair

(p,A) that describes some ensemble and the element Z ∈ D̂en(CQ ⊗CC ⊗CHx) that describes the
same ensemble. We use these two types of notation interchangeably.

We also consider the case in which the head position does not need to be recorded and we
are only interested in the combined state of the quantum register and classical register. We then
analogously describe an ensemble {(pi, (|ψi〉, ci)) : i ∈ I} by a pair of functions p : C → [0, 1]
and A : C → Den(CQ), where p(c) denotes the probability of the classical state being c and A(c)
is a density operator that describes the ensemble of quantum register superpositions restricted to
configurations in classical state c. We similarly consider the set Den(CQ⊗CC) of density operators

on the space CQ ⊗CC , and we define D̂en(CQ ⊗CC) to be those density operators that describe a
valid ensemble of configurations.

In a starting ensemble, as defined above, all configurations have the same head position: |x|.
We define the map Ix : L(CQ ⊗ CC) → L(CQ ⊗ CC ⊗ CHx) such that Ix(Z) = Z ⊗ ||x|〉〈|x||,
∀Z ∈ L(CQ⊗CC). Notice that, for any Z ∈ D̂en(CQ⊗CC), if {(pi, (|ψi〉, ci)) : i ∈ I} is any ensemble
of states of the quantum register and classical register of N that is described by Z, then the ensemble
{(pi, (|ψi〉, ci, |x|)) : i ∈ I} of configurations of N is described by Ix(Z) ∈ D̂en(CQ ⊗ CC ⊗ CHx).

Similarly, in a stopping ensemble, all configurations either have head position |x| + 1 or are
accepting or rejecting configurations (in which the head position is not relevant). Let 1L(CQ⊗CC) ⊗
Tr : L(CQ⊗CC ⊗CHx)→ L(CQ⊗CC) denote the unique element of T(CQ⊗CC ⊗CHx ,CQ⊗CC)
such that (1L(CQ⊗CC) ⊗ Tr)(ZQC ⊗ ZH) = Tr(ZH)ZQC , ∀ZQC ∈ L(CQ ⊗ CC), ∀ZH ∈ L(CHx).
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We call the operator 1L(CQ⊗CC) ⊗ Tr the partial trace with respect to CHx and we use TrCHx

as a shorthand notation for this operator. Notice that, for any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if
{(pi, (|ψi〉, ci, hi)) : i ∈ I} is any ensemble of configurations of N described by Z, then the ensemble
{(pi, (|ψi〉, ci)) : i ∈ I} of states of the quantum register and classical register of N is described by

TrCHx (Z) ∈ D̂en(CQ ⊗ CC).

3.2 Overview of 2QCFA Crossing Sequences

We now sketch our definition of the crossing sequence of the 2QCFA N on the partitioned input
xy. Consider running N on the prefix #Lx beginning in some starting ensemble {(pi, (|ψi〉, ci, |x|)) :
i ∈ I}. To avoid unnecessary cases later, we also allow N to start in a configuration of the form
(|ψ〉, c, |x|), where c ∈ {cacc, crej}, where we adopt the convention that in such a case N immediately
leaves #Lx in the configuration (|ψ〉, c, |x|+ 1). For any m ∈ N, we define the m-truncated stopping
ensemble as the ensemble of configurations (of the quantum register and classical register, we
ignore the head position here) N will be in when it “finishes computing” on #Lx, as defined
above, with the modification that if any particular branch of N attempts to perform more than m
quantum measurements, the computation of that branch will be “interrupted” immediately before
it attempts to perform the m+ 1st quantum measurement and instead immediately reject; we also
adopt a special convention to deal with branches that, after some point, run forever without leaving
#Lx or ever performing any measurements (and so are rejecting by looping), where we consider
these branches to be in a configuration with classical state crej. To be clear, both the truncation of
branches that perform many measurements and this convention concerning looping branches occur
only in the analysis of N ; we do not modify the 2QCFA N .

We then define the m-truncated transfer operator N
−−←⊃

x,m : L(CQ ⊗ CC) → L(CQ ⊗ CC) such

that, for any Z ∈ D̂en(CQ ⊗ CC), if N is run on the prefix #Lx beginning in an ensemble of
configurations described by Ix(Z), then the m-truncated stopping ensemble will be described by

N
−−←⊃

x,m(Z). For m sufficiently large, with respect to the expected running time of N on the (total)
input xy, this operator accurately describes the behavior of N when computing on the prefix #Lx.
This follows from the fact that, if a particular branch of N runs for s steps, that branch cannot
possibly make more than s quantum measurements; therefore, interrupting branches that perform
an extremely large number of quantum measurements will have a negligible impact on the behavior

of N . Symmetrically, we define the operator N
−−←⊃
y,m : L(CQ ⊗ CC) → L(CQ ⊗ CC) that defines the

behavior of N when computing on the suffix y#R. The m-truncated crossing sequence will then
consist of the sequence of density operators obtained by beginning with the simple density operator
that describes the ensemble of configurations of (a slightly modified version of) N when it first

crosses between #Lx and y#R, and then alternately applying the operators N
−−←⊃

x,m and N
−−←⊃
y,m in an

infinite sequence.

Crucially, we will observe that N
−−←⊃

x,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC), ∀x, y ∈ Σ∗, ∀m ∈ N. This will

allow us to make use of the machinery of quantum channels to analyze the behavior of a 2QCFA.
In fact, the analysis that we perform on the m-truncated transfer operators, which allows us to
exhibit a lower bound on the expected running time of a 2QCFA, only requires a somewhat weaker
property than being a quantum channel; we prove this stronger property as these notions of transfer
operators and crossing sequences may be of use in proving other properties of 2QCFA in the future.

Remark. While the m-truncated crossing operator N
−−←⊃

x,m completely suffices for our analysis, one

could also define a non-truncated transfer operator N
−−←⊃

x ∈ Chan(CQ⊗CC) as an accumulation point

of the sequence (N
−−←⊃

x,m)m∈N; such an accumulation point exists due to the fact that Chan(CQ⊗CC)
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is compact (see, for instance, [44, Proposition 2.28]). Using N
−−←⊃

x and the symmetrically defined

N
−−←⊃
y , one could then define the non-truncated crossing sequence of N on xy. The resulting analyses

of these two types of crossing sequences would essentially be identical, and so we do not consider
this definition further here; however, the (somewhat cleaner) non-truncated crossing sequence may
be more useful in other applications.

3.3 Definition and Properties of 2QCFA Crossing Sequences

We now formally define the notion of a crossing sequence of a 2QCFA, sketched in the previous
section, and prove certain needed properties. We begin by considering running N on the prefix #Lx
beginning in any configuration of the more general form (|ψ〉, c, h), for some |ψ〉 ∈ Ψ, c ∈ Ĉ, and
h ∈ Ĥx. Note that, while this computation is a probabilistic process, it is entirely deterministic
until N makes its first quantum measurement; in particular, the decision of when to perform a
quantum measurement is entirely deterministic. Therefore, if we run N starting in the configuration
(|ψ〉, c, h), then eventually one of the following three disjoint events will occur: (1) N leaves #Lx
before ever performing a quantum measurement, (2) N accepts or rejects its input before leaving
#Lx or performing a quantum measurement, (3) N performs a quantum measurement. Recall that,
by our definition of the 2QCFA model, N may not move its head when transitioning to cacc or crej,
and so N may not leave #Lx in the same step in which it accepts or rejects its input. Note that case
(2) includes the possibility that N never leaves #Lx and never performs a quantum measurement,
in which case N is looping and so N has rejected its input. We define subcases (2)halt and (2)loop

corresponding to N halting within some finite number of steps and N running forever, respectively.
Furthermore, note that the particular case that occurs depends exclusively on x, c, and h (i.e., |ψ〉
is not relevant).

We will refer to the above events (1), (2)halt, (2)loop, and (3) as key-events. We define keyEvx :

Ĉ × Ĥx → {(1), (2)halt, (2)loop, (3)} such that keyEvx(c, h) is the first key-event that occurs when
running N on prefix #Lx, beginning in the configuration (|ψ〉, c, h), for some (irrelevant) |ψ〉 ∈ Ψ.
We now define the functions tx : C × Hx → U(CQ), γx : C × Hx → C, and hx : C × Hx → Hx,
which describe the behavior of N until the first key-event, as follows.

First, consider c ∈ Ĉ and h ∈ Ĥx such that keyEvx(c, h) ∈ {(1), (2)halt, (3)}. As noted above, the
computation of N is completely deterministic before the first quantum measurement is performed,
and depends only on x, c, and h. Define ŝx,c,h ∈ N≥1 such that the first time that a key-event occurs
is on step ŝx,c,h of the computation (of this single branch of N , where the first step occurs when N is
in the configuration (|ψ〉, c, h)). If keyEvx(c, h) ∈ {(1), (2)halt}, let sx,c,h = ŝx,c,h, if keyEvx(c, h) =
(3), let sx,c,h = ŝx,c,h − 1. We define tx(c, h), γx(c, h), and hx(c, h), such that, immediately after
performing step sx,c,h, N is in the single configuration (tx(c, h)|ψ〉, γx(c, h), hx(c, h)). Note that
if (1) or (2)halt occurs, then (tx(c, h)|ψ〉, γx(c, h), hx(c, h)) is the configuration of N immediately
after the step in which the key-event occurs, and if (3) occurs, then (tx(c, h)|ψ〉, γx(c, h), hx(c, h))
is the configuration of N immediately before the first key-event occurs. To be precise, for i ∈
{1, . . . , sx,c,h}, let Tx,c,h,i ∈ U(CQ) denote the unitary transformation that N applies to its quantum
register on the ith step. Let tx(c, h) = Tx,c,h,sx,c,h ◦ · · · ◦ Tx,c,h,1 ∈ U(CQ) denote the total unitary
transformation applied to the quantum register (recall that we apply transformations on the left),
let γx(c, h) ∈ C denote the classical state that N enters on step sx,c,h, and let hx(c, h) ∈ Hx be the
position the head of N moves to on step sx,c,h.

Next, consider c ∈ Ĉ and h ∈ Ĥx such that keyEvx(c, h) = (2)loop. In this case, we have
a branch of the computation of N that runs forever without ever leaving #Lx or performing a
quantum measurement. As such a branch corresponds to the case in which N is rejecting its
input by looping, we will simply consider such a branch to be in the classical state crej, to avoid
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unnecessary cases in our analysis later. In particular, we define tx(c, h) = 1CQ (the identity map),
γx(c, h) = crej, and hx(c, h) = h. Of course, we are not modifying the machine N such that these
branches halt; this convention is used only in our analysis of N .

Notice that, if N is run on the prefix #Lx beginning in the single configuration (|ψ〉, c, h), for
some |ψ〉 ∈ Ψ, c ∈ Ĉ, and h ∈ Ĥx, then when the first key-event occurs (with the conventions
stated above), N will be in the single configuration (tx(c, h)|ψ〉, γx(c, h), hx(c, h)), which satisfies
the following properties. If keyEvx(c, h) = (1), then N has just left #Lx for the first time; in
particular, hx(c, h) = |x| + 1 (i.e., the head is one cell to the right of the rightmost symbol of
#Lx). If keyEvx(c, h) = (2)halt, then N has just halted, accepting or rejecting the input (on
this branch); in particular, γx(c, h) ∈ {cacc, crej}. If keyEvx(c, h) = (2)loop, then N is rejecting
its input by looping (on this branch); in particular, γx(c, h) = crej. If keyEvx(c, h) = (3), then

hx(c, h) ∈ Ĥx and δtype(γx(c, h), xhx(c,h)) = measure; in particular, N will perform a quantum
measurement of its quantum register at step ŝx,c,h = sx,c,h + 1, after having performed exclu-
sively unitary transformations of its quantum register within the first sx,c,h steps. In particular,
if keyEvx(c, h) ∈ {(1), (2)halt, (2)loop}, then the ensemble of configurations that N is in when it
“finishes computing” on the prefix #Lx (where N begins in the single configuration (|ψ〉, c, h)) is
given by the single configuration (tx(c, h)|ψ〉, γx(c, h), hx(c, h)). Of course, if keyEvx(c, h) = (3),
then N will perform a quantum measurement on its next step, after which point N will be in
an ensemble of configurations. After completing our definition and analysis of tx, γx, and hx, we
will subsequently define functions that describe the behavior of N when it performs a quantum
measurement; this will ultimately allow us to describe the m-truncated stopping ensemble.

We have, so far, defined tx(c, h), γx(c, h), and hx(c, h), ∀c ∈ Ĉ, ∀h ∈ Ĥx. For any other pair (c, h)
(i.e., if c ∈ {cacc, crej} or h = |x|+ 1), we define tx(c, h) = 1CQ , γx(c, h) = c, and hx(c, h) = h. That
is to say, we define these functions such that they leave configurations (|ψ〉, c, h), with c ∈ {cacc, crej}
or h = |x| + 1 unchanged; we do this as we want to group together the different branches of the
computation of N when each branch “finishes computing” on #Lx for the first time. This will be
explained more fully when we formally define crossing sequences. This completes our definition of
the functions tx, γx, and hx, which describe the behavior of N until the first key event.

Let {(pi, (|ψi〉, ci, hi)) : i ∈ I} be any ensemble of configurations where |ψi〉 ∈ Ψ, ci ∈ C, and
hi ∈ Hx, ∀i ∈ I. We define the ensemble of configurations at the next key-event to be the ensemble
{(pi, (tx(ci, hi)|ψi〉, γx(ci, hi), hx(ci, hi))) : i ∈ I}. In other words, for each i with ci ∈ Ĉ and hi ∈ Ĥx,
we replace the configuration (|ψi〉, ci, hi) by the configuration (tx(ci, hi)|ψi〉, γx(ci, hi), hx(ci, hi))
that N is in when the first key-event occurs, with the above conventions; for any other i, we
leave the configuration unchanged. We now define an operator Kx that encapsulates the above
computation in a useful way. In particular, consider any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx) and let
{(pi, (|ψi〉, ci, hi)) : i ∈ I} be any ensemble of configurations described by Z. We define Kx such
that the ensemble of configurations at the next key-event is described by Kx(Z).

Definition 3.1. Consider a 2QCFA N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej)
and input prefix x ∈ Σ∗. Define the functions tx, γx, and hx as above. For each c ∈ C and each
h ∈ Hx, let Ex,c,h = tx(c, h)⊗ |γx(c, h)〉〈c| ⊗ |hx(c, h)〉〈h| ∈ L(CQ⊗CC ⊗CHx). We then define the

operator Kx : L(CQ⊗CC ⊗CHx)→ L(CQ⊗CC ⊗CHx) such that Kx(Z) =
∑

c∈C,h∈Hx

Ex,c,hZE
†
x,c,h,

∀Z ∈ L(CQ ⊗ CC ⊗ CHx).

We next observe that Kx operates as described on density operators, and that Kx is a quantum
channel.

Lemma 3.2. Using the notation of Definition 3.1, the following statements hold.
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(i) For any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if {(pi, (|ψi〉, ci, hi)) : i ∈ I} is any ensemble of configu-
rations described by Z, then the ensemble of configurations at the next key-event is described
by Kx(Z).

(ii) We have Kx ∈ Chan(CQ ⊗ CC ⊗ CHx).

Proof. (i) Any Z ∈ D̂en(CQ⊗CC⊗CHx) is of the form Z =
∑

ĉ∈C,ĥ∈Hx

p(ĉ, ĥ)A(ĉ, ĥ)⊗|ĉ〉〈ĉ|⊗|ĥ〉〈ĥ|,

for some p : C ×Hx → [0, 1] and A : C ×Hx → Den(CQ). We then have

Kx(Z) =
∑
c∈C
h∈Hx

Ex,c,h

( ∑
ĉ∈C
ĥ∈Hx

p(ĉ, ĥ)A(ĉ, ĥ)⊗ |ĉ〉〈ĉ| ⊗ |ĥ〉〈ĥ|
)
E†x,c,h

=
∑
c,ĉ∈C
h,ĥ∈Hx

p(ĉ, ĥ)tx(c, h)A(ĉ, ĥ)tx(c, h)†⊗|γx(c, h)〉〈c|ĉ〉〈ĉ|c〉〈γx(c, h)|⊗|hx(c, h)〉〈h|ĥ〉〈ĥ|h〉〈hx(c, h)|

=
∑
c∈C
h∈Hx

p(c, h)tx(c, h)A(c, h)tx(c, h)† ⊗ |γx(c, h)〉〈γx(c, h)| ⊗ |hx(c, h)〉〈hx(c, h)|.

As noted previously, if the unitary transformation T ∈ U(CQ) is applied to any ensemble of
superpositions of the quantum register described by some density operator A ∈ Den(CQ), the
result is an ensemble described by the density operator TAT †. The claim is then immediate
from definitions.

(ii) The family {Ex,c,h : c ∈ C, h ∈ Hx} is a Kraus representation of the operator Kx (see, for
instance, [44, Section 2.2] for a formal definition). It is straightforward to see that Kx ∈
Chan(CQ⊗CC⊗CHx) if an only if

∑
c∈C,h∈Hx

E†x,c,hEx,c,h = 1CQ⊗CC⊗CHx (see, for instance, [44,

Corollary 2.27]). For any c ∈ C and h ∈ Hx, we have

E†x,c,hEx,c,h =

(
tx(c, h)†⊗|c〉〈γx(c, h)|⊗ |h〉〈hx(c, h)|

)(
tx(c, h)⊗|γx(c, h)〉〈c|⊗ |hx(c, h)〉〈h|

)
= tx(c, h)†tx(c, h)⊗ |c〉〈γx(c, h)|γx(c, h)〉〈c| ⊗ |h〉〈hx(c, h)|hx(c, h)〉〈h|

= 1CQ ⊗ |c〉〈c| ⊗ |h〉〈h|.

Therefore,∑
c∈C
h∈Hx

E†x,c,hEx,c,h =
∑
c∈C
h∈Hx

1CQ ⊗ |c〉〈c| ⊗ |h〉〈h| = 1CQ ⊗ 1CC ⊗ 1CHx = 1CQ⊗CC⊗CHx .

We next consider the behavior of N when it performs a quantum measurement. Suppose N is
in the configuration (|ψ〉, c, h), for some |ψ〉 ∈ Ψ, c ∈ Ĉ, and h ∈ Ĥx, where δtype(c, xh) = measure
(i.e., N will perform a quantum measurement on the next step of its computation). Define
Px,c,h,1, . . . , Px,c,h,lx,c,h ∈ Proj(CQ), Rx,c,h = {1, . . . , lx,c,h}, and the function fx,c,h : Rx,c,h →
C × {−1, 0, 1} such that δmeasure(c, xh) = (Px,c,h,1, . . . , Px,c,h,lx,c,h , fx,c,h). For each r ∈ Rx,c,h,
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define γ̃x(c, h, r) ∈ C and dx,c,h,r ∈ {−1, 0, 1} such that fx,c,h(r) = (γ̃x(c, h, r), dx,c,h,r) and de-

fine h̃x(c, h, r) = h + dx,c,h,r. The outcome of the measurement is r ∈ Rx,c,h with probability
‖Px,c,h,r|ψ〉‖2; if the outcome is r, then the quantum register of N collapses to the superposition

1
‖Px,c,h,r|ψ〉‖Px,c,h,r|ψ〉. Therefore, after performing the above measurement, N is in the ensemble{(
‖Px,c,h,r|ψ〉‖2,

(
1

‖Px,c,h,r|ψ〉‖Px,c,h,r|ψ〉, γ̃x(c, h, r), h̃x(c, h, r)
))

: r ∈ Rx,c,h, ‖Px,c,h,r|ψ〉‖ 6= 0
}

.

We have made the above definitions of Rx,c,h, γ̃x(c, h, r), etc., for all cases in which N performs
a quantum measurement on the next step of its computation while N is computing within the prefix
#Lx (i.e., when c ∈ Ĉ, h ∈ Ĥx, and δtype(c, xh) = measure). Otherwise, we define Rx,c,h = {1},
Px,c,h,1 = 1CQ , γ̃x(c, h, 1) = c, and h̃x(c, h, 1) = h; this will assure that all other configurations
are left unchanged (again, we do this as we want to group together the different branches of the
computation of N when each branch “finishes computing” on #Lx for the first time). We now
define an operator Mx that performs at most one quantum measurement.

Definition 3.3. Consider a 2QCFA N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej)
and input prefix x ∈ Σ∗. Using the above notation, for each c ∈ C, h ∈ Hx, and r ∈ Rx,c,h, let

Ẽx,c,h,r = Px,c,h,r⊗|γ̃x(c, h, r)〉〈c|⊗|h̃x(c, h, r)〉〈h| ∈ L(CQ⊗CC⊗CHx). We then define the operator

Mx : L(CQ⊗CC⊗CHx)→ L(CQ⊗CC⊗CHx) such that Mx(Z) =
∑

c∈C,h∈Hx

∑
r∈Rx,c,h

Ẽx,c,h,rZẼ
†
x,c,h,r,

∀Z ∈ L(CQ ⊗ CC ⊗ CHx).

Lemma 3.4. Using the notation of Definition 3.3, the following statements hold.

(i) For any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if {(pi, (|ψi〉, ci, hi)) : i ∈ I} is any ensemble of con-
figurations described by Z, then Mx(Z) describes an ensemble of configurations for which
each configuration with ci ∈ Ĉ, hi ∈ Ĥx, and δtype(ci, xhi) = measure is replaced by the en-
semble of configurations obtained by performing a single quantum measurement and all other
configurations are left unchanged.

(ii) We have Mx ∈ Chan(CQ ⊗ CC ⊗ CHx).

Proof. (i) This follows immediately from the fact that quantum measurement is well defined on
density operators. For the sake of completeness, we now exhibit the straightforward proof.

Any Z ∈ D̂en(CQ⊗CC ⊗CHx) is of the form Z =
∑

ĉ∈C,ĥ∈Hx

p(ĉ, ĥ)A(ĉ, ĥ)⊗ |ĉ〉〈ĉ| ⊗ |ĥ〉〈ĥ|, for

some p : C ×Hx → [0, 1] and A : C ×Hx → Den(CQ). For each ĉ ∈ C and each ĥ ∈ Hx, let

Z
ĉ,ĥ

= A(ĉ, ĥ)⊗|ĉ〉〈ĉ|⊗ |ĥ〉〈ĥ| ∈ D̂en(CQ⊗CC⊗CHx), and for each r ∈ Rx,c,h, let D
γ̃x(ĉ,ĥ,r)

=

|γ̃x(ĉ, ĥ, r)〉〈γ̃x(ĉ, ĥ, r)| ∈ D̂en(CC) and let D
h̃x(ĉ,ĥ,r)

= |h̃x(ĉ, ĥ, r)〉〈h̃x(ĉ, ĥ, r)| ∈ D̂en(CHx).

First, suppose ĉ ∈ Ĉ, ĥ ∈ Ĥx, and δtype(ĉ, xĥ) = measure. If N is in an ensemble of con-
figurations described by Z

ĉ,ĥ
, then all configurations in that ensemble are in classic state

ĉ and have head position ĥ, A(ĉ, ĥ) describes the ensemble of superpositions of the quan-
tum register, and N will perform the same quantum measurement in its next computational
step on all configurations in the ensemble. As noted earlier, when performing this quantum

measurement, the probability of outcome r ∈ R
x,ĉ,ĥ

is given by Tr
(
P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

)
; if

the outcome is r, the ensemble of configurations of the quantum register will collapse to an
ensemble described by 1

Tr
(
P
x,ĉ,ĥ,r

A(ĉ,ĥ)P †
x,ĉ,ĥ,r

)P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

.
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Let R̃
x,ĉ,ĥ,A(ĉ,ĥ)

=
{
r ∈ R

x,ĉ,ĥ
: Tr

(
P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

)
6= 0
}

denote those measurement

outcomes that occur with non-zero probability. Note that P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

∈ Den(CQ) ⊆

Pos(CQ), and so all eigenvalues of the operator P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

are non-negative real

numbers. If we have Tr
(
P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

)
= 0, then the operator P

x,ĉ,ĥ,r
A(ĉ, ĥ)P †

x,ĉ,ĥ,r

has only the eigenvalue 0 (with multiplicity |Q|), which then implies that P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

=

0CQ (as P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

∈ Pos(CQ)). Therefore, after performing the above quantum

measurement, N is in an ensemble of configurations described by the density operator Z ′
ĉ,ĥ

,

where

Z ′
ĉ,ĥ

=
∑

r∈R̃
x,ĉ,ĥ,A(ĉ,ĥ)

Tr
(
P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

)
Tr
(
P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

)P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

⊗D
γ̃x(ĉ,ĥ,r)

⊗D
h̃x(ĉ,ĥ,r)

=
∑

r∈R̃
x,ĉ,ĥ,A(ĉ,ĥ)

P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

⊗D
γ̃x(ĉ,ĥ,r)

⊗D
h̃x(ĉ,ĥ,r)

=
∑

r∈R
x,ĉ,ĥ

P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

⊗D
γ̃x(ĉ,ĥ,r)

⊗D
h̃x(ĉ,ĥ,r)

.

Next, suppose instead that it is not the case that ĉ ∈ Ĉ, ĥ ∈ Ĥx, and δtype(ĉ, xĥ) = measure.

We then define Z ′
ĉ,ĥ

=
∑

r∈R
x,ĉ,ĥ

P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

⊗D
γ̃x(ĉ,ĥ,r)

⊗D
h̃x(ĉ,ĥ,r)

, as in the previous

case. Note that, for ĉ and ĥ of this form, we have Z ′
ĉ,ĥ

= Z
ĉ,ĥ

.

By the above, after performing quantum measurements for all appropriate configurations
(i.e., for all configurations on which N will perform a quantum measurement in its next
computational step), and leaving all other configurations unchanged, N will be an ensemble
of configurations described by Z ′, where

Z ′ =
∑
ĉ∈C
ĥ∈Hx

p(ĉ, ĥ)Z
ĉ,ĥ

=
∑
ĉ∈C
ĥ∈Hx

∑
r∈R

x,ĉ,ĥ

p(ĉ, ĥ)P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

⊗D
γ̃x(ĉ,ĥ,r)

⊗D
h̃x(ĉ,ĥ,r)

.

Let F (ĉ, ĥ) = p(ĉ, ĥ)P
x,ĉ,ĥ,r

A(ĉ, ĥ)P †
x,ĉ,ĥ,r

. We then have

Mx(Z) =
∑
c∈C
h∈Hx
r∈Rx,c,h

Ẽx,c,h,rZẼ
†
x,c,h,r

=
∑
c∈C
h∈Hx
r∈Rx,c,h

Ẽx,c,h,r

( ∑
ĉ∈C
ĥ∈Hx

p(ĉ, ĥ)A(ĉ, ĥ)⊗ |ĉ〉〈ĉ| ⊗ |ĥ〉〈ĥ|
)
Ẽ†x,c,h,r

=
∑
c,ĉ∈C
h,ĥ∈Hx
r∈Rx,c,h

F (ĉ, ĥ)⊗ |γ̃x(ĉ, ĥ, r)〉〈c|ĉ〉〈ĉ|c〉〈γ̃x(ĉ, ĥ, r)| ⊗ |h̃x(ĉ, ĥ, r)〉〈h|ĥ〉〈ĥ|h〉〈h̃x(ĉ, ĥ, r)|
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=
∑
ĉ∈C
ĥ∈Hx
r∈R

x,ĉ,ĥ

F (ĉ, ĥ)⊗ |γ̃x(ĉ, ĥ, r)〉〈γ̃x(ĉ, ĥ, r)| ⊗ |h̃x(c′, h′, r)〉〈h̃x(c′, h′, r)| = Z ′.

(ii) We proceed analogously to the proof of Lemma 3.2(ii). For any c ∈ C, h ∈ H, and r ∈ Rx,c,h,

recall that Px,c,h,r ∈ Proj(CQ), which implies P †x,c,h,rPx,c,h,r = Px,c,h,rPx,c,h,r = Px,c,h,r; we
then have

Ẽ†x,c,h,rẼx,c,h,r = (P †x,c,h,r⊗|c〉〈γ̃x(c, h, r)|⊗|h〉〈h̃x(c, h, r)|)(Px,c,h,r⊗|γ̃x(c, h, r)〉〈c|⊗|h̃x(c, h, r)〉〈h|)

= P †x,c,h,rPx,c,h,r ⊗ |c〉〈γ̃x(c, h, r)|γ̃x(c, h, r)〉〈c| ⊗ |h〉〈h̃x(c, h, r)|h̃x(c, h, r)〉〈h|

= Px,c,h,r ⊗ |c〉〈c| ⊗ |h〉〈h|.

As {Px,c,h,r : r ∈ Rx,c,h} specifies a quantum measurement, we have
∑

r∈Rx,c,h
Px,c,h,r = 1CQ ,

which implies∑
c∈C
h∈Hx
r∈Rx,c,h

Ẽ†x,c,h,rẼx,c,h,r =
∑
c∈C
h∈Hx
r∈Rx,c,h

Px,c,h,r⊗|c〉〈c|⊗|h〉〈h| =
∑
c∈C
h∈Hx

1CQ⊗|c〉〈c|⊗|h〉〈h| = 1CQ⊗CC⊗CHx .

By [44, Corollary 2.27], Mx ∈ Chan(CQ ⊗ CC ⊗ CHx).

We next define a truncation operator Tx.

Definition 3.5. Consider a 2QCFA N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej)

and input prefix x ∈ Σ∗. For each c ∈ C and each h ∈ Hx, we define Êx,c,h ∈ L(CQ ⊗ CC ⊗ CHx)

as follows. If c ∈ Ĉ and h ∈ Ĥx, then Êx,c,h = 1CQ ⊗ |crej〉〈c| ⊗ |h〉〈h|, otherwise, Êx,c,h =
1CQ ⊗ |c〉〈c| ⊗ |h〉〈h|. We then define the operator Tx : L(CQ ⊗ CC ⊗ CHx) → L(CQ ⊗ CC ⊗ CHx)

such that Tx(Z) =
∑

c∈C,h∈Hx

Êx,c,hZÊ
†
x,c,h, ∀Z ∈ L(CQ ⊗ CC ⊗ CHx).

Lemma 3.6. Using the notation of Definition 3.5, the following statements hold.

(i) For any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if {(pi, (|ψi〉, ci, hi)) : i ∈ I} is any ensemble of config-
urations described by Z, then Tx(Z) describes an ensemble of configurations for which each
configuration with both ci ∈ Ĉ and hi ∈ Ĥx is replaced by the configuration (|ψi〉, crej, hi) and
all other configurations are left unchanged. In other words, all configurations that correspond
to the case in which N has “finished computing” on #Lx are left unchanged, and all other
configurations become rejecting configurations.

(ii) We have Tx ∈ Chan(CQ ⊗ CC ⊗ CHx).

Proof. (i) Immediate from definitions.

(ii) As in the proof of Lemma 3.2(ii), we may straightforwardly show
∑

c∈C,h∈Hx

Ê†x,c,hÊx,c,h =

1CQ⊗CC⊗CHx , which implies Tx ∈ Chan(CQ ⊗ CC ⊗ CHx) [44, Corollary 2.27].
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We now formally define the notion of a m-truncated transfer operator and of a m-truncated
crossing sequence. Firstly, given a 2QCFA N , we produce an equivalent N ′ of a certain convenient
form, in much the same way that Dwork and Stockmeyer [9] converted a 2PFA to an equivalent
2PFA of a convenient form. The 2QCFA N ′ is identical to N , except for the addition of two new
classical states: c′start and c′, where c′start will be the classical start state of N ′. On any input w,
N ′ will move its head continuously to the right until it reaches #R, remaining in state c′start and
performing the trivial transformation to its quantum register along the way. When the head reaches
#R, N ′ will enter c′ and perform the trivial transformation to its quantum register; then, N ′ will
move its head continuously to the left until it reaches #L, remaining in state c′ and performing the
trivial transformation to its quantum register along the way. When the head reaches #L, N ′ will
enter the original classical start state cstart and perform the trivial transformation to its quantum
register. After this point, N ′ behaves identically to N . For the remainder of the paper, we assume
all 2QCFA under consideration have this form.

Definition 3.7. Consider a 2QCFA N = (Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej).

(i) For any x ∈ Σ∗, define Ix : L(CQ⊗CC)→ L(CQ⊗CC⊗CHx) and TrCHx : L(CQ⊗CC⊗CHx)→
L(CQ ⊗ CC) as in Section 3.1, define Kx,Mx, Tx : L(CQ ⊗ CC ⊗ CHx)→ L(CQ ⊗ CC ⊗ CHx)

as above. For each m ∈ N, we define the m-truncated transfer operator N
−−←⊃

x,m : L(CQ ⊗ CC ⊗
CHx)→ L(CQ ⊗ CC ⊗ CHx) by N

−−←⊃
x,m = TrCHx ◦Tx ◦ (Kx ◦Mx)m ◦Kx ◦ Ix.

(ii) For any y ∈ Σ∗, we next consider the “dual case” of running N on the suffix y#R beginning
in some ensemble of configurations {(pi, (|ψi〉, ci, |x| + 1)) : i ∈ I} (i.e., the head position
of every configuration is over the leftmost symbol of y#R). We define the notion of an m-
truncated stopping ensemble, and all other notions, symmetrically. That is to say, a branch
of N “finishes computing” on y#R when it either “leaves” y#R (by moving its head left from
the leftmost symbol of y#R), or accepts or rejects the input, or attempts to perform m + 1

quantum measurements. We then define N
−−←⊃
y,m : L(CQ ⊗CC ⊗CHx)→ L(CQ ⊗CC ⊗CHx) as

the corresponding “dual” m-truncated transfer operator for y.

(iii) For any x, y ∈ Σ∗ and any m ∈ N, we then define the m-truncated crossing sequence of N

with respect to the (partitioned) input xy to be the sequence Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC),
defined as follows. The density operator Z1 describes the ensemble consisting of the single
configuration (of the quantum register and classical register) (|qstart〉, cstart) that N is in when
it first crosses from #Lx into y#R, which is of this simple form due to the assumed form of
N . The sequence Z1, Z2, . . . is then obtained by starting with Z1 and alternately applying

N
−−←⊃
y,m and N

−−←⊃
x,m. To be precise,

Zi =


|qstart〉〈qstart| ⊗ |cstart〉〈cstart|, i = 1

N
−−←⊃
y,m(Zi−1), i > 1, i is even

N
−−←⊃

x,m(Zi−1), i > 1, i is odd.

Lemma 3.8. Using the notation of Definition 3.7, the following statements hold.

(i) For any Z ∈ D̂en(CQ ⊗ CC), if N is run on the prefix #Lx beginning in any ensemble of
configurations described by Ix(Z) (i.e., the head position of every configuration is over the

rightmost symbol of #Lx), then the m-truncated stopping ensemble is described by N
−−←⊃

x,m(Z).
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(ii) Symmetrically, for any Z ∈ D̂en(CQ ⊗ CC), if N is run on the suffix y#R beginning in any
ensemble of configurations described by Ĩy(Z) (i.e., the head position of every configuration
is over the leftmost symbol of y#R), then the m-truncated stopping ensemble is described by

N
−−←⊃
y,m(Z).

(iii) We have N
−−←⊃

x,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC), ∀x, y ∈ Σ∗, ∀m ∈ N.

Proof. (i) For any Z ∈ D̂en(CQ ⊗ CC), let {(pi, (|ψi〉, ci, |x|)) : i ∈ I} be any ensemble of con-
figurations described by Ix(Z). By Lemma 3.2(i), {(pi, (tx(ci, |x|)|ψi〉, γx(ci, |x|), hx(ci, |x|))) :
i ∈ I}, the ensemble of configurations at the first key-event, is described by Kx(Ix(Z)).
For any i ∈ I such that ci ∈ {cacc, crej} or keyEvx(ci, |x|) ∈ {(1), (2)halt, (2)loop}, the con-
figuration (tx(ci, |x|)|ψi〉, γx(ci, |x|), hx(ci, |x|))) is one on which N has “finished computing”
on #Lx. For any other i ∈ I (i.e., ci ∈ Ĉ and keyEvx(ci, |x|) = (3)), the configuration
(tx(ci, |x|)|ψi〉, γx(ci, |x|), hx(ci, |x|))) is one on which N will perform a quantum measure-
ment in the next step of its computation.

First, suppose m = 0. Then terminating these configurations on which N is about to
perform a quantum measurement (by replacing the classic state of each such configura-
tion by crej), would yield an ensemble of configurations that, after ignoring the head po-
sition, is the 0-truncated stopping ensemble. By Lemma 3.6(i), we then conclude that

TrCHx (Tx(Kx(Ix(Z)))) = N
−−←⊃

x,0(Z) describes the 0-truncated stopping ensemble, as desired.

Next, suppose m > 0. Let {(p′i, (|ψ′i〉, c′i, h′i)) : i ∈ I ′} denote the ensemble of configu-
rations obtained from {(pi, (tx(ci, |x|)|ψi〉, γx(ci, |x|), hx(ci, |x|))) : i ∈ I} by performing a
single quantum measurement on appropriate configurations (i.e., for each i ∈ I such that
γx(ci, |x|) ∈ Ĉ, hx(ci, |x|) ∈ Ĥx, and δtype(γx(ci, |x|), xhx(ci,|x|)) = measure, we replace the
configuration (tx(ci, |x|)|ψi〉, γx(ci, |x|), hx(ci, |x|)) by the ensemble of configurations that re-
sult from applying a single quantum measurement) and leaving all other configurations un-
changed. By Lemma 3.4(i), Mx(Kx(Ix(Z)) describes the ensemble {(p′i, (|ψ′i〉, c′i, h′i)) : i ∈
I ′}. By another application of Lemma 3.2(i), Kx(Mx(Kx(Ix(Z))) describes the ensemble
{(p′i, (tx(c′i, h

′
i)|ψ′i〉, γx(c′i, h

′
i), hx(c′i, h

′
i))) : i ∈ I ′} obtained by running N on the ensemble

{(p′i, (|ψ′i〉, c′i, h′i)) : i ∈ I ′} until the next key-event occurs (where configurations on which N
has already “finished computing” on #Lx (by having accepted or rejected the input, or by
having left #Lx once) are left unchanged).

If m = 1, then, as argued above, terminating all those configurations in the ensemble
{(p′i, (tx(c′i, h

′
i)|ψ′i〉, γx(c′i, h

′
i), hx(c′i, h

′
i))) : i ∈ I ′} on which N is about to perform a quan-

tum measurement, would yield an ensemble of configurations that, after ignoring the head
position, is the 1-truncated stopping ensemble. By Lemma 3.6(i), we then conclude that

TrCHx (Tx(Kx(Mx(Kx(Ix(Z)))))) = N
−−←⊃

x,0(Z) describes the 1-truncated stopping ensemble, as

desired. If m > 1, then by continuing in this fashion, we conclude that N
−−←⊃

x,m(Z) describes the
m-truncated stopping ensemble, as desired.

(ii) Immediate by Definition 3.7(ii), and analogous versions of Lemma 3.2(i), Lemma 3.4(i), and
Lemma 3.6(i).

(iii) By Definition 3.7(i), N
−−←⊃

x,m = TrCHx ◦Tx◦(Kx◦Mx)m◦Kx◦Ix. By Lemma 3.2(ii), Lemma 3.4(ii),

and Lemma 3.6(ii), we have Kx,Mx, Tx ∈ Chan(CQ⊗CC ⊗CHx). It is straightforward to see
that Ix ∈ Chan(CQ⊗CC ,CQ⊗CC ⊗CHx) and TrCHx ∈ Chan(CQ⊗CC ⊗CHx ,CQ⊗CC) and
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that the composition of quantum channels is a quantum channel (see, for instance, [44, Section

2.2]).The claim for N
−−←⊃
y,m follows by an analogous argument.

Note that the {Zi} that comprise a crossing sequence do not describe the ensemble of config-
urations of N at particular points in time during its computation on the input xy; instead, Zi
describes the ensemble of configurations of the set of all the probabilistic branches of N at the ith

time each branch crosses between #Lx and y#R (with the convention stated above of considering
a branch that has accepting or rejected its input to “cross” in classic state cacc or crej, respectively,
indefinitely; as well as the convention that if a given branch of N attempts to perform more than m
quantum measurements within the prefix #Lx or within the suffix y#R, that branch is interrupted
and immediately forced to reject). Of course, a given branch may not cross between #Lx and y#R

more than i times within the first i steps of the computation, nor may a given branch perform
more than i quantum measurements within i steps of computation; this will allow us to use such
crossing sequences to prove a lower bound on the expected running-time of N .

4 Lower Bounds on the Running Time of 2QCFA

Dwork and Stockmeyer proved a lower bound [9, Lemma 4.3] on the expected running time T (n)
of any 2PFA that recognizes any language L with bounded error, where the lower bound is in
terms of their hardness measure DL(n). We prove that an analogous claim holds for any 2QCFA.
The preceding quantum generalization of a crossing sequence plays a key role in the proof, essen-
tially taking the place of the Markov chains used both in the aforementioned result of Dwork and
Stockmeyer and in the earlier result of Greenberg and Weiss [12] that showed that a 2PFA cannot
recognize Leq = {ambm : m ∈ N} with bounded error in subexponential time.

4.1 Nonregularity, Automaticity, and Similar Hardness Measures

For any language L, Dwork and Stockmeyer [9] defined a particular “hardness measure” DL : N→
N, which they called the nonregularity of L. We begin by recalling this definition. Let Σ be a
finite alphabet, L ⊆ Σ∗ a language, and n ∈ N. For a string w ∈ Σ∗, we use |w| to denote its
length. Let Σ≤n = {w ∈ Σ∗ : |w| ≤ n} denote the set of all strings over Σ of length at most n
and consider some x, x′ ∈ Σ≤n. We say that x and x′ are (L, n)-dissimilar, which we denote by
writing x 6∼L,n x′, if ∃y ∈ Σ≤n

′
, where n′ = n−max(|x|, |x′|), such that xy ∈ L⇔ x′y 6∈ L. Recall

the classic Myhill-Nerode inequivalence relation, in which x, x′ ∈ Σ∗ are L-dissimilar if ∃y ∈ Σ∗,
such that xy ∈ L ⇔ x′y 6∈ L. Then x, x′ ∈ Σ≤n are (L, n)-dissimilar precisely when they are
L-dissimilar, and the dissimilarity is witnessed by a “short” string y. We then define the function
DL : N → N such that DL(n) is the largest h ∈ N such that ∃x1, . . . , xh ∈ Σ≤n that are pairwise
(L, n)-dissimilar (i.e., ∀i, j with i 6= j, xi 6∼L,n xj).

In fact, the hardness measure DL of a language L has been defined by many authors, both before
and after Dwork and Stockmeyer, who gave many different names to DL and who (repeatedly)
rediscovered certain basic facts about DL; we refer the reader to the excellent paper of Shallit and
Breitbart [36] for a detailed history of the study of DL and related hardness measures. In the
remainder of this section, we briefly recall two crucial equivalent definitions of DL, as well as the
definition of a certain related (inequivalent) hardness measure, which we will need in order to prove
our various lower bounds in their full generality.

For some DFA (one-way deterministic finite automaton) M , let |M | denote the number of
states of M and let L(M) denote the language of M (i.e., the set of strings accepted by M). The
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earliest definition of a hardness measure equivalent to Dwork-Stockmeyer nonregularity was given
by Karp [22], who defined AL(n) = min{|M | : M is a DFA and L(M) ∩ Σ≤n = L ∩ Σ≤n} to be
the minimum number of states of a DFA that agrees with L on all strings of length at most n;
Shallit and Breitbart use the term deterministic automaticity to refer to AL. It is immediately
obvious that AL(n) ≥ DL(n), ∀n; somewhat less obviously, AL(n) = DL(n),∀n [21, 22, 36], and so
the notions of nonregularity and deterministic automaticity coincide.

Consider a language L ⊆ Σ∗ and two communicating parties: Alice, who knows some string
x ∈ Σ∗, and Bob, who knows some string y ∈ Σ∗. Alice sends some message A(x) ∈ {0, 1}∗ to
Bob, after which Bob must be able to determine, using A(x) and y, if the string w = xy is in L.
Let CL(n) denote the maximum, taken over all x, y ∈ Σ∗ such that |xy| ≤ n, of the number of
bits sent from Alice to Bob by the optimal such (deterministic one-way) protocol. This quantity,
the one-way deterministic communication complexity of testing membership in L, is related to the
nonregularity of L; in particular, CL(n) = logDL(n), ∀n [7].

Lastly, we recall the definition of a related (but inequivalent) hardness measure used by Ibarra
and Ravikumar [20] in their study of non-uniform small-space DTMs (deterministic Turing ma-
chines). Let Σn = {w ∈ Σ∗ : |w| = n}. We then consider 2DFA (two-way deterministic finite
automata), and use the same notation as was used above for DFA. For a language L, define
A2DFA
L,= (n) = min{|M | : M is a 2DFA and L(M) ∩ Σn = L ∩ Σn} to be the minimum number

of states of a 2DFA that agrees with L on all strings of length exactly n. Clearly, for any lan-
guage L, A2DFA

L,= (n) ≤ AL(n), ∀n. They then defined NUDSPACE(O(S(n))) (non-uniform deter-

ministic space O(S(n))) to be the class of languages L such that A2DFA
L,= (n) = 2O(S(n)). Note

that NUDSPACE(O(S(n))) = DSPACE(O(S(n)))/2O(S(n)), the class of languages recognizable by a
DTM that, on any input w, uses space O(S(|w|)), and has access to an “advice” string y|w|, which

depends only on the length |w| of the input and is itself of length |yn| = 2O(S(n)). In particular,
L/poly := DSPACE(O(log n))/2O(logn) = NUDSPACE(O(log n)) = {L : A2DFA

L,= (n) = nO(1)}.

4.2 A 2QCFA Analogue of the Dwork-Stockmeyer Lemma

In the Dwork and Stockmeyer [9] lower bound on the expected running time of any 2PFA that
recognizes a language L, the function DL played an important role, as, intuitively, DL measures
the number of strings which must be distinguished, in a certain sense, by any 2PFA that recognizes
L. This function also plays an important role in our result, as we shall now demonstrate that an
analogous statement holds for 2QCFA.

The main idea is as follows. Consider a 2QCFA N , with quantum basis states Q an classical
states C, that recognizes L ⊆ Σ∗, with two-sided bounded error ε ∈ R>0, in expected time at most
T (n) on all inputs of length at most n. For any n ∈ N, consider x, x′ ∈ Σ≤n such that x 6∼L,n x′.
By definition, ∃y ∈ Σ≤n

′
, where n′ = n − max(|x|, |x′|), such that xy ∈ L ⇔ x′y 6∈ L; note that

xy, x′y ∈ Σ≤n. Without loss of generality, we assume xy ∈ L, and hence x′y 6∈ L. We consider
running N on the partitioned input xy as well as on the partitioned input x′y. For m ∈ N, we define

the m-truncated transfer operators N
−−←⊃

x,m, N
−−←⊃

x′,m, and N
−−←⊃
y,m as in Definition 3.7. By Lemma 3.8(iii),

N
−−←⊃

x,m, N
−−←⊃

x′,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC). We define a distance metric on Chan(CQ ⊗ CC). We show

that, if DL(n) is “large”, then, for any m, we can find x, x′ ∈ Σ≤n such that x 6∼L,n x′ and the

distance between N
−−←⊃

x,m and N
−−←⊃

x′,m is “small.” We also show that, for m sufficiently large, if the

distance between N
−−←⊃

x,m and N
−−←⊃

x′,m is “small,” then the behavior of N on the inputs xy and x′y
will be similar; in particular, if T (n) is “small” compared to a suitable function of DL(n), then
Pr[N accepts xy] ≈ Pr[N accepts x′y]. However, as xy ∈ L, we must have Pr[N accepts xy] ≥ 1−ε,
and as x′y 6∈ L, we must have Pr[N accepts x′y] ≤ ε, which is impossible. This contradiction allows
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us to establish a lower bound on T (n) in terms of DL(n). In this section, we formalize this idea.
For density operators Z,Z ′ ∈ L(CQ ⊗ CC), we use ‖Z − Z ′‖1, the distance metric induced

by the trace norm, to measure the distance between Z and Z ′. For x, x′ ∈ Σ∗ and m ∈ N, we

use ‖N
−−←⊃

x,m − N
−−←⊃

x′,m‖1, the distance metric induced by the induced trace norm, to measure the

distance between N
−−←⊃

x,m and N
−−←⊃

x′,m. Suppose N is run on two distinct partitioned inputs xy and x′y,
producing two distinct m-truncated crossing sequences, following Definition 3.7(iii). We first show

that if ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 is “small”, then these crossing sequences are similar.

Lemma 4.1. Consider a 2QCFA N with quantum basis states Q, classical states C, and input
alphabet Σ. For x, x′, y ∈ Σ∗ and m ∈ N, let Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC) (resp. Z ′1, Z

′
2, . . . ∈

D̂en(CQ ⊗ CC)) denote the m-truncated crossing sequence obtained when N is run on xy (resp.

x′y). Then ‖Zi − Z ′i‖1 ≤ b i−1
2 c‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1, ∀i ∈ N≥1.

Proof. Note that ‖Φ(Z)‖1 ≤ ‖Z‖1, ∀Z ∈ L(CQ⊗CC), ∀Φ ∈ Chan(CQ⊗CC) (see, for instance, [44,
Corollary 3.40]). Therefore, for any Φ ∈ Chan(CQ ⊗ CC) and any Z,Z ′ ∈ L(CQ ⊗ CC), we have

‖Φ(Z)− Φ(Z ′)‖1 = ‖Φ(Z − Z ′)‖1 ≤ ‖Z − Z ′‖1.

That is to say, the distance metric on L(CQ ⊗CC) induced by the trace norm is contractive under

any map Φ ∈ Chan(CQ ⊗ CC). By Lemma 3.8(iii), N
−−←⊃

x,m, N
−−←⊃

x′,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC).

By definition, Z1 = |qstart〉〈qstart| ⊗ |cstart〉〈cstart| = Z ′1, and so ‖Z1 − Z ′1‖1 = 0. For i even, we

have, by definition, Zi = N
−−←⊃
y,m(Zi−1) and Z ′i = N

−−←⊃
y,m(Z ′i−1). By the above observation concerning

the contractivity of the trace norm, we then have

‖Zi − Z ′i‖1 = ‖N
−−←⊃
y,m(Zi−1)−N

−−←⊃
y,m(Z ′i−1)‖1 ≤ ‖Zi−1 − Z ′i−1‖1, if i is even.

For i odd, with i > 1, we have, by definition Zi = N
−−←⊃

x,m(Zi−1) and Z ′i = N
−−←⊃

x′,m(Z ′i−1). Note that,

for any Z ∈ Den(CQ⊗CC), we have ‖Z‖1 = 1, which implies ‖Φ(Z)‖1 ≤ ‖Φ‖1, ∀Φ ∈ T(CQ⊗CC);

of course, N
−−←⊃

x,m−N
−−←⊃

x′,m ∈ T(CQ⊗CC). By this observation and the earlier observation concerning
the contractivity of the trace norm, we have

‖Zi−Z ′i‖1 = ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x′,m(Z ′i−1)‖1 ≤ ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x,m(Z ′i−1)‖1+‖N
−−←⊃

x,m(Z ′i−1)−N
−−←⊃

x′,m(Z ′i−1)‖1

≤ ‖N
−−←⊃

x,m(Zi−1−Z ′i−1)‖1+‖(N
−−←⊃

x,m−N
−−←⊃

x′,m)(Z ′i−1)‖1 ≤ ‖Zi−1−Z ′i−1‖1+‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1, if i odd, i > 1.

The claim then follows by induction on i ∈ N≥1.

Lemma 4.2. Consider a language L over some finite alphabet Σ. Suppose L ∈ B2QCFA(k, d, T (n), ε),
for some k, d ∈ N≥2, T : N → N, and ε ∈ [0, 1

2). If, for some n ∈ N, ∃x, x′ ∈ Σ≤n such that

x 6∼L,n x′, then T (n) ≥ (1−2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖
−1
1 , ∀m ≥ d 2

1−2εT (n)e.

Proof. By definition, x 6∼L,n x′ precisely when ∃y ∈ Σ∗ such that xy, x′y ∈ Σ≤n, and xy ∈
L ⇔ x′y 6∈ L. Fix such a y, and assume, without loss of generality, that xy ∈ L (and hence
x′y 6∈ L). For m ∈ N, suppose that, when N is run on the partitioned input xy (resp. x′y), we

obtain the m-truncated crossing sequence Zm,1, Zm,2, . . . ∈ D̂en(CQ ⊗ CC) (resp. Z ′m,1, Z
′
m,2, . . . ∈

D̂en(CQ ⊗ CC)). For s ∈ N≥1, define pm,s, p
′
m,s : C → [0, 1] and Am,s, A

′
m,s : C → Den(CQ) such

that Zm,s ↔ (pm,s, Am,s) and Z ′m,s ↔ (p′m,s, A
′
m,s). For c ∈ C, let Ec = 1CQ ⊗ |c〉〈c| ∈ L(CQ ⊗CC).

Notice that pm,s(c) = Tr(EcZm,sE
†
c) and p′m,s(c) = Tr(EcZ

′
m,sE

†
c). Therefore,

|pm,s(c)− p′m,s(c)| = |Tr(EcZm,sE
†
c)−Tr(EcZ

′
m,sE

†
c)| = |Tr(Ec(Zm,s−Z ′m,s)E†c)| ≤ ‖Zm,s−Z ′m,s‖1.
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By Lemma 4.1, ‖Zm,s − Z ′m,s‖1 ≤ s−1
2 ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1, ∀s ∈ N≥1, and so we conclude

|pm,s(c)− p′m,s(c)| ≤
s− 1

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1.

Notice that pm,s(cacc) (resp. p′m,s(cacc)) is the probability that N accepts xy (resp. x′y) within
the first s times (on a given branch of the computation) the head of N crosses the boundary between
x (resp. x′) and y, where any branch that attempts to perform more than m quantum measurements
between consecutive boundary crossings is forced to halt and reject immediately before attempting
to perform the m + 1st such quantum measurement. Let pN (w) denote the probability that N
accepts an input w ∈ Σ∗, let pN (w, s) denote the probability that N accepts w within s steps, and
let hN (w, s) denote the probability that N halts on input w within s steps.

Due to the fact that x′y 6∈ L, we must have pN (x′y) ≤ ε. Clearly, p′m,s(cacc) ≤ pN (x′y), for any
m and s, as all branches that attempt to perform more than m quantum measurements (between
consecutive crossings) are considered to reject the input in the m-truncated crossing sequence.
Suppose s ≤ m. Notice that any branch that runs for a total of at most s steps before halting
cannot possibly perform more than s quantum measurements (and so certainly cannot perform more
than s quantum measurements between consecutive crossings between #Lx and y#R); therefore,
such a branch is unaffected by m-truncation. Moreover, if a branch halts (and accepts) within s
steps, it will certainly halt (and accept) within s crossings between #Lx and y#R. This implies
pN (xy, s) ≤ pm,s(cacc), if s ≤ m. Therefore, if s ≤ m, we have

pN (xy, s) ≤ pm,s(cacc) ≤ p′m,s(cacc) + |pm,s(cacc)− p′m,s(cacc)| ≤ ε+
s− 1

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1.

By definition, the expected running time of N on input xy is at most T (|xy|); therefore, by

Markov’s inequality, 1− hN (xy, s) ≤ T (|xy|)
s . Due to the fact that xy ∈ L, we must have pN (xy) ≥

1− ε. Therefore, for any s,m ∈ N≥1 where s ≤ m, we have

1− ε ≤ pN (xy) ≤ pN (xy, s) + (1− hN (xy, s)) ≤ ε+
s− 1

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 +

T (|xy|)
s

.

Set s = d 2
1−2εT (n)e, and notice that |xy| ≤ n implies T (|xy|) ≤ T (n). For any m ≥ s, we then have

1− 2ε ≤
d 2

1−2εT (n)e − 1

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 +

T (|xy|)
d 2

1−2εT (n)e
≤ T (n)

1− 2ε
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 +

1− 2ε

2
.

Therefore,

T (n) ≥ (1− 2ε)2

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖−1

1 , ∀m ≥
⌈

2

1− 2ε
T (n)

⌉

The following lemma shows that any “large” set of input prefixes contains a pair of input prefixes

x, x′ such that N
−−←⊃

x,m and N
−−←⊃

x′,m are at “small” distance from one another, for all m ∈ N.

Lemma 4.3. Consider a 2QCFA N with quantum basis states Q, classical states C, and input
alphabet Σ; let k = |Q| and d = |C|. Further, consider any finite X ⊆ Σ∗ such that |X| ≥ 2. Then

∀m ∈ N, ∃x, x′ ∈ X such that x 6= x′ and ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ 4
√

2k4d3
(
|X|

1
k4d2 − 1

)−1
.
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Proof. For q, q′ ∈ Q and c, c′ ∈ C, let Fq,q′,c,c′ = |q〉〈q′|⊗|c〉〈c′| ∈ L(CQ⊗CC). Let J : T(CQ⊗CC)→
L(CQ ⊗ CC ⊗ CQ ⊗ CC) denote the Choi isomorphism, which is given by

J(Φ) =
∑
q,q′∈Q
c,c′∈C

Fq,q′,c,c′ ⊗ Φ(Fq,q′,c,c′), ∀Φ ∈ T(CQ ⊗ CC).

Consider any x ∈ Σ∗ and m ∈ N. We next observe that J(N
−−←⊃

x,m) is of a special form. We

encode J(N
−−←⊃

x,m) as a (k2d2) × (k2d2) matrix M(J(N
−−←⊃

x,m)) in the natural way. The set of rows

and the set of columns of M(J(N
−−←⊃

x,m)) are each indexed by Q × C × Q × C. For a matrix M ,
M [i, j] denotes the entry in row i and column j. For q1, q2, q

′
1, q
′
2 ∈ Q and c1, c2, c

′
1, c
′
2 ∈ C, we de-

fine M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c
′
1, q
′
2, c
′
2)] = 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1)|q′2c′2〉 (where 〈q2c2| denotes

(〈q2| ⊗ 〈c2|), etc.).

We first observe that, if c1 6= c′1 or if c2 6= c′2, then M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c
′
1, q
′
2, c
′
2)] = 0.

To see this, recall that, by Definition 3.7(i), N
−−←⊃

x,m = TrCHx ◦Tx◦(Kx◦Mx)m◦Kx◦Ix. If c1 6= c′1, then,

by inspection, Kx(Ix(Fq1,q′1,c1,c′1)) = 0CQ⊗CC⊗CHx , which implies N
−−←⊃

x,m(Fq1,q′1,c1,c′1) = 0CQ⊗CC , which

then implies M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c
′
1, q
′
2, c
′
2)] = 0. If c2 6= c′2, then ∀Z ∈ L(CQ ⊗ CC),

〈q2c2|TrCHx (Tx(Z))|q′2c′2〉 = 0, which implies M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c
′
1, q
′
2, c
′
2)] = 0.

By Lemma 3.8(iii), N
−−←⊃

x,m ∈ Chan(CQ ⊗ CC), which implies J(N
−−←⊃

x,m) ∈ Pos(CQ ⊗ CC ⊗ CQ ⊗
CC) [44, Corollary 2.27]. Therefore, for any q1, q2, q

′
1, q
′
2 ∈ Q and for any c1, c2, c

′
1, c
′
2 ∈ C, we

have M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c
′
1, q
′
2, c
′
2)] = M(J(N

−−←⊃
x,m))[(q′1, c

′
1, q
′
2, c
′
2), (q1, c1, q2, c2)]; more-

over, M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q1, c1, q2, c2)] ∈ R.

Therefore, for any 2QCFA N of the assumed type, any m ∈ N, and any x ∈ Σ∗, M(J(N
−−←⊃

x,m)) is

only potentially non-zero at the k4d2 entries of the form M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q′1, c1, q
′
2, c2)],

and each entry below the main diagonal of M(J(N
−−←⊃

x,m)) is the complex conjugate of a partic-

ular entry above the main diagonal. We define the function gN,m : Σ∗ → Rk4d2
such that,

∀x ∈ Σ∗, gN,m(x) encodes all the potentially non-zero entries of M(J(N
−−←⊃

x,m)) on or above the
main diagonal; to be precise, the first k2d2 entries are given by the entries on the main diagonal,

M(J(N
−−←⊃

x,m))[(q1, c1, q2, c2), (q1, c1, q2, c2)], for q1, q2 ∈ Q and c1, c2 ∈ C, all of which are real num-

bers, and whose remaining k4d2 − k2d2 entries are given by encoding each of the 1
2(k4d2 − k2d2)

potentially non-zero entries of M(J(N
−−←⊃

x,m)) that lie above the main diagonal as the pair of real
numbers that comprise their real and imaginary parts.

Let h = k4d2. In the following, in addition to the notation for the norms of operators and of
quantum channels defined in Section 2.1, we write ‖·‖ : Rh → R≥0 to denote the usual Euclidean
2-norm on Rh. It is straightforward to show that ‖Φ‖1 ≤ ‖J(Φ)‖1, ∀Φ ∈ T(CQ ⊗ CC) (see, for
instance [44, Section 3.4] or [29, Remark 4]). Therefore, for any x, x′ ∈ Σ∗, we then have

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ ‖J(N
−−←⊃

x,m −N
−−←⊃

x′,m)‖1 = ‖J(N
−−←⊃

x,m)− J(N
−−←⊃

x′,m)‖1

≤ k2d2‖J(N
−−←⊃

x,m)− J(N
−−←⊃

x′,m)‖2 ≤
√

2k2d2‖gN,m(x)− gN,m(x′)‖.

Note that N
−−←⊃

x,m ∈ Chan(CQ ⊗ CC) implies ‖N
−−←⊃

x,m‖1 = 1 [44, Corollary 3.40]. Then, ∀q, q′ ∈
Q,∀c ∈ C, we have ‖Fq,q′,c,c‖1 = 1, which implies ‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤ 1. Therefore, ∀x ∈ Σ∗, we

have

‖gN,m(x)‖ ≤ ‖J(N
−−←⊃

x,m)‖2 ≤ ‖J(N
−−←⊃

x,m)‖1 ≤
∑

q,q′∈Q,c∈C
‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤

∑
q,q′∈Q,c∈C

1 = k2d =
√
h.
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To complete the proof, for v0 ∈ Rh and r ∈ R>0, let B(v0, r) = {v ∈ Rh : ‖v0 − v‖ ≤ r}
denote the closed ball centered at v0 of radius r in Rh. There is a constant ch ∈ R>0 such that
B(v0, r) has volume vol(B(v0, r)) = chr

h. For any x ∈ Σ∗, ‖gN,m(x)‖ ≤
√
h, which implies that,

for any δ ∈ R>0, B(gN,m(x), δ) is properly contained in B(0,
√
h + δ). Suppose ∀x, x′ ∈ X with

x 6= x′, we have B(gN,m(x), δ) ∩ B(gN,m(x′), δ) = ∅. Then tx∈XB(gN,m(x), δ) ⊆ B(0,
√
h + δ),

which implies |X|chδh ≤ ch(
√
h + δ)h. Set δ = 2

√
h

|X|1/h−1
. Then ∃x, x′ ∈ X, with x 6= x′, such that

B(gN,m(x), δ) ∩B(gN,m(x′), δ) 6= ∅, which implies ‖gN,m(x)− gN,m(x′)‖ ≤ 2δ. Therefore,

‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1 ≤
√

2k2d2‖gN,m(x)−gN,m(x′)‖ ≤
√

2k2d2 4
√
h

|X|1/h − 1
≤ 4
√

2k4d3
(
|X|

1
k4d2 − 1

)−1
.

We now prove the main technical result of this section: a 2QCFA analogue of the Dwork and
Stockmeyer lemma [9, Lemma 4.3]. That is to say, we show that, if a 2QCFA recognizes some
language L with bounded error, then T (n), the maximum expected running time of that 2QCFA
on inputs of length at most n, is lower bounded by an appropriate function of the hardness measure
DL(n).

Theorem 4.4. If L ∈ B2QCFA(k, d, T (n), ε), for some k, d ∈ N≥2, T : N→ N, and ε ∈ [0, 1
2), then

∃N0 ∈ N such that T (n) ≥ (1−2ε)2

16
√

2k4d3DL(n)
1

k4d2 , ∀n ≥ N0.

Proof. Consider some language L over some finite alphabet Σ. By [9, Lemma 3.1], L ∈ REG if and
only if ∃b ∈ N≥1 such that DL(n) ≤ b, ∀n ∈ N. Therefore, if L ∈ REG, the claim is immediate
(recall that T (n) ≥ n); for the remainder of the proof, we assume L 6∈ REG.

Suppose L ∈ B2QCFA(k, d, T (n), ε). For each n ∈ N, we define Xn = {x1, · · · , xDL(n)} ⊆ Σ≤n

such that the xi are pairwise (L, n)-dissimilar. As DL(n) is not bounded above by any constant,
∃N0 ∈ N such that DL(N0) ≥ 2k

4d2
. Then, ∀n ≥ N0, we have |Xn| = DL(n) ≥ DL(N0) ≥ 2k

4d2
.

Fix n ≥ N0 and set m = d1−2ε
2 T (n)e. By Lemma 4.3, ∃x, x′ ∈ Xn such that x 6= x′ and

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ 4
√

2k4d3
(
|Xn|

1
k4d2 − 1

)−1
≤ 8
√

2k4d3|Xn|−
1

k4d2 = 8
√

2k4d3DL(n)−
1

k4d2 .

Fix such a pair x, x′, and note that x 6∼L,n x′, by construction. By Lemma 4.2,

T (n) ≥ (1− 2ε)2

2
‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖−1

1 ≥ (1− 2ε)2

16
√

2k4d3
DL(n)

1
k4d2 .

4.3 2QCFA Running Time Lower Bounds and Complexity Class Separations

Theorem 4.4 has several significant implications on the power of 2QCFA. To allow us to properly
state our results, as well as to better enable us to discuss existing results, we now define a collection
of complexity classes that capture the power of 2QCFA with particular resource bounds. We
first define B2QCFA(T (n)) = ∪k,d∈N≥2,ε∈[0, 1

2
)B2QCFA(k, d, T (n), ε) to be the class of languages

recognizable with two-sided bounded error by a 2QCFA with any constant number of quantum
basis states and any constant number of classical states, in expected time at most T (n) on all
inputs of length at most n. We use the standard big O, little o, Ω, etc. notation to denote
the asymptotic behavior of functions. For a family T of functions of the form T : N → N, let
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B2QCFA(T ) = ∪T∈T B2QCFA(T (n)). We then write, for example, B2QCFA(2o(n)) to denote the
union, taken over every function T : N → N such that T (n) = 2o(n), of B2QCFA(T (n)). See
Section 4.1 for the definition of DL and related hardness measures. We immediately obtain the
following corollaries of Theorem 4.4.

Corollary 4.4.1. If L ∈ B2QCFA(T (n)), then T (n) = DL(n)Ω(1) and T (n) = 2Ω(CL(n)).

Corollary 4.4.2. If a language L satisfies DL(n) = 2Ω(n), then L 6∈ B2QCFA(2o(n)).

Notice that DL(n) = 2O(n), for any language L. We next exhibit a language for which DL(n) =
2Ω(n), thereby yielding a strong lower bound on the running time of any 2QCFA that recognizes L.
For w = w1 · · ·wn ∈ Σ∗, where each wi ∈ Σ, let wrev = wn · · ·w1 denote the reversal of the string
w. We consider the language Lpal = {w ∈ {a, b}∗ : w = wrev} consisting of all palindromes over the
alphabet {a, b}.

Corollary 4.4.3. Lpal 6∈ B2QCFA(2o(n)).

Proof. For each n ∈ N, let Wn = {w ∈ {a, b}∗ : |w| = n} denote all words over the alphabet {a, b}
of length n. For any w,w′ ∈Wn, with w 6= w′, we have |wwrev| = 2n = |w′wrev|, wwrev ∈ Lpal, and
w′wrev 6∈ Lpal; therefore, by definition, w 6∼Lpal,2n w

′, ∀w,w′ ∈ Wn such that w 6= w′. This implies
that DLpal

(2n) ≥ |Wn| = 2n. Corollary 4.4.2 then implies Lpal 6∈ B2QCFA(T (n)).

We define BQE2QCFA = B2QCFA(2O(n)) to be the class of languages recognizable with two-
sided bounded error in expected exponential time (with linear exponent) by a 2QCFA. Next, we say
that a 2QCFA N recognizes a language L with negative one-sided bounded error ε ∈ R>0 if, ∀w ∈ L,
Pr[N accepts w] = 1, and, ∀w 6∈ L, Pr[N accepts w] ≤ ε. We define coR2QCFA(k, d, T (n), ε) as the
class of languages recognizable with negative one-sided bounded error ε by a 2QCFA, with at most
k quantum basis states and at most d classical states, that has expected running time at most T (n)
on all inputs of length at most n. We define coR2QCFA(T (n)) and coRQE2QCFA analogously to
the two-sided bounded error case.

Ambainis and Watrous [2] showed that Lpal ∈ coRQE2QCFA; in fact, their 2QCFA recognizer
for Lpal has only a single-qubit (i.e., k = 2 quantum basis states). Clearly, coR2QCFA(T (n)) ⊆
B2QCFA(T (n)), for any T , and coRQE2QCFA ⊆ BQE2QCFA. Therefore, the class of languages
recognizable by a 2QCFA with bounded error in expected subexponential time is properly contained
in the class of languages recognizable by a 2QCFA in expected exponential time, as formalized by
the following corollary.

Corollary 4.4.4. We have B2QCFA(2o(n)) ( BQE2QCFA and coR2QCFA(2o(n)) ( coRQE2QCFA.

We next define BQP2QCFA = B2QCFA(nO(1)) to be the class of languages recognizable with
two-sided bounded error in expected polynomial time by a 2QCFA.

Corollary 4.4.5. If L ∈ BQP2QCFA, then DL(n) = nO(1) and CL(n) = O(log n). Therefore,
BQP2QCFA ⊆ L/poly.

Proof. The first statement is a special case of Corollary 4.4.1. To see that BQP2QCFA ⊆ L/poly,
recall that, as noted in Section 4.1, L/poly = {L : A2DFA

L,= (n) = nO(1)}; clearly, for any language L

and any n ∈ N, A2DFA
L,= (n) ≤ AL(n) = DL(n).

Of course, there are many languages L for which one can establish a strong lower bound on
DL(n), and thereby establish a strong lower bound on the expected running time T (n) of any
2QCFA that recognizes L. In Section 6, we consider the case in which L is the word problem
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of a group, and we show that very strong lower bounds can be established on DL(n). In the
current section, we consider two especially interesting languages; the relevance of these languages
was brought to our attention by Richard Lipton (personal communication). For a number p ∈ N,
let 〈p〉2 ∈ {0, 1}∗ denote the binary representation of p; let Lprimes = {〈p〉2 : p is prime}. Note that
DLprimes(n) = 2Ω(n) [35], which immediately implies the following.

Corollary 4.4.6. Lprimes 6∈ B2QCFA(2o(n)).

Say a string w = w1 · · ·wn ∈ {0, 1}n has a length-3 arithmetic progression (3AP) if ∃i, j, k ∈ N
such that 1 ≤ i < j < k ≤ n, j − i = k − j, and wi = wj = wk = 1; let L3ap = {w ∈ {0, 1}∗ :

w has a 3AP}. It is straightforward to show the lower bound DL3ap(n) = 2n
1−o(1)

, as well as the

upper bound DL3ap(n) = 2n
o(n)

. Therefore, one obtains the following lower bound on the running
time of a 2QCFA that recognizes L3ap, which, while still quite strong, is not as strong as that of
Lpal or Lprimes.

Corollary 4.4.7. L3ap 6∈ B2QCFA
(

2n
1−Ω(1)

)
.

Remark. While Lprimes and L3ap provide two more examples of natural languages for which our
method yields strong lower bound on the running time of any 2QCFA recognizer, they also suggest
the potential of proving a stronger lower bound for certain languages. That is to say, for Lpal, one
has (essentially) matching lower and upper bounds on the running time of any 2QCFA recognizer;
this is certainly not the case for Lprimes and L3ap. In fact, we currently do not know if either
Lprimes or L3ap can be recognized by a 2QCFA with bounded error at all (i.e., regardless of time
bound).

Lastly, we consider the issue of the transition amplitudes of a 2QCFA. For some 2QCFA N =
(Q,C,Σ, δtype, δtransform, δmeasure, qstart, cstart, cacc, crej), let V = CQ denote the finite-dimensional
complex Hilbert space corresponding to the quantum register of N , and let T = {t ∈ U(V ) :
δtransform(c, σ) = (t, ·, ·), for some (c, σ) ∈ δ−1

type(transform)} denote the set of unitary operators
that N may apply to its quantum register. For each t ∈ T , there is a corresponding |Q|×|Q| complex
matrix Mt that represents the linear operator t ∈ L(V ) with respect to the basis {|q〉 : q ∈ Q} of
V . Let M = {Mt : t ∈ T } denote the set of all such matrices. The transition amplitudes of N are
the set of numbers that appear as an entry of some matrix Mt ∈M.

While other types of finite automata are often defined without any restriction on their transition
amplitudes, for 2QCFA, and other types of QFA, the allowed class of transition amplitudes strongly
affects the power of the model. For example, using non-computable transition amplitudes, a 2QCFA
can recognize certain undecidable languages with bounded error in expected polynomial time [34].
Our lower bound holds even in this setting of unrestricted transition amplitudes. For F ⊆ C, we
define complexity classes coR2QCFAF(k, d, T (n), ε), coRQE2QCFAF, etc., that are variants of the
corresponding complexity class in which the 2QCFA are restricted to have transition amplitudes
in F. Using our terminology, Ambainis and Watrous [2] showed that Lpal ∈ coRQE2QCFAQ, where

Q denotes the algebraic numbers, which are, arguably, the natural choice for the permitted class
of transition amplitudes of a quantum model of computation. Therefore, Lpal can be recognized
with negative one-sided bounded error by a single-qubit 2QCFA with transition amplitudes that
are all algebraic numbers in expected exponential time; however, Lpal cannot be recognized with
two-sided bounded error (and, therefore, not with one-sided bounded error) by a 2QCFA (of any
constant size) in expected subexponential time, regardless of the permitted transition amplitudes.
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5 Lower Bounds on the Running Time of Small-Space QTMs

In this section, we show that our technique also yields a lower bound on the expected running
time of a quantum Turing machine (QTM) that uses sublogarithmic space (i.e., o(log n) space) and
recognizes a language L with bounded error. The key idea is that a QTM M that runs in expected
time at most T (n) and uses space at most S(n) can be viewed as a sequence (Mn)n∈N of 2QCFA,
where Mn has 2O(S(n)) (classical and quantum) states and Mn simulates M on all inputs of length
at most n (therefore, Mn and M have the same probability of acceptance and the same expected
running time on any such input). The techniques of the previous section apply to 2QCFA with a
sufficiently slowly growing number of states. See, for instance, [9,22] for examples of this approach
for classical TMs.

We begin by informally defining the classically controlled space-bounded QTM model that
allows intermediate measurements, following the definitions of Ta-Shma [40], Watrous [44, Section
VII.2], and (essentially, without the use of random access) van Melkebeek and Watson [26]. Such a
QTM consists of three tapes: (1) a classical read-only input tape, which has a single bidirectional
(classical) head, and where each cell stores a symbol from the input alphabet (with special end-
markers at the left and right ends), (2) a classical one-way infinite work tape, which also has a
single bidirectional (classical) head, and where each cell stores a symbol from some potentially
larger (finite) alphabet, and (3) a one-way infinite quantum work tape, which has two bidirectional
(classical) heads, and where each cell contains a single qubit.

The computation of the QTM is entirely classically controlled. Each step of the computation
consists of a quantum phase followed by a classical phase. In the quantum phase, a QTM performs
a quantum operation on the one or two qubits currently under the heads of the quantum work
tape. Let G denote any universal set of quantum gates that each operate on at most two qubits
(e.g., G = {Hadamard, CNOT, rotation by π

8 }). The operation consists of either applying some
particular g ∈ G or performing a projective measurement in the computational basis; the choice of
which operation to perform may depend on the current (classical) state of its finite control and the
current symbols read on the input tape and classical work tape. In the classical phase, depending
on the current state of its finite control, on the current symbols read on the input tape and classical
work tape, and (possibly) on the (classical) result of the quantum measurement performed in the
quantum phase (if a measurement was indeed performed in the previous quantum phase), the QTM
updates its configuration as follows: the state of the finite control changes to a new classical state,
a symbol is written on the cell of the classical work tape under the head, and the heads of all tapes
move at most one cell in either direction.

A (branch of the computation of a) QTM halts and accepts/rejects its input by entering a
special classical accept/reject state. As we wish to make our lower bound as strong as possible,
we wish to be as generous as possible with the rejecting criteria of a QTM, and so we allow a
QTM to also reject by looping (as we did with 2QCFA). Let BQTISPε(T (n), S(n)) denote the
class of languages recognizable with two-sided bounded error ε ∈ [0, 1/2) by a QTM that runs in
at most T (n) expected time, and uses at most S(n) space, on all inputs of length at most n; of
course, only the space used on the (classical and quantum) work tapes is counted. Furthermore,
let BQTISP(T (n), S(n)) = ∪ε∈[0,1/2)BQTISPε(T (n), S(n)).

We note that while we only explicitly consider the above variant of QTM, the results of this
section would apply to essentially any “reasonable” classically controlled QTM variant, such as
the (other such) variant defined by Watrous [43], or the variant defined by Perdrix and Jorund
[31] (where their model is modified in the usual way in order to handle sublinear space bounds).
Moreover, these results would apply even to the unreasonable QTM variant in which the set G (of
unitary transformations that the QTM could apply at any step) was allowed to be any finite set of
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unitary transformations (i.e., no restriction is placed on the transition amplitudes of the QTM, see
the discussion at the end of Section 4.3); the analogously defined version of BQTISP(T (n), O(1))
for such a QTM model would then be equal to B2QCFA(T (n)).

We also note that the consideration of classically controlled QTMs is natural as the clear
separation of quantum and classical parts accurately reflects the design of current and near-term
experimental quantum computers, and, moreover, such a model appears far easier to analyze.

Lastly, we emphasize that the QTM model that we consider permits intermediate measurements.
In the case of time-bounded quantum computation, allowing a QTM to perform intermediate
measurements provably does not increase the power of the model. This is due to the principle
of safe storage, which allows all measurements to be deferred until the end of a computation
without affecting the running time; however, the standard technique for deferring measurements
may cause a significant increase in the required space. It remains an open question whether or
not allowing a space-bounded QTM to perform intermediate measurements increases the power of
the model. Again, as we want our lower bound to be as strong as possible, we allow intermediate
measurements. We direct the reader to [26, Section 2] for a detailed discussion of the various models
of space-bounded QTMs.

As noted at the beginning of this section, we may view a QTM M that operates in space S(n)
as a sequence of 2QCFA with a growing number of states. This yields the following analogue of
Theorem 4.4 for sublogarithmic-space QTMs.

Theorem 5.1. Suppose L ∈ BQTISP(T (n), S(n)), and suppose further that S(n) = o(log logDL(n)).

Then ∃b0 ∈ R>0 such that, T (n) = Ω
(

2−b0S(n)DL(n)2−b0S(n)
)

.

Proof. By definition, there is some QTM M that recognizes L with two-sided bounded error ε, for
some ε ∈ [0, 1/2), where M runs in expected time at most T (n), and uses at most S(n) space, on
all inputs of length at most n. Let F denote the (finite) set of (classical) states that comprise the
finite control of M , let Σ denote the (finite) input alphabet of M , and let Γ denote the (finite)
alphabet of the classical work tape of M .

For each n ∈ N, we define a 2QCFA Mn that correctly simulates M on any w ∈ Σ≤n, in the
obvious way: the (only) head of the 2QCFA Mn (on its read-only input tape) directly simulates the
head of the QTM M on its read-only input tape; Mn uses its classical states Cn to keep track of the
state f ∈ F of the finite control of M , the string y ∈ ΓS(n) that appears in the first S(n) cells of the
classical work tape, and the positions hc−work, hq−work−1, hq−work−2 ∈ {1, . . . , S(n)} of the heads
on the (classical and quantum) work tapes; Mn uses its quantum register, which has quantum basis
states Qn, to store the first S(n) qubits of the quantum work tape; the transition function of the
2QCFA Mn is defined such that, if Mn is in a classic state c ∈ Cn which (along with the head
position on the input tape) completely specifies the classical part of a configuration of M , then Mn

performs the same quantum phase and classical phase that M would in this configuration. Clearly,
for any w ∈ Σ≤n, Mn and M have the same probability of acceptance and expected running time.

Let kn = |Qn| = 2S(n) denote the number of quantum basis states of Mn and let dn = |Cn| =
|F ||Γ|S(n)S(n)3 denote the number of classical states of Mn. Then, ∃b0 ∈ R>0, ∃N̂0 ∈ N such that,
∀n ≥ N̂0, we have k4

nd
3
n ≤ 2b0S(n). Moreover, as S(n) = o(log logDL(n)), ∃Ñ0 ∈ N such that,

∀n ≥ Ñ0, DL(n)2−b0S(n) ≥ 2. Set N0 = max(N̂0, Ñ0). For any n ≥ N0, we may then construct
Xn ⊆ Σ≤n such that |Xn| = DL(n) ≥ 2 and the elements of Xn are pairwise (L, n)-dissimilar. By
Lemma 4.3, ∃x, x′ ∈ Xn such that x 6= x′ and

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ 4
√

2k4
nd

3
n

(
DL(n)

1

k4
nd2

n − 1

)−1

≤ (4
√

2)2b0S(n)
(
DL(n)2−b0S(n) − 1

)−1
.
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Let aε = (1−2ε)2

2 ∈ R>0. By Lemma 4.2,

T (n) ≥ aε‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖−1
1 ≥ aε

4
√

2
2−b0S(n)

(
DL(n)2−b0S(n) − 1

)
≥ aε

8
√

2
2−b0S(n)DL(n)2−b0S(n)

Remark. Recall that, for any language L, DL(n) = 2O(n); therefore, the supposition of the above
theorem that S(n) = o(log logDL(n)) implies S(n) = o(log n), and so this theorem only applies
to QTMs that use sublogarithmic space. Moreover, this requirement also implies that DL(n) =
ω(1), and hence L 6∈ REG [9, Lemma 3.1]; of course, for any L ∈ REG, we trivially have L ∈
BQTISP(n,O(1)).

Note that, if S(n) = o(log n), then for any constants b1, b2 ∈ R>0, 2−b1S(n) ≥ n−b2 , for all
sufficiently large n. We therefore obtain the following corollary.

Corollary 5.1.1. If a language L satisfies DL(n) = 2Ω(n), then L 6∈ BQTISP
(

2n
1−Ω(1)

, o(log n)
)

.

In particular, Lpal 6∈ BQTISP
(

2n
1−Ω(1)

, o(log n)
)

.

Remark. Of course, Lpal can be recognized by a deterministic Turing machine in O(log n) space
(and, trivially, polynomial time). Therefore, the previous corollary exhibits a natural problem for
which polynomial time quantum Turing machines cannot (asymptotically) outperform polynomial
time deterministic Turing machines in terms of the amount of space used.

6 The Word Problem of a Group

We begin by formally defining the word problem of a group; for further background, see, for
instance [25]. For a set S, let F (S) denote the free group on S. For sets S,R such that R ⊆ F (S),
let N denote the normal closure of R in F (S); for a group G, if G ∼= F (S)/N , then we say that G
has presentation 〈S|R〉, which we denote by writing G = 〈S|R〉.

Suppose G = 〈S|R〉, with S finite; we now define WG=〈S|R〉, the word problem of G with respect
to the presentation 〈S|R〉. We define the set of formal inverses S−1, such that, for each s ∈ S, there
is a unique corresponding s−1 ∈ S−1, and S ∩ S−1 = ∅. Let Σ = S t S−1, let Σ∗ denote the free
monoid over Σ, and let φ : Σ∗ → G be the natural (monoid) homomorphism that takes each string
in Σ∗ to the element of G that it represents. We use 1G to denote the identity element of G. Then
WG=〈S|R〉 = φ−1(1G).

We say that G is finitely generated if it has a presentation 〈S|R〉 where S is finite. Note that
the word problem of G is only defined when G is finitely generated and that the definition of
the word problem does depend on the particular presentation. However, it is well-known (see,
for instance, [18]) that if L is any complexity class that is closed under inverse homomorphism,
then if 〈S|R〉 and 〈S′|R′〉 are both presentations of some group G, and S and S′ are both finite,
then WG=〈S|R〉 ∈ L ⇔ WG=〈S′|R′〉 ∈ L . As all complexity classes considered in this paper are
easily seen to be closed under inverse homomorphism, we will simply write WG ∈ L to mean that
WG=〈S|R〉 ∈ L, for every presentation G = 〈S|R〉, with S finite.

We note that the languages Lpal and Leq, which Ambainis and Watrous [2] showed satisfy
Lpal ∈ coRQE2QCFAQ and Leq ∈ BQP2QCFA, are closely related to the word problems of the
groups F2 and Z, respectively (see [33] for a full discussion of this correspondence).

In this section, we consider the (quantum) computational complexity of the word problem WG

corresponding to a finitely generated group G. We will show that there is a close correspondence
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between DWG
and the growth rate of the group G, which will enable us to exhibit a strong lower

bound on the expected running time of a 2QCFA that recognizes a word problem from a particular
class of groups. By combining these lower bounds with a recent result of ours [33] that showed that
2QCFA can recognize certain wide classes of group word problems within particular time bounds,
we obtain a natural class of languages that 2QCFA can recognize with bounded error in expected
exponential time, but not in expected subexponential time, as well as strong statements about
the class of group word problems that a 2QCFA can recognize with bounded error in expected
polynomial time.

6.1 The Growth Rate of a Group and Nonregularity

Consider a group G = 〈S|R〉, with S finite. As above, let Σ = S t S−1, and let φ : Σ∗ → G denote
the natural map that takes each string in Σ∗ to the element of G that it represents. For g ∈ G, we
define the length of g with respect to S, which we denote by lS(g), as the smallest m ∈ N such that
∃σ1, . . . , σm ∈ Σ such that g = φ(σ1 · · ·σm). For n ∈ N, we define BG,S(n) = {g ∈ G : lS(g) ≤ n}
and we further define βG,S(n) = |BG,S(n)|, which we call the growth rate of G with respect to S.
The following straightforward lemma demonstrates an important relationship between βG,S and
DWG=〈S|R〉 .

Lemma 6.1. Suppose G = 〈S|R〉 with S finite. Using the notation established above, let WG :=
WG=〈S|R〉 = φ−1(1G) denote the word problem of G with respect to this presentation. Then, ∀n ∈ N,
DWG

(2n) ≥ βG,S(n).

Proof. Fix n ∈ N, let k = βG,S(n), and let BG,S(n) = {g1, . . . , gk}. For a string x = x1 · · ·xm ∈ Σ∗,
where each xj ∈ Σ, let |x| = m denote the (string) length of x and define x−1 = x−1

m · · ·x−1
1 . Note

that, ∀g ∈ G, lS(g) = minw∈φ−1(g)|w|. Therefore, for each i ∈ {1, . . . , k} we may define wi ∈ φ−1(gi)

such that |wi| = lS(gi). Observe that wiw
−1
i ∈ WG and |wiw−1

i |= 2|wi|= 2lS(gi) ≤ 2n; moreover,
for each j 6= i, we have wjw

−1
i 6∈ WG and |wjw−1

i | = |wj |+ |wi| = lS(gj) + lS(gi) ≤ 2n. Therefore,
w1, . . . , wk are pairwise (WG, 2n)-dissimilar, which implies DWG

(2n) ≥ k = βG,S(n).

Remark. In fact, one may also easily show that DWG
(2n) ≤ βG,S(n)+1, though we do not need this

here. Essentially, βG,S(n) is (another) equivalent characterization of the nonregularity DWG
(2n)

(see Section 4.1 for a discussion of the many such characterizations of nonregularity).

While βG,S does depend on the particular choice of the generating set S, the dependence is quite
minor, in a sense that we now clarify. For a pair of non-decreasing functions f1, f2 : R≥0 → R≥0,
we write f1 ≺ f2 if ∃C1, C2 ∈ R>0 such that ∀r ∈ R≥0, f1(r) ≤ C1f2(C1r + C2) + C2; if both
f1 ≺ f2 and f2 ≺ f1, then we say that f1 is quasi-equivalent to f2, which we denote by f1 ∼ f2.
We extend a growth function βG,S : N → N to βG,S : R≥0 → N by defining βG,S(r) = βG,S(dre),
∀r ∈ R≥0. Suppose G = 〈S′|R′〉, where S′ is finite. It is straightforward to show that βG,S and
βG,S′ are non-decreasing, and that βG,S ∼ βG,S′ (see, for instance, [25, Proposition 6.2.4]). For this
reason, we will often omit S and simply write βG to denote the growth rate of G, when we only
care about the growth rate up to quasi-equivalence. We then make the following definition.

Definition 6.2. Suppose G is a finitely generated group.

(i) If βG ∼ (n 7→ en), we say G has exponential growth.

(ii) If ∃c ∈ R≥0 such that βG ≺ (n 7→ nc), we say G has polynomial growth.

(iii) If G has neither polynomial growth nor exponential growth, we say G has intermediate growth.

Note that, for any finitely generated group G, we have βG ≺ (n 7→ en), and so the term
“intermediate” growth is justified.
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6.2 Word Problems Recognizable by 2QCFA and Small-Space QTMs

By making use of two very powerful results in group theory, the Tits’ Alternative [42] and Gromov’s
theorem on groups of polynomial growth [14], we exhibit useful lower bounds on DWG

, which in turn
allows us to show a strong lower bound on the expected running time of a 2QCFA that recognizes
WG. In the following, we use the notation for complexity classes established in Section 4.3. As
previously noted, the membership of WG in any of the complexity classes in question does not
depend on the particular choice of presentation, and so we write, for example, WG ∈ BQP2QCFA to
mean WG=〈S|R〉 ∈ BQP2QCFA for some (equivalently every) presentation G = 〈S|R〉, with S finite.

Theorem 6.3. For any finitely generated group G, the following statements hold.

(i) If WG ∈ B2QCFA(k, d, T (n), ε), then βG ≺ (n 7→ T (n)k
4d2

).

(ii) If G has exponential growth, then WG 6∈ B2QCFA(2o(n)).

(iii) If G is a linear group over a field of characteristic 0, and G is not virtually nilpotent, then
WG 6∈ B2QCFA(2o(n)).

(iv) If WG ∈ BQP2QCFA, then G is virtually nilpotent.

Proof. (i) Follows immediately from Lemma 6.1 and Corollary 4.4.1.

(ii) Follows immediately from Definition 6.2(i) and part (i) of this theorem.

(iii) As a consequence of the famous Tits’ Alternative [42], every finitely generated linear group
over a field of characteristic 0 either has polynomial growth or exponential growth, and has
polynomial growth precisely when it is virtually nilpotent ( [42, Corollary 1], [45]). The claim
then follows by part (ii) of this theorem.

(iv) If WG ∈ BQP2QCFA, then WG ∈ B2QCFA(k, d, nc, ε) for some k, d, c ∈ N≥1, ε ∈ [0, 1
2).

By part (i) of this theorem, βG ≺ (n 7→ nck
4d2

), which implies G has polynomial growth.
By Gromov’s theorem on groups of polynomial growth [14], a finitely generated group has
polynomial growth precisely when it is virtually nilpotent.

Remark. We note that, while finitely generated groups of intermediate growth provably exist [13],
all known groups of intermediate growth have growth rate quasi-equivalent to (n 7→ en

c
), for some

c ∈ (1/2, 1). Therefore, if WG is the word problem for one of these known groups of intermediate
growth, a strong lower bound may be established on DWG

, which in turn allows a strong lower
bound to be established on the running time of any 2QCFA that recognizes WG for one of these
known groups of intermediate growth. We also note that one may show that the conclusion of
Theorem 6.3(iv) still holds even if WG is only assumed to be recognized in slightly super-polynomial
time. In particular, by a quantitative version of Gromov’s theorem due to Shalom and Tal [37,
Corollary 1.10], ∃c ∈ R>0 such that if βG,S(n) ≤ nc(log logn)c , for some n > 1/c, then G is virtually
nilpotent.

Let GvAb (resp. GvNilp) denote the collection of all finitely generated virtually abelian (resp.
nilpotent) groups. Let Q denote the algebraic numbers and let U(k,Q) denote the group of k × k
unitary matrices with entries in Q, and let U denote the family of finitely generated groups G such
that G is isomorphic to a subgroup of U(k,Q), for some k. We have recently shown that if G ∈ U ,
then WG ∈ coRQE2QCFAQ [33, Corollary 1.4.1]. Observe that GvAb ⊆ U and that all groups in U
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are finitely generated linear groups over a field of characteristic zero. Moreover, U ∩GvNilp = GvAb

(see, for instance, [41, Proposition 2.2]). We therefore immediately obtain the following corollary of
Theorem 6.3(iii), which exhibits a broad and natural class of languages that a 2QCFA can recognize
with bounded error in expected exponential time, but not in expected subexponential time. We
note that U \GvAb is a rather wide class of groups, see [33] for a full discussion and related results.

Corollary 6.3.1. For any G ∈ U \ GvAb and for any T : N → N such that T (n) = 2o(n), we have
WG ∈ coRQE2QCFAQ but WG 6∈ B2QCFA(T (n)).

Let coRQP2QCFAQ(2) denote the class of languages recognizable with negative one-side bounded
error by a 2QCFA, with a single-qubit quantum register and algebraic number transition ampli-
tudes, in expected polynomial time. We have also recently shown that WG ∈ coRQP2QCFAQ(2) ⊆
BQP2QCFA, ∀G ∈ GvAb [33, Theorem 1.2]. By Theorem 6.3(iv), if WG ∈ BQP2QCFA, then
G ∈ GvNilp. This naturally raises the question of whether or not there is some G ∈ GvNilp \ GvAb

such that WG ∈ BQP2QCFA. In particular, consider the (three-dimensional discrete) Heisenberg
group H = 〈x, y, z|z = [x, y], [x, z] = [y, z] = 1〉 (where [x, y] = x−1y−1xy denotes the commutator
of x and y and we have expressed the relators as equations, rather than words in F (x, y, z), for
convenience). The word problem WH of the Heisenberg group H is a natural choice for a potential
“hard” word problem for 2QCFA, due to the lack of faithful finite-dimensional unitary representa-
tions of H (see [33] for further discussion). In fact, it is possible, and perhaps plausible, that WH

cannot be recognized with bounded error by a 2QCFA in any time bound. We next show that if
WH 6∈ BQP2QCFA, then we have a complete classification of those word problems recognizable by
2QCFA in expected polynomial time.

Proposition 6.4. If WH 6∈ BQP2QCFA, where H is the Heisenberg group, then for any finitely
generated group G, WG ∈ BQP2QCFA⇔WG ∈ coRQP2QCFAQ(2)⇔ G ∈ GvAb.

Proof. By the above discussion, it suffices to show the following claim: if WG ∈ BQP2QCFA, for
some G ∈ GvNilp\GvAb, then WH ∈ BQP2QCFA. Begin by noting that BQP2QCFA is easily seen to
be closed under inverse homomorphism and intersection with regular languages. Suppose G and G′

are finitely generated groups such that G′ is (isomorphic to) a subgroup of G, if WG ∈ BQP2QCFA,
then WG′ ∈ BQP2QCFA (see, for instance, [19, Lemma 2]). It is well-known that H ∈ GvNilp \GvAb

and, ∀G ∈ GvNilp \GvAb, G has a subgroup isomorphic to H (see, for instance, [19, Theorem 12] for
these facts, as well as for their application towards understanding the computational complexity of
the group word problem).

We next obtain the following analogue of Theorem 6.3 for small-space QTMs.

Theorem 6.5. For any finitely generated group G, the following statements hold.

(i) If G has exponential growth, then WG 6∈ BQTISP(2n
1−Ω(1)

, o(log n)).

(ii) If G is a linear group over a field of characteristic 0, and G is not virtually nilpotent, then

WG 6∈ BQTISP(2n
1−Ω(1)

, o(log n)).

(iii) If WG ∈ BQTISP(nO(1), o(log log log n)), then G is virtually nilpotent.

Proof. (i) Follows immediately from Definition 6.2(i), Corollary 5.1.1, and Lemma 6.1.

(ii) The claim follows from the Tits’ Alternative [42] and part (i) of this theorem.

(iii) If WG ∈ BQTISP(nO(1), o(log log log n)), then ∀c ∈ R>0 and for all sufficiently large n we
have, by Theorem 5.1, DL(n) ≤ nc(log logn)c . By Lemma 6.1 and the quantitative version of
Gromov’s theorem due to Shalom and Tal [37, Corollary 1.10], G is virtually nilpotent.
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7 Discussion

In this paper, we established strong lower bounds on the expected running time of 2QCFA, or
sublogarithmic-space QTMs, that recognize particular languages with bounded error. In particular,
the language Lpal had been shown by Ambainis and Watrous [2] to be recognizable with bounded
error by a single-qubit 2QCFA in expected time 2O(n). We have given a matching lower bound: no
2QCFA (of any size) can recognize Lpal with bounded error in expected time 2o(n). Moreover, we

have shown that no QTM, that runs in expected time 2n
1−Ω(1)

and uses space o(log n), can recognize
Lpal with bounded error. This latter results is especially interesting, as a deterministic TM can
recognize Lpal using space O(log n) (and, of course, polynomial time); therefore, polynomial time
quantum TMs have no (asymptotic) advantage over polynomial time deterministic TMs in terms
of the amount of space needed to recognize Lpal.

Our main technical result, Theorem 4.4, showed that, if a language L is recognized with bounded
error by a 2QCFA in expected time T (n), then ∃a ∈ R>0 (that depends only on the number of states
of the 2QCFA) such that T (n) = Ω(DL(n)a), whereDL is the Dwork-Stockmeyer nonregularity of L.
This result is extremely (qualitatively) similar to the landmark result of Dwork and Stockmeyer [9,
Lemma 4.3], which showed that, if a language L is recognized with bounded error by a 2PFA in
expected time T (n), then ∃a ∈ R>0 (that depends only on the number of states of the 2PFA) such
that T (n) = Ω(2DL(n)a). We again note that both of these lower bounds are tight.

We conclude by stating a few interesting open problems. While our lower bound on the expected
running time T (n), of a 2QCFA that recognizes a language L, in terms ofDL(n) cannot be improved,
it is natural to ask if one could establish a lower bound on T (n) in terms of a different hardness
measure of L that would be stronger for certain languages. Generalizing the definitions made in
Section 4.1, let F denote a class of finite automata (e.g., DFA, NFA, 2DFA, etc.), let L be a
language over some alphabet Σ, and let AFL,≤(n) = min{|M | : M ∈ F and L(M)∩Σ≤n = L∩Σ≤n}
denote the smallest number of states of an automaton of type F that agrees with L on all strings
of length at most n. As discussed earlier, ADFAL,≤ (n) = DL(n), for any language L and for any
n ∈ N. Recall that DFA and 2DFA both recognize precisely the regular languages [32], but for
some L̂ ∈ REG, the smallest 2DFA that recognizes L̂ might have many fewer states than the
smallest DFA that recognizes L̂. In fact, there is a sequence of regular languages (Lk)k∈N such
that Lk can be recognized by a 5k + 5-state 2DFA, but any DFA that recognizes Lk requires at
least kk states [27]; however, this is (essentially) the largest succinctness advantage possible, as
any language recognizable by a d-state 2DFA is recognizable by a (d + 2)d+1-state DFA [38]. Of
course, for any language L, we have A2DFA

L,≤ (n) ≤ ADFAL,≤ (n), ∀n. For certain languages L, we have

A2DFA
L,≤ (n) � ADFAL,≤ (n), ∀n; most significantly, this holds for the languages Lpal and Leq shown

by Ambainis and Watrous [2] to be recognizable with bounded error by 2QCFA in, respectively,
expected exponential time and expected polynomial time. In particular, it is easy to show that
ADFALpal,≤(n) = 2Θ(n), ADFALeq ,≤(n) = Θ(n), and A2DFA

Lpal,≤(n) = nΘ(1); moreover, A2DFA
Leq ,≤ (n) = logΘ(1)(n)

[20, Theorem 3 and Corollary 4]. In fact, this same phenomenon occurs for all the group word
problems that we can show [33] are recognized by 2QCFA. Might this be true for all languages
recognizable by 2QCFA?

Open Problem 7.1. If a language L is recognizable with bounded error by a 2QCFA in expected
time T (n), does a stronger lower bound than T (n) = (A2DFA

L,≤ (n))Ω(1) hold?

We have shown that the class of languages recognizable with bounded error by a 2QCFA in
expected polynomial time is contained in L/poly. This type of dequantumization result, which
shows that the class of languages recognizable by a particular quantum model is contained in the
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class of languages recognizable by a particular classical model, is analogous to the Adleman-type [1]
derandomization result BPL ⊆ L/poly. It is natural to ask if our dequantumization result might
be extended, either to 2QCFA that run in a larger time bound, or to small-space QTM. Note that
L/poly = {L : A2DFA

L,= (n) = nO(1)} = {L : A2DFA
L,≤ (n) = nO(1)} ) {L : ADFAL,≤ (n) = nO(1)}. This

further demonstrates the value of the preceding open problem, as any improvement in the lower
bound on T (n) in terms of A2DFA

L,≤ (n) would directly translate into an improved dequantumization
result.

The seminal paper of Lipton and Zalcstein [24] showed that, if a finitely generated group
G has a faithful finite-dimensional (linear) representation over a field of characteristic 0, then
WG ∈ L (deterministic logspace). We [33] recently adapted their technique to show that 2QCFA
can recognize the word problem WG of any group G that belongs to a certain (proper) subset of
the set of groups to which their result applies: any group G that has a faithful finite-dimensional
unitary representation of a certain special type. The requirement, imposed by the laws of quantum
mechanics, that the state of the quantum register of a 2QCFA must evolve unitarily, prevents a
2QCFA from (directly) implementing the Lipton-Zalcstein algorithm for any other groups; on the
other hand, for those groups G that do have such a representation, these same laws allow a 2QCFA
to recognize WG using only a constant amount of space. The word problem WG of any group
G that lacks such a representation (for example, all G ∈ GvNilp \ GvAb, or any infinite Kazhdan
group, or any group of intermediate growth) seems to be a plausible candidate for a hard problem
for 2QCFA (see [33] for further discussion).

Open Problem 7.2. Is there a finitely generated group G that does not have a faithful finite-
dimensional projective unitary representation for which WG ∈ BQE2QCFA?

Concerning those groups with word problem recognizable by a 2QCFA in expected polynomial
time, we have shown that, if G ∈ GvAb, then WG ∈ coRQP2QCFAQ(2) ⊆ BQP2QCFA [33, Theorem
1.2]; moreover, if WG ∈ BQP2QCFA, then G ∈ GvNilp (Theorem 6.3(iv)). We have also shown, if
WH 6∈ BQP2QCFA, where H ∈ GvNilp is the (three-dimensional discrete) Heisenberg group, then
the classification of those groups whose word problem is recognizable by a 2QCFA in expected
polynomial time would be complete; in particular, we would have WG ∈ BQP2QCFA⇔ G ∈ GvAb

(Proposition 6.4). This naturally raises the following question.

Open Problem 7.3. Is there a group G ∈ GvNilp\GvAb such that WG ∈ BQP2QCFA? In particular,
is WH ∈ BQP2QCFA, where H is the Heisenberg group?
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