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Abstract

In this paper, we study the static cell probe complexity of non-adaptive data structures
that maintain a subset of n points from a universe consisting of m = n1+Ω(1) points. A data
structure is defined to be non-adaptive when the memory locations that are chosen to be accessed
during a query depend only on the query inputs and not on the contents of memory. We prove
an Ω(logm/ log(sw/n logm)) static cell probe complexity lower bound for non-adaptive data
structures that solve the fundamental dictionary problem where s denotes the space of the data
structure in the number of cells and w is the cell size in bits. Our lower bounds hold for all word
sizes including the bit probe model (w = 1) and are matched by the upper bounds of Boninger
et al. [FSTTCS’17].

Our results imply a sharp dichotomy between dictionary data structures with one round of
adaptive and at least two rounds of adaptivity. We show that O(1), or O(log1−ε(m)), overhead
dictionary constructions are only achievable with at least two rounds of adaptivity. In particular,
we show that many O(1) dictionary constructions with two rounds of adaptivity such as cuckoo
hashing are optimal in terms of adaptivity. On the other hand, non-adaptive dictionaries must
use significantly more overhead.

Finally, our results also imply static lower bounds for the non-adaptive predecessor prob-
lem. Our static lower bounds peak higher than the previous, best known lower bounds of
Ω(logm/ logw) for the dynamic predecessor problem by Boninger et al. [FSTTCS’17] and Ra-
mamoorthy and Rao [CCC’18] in the natural setting of linear space s = Θ(n) where each point
can fit in a single cell w = Θ(logm). Furthermore, our results are stronger as they apply to the
static setting unlike the previous lower bounds that only applied in the dynamic setting.
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†kwlyeo@google.com. Google LLC.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 3 (2020)



1 Introduction

The goal of a data structure is to maintain a dataset while enabling efficient queries to information
about the stored dataset. For any long-term data storage system such as a file system or database,
data structures are integral building blocks that enable efficient access to the large amounts of data
maintained by the storage system. Data structures also form the basis of several fundamental algo-
rithms that potentially may process large amount of data such as efficient sorting algorithms [FW93]
and IP-routing algorithms [DBCP97] both of which heavily rely on the predecessor data structure.

Data structures may be characterized depending on the supported operations. Static data
structures consider the problem of maintaining a static or fixed dataset while enabling efficient
queries to information about the stored dataset. For static data structures, the main tradeoffs
consist of the amount of storage used by the data structure and the running time of the query
algorithm. On one end, the static data structure can use large space and simply store the answer
for every possible query so that queries are extremely efficient. On the opposite end, the static data
structure can simply store the input dataset without any processing and queries will compute its
answer by processing the entire input dataset. Therefore, the goal of static data structure design
is to find the best tradeoff. Dynamic data structures consider the problem of maintaining datasets
with operations that can both query and update the underlying dataset. In this case, the tradeoffs
consist of the efficiency of the query and update operations. In particular, the goal is to minimize
the maximum of the query and update running times.

We may also characterize data structures depending on the manner which they perform their
operations. Adaptive data structures are able to perform their operations by adaptively interacting
with the underlying memory system. In particular, adaptive data structures may request some
memory, look at its contents and then decide the next part of memory to request. On the other
hand, non-adaptive data structures must interact with the underlying memory system in a non-
interactive manner. Non-adaptive data structures must specify all the memory contents needed
to perform an operation before seeing the contents of any memory. After receiving all requested
memory, the non-adaptive data structure must perform the operation and return the result without
the ability to request any more memory.

At first, it seems clear that designing adaptive data structure is significantly easier than non-
adaptive data structures. So, a natural question is: why even consider non-adaptive data structures?
In many practical scenarios, non-adaptive data structures perform operations with significantly
smaller latency compared to the their adaptive counterparts. This efficiency arises from the fact
that non-adaptive data structures can parallelize all their memory requests at the beginning of a
query. In contrast, adaptive data structures must perform their memory requests in sequential
order as the contents of a previously requested memory cell must be used to compute the next
memory request. With data sets continuing to grow in size, larger portions of data must be stored
in secondary memory or distributed across several storage devices. The costs of cache misses or
read requests across multiple storage devices may become the bottleneck for query latency. The
ability to parallelize memory requests when executing algorithms can lead to significantly smaller
latency costs. Therefore, it is important to investigate the costs of fundamental data structure
problems in the non-adaptive setting.

The dictionary data structure (also known as perfect hashing, sparse tables or set membership
in various scenarios) is a foundational problem that asks to maintain a subset S of n items from
the universe [m] and answer simple queries of whether an item q appears in S or not. Tarjan and
Yao [TY79] presented a static dictionary construction with constant query time using universal
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hashing [CW79] when the universe size m was polynomially bounded by n (m = nO(1)). Fredman,
Komlós and Szemerédi [FKS82] present a static dictionary scheme with constant query overhead
for all universe sizes. This construction is famously known as the FKS hashing scheme. A dynamic
variant of the dictionary problem support amortized expected constant time insertions and deletions
is presented in [DKM+94]. There has been a long line of other work studying this problem. As an
example of some of these works, see [AN96, Mil98, ABKU99, Hag99, Pag00, PR04, PPR07, PT11]
and references therein. Importantly, we note that all these constant dictionary data structures
require at least two rounds of communication with memory for query operations. For example,
dictionary schemes based on hashing [FKS82, PR04] use at least two rounds of adaptivity as they
must first retrieve the key to their hash functions and then retrieve memory locations based on
hash function evaluations. A natural question is: what is the best query running time possible with
only one round of communication with memory (non-adaptivity)?

Another classic data structure problem is the predecessor problem which asks to return the
largest element in a subset S that is no larger than the queried item. In contrast, the successor
problem asks to return the smallest element in the subset S that is no smaller than the queried
item. As the two problems are equivalently hard in any conceivable model, we focus only on the
predecessor problem. The classic way to solve the static predecessor problem is to store the sub-
set S in sorted order and simply perform a binary search in O(log n) time. The van Emde Boas
tree [vEB77] uses O(log logm) time but required O(m) storage. Y-fast tries [Wil83] reduce the
storage to O(n). Fusion trees [FW93] were able to solve the predecessor problem in O(logw n) time
and O(n) storage where w is cell size in bits. Beame and Fich [BF02] improve the query time with
respect to the universe size m to O(log logm/ log log logm) in polynomial space. Using the con-
struction by Beame and Fich and fusion trees, one can achieve query time of O(

√
log n/ log logn).

By applying generic transformations from static to dynamic [And96, AT00], dynamic predecessor
can be solved in linear space with an additional O(log log n) query overhead. We note that all these
efficient constructions are highly adaptive and use many rounds of communication with memory.
Once again, we can ask: what is the best running time in the non-adaptive case?

Another important aspect of data structure studies are lower bounds. Typically, lower bounds
are proved in the cell probe model by Yao [Yao81]. Memory is considered to consist of cells of
w bits. The only cost in the cell probe model is accessing cells of memory while computation
can be performed with no cost. By using such a weak cost model, the resulting lower bounds are
significantly stronger as they still apply in more realistic models where computation is charged.
There is a long line of works that prove cell probe lower bounds for various problems such as [FS89,
PD06, PT06, Lar12a, Lar12b, WY16, LWY18].

Focusing on the predecessor problem, several works present lower bounds [Ajt88, Mil94, MNSW98,
BF02, Sen03] for adaptive data structures. Beame and Fich present Ω(log logm/ log log logm)
lower bounds which are tight with static constructions using polynomial space. Pătraşcu and
Thorrup [PT06] present an Ω(log logm) lower bound for linear space static data structures. Re-
cently, Boninger et al. [BBK17] and Ramamoorthy and Rao [RR18] present non-adaptive lower
bounds of Ω(logm/ logw) and Ω(logm/(log logm + w)) that only apply to the dynamic prede-
cessor problem. Boninger et al. [BBK17] present a non-adaptive predecessor data structure with
O(logm/ log(w/ logm)) overhead in the dynamic setting. Note there is a gap between the upper
and lower bounds for the non-adaptive predecessor problem. In this paper, we will resolve this gap
along with all the questions previously presented above.
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1.1 Our Results

Our main results are static cell probe lower bounds for non-adaptive data structures. In particular,
our lower bounds peak at Ω(logm) in the natural setting of linear space and where a point from the
universe [m] can fit in a single cell which is higher than all previous non-adaptive data structure
lower bounds.

Theorem 1 (Informal). Let DS be any static data structure that maintains n points from the
universe [m] where m = n1+Ω(1) with non-adaptive dictionary queries. If w ≥ 1 denotes the cell
size of DS and s denotes the storage size of DS in number of cells, then DS must have expected
running time Ω(logm/ log(sw/n logm)).

As one can solve the dictionary problem using exactly one predecessor query, our results also
imply lower bounds for non-adaptive predecessor data structures. Recent works on non-adaptive
lower bounds have focused on the dynamic variant of the predecessor problem where both queries
and updates may be performed. Boninger et al. [BBK17] and Ramamoorthy and Rao [RR18]
present non-adaptive query lower bounds for the dynamic predecessor problem of Ω(logm/ logw)
by and Ω(logm/(log logm+logw)) respectively. In the natural setting of linear space s = O(n) and
each point in the universe fits into a single cell w = Θ(logm), our lower bounds peak at Ω(logm)
which is higher than both of the previous lower bounds. Our lower bounds are tight with the
non-adaptive (dynamic) predecessor construction by Boninger et al. [BBK17] in the linear space
regime.

Unlike the previous results, our lower bounds apply to static data structures. Note that proving
static lower bounds has traditionally been much more difficult than dynamic lower bounds. For ex-
ample, the best adaptive dynamic lower bounds are Ω̃(log2 n) [Lar12a] while the best adaptive static
lower bounds are Ω̃(log n) [Lar12b]. In fact, there is some evidence that proving super-logarithmic
static lower bounds might be very difficult [DGW18, Vio19] in various settings. Furthermore, we
note that our lower bounds match the highest known static lower bounds in [Lar12b].

Finally, we note that our lower bounds are able to separate the dictionary problem for data
structure with one round of adaptivity as opposed to two rounds. There exist linear space dictionary
schemes such as cuckoo hashing [PR04] that use only two rounds of adaptivity and achieve O(1)
query overhead (in fact, just three probes). On the other hand, our lower bounds show that any
non-adaptive linear dictionary must have query running times of Ω(logm/ log(w/ logm)) matched
by the construction of Boninger et al. [BBK17]. In other words, we show that two rounds of
adaptivity is necessary to achieve constant or even o(logm) query overhead implying that many
construction that guarantee constant query complexity, such as cuckoo hashing [PR04], are indeed
optimal in terms of adaptivity.

1.2 Technical Overview

To understand the techniques used in our paper, we start by describing the cell sampling technique
that is used to prove static cell probe lower bounds for data structures.

Cell Sampling Techniques [PTW10, Lar12a]. Panigrahy et al. [PTW10] introduced the
cell sampling technique to prove static cell probe lower bounds for the approximate-near-neighbor
search problem in the adaptive setting. At a high level, [PTW10] samples a small number of
memory cells S greedily in several rounds corresponding to the number of probes performed. In
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each round, the cells with the highest probability of being probed by a query chosen uniformly
at random from some query set Q are selected. If the number of probes (and, thus, rounds) is
small, it can be shown that there exists a large subset of resolved queries Q(S) ⊆ Q that only
probe cells from the cell set S. We note that this technique shares similarities with the round
elimination technique (see [Ajt88, Mil94, MNSW98]). In the next step of the proof, it is shown
that the information revealed by answers of resolved queries in Q(S) about the underlying random
dataset D is larger than the maximum information that can be stored in the sampled cells S. As a
result, a contradiction is presented showing that such a data structure with a small number of cell
probes cannot exist.

Larsen [Lar12b] introduced a “single-round” variant of the cell sampling technique to prove
stronger lower bounds for polynomial evaluation. In particular, the “single-round” cell sampling
technique will pick all the sampled cells in S uniformly at random. Since all cells are picked in
one round, the number of cells sampled is smaller than the multi-round variant used by [PTW10]
resulting in higher lower bounds.

We note that the cell sampling technique has been used in several prior other works [Lar12a,
Lar12b, LMWY19] together with the chronogram [FS89] to prove Ω̃(log2 n) dynamic lower bounds.

Our Cell Sampling Technique for Non-Adaptive Data Structures. We now show our
crucial modifications to the cell sampling technique to enable proving higher lower bounds for non-
adaptive data structures in the static setting. From now on, we will use cell sampling to refer to the
one-round cell sampling variant of Larsen [Lar12b]. To do this, we carefully examine the qualifiers
used in the cell sampling technique for adaptive data structures.

First, let us fix a query set Q. The cell sampling technique (both the multi-round and single-
round variants) shows that, if a data structure is more efficient than a certain bound, then for every
dataset D, there exists a small subset of cells S(D) such that a large subset of resolved queries
Q(S(D)) ⊆ Q exist. In particular, the small subset of cells S(D) is a function of the dataset D.
While cell sampling shows such a subset of cells exist for every possible input dataset, the subsets
of cells are not necessarily identical for each dataset. Formally, for two different datasets D1 6= D2,
there is no guarantee that S(D1) and S(D2) will be the same. In fact, we show that it is easy to
design adaptive data structures such that S(D1) and S(D2) will be different. Recall in fact that
adaptive data structures are allowed to probe a single cell and use the contents of the probed cell
to determine which cell to probe next. Since the contents of cells can be highly correlated with
the underlying dataset, the probed cells can also be highly correlated with the underlying dataset.
Furthermore, the probed cells can change drastically by changing the underlying stored dataset.
As an extreme example, consider a data structure that stores the w-bit string 0w in cell location 0
for D1 and 1w for D2. For each query, the data structure reads the cell location 0. If it sees 0w, it
will only query cells with locations at most s/2. On the other hand, if it sees 1w, the data structure
queries cells with locations strictly larger than s/2. In this case, the small subset of cells for each
of D1 and D2 will necessarily be different, S(D1) 6= S(D2). However, it seems that this property
arises due to the adaptivity of the data structure.

Moving back to the case of non-adaptive data structures, the cells probed when answering
a query are dependent only on the query input. In particular, the probed cells are completely
independent of any cell content and, thus, completely independent of the stored dataset. Using this
fact, we can switch the qualifiers of the cell sampling technique for non-adaptive data structures.
Formally, we show that there exists a small subset of cells S that resolves a large subset of queries
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Q(S) ⊆ Q for all datasets D. This modification enables us to separate the techniques for adaptive
and non-adaptive data structures. For the next step, we can now construct a random, hard dataset
distribution D for the data structure using the knowledge of the resolved query subset Q(S). In
more detail, we can construct the random dataset distribution D such that the answers of the
resolved queries reveal significant information about the random dataset. To finish the proof, we
will show that the information revealed by resolved queries is larger than the maximum amount of
information that may be stored in the sampled cell subset S.

To compare the adaptive and non-adaptive cell sampling techniques, we note that big difference
is how the hard dataset distribution may be constructed. For the adaptive case, the hard dataset
distribution D must be chosen without any knowledge of the resolved queries Q(S). Then, it must
be shown that for any resolved query subset Q(S), it is possible to extract significant information
about the random dataset D. On the other hand, our non-adaptive cell sampling technique may
construct the hard dataset distribution with knowledge of the resolved queries and the explicit goal
of ensuring resolved queries extract large information about D. We leverage these new ideas to
prove higher static lower bounds for non-adaptive data structures.

1.3 Related Work

We note that several previous works have studied the cost of non-adaptivity in various setting.
Katz and Trevisan [KT00] presented lower bounds for locally decodable codes where decoding
queries for any bit of the original message must be performed non-adaptively and succeed even
when some fraction of the encoded message is corrupted. Several works [AF09, RSS10, LMNR14,
GR15, GR17] present non-adaptive bit probe upper and lower bounds for the static dictionary
problem when the number of probes is very small. Brody and Larsen [BL12] prove polynomial non-
adaptive lower bounds for dynamic data structures. In particular, they prove a lower bound for the
multiphase problem (a dynamic version of the set disjointness problem) which was shown to imply
several important graph data structure problems by Pătraşcu [Pat10]. Boninger et al. [BBK17]
presented dynamic cell probe lower bounds for the non-adaptive predecessor problem. In parallel,
Ramamoorthy and Rao [RR18] present dynamic cell probe lower bounds for the non-adaptive data
structures with median, minimum or predecessor queries. In particular, they are able to show
stronger tradeoffs for insertion/deletion operations.

2 Preliminaries

In this section, we formally define the notion of a randomized non-adaptive data structure and
formally define the classical dictionary problem that maintains a subset of n points from the universe
[m].

2.1 Non-Adaptive Data Structures

A static, randomized, non-adaptive data structure consists of three randomized algorithms: the
preprocess, probe and compute algorithms. The preprocess algorithm takes a data set D and de-
termines the content of the memory cells denoted by M [1], . . . ,M [s] that encodes the data set D
where s denotes the number of memory cells used by preprocess. Algorithm probe receives the query
q and outputs a set of cell addresses probe(q) ⊆ [s] whose contents will be probed. Finally, algo-
rithm compute receives the query q as well as the contents of the memory cells chosen by probe(q),
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{M [i] | i ∈ probe(q)}, and computes the answer to the query q. The non-adaptive query algorithm
consists of executing probe to choose the probed cells and then running compute to compute the
answer using the contents of probed cells. Note, as probe only has access to the query q and not
the memory M , the algorithm is forced to pick all probed cells non-adaptively.

For the dictionary problem, the data set is a subset of the universe D ⊆ [m]. A query q is an
element from the universe q ∈ [m] and the answer to query q is 1 if and only if q ∈ D.

Definition 2. A static, randomized, non-adaptive data structure consists of the algorithms preprocess
and query = (probe, compute) used in the following manner:

1. M ← preprocess(D): Preprocess a data set D to construct the memory cells to be used by the
query algorithm.

2. compute(q, {M [i] | i ∈ probe(q)})← query(q,M): The query algorithm runs probe(q) ⊆ [|M |]
to choose a subset of memory cells in M to probe. The compute algorithm uses the contents
of probed memory to compute an answer to the query q.

Next, we define the expected query cost for a randomized, static, non-adaptive data structure.
We denote by SDS(q,D,R) the set of cells probed by DS for query q over data set D using R
as the fixed coin tosses. As we only consider non-adaptive data structures DS, the set of cells is
independent from the data set D. Therefore, we drop D from the notation and denote the set of
probed cells as SDS(q,R) for a query q and random coin tosses R for DS. This set of probed cells
is identical for all data sets D. We use TDS(q,R) to denote the number of cells probed by DS for
query q when using R as random coin tosses. Therefore, TDS(q,R) = |SDS(q,R)|.

We denote R as the random distribution used to draw the each coin toss uniformly at random
used by DS. Thus, with a slight abuse of notation, SDS(q,R) is the distribution of SDS(q,R) with
R chosen according to R and it coincides with the distribution of the output of algorithm probe on
input q. Similarly, we use TDS(q,R) as the distribution of the number of probes chosen by probe
on input query q.

Finally, we define expected query cost by

TDS := max
q

ER[TDS(q,R)].

In other words, TDS is the maximum over all queries q of the expected number of cell probes
executed by DS on query q where the expectation is taken over the random coin tosses of DS. We
prove our lower bound on TDS.

Definition 3. The expected query cost of a static non-adaptive data structure TDS is defined as
the maximum over any query q of the expected number of cells probed when answering q over the
randomness of the internal coin tosses R of the data structure.

2.2 Dictionary Problem

The dictionary problem is a fundamental data structure problem that has been well-studied in the
past. The goal of the static version of the dictionary problem is to preprocess a subset D of n
points from the universe [m] so to enable efficient handling of membership queries; that is, given
point q ∈ [m], the dictionary query on q returns whether q appears in D or not.
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Definition 4 (Static Dictm). The static dictionary problem over the set [m], denoted by Dictm,
asks to design a data structure DS to maintain a subset D ⊆ [m] with the following two operations:

1. preprocess(D), D ⊆ [m] : Preprocess a subset of n items D ⊆ [m] by writing an encoding of
D into s cells M [1], . . . ,M [s];

2. query(q), q ∈ [m] : Return 1 if and only if q ∈ D.

We consider the query(q) algorithm as consisting of two steps. First, the probe(q) algorithm
selects the cells to probe. Next, the compute algorithm, on input q and the contents of probed
cells {M [i] | i ∈ probe(q)}, computes the answer to the query.

3 Non-Adaptive Dictionary Lower Bound

In this section, we present lower bounds for static data structures using non-adaptive queries that
solve the dictionary problem. We will denote by n the number of points taken from universe [m]
where m = n1+Ω(1). Note, we make no assumption on the cell size and thus our results also apply
in the bit probe model.

We will present a lower bound for a non-adaptive randomized data structure DS that solves
the dictionary problem over a static set of data. In the next theorem, we formally state our lower
bound for the expected query cost TDS of a non-adaptive DS. An informal statement of the same
result is given in the introduction as Theorem 1.

Theorem 5 (Main result). Let DS be a non-adaptive randomized data structure that implements
the static dictionary problem for a data set of n elements from the universe [m] over w-bit cells
and that uses s cells of memory. If m = n1+Ω(1), then

TDS = Ω

 logm

log
(

sw
n logm

)
 .

In the natural setting where m = poly(n), w = Θ(logm) and DS uses s = Θ(n) cells of storage,
we obtain TDS = Ω(log n).

To prove our lower bound, we use a modification of the cell sampling technique introduced by
Panigrahy et al. [PTW10] that is suitable for use with non-adaptive data structures. In particular,
we will use a “single-round” variant of cell sampling that was introduced by Larsen [Lar12a] where
sampling occurs in a single-round as opposed to multiple rounds as in [PTW10]. Roughly speaking,
the proof will show that, for a data structure with small expected query cost, there must exist a
small subset of server cell addresses S? such that many of the queries only probe server cells with
addresses in the set S?. Thus, we can encode the answer to these queries using only the content of
the cells with addresses in S?. If the replies to these queries have high entropy and S? is small, we
will reach a contradiction.

We now present our variant of cell sampling, inspired by the ideas of [PTW10] and [Lar12a],
that is designed specifically for non-adaptive data structures. For a set S of cells and a fixed choice
of coin tosses R, we let QDS(S,R) be the set of queries q that are resolved by the set of cells S
when DS uses R as coin tosses. A query q is resolved by S if all cells probed by DS on query q
are in the set S. Formally, q ∈ QDS(S,R) if and only if SDS(q,R) ⊆ S.
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Lemma 1 (Non-Adaptive Cell Sampling.). Assume there exists a DS with expected query cost

TDS = o

(
logm

log ws
n logm

)
.

For all constants 0 < α, there exists a fixed choice of coin tosses R and set of cell addresses S? of
size at most α · n logm

w such that

|QDS(S?, R)| ≥ |Q|
mo(1)

.

Before we present the proof of Lemma 1, we will describe its implication. Lemma 1 shows that
for DS that beat the bound there exists a small set S? of at most αn logm/w server cells that can
be used to resolve a large subset of a set Q of |Q|/mo(1) queries. We stress that this set S? of cells
is independent from the data set D by critically using the fact that DS is non-adaptive.

Let us suppose that we had chosen our data sets according to a random distribution D that
generates n elements from [m] uniformly and independently at random. Since D is chosen uniformly
at random, we know that the entropy of D is H(D) = n logm bits. Yet, the queries in QDS(S?, R)
only have access to at most

|S?|w ≤ αn logm < n logm = H(D)

bits of information of D by choosing α < 1. As a result, we would be able to derive a contradiction.
However, we had just implicitly assumed that the answers to the set of resolved queries would

reveal all n elements in D. It is not clear that this will always be the case. As an example, suppose
that the set of resolved queries never intersect any of the n elements chosen randomly from D.
In this case, none of the n elements drawn from D are revealed. In other words, the answers to
the set of resolved queries in QDS(S?, R) do not reveal enough information about D to derive a
contradiction. Therefore, we have to design our hard distribution carefully to ensure that resolved
queries retrieve large amounts of information about D.

3.1 Proof of Theorem 5

Let us now proceed more formally. We start by our hard distribution over data sets that will be
stored by the dictionary data structure. Towards a contradiction, we will suppose that there exists
a non-adaptive data structure DS that solves the static dictionary problem such that the expected
cost of DS is

TDS = o

 logm

log
(

sw
n logm

)
 .

Next we will show that, based on DS, it is possible to encode a random data set from the data
set distribution by using fewer bits than its entropy, thus reaching a contradiction. Therefore, for
any DS, we have a lower bound on the expected query cost with respect to a query and data set
distribution. This implies a lower bound on TDS as it is the worst case over all choices of queries.

Hard Distribution. First, we apply Lemma 1 to the set Q := [m] of all queries thus obtaining
a fixed choice of random coin tosses R and cell addresses S?. Specifically, by Lemma 1, there
exist a small subset of server cell addresses S? and coin tosses R such that the set of resolved
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queries QDS(S?, R) contains at least least m1−o(1) of the m queries of Q. Afterwards, we partition
QDS(S?, R) into n equal parts, which we denote by Q1, . . . , Qn. We know that each part contains
at least m1−o(1)/n ≥ m1−o(1)−1/(1+ε), where we write m = n1+ε, for some ε = Ω(1). Since ε = Ω(1),
there exists a positive constant ρ := Θ(1 − o(1) − 1/(1 + ε)) such that each of the n parts of
QDS(S?, R) contains at least mρ queries. We partition QDS(S?, R) by placing the smallest mρ

elements into Q1, the second smallest mρ elements into Q2 and so forth. These n ·mρ queries in
Q1, . . . , Qn will be our queries of interest used in our proof. We note that these resolved queries
Q1, . . . , Qn do not depend on the underlying data set stored by DS. Q1, . . . , Qn are derived using
only the fixed coin tosses R and cell addresses S? from Lemma 1, which critically relies on the fact
that DS is non-adaptive. As a result, Q1, . . . , Qn are always resolved regardless of the underlying
data set stored by DS.

Next, we define the hard distribution of data sets D as the product of n independent distribu-
tions D := D1× . . .×Dn, where distribution Di selects an element from the query set Qi uniformly
at random. Note that given the answers to all queries in Qi, one will be able to uniquely decode
the random element chosen by Qi. Exactly one query q from Qi will return 1 while all the other
queries will return 0. Then, we know that q was the random element drawn by Di.

Using our choice of hard data set distribution D and queries of interest q1, . . . , qn, we can now
present a contradiction that the contents of server cells with addresses in S? contains far too little
bits of information about D given that DS has small expected query cost. To formally prove this
statement, we will use a one-way communication protocol between an encoder (Alice) and a decoder
(Bob) using DS. Both Alice and Bob will receive the set of cell addresses, S?, as well as the fixed
coin tosses R chosen by Lemma 1. Alice will attempt to efficiently communicate to Bob a set of
n items chosen according to D that Bob does not receive. By Shannon’s source coding theorem,
we know that the size of any encoding by Alice must be at least the entropy of D conditioned on
the Bob’s input, that is, H(D | S?, R). We show that by assuming a very efficient DS along with
Lemma 1, we will construct an impossible encoding. Before doing so, we present a lemma analyzing
the entropy of D conditioned on Bob’s input, S? and R.

Lemma 2. The entropy of D conditioned on S? and R is H(D | S?, R) = ρ · n logm.

Proof. Since D is a product distribution, we know that

H(D | S?, R) =
n∑
i=1

H(Di | S?, R).

Note that each Di chooses a random element uniformly from the set of Qi that contains mρ

elements. The set of cells addresses S? only defines the set Qi that Di is choosing the uniformly
random element. As a result, H(Di | S?, R) = log(mρ) = ρ · logm.

We now complete the proof of Theorem 5 by presenting our encoding scheme. Note that since
the addresses of the sampled cells S? are given as input to both Alice and Bob, we can prove lower
bounds in the bit probe model. Previous cell sampling proofs [Lar12a, Lar12b] required Alice to
communicate the addresses of S? which required the assumption that the size of cells were not
smaller than the number of bits needed to communicate the cell addresses. In other words, these
proofs required w = Ω(log n) such that each cell could fit one cell address meaning they could not
work for the bit-probe model unlike our proof.

9



Alice’s Encoding. Alice will receive both the fixed coin tosses R and the set of cell addresses
S? whose existence is guaranteed by Lemma 1. Additionally, Alice receives the data set D =
(d1, . . . , dn) drawn from D.

1. Alice executes the preprocessing algorithm of DS to compute the set of memory cells C(D,R)
used by DS for queries.

2. Alice encodes the contents of C(D,R) at the addresses in S? using w · |S?| bits.

Bob’s Decoding. Bob will receive Alice’s encoding. In addition, Bob receives the same fixed
coin tosses R drawn and the set of cell addresses S? whose existence is guaranteed by Lemma 1 as
Alice. Bob will attempt to decode the items (d1, . . . , dn) drawn from D.

1. Bob computes the set QDS(S?, R) of queries resolved by S?. Bob iterates through every
possible query q ∈ [m], determines the set of cells addresses that would be probed by DS to
execute query q using R as source of randomness, SDS(q,R), and checks if it is a subset of
S?. Note that this step does not require knowledge of the data set D as DS is non-adaptive.
As a result, Bob computes the set Q(S?, R).

2. Afterwards, Bob partitions Q(S?, R) into n equal parts Q1, . . . , Qn by placing the smallest
mρ elements of Q(S?, R) into Q1, the second smallest mρ elements of Q(S?, R) into Q2 and
so forth.

3. Bob decodes the contents of C(D,R) at the addresses in S? using Alice’s encoding. For each
i = 1, . . . , n, Bob executes all queries in Qi according to DS using R as source of randomness.
Note that for any query q ∈ Qi, the contents of all cells probed by DS to answer query qi
were encoded by Alice as Qi ⊂ QDS(S?, R). As a result, Bob will decode di using the answers
to the queries in Qi. Therefore, Bob is able to successfully recover (d1, . . . , dn).

Analysis. We now analyze the length of Alice’s encoding. Alice’s encodes the contents of cells
at addresses S? which takes |S?|w bits. Using the fact that |S?| < ρn logm/w from Lemma 1 and
by setting α < min{ρ, 1}, Alice’s encoding length is at most

|S?(R)|w < ρn logm

which contradicts Shannon’s source coding theorem.
Therefore, all that remains to complete the proof of Theorem 5 is to prove the cell sampling

Lemma 1, which we do below.

3.2 Proof of Lemma 1

Let Xq be the 0-1 random variable that is 1 if and only if q ∈ Q(S?, R). We will show that, when
we choose S? uniformly at random from all subsets of exactly αn logm/w cells from the s cells used
by DS as storage, then ER,S? [Xq] ≥ 1/mo(1). Then, by linearity of expectation, we have

ER,S? [|QDS(S?,R)|] =
∑
q∈Q

ER,S? [Xq] ≥
|Q|
mo(1)

.
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As a result, there exists a fixed choice of R and S? such that QDS(S?, R) is size at least |Q|/mo(1).
We now prove that ER,S? [Xq] ≥ 1/mo(1). For convenience, we will use r as a shorthand for

α · n logm
w = |S?| and t as a shorthand for TDS(q,R). For randomly chosen R and S? we have that

ER,S? [Xq] =

(
s−t
r−t
)(

s
r

) ≥ r · (r − 1) · · · (r − t+ 1)

s · (s− 1) · · · (s− t+ 1)
≥
(
r − t
s

)t
.

As r = αn logm/w and t = TDS(q,R) ≤ maxq ERTDS(q,R) = TDS = o(logm/ log(sw/n logm)),
we know that t ≤ r/2 for sufficiently large n. So, we get that

ER,S? [Xq] ≥
( r

2s

)t
.

Hence,

ER,S? [Xq] ≥ ER,S?

[( r
2s

)TDS(q,R)
]
≥
( r

2s

)ER[T (q,R)]

where the last inequality follows by Jensen’s inequality. Also note that n logm ≤ s · w and thus
r ≤ s, for every α ≤ 1. Since r ≤ s, we can write

ER,S? [Xq] ≥
( r

2s

)maxq ER[TDS(q,R)]

=
( r

2s

)TDS

=

(
α

2
· n logm

sw

)o( logm
log sw

n logm

)

≥ 1

mo(1)
.

4 Conclusions

In this paper, we essentially resolve the static cell probe complexity for non-adaptive data structures
solving the fundamental dictionary problem. In particular, we present a dichotomy with respect
to adaptivity. For data structures that are able to perform two rounds of adaptive retrievals from
storage, there exists many well-known constructions with O(1) number of cell probes such as cuckoo
hashing [PR04]. On the other hand, as soon as one wishes to use exactly one round of retrieval
from storage, dictionary data structures must use logarithmic number of probes matched by the
constructions of Boninger et al. [BBK17].

As one can solve the dictionary problem using the predecessor problem, our results imply
the same lower bounds for the predecessor problem. To our knowledge, all past non-adaptive
lower bounds for predecessor only applied to dynamic setting. Our lower bounds improve on
this dimension by applying to static data structures while also peaking higher than all previous
predecessor lower bounds [BBK17, RR18] in the natural setting of linear space.

Our results can also be shown to apply to other important problems such as one-dimensional
range search problems (such as sum, count, emptiness, reporting, etc.) by simple reductions through
the dictionary problem. Additionally, our lower bounds have implications to depth-2 circuit size
lower bounds as shown in [BL12].
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