
Lifting with Simple Gadgets and
Applications to Circuit and Proof Complexity

Susanna F. de Rezende Or Meir Jakob Nordström
KTH Royal Institute

of Technology
University of Haifa University of Copenhagen

Toniann Pitassi Robert Robere Marc Vinyals
University of Toronto DIMACS Technion

Institute for Advanced Study Institute for Advanced Study

Abstract

We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone
span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank,
in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem
to solve two open problems:
• We present the first result that demonstrates a separation in proof power for cutting planes with

unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas
that can be refuted in quadratic length and constant line space in cutting planes with unbounded
coefficients, but for which there are no refutations in subexponential length and subpolynomial
line space if coefficients are restricted to be of polynomial magnitude.

• We give the first explicit separation between monotone Boolean formulas and monotone real
formulas. Specifically, we give an explicit family of functions that can be computed with mono-
tone real formulas of nearly linear size but require monotone Boolean formulas of exponential
size. Previously only a non-explicit separation was known.

An important technical ingredient, which may be of independent interest, is that we show that
the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides
exactly with the reversible pebbling price of G. In particular, this implies that the standard decision
tree complexity and the parity decision tree complexity of the corresponding falsified clause search
problem are equal.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 186 (2019)

1 Introduction

Lifting theorems in complexity theory are a method of transferring lower bounds in a weak computational
model into lower bounds for a more powerful computational model, via function composition. There
has been an explosion of lifting theorems in the last ten years, essentially reducing communication lower
bounds to query complexity lower bounds.

Early papers that establish lifting theorems include Raz and McKenzie’s separation of the monotone NC
hierarchy [RM99] (by lifting decision tree complexity to deterministic communication complexity), and
Sherstov’s pattern matrix method [She11] which lifts (approximate) polynomial degree to (approximate)
matrix rank. Recent work has established query-to-communication lifting theorems in a variety of models,
leading to the resolution of many longstanding open problems in many areas of computer science. Some
examples include the resolution of open questions in communication complexity [GPW15, GLM+15,
GKPW17, GJPW17, GPW18], monotone complexity [RPRC16, PR17, PR18], proof complexity [HN12,
GP18, dRNV16, GGKS18], extension complexity of linear and semidefinite programs [KMR17, GJW18,
LRS15], data structures [CKLM18] and finite model theory [BN16].

Lifting theorems have the following form: given functions f : {0, 1}n → {0, 1} (the “outer function”)
and g : X ×Y → {0, 1} (the “gadget”), a lower bound for f in a weak computational model implies a lower
bound on f ◦gn in a stronger computational model. The most desirable lifting theorems are the most general
ones. First, it should hold for any outer function, and ideally f should be allowed to be a partial function
or a relation (i.e., a search problem). Indeed, nearly all of the applications mentioned above require lifting
where the outer function is a relation or a partial function. Secondly, it is often desirable that the gadget is
as small as possible. The most general lifting theorems established so far, for example lifting theorems for
deterministic and randomized communication complexity, require at least logarithmically-sized gadgets; if
these theorems could be improved generically to hold for constant-sized gadgets then many of the current
theorems would be vastly improved. Some notable examples where constant-sized gadgets are possible
include Sherstov’s degree-to-rank lifting [She11], critical block-sensitivity lifting [GP18, HN12], and
lifting for monotone span programs [PR17, PR18, Rob18].

1.1 A New Lifting Theorem

In this paper, we generalize a lifting theorem of Pitassi and Robere [PR18] to use any gadget that has
nontrivial rank. This theorem takes a search problem associated with an unsatisfiable CNF, and lifts
a lower bound on the Nullstellensatz degree of the CNF to a lower bound on a related communication
problem.

More specifically, let C be an unsatisfiable k-CNF formula. The search problem associated with C,
Search(C), takes as input an assignment to the underlying variables, and outputs a clause that is falsified by
the assignments. [PR18] prove that for any unsatisfiable C, and for a sufficiently rich gadget g, deterministic
communication complexity lower bounds for the composed search problem Search(C) ◦ gn follow from
Nullstellensatz degree lower bounds for C.1 We significantly improve this lifting theorem so that it holds
for any gadget of large enough rank.

Theorem 1.1. Let C be a CNF over n variables, let F be any field, and let g be any gadget of rank at least r.
Then the deterministic communication complexity of Search(C ◦ gn) is at least NSF(C), the Nullstellensatz
degree of C, as long as r ≥ cn/NSF(C) for some large enough constant c.

An important special case of our generalized theorem is when the gadget g is the equality function. In
this work, we apply our theorem to resolve two open problems in proof complexity and circuit complexity.
Both solutions depend crucially on the ability to use the equality gadget.

We note that lifting with the equality gadget has recently been the focus of another paper. Loff and
Mukhopadhyay [LM19] observed that a lifting theorem for total functions with the equality gadget can

1In fact the result is quite a bit stronger—it applies to Razborov’s rank measure [Raz90], which is a strict strengthening of
deterministic communication complexity.

1

be proven using a rank argument. Surprisingly, they also observed that it is not possible to lift query
complexity to communication complexity for arbitrary relations! Concretely, [LM19] give an example of
a relation with linear query complexity but whose composition with equality has only polylogarithmic
communication complexity. Nonetheless, they are able to prove a lifting theorem for general relations
using the equality gadget by replacing standard query complexity with a stronger complexity measure
(namely, the 0-query complexity of the relation).

Unfortunately, we cannot use either of the lifting theorems of [LM19] for our applications. Specifically,
in our applications we lift a search problem (and therefore cannot use their result for total functions), and
this search problem has small 0-query complexity (and therefore we cannot use their lifting theorem for
general relations). Indeed, this shows that our lifting theorem is incomparable to the results of [LM19],
even when specialized to the equality gadget. We note that our theorem, too, bypasses the impossibility
result of [LM19] by using a stronger complexity measure, which in our case is the Nullstellensatz degree.

1.2 A Separation in Proof Complexity

The main application of our lifting theorem is the first separation in proof complexity between cutting
planes proofs with high-weight versus low-weight coefficients. The cutting planes proof-system is a proof
system that can be used to refute an unsatisfiable CNF by translating it into a system of integer inequalities
and showing that this system has no integer solution. The latter is achieved by a sequence of steps that
derive new integer inequalities from old ones, until we derive the inequality 0 ≥ 1 (which clearly has no
solution). The efficiency of such a refutation is measured by its length (i.e., the number of steps) and its
space (i.e., the maximal number of inequalities that have to be stored simultaneously during the derivation).

The standard variant of the cutting planes proof system, commonly denoted by CP, allows the in-
equalities to use coefficients of arbitrary size. However, it is also interesting to consider the variant in
which the coefficients are polynomially bounded, which is commonly denoted by CP∗. This gives rise to
the natural question of the relative power of CP vs. CP∗: are they polynomially equivalent or is there a
super-polynomial length separation? This question appeared in [BC96] and remains stubbornly open to
date. In this work we finally make progress by exhibiting a setting in which unbounded coefficients afford
an exponential increase in proof power.

Theorem 1.2. There is a family of CNF formulas of size N that have cutting planes refutations of length
Õ(N2) and space O(1), but for which any refutation in length L and space s with polynomially bounded
coefficients must satisfy s logL = Ω̃(N).

Our result is the first result in proof complexity demonstrating any situation where high-weight
coefficients are more powerful than low-weight coefficients. In comparison, for computing Boolean
functions, the relative power of high-weight and low-weight linear threshold functions has been understood
for a long time. The greater-than function can be computed by high-weight threshold functions, but not
by low-weight threshold functions, and weights of length polynomial in n suffice [Mur71] for Boolean
functions. For higher depth threshold formulas, it is known that depth-d threshold formulas of high-weight
can efficiently be computed by depth-(d+ 1) threshold formulas of low-weight [GHR92].

In contrast to our near-complete knowledge of high versus low weights for functions, almost nothing is
known about the relative power of high versus low weights in the context of proof complexity. Buss and
Clote [BC96], building on work by Cook, Coullard, and Turán [CCT87], proved an analog of Muroga’s
result for cutting planes, showing that weights of length polynomial in the length of the proof suffice. Quite
remarkably, this result is not known to hold for other linear threshold proof systems: there is no nontrivial
upper bound on the weights for more general linear threshold propositional proof systems (such as stabbing
planes [BFI+18], and Krajı́ček’s threshold logic proof system [Kra95] where one can additionally branch
on linear threshold formulas). Prior to our result, there was no separation between high and low weights,
for any linear threshold proof system.

2

1.3 A Separation in Circuit Complexity

A second application of our lifting theorem relates to monotone real circuits, which were introduced by
Pudlák [Pud97]. A monotone real circuit is a generalization of monotone Boolean circuits where each gate
is allowed to compute any non-decreasing real function of its inputs, but the inputs and output of the circuit
are Boolean. A formula is a tree-like circuit, that is, every gate has fan-out one. The first (exponential)
lower bound for monotone real circuits was proven already in [Pud97] by extending the lower bound for
computing the clique-colouring function with monotone Boolean circuits [Raz85, AB87]. This lower
bound, together with a generalization of the interpolation technique [Kra97] which applied only to CP∗,
was used by Pudlák to obtain the first exponential lower bounds for CP.

Shortly after monotone real circuits were introduced, there was an interest in understanding the power
of monotone real computation in comparison to monotone Boolean computation. By extending techniques
in [RM99], Bonet et al. prove that there are functions with polynomial size monotone Boolean circuits
that require monotone real formulas of exponential size [Joh98, BEGJ00]. This illustrates the power of
DAG-like computations in comparison to tree-like. In the other direction, we would like to know whether
monotone real circuits are exponentially stronger than monotone Boolean circuits. Rosenbloom [Ros97]
presented an elegant, simple proof that monotone real formulas are exponentially stronger than (even
non-monotone) Boolean circuits, since slice functions can be computed by linear-size monotone real
formulas, whereas by a counting argument we know that most slice functions require exponential size
Boolean circuits.

The question of finding explicit functions that demonstrate that monotone real circuits are stronger
than general Boolean circuits is much more challenging since it involves proving explicit lower bounds for
Boolean circuits—a task that seems currently completely out of reach. A more tractable problem is that
of finding explicit functions showing that monotone real circuits or formulas are stronger than monotone
Boolean circuits or formulas, but prior to this work, no such separation was known either. We provide
an explicit separation for monotone formulas, that is, we provide a family of explicit functions that can
be computed with monotone real formulas of near-linear size but require exponential monotone Boolean
formulas. This is the first explicit example that illustrates the strength of monotone real computation.

Theorem 1.3. There is an explicit family of functions fn over O(n polylog n) variables that can be
computed by monotone real formulas of size O(n polylog n) but for which every monotone Boolean
formula requires size 2Ω(n/ logn).

Another motivation for studying lifting theorems with simple gadgets, and in particular the equality
gadget, are connections with proving non-monotone formula size lower bounds. As noted earlier, lifting
theorems have been extremely successful in proving monotone circuit lower bounds, and it has also been
shown to be useful in some computational settings that are only “partially” monotone; notably monotone
span programs [RPRC16, PR17, PR18] and extended formulations [GJW18, KMR17].

This raises the question of to what extent lifting techniques can help prove non-monotone lower bounds.
The beautiful work by Karchmer, Raz and Wigderson [KRW95] initiated such an approach for separating
P from NC1—this opened up a line of research popularly known as the KRW conjecture. Intriguingly,
steps towards resolving the KRW conjecture are closely connected to proving lifting theorems for the
equality gadget. The first major progress was made in [EIRS01] where lower bounds for the universal
relation game are proven, which is an important special case of the KRW conjecture. Their result was
recently improved in several papers [GMWW17, HW93, KM18], and Dinur and Meir [DM18] gave a new
top-down proof of the state-of-the-art Ω(n3) formula-size lower bounds via the KRW approach.

The connection to lifting using the equality gadget is obtained by observing that the KRW conjecture
involves communication problems in which Alice and Bob are looking for a bit on which they differ—this
is exactly an equality problem. Close examination of the results in [EIRS01, HW93] show that they are
equivalent to proving lower bounds for the search problem associated with the pebbling formula when lifted
with a 1-bit equality gadget on a particular graph [Pit16]. Our proof of Theorem 4.1 actually establishes
near-optimal lower bounds on the communication complexity of the pebbling formula lifted with equality
for any graph, but where the size of the equality is not 1. Thus if our main theorem could be improved

3

with one-bit equality gadgets this would imply the results of [EIRS01, HW93] as a direct corollary and
with significantly better parameters.

1.4 Overview of Techniques

We conclude this section by giving a brief overview of our techniques, also trying to convey some of the
simplicity of the proofs which we believe is an extra virtue of these results.

Lifting theorem In order to prove their lifting theorem, Pitassi and Robere [PR18] defined a notion of a
“good” gadget. They then showed that if we compose a polynomial p with a good gadget g, the rank of the
resulting matrix p ◦ gn is determined exactly by the non-zero coefficients of p and the rank of g. Their
lifting theorem follows by using this correspondence to obtain bounds on the ranks of certain matrices,
which in turn yield the required communication complexity lower bound.

In this work, we observe that every gadget g can be turned into a good gadget using a simple trans-
formation. This observation allows us to get an approximate bound on the rank of p ◦ gn for any g with
nontrivial rank. While the correspondence we get in this way is only an approximation and not an exact
correspondence as in [PR18], it turns out that this approximation is sufficient to prove the required lower
bounds. We thus get a lifting theorem that works for every gadget g with sufficiently large rank.

Cutting planes separation The crux of our separation between CP and CP∗ is the following observation:
CP can encode a conjunction of linear equalities with a single equality, by using exponentially large
coefficients. This allows CP refutations to obtain a significant saving in space when working with linear
equalities. This saving is not available to CP∗, and this difference between the proof systems allows the
separation.

In order to exploit this observation, one of our main innovations is to concoct the separating formula.
To do this, we must come up with a candidate formula that can only be refuted by reasoning about a large
conjunction of linear equalities, to show that cutting planes (CP) can efficiently refute it, and to show that
low-weight cutting planes (CP∗) cannot.

To find such a candidate formula family we resort to pebbling formulas which have played a major role
in many proof complexity trade-off results. Interestingly, pebbling formulas have short resolution proofs
that reason in terms of large conjunctions of literals. When we lift such formulas with the equality gadget
this proof can be simulated in cutting planes by using the large coefficients to encode many equalities with
a single equality. This yields cutting planes refutation of any pebbling formula in quadratic length and
constant space.

On the other hand we prove our time-space lower bound showing that any CP∗ refutation requires large
length or large space for the same formulas. To prove this lower bound, the first step is to instantiate the
connection in [HN12] linking time/space bounds for many proof systems to communication complexity
lower bounds for lifted search problems. This connection means that we can obtain the desired CP∗-
lower bounds for our formulas PebG ◦ EQn by proving communication complexity lower bounds for the
corresponding lifted search problem Search(PebG) ◦ EQn.

In order to prove the latter communication lower bounds, we prove lower bounds on the Nullstellensatz
degree of Search(PebG), and then invoke our new lifting theorem to translate them into communication
lower bounds for Search(PebG) ◦EQn. To show the Nullstellensatz lower bounds, we prove the following
lemma, which establishes an equivalence between Nullstellsatz degree and the reversible pebbling price,
and may be interesting in its own right. (We remark that connections between Nullstellensatz degree and
pebbling were previously shown in [BCIP02]; however their result was not tight.)

Lemma 1.4. For any field F and any directed acyclic graph G the Nullstellensatz degree of PebG is equal
to the reversible pebbling price of G.

We remark that due to known lower and upper bounds in query and proof complexity, this lemma
immediately implies that Nullstellensatz degree coincides for (deterministic) decision tree and parity

4

decision tree complexity. We record this here as a corollary, as it may be of independent interest, and
provide its proof in Appendix C.

Corollary 1.5. For any field F and any directed acyclic graphG, the Nullstellensatz degree over F of PebG,
the decision tree depth of Search(PebG), and the parity decision tree depth of Search(PebG) coincide
and are equal to the reversible pebbling price of G.

Using the above equivalence, we obtain near-linear Nullstellensatz degree refutations for a family of
graphs with maximal pebbling price, which completes our time/space lower bound for CP∗. However,
in order to separate CP and CP∗ we require a very specific gadget and lifting theorem. Specifically, the
gadget should be strong enough, so that lifting holds for deterministic communication complexity (which
can efficiently simulate small time/space CP∗ proofs), but on the other hand also weak enough, so that
lifting does not hold for stronger communication models (randomized, real) that can efficiently compute
high-weight inequalities. The reason that we are focusing on the equality gadget is that it hits this sweet
spot—it requires large deterministic communication complexity, yet has short randomized protocols, and
furthermore equalities can be represented with a single pair of inequalities.

Separation for monotone formulas As was the case for the separation between CP and CP∗, to obtain
a separation between monotone Boolean formulas and monotone real formulas we must find a function
that has just the right level of hardness.

To obtain a size lower bound for monotone Boolean formulas we invoke the characterization of formula
depth by communication complexity of the Karchmer–Wigderson game [KW90]. By choosing a function
that has the same Karchmer–Wigderson game as the search problem of a lifted pebbling formula, we get a
depth lower bound for monotone Boolean formulas from the communication lower bound of the search
problem. Note that since monotone Boolean formulas can be balanced, a depth lower bound implies a size
lower bound.

In the other direction, we would like to show that these functions are easy for real computation.
Analogously to the Karchmer–Wigderson relation, it was shown in [HP18] that there is a correspondence
between real DAG-like communication protocols (as defined in [Kra98]) and monotone real circuits. Using
this relation, a small monotone real circuit can be extracted from a short CP proof of the lifted pebbling
formula. However, we would like to establish a monotone real formula upper bound. One way to achieve
this is by finding small tree-like CP refutations of lifted pebbling formulas. The problem is that for many
gadgets lifted pebbling formulas require exponentially long tree-like proofs. Nevertheless, for pebbling
formulas lifted with the equality gadget we are able to exhibit a short semantic tree-like CP refutation,
which via real communication yields a small monotone real formula.

1.5 Organization of This Paper

Section 2 contains formal definitions of concepts discussed above and some useful facts. Our main lifting
theorem is proven in Section 3. Section 4 is devoted to proving our separation between high-weight and
low-weight cutting planes. In Section 5 we prove the separation between monotone real and Boolean
formulas. We conclude in Section 6 with some open problems.

2 Preliminaries

In this section we review some background material from communication complexity and proof complexity.

2.1 Communication Complexity and Lifted Search Problems

Given a function g : X × Y → I, we denote by gn : X n × Yn → In the function that takes as input n
independent instances of g and applies g to each of them separately. A total search problem is a relation
S ⊆ I × O such that for all z ∈ I there is an o ∈ O such that (z, o) ∈ S. Intuitively, S represents the

5

computational task in which we are given an input z ∈ I and would like to find an output o ∈ O that
satisfies (z, o) ∈ S.

An important example of a search problem, which has proved to be very useful for proof complexity
results, comes from unsatisfiable k-CNF formulas. Given a k-CNF formula C over variables z1, . . . , zn,
the search problem Search(C) ⊆ {0, 1}n × C takes as input an assignment z ∈ {0, 1}n and outputs a
clause C ∈ C that is falsified by z.

Given a search problem S ⊆ In ×O with a product input domain and a function g : X × Y → I,
we define the composition S ◦ gn ⊆ X n × Yn × O in the natural way: (x, y, o) ∈ S ◦ g if and only if
(gn(x, y), o) ∈ S. We remark that this composition notation extends naturally to functions: for instance,
if f : In → F is a function taking values in some field F, for example, then the composition f ◦ gn is a
X n × Yn matrix over F. Second, we remark that we will sometimes write S ◦ g instead of S ◦ gn if n is
clear from context.

A communication search problem is a search problem with a bipartite input domain I = A× B. A
communication protocol for a search problem S ⊆ A × B × O is a strategy for a collaborative game
where two players Alice and Bob hold x ∈ A, y ∈ B, respectively, and wish to output an o ∈ O such
that ((x, y), o) ∈ S while communicating as few bits as possible. Messages are sent sequentially until
one player announces the answer and only depend on the input of one player and past messages. The cost
of a protocol is the maximum number of bits sent over all inputs, and the communication complexity of
a search problem, which we denote by Pcc(S), is the minimum cost over all protocols that solve S. For
more details on communication complexity, see, for instance, [KN97].

Given a CNF formula C on n variables z1, z2, . . . , zn and a Boolean function g : {0, 1}q × {0, 1}q →
{0, 1}, we define a lifted formula C ◦ gn as follows. For each variable zi of C, we have 2q new variables
xi,1, . . . , xi,q, yi,1, . . . , yi,q. For each clause C ∈ C we replace each literal zi or ¬zi in C by a CNF
encoding of either g(xi,1, . . . , xi,q, yi,1, . . . , yi,q) or ¬g(xi,1, . . . , xi,q, yi,1, . . . , yi,q) according to the sign
of the literal. We then expand the resulting expression into a CNF, which we denote by C ◦ g, using
de Morgan’s rules. The substituted formula is C ◦ g =

⋃
C∈C C ◦ g.

For the sake of an example, consider the clause u ∨ v, and we will substitute with the equality gadget
on two bits. Formally, we replace u with xu,1xu,2 = yu,1yu,2 and v with xv,1xv,2 = yv,1yv,2. We can
encode a two-bit equality as the CNF formula

(x1x2 = y1y2) ≡ (x1 ∨ y1) ∧ (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x2 ∨ y2),

and a two-bit disequality as the CNF formula

(x1x2 6= y1y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2)∧ (x1 ∨ x2 ∨ y1 ∨ y2)∧ (x1 ∨ x2 ∨ y1 ∨ y2)∧ (x1 ∨ x2 ∨ y1 ∨ y2).

So, in the clause u∨ v, we would substitute u for the CNF encoding of xu,1xu,2 = yu,1yu,2 and v with the
CNF encoding of xv,1xv,2 6= yv,1yv,2; finally, we would convert the new formula to a CNF by distributing
the top ∨ over the ∧s from the new CNF encodings.

While Search(C) ◦ gn is not the same problem as Search(C ◦ gn), we can reduce the former to the
latter. Specifically, suppose we are given a protocol Π for Search(C ◦ gn). Consider the following protocol
Π′ for Search(C) ◦ gn: Given an input (x, y), the protocol Π′ interprets (x, y) as an input to Π. Now,
assume that Π′ outputs on (x, y) a clause D of C ◦ gn, which was obtained from a clause C of C. Then,
the clause C is a valid Search(C) on (x, y), so Π′ outputs it. Let us record this observation.

Observation 2.1. Pcc(Search(C ◦g)) ≥ Pcc(Search(C)◦g) for any unsatisfiable CNF C and any Boolean
gadget g.

2.2 Nullstellensatz

As a proof system, Nullstellensatz allows verifying that a set of polynomials does not have a common root,
and it can also be used to refute CNF formulas by converting them into polynomials. It plays an important
role in our lower bounds.

6

Let F be a field, and let P = {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of poly-
nomial equations in F[z1, z2, . . . , zn]. A Nullstellensatz refutation of P is a sequence of polynomials
q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 piqi = 1 where the equality is syntactic. The degree

of the refutation is maxi deg(piqi); the Nullstellensatz degree of P , denoted NSF(P), is the minimum
degree of any Nullstellensatz refutation of P .

Let C = C1 ∧ C2 ∧ · · · ∧ Cm be an unsatisfiable CNF formula over Boolean variables z1, z2, . . . , zn.
We introduce a standard encoding of each clause Ci as a polynomial equation. If C is a clause then let
C+ denote the set of variables occurring positively in C and C− denote the set of variables occurring
negatively in C; with this notation we can write C =

∨
z∈C+ z ∨

∨
z∈C− z. From C define the polynomial

E(C) ≡
∏
z∈C+

(1− z)
∏
z∈C−

z,

over formal variables z1, z2, . . . , zn. Observe that E(C) = 0 is satisfied (over 0/1 assignments to zi) if
and only if the corresponding assignment satisfies C. We abuse notation and let E(C) = {E(C) : C ∈
C} ∪ {z2

i − zi}i∈[m], and note that the second set of polynomial equations restricts the zi inputs to {0, 1}
values. The F-Nullstellensatz degree of C, denoted NSF(C), is the Nullstellensatz degree of refuting E(C).

How do we know that a Nullstellensatz refutation always exists? One can deduce this from Hilbert’s
Nullstellensatz, but for our purposes it is enough to use a simpler version proved by Buss et al. (Theorem
5.2 in [BIK+97]): if P is a system of polynomial equations over F[z1, . . . , zn] with no {0, 1} solutions,
then there exists a Nullstellensatz refutation of P ∪ {z2

i − zi = 0}i∈[n].

2.3 Cutting Planes

The Cutting planes (CP) proof system was introduced in [CCT87] as a formalization of the integer linear
programming algorithm in [Gom63, Chv73]. Cutting planes proofs give a formal method to deduce new
linear inequalities from old that are sound over integer solutions—that is, if some integral vector x∗
satisfies a set of linear inequalities I , then x∗ will also satisfy any inequality ax ≥ b deduced from I by a
sequence of cutting planes deductions. The allowed deductions in a cutting planes proof are the following:

Linear combination
∑

i aixi ≥ A
∑

i bixi ≥ B∑
i (cai + dbi)xi ≥ cA+ dB

Division
∑

i caixi ≥ A∑
i aixi ≥ dA/ce

where ai, bi, c, d, A, and B are all integers and c, d ≥ 0.
In order to use cutting planes to refute unsatisfiable CNF formulas, we need to translate clauses to

inequalities. It is easy to see how to do this by example: we translate the clause x∨y∨¬z to the inequality
x+ y+ (1− z) ≥ 1, or, equivalently, x+ y− z ≥ 0 if we collect all constant terms on the right-hand side.
For refuting CNF formulas we equip cutting planes proofs with the following additional rules ensuring all
variables take {0, 1} values:

Variable axioms
x ≥ 0 −x ≥ −1

The goal, then, is to prove unsatisfiability by deriving the inequality 0 ≥ 1. This is possible if and
only if there is no {0, 1}-assignment satifying all constraints.

As discussed in the introduction, we are interested in several natural parameters of cutting planes
proof—length, space, and the sizes of the coefficients. So, we define a cutting planes refutation as a
sequence of configurations (this is also known as the blackboard model). A configuration is a set of linear
inequalities with integer coefficients, and a sequence of configurations C0, . . . ,CL is a cutting planes
refutation of a formula C if C0 = ∅, CL contains the contradiction 0 ≥ 1, and each configuration Ct+1

follows from Ct either by adding an inequality in C, by adding the result of one of the above inference rules
where all the premises are in Ct, or by removing an inequality present in Ct. The length of a refutation is
then defined to be the number of configurations L; the space2 is maxt∈[L]|Ct|, the maximum number of

2Formally, this is known as the line space.

7

inequalities in a configuration; and the coefficient bit size is the maximum size in bits of a coefficient that
appears in the refutation.

For any proof system, it is natural to ask what is the minimal amount of space needed to prove
tautologies. Indeed, there has been much work in the literature studying this, and for proof systems such
as resolution (e.g. [ET01, ABRW02, BG03, BN08]) and polynomial calculus (e.g. [ABRW02, FLN+15,
BG15, BBG+17]) it is known that there are unsatisfiable CNF formulas which unconditionally require
large space to refute. In contrast (and quite surprisingly!) it was shown in [GPT15] that for cutting planes
proofs, constant line space is always enough. The proof presented in [GPT15] does use coefficients of
exponential magnitude, but the authors are not able to show that this is necessary—only that coefficients
of at most constant magnitude are not sufficient.

Similarly, one can ask whether cutting planes refutations require large coefficients to realize the full
power of the proof system. Towards this, define CP∗ to be cutting planes proofs with polynomially-bounded
coefficients or, in other words, a cutting planes refutation Π of a formula C with n variables is a CP∗
refutation if the largest coefficient in Π has magnitude poly(n,L).

The question of how CP∗ relates to unrestricted cutting planes has been raised in several papers, e.g.,
[BPR97, BEGJ00]. This question was studied already in [BC96], where it was proven that any cutting
planes refutation in length L can be transformed into a refutation with LO(1) lines having coefficents of
magnitude exp(O(L)) (here the asymptotic notation hides a mild dependence on the size of the coefficients
in the input). The authors write, however, that their original goal had been to show that coefficients of
only polynomial magnitude would be enough, i.e., that CP∗ would be as powerful as cutting planes except
possibly for a polynomial loss, but that they had to leave this as an open problem. To the best of our
knowledge, there has not been a single example of any unsatisfiable formula where CP∗ could potentially
perform much worse than general (high-weight) cutting planes.

Finally, as observed in [BPS07, HN12], we can use an efficient cutting planes refutation of a formula
C to solve Search(C) by an efficient communication protocol. Since the first configuration C0 is always
true and the last configuration CL is always false, the players can simulate a binary search by evaluating
the truth value of a configuration according to their joint assignment and find a true configuration followed
by a false configuration. It is not hard to see that the inequality being added corresponds to a clause in C
and it is a valid answer to Search(C).

Lemma 2.2 ([HN12]). If there is a cutting planes refutation of C in length L, line space s, and coefficient
bit size c, then there is a deterministic communication protocol for Search(C) of costO(s(c+log n) logL).

3 Rank Lifting from Any Gadget

In this section we discuss our new lifting theorem, restated next.3

Theorem 3.1. Let C be any unsatisfiable k-CNF on n variables and let F be any field. For any Boolean
valued gadget g with rank(g) ≥ 12enk/NSF(C) we have

Pcc(Search(C) ◦ g) ≥ NSF(C).

This generalizes a recent lifting theorem from [PR18], which only allowed certain “good” gadgets. The
main technical step of that proof showed that “good” gadgets can be used to lift the degree of multilinear
polynomials to the rank of matrices. In this section, we improve this, showing that any gadget with
non-trivial rank can be used to lift polynomial degree to rank. Given this result, Theorem 3.1 is proved by
reproducing the proof of [PR18] with a tighter analysis. With this in mind, in this section we will prove
our new lifting argument for degree to rank, and then relegate the rest of the proof of Theorem 3.1 to
Appendix A.

3In fact, we prove a somewhat more general theorem (see Theorem A.1 in Appendix A for details). We also remark that this
theorem in fact holds for a stronger communication measure (Razborov’s rank measure [Raz90]), and so implies lower bounds
for other models—see Appendix A for details.

8

Let us now make these arguments formal. We start by recalling the definition of a “good” gadget of
[PR18].

Definition 3.2 (Definition 3.1 in [PR18]). Let F be a field. A gadget g : X × Y → F is good if for any
matrices A,B of the same size we have

rank(1X ,Y ⊗A+ g ⊗B) = rank(A) + rank(g)rank(B)

where 1X ,Y denotes the X × Y all-1s matrix.

In [PR18] it is shown that good gadgets are useful because they lift degree to rank when composed
with multilinear polynomials.

Theorem 3.3 (Theorem 1.2 in [PR18]). Let F be any field, and let p ∈ F[z1, z2, . . . , zn] be a multilinear
polynomial over F. For any good gadget g : X × Y → F we have

rank(p ◦ gn) =
∑

S:p̂(S)6=0

rank(g)|S|.

In the present work, we show that a gadget being good is not strictly necessary to obtain the above
lifting from degree to rank. In fact, composing with any gadget lifts degree to rank!

Theorem 3.4. Let p ∈ F[z1, z2, . . . , zn] be any multilinear polynomial and let g : X × Y → F be any
non-zero gadget with rank(g) ≥ 3. Then∑

S:p̂(S)6=0

(rank(g)− 3)|S| ≤ rank(p ◦ gn) ≤
∑

S:p̂(S)6=0

rank(g)|S|.

We remark that the lower bound in the theorem can be sharpened to rank(g) − 2 if the gadget g is
not full rank. While the previous theorem does not require the gadget g to be good, the notion of a good
gadget will still play a key role in the proof. The general idea is that every gadget with non-trivial rank
can be transformed into a good gadget with a slight modification. With this in mind, en-route to proving
Theorem 3.4 we give the following characterization of good gadgets which may be of independent interest.

Lemma 3.5. A gadget g is good if and only if the all-1s vector is not in the row or column space of g.

In the remainder of the section we prove Theorem 3.4 and Lemma 3.5.

3.1 Proof of Lemma 3.5

We begin by proving Lemma 3.5, which is by a simple linear-algebraic argument. Given a matrix M
over a field, let row(M) denote the row-space of M and let col(M) denote the column-space of M . The
following characterization of when rank is additive will be crucial.

Theorem 3.6 ([MS72]). For any matricesA,B of the same size over any field, rank(A+B) = rank(A)+
rank(B) if and only if row(A) ∩ row(B) = col(A) ∩ col(B) = {0}.

The previous theorem formalizes the intuition that rank should be additive if and only if the corre-
sponding linear operators act on disjoint parts of the vector space. Using the previous theorem we deduce
the following general statement, from which Lemma 3.5 immediately follows.

Lemma 3.7. Let f, g be matrices over any fixed field F of the same size. The following are equivalent:

1. For all matricesA,B of the same size, rank(f⊗A+g⊗B) = rank(f)rank(A)+rank(g)rank(B).

2. rank(f + g) = rank(f) + rank(g).

9

Proof. By choosingA = B = (1) we instantly deduce (2) from (1). To prove the converse, we use Theorem
3.6. LetA,B be matrices such that rank(f⊗A+g⊗B) 6= rank(f)rank(A)+rank(g)rank(B). Then by
Theorem 3.6 it follows that there is a non-zero vector in the intersection of either the row- or column-spaces
of f ⊗ A and g ⊗ B. Suppose that there is a non-zero vector u ∈ col(f ⊗ A) ∩ col(g ⊗ B), and we
prove that there is a non-zero vector in col(f) ∩ col(g) implying rank(f + g) 6= rank(f) + rank(g). (A
symmetric argument will apply to the row spaces.)

Assume that f and g are a × b dimensional matrices, and that A and B are m × n dimensional
matrices. Let u be the length am non-zero vector in the column spaces of both f ⊗ A and g ⊗ B, and
suppose without loss of generality that u1 6= 0. It follows that there are length bn vectors x, y such that
(f ⊗A)x = u = (g ⊗B)y. Write

x = (x1, x2, . . . , xb),

y = (y1, y2, . . . , yb)

where xi, yi are vectors of length n for each i.
Let A1 denote the first row of A and B1 denote the first row of B; note they are both vectors of length

n. Define the length-b vectors

x′ = (A1x
1, A1x

2, . . . , A1x
b),

y′ = (B1y
1, B1y

2, . . . , B1y
b).

Then, by definition, for each i = 1, 2, . . . , a we have (fx′)i = u(i−1)m+1 = (gy′)i, and the vector is
non-zero since u1 6= 0 by assumption. Thus fx′ = gy′ and the column spaces of f and g intersect at a
non-zero vector.

From Lemma 3.7 we can deduce Lemma 3.5 immediately.

Proof of Lemma 3.5. By the previous lemma, g is good if and only if rank(1+ g) = rank(1) + rank(g).
By Theorem 3.6 this is true iff the all-1s vector is not in the row- or column-space of g.

3.2 Proof of Theorem 3.4

In this section we prove Theorem 3.4 using Lemma 3.5. The theorem follows by induction using the
following lemma, and the proof mimics the proof from [PR18, Rob18].

Lemma 3.8. Let F be any field, and let g : X ×Y → F be any gadget with rank(g) ≥ 3. For any matrices
A,B of the same size we have

rank(1X ,Y ⊗A+ g ⊗B) ≥ rank(A) + (rank(g)− 3)rank(B)

where 1X ,Y is the X × Y all-1s matrix.

Proof. Assume without loss of generality that |X | ≥ |Y| and let 1 = 1X ,Y . Thinking of g as a matrix, let
u be any column vector of g. If we zero the entries of u in g, then the remaining matrix cannot have full
rank, implying that some row-vector v of the remaining matrix will become linearly dependent. Let g1 be
the X × Y matrix consisting of the u column and v row of g, and let g2 be the X × Y matrix obtained by
zeroing out u and v in g. Observe g = g1 + g2, and also since g2 contains an all-0 row and an all-0 column
it is good by Lemma 3.5 (as any linear combination of rows/columns of g must contain a zero coordinate).

Now, observe that

rank(1⊗A+ g ⊗B) = rank(1⊗A+ g1 ⊗B + g2 ⊗B)

≥ rank(1⊗A+ g2 ⊗B)− rank(g1 ⊗B)

= rank(1⊗A+ g2 ⊗B)− rank(g1)rank(B)

10

where the inequality follows since adding a rank-R matrix can decrease the rank by at most R. Since g1

consists of a single non-zero row and column we have rank(g1) ≤ 2; by the construction of g2 we have
rank(g2) = rank(g)− 1. Using these facts and the fact that g2 is good, we have

rank(1⊗A+ g2 ⊗B)− rank(g1)rank(B) ≥ rank(A) + rank(g2)rank(B)− 2 rank(B)

= rank(A) + (rank(g)− 3)rank(B).

With the lemma in hand we can prove Theorem 3.4.

Proof of Theorem 3.4. We prove

rank(p ◦ gn) ≥
∑

S:p̂(S)6=0

(rank(g)− 3)|S|

by induction on n, the number of variables.
Observe that the inequality is trivially true if n = 0. Assume n > 0, and let 1 = 1X ,Y . Write

p = q + z1r for multilinear polynomials q, r ∈ F[z2, z3, . . . , zn]. Note that it clearly holds that p ◦ gn =
1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1). From the claim we have by induction that

rank(p ◦ gn) = rank(1⊗ (q ◦ gn−1) + g ⊗ (r ◦ gn−1))

≥ rank(q ◦ gn−1) + (rank(g)− 3)rank(r ◦ gn−1)

=
∑

S:q̂(S) 6=0

(rank(g)− 3)|S| + (rank(g)− 3)
∑

T :r̂(T)6=0

(rank(g)− 3)|T |

=
∑

S:p̂(S)6=0
z1 6∈S

(rank(g)− 3)|S| + (rank(g)− 3)
∑

T :p̂(T)6=0
z1∈T

(rank(g)− 3)|T |−1

=
∑

S:p̂(S) 6=0

(rank(g)− 3)|S|.

For the upper bound, by subadditivity of rank we have

rank(1⊗A+ g ⊗B) ≤ rank(1⊗A) + rank(g ⊗B)

= rank(1)rank(A) + rank(g)rank(B)

= rank(A) + rank(g)rank(B).

Apply the above induction argument using this inequality mutatis mutandis.

4 Application: Separating Cutting Planes Systems

In this section we prove a new separation between high-weight and low-weight cutting planes proofs in the
bounded-space regime.

Theorem 4.1. There is a family of O(log log n)-CNF formulas over O(n log log n) variables and Õ(n)
clauses that have CP refutations in length Õ(n2) and line space O(1), but for which any CP∗ refutation
in length L and line space s must satisfy s logL = Ω(n/ log2 n).

By the results of [GPT15], any unsatisfiable CNF formula has a cutting planes refutation in constant
line space, albeit with exponential length and exponentially large coefficients. In Theorem 4.1 we show
that the length of such a refutation can be reduced to polynomial for certain formulas, described next.

At a high level, we prove Theorem 4.1 using the reversible pebble game. Given any DAG G with a
unique sink node t, the reversible pebble game [Ben89] is a single-player game that is played with a set of
pebbles on G. Initially the graph is empty, and at each step the player can either place or remove a pebble
on a vertex whose predecessors already have pebbles (in particular the player can always place or remove

11

a pebble on a source). The goal of the game is to place a pebble on the sink while using as few pebbles as
possible. The reversible pebbling price of a graph, denoted rpeb(G), is the minimum number of pebbles
required to place a pebble on the sink.

The family of formulas witnessing Theorem 4.1 are pebbling formulas composed with the equality
gadget. Intuitively, the pebbling formula [BW01] PebG associated with G is a formula that claims that it
is impossible to place a pebble on the sink (using any number of pebbles). Since it is always possible to
place a pebble by using some amount of pebbles, this formula is clearly a contradiction.

Formally, the pebbling formula PebG is the following CNF formula. For each vertex u ∈ V there is a
variable zu (intuitively, zu should take the value “true” if and only if it is possible to place a pebble on u
using any number of pebbles). The variables are constrained by the following clauses.

• a clause zs for each source vertex s (i.e., we can always place a pebble on any source),

• a clause
∨
u∈pred(v) ¬zu ∨ zv for each non-source vertex v with predecessors pred(v) (i.e., if we

can place a pebble on the predecessors of v, then we can place a pebble on v), and

• a clause ¬zt for the sink t (i.e., it is impossible to place a pebble on t).

Proving Theorem 4.1 factors into two tasks: a lower bound and an upper bound. By applying our lifting
theorem from the previous section, the lower bound will follow immediately from a good lower bound on
the Nullstellensatz degree of pebbling formulas. In order to prove lower bounds on the Nullstellensatz
degree, we show in Section 4.1 that over every field, the Nullstellensatz degree required to refute PebG
is exactly the reversible pebbling price of G. We then use it together with our lifting theorem to prove
the time-space tradeoff for bounded-coefficient cutting planes refutations of PebG ◦ g in Section 4.2
for any high-rank gadget g. Finally, in Section 4.3 we prove the upper bound by presenting a short and
constant-space refutation of PebG ◦ EQ in cutting planes with unbounded coefficients.

4.1 Nullstellensatz Degree of Pebbling Formulas

In this section we prove that the Nullstellensatz degree of the pebbling formula of a graph G equals the
reversible pebbling price of G.

Lemma 4.2. For any field F and any graph G, NSF(PebG) = rpeb(G).

We crucially use the following dual characterization of Nullstellensatz degree by designs [Bus98].

Definition 4.3. Let F be a field, let d be a positive integer, and let P be an unsatisfiable system of
polynomial equations over F[z1, z2, . . . , zn]. A d-design for P is a linear functional D on the space of
polynomials satisfying the following axioms:

1. D(1) = 1.

2. For all p ∈ P and all polynomials q such that deg(pq) ≤ d, we have D(pq) = 0.

Clearly, if we have a candidate degree-d Nullstellensatz refutation 1 =
∑
piqi, then applying a d-

design to both sides of the refutation yields 1 = 0, a contradiction. Thus, if a d-design exists for a system
of polynomials then there cannot be a Nullstellensatz refutation of degree d. Remarkably, a converse holds
for systems of polynomials over {0, 1}n.

Theorem 4.4 (Theorems 3, 4 in [Bus98]). Let F be a field and let P be a system of polynomial equations
over F[z1, z2, . . . , zn] containing the Boolean equations z2

i − zi = 0 for all i ∈ [n]. Then P does not have
a degree-d Nullstellensatz refutation if and only if it has a d-design.

With this characterization in hand we prove Lemma 4.2.

Proof of Lemma 4.2. Let G be a DAG, and consider the pebbling formula G. Following the standard
translation of CNF formulas into unsatisfiable systems of polynomial equations, we express PebG with
the following equations:

12

Source Equations. The equation (1− zs) = 0 for each source vertex s.

Sink Equations. The equation zt = 0 for the sink vertex t.

Neighbour Equations. The equation (1− zv)
∏
u∈pred(v) zu = 0 for each internal vertex v.

Boolean Equations. The equation z2
v − zv = 0 for each vertex v.

We prove that a d-design for the above system exists if and only if d < rpeb(G), and this implies the
lemma. LetD be a d-design for the system. First, note that since the Boolean axioms are satisfied and since
D is linear, it follows that D is completely specified by its value on multilinear monomials zT :=

∏
i∈T zi

(with this notation note that z∅ := 1). Moreover, D must satisfy the following properties:

Empty Set Axiom. D(z∅) = 1.

Source Axioms. D(zT) = D(zT zs) for every source s and every T ⊆ [n] with |T ∪ {s}| ≤ d.

Neighbour Axioms. D(zT zpred(v)) = D(zT zpred(v)zv) for every non-source vertex v and every T ⊆ [n]
with |T ∪ pred(v) ∪ {v}| ≤ d.

Sink Axiom. D(zT zt) = 0 for the sink t and every T ⊆ [n] with |T ∪ {t}| ≤ d.

We may assume without loss of generality that D(zT) = 0 for any set T with |T | > d.
Given a set S of vertices of G, we think of S as the reversible pebbling configuration in which there

are pebbles on the vertices in S and there are no pebbles on any other vertex. We say that a configuration T
is reachable from a configuration S if there is a sequence of legal reversible pebbling moves that changes
S to T while using at most d pebbles at any given point.

Now, we claim that the only way to satisfy the first three axioms is to set D(xT) = 1 for every
configuration T that is reachable from ∅. To see why, observe that those axioms are satisfiable if and only
if the empty configuration is assigned the value 1, any configuration containing the sink is labelled 0, and
D(zS) = D(zT) for any two configurations S, T with at most d pebbles that are mutually reachable via a
single reversible pebbling move. Hence, this setting of D is the only one we need to consider.

Finally, observe that this specification of a designD satisfies the sink axiom if and only if d < rpeb(G),
since the sink is reachable from ∅ using rpeb(G) pebbles but not with less (by the definition of rpeb(G)).
Therefore, a d-design for PebG exists if and only if d < rpeb(G), as required.

4.2 Time-Space Lower Bounds for Low-Weight Refutations

In this section we prove the lower bound part of the time-space trade-off for CP∗.

Lemma 4.5. There is a family of graphs {Gn} with n vertices and constant degree, such that every CP∗

refutation of PebGn ◦ EQ in length L and line space s must have s logL = Ω(n/ log2 n).

Our plan is to lift a pebbling formula that is hard with respect to Nullstellensatz degree, and as we just
proved it is enough to find a family of graphs whose reversible pebbling price is large. Paul et al. [PTC77]
provide such a family (and in fact prove their hardness in the stronger standard pebbling model).

Theorem 4.6. There is a family of graphs {Gn}withn vertices, constant degree, and for which rpeb(Gn) =
Ω(n/ log n).

We combine these graphs with our lifting theorem as follows.

Lemma 4.7. There is a family of graphs {Gn}withn vertices and constant degree, such thatPcc(Search(PebG◦
EQ)) = Ω(n/ log n).

13

Proof. Let PebG be the pebbling formula of a graph G = Gn from the family given by Theorem 4.6. By
Lemma 4.2 the Nullstellensatz degree of the formula is

NSF(PebG) = rpeb(G) = Ω(n/ log n) . (4.1)

This allows us to use our lifting theorem, Theorem 3.1, with an equality gadget of arity q =
O(log(n/NSF(PebG)) = O(log log n), and obtain that the lifted search problem Search(PebG) ◦ EQ
requires deterministic communication

Pcc(Search(PebG) ◦ EQ) ≥ NSF(PebG) = Ω(n/ log n) . (4.2)

As we noted in Observation 2.1, this implies that the search problem of the lifted formula also requires
deterministic communication

Pcc(Search(PebG ◦ EQ)) ≥ Pcc(Search(PebG) ◦ EQ) = Ω(n/ log n) . (4.3)

Since we collected our last ingredient, let us finish the proof.

Proof of Lemma 4.5. Let S = Search(PebG ◦ EQ) be the search problem given by Lemma 4.7. Using
Lemma 2.2 we have that every cutting planes refutation of the lifted formula in length L, line space s, and
coefficient length c must satisfy

s(c+ log n) logL = Ω(Pcc(S)) = Ω(n/ log n) . (4.4)

Since the size of the lifted formula PebG ◦ EQ is Õ(n), the coefficients of a CP∗ refutation are
bounded by a polynomial of n in magnitude, and hence by O(log n) in length. Substituting the value of
c = O(log n) in (4.4) we obtain that

s logL = Ω(n/ log2 n) (4.5)

as we wanted to show.

4.3 Time-Space Upper Bounds for High Weight Refutations

We now prove Theorem 4.8, showing that cutting planes proofs with large coefficients can efficiently refute
pebbling formulas composed with equality gadgets in constant line space. Let EQq denote the equality
gadget on q bits.

Theorem 4.8. Let PebG be any constant-width pebbling formula. There is a cutting planes refutation of
PebG ◦ EQlog logn in length Õ(n2) and space O(1).

We also use the following lemma, which is a “derivational” analogue of the recent result of [GPT15]
showing that any set of unsatisfiable integer linear inequalities has a cutting planes refutation in constant
space. As the techniques are essentially the same we leave the proof to Appendix B.

Lemma 4.9 (Space Lemma). Let C be a set of integer linear inequalities over n variables that implies a
clause C. Then there is a cutting planes derivation of C from C in length O(n22n) and space O(1).

Let us begin by outlining the high level proof idea. We would like to refute the lifted formula
PebG ◦ EQq using constant space. Consider first the unlifted formula PebG. The natural way to refute it
is the following: Let v1, . . . , vn be a topological ordering of the vertices of G. The refutation will go over
the vertices in this order, each time deriving the equation that says that the variable zvi must take the value
“true” by using the equations that were derived earlier for the predecessors of vi. Eventually, the refutation
will derive the equation that says that the sink must take the value “true”, which contradicts the axiom that
says that the sink must be false.

14

Going back to the lifted formula PebG ◦EQq, we construct a refutation using the same strategy, except
that now the equation of zvi is replaced with the equations

xvi,1 = yvi,1, . . . xvi,q = yvi,q.

The main obstacle is that if we implement this refutation in the naive way, we will have to store all the
equations simultaneously, yielding a refutation of space O(q · n). The key idea of our proof is that CP can
encode the conjunction of many equations using a single equation. We can therefore use this encoding in
our refutation to store at any given point all the equations that were derived so far in a single equation.
The implementation yields a refutation of constant space, as required.

To see how we can encode multiple equations using a single equation, consider the following example.
Suppose we wish to encode the equations

x1 = y1, x2 = y2, x3 = y3,

where all the variables take values in {0, 1}. Then, it is easy to see that those equations are equivalent to
the equation

4 · x1 + 2 · x2 + x3 = 4 · y1 + 2 · y2 + y3.

This idea generalizes in a straightforward way to deal with more equations, as well as with arbitrary linear
gadgets, to be discussed below.

The rest of this section is devoted to the proof of Theorem 4.8. The following notion is central to the
proof. Say a gadget g(x, y) : {0, 1}q × {0, 1}q → {0, 1} is linear if there exists a linear expression with
integer coefficients

L(x, y) = c+

q∑
i=1

aixi + biyi

such that g(x, y) = 1 if and only if L(x, y) = 0. Note that the equality gadget is linear, as it corresponds
to the linear expression

∑q
i=1 2i−1(xi − yi).

Let g be any linear gadget with corresponding linear expression L. LetK = 1+maxx,y |L(x, y)|, and
let G be the underlying DAG of the composed pebbling formula PebG ◦ gn. Note that for each vertex u of
G the composed formula has corresponding variables xu, yu ∈ {0, 1}q. Once and for all, fix an ordering
of the vertices of G and assume that all subsets are ordered accordingly. For a subset of vertices U ⊆ V
define

L(U) :=
∑
ui∈U

KiL(xui , yui).

The following claim shows that L(U) encodes the truth of the conjunction
∧
ui∈U g(xui , yui).

Claim 4.10. For a set of vertices U and any x, y ∈ {0, 1}qn, L(U) = 0 if and only if
∧
ui∈U g(xui , yui) =

1.

Proof. Since g is linear, if g(xui , yui) = 1 for all ui ∈ U then it follows that L(xui , yui) = 0 for all
ui ∈ U , which in turn implies L(U) = 0. Conversely, suppose g(xui , yui) = 0 for some vertex ui, and let
i be the largest such index. It follows that L(ui) 6= 0, and clearly∣∣∣∣∣∣

∑
j<i

KjL(xuj , yuj)

∣∣∣∣∣∣ ≤
∑
j<i

Kj |L(xuj , yuj)| ≤ (K − 1)
∑
j<i

Kj < Ki. (4.6)

15

This implies L(U) 6= 0, since

|L(U)| =

∣∣∣∣∣∣Ki · L(ui) +
∑
j<i

KjL(xuj , yuj)

∣∣∣∣∣∣
≥
∣∣Ki · L(ui)

∣∣−
∣∣∣∣∣∣
∑
j<i

KjL(xuj , yuj)

∣∣∣∣∣∣
≥ Ki −

∣∣∣∣∣∣
∑
j<i

KjL(xuj , yuj)

∣∣∣∣∣∣ > 0

From here on in the proof, we consider L(U) = 0, or L(U) for short, as being syntactically represented
in cutting planes as the pair of inequalities L(U) ≥ 0, −L(U) ≥ 0. The bulk of the proof lies in the
following lemma, which shows how to “encode” and “decode” unit literals in the expressions L(U).

Lemma 4.11 (Coding Lemma). Let U be any set of vertices. Then

1. For any u ∈ U there is a cutting planes derivation of L(u) from L(U) in length O(q|U |) and space
O(1).

2. Let C = ¬zu1 ∨ ¬zu2 ∨ · · · ∨ ¬zuk−1
∨ zuk be an axiom of PebG with u1, u2, . . . , uk−1 ∈ U . Let

`g and sg be such that there exists a derivation of L(u) from a CNF encoding of g(u) in length `g
and space sg. From L(u1), L(u2), . . . , L(uk−1) and C ◦ gn there is a cutting planes derivation of
L(uk) in length O(2kq`g) and space O(sg).

3. For any u 6∈ U there is a cutting planes derivation of L(U ∪ {u}) from L(U) and L(u) in length
O(1) and space O(1).

Let us first use the Coding Lemma to complete the proof. We show a more general statement from
which Theorem 4.8 follows immediately by setting k = 3 and g = EQq, with q = O(log log n), and
bounding `EQ = O(q) and sEQ = O(1).

Lemma 4.12. If PebG is a width-k pebbling formula on n variables and g is a linear gadget of arity q
then there is a cutting planes refutation of PebG ◦ gn in length O(n(kqn+ 2kq`g)) and space O(k + sg).

Proof. We begin with L(∅), which is represented as the pair of inequalities 0 ≥ 0, 0 ≥ 0. By combining
Parts (2) and (3) of the Coding Lemma we can derive L(S), where S is the set of sources of G. We
then follow a unit-propagation proof of PebG, deriving L(u) for each vertex of G in topological order.
Suppose at some point during the derivation we have derived L(U) for some subset U of vertices. For
any axiom C of PebG of the form C = ¬zu1 ∨¬zu2 ∨ · · · ∨ ¬zuk−1

∨ zuk with u1, u2, . . . , uk−1 ∈ U we
do the following: first apply Part (1) of the Coding Lemma to obtain L(ui) for each i ∈ [k − 1]. Apply
Part (2) to derive L(uk), forget L(ui) for each i ∈ [k − 1], and then apply Part (3) to L(U) and L(uk) to
derive L(U ∪ {uk}). Continue in this way until we derive L(z) where z is the sink vertex of G. Since
{L(z),¬z ◦ g} is an unsatisfiable set of linear inequalities, it follows by the Space Lemma (Lemma 4.9)
that we can deduce a contradiction in length O(q22q) and space O(1).

In the above proof we need to derive L(u) for each of the n vertices of the graph. Deriving L(u)
requires at most O(k) applications of Part (1), one application of Part (2), and one application of Part (3).
Thus, in total, we require length O(n(kqn+ 2kq`g)) and space O(k + sg).

It remains to prove the Coding Lemma (Lemma 4.11).

Proof of Coding Lemma. Let U = {u1, u2, . . . , ut} be an arbitrary subset of vertices of size t. Recall the
definition L(U) =

∑t
i=1K

i−1L(ui). For any ui ∈ U a term of L(U) will be one of the termsKi−1L(ui),

16

which is a sum of 2q variables itself. We begin by defining two auxiliary operations that allow us to trim
both the least and the most significant terms from L(U).

To trim the i least significant terms of an inequality we essentially divide by Ki. More formally, for
every variable v with a positive coefficient aj less than Ki we add the inequality −ajv ≥ −aj , and for
every variable with a negative coefficient greater than −Ki we add the inequality ajv ≥ 0. This takes
length O(qi), since each term contributes 2q coefficients, and space O(1).

At this point all the remaining coefficients on the LHS are divisible byKi, so we can apply the division
rule. By construction the RHS is greater than −Ki −

∑
j≥i cK

j , therefore when we divide by Ki the
coefficient on the RHS becomes −

∑
j≥i cK

j−i.
Finally, to restore the values of the coefficients to the values they had before dividing, we multiply by

Ki at the end to restore them.
To trim the m− i most significant terms of an inequality with m terms we need to use the opposite

inequality, since the remaining part only has a semantic meaning when the most significant part vanishes.
Hence we first trim the i least significant terms of the opposite inequality, keeping exactly the negation of
the terms that we want to discard. Then we add both inequalities so that only the i least significant terms
remain. This takes length O(qi) and space O(1).

Using the trimming operations we can prove items 1–3 in the lemma.

1. We must show that for any u ∈ U there is a cutting planes derivation of L(u) from L(U) in length
O(qt) and space O(1). This is straightforward: begin by making copies of the pair of inequalities
L(U) ≥ 0 and −L(U) ≥ 0 encoding L(U) = 0. Trim the terms that are strictly more and strictly
less significant than L(u) from both of the inequalities, in length O(qt) and space O(1).

2. Recall that we assumed there is a derivation Π of L(uk) from the CNF formula zuk ◦ g in length
`g and space sg, so our goal is to produce the set of clauses zuk ◦ g. Any such clause D is implied
by the set of inequalities {L(ui)}k−1

i=1 together with the CNF encoding of C ◦ gn, therefore it has
a derivation ΠD in length O(2kq) and space O(1) by the Space Lemma (Lemma 4.9). Replacing
each usage of a clause D ∈ zuk ◦ g in Π as an axiom by the corresponding derivation ΠD we obtain
a sound derivation L(ut+1) in length O(2tq`g) and space O(sg).

3. Simply add Kt+1L(u) ≥ 0 to L(U) ≥ 0 and −Kt+1L(u) ≥ 0 to −L(U) ≥ 0; this clearly uses
bounded length and space.

This completes the proof of Theorem 4.8.
Note that the largest coefficient used in the refutation is bounded by Kn. Indeed, the argument can

be generalized to give a continuous trade-off between the size of the largest coefficient and the number
of inequalities, simply by adding a new pair of empty inequalities once the coefficient required to add a
vertex to an existing pair would be too large. This means that if we allow up to ξ inequalities then we can
use coefficients of size bounded by KO(n/ξ).

5 Application: Separating Monotone Boolean and Real Formulas

In this section we exhibit an explicit function that exponentially separates the size of monotone Boolean
formulas and monotone real formulas.

Theorem 5.1. There is an explicit family of functions fn over O(n polylog n) variables that can be
computed by monotone real formulas of size O(n polylog n) but for which every monotone Boolean
formula requires size 2Ω(n/ logn).

To prove the lower bound part of Theorem 5.1 we use the characterization of formula depth by
communication complexity [KW90]. Given a monotone Boolean function f , the monotone Karchmer–
Wigderson game of f is a search problem mKW(f) : {0, 1}n × {0, 1}n → [n] defined as ((x, y), i) ∈
mKW(f) if f(x) = 1, f(y) = 0, xi = 1, and yi = 0. In other words, given a 1-input x and a 0-input y

17

for f , the task is to find an index i ∈ [n] such that xi = 1, and yi = 0. Such an index always exists because
f is monotone.

If we denote by mD(f) the minimum depth of a monotone Boolean formula required to compute a
Boolean function f , then we can write the characterization as

Lemma 5.2 ([KW90]). For every function f , it holds that mD(f) = Pcc(mKW(f)).

The analogue of this characterization for real circuits is in terms of DAG-like real protocols [Kra98,
Sok17, HP18]. Since we are only interested in formulas rather than circuits we only consider tree-like
protocols, which we call locally real protocols to distinguish them from the stronger model of real protocols,
also known as real games [Kra98].

A locally real communication protocol, then, is a communication protocol where the set of inputs
compatible with a node is defined by one half-space, as opposed to a real protocol where the set of
compatible inputs is defined by the intersection of all half-spaces in the path leading to that node.

Formally, a locally real protocol for a search problem Search : X × Y → Z , where X and Y are
Boolean hypercubes, is a tree where every internal node v is labelled with a half-space Hv = {(x, y) ∈
X × Y | 〈xy, cv〉 ≥ dv}, where cv ∈ RdimX+dimY and dv ∈ R, and every leaf is additionally labelled
with an element z ∈ Z . The root is labelled with the full space X ×Y , children are consistent in the sense
that if a node w has children u and v then Hw ⊆ Hu ∪Hv. Given an input (x, y), the protocol produces a
nondeterministic output z as follows. We start at the root and at each internal node we nondeterministically
move to a child that contains (x, y), which exists by the consistency condition. The output of the protocol
is the label of the resulting leaf. A protocol is correct if for any input (x, y) ∈ X × Y it holds that z ∈ Z .

It is not hard to turn a real formula into a locally real protocol, and the converse also holds.

Lemma 5.3 ([HP18]). Given a locally real protocol for the monotone Karchmer–Wigderson game of a
partial function f , there exists a monotone real formula with the same underlying graph that computes f .

In order to obtain a function whose Karchmer–Wigderson game we can analyse we use the fact that
every search problem can be interpreted as the Karchmer–Wigderson game of some function. To state
the result we need the notion of a nondeterministic communication protocol, which is a collection N of
deterministic protocols such that ((x, y), z) ∈ S if and only if there exists some protocol π ∈ N such that
π(x, y) = z. The cost of a nondeterministic protocol is log|N |+ maxπ∈N depth(π).

Lemma 5.4 ([Raz90, Gál01], see also [Rob18]). Let S be a two-party total search problem with nonde-
terministic communication complexity k. There exists a partial monotone Boolean function f : {0, 1}2k →
{0, 1, ∗} such that S is exactly the monotone Karchmer–Wigderson game of f .

We use as a search problem the falsified clause search problem of a hard pebbling formula composed
with equality given by Lemma 4.7. To exhibit a real formula for the function it induces, we first build a
tree-like cutting planes proof of small size of the composed pebbling formula.

Theorem 5.5. If C is the pebbling formula of a graph of indegree 2, then there is a tree-like semantic
cutting planes refutation of C ◦ EQlog logn in length O(n log n log logn).

It is not hard to see that we can extract an efficient locally real protocol from a tree-like cutting planes
refutation of small size, but let us record this fact formally.

Lemma 5.6 (Folklore, see [Sok17]). Given a semantic cutting planes refutation of a formula F , there is
a locally real protocol for Search(F) with the same underlying graph.

Before we move into the proof of Theorem 5.5, let us complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Let S = Search(PebG ◦ EQlog logn) be the search problem given by Lemma 4.7.
The nondeterministic communication complexity of f is log(|PebG ◦ EQlog logn|) + 2, since given a
certificate consisting of a clause falsified by the inputs each party can independently verify that their part
is falsified and communicate so to the other party. Therefore by Lemma 5.4 there is a partial monotone

18

function f∗ over O(n polylog n) variables whose monotone Karchmer–Wigderson game is equivalent
to S. By Theorem 5.5 there is a semantic cutting planes refutation of the formula PebG ◦ EQlog logn

of length O(n polylog n), which we convert into a locally real protocol for S of size O(n polylog n)
using Lemma 5.6, and then into a monotone real formula for f∗ of size O(n polylog n) using Lemma 5.3.
Add a threshold gate on top of the formula to ensure that the output is always Boolean and let f be the
total function that the formula computes. Since f extends f∗, by Lemma 5.2 and Lemma 4.7 f requires
monotone Boolean formulas of depth Ω(n/ log n), and therefore size 2Ω(n/ logn).

5.1 A Short Tree-like Refutation

For simplicity in this section we reinterpret the pebbling formula of a graph G of indegree 2 lifted with
equality of q bits as the pebbling formula of a graph G′ lifted with equality of 1 bit or XNOR, where G′
is the graph where we replace every vertex in G by a blob of q vertices and we replace every edge by a
bipartite complete graph between blobs, and with the difference that instead of having axioms asserting
that all sinks are false, the axioms assert that some sink is false.

Without further ado, let us prove Theorem 5.5, which follows by setting q = log log n in the following
Lemma.

Lemma 5.7. If C is the pebbling formula of a graph of indegree 2, then there is a tree-like semantic cutting
planes refutation of C ◦ EQq in length O(nq2q).

As in Section 4.3 we fix a topological order of G and we build a refutation by keeping two inequalities
L(W) ≥ 0 and −L(W) ≥ 0. The main difference is that we cannot use the Coding Lemma to isolate the
value of a single vertex, since then we would lose the information on the rest of vertices, therefore we have
to simulate the inference steps in place as we describe next.

Let us set up some notation. If W is a set of vertices, let g(W) =
∧
v∈W XNOR(v). We represent

XNOR(v) with L(v) = 0, where L(v) = xv − yv , and g(W) with L(W) = 0, where L(W) =∑
vj∈W 2jL(vj). We begin with W = ∅ and with the trivial inequalities 0 = L(∅) = 0. Let us show how

to derive each vertex.

Lemma 5.8. There is a tree-like semantic derivation of L(W ∪{w}) ≥ 0 from L(W) ≥ 0 and the axioms
in 2q steps.

Proof. If w is a source, then the inequality L(w) ≥ 0 is already an axiom, hence it is enough to multiply
L(W) ≥ 0 by 2 and add L(w).

The complex case is when w has predecessors u1, . . . , uq. Let `(v, b) = b+ (−1)bv be the literal over
variable v and polarity 1− b. Consider the 2q axioms Ib ≥ 0 indexed by b ∈ {0, 1}q and defined as

Jb =

q∑
j=1

`(xuj , bj) + `(yuj , bj) (5.1)

Ib = L(w) + Jb . (5.2)

We start with an inequality L(W) ≥ 0. In order to have enough working space for the axioms we
multiply the inequality by 2q, and using weakening axioms we add a slack term defined as

S =

q∑
j=1

2j−1xuj (5.3)

to obtain L+
0 ≥ 0 with

L+
0 = 2qL(W) + S . (5.4)

The coefficients for S are chosen so that if we evaluate S on a string b ∈ {0, 1}q, the result is b interpreted
as a binary number. We use it to keep track of which axioms we have processed so far, in a similar fashion

19

to how the space-efficient refutation of the complete tautology [GPT15] that we reproduce in Appendix B
keeps track of processed truth value assignments.

The next step is to add each axiom to L+
0 , but for this to work we need to represent each intermediate

step with one inequality as follows.

Claim 5.9. We can represent the Boolean expression

g+
B = JL(W) ≥ 0K ∧

g(W)→
∧
b≤B

Ib

 (5.5)

with the inequality L+
B ≥ 0 defined as

L+
B = (B + 1)L(w) + L+

0 . (5.6)

Proof. Let us begin proving the claim by showing that g+
B ⇒ L+

B ≥ 0. First consider an assignment α that
satisfies L(W) ≥ 0 but not g(W), that is an assignment where xuj = 1 and yuj = 0 for some predecessor
uj of w. Then L+

0 �α ≥ 2q, hence L+
B�α ≥ −(B + 1) + 2q ≥ 0.

Now consider an assignment α that satisfies g(W), hence L(W) = 0. If αu1,...,uq = b ≤ B then,
since α falsifies Jb ≥ 1, α must satisfy L(w) ≥ 0, so both L+

0 ≥ 0 and L(w) ≥ 0. Otherwise if
αu1,...,uq = b > B then S�α = b ≥ B + 1, and we have L+

B�α ≥ −(B + 1) + b ≥ 0.
Let us finish by showing that g+

B ⇐ L+
B ≥ 0. First consider an assignment α that falsifies L(W) ≥ 0.

Then L+
B�α ≤ (B + 1)− 2q < 0.

Now consider an assignment α that satisfies g(W) but not an axiom Ib with b ≤ B. Then in particular
α falsifies L(w) ≥ 0, hence L+

B�α = (B + 1)L(w) + S�α = −(B + 1) − b < 0. This concludes the
proof of the claim.

Since L+
B+1 ≥ 0 follows semantically from L+

B ≥ 0 and IB , we can derive g+
2q ≥ 0 from L+

0 ≥ 0

and the set of axioms Ib ≥ 0 using 2q semantic inferences of arity 2. Also, L+
2q ≥ 0 is semantically (but

not syntactically) equivalent to L(W ∪ {w}) ≥ 0, so we can be ready for the next step with a semantic
inference of arity 1.

We can derive the upper bound inequality −L(W ∪ {w}) ≥ 0 similarly, the main differences being
that we start with −L(W) ≥ 0 and that we use the other half of the axioms, that is Ib = −L(w) + Jb.

We handle the sinks in a slightly different way. Instead of using the pebbling axioms directly, we first
use the pebbling axioms of all the sinks together with the axioms enforcing that some sink is false in
order to derive a set of inequalities similar to pebbling axioms but with −1 in place of L(w). We then
use the same derivation as in Lemma 5.8 using these inequalities in place of the axioms and we obtain
L(W) − 1 ≥ 0 and analogously −L(W) − 1 ≥ 0. Adding both inequalities leads to the contradiction
−2 ≥ 0.

To conclude the proof it is enough to observe that we do O(2q) inference steps for each vertex in G′,
which has order nq, hence the total length of the refutation is O(nq2q).

6 Concluding Remarks

In this paper, we show that the cutting planes proof system (CP) is stronger than its variant with polynomially
bounded coefficients (CP∗) with respect to simultaneous length and space. This is the first result in proof
complexity demonstrating any situation where high-weight coefficients are more powerful than low-weight
coefficients. We also prove an explicit separation between monotone Boolean formulas and monotone real
formulas. Previously the result was only known to hold non-constructively. To obtain these results we
strengthen a lifting theorem of [PR18] to allow the lifting to work with any gadget with sufficiently large
rank, in particular with the equality gadget—a crucial ingredient for obtaining the separations discussed
above.

20

This work raises a number of questions. Prior to our result, no explicit function was known separating
monotone real circuits or formulas from monotone Boolean circuits or formula. Although we prove an
explicit formula separation, it remains open to obtain an explicit function that separates monotone real
circuits from monotone Boolean circuits.

The most glaring open problem related to our cutting planes contribution is to strengthen our result
to a true length separation, without any assumption on the space complexity. It is natural to ask whether
techniques inspired by [Sok17, GGKS18] can be of use. Another thing to note about our trade-off result for
CP∗ is that it is not a “true trade-off”: we know that length and space cannot be optimised simultaneously,
but we do not know if there in fact exist small space refutations. An interesting problem is, therefore, to
exhibit formulas that present “true trade-offs” for CP∗ but are easy with regard to space and length in CP.

It follows from our results that standard decision tree complexity, parity decision tree complexity, and
Nullstellensatz degree are equal for the falsified clause search problem of lifted pebbling formulas. In view
of this we can ask ourselves what complexity measure we are actually lifting. We know that for general
search problem decision tree complexity is not enough for a lifting result. How about parity decision tree
complexity? Or can we leverage the fact that we have “well-behaved” rectangle covers and small certificate
complexity to lift weaker complexity models? It would be valuable to have a better understanding of the
relation between gadgets, outer functions/relations and complexity measures.

Acknowledgements

Different subsets of the authors would like to acknowledge fruitful and enlightening conversations with
different subsets of Arkadev Chattopadhyay, Pavel Hrubeš, Christian Ikenmeyer, Bruno Loff, Sagnik
Mukhopadhyay, Igor Carboni Oliveira, Pavel Pudlák, and Dmitry Sokolov. We are also grateful for
discussions regarding literature references with Albert Atserias, Paul Beame, and Massimo Lauria.

We are grateful to anonymous referees for their comments; in particular, indicating a simplified proof
of Lemma 3.5.

Part of this work was carried out while several of the authors were visiting the Simons Institute for
the Theory of Computing in association with the DIMACS/Simons Collaboration on Lower Bounds in
Computational Complexity, which is conducted with support from the National Science Foundation.

Or Meir was supported by the Israel Science Foundation (grant No. 1445/16). Toniann Pitassi and
Robert Robere were supported by NSERC. Susanna F. de Rezende and Jakob Nordström were sup-
ported by the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement no. 279611, as well as by the Knut and Alice Wallenberg grant
KAW 2016.0066. Jakob Nordström also received funding from the Swedish Research Council grants
621-2012-5645 and 2016-00782. Marc Vinyals was supported by the Prof. R Narasimhan post-doctoral
award.

A Lifting Nullstellensatz Degree for All Gadgets

In this section we prove Theorem 3.1. In fact, we prove the following stronger result, which implies
Theorem 3.1 as a corollary.

Theorem A.1. Let C be an unsatisfiable k-CNF on n variables and let F be any field. Let g be any
Boolean-valued gadget with rank(g) ≥ 4. Then

Pcc(Search(C) ◦ gn) ≥ NSF(C) log

(
NSF(C)rank(g)

en

)
− 6n log e

rank(g)
− log k.

The proof of the theorem follows the proof of a similar lifting theorem from [PR18]. As such, we will
need some notation from that paper. Let us begin by introducing a key notion: Razborov’s rank measure.
Given sets U ,V , a rectangle cover R of U × V is a covering of U × V by combinatorial rectangles.

21

Definition A.2. Let U ,V be sets and letR be any rectangle cover of U × V . Let A be any U × V matrix
over a field F. The rank measure ofR at A is the quantity

µF(R, A) =
rank(A)

max
R∈R

rank(A � R)
.

Using the rank measure we can lower bound the deterministic communication complexity of composed
CNF search problems as follows. The key observation is that any deterministic communication protocol
outputs a rectangles that lie in a “structured” rectangle cover in the following sense. We note below that if
A is a collection of tuples from some product set In then we write Ai to mean the projection of A to the
ith coordinate and AI for I ⊆ [n] to mean the projection onto the coordinates in I .

Definition A.3. Let C be an unsatisfiable k-CNF on n variables and let g : X × Y → {0, 1} be a gadget.
For a clause C ∈ C, a combinatorial rectangle R ⊆ X n × Yn is C-structured if gn(x, y) falsifies C
for all (x, y) ∈ R and for all i 6∈ Vars(C) we have Ri = X × Y . A rectangle cover R of X n × Yn is
C-structured if every R ∈ R is C-structured for some C ∈ C.

Lemma A.4. Let C be an unsatisfiable k-CNF on n variables and let g : X × Y → {0, 1} be a gadget.
Let F be any field and let A be any X n × Yn matrix over F. Then

Pcc(Search(C) ◦ g) ≥ min
R

logµF(R, A)

where the minimum is taken over C-structured rectangle covers of X n × Yn.

Proof. Let Π be any communication protocol solving Search(C) ◦ g, and let T be the monochromatic
rectangle partition corresponding to Π. Since Π solves the search problem, for every rectangle R ∈ T
there is a clause C such that for all (x, y) ∈ R, gn(x, y) falsifies C. We can write R = A×B for some
sets A ⊆ XVars(C) × X [n]\Vars(C) and B ⊆ YVars(C) × Y [n]\Vars(C). Consider R′ = A′ × B′ where
A′ = AVars(C) × X [n]\Vars(C) and B′ = BVars(C) × X [n]\Vars(C). Since C only depends on indices
in Vars(C) we have that gn(x, y) falsifies C for all (x, y) ∈ R′ and, moreover, R′i = X × Y for all
i 6∈ Vars

(
C
)
. It follows that R′ is C-structured. LetR be the C-structured rectangle covering obtained

from T by relaxing all rectangles of T in this way.
We now have an C-structured rectangle coverR such that every T ∈ T is contained in some rectangle

ofR. Razborov [Raz90] proved that if T is a rectangle partition andR is a rectangle cover such that for
each T ∈ T there is an R ∈ R such that T ⊆ R it holds that

|T | ≥ µF(R, A)

for any matrix A. Since log |T | ≤ |Π| = Pcc(Search(C) ◦ g) the lemma follows.

We now introduce the notion of a certificate of an unsatisfiable CNF formula.

Definition A.5. Let C be an unsatisfiable Boolean formula on n variables in conjunctive normal form, and
let C be a clause in C. The certificate of C, denoted Cert(C), is the partial assignment π : [n]→ {0, 1, ∗}
which falsifies C and sets the maximal number of variables to ∗s. Let Cert(C) denote the set of certificates
of clauses of C.

We say that an assignment z ∈ {0, 1}n agrees with a certificate π ∈ Cert(C) if π(i) = zi for each i
assigned to a {0, 1} value by π. Since the CNF formula C is unsatisfiable, it follows that every assignment
in z ∈ {0, 1}n agrees with some {0, 1}-certificate of C. Next we introduce an alternative definition of
Nullstellensatz degree called the algebraic gap complexity.

Definition A.6. Let F be a field. Let C be an unsatisfiable CNF on n variables. The F-algebraic gap
complexity of C is the maximum positive integer gapF(C) ∈ N for which there exists a multilinear
polynomial p ∈ F[z1, z2, . . . , zn] such that

deg(p) = n and ∀π ∈ Cert(C) : deg(p � π) ≤ n− gapF(C) .

When the field is clear from context we will write gap(C).

22

In [PR18, Rob18] it was shown that the algebraic gap complexity is equal to Nullstellensatz degree.

Theorem A.7. For any unsatisfiable CNF formula C on n variables and any field F, gapF(C) = NSF(C).

We now prove a lifting theorem from Nullstellensatz degree to the rank measure, from which Theorem
A.1 follows by applying Lemma A.4.

Theorem A.8. Let C be an unsatisfiable k-CNF on n variables and let F be any field. Let g be any
Boolean-valued gadget with rank(g) ≥ 4. There is a matrix A such that for any C-structured rectangle
coverR we have

µF(R, A) ≥ 1

k

(
NSF(C)rank(g)

en

)NSF(C)
exp(−6n/rank(g)) .

Proof. Let p ∈ F[z1, z2, . . . , zn] be the polynomial witnessing the algebraic gap complexity gap(C), and
let A = p ◦ gn be the pattern matrix obtained by composing p and g. We need to analyze

µF(R, p ◦ gn) =
rankF(p ◦ gn)

max
R∈R

rankF(p ◦ gn � R)
.

Let us first analyze the denominator. Let R be an arbitrary rectangle from the coverR, and suppose
that R is C-structured for the clause C ∈ C. Let π = Cert(C). We want to show that

rankF(p ◦ gn � R) ≤
∑

S :̂p�π(S)6=0

rank(g)|S| . (A.1)

To prove this, we claim that p ◦ gn � R is column-equivalent to the block matrix

[(p � π) ◦ g[n]\Vars(C), (p � π) ◦ g[n]\Vars(C), . . . , (p � π) ◦ g[n]\Vars(C)]

for some number of copies of the matrix (p � π) ◦ g[n]\Vars(C). Indeed Equation A.1 immediately follows
from this claim as

rankF(p ◦ gn � R) = rankF((p � π) ◦ g[n]\Vars(C)) ≤
∑

S :̂p�π(S)6=0

rank(g)|S|

by Theorem 3.4. So, we now prove the claim.
Write R = A × B. Fix assignments α ∈ AVars(C) and β ∈ BVars(C), and note that since R is

C-structured we have that gVars(C)(α, β) = π and (α, x′) ∈ A and (β, y′) ∈ B for all x′, y′. Thus, by
ranging x[n]\Vars(C), y[n]\Vars(C) over all values yields the matrix (p � π) ◦ g[n]\Vars(C). Then, ranging
xVars(C) and yVars(C) over all α, β such that gVars(C)(α, β) = π yields the claim and Equation A.1.

Now, consider the rank measure µF(R), which by Theorem 3.4 and Equation A.1 satisfies

µF(R) ≥ rankF(p ◦ gn)

max
R∈R

rankF(p ◦ gn � R)
=

∑
S:p̂(S)6=0

(rank(g)− 3)|S|

max
π∈Cert(C)

∑
S :̂p�π(S) 6=0

rank(g)|S|

By definition of gap(C) we have deg p = n and thus the numerator is at least (rank(g) − 3)n. For the
denominator, since p witnesses the algebraic gap of C, we have that deg p � π ≤ n − gap(C) for all
π ∈ Cert(C). We may assume that p̂(S) = 0 when |S| < n − gap(C) as the definition of algebraic
gaps depends only on the coefficients of monomials of p with degree larger than n− gap(C). So, for any
restriction π: ∑

S :̂p�π(S)6=0

rank(g)|S| ≤
k∑
i=0

(
n

gap(C)− i

)
rank(g)n−gap(C)−i

≤ k
(

en

gap(C)

)gap(C)
rank(g)n−gap(C)

23

Putting it all together, and using the fact that rank(g) ≥ 6en/gap(C), we have

µF(R, p ◦ gn) ≥ (rank(g)− 3)n

k(en/gap(C))gap(C)rank(g)n−gap(C)

=
1

k

(
gap(C)rank(g)

en

)gap(C)
·
(

1− 3

rank(g)

)n
≥ 1

k

(
gap(C)rank(g)

en

)gap(C)
exp(−6n/rank(g)) .

Since gap(C) = NS(C) the theorem is proved.

Theorem A.1 follows immediately from Theorem A.8 and Lemma A.4.

B Proof of the Space Lemma

In this section we prove the Space Lemma (Lemma 4.9), restated next.

Lemma B.1. Let C be a set of inequalities over n variables that implies a clause C. Then there is a cutting
planes derivation of C from C in length O(n22n) and space O(1).

We do so by adapting the proof in [GPT15] that any formula has a cutting planes refutation in constant
space in order to show that, in fact, we can derive any clause that follows from a set of inequalities in
constant space.

At a bird’s eye view, the proof in [GPT15] has two steps. The primary step is building a refutation of
the complete tautology, the formula that contains all 2n clauses with n variables each forbiding one of the
possible 2n assignments, in constant space. The authors come up with an order and a way to encode that
the first K clauses are all true in small space for an arbitrary K, and the rest of the primary step consists
of showing how to operate with this encoding also in small space, starting with no clause being true and
adding clauses one by one until a contradiction arises. The secondary step is to transform the original set
of linear inequalities into the complete tautology.

If we do not start with an unsatisfiable set of linear inequalities we obviously cannot reach a contradic-
tion, but given a clause C that follows from C we can still encode that all the clauses that are a superset of
C must be true, and this expression is equivalent to C.

Let us set up some notation. We number the variables from 0 to n − 1. If α is a total assignment,
we denote by Cα the clause over n variables that is falsified exactly by α. We overload notation and also
denote by Cα the standard translation of the clause Cα into an inequality. We say that an assignment is less
than a natural number B and write α < B if α is lexicographically smaller than the binary representation
of B, that is if

∑n−1
i=0 2iα(xi) < B. We write TB to denote the inequality

∑n−1
i=0 2ixi ≥ B that is falsified

exactly by the assignments {α ∈ {0, 1}n | α < B}.
We can reuse the following two intermediate lemmas from [GPT15], corresponding to the primary

and the secondary steps.

Lemma B.2 ([GPT15]). There is a cutting planes derivation of TB from the set of clauses {Cα | α < B}
in length O(nB) and space O(1).

Lemma B.3 ([GPT15]). If a total assignment α falsifies a set of inequalities C, then there is a cutting
planes derivation of Cα from C in length O(n) and space O(1).

Lemma B.2, which contains the core of the argument, follows from the proof of Lemma 3.2 in [GPT15].
We repeat Claim 3 in that proof, which shows how to inductively derive TB′+1 from TB′ and CB′ , not 2n

but B times.
In turn Lemma B.3 follows from the proof of Theorem 3.4 in [GPT15]: since α must falsify some

inequality I from C, we only need to reproduce the derivation of Cα from I verbatim.

24

Proof of Lemma 4.9. Assume for now that C = xn−1 ∨ · · · ∨ xn−k. Consider the derivation Π of the
inequality T2n−k from {Cα | α < B}, which is equivalent to C, given by Lemma B.2. We build a new
derivation Π′ extending Π as follows.

Every time that we add an axiom Cα to a configuration in Π, we replace that step by the derivation of
Cα from C given by Lemma B.3. Observe that we only add axioms Cα with α < 2n−k, and since any
such assignment falsifies C we meet the conditions to apply Lemma B.3.

Finally we obtain C from T2n−k by considering {T2n−k} as a set of inequalities over the k variables
xn−1 . . . xn−k and applying Lemma B.3 with α = 0k being the only assignment over these variables that
falsifies T2n−k . The result is C0 = C.

To derive a general clause C that contains k′ negative literals, say C = ¬xn−1 ∨ · · · ∨ ¬xn−k′ ∨
xn−k′−1 ∨ · · · ∨ xn−k, we build a derivation with the same structure as Π′, except that we replace every
occurrence of xi by (1− xi) for n− k′ ≤ i < n. To do so, we replace each derivation of an axiom Cα
with a derivation of the axiom Cα+(0n−k′1k′) and, for n − k′ ≤ i < n, replace each use of xi ≥ 0 and
−xi ≥ −1 by −xi ≥ −1 and xi ≥ 0, respectively. Linear combination and division steps go through
unchanged, we only observe that at a division step the coefficient on the right hand side differs by a multiple
of the divisor, so rounding is not affected.

C Proof of Corollary 1.5

In this appendix, we provide the proof of Corollary 1.5, restated next.

Corollary C.1 (1.5, restated). For any field F and any directed acyclic graph G, the Nullstellensatz
degree over F of PebG, the decision tree depth of Search(PebG), and the parity decision tree depth of
Search(PebG) coincide and are equal to the reversible pebbling price of G.

Our proof uses Lemma 4.2, restated next.

Lemma C.2 (4.2, restated). For any field F and any graph G, NSF(PebG) = rpeb(G).

Let F2 be the finite field of two elements. Given a search problem S, we denote the (deterministic)
decision tree depth and parity decision tree depth of S by DT(S) and PDT(S) respectively. We use the
following lemma, which will be proved below.

Lemma C.3 (Folklore). Let C be an unsatisfiable CNF overn variables. Then,NSF2(C) ≤ PDT(Search(C)).

Proof of Corollary 1.5 from Lemmas 4.2 and C.3. Let G be a directed acyclic graph. Note that it suffices
to prove the corollary for F = F2, since Lemma 4.2 implies that NSF(PebG) is the same for every finite
field F. The corollary follows immediately from the following chain of inequalities:

PDT(Search(PebG)) ≤ DT(Search(PebG)) = rpeb(G) = NSF2(PebG) ≤ PDT(Search(PebG)).

The first inequality is obvious, and the first equality was proved in the work of Chan [Cha13], but for
completeness we provide a simplified proof in Appendix D. The second equality follows from Lemma 4.2,
and the last inequality follows from Lemma C.3. Thus, the corollary is proved.

In the remainder of this appendix, we prove Lemma C.3. Let C be an unsatisfiable CNF over variables
z1, . . . , zn, and let T be a parity decision tree of depth d that solves Search(C). We prove that there exists
a Nullstellensatz refutation over F2 for C of degree at most d, and this will imply the required result.

Recall that the parity decision tree T takes as input an assignment α to z1, . . . , zn, queries at most
d parities of α, and then outputs a clause C of C that is violated by α. More formally, every internal
node v of T is associated with some linear polynomial pv in z1, . . . , zn, and each outgoing edge e of v is
associated with bit be ∈ {0, 1} (so the edge e is taken if pv(α) = be). Every leaf ` of T is associated with
a clause C` ∈ C, such that every assignment α that leads T to ` violates the clasue C`.

We construct for each leaf ` of T a polynomial r`(z1, . . . , zn) of degree at most d that output 1 on an
assignment α if the tree T reaches the leaf ` when invoked on α, and outputs 0 otherwise. We will use

25

those polynomials later to construct the Nullstellensatz refutation of C. First, for every internal vertex v
and an outgoing edge e of v, we associate with e the linear polynomial

re(z1, . . . , zn) = pv(z1, . . . , zn) + be + 1.

Intuitively, the polynomial re output 1 on an assignment α if the query of v outputs be on α, and 0 otherwise.
Now, to construct the polynomial r` of a leaf `, we multiply the polynomials re for all the edges e on the
path from the root to `. Since there are at most d edges on that path, it follows that r` is of degree at most d.
Moreover, it is not hard to see that r`(α) = 1 if α leads the tree T to the leaf `, and r`(α) = 0 otherwise.

Let us denote by r′` the “multilinearized” version of r`, that is, r′` is the polynomial obtained from r`
by reducing the degree of every variable to 1 in each of its occurences in r`. It is not hard to see that r′`
agrees with r` on every assignment in {0, 1}n. Our Nullstellensatz refutation of C is the polynomial

r =
∑

leaf ` of T

r′`.

Clearly, this polynomial is of degree at most d. In order to prove that the polynomial r is a valid Nullstel-
lensatz refutation of C, we need to prove that r equals 1, and that it can be derived from the axioms of C
(in other words, that r belongs to ideal generated by E(C) ∪

{
z2
i − zi

}
i∈[n]

). We start by proving that r
equals 1.

Claim C.4. r = 1.

Proof. We use the well-known fact that a multilinear polynomial is determined by its values on {0, 1}n:
one way to see it is to observe that the multilinear monomials are a basis of the space of functions from
{0, 1}n to {0, 1}, and therefore every such function has a unique representation as a multilinear polynomial.
Since r is multilinear, it therefore suffices to prove that r outputs 1 on every assignment in {0, 1}n.

Let α ∈ {0, 1}n be an assignment to z1, . . . , zn. Let ` be the leaf that T reaches when invoked on α.
Then, by the construction of r′`, it holds that r′`(α) = 1 and that r′`′(α) = 0 for every other leaf `′ of T . It
follows that r(α) = 1, as required.

It remains to show that r can be derived from the axioms of C. To this end, we will show that each
of the polynomials r′` can be derived from those axioms . It is not hard to show that for every leaf `, the
polynomial r` − r′` can be derived from the boolean axioms

{
z2
i − zi

}
i∈[n]

(in fact, this holds for any
difference of a polynomial and its multilinearized version). Thus, it suffices to prove that for every leaf `,
the polynomial r` can be derived from the axioms of C. We prove a stronger statement, namely, that for
every leaf `, the polynomial r` is divisible by the polynomial E(C`) (i.e., the polynomial encoding of the
clause C`). To this end, we prove the following result.

Claim C.5. Let p(z1, . . . , zn) be a multilinear polynomial over F2, and let i ∈ [n]. If p vanishes whenever
zi = 0, then zi divides p. Moreover, if p vanishes whenever zi = 1 , then (1− zi) divides p.

Proof. We can write p = zi · a+ b, where a and b are polynomials that do not contain zi. Suppose first
that p vanishes whenever zi = 0. We would like to prove that b = 0. Assume that this is not the case.
Then, there is an assignment α′ to the variables z1, . . . , zn except for zi on which b does not vanish. Now,
if we extend α′ to an assignment α to z1, . . . , zn by setting zi = 0, it will follow that α is an assignment
on which zi = 0 but p does not vanish, which is a contradiction.

Next, suppose that p vanishes whenever zi = 1. Observe that we can write p = (1− zi) · a+ (b− a)
(here we use the fact that we are working over F2). We would like to prove that b− a = 0. Assume that
this is not the case. Then, there is an assignment α′ to the variables z1, . . . , zn except for zi on which
b− a does not vanish. As before, if we extend α′ to an assignment α to z1, . . . , zn by setting zi = 1, it
will follow that α is an assignment on which zi = 1 but p does not vanish, which is a contradiction.

26

We turn to prove that for every leaf `, the polynomial r` is divisible by the polynomial E(C`). Fix a
leaf `, and denote C = C`. Recall that we denote by C+ and C− the sets of variables that occur positively
and negatively in C respectively, and that

E(C) ≡
∏
z∈C+

(1− z)
∏
z∈C−

z.

Now, observe that for every variable zi ∈ C+, it holds that r` vanishes whenever zi = 1: to see it, observe
that when zi = 1, the assignment does not violate the clause C, and therefore the tree T cannot reach `
when invoked on that assignment. Thus, (1− zi) divides r` for every zi ∈ C+. Similarly, the variable
zi divides r` for every zi ∈ C−. It follows that r` is divisible by every factor of E(C), and therefore it is
divisible by E(C) (here we used the fact that each factor occurs in E(C) at most once). This concludes the
proof.

D Reversible Pebbling is Equivalent to Query Complexity

In this appendix we present a direct proof that the reversible pebbling price of a graph equals the query
complexity of the search problem of the pebbling formula of that graph, originally proved by Chan [Cha13].

Theorem D.1 ([Cha13]). For every DAG G with a single sink, it holds that DT(Search(PebG)) =
rpeb(G).

Let us introduce some notation to talk more formally about pebbling: A pebbling configuration is a set
of vertices P . A (reversible) pebbling is a sequence of configurations P = P1, . . . , P` where Pi+1 follows
from Pi by applying the pebbling rules. Its reverse R(P) = P`, . . . , P1 is also a valid pebbling. Its cost
is the maximal size of a configuration Pi. Unless we call a pebbling partial, we assume that P1 = ∅. A
pebbling visits x if x ∈ P`, and surrounds x if pred(x) ⊆ P`. The pebbling price of a graph G, denoted
rpeb(G), is the minimum cost of all pebblings that visit the sink, and its surrounding price, denoted
speb(G), is the minimum cost of all pebblings that surround the sink.

Given a decision tree for Search(PebG), we associate each node with a state formed by a pair (Q,Z)
of queried vertices and the vertices Z ⊆ Q whose queries were answered by 0. It is immediate to verify
that at a leaf either the sink z belongs to Q \ Z, or there is a vertex in Z such that all of its predecessors
are in Q \ Z. It is useful to generalize the definition of the search problem Search(PebG) to start with
intermediate states. Specifically, we associate a state (Q,Z) with the search problem in which we are
given an assignment to PebG that is promised to assign 0 to the vertices in Z and 1 to the vertices inQ\Z,
and would like to find a clause that is falsified by this assignment. We denote this search problem by
SearchG(Q,Z) and denote its query complexity by DTG(Q,Z). We omitG from the latter notation when
it is clear from the context. The crux of our proof is the following lemma, which implies Theorem D.1.

Lemma D.2. For every DAG G with a single sink z, it holds that DTG({z}, {z}) = speb(G).

We claim that Lemma D.2 implies Theorem D.1. To see why, let G be a DAG with a single sink z,
and let G′ be the DAG obtained from G by adding a new sink z′ and an edge from z to z′. Then, it is not
hard to see that Search′G({z′}, {z′}) = Search(PebG)), and that every pebbling that surrounds the sink
of G′ is pebbling that visits the sink of G, and vice versa. Hence, it holds that

DT(Search(PebG)) = DTG′({z′}, {z′}) = speb(G′) = rpeb(G),

where the second equality follows from Lemma D.2. In the rest of this appendix, we focus on proving
Lemma D.2. To this end, fix a DAG G with a single sink z.

We first show that the states of an optimal decision tree for Search({z}, {z}) are of a special form,
which we call ”path-like”. Specifically, we say that a state (Q,Z) is path-like if there is a path P ending at
the sink such that P ∩Q = Z. Observe that in a path-like state there is a unique such path of maximal
length that starts in a vertex in Z. We denote this path by PZ , and denote its first vertex by head(Z). We

27

say that a vertex v is relevant to a path-like state (Q,Z) if there is a path Pv from v to head(Z) such that
Pv ∩Q = {head(Z)}. Observe that starting from a path-like state and querying a relevant vertex yields a
path-like state where the new path is PZ ∪ Pv if the answer is 0 and PZ if it is 1.

We now show that if (Q,Z) is a path-like state, then every optimal decision tree for Search(Q,Z) only
queries relevant vertices. Observe that this implies that all the nodes of the tree correspond to path-like
states. Moreover, this result holds in particular for ({z}, {z}), since it is a path-like state.

Lemma D.3. If (Q,Z) is a path-like state then every optimal decision tree for Search(Q,Z) only queries
vertices relevant to (Q,Z).

Proof. The proof is by induction on the query complexity p of Search(Q,Z). The base case p = 0 holds
vacuously: the optimal decision tree does not make any queries. Assume that p > 0. Fix an optimal
decision tree T for (Q,Z), and let v be the query made by the root of T . Observe that the children of the
root of T correspond to the states (Q ∪ v, Z ∪ v) and (Q ∪ v, Z). Let T0, T1 be the sub-trees rooted at
those children respectively, and note that these trees are optimal for the latter states and that their depth is
at most p− 1.

Suppose first that v is a relevant query to (Q,Z). In this case, the states of the children of the root are
path-like. By the induction assumption, the trees T0, T1 only make queries that are relevant to the states
(Q ∪ v, Z ∪ v) and (Q ∪ v, Z) respectively. Observe that any such query is necessarily relevant to (Q,Z)
as well. Therefore, every query of T is relevant to (Q,Z).

Next, suppose that v is irrelevant to (Q,Z). We consider two separate cases: the case where v belongs
to the path PZ , and the case where it does not belong to PZ .

v belongs to PZ . Assume that v belongs to the path PZ . In this case, the state (Q∪v, Z∪v) is path-like,
and therefore by the induction assumption the tree T0 only makes queries that are relevant to that state. We
claim that T0 solves Search(Q,Z), which contradicts the assumption that T is optimal for Search(Q,Z).

To see why, suppose for the sake of contradiction thatT0 fails to solve Search(Q,Z) on some assignment
α. Observe that the only case where this can happen is when α(xv) = 1 but T0 outputs that the violated
clause is Cv = xv ∨

∨
u∈pred(v) ¬xu. Let u be the predecessor of v that lies on PZ (such u must exist

since v is queried by T and hence cannot be equal to head(Z)). Then, u cannot belong to Z (or otherwise
T0 could not have output Cv) and therefore it cannot belong to Q (since PZ ∩Q = Z). This means that
T0 must have queried u in order to output Cv. However, u is irrelevant to (Q ∪ v, Z ∪ v), so we reached a
contradiction to the assumption that T0 does not make irrelevant queries. Hence, T0 solves Search(Q,Z),
as required.

v does not belong to PZ . Next, assume that v does not belong to the path PZ . In this case, the state
(Q ∪ v, Z) is path-like, and therefore by the induction assumption the tree T1 only makes queries that are
relevant to that state. We claim that T1 solves Search(Q,Z), which contradicts the assumption that T is
optimal for (Q,Z).

To see why, suppose for the sake of contradiction thatT1 fails to solve Search(Q,Z) on some assignment
α. Observe that the only case where this can happen is when α(xv) = 0 but for some successor w of v the
tree T1 outputs that the violated clause is Cw = xw ∨

∨
u∈pred(w) ¬xu. The query w cannot be relevant to

(Q,Z), since otherwise v would have been relevant for (Q,Z). Since w is irrelevant to (Q,Z), it cannot
be queried by T1, and therefore it must belong to Z in order for T1 to output Cw. Moreover, w cannot be
equal to head(Z), since otherwise v would have been relevant for (Q,Z). Thus, w has a predecessor u in
PZ .

The vertex u cannot belong to Z (or otherwise T1 could not have output Cw) and therefore it cannot
belong toQ (since PZ ∩Q = Z). This means that T1 must have queried u in order to output Cw. However,
u is irrelevant to (Q ∪ v, Z), so we reached a contradiction to the assumption that T1 does not make
irrelevant queries. Hence, T1 solves Search(Q,Z)

28

The following two propositions prove the two directions of Lemma D.2. In the proof of the first
proposition we use the following notion: a pebbling assuming free pebbles on a set S is a partial pebbling
P such that P1 ⊆ S, and its cost is the maximum size of Pi \ S.

Proposition D.4. If DT({z}, {z}) ≤ p, then speb(G) ≤ p.

Proof. We prove the following stronger claim: if for some path-like state (Q,Z) there is an optimal
decision tree T of depth p, then there is a pebbling that surrounds head(Z) of cost p assuming free pebbles
on Q \ Z. To see that this claim implies the proposition observe that ({z}, {z}) is path-like. Therefore,
if DT({z}, {z}) ≤ p then the claim implies that there is a pebbling that surrounds z of cost at most p
without free pebbles.

We prove the claim by induction on p. The base case is when p = 0, so T consists of a single leaf.
This means that there must be some vertex in Z that is surrounded by vertices in Q \ Z. This vertex must
be head(Z), since any other vertex v ∈ Z has a predecessor in PZ , and this predecessor cannot belong to
Q \ Z. Hence, {Q \ Z} is a surrounding pebbling of head(Z) of cost 0 assuming free pebbles on Q \ Z,
as required.

We proceed to the induction step. Suppose that p > 0. Let v be the query made at the root of T .
Let T0, T1 be the subtrees rooted at the children of v that corresponds to the states (Q ∪ v, Z ∪ v) and
(Q ∪ v, Z) respectively. By Lemma D.3, the query v is relevant to (Q,Z), and therefore the latter states
are path-like.

Observe that head(Z ∪ v) = v. Hence, by applying the induction assumption to T0, we obtain a
pebbling P0 that surrounds v of cost at most p− 1 assuming free pebbles on

(Q ∪ v) \ (Z ∪ v) = Q \ Z.

Furthermore, by applying the induction assumption to T1, we obtain a pebbling P1 that surrounds head(Z)
of cost at most p− 1 assuming free pebbles on (Q ∪ v) \ Z.

We now construct a pebbling that surrounds head(Z) assuming free pebbles on Q \ Z as follows: we
first follow P0, thus reaching a configuration that surrounds v. Then, we place a pebble on v (unless it is
already pebbled). Next, we follow {P ∪ v | P ∈ R(P0)} to remove all the pebbles that were placed by P0

except for (Q ∪ v) \ Z. Finally, we follow P1 and reach a configuration that surrounds head(Z). It is not
hard to see that this pebbling has cost at most p assuming free pebbles on Q \ Z, as required.

In the proof of the second proposition, we use the following notion: Given a pebbling P , we define
static(P) = ∩P to be the set of pebbles that are always present in P , and the non-static cost of P be the
maximum size of P \ static(P) for P ∈ P . We also denote the vertices reachable from v, including v
itself, by desc(v).

Proposition D.5. If speb(G) ≤ p then DT({z}, {z}) ≤ p.

Proof. We prove the following stronger claim: if for some state (Q,Z) there is a partial pebbling P that
surrounds a vertex w ∈ Z of non-static cost p with static(P) ⊆ Q \ Z, then there is a decision tree of
depth p that solves Search(Q,Z).

To see that this claim implies the proposition, observe that a pebbling P that surrounds z of cost p
starting from ∅ has static(P) = ∅. Thus, the claim implies that if such a pebbling exists, it holds that
DT({z}, {z}) ≤ p.

If static(P) surrounds w then all the predecessors of w are in Q \ Z. Therefore, Search(Q,Z)
can be solved without making any queries: the decision tree can immediately output that the clause
Cw = xw ∨

∨
u∈pred(w) ¬xu is violated.

Otherwise we prove the claim by induction on p. The base case p = 0 is a particular instance of
static(P) surrounding w, hence we turn to proving the induction step and suppose that p > 0. Having
` denote the length of P , let v be the earliest (in time) vertex to be placed at some time m > 1 and not
removed until time `. Note that v exists because w is not surrounded in some configuration of P .

29

Let P ′ = Pm, . . . , P` be the subpebbling of P from time m to time `. Observe that static(P ′) =
static(P) ∪ {v} by construction, and thus the non-static cost of P ′ is at most p − 1. By applying the
induction assumption to P ′, it follows that there exists a decision tree T1 for Search(Q ∪ v, Z) of depth
p− 1.

Next, observe thatR(P ′) is a partial pebbling that surrounds v of non-static cost p−1 with static(R(P ′)) =
static(P) ∪ {v}, therefore P ′′ = {P \ desc(v) | P ∈ R(P ′)} is a partial pebbling that surrounds v of
non-static cost p− 1 with static(P ′′) ⊆ static(P). Hence, by applying the induction assumption to P ′′,
it follows that there exists a decision tree T0 for Search(Q ∪ v, Z ∪ v) of depth p− 1.

We now construct a decision tree T for Search(Q,Z) as follows: The tree T queries v. If the answer
is 0, the tree proceeds by invoking T0, and otherwise it invokes T1. It is not hard to see that T has depth at
most p and that it solves Search(Q,Z), as required.

It is worth mentioning that we can prove Theorem D.1 directly, without going through Lemma D.2.
This can be done by splitting the proofs of each of the propositions into two cases: the case where Z = ∅
and the case where Z 6= ∅. In the first case, we need to work with a visiting pebbling of the sink rather
than a surrounding pebbling of head(Z). However, this makes the proof more cumbersome.

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, March 1987.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version in STOC ’00.

[BBG+17] Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and Paul Wollan.
Space proof complexity for random 3-CNFs. Information and Computation, 255:165–176,
2017.

[BC96] Samuel R. Buss and Peter Clote. Cutting planes, connectivity and threshold logic. Archive
for Mathematical Logic, 35:33–63, 1996.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi.
Homogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–108,
2002. Preliminary version in ICALP ’00.

[BEGJ00] Marı́a Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM Journal on
Computing, 30(5):1462–1484, 2000. Preliminary version in FOCS ’98.

[Ben89] Charles H Bennett. Time/space trade-offs for reversible computation. SIAM Journal on
Computing, 18(4):766–776, August 1989.

[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov,
Toniann Pitassi, and Robert Robere. Stabbing planes. In Proceedings of the 9th Innovations
in Theoretical Computer Science Conference (ITCS ’18), volume 94 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:20, January 2018.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution.
Random Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version in
CCC ’01.

[BG15] Ilario Bonacina and Nicola Galesi. A framework for space complexity in algebraic proof
systems. Journal of the ACM, 62(3):23:1–23:20, June 2015. Preliminary version in ITCS ’13.

30

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Krajı́ček, Pavel Pudlák, Alexander A. Razborov,
and Jiri Sgall. Proof complexity in algebraic systems and bounded depth Frege systems
with modular counting. Computational Complexity, 6(3):256–298, 1997.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN16] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth
and Weisfeiler-Leman refinement steps. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’16), pages 267–276, July 2016.

[BPR97] Marı́a Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. Journal of Symbolic Logic, 62(3):708–728, September 1997. Preliminary
version in STOC ’95.

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász–Schrijver
systems and beyond follow from multiparty communication complexity. SIAM Journal on
Computing, 37(3):845–869, 2007. Preliminary version in ICALP ’05.

[Bus98] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs. In Proof Complexity
and Feasible Arithmetics, volume 39 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, pages 59–71. American Mathematical Society, 1998. Available
at http://www.math.ucsd.edu/˜sbuss/ResearchWeb/designs/.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[Cha13] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE Conference on
Computational Complexity (CCC ’13), pages 133–143, June 2013.

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(1):305–337, 1973.

[CKLM18] Arkadev Chattopadhyay, Michal Koucky, Bruno Loff, and Sagnik Mukhopadhyay. Simula-
tion beats richness: New data-structure lower bounds. In Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC ’18), pages 1013–1020, June 2018.

[DM18] Irit Dinur and Or Meir. Toward the KRW composition conjecture: Cubic formula lower
bounds via communication complexity. Computational Complexity, 27(3):375–462, 2018.

[dRNV16] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’16), pages
295–304, October 2016.

[EIRS01] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirı́ Sgall. Communication com-
plexity towards lower bounds on circuit depth. Computational Complexity, 10(3):210–246,
2001.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Compu-
tation, 171(1):84–97, 2001. Preliminary versions of these results appeared in STACS ’99
and CSL ’99.

31

http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/

[FLN+15] Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen. Space
complexity in polynomial calculus. SIAM Journal on Computing, 44(4):1119–1153, August
2015. Preliminary version in CCC ’12.

[Gál01] Anna Gál. A characterization of span program size and improved lower bounds for monotone
span programs. Computational Complexity, 10(4):277–296, December 2001. Preliminary
version in STOC ’98.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC ’18), pages 902–911, June 2018.

[GHR92] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. Majority gates VS. general
weighted threshold gates. Computational Complexity, 2:277–300, 1992. Preliminary version
in CCC ’92.

[GJPW17] Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communication
vs. partition number. In Proceedings of the 44th International Colloquium on Automata,
Languages and Programming (ICALP ’17), volume 80 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 52:1–52:15, July 2017.

[GJW18] Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM Journal on Computing, 47(1):241–269, February 2018.

[GKPW17] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-communication
lifting for PˆNP. In Proceedings of the 32nd Annual Computational Complexity Conference
(CCC ’17), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages
12:1–12:16, July 2017.

[GLM+15] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectan-
gles are nonnegative juntas. In Proceedings of the 47th Annual ACM Symposium on Theory
of Computing (STOC ’15), pages 257–266, June 2015.

[GMWW17] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: The composition of a function and a universal relation. SIAM Journal on
Computing, 46(1):114–131, February 2017.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In R.L. Graves
and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302.
McGraw-Hill, New York, 1963.

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM Journal on Computing, 47(5):1778–1806, October 2018. Preliminary version in
STOC ’14.

[GPT15] Nicola Galesi, Pavel Pudlák, and Neil Thapen. The space complexity of cutting planes
refutations. In Proceedings of the 30th Annual Computational Complexity Conference
(CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages
433–447, June 2015.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’15), pages 1077–1088, October 2015.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. Computational Complexity, 27(2):245–304, June 2018. Preliminary version
in ICALP ’16.

32

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity (Extended abstract).
In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC ’12),
pages 233–248, May 2012.

[HP18] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Information Processing
Letters, 131:15–19, March 2018.

[HW93] Johan Håstad and Avi Wigderson. Composition of the universal relation. In Advances In
Computational Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 119–134. American Mathematical Society, 1993.

[Joh98] Jan Johannsen. Lower bounds for monotone real circuit depth and formula size and tree-like
cutting planes. Information Processing Letters, 67(1):37–41, July 1998.

[KM18] Sajin Koroth and Or Meir. Improved composition theorems for functions and relations. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM ’18), volume 116 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 48:1–48:18, August 2018.

[KMR17] Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proceedings of
the 49th Annual ACM Symposium on Theory of Computing (STOC ’17), pages 590–603,
June 2017.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[Kra95] Jan Krajı́ček. On Frege and extended Frege proof systems. In Feasible Mathematics II,
pages 284–319, 1995.

[Kra97] Jan Krajı́ček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, June 1997.

[Kra98] Jan Krajı́ček. Interpolation by a game. Mathematical Logic Quarterly, 44(4):450–458,
1998.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3/4):191–204,
September 1995. Preliminary version in CCC ’91.

[KW90] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990. Preliminary
version in STOC ’88.

[LM19] Bruno Loff and Sagnik Mukhopadhyay. Lifting theorems for equality. In Proceedings of the
36th Symposium on Theoretical Aspects of Computer Science (STACS ’19), volume 126 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1–50:19, March 2019.

[LRS15] James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proceedings of the 47th Annual ACM Symposium
on Theory of Computing (STOC ’15), pages 567–576, June 2015.

[MS72] George Marsaglia and George P. H. Styan. When does rank(A+B) = rank(A)+rank(B)?
Canadian Mathematical Bulletin, 15(3):451–452, March 1972.

[Mur71] Saburo Muroga. Threshold logic and its applications. Wiley, 1971.

33

[Pit16] Toniann Pitassi. Manuscript, 2016.

[PR17] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone
computation. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC ’17), pages 1246–1255, June 2017.

[PR18] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs over
any field. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing
(STOC ’18), pages 1207–1219, June 2018.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10:239–251, 1977.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone compu-
tations. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean
functions. Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a
paper in Doklady Akademii Nauk SSSR.

[Raz90] Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in
computational complexity. Combinatorica, 10(1):81–93, March 1990.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, March 1999. Preliminary version in FOCS ’97.

[Rob18] Robert Robere. Unified Lower Bounds for Monotone Computation. PhD thesis, University
of Toronto, 2018.

[Ros97] Arnold Rosenbloom. Monotone real circuits are more powerful than monotone Boolean
circuits. Information Processing Letters, 61(3):161–164, February 1997.

[RPRC16] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential
lower bounds for monotone span programs. In Proceedings of the 57th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’16), pages 406–415, October
2016.

[She11] Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing,
40(6):1969–2000, December 2011. Preliminary version in STOC ’08.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the 12th
International Computer Science Symposium in Russia (CSR ’17), volume 10304 of Lecture
Notes in Computer Science, pages 294–307. Springer, June 2017.

34
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

