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Abstract

Randomness extraction is a fundamental problem that has been studied for over three
decades. A well-studied setting assumes that one has access to multiple independent weak
random sources, each with some entropy. However, this assumption is often unrealistic in prac-
tice. In real life, natural sources of randomness can produce samples with no entropy at all or
with unwanted dependence. Motivated by this and applications from cryptography, we initiate a
systematic study of randomness extraction for the class of adversarial sources defined as follows.

A weak source X of the form X1, ...,XN , where each Xi is on n bits, is an (N,K, n, k)-source
of locality d if the following hold:

1. Somewhere good sources: at least K of the Xi’s are independent, and each contains
min-entropy at least k. We call these Xi’s good sources, and their locations are unknown.

2. Bounded dependence: each remaining (bad) source can depend arbitrarily on at most
d good sources.

We focus on constructing extractors with negligible error, in the regime where most of the
entropy is contained within a few sources instead of across many (i.e., k is at least polynomial
in K). In this setting, even for the case of 0-locality, very little is known prior to our work.
For d ≥ 1, essentially no previous results are known. We present various new extractors for
adversarial sources in a wide range of parameters, and some of our constructions work for
locality d = KΩ(1). As an application, we also give improved extractors for small-space sources.

The class of adversarial sources generalizes several previously studied classes of sources, and
our explicit extractor constructions exploit tools from recent advances in extractor machinery,
such as two-source non-malleable extractors and low-error condensers. Thus, our constructions
can be viewed as a new application of non-malleable extractors. In addition, our constructions
combine the tools from extractor theory in a novel way through various sorts of explicit extremal
hypergraphs. These connections leverage recent progress in combinatorics, such as improved
bounds on cap sets and explicit constructions of Ramsey graphs, and may be of independent
interest.
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1 Introduction

The use of randomness is widespread in computer science, particularly in areas such as cryptog-
raphy, algorithm design, and distributed computing. Randomness is also useful in running Monte
Carlo simulations of complex systems and in various sampling tasks. It is often the case that these
applications crucially need access to high-quality randomness, i.e., a stream of uniform and indepen-
dent bits. For instance, it was shown [DOPS04] that it is impossible to do basic cryptographic tasks
such as bit commitment schemes and secret sharing schemes without access to high-quality random
bits. This poses a challenging problem since most sources of randomness in nature are typically
far from producing pure random bits, and in fact produce a stream of correlated bits containing
little or no entropy. In addition, even originally high quality random bits can be compromised
adversarially by side channel attacks.

The area of randomness extraction is motivated by the above problem. Informally, a randomness
extractor is a deterministic algorithm that purifies a weak random source to produce a distribution
that is close to uniform. As is standard in this area, we measure the randomness of a weak source
X using min-entropy, defined as:

H∞(X) := min
x
{− log(Pr[X = x])}.

Define an (n, k)-source to be a distribution on {0, 1}n with min-entropy at least k, and the entropy
rate to be k/n. Thus, if X is an (n, k)-source, then for any x ∈ {0, 1}n, we have Pr[X = x] ≤ 2−k.

Definition 1.1. Let X be a family of distributions over {0, 1}n. We say that a function Ext :
{0, 1}n → {0, 1}m is an extractor for X with error ǫ if, for all X ∈ X ,

|Ext(X)−Um| ≤ ǫ.

Here | · | refers to the standard statistical distance, Um denotes the uniform distribution on
m bits, and ǫ is known as the error of the extractor. A folklore result shows that it is impossible
to extract even one random bit from a single (n, k)-source. More precisely, there cannot exist an
extractor Ext : {0, 1}n → {0, 1} such that for any (n, n− 1)-source X, |Ext(X)−U1| < 1/2.

Given the above bottleneck, there are two major directions that researchers have explored in
randomness extraction over the last 3 decades. The first is to assume access to a short independent
uniform seed Ud to extract randomness out of a single (n, k)-source X. Such extractors are called
seeded extractors, and from a beautiful line of work we now have constructions with near optimal
parameters [LRVW03,GUV09,DKSS13].

The second direction, which is more relevant to this paper, assumes special structures in
the weak source X. In particular, the most well studied model assumes that X is of the form
X1,X2, . . . ,XC , where each Xi is an independent (n, k)-source. Indeed, recently there has been an
exciting line of work on extracting randomness from independent sources, which we discuss in more
details in Section 1.3. However, these works typically assume that all the sources are independent
and have sufficient min-entropy, which is often unrealistic in practice. In real life, computers gen-
erate random numbers by combining various “unpredictable” sources such as keystrokes, mouse
movements, timestamps, processor temperatures, and so on. It is quite possible that some of these
sources are “bad” in the following senses. First, some of them may be predictable and thus contain
no entropy. Second, while it is reasonable to assume some independence across the sources, there
can also certainly be some degree of (adversarial) dependence between them. Developing a theory
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of randomness extraction in the presence of adversarial sources is thus a natural generalization of
the well-studied model of independent sources, and may eventually help us build better random
number generators for computers. To the best of our knowledge, little work has been done in this
setting, and in this paper we seek to initialize a systematic study of this natural question.

1.1 Adversarial sources

To capture the setting discussed above, we generalize the model of independent sources in two
non-trivial ways and introduce the class of adversarial sources.

Definition 1.2. Let N,K, n, k, d be nonnegative integers. A distribution X = X1, . . . ,XN , where
each Xi is on n bits, is called an (N,K, n, k)-source of locality d, if the following conditions hold:

1. Somewhere good sources: There is a set S ⊆ [N ], |S| ≥ K such that for any i ∈ S,
H∞(Xi) ≥ k. We call the sources Xi, i ∈ S good sources and the remaining bad sources.

2. Bounded dependence: The set of good sources are independent, and each bad source can
depend arbitrarily on at most d good sources.

As discussed before, the somewhere good sources condition captures the natural setting where
a physical source of randomness (e.g., a Zener diode) outputs a stream of bits, where entropy
is localized in certain unknown chunks. The bounded dependence condition captures possible
troublesome dependence between chunks of different bits. As it turns out, our model also has
natural motivations from cryptography.

In the domain of cryptography, extractors for adversarial sources may allow us to generate a
uniform random string with the help of several parties each having an imperfect random source, even
if some of these parties are adversarial. As a simple example, consider coin flipping protocols with
synchronous channels. If all parties simply broadcast their strings, we get several strings which are
good (but imperfect) and some other strings which can be adversarially chosen (though independent
of the good strings). By applying an extractor for adversarial sources with 0-locality, one can then
obtain a uniform random string. Going to asynchronous channels, the strings of adversarial parties
may depend on a set of good strings due to the order of messages in the protocol, and hence
extractors for adversarial sources with larger locality can be useful.

As another example, several primitives in cryptography such as non-interactive zero knowledge
(NIZK) require a random “common reference string” (CRS). A number of works have investigated
the setting where the CRS might be imperfect [CPS07,LPV09] and even the setting where there are
multiple CRS and some of them may be adversarially chosen [GK08,GGJS11,GO14] (but the good
ones are uniform). Extractors for adversarial sources may allow us to handle the second setting.

1.2 Summary of our results

We will be mainly interested in extracting from (N,K, n, k)-sources of locality d in the negligible
error setting, motivated by applications in cryptography. Further, we will focus on the setting
k ≥ Kγ , for any constant γ > 0 (i.e., entropy is more concentrated within a few sources, rather
than spread across them; or, roughly, there are a few long sources). Here, our goal is to construct

extractors with output and error of the form m = kΩ(1), ǫ = 2−kΩ(1)
. In Section 6, we motivate

our study of this regime and show that in the complementary regime, there is a relatively simple
construction based on prior work. In our setting of interest, the only known result is in the
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case of 0-locality, where the work of Kamp et al. [KRVZ06] implies negligible error extractors for
(N,K, n, k)-sources, as long as Kk ≥ (Nn)1−γ , for some tiny constant γ > 0 arising from estimates
in additive combinatorics. For the case of d-locality with d ≥ 1, to the best of our knowledge there
are no known previous results. We discuss other related prior work in Section 1.3.

In our first three main theorems, we construct an explicit extractor for adversarial sources
that produces polynomially many bits with negligible error, even if the good sources have just
poly-logarithmic entropy. Several of our extractors use the small parameter RN , which we define
below.

Definition 1.3. We let RN denote the smallest number such that there exists an explicit con-
struction of bipartite Ramsey graphs over 2N vertices with no bipartite clique nor independent set
of size 2RN . Currently, RN = (logN)o(log logN), and this also holds for non-bipartite Ramsey
graphs [Li19].

In our first main theorem, we extract from (N,K, n, k)-sources of locality 0, given just K ≥ R2
N

good sources, as long as one extra condition holds:

Theorem 1. There exist universal constants C, γ > 0 such that for all N,K, n, k ∈ N satisfying k ≥
logC n and K ≥ R2

N , there exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-

sources of locality 0, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)
, provided N ≤ kγ.

Thus, for 0-local sources, we obtain extractors for extremely small k and K, under the condition
that the number of sources is not too large compared to the entropy in the good sources, i.e., N ≤ kγ .
It is natural to ask if we can completely remove this restriction. Our second main theorem does
exactly this.

Theorem 2. There exists a universal constant C > 0 such that for all N,K, n, k ∈ N satisfying
k ≥ logC n and K ≥ √N · RN , there exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for

(N,K, n, k)-sources of locality 0, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)
.

Thus, we see that if we increase the number of good sources from K ≥ No(1) to K ≥ N0.5+o(1),
we are able to remove any restriction between N and k. Our third main theorem shows that, in fact,
we can extend our constructions to handle polynomial locality. We state an interesting parameter
setting of our more general theorem (Theorem 5.1) here:

Theorem 3. There exist universal constants C, γ > 0 such that for all N,K, n, k, d ∈ N satisfying
k ≥ logC n and K ≥ N1−γ, and d ≤ Kγ, there exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m
for (N,K, n, k)-sources of locality d, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)

, provided
N ≤ kγ.

We also show (non-explicitly) that extractors with negligible error exist for adversarial sources
that contain just K = Nα good sources and have locality d = K1−α, for any constant α > 0.

Theorem 4. For any constant 0 < γ < 1 there exists a constant α > 0 such that for all
N,K, n, k, d ∈ N satisfying k ≥ (1 + γ) log n and K ≥ Nγ, and d ≤ K1−γ, there exists a (pos-
sibly non-explicit) extractor for (N,K, n, k)-sources of locality d with output length m = kΩ(1) and
error ǫ = 2−Ω(k), provided N ≤ kα.
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The theorem that we prove is actually more general (see Theorem 7.2), and the proof makes
use of a more robust variant of seedless non-malleable extractors that we introduce. We also show
that it is impossible to construct an extractor for adversarial sources if half of the sources are good,
but each bad source can depend on all the good sources. For more details, we refer the reader to
Section 7.

Finally, we show that our constructions also give improved extractors for sources sampled by
algorithms that have limited memory, in the negligible error regime. These sources were initially
studied by [KRVZ06], and fit into the line of work initiated by [TV00] on extracting from sources
that are samplable using limited resources.

Theorem 5. For any fixed γ > 0 and all n, k, s ∈ N satisfying k ≥ n2/3+γ and s ≤ (k/n)3+γ · n,
there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s sources of min-entropy k, with

output length m = nΩ(1) and error ǫ = 2−nΩ(1)
.

Previously, the best extractor for s-space sources [KRVZ06] with negligible error required min-
entropy k ≥ n1−γ (for some tiny constant γ > 0) for about the same space s ≤ (k/n)3n, and had

error 2−nΩ(1)
. In the same paper, Kamp et al. reduce the entropy requirement to k > n0.81 for space

s = 1 sources with an extra restriction. We note that Theorem 5 reduces the entropy requirement
to k > n0.67, and works for large space with no such restrictions.

We present an overview of our techniques and explicit constructions in Section 2, but first we
review some relevant prior work.

1.3 Relevant prior work

Relation of adversarial sources to other structured sources Special cases of adversarial
sources are studied by works on randomness extraction for some other kinds of sources in prior
work. Hence our model of adversarial sources can also be viewed as a generalization of several
previous models. We discuss some details below.

• Bit-fixing sources: Oblivious bit-fixing sources correspond to (N,K, n, k)-sources of locality 0,
with n = k = 1. Thus, they are distributions on {0, 1}N , with some unknown K coordinates
being uniform and independent, while the rest of the bits are fixed and do not depend on
the random bits. They are studied in the works [CGH+85,KZ06,GRS06]. The best known
extractors in different regimens of error are the following: (i) Kamp and Zuckerman [KZ06]
constructed an extractor that works for any K > 0 with error 1/ poly(K), and (ii) Rao

[Rao09b] constructed an extractor that works for any K ≥ poly(logN) with error 2−KΩ(1)
.

Non-oblivious bit-fixing sources allow the non-random bits to arbitrarily depend on the ran-
dom bits. Thus, they correspond to (N,K, 1, 1)-sources of locality K. The best known

results [Mek17,CZ19] can handle K ≥ N − O
(

N
log2 N

)

, with error 1/NΩ(1). The KKL theo-

rem [KKL88] implies that the best K one could hope for in this setting is N −O
(

N
logN

)

.

• Symbol-fixing sources: Kamp and Zuckerman [KZ06] introduced the class of symbol fixing
sources, generalizing bit-fixing sources. Symbol-fixing sources correspond to (N,K, n, k)-
sources with k = n. The locality is 0 for oblivious symbol-fixing sources and is K for non-
oblivious symbol fixing sources. The results mentioned above on total entropy sources capture
the best known extractors for oblivious symbol-fixing sources. To the best of our knowledge,
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there is no non-trivial construction of extractors for non-oblivious symbol-fixing sources other
than using known extractors for non-oblivious bit-fixing sources.

• Independent sources: The most well-studied model of seedless extraction assumes that the
weak source X is of the form X1,X2, . . . ,XC , where each Xi is an independent (n, k)-source.
Thus, these sources correspond to (C,C, n, k)-sources of locality 0. The probabilistic method
provides existential proof of extractors for such sources, called C-source extractors, with
strong parameters. In particular, it can be shown that there exists a 2-source extractor with
error ǫ for k ≥ log n+ 2 log(1/ǫ) +O(1).

An explicit construction of a 2-source extractor was given by Chor and Goldreich [CG88],
but they required min-entropy k > n/2 for both of the sources. The entropy requirement
was marginally improved by Bourgain [Bou05] to k > 0.499n, and Raz [Raz05] improved the
entropy requirement of one of the sources to O(logn) (but required the other source to have
entropy > n/2). Recently, an impressive line of work [Coh16b,CL16a,Li16,BADTS17,Coh17,
Li17,Mek17,BDT18,CZ19,Li19] improved the entropy requirement to (log n)1+o(1). However,
the recent progress has a major drawback in terms of the error parameter, and in particular,
the best known 2-source extractor construction for error ǫ = 1/nω(1) requires min-entropy
(1/2− δ)n, for some small constant δ [Bou05,Lew19].

Assuming access to 3 or more independent sources, a long line of work [BKS+05, BIW06,
Rao09a, Li11a, Li13a, Li13b, Li15b, Coh16a] explicitly constructed excellent extractors. In
particular, Li [Li15b] constructed an explicit 3-source extractors with k ≥ poly(log n) and

error 2−kΩ(1)
.

Also closely related to adversarial sources are total entropy sources. Introduced by Koenig
and Maurer [KM05], an (N,n,Γ)-total entropy source consists of N independent sources of length
n such that the sum of min-entropies across the sources is at least Γ. Thus, an (N,K, n, k)-
source of locality 0 is an (N,n,Kk)-total entropy source. Plugging in the best known extractor
for total entropy sources in the regime of negligible error [KRVZ06] implies an explicit extractor

for (N,K, n, k)-sources of 0-locality with error 2−nΩ(1)
as long as Kk ≥ (Nn)1−γ , for some tiny

constant γ that arises from sum-product estimates in additive combinatorics.
Kamp et al. [KRVZ06] constructed total entropy extractors in another extreme setting of pa-

rameters, where there are a large number of short sources. Their results imply explicit extractors
for (N,K, n, k)-sources of 0-locality, as long as Kk ≥ ω(2n

√
Nn). The error of the extractor is

2Ω(−(Kk)2/(Nn22n)), and the extractor runs in time poly(N, 2n). Thus, this gives an explicit con-
struction with negligible error as long as n = o(logN) (i.e., the number of sources is exponential
in the length of the sources).

Finally, in the regime of larger error, Chattopadhyay and Li [CL16b] constructed an ex-
plicit extractor for (N, 2, n, poly(log n))-sources of locality 0. They refer to these sources as
(n, poly(log n), N)-somewhere-2 sources, and the error of the extractor in their construction is
ǫ = 1/nΩ(1).

Other models of seedless extraction Apart from the models discussed above, other examples
of structured sources that have been studied by researchers include affine sources [Bou07, Li11b,
Yeh11, Li16], polynomial and variety sources [DGW09, Dvi12], sources sampled by small-space
algorithms [KRVZ06,CL16b], and sources sampled by small circuits [TV00,Vio14,Li16].
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Comparison to SHELA sources Very recently, a work by Aggarwal et. al. [AOR+19] intro-
duced another model that generalizes independent sources by allowing dependence, which they call
SHELA (Somewhere Honest Entropic Look Ahead) sources, and studied randomness extraction in
this model. Although similar in spirit to our model, there are several important differences.

First, both models can be viewed as a stream of ℓ sources, where some unknown t sources are
good, and the positions of the good sources are selected by an adversary. The rest of the sources are
bad and can depend on the good sources. However, in the model of SHELA sources, the dependence
is only one-way : any bad source can only depend on good sources that come before it, and hence
the name “look-ahead”. In contrast, in our model the dependence of bad sources on good sources
can go both ways: a bad source can depend on good sources both before it and after it. In this
sense our model is more general than theirs.

Second, [AOR+19] shows that if the fraction of good sources is any constant γ, then it is
impossible to achieve randomness extraction from SHELA sources if the number of blocks ℓ is a
large enough constant depending on γ. Thus, the authors turn to a less ambitious goal: to obtain
from such sources a convex combination of somewhere random sources. A “T -out-of-L” somewhere
random source is a sequence of L sources, where some fixed but unknown T sources are jointly
independent and uniformly distributed, while the other sources can have arbitrary dependence on
the T sources. Aggarwal et al. show that they can construct efficient somewhere extractors which
output a convex combination of T -out-of-L somewhere random sources with a small L, when the
fraction of good sources γ is any constant. They then show that these somewhere random sources
can still be used in several cryptographic applications. In contrast, our results build real randomness
extractors for adversarial sources, and thus the outputs in our constructions are truly close to
uniform, instead of being only somewhere random. Hence, they can be used in all cryptographic
applications universally. Moreover, we give explicit constructions even when the fraction of good
sources is sub-constant (e.g., K = N1−γ for some constant γ), as compared to a constant fraction
in [AOR+19]. However, in order to circumvent the impossibility result in [AOR+19], we have to
limit our locality d to be not too large. In this sense, our model and the model in [AOR+19] are
incomparable.

Finally, the entropy requirement on good sources in our work is better than that in [AOR+19].
In [AOR+19] the constructions require the good sources to have linear min-entropy, while all our
constructions work for the case of k ≥ poly(log n).

Organization First, we provide an overview of our constructions in Section 2. Then, in Section 3,
we define several preliminaries that will be important for formalizing these ideas. We present our
main extractors for adversarial sources of locality 0 in Section 4. Then, in Section 5, we present
our extractors for adversarial sources of polynomial locality. These extractors work best when
most of the entropy is contained within the sources, rather than across them; we motivate this
setting by giving a simple explicit construction for the complementary setting in Section 6. Next,
we put our results in context by providing existential and impossibility results in Section 7. (Our
existential results rely on a new generalized seedless non-malleable extractor; in Appendix A, we
introduce these objects and prove their existence.) Finally, we show that our explicit constructions
give improved extractors for total entropy and small-space sources in Section 8, and in Section 9
we suggest future directions of research.
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2 Overview of our constructions

At a high level, all our constructions use two key ideas. The first idea is to design a well-structured
hypergraph around the N sources (represented as vertices), and try to extract separately from each
hyperedge. While it is easy to guarantee that some (unknown) hyperedge produces uniform bits,
we must produce a single uniform string. Thus, we must combine the output from each hyperedge
and hope that the uniform bits are not destroyed in the process. In all our constructions this is
done by computing the XOR of the outputs.

This brings us to our second key idea. In order for the XOR to work, we need to break the
correlations between the uniform output bits from some hyperedge and the outputs from the other
hyperedges. For this purpose we crucially rely on recent constructions of non-malleable extractors.
We identify and explicitly construct certain classes of extremal hypergraphs with the following
goals: to minimize the size of their largest independent set (for some general notion of independent
set), while maintaining some sort of limited interaction between their hyperedges. The size of
largest independent set controls the number of good sources we need, while the limited interaction
will make it easier to break correlations between the random variables produced by the hyperedges,
using the property of non-malleable extractors.

2.1 Extracting from 0-locality

Our first goal is to construct negligible-error extractors for (N,K, n, k)-sources of locality 0. As
shown in [CL16b], for K = 2 and k = 0.51n, this is straightforward: we may simply call the
2-source Hadamard extractor (Theorem 3.2), Had, over all pairs of sources, and take the bitwise
XOR of the results. This works because some call to Had must use the two good sources (call them
X and Y), and the remaining calls use at most one of X,Y. If we fix the XOR of the calls that use
X but not Y, we introduce no correlation between them, and Lemma 3.9 tells us that the entropy
of X drops by very little. We can do the same for the calls that use Y but not X. This shows that
with high probability, the last remaining call to Had outputs near-uniform bits, and they remain
uniform after taking their bitwise XOR with the fixed bits.

It is natural to ask if we can extract with negligible error from much smaller k, if we allow
larger K. Because there exist explicit constructions of negligible-error three-source extractors for
polylogarithmic entropy (Theorem 3.3), the naive idea would be to alter the above construction to
call a three-source extractor 3Ext over all triples of sources, and XOR the results. It is true that
for just K = 3, some call to 3Ext in this construction is guaranteed to use three good sources.
However, it will also be the case that there are other calls that use two of the good sources, and
we cannot fix these outputs without introducing correlation between them. Thus, this idea fails.

In order to replace Had in the above construction with a different extractor (say, 3Ext) that can
handle lower entropy, we must do something more clever than just applying 3Ext over all triples of
sources. The main idea behind our 0-local extractors is that we must carefully select triples over
which to call 3Ext, in order to ensure two properties:

1. Activation: given K good sources, some call to 3Ext is guaranteed to use three good sources.

2. Fragile correlation: all other calls to 3Ext can be fixed without ruining the near-uniform
output of the good call (i.e., without destroying the entropy of its inputs or introducing
correlation between them).
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If we can accomplish this, then we can reduce the entropy requirement of the good sources from
k = 0.51n to k = logC n, for some universal constant C ≥ 1. This can be easily achieved if we have
K > 2N/3 good sources by simply calling 3Ext over disjoint sets of sources. However, we want
to accomplish the above using as few good sources, K, as possible. To do this, we will design a
hypergraph over N vertices whose hyperedges will be used to select triples of sources (vertices) on
which to call 3Ext.1 The hypergraph will have a structural constraint that will guarantee fragile
correlation, and we seek such a hypergraph with the smallest possible max independent set (for
some generalized notion), which roughly corresponds to the number of sources needed for activation.

The STS-extractor To be more concrete, we must answer the following question: what structure
must a 3-uniform hypergraph have such that if some hyperedge is activated (contains three good
sources), then every other hyperedge makes a call to 3Ext that can be safely fixed without ruining
the output of the call to 3Ext from the activated hyperedge? One answer is to enforce that each
pair of hyperedges share at most one source. In particular, if the activated hyperedge contains
good sources X,Y,Z, then every other hyperedge contains at most one of these. Thus, fixing the
outputs of the other hyperedges does not introduce correlation between X,Y,Z, and we can again
use Lemma 3.9 to show that such fixings only decrease their entropy by just a little.

Thus, we can ensure fragile correlation by selecting sources using a hypergraph with the following
property: no two hyperedges share more than one vertex. Such hypergraphs are well-studied in
combinatorial design theory, and are known as partial Steiner triple systems (STS’s). Furthermore,
recalling that an independent set in a hypergraph is a set of vertices that contains no hyperedge,
we see that we can guarantee activation using just K sources if the partial Steiner triple system
contains no independent set of size K (equivalently, it should have independence number α < K).

We therefore construct a so-called STS-extractor for (N,K, n, k)-sources of locality 0 as follows.
Let H = (V, E) be an STS over N vertices, and define stsExtH : ({0, 1}n)N → {0, 1}m as:

stsExtH(X) :=
⊕

(h,i,j)∈E
3Ext(Xh,Xi,Xj).

For a more precise definition, see Definition 4.6, and for an illustration, see Figure 1a.
As per our discussion, this will successfully extract uniform bits as long as K exceeds the size of

the largest independent set in H. Furthermore, it inherits the polylogarithmic entropy requirement
of 3Ext (Theorem 3.3), along with its polynomially large output length and negligible error. Thus,
the challenge is to explicitly construct an STS H = (V, E) over N with small α. We achieve such an

explicit construction by identifying V with F
logN
3 , identifying E with the lines in F

logN
3 , and showing

that recent bounds on the cap set problem [CLP17,EG17] immediately imply α ≤ O(N0.923). As
a result, instantiating stsExt with H yields an explicit extractor for polynomially few good sources
(see Theorem 4.1).

It would be nice if we could extract from even fewer good sources. However, lower bounds
on the cap set problem [Ede04] show that we cannot use lines in F

logN
3 to achieve better than

K ≥ N0.724, and impossibility results on Steiner systems [RŠ94] show that one cannot hope to
achieve K ≪ √N logN using these objects. Thus, we need new ideas if we want to drastically
decrease K.

1Each call to 3Ext will need the hyperedge to order its vertices, but the ordering will not be important, so we
induce one by simply assuming the vertices are identified with [N ].
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The wedge-extractor Towards this end, we show that STS’s actually have more structure than
is required for fragile correlation. Indeed, we show that if we replace 3Ext with a more robust
three-source extractor 3Ext+, we can extract using a much larger class of hypergraphs, and thereby
reduce the size K needed for activation. In particular, in order to construct 3Ext

+, we make
use of two recent advances in extractor theory. First, we will use a two-source non-malleable
extractor, 2nmExt, which is a robust variant of a two-source extractor that, given two independent
sources X,Y, outputs bits 2nmExt(X,Y) that look uniform even conditioned on knowing the value
of 2nmExt(f(X), g(Y)) or 2nmExt(g(Y), f(X)), where f, g are so-called tampering functions that
have no fixed points (see Definition 3.6 for a formal definition). If the output of 2nmExt looks
uniform even conditioned on its output under up to t pairs of tampering functions, we say 2nmExt

has degree t. The motivation behind using these objects is as follows: previously, if we fixed any
random variables that depended on two of the good sources, we would introduce correlation between
them. This will no longer be the case, and thus we have more power to ensure fragile correlation.

Second, we will use a two-source condenser, 2Cond, which is a weaker version of a two-source
extractor that only guarantees its output to have high entropy rate. 2Cond will also be strong,
in the sense that it will work even conditioned on fixing its second source, with high probability
(Theorem 3.4). The motivation here is that 2nmExt only works for sources with high entropy, and
2Cond is able to condense a source with just polylogarithmic entropy into one (on fewer bits) with
almost full entropy. Thus, we can maintain our requirement that k = logC n. Our new robust three-
source extractor is defined as 3Ext+(X1,X2,X3) := 2nmExt(2Cond(X1,X3), 2Cond(X2,X3)).

2

We again consider the following question, with respect to our robust three-source extractor:
what structure must a 3-uniform hypergraph have such that if some hyperedge is activated, then
every other hyperedge makes a call to 3Ext

+ that can be safely fixed without ruining the output of
the call to 3Ext

+ from the activated hyperedge? We notice that here, each call to 3Ext
+ requires

us to specify three sources, and indicate one of these to be special, in that it will be reused in both
calls to 2Cond. One way to encode this information is as a hyperedge A of size 3, containing a
hyperedge B of size 2 (which leaves out the special source; we call B the representative edge of A).

Thus, we consider using hypergraphs that have hyperedges of the above form to make calls to
3Ext

+. We now argue the following: if we construct such a hypergraph such that the representative
edge B of a hyperedge A is also the representative edge of any other hyperedge containing both its
vertices (call this representative edge agreement), then we can satisfy fragile correlation. Consider
such a hypergraph, and suppose it has an activated hyperedge A that contains three good sources,
X1,X2,X3, and a representative edge that holds X1,X2. If we fix all sources excluding X1,X2,
we can note a few things: first, by the strength of 2Cond, each of Y1 := 2Cond(X1,X3),Y2 :=
2Cond(X2,X3) are now independent and have high entropy, with high probability. Next, because
of our representative edge agreement property, we know that X1,X2 will never show up together
in a single 2Cond in any call to 3Ext

+.
Thus, any call to 3Ext

+ made from a hyperedge outside of the activated hyperedge can fall into
one of four categories: (1) it involves neither source X1,X2; (2) it involves X1 but not X2; (3) it
involves X2 but not X1; or (4) it involves both X1,X2, but by the representative edge agreement
property, they are guaranteed to be in different 2Cond calls. To ensure fragile correlation, we want
to fix the calls to 3Ext

+ from each category without destroying the uniform bits produced by the
activated hyperedge. Note that the calls in (1) are already fixed. If we fix the calls to (2), (3),

2There are some minor technical details to ensure that 2nmExt will work, such as tagging each of its inputs
uniquely.
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(a) The Fano plane, a 3-uniform hypergraph
H = (V, E) that is a Steiner triple system.

(b) A graph G = (V,E) that contains many
wedges, inspired by the Fano plane.

Figure 1: Extracting from 0-local adversarial sources using Steiner triple systems and wedges. In
Figures 1a and 1b, sources are represented as nodes of a (hyper)graph. Figure 1a represents our
STS-extractor, stsExtH , and Figure 1b our wedge-extractor, wExtG. In Figure 1a, some hyperedge
is guaranteed to be activated iff at least 5 sources are good (green), while in Figure 1b, some wedge
is guaranteed to be activated iff at least 4 sources are good (green).

we know that no correlation is introduced between X1,X2, and each loses just a little entropy, by
Lemmas 3.9 and 3.10. Finally, we know that if (4) has no more calls than the degree of 2nmExt, we
can fix these calls and use the non-malleability of 2nmExt to ensure that the bits from our activated
hyperedge still look uniform. Observe that the number of calls in (4) is at most the number of
hyperedges that share the same representative edge. Thus, because hyperedges have size at most
3, and we assume no hyperedge has more than one copy, we know that the number of calls in (4)
is at most N − 2, and thus we can perform these fixings as long as N ≤ kγ , for a small constant γ,
by the parameters in Lemma 3.8. Thus, we can ensure fragile correlation.

Is there a nicer way to describe such hypergraphs with hyperedges of size 3, and representative
edges of size 2, such that the representative edge agreement property holds? In fact, there is a
very natural way to do so: these are exactly the hypergraphs that can be constructed via taking a
standard graph G, and selecting some wedges (sets of size 3 that induce a 2-hop-path in G) to turn
into hyperedges, where the two non-adjacent vertices of each wedge (the terminals) make up the
representative edge. Thus, we are motivated to define a new extractor over the wedges of graphs.

In particular, we construct a so-called wedge-extractor for (N,K, n, k)-sources of locality 0 as
follows. Let G be a graph over N vertices, and let W be the collection of sets of size 3 in G that
induce a wedge. We order each W ∈ W as a triple (h, i, j) so that h, i are the terminals of W , and
define wExtG : ({0, 1}n)N → {0, 1}m as:

wExtG(X) :=
⊕

(h,i,j)∈W
3Ext

+(Xh,Xi,Xj).

For a more precise definition, see Definition 4.15, and for an illustration, see Figure 1b.
As per our discussion, this will successfully extract uniform bits (provided N ≤ kγ) as long as

K good sources are guaranteed to activate some hyperedge; note that here, this simply means that
any subset of size K in V (G) covers some wedge in G, or that the size of the largest so-called wedge-
independent set, αW, is less than K. Furthermore, note that wExtG inherits the polylogarithmic
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(a) A graph G = (V,E) that contains many
wedges.

(b) A fragile set system H = (G,S), with
S = {{1, 2, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}}.

Figure 2: Extracting from 0-local adversarial sources using wedges and fragile set systems. In
Figures 2a and 2b, sources are represented as nodes of a (hyper)graph. Figure 2a represents
our wedge-extractor, wExtG, and Figure 2b our FSS-extractor, fssExtH . The activating sets in
Figures 2a and 2b are exactly the same, but each representative edge in Figure 2a appears in 3
wedges, while each representative edge in Figure 2b appears in just 1 fragile set.

entropy requirement of 2Cond (Theorem 3.4), and the polynomially large output length and negligible
error of both 2Cond, 2nmExt (Theorems 3.4 and 3.7). Thus, the challenge is to explicitly construct
a graph G = (V,E) such that its largest wedge-independence set has a small size αW.

We achieve such a construction by showing that a Ramsey graph with no clique nor independent
set of size ℓ actually also has no wedge independent set of size ℓ2 (see Lemma 4.17 for more details).
To see this, we observe that a set of vertices that covers no wedge must be a disjoint collection of
cliques (with no crossing edges), and thus a wedge independent set of size ℓ2 would imply a clique
or independent set of size ℓ (by taking the largest clique, or a single vertex from each clique, in the
wedge-independent set). This immediately yields Theorem 1.

The FSS-extractor We note that Theorem 1 extracts from very few good sources with very little
entropy, under the condition that N ≤ kγ . While this condition is reasonable in many settings, it
would be nice to get rid of it completely. We construct a new extractor that succeeds in doing so,
and in fact generalizes all of the constructions we have seen so far. The main idea is the same as with
the wedge-extractor, with one small but powerful twist. In particular, recall that our restriction
N ≤ kγ arises from the observation that up to N−2 hyperedges may share the same representative
edge. If we can reduce this number, then we can relax and even remove this restriction. We achieve
this by coming up with a more general hypergraph structure.

In particular, we generalize the previous hypergraph to allow hyperedges of any size greater than
2, such that each hyperedge still contains a representative edge (hyperedge of size 2). Again, we
enforce the representative edge agreement property that the representative edge B of a hyperedge
A is also the representative edge of any other hyperedge containing it. Note that our three-source
extractor is no longer well-defined, since each hyperedge could indicate more than three sources
over which to attempt extraction. Indeed, we extend our extractor as follows. Each hyperedge
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A ⊆ [N ] with representative edge B = {h, i} identifies a call of the form:

2nmExt(2Cond(Xh,⊕j∈A\BXj), 2Cond(Xi,⊕j∈A\BXj)),

and our extractor will take the XOR over all hyperedges of these calls. Furthermore, we can redefine
activation to a much more relaxed notion: instead of requiring that some hyperedge contains all
good sources, we simply require that some hyperedge has good sources on the endpoints of its
representative edge, and one more good source outside of its representative edge. Then, if some
hyperedge is activated by good sources Xh,Xi,Xj , the representative edge agreement property
guarantees that our extractor will work for the same reasons in our analysis of the wedge-extractor.

Is there a nicer way to describe our new, more general, hypergraphs? The answer is yes: these
are exactly the hypergraphs that can be constructed via taking a standard graph G, selecting some
of its so-called fragile sets (sets in G that contain exactly one edge), turning each fragile set into
a hyperedge, and turning the edge in the fragile set into its representative edge. We call such a
hypergraph (consisting of G and a collection S of some of its fragile sets) a fragile set system. We
say the degree of a fragile set system H, denoted deg(H) is the max number of fragile sets S ∈ S
that contain the same edge. Together with the generality of this new structure, this new parameter
will give us fine control over removing the restriction N ≤ kγ , by replacing it with deg(H)−1 ≤ kγ .
Thus, we are motivated to define a new extractor over fragile set systems.

In particular, we construct a so-called FSS-extractor for (N,K, n, k)-sources of locality 0 as
follows. Let G be a graph over N vertices, and S be a collection of fragile sets in G, thus creating the
fragile set system H = (G,S). We write each S ∈ S as a triple (u, v, S′) where u, v are the endpoints
of the edge in S, and S′ are the remaining vertices. We define fssExtH : ({0, 1}n)N → {0, 1}m as:

fssExtH(X) :=
⊕

(u,v,S′)∈S
2nmExt(2Cond(Xu,⊕j∈S′Xj), 2Cond(Xv,⊕j∈S′Xj)).

For a more precise definition, see Definition 4.23, and for an illustration, see Figure 2.
As per our discussion, this will successfully extract uniform bits (provided deg(H) − 1 ≤ kγ)

as long as K good sources are guaranteed to activate some hyperedge; here, this simply means
that some fragile set contains three good sources, two of which lie on the endpoints of its edge.
Equivalently, we need αFSS < K, where αFSS denotes the FSS-independence number, or the size of
the largest set that activates no hyperedge. Thus, the challenge is to explicitly construct a fragile
set system H = (G,S) with small deg(H) and small αFSS.

We achieve such a construction for deg(H) ≤ 1 and αFSS <
√
N · RN , which therefore extracts

from K ≥ √N · RN = N0.5+o(1) good sources, while completely removing any restriction between
N and kγ , thereby yielding Theorem 2. It is worth noting that given optimal Ramsey graphs,
this would exactly match (up to constant factors) the best result that is existentially possible with
partial Steiner triple systems. The construction of such a fragile set system works by placing N
vertices into roughly

√
N clouds C1, C2, . . . , C√

N of size
√
N , drawing a bipartite Ramsey graph

between each pair of clouds, and adding one fragile set for each edge (and thus, the degree is 1). The
fragile set simply includes that edge, considers the endpoint in the smaller-labeled cloud, and adds
all non-neighbors of this endpoint that are in the higher-labeled cloud. It is then straightforward to
show that given K = N0.5+o(1) vertices, two clouds must have enough vertices so that if some fragile
set were not activated, a large bipartite clique or independent set must exist (see Lemma 4.25 for
more details).
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2.2 Extracting from polynomial locality

Thus far, we have constructed explicit extractors for the 0-local setting that are quite general,
in the sense that each of our extractors can take any hypergraph from a certain class (STS’s,
wedges in graphs, and fragile set systems) to instantiate the extractor, and the parameters that
can be achieved by that extractor are directly related to the parameters of the hypergraph used to
instantiate it. We show that, in fact, we can find hypergraphs to instantiate our extractors so that
they succeed in extracting from up to polynomial locality.

Because our FSS-extractor generalizes the other constructions, we show that it can extract
from polynomial locality. Indeed, we prove an even stronger result that its specialization as the
wedge-extractor can also succeed in doing so. In particular, recall that our wedge-extractor works
by explicitly constructing a graph G over N vertices, identifying the sources with the N vertices,
calling 3Ext

+ over all triples that identify a wedge in G, and taking the XOR of the results.
We use the exact same ideas in the (≥ 1)-locality setting, except there are additional complica-

tions, in particular when establishing fragile correlation. Recall that previously, if some hyperedge
(wedge) W was activated by good sources, then we could fix every source but the two sources
X1,X2 in the representative edge of the wedge (i.e., its non-edge), and use Lemmas 3.9 and 3.10
and the non-malleability of 2nmExt to fix the output of every other 3Ext

+ call, while keeping the
output of the 3Ext

+ call over W near-uniform. But we could only do this because we were in the
0-local setting, since using wedges to select sources guaranteed that X1,X2 would never show up
together as the arguments to a single 2Cond call.

While it is still true in the (≥ 1)-local setting that X1,X2 never show up in a single 2Cond call,
it might be the case that random variables (bad sources) correlated to X1,X2 show up together
in a 2Cond call. In this case, we cannot hope to fix the output of the call to 3Ext

+ involving this
2Cond call without introducing correlation between X1,X2.

In order to fix this issue, we must prevent this from happening. One way to do this is to note that
when using our wedge-extractor, two sources (good or bad) show up together in a call to 2Cond only
if their corresponding vertices are connected by an edge. Thus, consider the case that some wedge
W is covered by good sources, and the sources on its terminals are X1,X2. Let cloud(X1) denote
the vertices corresponding to sources correlated with X1, and cloud(X2) denote those corresponding
to sources correlated with X2. Observe that if there are no edges between cloud(X1) and cloud(X2),
and they are disjoint, then we can perform fixings as usual, and guarantee that our extractor works.

Using this idea, we tackle the 1-local setting as follows. Analogously to the 0-local setting, given
a graph G that will be used to instantiate the wedge-extractor, we define a new flavor of activating
set of vertices. As in the 0-local setting, we want this activating set to have the property that if
the good sources land on it, then the wedge-extractor is guaranteed to extract uniform bits from
the 1-local source.

As hinted above, we will define an activating set to be any set of vertices S in G such that no
matter how we draw a separate cloud around each s ∈ S (making sure that no two clouds intersect),
there will be three clouds such that the three vertices from S they contain cover a wedge in G,
such that the terminals of that wedge lie in two distinct clouds with no edges between them. We
call this structure a cloud-wedge (refer to Definition 5.3 for a formal definition). Thus, the goal
is to construct a graph G such that no matter how one selects K vertices and draws K disjoint
clouds around them, a cloud-wedge is guaranteed to appear (for the smallest K possible). The
selection of K vertices represents the placement of K good sources among the N total sources in
our adversarial source, and the drawing of clouds indicates which bad sources will be dependent on
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Figure 3: Extracting from 1-local adversarial sources using wedges. As before, a green node repre-
sents a good source and a red node represents a bad source. The red clouds D2, D7, D8, D11 rep-
resent dependencies: cloud Di contains all sources correlated with good source i. This placement
of good sources and dependencies over our graph induces a cloud-wedge: ({2, 7, 8}, {D2, D7, D8}).
The other good wedges do not induce cloud-wedges due to crossing edges in their terminal clouds.

which good sources. If one can always find a cloud-wedge for a given K, then the wedge extractor
is guaranteed to work for just K good sources (see Lemma 5.6). We refer the reader to Figure 3
for an illustration.

We show that one family of graphs that exhibits the above-desired property are graphs with no
cycle of length 4, and with no big independent set. Through some structural lemmas, we show that
these two properties ensure that any relatively large set of vertices in such a graph must cover a
large star (complete bipartite graph with 1 vertex on the left), and any big collection of nonempty
disjoint subsets in such a graph must have two subsets with no edges crossing between them.
It is straightforward to show that, together, these so-called “star-dense” and “anti-cloud-clique”
properties ensure that in the aforementioned process, we will always be able to find a cloud-wedge
(see Lemma 5.8).

Thus, we reduce the question of constructing extractors for 1-local adversarial sources to that
of explicitly constructing C4-free graphs with no big independent set. Fortunately, explicit con-
structions of such objects are known [Alo86], and so we are able to successfully extract from 1-local
sources. In order to extract from higher locality, we provide a reduction from d-local sources to
1-local sources, in the spirit of Viola’s reduction from samplable sources to affine sources [Vio14].
By combining this reduction with our extractors for 1-local adversarial sources, we are able to yield
Theorem 3.

2.3 Non-explicit results

As discussed above, the reason behind our choice of hypergraphs is that we need them to carefully
control the dependence between different random variables produced in the computation of our
extractors. However, this task would become easier if we had sufficiently strong non-malleable
extractors to break the dependence. To this end, we introduce the notion of a generalized s-source
non-malleable extractor with tampering degree t. This is a non-malleable extractor that takes as
input s independent weak sources, and is secure against t tampering outputs. In each tampering,
the adversary can produce s tampered sources, where each tampered source depends on at most
s − 1 of the original s sources. As long as each tampering has no fixed point, we show that such
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generalized non-malleable extractors exist with excellent parameters. Given such extractors, it is
simple to extract from adversarial sources with high locality: just apply the non-malleable extractor
on every s-tuple of sources and compute the XOR. As long as there is a subset S of s good sources
such that no bad source depends on all good sources in S, we can fix all good sources outside S,
and all calls to the non-malleable extractor over tuples not equal to S, and the property of the
non-malleable extractor guarantees that the output will be close to uniform. By taking s to be a
large enough constant, we can handle arbitrary polynomially few good sources and K0.99 locality,
proving Theorem 4. We refer the reader to Section 7 and Appendix A for details.

We note that the study of non-malleable extractors where several sources may be tampered
together was recently undertaken by Goyal et al. [GSZ19] in the context of designing better non-
malleable secret sharing schemes. However, their work only provides a construction for the so-called
cover-free tampering function family, which does not include our setting where any tampered source
may be a result of tampering any s− 1 (out of s) sources jointly.

3 Preliminaries

Throughout, we use ◦ to denote string concatenation. For two strings x, y ∈ {0, 1}n, we let x ⊕ y
denote bitwise XOR. Given a graph G = (V,E) and set S ⊆ V , we let G[S] denote the subgraph
induced by S.

3.1 Extractors and condensers for independent sources

First, we recall that the statistical distance of two distributions D1 and D2 (on the same support)
is given by

|D1 −D2| :=
1

2

∑

x

|Pr[D1 = x]− Pr[D2 = x]|,

and D1 is ǫ-close to D2 if |D1−D2| ≤ ǫ. Next, we recall the definition of a multi-source extractor:

Definition 3.1. Let C ∈ N. We call a function Ext : ({0, 1}n)C → {0, 1}m a C-source extractor for
entropy k, output length m, and error ǫ if, given any C independent (n, k)-sources X1,X2, . . . ,XC ,

|Ext(X1,X2, . . . ,XC)−Um| ≤ ǫ.

We will need the following explicit constructions of multi-source extractors:

Theorem 3.2 ([CG88,Vaz85]). For every constant δ > 0, and for all n, k ∈ N with k ≥ (1/2+δ)n,
there exists an explicit 2-source extractor Had : {0, 1}n × {0, 1}n → {0, 1}m for entropy k with
output length m = Ω(n) and error ǫ = 2−Ω(n).

Theorem 3.3 ([Li15c, Coh16a]). For all n, k ∈ N with k ≥ log8 n, there exists an explicit 3-
source extractor 3Ext : ({0, 1}n)3 → {0, 1}m for entropy k with output length m = 0.9k and error

ǫ = 2−kΩ(1)
.

We will also need a weaker notion called a condenser, which only guarantees that its output
is close to a high entropy source, instead of being close to uniform. In particular, we will use the
following explicit construction:
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Theorem 3.4 ([BACDTS19]). There exists a constant C ≥ 1 such that for every n, k,m ∈ N and
ǫ > 0 such that n ≥ k ≥ (m log(n/ǫ))C , there exists an explicit function 2Cond : {0, 1}n×{0, 1}n →
{0, 1}m such that for any two independent (n, k)-sources X1,X2, with probability 1−ǫ over x2 ∼ X2,
the output 2Cond(X1, x2) is 2−k/2-close to an (m,m− o(log(1/ǫ)))-source, Y.

3.2 Two-source non-malleable extractors

Next, we need a stronger notion of two-source extraction that arises in cryptography and was first
defined in [CG14], known as a two-source non-malleable extractor.

Definition 3.5. We call a function 2nmExt : {0, 1}n × {0, 1}n → {0, 1}m a (2, t)-non-malleable
extractor for entropy k, output length m, and error ǫ, if, given any two (n, k)-sources X1,X2, and
t pairs of tampering functions {(fi, gi)}i∈[t], where each fi, gi : {0, 1}n → {0, 1}n have no fixed
points,

|2nmExt(X1,X2) ◦ 2nmExt(f1(X1), g1(X2)) ◦ · · · ◦ 2nmExt(ft(X1), gt(X2))

−Um ◦ 2nmExt(f1(X1), g1(X2)) ◦ · · · ◦ 2nmExt(ft(X1), gt(X2))| ≤ ǫ.

We will in fact need a more robust non-malleable extractor whose output 2nmExt(X1,X2) looks
uniform, even if conditioned on tamperings of the form 2nmExt(gi(X2), fi(X1)). We define this new
object under the same name, and will only be referring to this robust variant throughout the paper.

Definition 3.6. We call a function 2nmExt : {0, 1}n × {0, 1}n → {0, 1}m a (2, t)-non-malleable
extractor for entropy k, output length m, and error ǫ, if the following holds. Let X1,X2 be
any two (n, k)-sources, let {(fi, gi)}i∈[t] be any t pairs of tampering functions where each fi, gi :
{0, 1}n → {0, 1}n have no fixed points, and let b ∈ {0, 1}n be any bitstring. Then if we define Yi

as (fi(X1), gi(X2)) if the ith bit of b is 0, and we define Yi as (gi(X2), fi(X1)) otherwise, then:

|2nmExt(X1,X2) ◦ 2nmExt(Y1) ◦ · · · ◦ 2nmExt(Yt)

−Um ◦ 2nmExt(Y1) ◦ · · · ◦ 2nmExt(Yt)| ≤ ǫ.

We say that a (2, t)-non-malleable extractor has tampering degree t.

We note that the above extractor is a special case of the more general (s, t)-non-malleable
extractor which we define and prove its existence in Appendix A. As it turns out, however, the
existing constructions of (2, t)-non-malleable extractors also have this more robust property, as the
constructions of these objects use alternating extraction, which is symmetric in the way it deals
with sources. Thus, we have:

Theorem 3.7 ([CGL16]). There exists a constant γ > 0 such that for all n, k ∈ N with k ≥ n−nγ,
and all t ≤ nγ, there exists an explicit seedless (2, t)-non-malleable extractor 2nmExt : {0, 1}n ×
{0, 1}n → {0, 1}m with output length m = nΩ(1) and error ǫ = 2−nΩ(1)

.

Throughout the paper, we will use the following shared parameter ranges that can be achieved
while explicitly constructing two-source condensers and two-source non-malleable extractors.

Lemma 3.8 ([CGL16,BACDTS19]). There exist universal constants C0, γ0 > 0 such that for all
n, k ∈ N satisfying k ≥ (log n)C0, there exists:
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• An explicit function 2Cond : ({0, 1}n)2 → {0, 1}m1 such that for any two independent (n, k)-
sources X1,X2, with probability 1− ǫ1 over x2 ∼ X2, the output 2Cond(X1, x2) is ǫ2-close to

an (m1,m1 − o(log(1/ǫ1)))-source, where m1 = k1/C0, and ǫ1 = ǫ2 = 2−m
γ0/2
1 .

• For any m2 ≥ m1, t ≤ mγ0
2 , an explicit (2, t)-non-malleable extractor 2nmExt : ({0, 1}m2)2 →

{0, 1}m for entropy at least m2 −mγ0
2 with output length m ∈ [m

Ω(1)
1 ,m

γ0/2
1 ] and error ǫ3 =

2−m
Ω(1)
2 .

3.3 Conditional min-entropy

Finally, we need the following two lemmas about conditional min-entropy.

Lemma 3.9 ([MW97]). Let X,Y be random variables such that Y takes at most ℓ values. Then:

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log ℓ− log(1/ǫ)] ≥ 1− ǫ.

Lemma 3.10 ([Li15a]). Let X,Y be random variables such that X is ǫ-close to a source with
min-entropy at least k and Y takes at most ℓ values. Then:

Pr
y∼Y

[(X | Y = y) is 2ǫ1/2-close to a source with min-entropy at least k−log ℓ−log(1/ǫ)] ≥ 1−2ǫ1/2.

4 Extracting from 0-locality

In this section, we construct extractors for adversarial sources of locality 0. In particular, we prove
Theorems 1 and 2. As a warm-up, we start off with a construction that has worse parameters, but
motivates our more complicated constructions.

4.1 Extractors from Steiner triple systems and cap set bounds

In this section, we prove the following result:

Theorem 4.1. There is a constant C ≥ 1 such that for all N,K, n, k ∈ N satisfying k ≥ logC n and
K ≥ CN0.923, there exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources

of locality 0, with output length m = 0.9k and error ǫ = 2−kΩ(1)
.

In order to obtain this explicit construction, we will call the three-source extractor from
Theorem 3.3 over certain triples of sources, and take the XOR of the results. We will use the
following object from combinatorics to select these triples:

Definition 4.2 (partial Steiner triple system). A partial Steiner triple system over N points, or
an STS(N), is a 3-uniform hypergraph over N vertices such that no two hyperedges share more
than one vertex.

Remark 4.3. While an STS(N) is unordered, each hyperedge will need to (arbitrarily) order its
vertices so that the inputs to each 3Ext call is well-defined. One way to do so is by simply identifying
the vertices with [N ], and having each hyperedge list its vertices in increasing order.

We define activating and independent sets with respect to Steiner triple systems as follows.
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Definition 4.4 (STS-activating set). Let H = (V, E) be an STS(N). An STS-activating set in H
is a subset S ⊆ V that contains at least one hyperedge e ∈ E.

Definition 4.5 (STS-independent set). Let H = (V, E) be an STS(N). An STS-independent set
in H is a subset S ⊆ V that is not an STS-activating set. The STS-independence number of H is
the size of its max STS-independent set, and is denoted by αSTS.

Note that an STS-independent set is the same definition as an standard independent set in a
3-uniform hypergraph. We can now formally define our extractor over partial Steiner triple systems.

Definition 4.6 (STS-extractor). Let H = (V, E) be an STS(N), and let 3Ext : ({0, 1}n)3 →
{0, 1}m be the three-source extractor from Theorem 3.3. We define the STS-extractor over H
for (N,K, n, k)-sources, stsExtH : ({0, 1}n)N → {0, 1}m, as:

stsExtH(X) :=
⊕

(v1,v2,v3)∈E(H)

3Ext(Xv1 ,Xv2 ,Xv3).

For an illustration, we refer the reader to Figure 1a. This extractor takes an STS(N) as advice,
and we will prove a general lemma showing that the performance of our extractor will depend on
the value of αSTS for STS(N). Then, we will explicitly construct STS(N)’s with small αSTS, which
will immediately yield Theorem 4.1.

Lemma 4.7. There is a constant C ≥ 1 such that for all N,K, n, k ∈ N satisfying k ≥ logC n,
the following holds. If H = (V, E) is an STS(N) with STS-independence number αSTS < K, then
stsExtH : ({0, 1}n)N → {0, 1}m is an extractor for (N,K, n, k)-sources of locality 0, with output

length m = 0.9k and error ǫ = 2−kΩ(1)
.

Proof. Identify the vertices of H with [N ], and define I := {i ∈ [N ] : Xi is a good source.}. We
know that |I| ≥ K, and thus because H has independence number αSTS < K, there exists some
hyperedge F := (v1, v2, v3) ∈ E such that F ⊆ I. Now, for each (h, i, j) ∈ E , define the random
variable Y(h,i,j) := 3Ext(Xh,Xi,Xj), and note that stsExtH(X) =

⊕

(h,i,j)∈E Y(h,i,j). Observe that
because H is an STS(N), we can partition E \ (v1, v2, v3) into E1, E2, E3, E4 such that the triples in
E4 have an empty intersection with F , while the triples in Eℓ, for ℓ ∈ [3], intersect with F at exactly
vi. Thus, if we define Zℓ :=

⊕

(h,i,j)∈Eℓ Y(h,i,j), for each ℓ ∈ [4], we have:

stsExtH(X) = Y(v1,v2,v3) ⊕ Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4.

Now, fix all random variables Xi such that i /∈ {v1, v2, v3}. Notice that this fixes Z4. Next, fix Z1.
By Lemma 3.9, the min-entropy of Xv1 is still at least k− log(2m)− log(1/ǫ) = k− 0.9k− 0.09k =
0.01k with probability at least 1− 2−0.09k. Furthermore, because Z1 is uncorrelated with Xv2 ,Xv3 ,
no correlation is introduced between Xv1 ,Xv2 ,Xv3 . Next, do the same for Z2 and Z3. Xv1 ,Xv2 ,Xv3

remain independent, and with probability at least 1−3·2−0.09k, they each have min-entropy at least
0.01k. Thus, as long as 0.01k ≥ log12 n, Y(v1,v2,v3) is 2−kΩ(1)

-close to Um and the other random

variables are fixed with probability 1−3·2−0.09k, and so stsExtH(X) is (2−kΩ(1)
+3·2−0.09k) = 2−kΩ(1)

-
close to the uniform distribution on m = 0.9k bits.
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As discussed, in order for Lemma 4.7 to yield an explicit extractor, we need to explicitly con-
struct an STS(N) with a small STS-independence number αSTS. It is known that such objects exist
for α = Θ(

√
N logN) [RŠ94], but such upper bounds on αSTS are probabilistic, and there does not

appear to be known explicit constructions. We use a recent result on the cap set problem in order
to explicitly construct an STS(N) with no big STS-independent set.

Lemma 4.8. There is a constant C ≥ 1 such that for all N ∈ N, there exists an explicit construction
of an STS(N) with STS-independence number αSTS ≤ CN0.9228.

Proof. For now, assume that N is a power of 3. Define a hypergraph H = (V, E) where V = F
log3 N
3 ,

and E are the lines in F
log3 N
3 . H is clearly an STS(N), because no two lines intersect at more than

one point. Furthermore, notice that an independent set S in H is exactly a set of points in F
log3 N
3

such that no three are in a line. Such a set is called a cap set, and it is known that a cap set
in F

log3 N
3 has size at most 2.756log3 N ≤ N0.9228 [CLP17, EG17]. It is straightforward to extend

this construction to when N is not a power of three, by writing N in base-3, doing the above
construction for every component of its base-3 representation, and adding the max cap set sizes
from each component.

Combining Lemmas 4.7 and 4.8 immediately gives us Theorem 4.1.

Remark 4.9. In order to reduce the number of required good sources, the natural idea is to look for
better explicit constructions of STS(N)’s with small αSTS. As mentioned, it appears that this area
has not yet been explored. Furthermore, we know that upper bounding the size of cap sets can only
get us so far: there exist cap sets in F

log3 N
3 of size 2.2174log3 N [Ede04], so an STS(N) constructed

in the above manner will have αSTS ≥ N0.724. Thus, even optimal cap set bounds would not allow us
to extract from fewer than K = N0.724 good sources. Thus, if we want to reach K = O(

√
N logN),

the theoretical limit that can be achieved using STS(N)’s, we need significantly new ideas.

In the next section, we present new ideas that, in some settings, allow us to bring down the
requirement on the number of good sources, K, to a function that is quasi-polylogarithmic in N .
Then, in the next section, we show how to remove any restriction on the setting and extract from
just K =

√
N · RN = N0.5+o(1). In fact, this requirement on K would become exactly O(

√
N logN)

if we had access to explicit optimal Ramsey graphs.

4.2 The wedge extractor

In this section, we prove our first main theorem:

Theorem 4.10 (Theorem 1, restated). There exist universal constants C, γ > 0 such that for
all N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ R2

N , there exists an explicit extractor Ext :
({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality 0, with output length m = kΩ(1) and error

ǫ = 2−kΩ(1)
, provided N ≤ kγ.

In order to obtain this explicit construction, we will construct a more robust three-source
extractor, call it over certain triples of sources, and take the XOR of the results. We will use the
following type of induced subgraph to select these triples:

Definition 4.11 (wedge). Let G = (V,E) be a graph over N vertices. A wedge is a subset S ⊆ V
of size three such that the induced subgraph G[S] is the complete bipartite graph K1,2. The terminals
of S are the two vertices in G[S] of degree 1.
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Remark 4.12. While a wedge is unordered, we will need each wedge to order its vertices so that
the inputs to each call of our more robust three-source extractor are well-defined. We order the
vertices in each wedge in G by identifying the vertices of G with [N ], and having the wedge list its
terminals first, where the terminals are listed in increasing order.

We define activating and independent sets with respect to wedges as follows.

Definition 4.13 (wedge-activating set). Let G = (V,E) be a graph over N vertices. A wedge-
activator in G is a subset S ⊆ V that contains at least one wedge W ⊆ V .

Definition 4.14 (wedge-independent set). Let G = (V,E) be a graph over N vertices. A wedge-
independent set in G is a subset S ⊆ V that is not a wedge-activating set. The wedge-independence
number of G is the size of its max wedge-independent set, and is denoted by αW.

We can now formally define our extractor over the wedges of a graph.

Definition 4.15 (wedge-extractor). Let G = (V,E) be a graph over N vertices and let W be
the collection of all wedges in G. Let 2Cond : ({0, 1}n)2 → {0, 1}m1 , 2nmExt : ({0, 1}m2)2 →
{0, 1}m be the two-source condenser and two-source non-malleable extractor from Lemma 3.8,

where m2 = m1 + log
(

N
3

)

. Let τ : W → {0, 1}log (N3 ) be a tagging function that assigns a
unique label to each wedge. We define the the wedge-extractor over G for (N,K, n, k)-sources,
wExtG : ({0, 1}n)N → {0, 1}m, as:

wExtG(X) :=
⊕

W :=(h,i,j)∈W
2nmExt(τ(W ) ◦ 2Cond(Xh,Xj), τ(W ) ◦ 2Cond(Xi,Xj)).

For an illustration, we refer the reader to Figure 1b. Like the STS-extractor, the wedge-extractor
takes a graph G as advice, and we will prove a general lemma showing that the performance of
our extractor will depend on the value of αW for G. Then, we will explicitly construct graphs with
small αW, which will immediately yield Theorem 4.10.

Lemma 4.16. There exist constants C, γ > 0 such that for all N,K, n, k ∈ N satisfying k ≥ logC n
and N ≤ kγ, the following holds. If G = (V,E) is a graph over N vertices with wedge-independence
number αW < K, then wExtG : ({0, 1}n)N → {0, 1}m is an extractor for (N,K, n, k)-sources of

locality 0, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)
.

Proof. Identify the vertices of G with [N ], and define I := {i ∈ [N ] : Xi is a good source.}. We
know that |I| ≥ K, and thus because G has wedge-independence number αW < K, there exists
some wedge W := (v1, v2, v3) ∈ W such that W ⊆ I.

Next, recall that W holds wedges, and wedges have the property that if one wedge A has
terminal vertices that both appear in another wedge B, then they must also be B’s terminal
vertices (otherwise, because wedges are induced subgraphs, this would imply one of the wedges
has more than one non-edge, contradicting the definition of a wedge). Furthermore, we originally
had the wedges order their vertices with terminals appearing first (with the lower number terminal
appearing first), and we did not select multiple copies of the same wedge.

Thus, we can partition W \ (v1, v2, v3) into W1,W2,W3,W4 such that: the triples in W1 each
hold vertex v1 but not v2; the triples in W2 each hold vertex v2 but not v1; the triples in W3 each
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hold vertex v1 and v2 as the first two elements of the triple; and the triples in W4 each do not hold
v1 nor v2. Note that because a wedge has three vertices, and we do not have multiple copies of the
same wedge, |W3| ≤ N − 2 < N . Next, for each ℓ ∈ {1, 2, 4}, define the random variable

Zℓ :=
⊕

B:=(h,i,j)∈Wℓ

2nmExt(τ(B) ◦ 2Cond(Xh,Xj), τ(B) ◦ 2Cond(Xi,Xj)),

and for each A := (v1, v2, j) ∈ (W3 ∪ (v1, v2, v3)), define the random variables

Y
(1)
A := τ(A) ◦ 2Cond(Xv1 ,Xj),

Y
(2)
A := τ(A) ◦ 2Cond(Xv2 ,Xj).

Note that we can now rewrite

wExtG(X) = Z1 ⊕ Z2 ⊕ Z4 ⊕ 2nmExt(Y
(1)
W ,Y

(2)
W )⊕

⊕

B∈W3

2nmExt(Y
(1)
B ,Y

(2)
B ).

We are now ready to do some fixings. First, briefly note that since we are using the
2Cond, 2nmExt from Lemma 3.8, we will be importing our parameters for these objects from that
lemma. Using these parameters, we set C = C0, γ = γ0/C0.

Now, fix all random variables Xi such that i /∈ (v1, v2, v3). Next, fix random variable Xv3 . As a

result, Z4 is fixed, and Y
(1)
W ,Y

(2)
W become independent. Furthermore, by the strength of 2Cond in

the second source, Y
(1)
W ,Y

(2)
W both become ǫ2-close to an (log

(

N
3

)

+m1,m1 − o(log(1/ǫ1)))-source
with probability 1− 2ǫ1.

Next, fix Z1. By Lemma 3.10, Y
(1)
W is 2ǫ

1/2
2 -close to a source with min-entropy at least k′ :=

m1 − o(log(1/ǫ1)) −m − log(1/ǫ2) with probability at least 1 − 2ǫ
1/2
2 . Next, fix Z2, and the same

thing holds for Y
(2)
W . Note that as per the parameter settings in Lemma 3.8, we have:

k′ := m1 − o(log(1/ǫ1))−m− log(1/ǫ2) ≥ m1 − o(m
γ0/2
1 )−m

γ0/2
1 −m

γ0/2
1 ≥ m1 − 3m

γ0/2
1 ,

and because we have set N ≤ kγ = kγ0/C0 = mγ0
1 , this becomes

k′ ≥ m1 − 3m
γ0/2
1 ≥ m1 + log

(

N

3

)

−mγ0
1 ≥ m2 −mγ0

2 .

Finally, recall that |W3| < N and that N ≤ mγ0
1 ≤ mγ0

2 . So to summarize our fixings thus far:

Z1,Z2,Z4 are all fixed, Y
(1)
W ,Y

(2)
W are independent, and with probability at least 1− (2ǫ1 + 4ǫ

1/2
2 ),

they are each 2ǫ
1/2
2 -close to a source with min-entropy at least k′ ≥ m2 −mγ0

2 . Additionally, we
have |W3| < mγ0

2 . Note also that for each B ∈ W3, the following holds:

1. Y
(1)
W is correlated with at most one of Y

(1)
B and Y

(2)
B , and the same is true for Y

(2)
W .

2. Y
(1)
B is correlated with at most one of Y

(1)
W and Y

(2)
W , and the same is true for Y

(2)
B .

3. support(Y
(h)
W ) ∩ support(Y

(i)
B ) = ∅, for all h, i ∈ [2].
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The first two items are true because B lists v1, v2 as the first two elements of its tuple, by definition

ofW3. The last item holds because of our tagging function, τ . Thus, for each B ∈ W3, either: Y
(1)
B

is a function of only Y
(1)
W , and Y

(2)
B is a function of only Y

(2)
W ; or Y

(1)
B is a function of only Y

(2)
W , and

Y
(2)
B is a function of only Y

(1)
W . Furthermore, these functions have no fixed points. Definition 3.6

says that we are now in a good position to use the non-malleability of 2nmExt.

The non-malleability of 2nmExt tells us that if Y
(1)
W ,Y

(2)
W were both guaranteed to have entropy

k′, then with probability 1 − ǫ
1/2
3 , 2nmExt(Y

(1)
W ,Y

(2)
W ) is at most ǫ

1/2
3 -far from Um, even after

fixing 2nmExt(Y
(1)
B ,Y

(2)
B ) for every B ∈ W3. We have instead that with probability at least

1− (2ǫ1 + 4ǫ
1/2
2 ), the product distribution (Y

(1)
W ,Y

(2)
W ) is 4ǫ

1/2
2 -close to the product distribution of

two independent sources that have entropy k′. Thus with probability at least 1−(2ǫ1+4ǫ
1/2
2 +ǫ

1/2
3 ),

2nmExt(Y
(1)
W ,Y

(2)
W ) is at most (4ǫ

1/2
2 + ǫ

1/2
3 )-far from Um after these fixings.

Thus, everything except 2nmExt(Y
(1)
W ,Y

(2)
W ) has been fixed, so with probability at least 1 −

(2ǫ1 + 4ǫ
1/2
2 + ǫ

1/2
3 ) over these fixings, wExtG(X) is at most (4ǫ

1/2
2 + ǫ

1/2
3 )-far from Um. In other

words, wExtG(X) is at most ǫ-far from Um, where ǫ = 2ǫ1 + 4ǫ
1/2
2 + ǫ

1/2
3 + 4ǫ

1/2
2 + ǫ

1/2
3 . Recalling

that ǫ1 = ǫ2 = 2−m
γ0/2
1 , ǫ3 = 2−m

Ω(1)
2 , m2 ≥ m1 = k1/C , and m = m

Ω(1)
1 , we see that

ǫ = 2−kΩ(1)
and m = kΩ(1),

completing the proof.

In order for Lemma 4.16 to yield an explicit extractor, we need to explicitly construct a graph
G over N vertices whose max wedge-independent set has small size, αW. We show that we can
explicitly construct such objects using classical Ramsey graphs.

Lemma 4.17. For all N ∈ N, there exists an explicit construction of a graph G with N vertices
that has max wedge-independent set size αW < R2

N .

Proof. Let G = (V,E) be a graph over N vertices. We claim that if G has no clique nor independent
set of size K, then it has no wedge-independent set of size K2. To see why this is true, we prove
the contrapositive. Let S ⊆ V be a wedge-independent set of size K2. Partition S into sets
S1, S2, . . . , Sℓ such that {G[Si]}i∈[ℓ] are the connected components of G[S]. Observe that each
G[Si] must be a clique: if not, the shortest path between some two vertices in G[Si] uses more
than one edge; but any two consecutive edges on a shortest path must create a wedge (or else it is
not a shortest path), which contradicts S being a wedge-independent set. Now, note that because
|S| = K2, either some Si has size ≥ K, or ℓ ≥ K. In the former case, we have a clique of size
K; in the latter case, we can pick one vertex from each Si to create an independent set of size K,
which proves the claim. By definition of RN , we can explicitly construct a Ramsey graph G over N
vertices with no clique nor independent set of size RN . Thus, we can explicitly construct a graph
H with αW < R2

N , by simply taking H = G.

Combining Lemmas 4.16 and 4.17 immediately gives us Theorem 4.10. Next, we construct an
extractor which generalizes all of the constructions we’ve seen thus far. It will allow us to remove
the restriction between N and k seen in Theorem 4.10.
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4.3 The main extractor

In this section, we prove our second main theorem:

Theorem 4.18 (Theorem 2, restated). There exists a universal constant C > 0 such that for
all N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ √N · RN , there exists an explicit extractor
Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality 0, with output length m = kΩ(1) and

error ǫ = 2−kΩ(1)
.

In order to obtain this explicit construction, we will construct a more general version of the
robust three-source extractor developed in the previous section (via a composition of a two-source
condenser with a seedless non-malleable extractor). We will invoke this new function over certain
sets of sources, and take the XOR of the results. We will use the following type of hypergraph to
select sets of sources:

Definition 4.19 (fragile set system). Given a graph G = (V,E) over N vertices, a fragile set is a
subset S ⊆ V of size at least 3 such that G[S] contains exactly one edge, denoted π(S). A fragile
set system is a tuple H = (G,S) where G = (V,E) is a graph, and S is a collection of some (not
necessarily all) fragile sets in G.

Remark 4.20. While a fragile set system is unordered, we will need each fragile set to order its
vertices so that the inputs to each call of our new function are well-defined. We identify the vertices
of the fragile set system with [N ], and order the vertices in each fragile set S as a triple of the form
(u, v, S′), where u, v are the endpoints of the edge in S listed in increasing order, and S′ = S\{u, v}.

We define activating and independent sets with respect to fragile set systems as follows.

Definition 4.21 (FSS-activating set). Let G = (V,E) be a graph over N vertices, and let H =
(G,S) be a fragile set system. An FSS-activating set in H is a subset T ⊆ V such that for some
fragile set S ∈ S, it holds that |T ∩ S| = 3 and π(S) ⊆ T .

Definition 4.22 (FSS-independent set). Let G = (V,E) be a graph over N vertices, and let
H = (G,S) be a fragile set system. An FSS-independent set in H is a subset T ⊆ V that is not
an FSS-activating set. The FSS-independence number of H is the size of its max FSS-independent
set, and is denoted by αFSS.

We can now formally define our extractor over fragile set systems.

Definition 4.23 (FSS-extractor). Let H = (G,S) be a fragile set system over N vertices.
Let 2Cond : ({0, 1}n)2 → {0, 1}m1 , 2nmExt : ({0, 1}m2)2 → {0, 1}m be the two-source con-
denser and non-malleable extractor from Lemma 3.8, where m2 = m1 + log(deg(H)). Let
τ : S → {0, 1}log(deg(H)) be a tagging function that assigns a unique label to each fragile set
that shares a common edge. We define the FSS-extractor over H for (N,K, n, k)-sources,
fssExtH : ({0, 1}n)N → {0, 1}m, as:

fssExtH(X) :=
⊕

S:=(u,v,S′)∈S
2nmExt(τ(S) ◦ 2Cond(Xu,⊕i∈S′Xi), τ(S) ◦ 2Cond(Xv,⊕i∈S′Xi)).
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For an illustration, we refer the reader to Figure 2. Like the previous two extractors, the FSS-
extractor takes an object (here, a fragile set system) H as advice, and we will prove a general
lemma showing that the performance of our extractor will depend on the values αFSS, deg(H) of
H. Then, we will explicitly construct graphs with small αFSS and very small deg(H), which will
immediately yield Theorem 4.18.

Lemma 4.24 (Main extractor). There exist constants C, γ > 0 such that for all N,K, n, k ∈ N

satisfying k ≥ logC n, the following holds. If H = (G,S) is a fragile set system over N vertices with
FSS-independence number αFSS < K, and degree t = deg(H), then fssExtH : ({0, 1}n)N → {0, 1}m
is an extractor for (N,K, n, k)-sources of locality 0, with output length m = kΩ(1) and error ǫ =

2−kΩ(1)
, provided t− 1 ≤ kγ.

Proof. Identify the vertices of G with [N ], and define I := {i ∈ [N ] : Xi is a good source.} We
know that |I| ≥ K, and thus because G has activation independence number αFSS < K, there
exists some fragile set S := (v1, v2, S

′) ∈ S and some vertex v3 ∈ S′ such that v1, v2, v3 ∈ I.
Next, recall that S holds fragile sets, and a fragile set is defined to contain exactly one edge.

Furthermore, we have specified that when interpreting a fragile set as a triple of the form (u, v, T ′),
u, v should denote the endpoints of the edge in the fragile set, and it should be the case that u < v
under the identification of V (G) by [N ]. Thus, we know that if any other fragile set T 6= S ∈ S
contains both vertices v1, v2, then it must contain them in that order, and as the first two elements
of the triple used to represent T .

Thus, we can partition S \ S into S1,S2,S3,S4 such that: each fragile set in S1 holds vertex v1
but not v2; each fragile set in S2 holds vertex v2 but not v1; each fragile set in S3 holds vertex v1
and v2, but as the first two elements of its triple representation; and each fragile set in S4 does not
hold v1 nor v2. Note that by our definition of degree of a fragile set system, we have |S3| ≤ t− 1.

Next, for each ℓ ∈ {1, 2, 4}, define the random variable

Zℓ :=
⊕

B:=(h,i,J)∈Sℓ

2nmExt(τ(B) ◦ 2Cond(Xh,⊕j∈JXj), τ(B) ◦ 2Cond(Xi,⊕j∈JXj)),

and for each A := (v1, v2, J) ∈ (S3 ∪ S), define the random variables

Y
(1)
A := τ(A) ◦ 2Cond(Xv1 ,⊕j∈JXj),

Y
(2)
A := τ(A) ◦ 2Cond(Xv2 ,⊕j∈JXj).

Note that we can now rewrite

fssExtH(X) = Z1 ⊕ Z2 ⊕ Z4 ⊕ 2nmExt(Y
(1)
S ,Y

(2)
S )⊕

⊕

B∈S3

2nmExt(Y
(1)
B ,Y

(2)
B ).

The remainder of the proof is identical to the proof of Lemma 4.16, with the exception that because
|S3| ≤ t− 1 and our tags have length log t, we only need the restriction t− 1 ≤ kγ (as opposed to
N ≤ kγ) for the final conditioning step that uses the non-malleability of 2nmExt.

To yield Theorem 4.18, we will now construct a fragile set system with not-too-large αFSS and
very small deg(H). It is worth noting that because we achieve deg(H) = 1, our fssExt would have
actually worked even if we replaced the non-malleable extractor calls with calls to the Hadamard
extractor, Had, because the set S3 from our analysis will be empty.
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Lemma 4.25. For all sufficiently large N ∈ N, there exists an explicit construction of a fragile
set system H = (G,S) over N vertices with activation independence number αFSS <

√
N · RN and

degree deg(H) = 1.

Proof. In order to construct H, we first construct G, and then describe how to pick the fragile
sets, S. To construct G, place N vertices into r :=

√

N/RN disjoint sets (call them clouds) of size
ℓ :=

√
N · RN , labeled S1, S2, . . . , Sr. For every 1 ≤ i < j ≤ r, draw edges between clouds Si, Sj so

that G[Si ∪ Sj ] is the best possible bipartite Ramsey graph that can be explicitly constructed.
To construct S, iterate over every 1 ≤ i < j ≤ r, and every pair of vertices u ∈ Si, v ∈ Sj . Let

N−
j (u) := {y ∈ Sj : uy /∈ E(G)} denote the non-neighbors of u in set Sj . If there is an edge from

u to v, and N−
j (u) is non-empty, then add to S the set T := {u, v} ∪N−

j (u). This completes the
construction of H = (G,S).

First, observe that H is a fragile set system, since every set we add to S contains a single edge
and at least three vertices. Next, since our construction iterates over each edge once, and this is
the only time a fragile set may be added containing this edge (since fragile sets contain exactly one
edge), H has degree 1.

Finally, consider any subset A ⊆ V such that there exist two clouds Si, Sj with i < j such that
A shares at least 2Rℓ vertices with Si and at least 2Rℓ vertices with Sj . Call these intersections Bi

and Bj , respectively. By definition of R (Definition 1.3), we know that G′ := G[Bi ∪ Bj ] contains
no bipartite clique nor independent set of size Rℓ. Thus, there must be at least one vertex v ∈ Bi,
and two vertices x, y ∈ Bj such that v is adjacent to x, and not adjacent to y: otherwise, either
half the vertices in Bi have degree 0 in G′, or half the vertices in Bi have degree |Bj | in G′, which
guarantees that we can find a bipartite clique or independent set in G′ of size |Bi|/2 = Rℓ.

Thus, we see that any subset A ⊆ V that is guaranteed to share at least 2Rℓ vertices with
two different clouds each is guaranteed to be an activating set of H. We know this will happen if
|A| ≥ ℓ+ 2Rℓ · r. Given our setting of ℓ, r, we have

√
N · RN ≥ ℓ+ 2Rℓ · r for sufficiently large N .

Thus, for sufficiently large N , any set of size at least
√
N · RN is activating.

Combining Lemmas 4.24 and 4.25 immediately yields Theorem 4.18. Our second main theorem
removes any restriction between N and k, and requires just K =

√
N · RN good sources. We also

note the following two remarks:

Remark 4.26. Given an explicit optimal Ramsey graph, our construction exactly matches, up to
constant factors, the original requirement on K promised by non-explicit STS(N)’s.

Remark 4.27. It is worth noting the generality of the above extractor. Depending on the trade-off
one can achieve between αFSS(H) and deg(H) in explicit constructions of fragile set systems, one
can successfully extract from a wide range of regimes. For example: if we can achieve very small
αFSS and large deg(H), then we can extract when K is very small, but the restriction deg(H) ≤ kγ

will be more restrictive, since deg(H) will be a larger function of N . Indeed, this is the case of
wExtG, which is simply fssExtH where H is the fragile set system made out of the complements of
wedges in the complement of G. On the other hand, if one is willing to allow slightly larger αFSS, it
is possible to completely get rid of any restriction between N, k if one can make deg(H) a constant.
Indeed, this is the case of stsExtH , which is simply fssExtH′ where H ′ is the fragile set system made
out of putting a single edge in each hyperedge of H. As seen with Theorem 4.18, however, we can
exercise the full generality of fragile set systems to find an explicit construction that yields much
better parameters than the fragile set systems that arise from explicitly constructible STS(N)’s.
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In the next section, we show that, in fact, our FSS-extractor works even if we our (N,K, n, k)-
sources have polynomial locality, d.

5 Extracting from polynomial locality

In this section, we will show that our main extractor, the FSS-extractor from Definition 4.23, can
extract from from polynomial locality. In fact, we show the stronger result that our less-general
wedge-extractor (Definition 4.15) can do the same. In particular, we prove the following:

Theorem 5.1. There exist universal constants C, γ > 0 such that for all N,K, n, k, d ∈ N satisfying
k ≥ logC n and d/K ≤ (γ/N)min{kγ , N1/24}, there exists an explicit extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-sources of locality d, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)

.

We note that one parameter setting yields our third main theorem:

Theorem 5.2 (Theorem 3, restated). There exist universal constants C, γ > 0 such that for all
N,K, n, k, d ∈ N satisfying k ≥ logC n and K ≥ N1−γ, and d ≤ Kγ, there exists an explicit extractor
Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality d, with output length m = kΩ(1) and

error ǫ = 2−kΩ(1)
, provided N ≤ kγ.

In order to prove Theorem 5.1, we recall that our wedge-extractor can be instantiated with any
graph G, and that its performance will be related to independence properties of G. We show that,
for some new notion of independence, this remains true even in the 1-local case. Then, we show
how to reduce from the d-local case to the 1-local case.

Previously, we were concerned with constructing a graph so that no matter how K good sources
were placed on the vertices, they were guaranteed to cover a wedge. In the case of 1-locality, we
must defend against a stronger adversary. In particular, we want to make sure that no matter how
K good sources are placed on the vertices of our graph, some wedge is covered, and the two good
sources on the terminals of the wedge do not each influence one bad source placed on a distinct
endpoint of the same edge. We capture this notion with the following definition.

Definition 5.3 (cloudw-wedge). Let G = (V,E) be a graph over N vertices, {h, i, j} ⊆ V be a
subset of size 3, and Ah, Ai, Aj ⊆ V be three nonempty disjoint subsets ( clouds) of size at most
w such that Ah contains h, Ai contains i, and Aj contains j. We call ({h, i, j}, {Ah, Ai, Aj}) a
cloudw-wedge if {h, i, j} is a wedge and there exist no edges crossing between the two clouds holding
the terminals of {h, i, j}.

We define activating and independent sets with respect to cloud-wedges as follows.

Definition 5.4 (cloudw-wedge-activating set). Let G = (V,E) be a graph over N vertices. A
cloudw-wedge-activating set in G is a subset S ⊆ V such that the following holds. For any family
of |S| nonempty disjoint clouds B = {As ⊆ V }s∈S where As contains s and |As| ≤ w for all s ∈ S,
there exist three vertices h, i, j ∈ S such that ({h, i, j}, {Ah, Ai, Aj}) is a cloudw-wedge.

Definition 5.5 (cloudw-wedge-independent set). Let G = (V,E) be a graph over N vertices. A
cloudw-wedge-independent set in G is a subset S ⊆ V that is not a cloudw-wedge-activating set.
The cloudw-wedge-independence number in G is the size of its max cloudw-wedge-independent set,
and is denoted by αCwW.
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For an illustration, we refer the reader to Figure 3. We now prove a general lemma showing
that our wedge-extractor can extract from 1-local adversarial sources, given a graph G with small
αCwW as advice. Then, we will show how to explicitly construct graphs with small αCwW, which will
immediately yield an explicit extractor for 1-local adversarial sources. We then provide a lemma
that shows d-local adversarial sources can be reduced to 1-local adversarial sources. Using this
reduction, we show how to extract from polynomial locality, and ultimately prove Theorem 5.1.

Lemma 5.6. There exist constants C, γ > 0 such that for all N,K, n, k ∈ N satisfying k ≥ logC n,
the following holds. If X is an (N,K, n, k)-source of locality 1 such that at most w sources depend
on a single good source, and G = (V,E) is a graph over N vertices with αCwW < K, then the
wedge-extractor from Definition 4.15, wExtG : ({0, 1}n)N → {0, 1}m, is an extractor for X, with

output length m = kΩ(1) and error ǫ = 2−kΩ(1)
, provided max{w2, logN} ≤ kγ.

Proof. Identify the vertices of G with [N ], and define I := {i ∈ [N ] : Xi is a good source}. We
know that |I| ≥ K. For each i ∈ I, define Di := {j ∈ [N ] : Xi,Xj are not independent} to be
the sources depending on Xi, including Xi itself. Let W be the collection of all wedges in G, and
let W = (v1, v2, v3) ∈ W be such that W ⊆ I and ({v1, v2, v3}, Dv1 , Dv2 , Dv3) is a cloudw-wedge
in G. We know such a wedge exists, because αCwW < K. Furthermore, we know that |Dv1 | ≤ w
and |Dv2 | ≤ w by the statement of our lemma, and we know that Dv1 , Dv2 are disjoint and have
no crossing edges (i.e. edges with one endpoint in Dv1 and the other in Dv2), because our source is
1-local and by definition of cloud-wedge.

Partition W \ (v1, v2, v3) into W1,W2,W3,W4 such that: the triples in W1 have some vertex
in Dv1 but no vertex in Dv2 ; the triples in W2 have some vertex in Dv2 but no vertex in Dv1 ; the
triples inW3 have some vertex in Dv1 and some vertex in Dv2 ; and the triples inW4 have no vertex
in Dv1 nor Dv2 .

Now, let (u1, u2, u3) ∈ W3, and suppose for contradiction u3 ∈ Dv1 . By definition of W3, and
because Dv1 , Dv2 are disjoint, we know that either u1 or u2 is in Dv2 . Furthermore, recall that our
triple representation of a wedge lists the two non-adjacent vertices (terminals) first, and so u1u3
and u2u3 are both edges in G. But Dv1 , Dv2 have no crossing edges, so this is a contradiction.
So u3 /∈ Dv1 , and identical reasoning shows that u3 /∈ Dv2 . Moreover, since we established that
each wedge in W3 has one terminal in Dv1 and the other terminal in Dv2 , it must be the case that
|W3| ≤ |Dv1 | · |Dv2 | ≤ w2: if not, then two wedges would share the same terminals, which would
create a cycle of length 4 (contradicting that G is C4-free).

Next, just as in the proof to Lemma 4.16, for each ℓ ∈ {1, 2, 4}, define the random variable

Zℓ :=
⊕

B:=(h,i,j)∈Wℓ

2nmExt(τ(B) ◦ 2Cond(Xh,Xj), τ(B) ◦ 2Cond(Xi,Xj)),

and for each A := (u1, u2, u3) ∈ (W3 ∪ (v1, v2, v3)), define the random variables

Y
(1)
A := τ(A) ◦ 2Cond(Xu1 ,Xu3),

Y
(2)
A := τ(A) ◦ 2Cond(Xu2 ,Xu3).

Note that we can now rewrite

wExtG(X) = Z1 ⊕ Z2 ⊕ Z4 ⊕ 2nmExt(Y
(1)
W ,Y

(2)
W )⊕

⊕

B∈W3

2nmExt(Y
(1)
B ,Y

(2)
B ).
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By our selection of W1,W2,W3,W4, we know that if we fix all good sources except Xv1 ,Xv2 , then
Z4 is fixed, Z1 is correlated only with Xv1 , and Z2 is correlated only with Xv2 . Furthermore, for
each B = (u1, u2, u3) ∈ W3, we established that u3 /∈ Dv1 ∪Dv2 , and one terminal of B is in Dv1

while the other terminal is in Dv2 , and Dv1 , Dv2 are disjoint. Thus for each B ∈ W3, either: Y
(1)
B

is a function of only Y
(1)
W , and Y

(2)
B is a function of only Y

(2)
B ; or Y

(1)
B is a function of only Y

(2)
W ,

and Y
(2)
B is a function of only Y

(1)
W ; and none of these functions have fixed points.

Since we know that |W3| ≤ w2, we know that as long as w2 ≤ kγ (and log
(

N
3

)

≤ kγ/2, though
this is rarely the dominant constraint), we can perform the same conditioning steps as in the proof

to Lemma 4.16 to show that wExtG(X) is ǫ-close to Um, for m = kΩ(1), ǫ = 2−kΩ(1)
.

In order to use the above lemma, we need to find and explicitly construct graphs that have
small cloud-wedge-independence numbers. We recall the definition of C4-free graphs, and show
that C4-free graphs with no big (standard) independent set have exactly this property.

Definition 5.7 (C4-free graphs). A graph G = (V,E) is C4-free if it contains no cycle of length 4
as a subgraph (induced or not induced).

Lemma 5.8. Let G = (V,E) be a C4-free graph over N vertices with independence number α. For
any w ∈ N, the cloudw-wedge-independence number of G is αCwW < 64w4α.

To prove Lemma 5.8, we will need the following generalization of a wedge.

Definition 5.9 (star). Let G = (V,E) be a graph. A subset S ⊆ V is an ℓ-star if G[S] is the
complete bipartite graph K1,ℓ with one vertex on the left and ℓ on the right. The vertices of degree
1 are known as the terminals of the star.

The idea is to show that given any large enough subset of vertices in a C4-free graph with small
α, some large star (say, with ℓ terminals) must be covered. Then, if we show that the structure
of C4-free graphs forbids one from finding ℓ nonempty disjoint subsets such that each pair has a
crossing edge, we will have found exactly a cloud-wedge. Formally, we must prove the following
two structural lemmas.

Lemma 5.10 (Structural Lemma 1). Let G = (V,E) be a C4-free graph over N vertices with
independence number α. Then any subset S ⊆ V of size K must contain an ℓ-star, where ℓ =
⌈ K2α − 1⌉ ≥ K/(4α).

Proof. Consider the subgraph H = G[S] induced by S. If ∆(H) ≤ 2ℓ−1, then we can greedily find
an independent set of size α′ = ⌈K2ℓ⌉ by iteratively selecting a vertex and discarding its neighbors.
But since ℓ = ⌈ K2α⌉−1, we have α′ > α, which is not possible. Thus, we know ∆(H) ≥ 2ℓ. Consider
a max degree vertex v and 2ℓ of its neighbors, denoted N(v). The induced subgraph H[N(v)] must
have max degree at most 1, because otherwise we can find a cycle of length 4 in H[{v} ∪ N(v)].
Thus H[N(v)] must have an independent set of size at least ℓ, which forms the star K1,ℓ with v.

Lemma 5.11 (Structural Lemma 2). Let G = (V,E) be a C4-free graph over N vertices, and let
D1, D2, . . . , Dℓ ⊆ V be ℓ nonempty disjoint subsets of size at most w. If ℓ ≥ 16w4, then for some
i 6= j ∈ [ℓ], Di, Dj have no crossing edge.
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Proof. We prove the contrapositive. Let D =
⋃

i∈[ℓ]Di, and let H = G[D] be the subgraph of G,
over at most wℓ vertices, induced by D. Suppose that each pair of subsets has some crossing edge.
Then for every i ∈ [ℓ], there exists some vi ∈ Di of degree at least (ℓ− 1)/w in H. For each i ∈ [ℓ],
let Ni denote the set of neighbors of vi. By our selection of vi, we know that each |Ni| ≥ (ℓ− 1)/w.
Furthermore, we know that for each i 6= j ∈ [ℓ], |Ni∩Nj | ≤ 1, because otherwise vi, vj share at least
two common neighbors, which produces a cycle of length 4. We can now use a standard technique
from the theory of Steiner systems to upper bound ℓ. First, note that the number of vertex pairs
in H is at most

(

wℓ
2

)

. Next, the number of vertex pairs within a subset Ni is at least
(

(ℓ−1)/w
2

)

.
Because of our intersection property, no vertex pair can be counted in more than one Ni. Thus, it
must be the case that ℓ ·

(

(ℓ−1)/w
2

)

≤
(

wℓ
2

)

, and in particular that 16w4 > ℓ.

Equipped with these two lemmas, it is straightforward to prove Lemma 5.8.

Proof of Lemma 5.8. Let S be an arbitrary subset of size K ≥ 64w4α in G, and let B = {As ⊆
V }s∈S be an arbitrary collection of nonempty disjoint subsets such that for each s ∈ S, As contains
s and has size at most w. By Lemma 5.10, S contains an ℓ-star of size ℓ ≥ 16w4. Let v1, v2, . . . , vℓ
denote the terminals of this star, and let u ∈ S denote the other vertex in the star. By Lemma 5.11,
we know that for some i, j ∈ [ℓ], Avi , Avj have no crossing edge. Thus ({u, vi, vj}, {Au, Avi , Avj})
is a cloudw-wedge, and so αCwW < K, as desired.

Thus, we want to explicitly construct C4-free graphs with small independence number. For-
tunately, such explicit constructions exist: in particular, Alon showed in [Alo86] that well-known
graphs [ER62] which can be explicitly constructed from finite projective planes have no C4 and
have independence number α ≤ 2N3/4.

Now, note that a simple Markov type argument shows that any (N,K, n, k)-source of locality 1
must contain at least K/2 good sources, such that at most w = 2N/K sources in X depend on any
one of these good sources. Thus, by fixing every other good source, we see that an (N,K, n, k)-
source of locality 1 is a convex combination of (N,K/2, n, k)-sources of locality 1 where at most
2N/K sources depend on a single good source. Thus, Lemma 5.8 tells us that we can combine the
above explicit C4-free graphs with Lemma 5.6 to obtain the following theorem:

Theorem 5.12. There exist constants C, γ > 0 such that for all N,K, n, k ∈ N satisfying k ≥
logC n and K ≥ CN19/20, there exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for

(N,K, n, k)-sources of locality 1, with output length m = kΩ(1) and error ǫ = 2−kΩ(1)
, provided

N/K ≤ kγ.

In order to extend this result to higher locality, we show that we can reduce such adversarial
sources to the 1-local setting, and therefore use the tools we have developed above to extract. Our
reduction, below, is a simpler version of the reduction used by [Vio14] to reduce samplable sources
to affine sources.

Lemma 5.13. Let X = X1, . . . ,XN be an (N,K, n, k)-source of locality d. Then X is a convex
combination of (N,K ′, n, k)-sources of locality 1, where K ′ = K2/(4Nd2) and at most w = 2Nd/K
sources depend on a single good source (including itself).

Proof. Identify X with a bipartite graph G = (V,E) over K + N vertices as follows: partition V
into L,R such that |L| = K and |R| = N . Identify all N sources of X with R, identify the good
sources of X with L, and draw an edge between u ∈ L and v ∈ R if Xu,Xv are correlated. We will
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find a subset L′ ⊆ L of size K ′ such that every vertex in R has at most one neighbor in L′, and
every vertex in L′ has at most 2Nd/K neighbors in R. Then, if we fix all sources in {Xi}i∈L\L′ ,
we are done: the locality is reduced to 1, K ′ good sources remain unfixed, and each unfixed good
source has at most 2Nd/K bad sources depending on it.

First, note that because X has locality d, every vertex in R has degree at most d, and thus
|E| ≤ Nd. Next, observe that there must be some subset L∗ ⊆ L of size at least K/2 where each
u ∈ L∗ has degree at most 2Nd/K; otherwise L contains at least K/2 vertices of degree > 2Nd/K,
contradicting |E| ≤ Nd. We will now show how to select L′ from L∗.

For a vertex v ∈ V , we let N(v) denote its neighbors (adjacent vertices), and for a set of vertices
S ⊆ V , we let N(S) =

⋃

v∈V N(v). Now, we will greedily grow L′ as follows: first, initialize U ← L∗.
Then arbitrarily pick a vertex u from U and add it to L′, remove N(N(u)) from U , and repeat
while U is not empty. Because each v ∈ R has degree at most d, and each v ∈ L∗ has degree at most
2Nd/K, the above process will produce a set L′ of size at least |L∗|/(2Nd2/K) ≥ K2/(4Nd2) = K ′.
Furthermore, our selection process ensures that we never select two vertices from L that share a
neighbor, so no vertex in R has more than one neighbor in L′. Lastly, because L′ ⊆ L∗, each vertex
in L′ has at most 2Nd/K neighbors in R, so we are done.

It is now straightforward to use Lemma 5.13 with Theorem 5.12 to obtain extractors for d-local
adversarial sources. However, if we avoid using Theorem 5.12 as a black box, we can get slightly
better parameters. In particular, by using the bound on w provided in Lemma 5.13, using Alon’s
explicit C4-free graphs in Lemma 5.6 immediately yields Theorem 5.1.

Lastly, it is worth noting that new explicit constructions of the combinatorial objects introduced
here would immediately imply better parameters for Theorem 5.1. In particular, it would be
interesting to explicitly construct C4-free graphs with smaller α, or, more generally, some other
class of graphs with a structure that yields a stronger upper bound on αCwW.

6 Extracting from many short sources

As discussed, the primary focus of our paper is negligible-error extraction from adversarial sources.
In particular, given an (N,K, n, k)-source of locality d, we would like to extract m = (Kk)Ω(1) bits

with error ǫ = 2−(Kk)Ω(1)
. In order to obtain such parameters m, ǫ that depend on both K, k, one

might consider consider constructing extractors for the following two (slightly overlapping) regimes
as separate tasks.

1. The regime K ≥ kγ , for an arbitrarily small constant γ > 0. In this regime, the adversarial
source has most of its entropy distributed across many sources, instead of within a few sources.

2. The regime k ≥ Kγ , for an arbitrarily small constant γ > 0. In this regime, the adversarial
source has most of its entropy distributed within a few sources, instead of across many sources.

Roughly, the first regime corresponds to extracting from many small sources, while the latter
regime corresponds to extracting from a few large sources. Notice that in the first regime we have
K = (Kk)Ω(1), and in the second regime we have k = (Kk)Ω(1). Thus, if we want to construct
explicit extractors that work for all (N,K, n, k)-sources, it makes sense to treat these two regimes
separately. In particular, one might try constructing an extractor for the first regime that works
with parameters m = KΩ(1), ǫ = 2−KΩ(1)

, and an extractor for the second regime that works with
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parameters m = kΩ(1), ǫ = 2−kΩ(1)
. Together, these extractors can be used to output m = (Kk)Ω(1)

bits with error ǫ = 2−(Kk)Ω(1)
from any (N,K, n, k)-source.

Henceforth, when we discuss extracting from the first regime, we mean constructing extractors
for adversarial sources that have output and error parameters m, ǫ that depend on K. When we
discuss extracting from the second regime, we mean constructing extractors for adversarial sources
that have output and error parameters m, ǫ that depend on k. It is worth noting that extractors
constructed for either regime can work across all regimes, but their output and error are most
impressive in the regime for which they are intended (i.e., because in such regimes the output and

error can be written as m = (Kk)Ω(1), ǫ = 2−(Kk)Ω(1)
).

The main focus of our paper (outside this section) is to extract from the second regime k ≥ Kγ ,
and thus produce extractors that have output and error parameters m, ǫ that depend on k. The
purpose of the current section is to justify this focus, by showing a straightforward way to construct
extractors for the first regime. In particular, the following is the main result of the section.

Theorem 6.1. For all fixed γ > 0 and all N,K, n, k, d ∈ N satisfying K/d ≥ N2/3+γn1/3+γ, there
exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-sources of locality d, with

output length m = KΩ(1) and error ǫ = 2−KΩ(1)
.

As discussed in the introduction, the work of Kamp et al. [KRVZ06] gives explicit low-error
extractors for (N,K, n, k)-sources of locality 0 as long as Kk = ω(2n

√
nN). Theorem 6.1 greatly

improves the dependence of n in this result, and furthermore works for polynomially high locality.
To prove this result, we will show that constructing extractors for adversarial sources in the first
regime simply reduces to constructing extractors for the following class of sources, which generalizes
to a well-studied class of sources.

Definition 6.2. A d-local non-oblivious bit-fixing (NOBF) source X over {0, 1}n with min-entropy
k has the following structure:

1. There exists a set S ⊆ [n] of size k of good coordinates of X, which are sampled uniformly
and independently at random.

2. Each bit outside S is computed by a deterministic function of up to d bits inside S.

We proceed by showing how to reduce d-local adversarial sources to d-local NOBF sources.
Then, we show how d-local NOBF sources generalize to well-studied classes of sources, which will
immediately give us Theorem 6.1.

Lemma 6.3. Let N,K, n, k, d ∈ N, and let X = X1, . . . ,XN be an (N,K, n, k)-source of locality
d. Then X is a convex combination of d-local NOBF sources of length Nn and min-entropy K.

Proof. By a standard convex combination argument, we may, without loss of generality, assume that
each good source Xi is a flat source (i.e., a uniform distribution over 2k points in {0, 1}n). Because
k ≥ 1, each good source Xi can be written as a convex combination of flat sources of entropy 1
{Yi,j}j∈J , for some index set J . Notice that each Yi,j is simply a uniform distribution over two
distinct strings u, v ∈ {0, 1}n. Let e ∈ [n] be the coordinate where u, v differ. Now Yi,j can be seen
as a 1-local NOBF source over {0, 1}n of entropy 1, where the single good bit is indexed by e (call
this the “representative bit” of the good source). If we write every good source in this way, then in
each component of the convex combination, any bit of a bad source that previously depended on
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up to d good sources now depends on just the representative bits of those good sources (since every
other bit in the good source is a deterministic function of the representative bit). Finally, we note
that there are K representative bits, each of which are uniform, which completes the proof.

In a line of work initialized by Trevisan and Vadhan [TV00], Viola [Vio14] studied extraction
from a class of sources that could be called d-locally samplable sources. A d-locally samplable
source X over {0, 1}n with min-entropy k has the following structure: for each coordinate i ∈ [n],
there exists a deterministic function fi : {0, 1}k → {0, 1} such that X = f1(Uk), . . . , fn(Uk), where
each Uk is the same copy of a random variable equal to the uniform distribution over {0, 1}k.
It is straightforward to show that a d-local NOBF source is a d-locally samplable source. Thus,
by Lemma 6.3, any extractor for d-locally samplable sources over Nn bits that works at min-
entropy K with output length m = m(K) and error ǫ = ǫ(K) immediately gives an extractor for
(N,K, n, k) adversarial sources of locality d, with the same output and error parameters m, ǫ, even
if the min-entropy of each good sources is just k = 1.

Thus, if one is interested in extracting from adversarial sources of the first regime, it makes sense
to continue the current research program on constructing extractors for locally samplable sources
(or, easier, d-local NOBF sources), instead of treating adversarial sources as a new class. In fact, by
combining Lemma 5.13 (inspired by [Vio14]) with Lemma 6.3, we get the following lemma, which
shows that extracting from adversarial sources in the first regime can be reduced to extracting from
affine sources (with some loss in parameters).

Lemma 6.4. Let N,K, n, k, d ∈ N, and let X = X1, . . . ,XN be an (N,K, n, k)-source of local-
ity d. Then X is a convex combination of 1-local NOBF sources of length Nn and min-entropy
K2/(4Nd2).

A straightforward argument shows that a 1-local NOBF source is a special type of affine source
[Vio14], and thus extractors for affine sources give extractors for adversarial sources in the first
regime. We conclude by showing what sort of parameters are possible, given the best known
low-error affine extractors (applied to 1-local NOBF sources).

1-local NOBF sources were introduced by [Vio14], under the name of bit-block sources. There,
Viola says that a 1-local NOBF source X has weight w if at most w bits in X depend on the
same good bit. He notes that a refinement of the best known low-error affine extractors gives the
following extractors for 1-local NOBF sources:

Lemma 6.5 ([Rao09b,Vio14]). There exists a universal constant C > 0 such that for all fixed γ > 0
and all n, k ∈ N such that k ≥ logC n, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for

1-local NOBF sources of weight w ≤ k1−γ, with output length m = k(1−o(1)) and error ǫ = 2−kΩ(1)
.

We note that Viola reduces locally samplable sources to 1-local NOBF sources, and thus provides
Lemma 6.5 to construct extractors for locally samplable sources. As we have seen through our
reductions, extractors for locally samplable sources and extractors for 1-local NOBF sources both
provide extractors for adversarial sources in the first regime. However, it turns out that directly
using Lemma 6.5 (instead of using Viola’s extractors for locally samplable sources) will give us
better parameters.3

3This is because adversarial sources look more like d-local NOBF sources instead of the more general d-locally
samplable sources, as they offer the extra guarantee that there exist regions of high entropy. The reduction we
provide from d-local adversarial sources to 1-local adversarial sources, Lemma 5.13, which mirrors Viola’s reduction
from locally samplable sources to 1-local NOBF sources, takes advantage of this.
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In particular, we can apply Lemma 6.5 to get extractors for adversarial sources as follows. First,
we note that it is straightforward to modify the proof of Lemma 6.3 so that the lemma statement
additionally says: furthermore, if at most w sources in X depend on the same good source, then
at most wn bits in each NOBF source of the convex combination depend on the same good bit.
Then, by combining this with Lemma 5.13, we can obtain the following, more precise, statement
of Lemma 6.4:

Lemma 6.6. Let N,K, n, k, d ∈ N, and let X = X1, . . . ,XN be an (N,K, n, k)-source of locality d.
Then X is a convex combination of 1-local NOBF sources of length Nn, min-entropy K2/(4Nd2),
and weight 2Ndn/K.

Combining Lemma 6.6 with Lemma 6.5, and removing redundant constraints, immediately gives
us Theorem 6.1.

Lastly, a few remarks are in order. First, we note that the requirement on K in Theorem 6.1 can
be slightly improved if extracting from (N,K, n, k)-sources of locality 0 or 1, since one can simply
combine Lemma 6.5 with Lemma 6.3 instead of with Lemma 6.4 or Lemma 6.6. Second, we note
the extractor in Lemma 6.5 is an affine extractor, yet all that we need (just like in [Vio14]) is an
extractor for 1-local NOBF sources, which have considerably more structure. This provides more
motivation for the construction of low-error extractors for 1-local NOBF sources (a.k.a. bit-block
sources). Third, we reiterate that improved extractors for locally samplable sources (perhaps using
different techniques than reducing them to 1-local sources) would greatly improve the parameters
in Theorem 6.1.

7 Existential and impossibility results

Recall that given a 2-source extractor, we can extract from an (N, 2, n, k)-source of locality 0 by
simply applying the 2-source extractor on every pair our sources, and computing the XOR of the
obtained outputs (see Section 2). A standard probabilistic argument shows that there exists a
2-source extractor for (n, k)-sources with output length m and error ǫ as long as k ≥ m + log n +
2 log(1/ǫ) + 5. Using these observations with Lemma 3.9, it is straightforward to apply the same
arguments used throughout this paper to obtain the following.

Theorem 7.1. For all N,n, k,m ∈ N and ǫ > 0 satisfying k ≥ 3m + log n + 4 log(1/ǫ) + 12,
there exists an extractor Ext : ({0, 1}n)N → {0, 1}m for (N, 2, n, k)-sources of locality 0, with output
length m and error ǫ.

We now generalize the above existential result to (≥ 1)-locality.

Theorem 7.2. For all N,K, n, k, d,m, s ∈ N and ǫ > 0, there exists an extractor Ext : ({0, 1}n)N →
{0, 1}m for (N,K, n, k)-sources of locality d, with output length m and error ǫ, as long as s > 1
and the following hold:

•
(

d
s

)

< 1
N−K ·

(

K
s

)

,

• k > g(n+ ⌈logN⌉, s,
(

N
s

)

,m, ǫ2/4), where g() is the function from Theorem A.2.

Proof. Let X = X1 ◦ · · · ◦XN be an (N,K, n, k) source of locality d, and define X′ = X′
1 ◦ . . .X′

N

to be such that X′
i = i◦Xi, where we take i to be the binary encoding of i. Define t =

(

N
s

)

, and let
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snmExt : ({0, 1}n+⌈logN⌉)N → {0, 1}m be an optimal (non-explicit) generalized (s, t)-non-malleable
extractor for entropy k, with output lengthm and error ǫ2/4. Indeed such a non-malleable extractor
exists by Theorem A.2. Now let S ⊆ [N ]s denote the set of all s-tuples of [N ] formed by taking
a subset of [N ] of size s and writing it in increasing order; i.e., |S| =

(

N
s

)

. Our extractor simply
computes the following function:

⊕

(i1,...,is)∈S
snmExt(X′

i1 , . . . ,X
′
is).

Suppose now that there exists some I = (i1, . . . , is) ∈ S such that (Xi1 , . . . ,Xis) are all good
sources and no bad source Xj depends on all of them. Then after fixing all good sources outside I,
we see that for all J 6= I ∈ S, (X′

j)j∈J is a tampered version of (X′
i)i∈I with no fixed points, and

such that each individual source in (X′
j)j∈J depends on at most s− 1 of (X′

i)i∈I . Thus by the non-

malleability of snmExt and the setting of k, we see that with probability at least 1−
√

ǫ2/4 over fixing
all snmExt((X′

j)j∈J), J 6= I ∈ S, snmExt((X′
i)i∈I) is

√

ǫ2/4-close to Um, the uniform distribution

over m bits. In particular, this means that the output of our construction is 2
√

ǫ2/4 = ǫ-close to
Um, as desired.

To complete the proof, we just need to argue that such an I exists. Consider the bipartite graph
with K good sources on left and N −K bad sources on right, such that a bad source is adjacent
to every good source it depends on. Thus the right degree is bounded by d. Note that if I ⊆ [N ]
indexes a set {Xi}i∈I of s good sources, and Xj is a bad source depending on all of {Xi}i∈I , then
({Xi}i∈I ,Xj) creates an s-star. We let ∆ denote the number of such s-stars in the graph (with the
central vertex on the right). We will prove our result by providing upper and lower bounds on ∆.

Note that if no such I exists, then ∆ ≥
(

K
s

)

. However, because the right degree is bounded by

d, we know that ∆ ≤ (N −K)
(

d
s

)

, and thus
(

K
s

)

≤ (N −K)
(

d
s

)

, which contradicts our setting of
(

d
s

)

< 1
N−K ·

(

K
s

)

.

This theorem immediately gives the following corollary.

Corollary 7.3 (Theorem 4, restated). For any constant 0 < γ < 1 there exists a constant α > 0
such that for all N,K, n, k, d ∈ N satisfying k ≥ (1 + γ) log n and K ≥ Nγ, and d ≤ K1−γ, there
exists a (possibly non-explicit) extractor for (N,K, n, k)-sources of locality d with output length
m = kΩ(1) and error ǫ = 2−Ω(k), provided N ≤ kα.

Proof. In order to apply Theorem 7.2, note that for any 0 < γ < 1 with K ≥ Nγ and d ≤ K1−γ ,
there is a sufficiently large constant s ∈ N such that

(

d
s

)

< 1
N−K ·

(

K
s

)

holds. By resetting γ in

the first step as necessary (to a smaller constant), the condition k > g(n+ ⌈logN⌉, s,
(

N
s

)

,m, ǫ2/4)

holds by choice of α, the output length m = kΩ(1), the error ǫ = 2−Ω(k), and the conditions
k ≥ (1 + γ) log n and N ≤ kα.

We now prove two impossibility results on extraction from adversarial sources. First, we show
that if just half of the sources are good, it is impossible to extract from adversarial sources of
unbounded locality.

Theorem 7.4. There does not exist an extractor Ext : ({0, 1}n)N → {0, 1} for (N,N/2, n, n)-
sources of locality d = N/2 with error ǫ < 1/2.
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Proof. Fix an arbitrary Ext : ({0, 1}n)N → {0, 1}. We consider two cases. If there is some u ∈
({0, 1}n)N/2 such that for all v ∈ ({0, 1}n)N/2 we have Ext(u, v) = 1, then clearly Ext(u,UnN/2) = 1
with probability 1, and we have found an 0-local (N,N/2, n, n)-source that makes the extrac-
tor constant. Otherwise, for each u ∈ ({0, 1}n)N/2, there is some f(u) ∈ ({0, 1}n)N/2 such that
Ext(u, f(u)) = 0. In this case, Ext(UnN/2, f(UnN/2)) = 0 with probability 1, and we have found an
(N/2)-local (N,N/2, n, n)-source that makes the extractor constant.

Next, we show an impossibility result for when there is just one bad source, but it depends on
all the good sources. The result rules out negligible-error extractors for adversarial sources in the
extreme setting where the number of sources is exponentially larger than the length of each source.
We first introduce a useful definition.

Definition 7.5. Let Σ be some alphabet. For any function f : Σn → {0, 1}, and any i ∈ [n],
define the influence of i on f , denoted by Ii(f) to be the probability that on uniformly sampling the
coordinates [n] \ {i}, the function f is still not determined.

For any function f : Σn → {0, 1}, we use E[f ] to denote the average of f under the uniform
distribution on the domain of f . We need the following generalization of the KKL theorem.

Theorem 7.6 ([BKK+92]). Let Σ = {0, 1}m. For any function f : Σn → {0, 1}, there exists a
coordinate i ∈ [n] such that Ii(f) ≥ Ω(p log n/n), where p = min{E[f ], 1− E[f ]}.

Theorem 7.7. There does not exist an extractor Ext : ({0, 1}n)N → {0, 1} for (N,N − 1, n, n)-
sources of locality d = N − 1 with error ǫ ≤ o((logN)/(N2n)).

Proof. The proof is straightforward using Theorem 7.6. Let Σ = {0, 1}n. Assume that there exists
an extractor f : ΣN → {0, 1} for the class of (N,N − 1, n, n)-sources of locality (N − 1) with error
ǫ = o((logN)/(N2n)). Without loss of generality assume E[f ] ≥ 1/2. Using Theorem 7.6, there
exists i ∈ [N ] such that Ii(f) = Ω((logN)/N). Now we can define a source X = X1, . . . ,XN that
is (N,N − 1, n, n)-source of locality N − 1 in the following way: Xi corresponds to the bad source
and is set by looking at the values of {Xj : j ∈ [N ] \ {i}} such that whenever f is not already
determined by the good sources, Xi is set so that f(X) = 1. Using the lower bound on Ii(f), it
follows that E[f(X)]− 1/2 = Ω((logN)/(N2n)), contradicting our assumption.

8 Improved extractors for small-space and total entropy sources

Our results for adversarial sources directly imply improved extractors for sources that are sampled
by small-space algorithms. This class of sources was first studied by Kamp et al. [KRVZ06], and
fits into the line of work initiated by Trevisan and Vadhan [TV00] on constructing extractors for
sources sampled by algorithms of bounded complexity.

Definition 8.1. A source X over {0, 1}n is called a space s source if it is sampled by a random
walk on a width 2s branching program of length n, where each edge of the branching program is
labeled by a bit and an associated transition probability.

Probabilistically, it is known that there are small space extractors for space s sources on {0, 1}n
with min-entropy k ≥ O(s + log s + log(n/ǫ)) and error ǫ. The best known explicit extractor for

the negligible error regime ǫ = 2−nΩ(1)
is from Kamp et al. [KRVZ06], who gave explicit extractors
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for space s sources on {0, 1}n that require min-entropy k ≥ n1−γ and space s ≤ γ · (k/n)3 ·n, where
γ is some tiny constant. Chattopadhyay and Li [CL16b] reduced the entropy requirement, but also
significantly reduced the allowed space and increased the error to ǫ = n−Ω(1), which is no longer
negligible.

Our contribution is a new extractor for the negligible error regime ǫ = 2−nΩ(1)
. In particular,

we construct an explicit extractor that can handle effectively the same space as the extractor
from [KRVZ06], but significantly smaller entropy.

Theorem 8.2 (Theorem 5, restated). For any fixed γ > 0 and all n, k, s ∈ N satisfying k ≥ n2/3+γ

and s ≤ (k/n)3+γ · n, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s sources

of min-entropy k, with output length m = nΩ(1) and error ǫ = 2−nΩ(1)
.

Following [KRVZ06], we derive our results for small-space sources by first reducing to an inter-
mediate model called total entropy sources that was first studied by Koenig and Maurer [KM05].

Definition 8.3. A source X over ({0, 1}ℓ)r is called an (r, ℓ, k)-total entropy source if X =
X1, . . . ,Xr, where each Xi is an independent random variable over {0, 1}ℓ, and∑r

i=1H∞(Xi) ≥ k.

The best known extractor with negligible error for (r, ℓ, k)-total entropy sources (that doesn’t
restrict ℓ to be exponentially smaller than r) requires k ≥ (rℓ)1−γ , for a tiny constant γ [KRVZ06].
We show that our new constructions can extract from total entropy sources with significantly less
entropy.

Theorem 8.4. For any fixed γ > 0 and all r, ℓ, k ∈ N satisfying k ≥ (rℓ)1−α, where

α := min {(1/3− γ) , (1/2− γ) log r/ log(rℓ)} ,
there exists an explicit extractor Ext : ({0, 1}ℓ)r → {0, 1}m for (r, ℓ, k)-total entropy sources, with

output length m = (rℓ)Ω(1) and error ǫ = 2−(rℓ)Ω(1)
.

Proof. Let X = X1, . . . ,Xr be an (r, ℓ, k)-total entropy source. We will consider two cases over
r, ℓ, and show that in each case we may select certain N,n ∈ N such that X can be viewed as an
(N,n, k)-total entropy source. Given such a source, a standard Markov type argument says that if
k ≥ N1/2+γn + nγN , then X is in fact a 0-local (N,N1/2+γ , n, nγ) adversarial source. Thus if we
selected N,n to ensure this entropy guarantee, and to ensure that nγ = (rℓ)Ω(1), then our extractor

from Theorem 2 produces m = (rℓ)Ω(1) bits from X with error ǫ = 2−(rℓ)Ω(1)
. We show how to

select such N,n, below.
If r ≥ ℓ(2−2γ)/(1−2γ), we set N = (rℓ)(2−2γ)/(3−4γ), and n = (rℓ)(1−2γ)/(3−4γ). Notice that

because N ≤ r, we may bucket the sources X1, . . . ,Xr into N consecutive buckets, each containing
r/N ≥ 1 independent sources. Thus, we may rewrite X = X1, . . . ,Xr as X1, . . . ,XN , where each
Xi has length rℓ/N = n and is independent of every other Xj . And thus X is also an (N,n, k)-total
entropy source. Now, by our theorem statement, we know k ≥ (rℓ)2/3+γ (by plugging in the first
option for α). Thus, resetting γ to be a sufficiently small constant, we know that for sufficiently large
r, ℓ (allowed by the asymptotic expression in the error), we have k ≥ N1/2+γn+nγN . Furthermore,
by the current setting of n, we clearly have nγ = (rℓ)Ω(1).

If r < ℓ(2−2γ)/(1−2γ), we set N = r and n = ℓ, and thus X is an (N,n, k)-total entropy source.
By our theorem statement, we know k ≥ r1/2+γℓ (by plugging in the second option for α). Thus
we have k ≥ N1/2+γn and k ≥ nγN . Resetting γ to be a sufficiently small constant, we know that
for sufficiently large r, ℓ, we have k ≥ N1/2+γn + nγN . Furthermore, by the current setting of n
and the upper bound on r imposed by this case, we have nγ = (rℓ)Ω(1), as desired.
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We now recall a reduction from small-space sources to total entropy sources.

Lemma 8.5 ([KRVZ06]). Let X be a space s source on {0, 1}n with min-entropy k. Then X

is 2−k/4-close to a convex combination of (r, ℓ, k/2)-total entropy sources, where r = k/(4s), ℓ =
4sn/k.

It is now straightforward to combine Lemma 8.5 with Theorem 8.4 to prove Theorem 8.2:

Proof of Theorem 8.2. Set β = γ/8. By Lemma 8.5 and Theorem 8.4, we can extract m = nΩ(1)

bits from X with error ǫ = 2−k/4 + 2−nΩ(1)
= 2−nΩ(1)

if k/2 ≥ n2/3+β and k/2 ≥ nrβ−1/2 =
n(k/(4s))β−1/2. The former holds for sufficiently large n because we have k ≥ n2/3+γ . A straight-
forward calculation shows that the latter holds for sufficiently large n because we have s ≤
(k/n)3+γn.

9 Future directions

In this work, we initiate a systemic study of adversarial sources, which generalize the well-studied
setting of independent sources in extractor theory. We present explicit constructions for a wide
range of parameters in this new setting, and give existential results that show there is still much
room for improvement. For instance, it would be particularly interesting to extend our techniques
to handle adversarial sources with the following parameters, in the negligible error regime: (1)
0-locality, and a sub-polynomial number of good sources, K, each with sub-polynomial entropy,
k; and (2) K0.99-locality, and an arbitrary polynomial number of good sources, K, each with
polylogarithmic entropy, k. Explicit constructions for (1) would yield much improved extractors
for small-space sources, and constructions for (2) would allow for extraction in a much more robust
setting.

We introduce a new framework for extracting from multiple sources, based on new connections
between extremal combinatorics and randomness extraction. In particular, all of our explicit con-
structions are built on extremal hypergraphs that exhibit a specific structure capable of controlling
dependency between sources, and on non-malleable extractors which are capable of breaking these
dependencies once they are nicely controlled. It would be interesting to see how much further
these connections can be pushed, by constructing explicit hypergraphs that exhibit stronger ex-
tremal properties, or by constructing more powerful non-malleable extractors (which would allow
the use of simpler hypergraphs). In particular, it’s an interesting open problem to give explicit
constructions of generalized s-source non-malleable extractors (as we define in Definition A.1).
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A Existential bounds on generalized s-source non-malleable ex-

tractors

We define a generalized s-source non-malleable extractor with tampering degree t as follows.

Definition A.1. We call a function snmExt : ({0, 1}n)s → {0, 1}m a generalized (s, t)-non-
malleable extractor for entropy k, output length m, and error ǫ, if the following holds. Let
X1, . . . ,Xs be any s independent (n, k)-sources, and let hi, i ∈ [t] : {0, 1}ns → {0, 1}ns be t tam-
pering functions of the form hi = (f1

i , . . . , f
s
i ), where each f j

i : {0, 1}ns → {0, 1}n is a tampering
function that depends on at most s − 1 of the sources. Suppose that each hi has no fixed point.
Then:

|snmExt(X1, . . . ,Xs) ◦ snmExt(h1(X1, . . . ,Xs)) ◦ · · · ◦ snmExt(ht(X1, . . . ,Xs))

−Um ◦ snmExt(h1(X1, . . . ,Xs)) ◦ · · · ◦ snmExt(ht(X1, . . . ,Xs))| ≤ ǫ.

We say that a generalized (s, t)-non-malleable extractor has tampering degree t.

Cheraghchi and Guruswami [CG14] proved existential bounds on 2-source non-malleable ex-
tractors with tampering degree 1. We extend this result to prove existential bounds for generalized
s-source non-malleable extractors with tampering degree t.
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Theorem A.2. For all n, k, s, t,m ∈ N and ǫ > 0 satisfying s > 1 and k > g(n, s, t,m, ǫ), there
exists a generalized (s, t)-non-malleable extractor snmExt : ({0, 1}n)s → {0, 1}m for entropy k,
output length m, and error ǫ, where

g(n, s, t,m, ǫ) =
m(t+ 1)

s
+ log(n) + 2 log(1/ǫ) + 2 log(t(t+ 1)) + log(s) + 3.

To prove the above result, we record a result that follows from the proof of Theorem A.1
in [BACD+18].

Lemma A.3 ([BACD+18]). Let X be a flat (n′, k′)-source, let hi, i ∈ [t] : {0, 1}n′ → {0, 1}n′

be arbitrary tampering functions with no fixed points, and let D : ({0, 1}m)t+1 → {0, 1} be an
arbitrary distinguisher function. Let snmExt : {0, 1}n′ → {0, 1}m be a function sampled uniformly
at random, and define the distributions D1 := (snmExt(X), snmExt(h1(X)), . . . , snmExt(ht(X)))
and D2 := (Um, snmExt(h1(X)), . . . , snmExt(ht(X))). Then with probability at least 1 − β(t, k′, ǫ)
over sampling snmExt, we have |Pr[D(D1) = 1]− Pr[D(D2) = 1]| ≤ ǫ, where

β(t, k′, ǫ) = (t+ 1) exp

(

−ǫ22k′

2(t+ 1)2

)

.

Given the above lemma, Theorem A.2 is straightforward to derive via the probabilistic method:

Proof of Theorem A.2. We note the following bounds.

• The number of sources of the form X = (X1, . . . ,Xs), where each Xi is a flat independent

(n, k)-source, is at most
(

2n

2k

)s ≤ 2sn2
k
.

• The number of distinguishers D : ({0, 1}m)t+1 → {0, 1} is at most 22
m(t+1)

.

• For any given source of the form X = (X1, . . . ,Xs), where each Xi is a flat independent (n, k)-
source, the number of distinct tampering functions f : {0, 1}sn → {0, 1}n, restricted to the

support of X and depending on at most s− 1 of the sources in X, is at most s · (2n)2k(s−1)
=

2n2
k(s−1)+log s. Thus the number of distinct t-tuples of adversaries (h1, . . . , ht), with each

adversary of the form hi = (f1
i , . . . , f

s
i ), where each f j

i is a tampering function as above, is

at most 2ts(n2
k(s−1)+log s).

Thus, by applying Lemma A.3 with k′ = sk, the probabilistic method and a standard union
bound argument tells us that the claimed generalized (s, t)-non-malleable extractor exists if

β(t, k′, ǫ) · 2sn2k · 22(t+1)m · 2ts(n2(s−1)k+log s) < 1,

which holds for our selection of k.
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