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Abstract. We provide a tight characterisation of proof size in resolution for quantified Boolean
formulas (QBF) by circuit complexity. Such a characterisation was previously obtained for a
hierarchy of QBF Frege systems [14], but leaving open the most important case of QBF resolution.
Different from the Frege case, our characterisation uses a new version of decision lists as its circuit
model, which is stronger than the CNFs the system works with. Our decision list model is well
suited to compute countermodels for QBFs.

Our characterisation works for both Q-Resolution and QU-Resolution, which we show to be
polynomially equivalent for QBFs of bounded quantifier alternation.

Using our characterisation we obtain a size-width relation for QBF resolution in the spirit of the
celebrated result for propositional resolution [3]. However, our result is not just a replication of
the propositional relation – intriguingly ruled out for QBF in previous research [10] – but shows
a different dependence between size, width, and quantifier complexity.

We demonstrate that our new technique elegantly reproves known QBF hardness results and
unifies previous lower-bound techniques in the QBF domain.

1 Introduction

Proof complexity is a field at the intersection of logic and complexity that studies the difficulty
of proving formal theorems, where difficulty of proving is associated with the size of proofs
in different proof calculi. Obtaining lower bounds to the size of proofs is the central and
most challenging goal in proof complexity, and the endeavour bears tight relations to central
questions in computational complexity [22,32] and first-order logic [4,21]. In addition to this
foundational quest, proof complexity has become the main theoretical tool for the analysis of
powerful SAT solvers that routinely solve huge industrial instances of the NP-complete SAT
problem [46,38,18].

Many conceptually different proof systems have been studied, but the resolution system
[15,42] – operating on clauses and using just one rule – has received by far the greatest
attention. This is because resolution is a foundational system from the theoretical point of
view [43], but also because resolution (and its subsystems) underpin modern SAT solving
[38,18], whereby lower bounds on resolution proof size provide lower bounds on solving time.

In the past two decades, researchers have tried to lift the successes of SAT solving and
propositional proof complexity to even more computationally challenging settings, with quan-
tified Boolean formulas (QBF) receiving key attention. As a PSPACE-complete problem, QBF
widely generalises SAT and encompasses the polynomial hierarchy, a source of many practical
problems [23,37,31] that are efficiently tackled by modern QBF solvers. As in the proposi-
tional case, QBF resolution systems play a key role in understanding the efficiency and limits
of current solving. Arguably, the simplest QBF resolution system is QU-Res, augmenting
propositional resolution by just one universal reduction rule [30,24].

There is a long-standing belief in the proof complexity community (cf. [2]) that there exist
strong connections between the logical problem of determining the size of the shortest proof
for a given formula (proof size bounds) and the complexity problem of finding small circuits
for explicit functions corresponding to the formula (circuit bounds).
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While such a formal connection has so far appeared elusive for central propositional proof
systems such as resolution or Frege systems, some connections are known, for example be-
tween algebraic proof systems and algebraic circuit complexity [25]. Arguably, the clear-
est such connection has been shown in the QBF domain, between the hierarchy of QBF
Frege systems and the corresponding circuit classes. For QBF Frege (where lines are propo-
sitional formulas, i.e. NC1 circuits) the connection manifests as follows: there are QBFs
that require superpolynomial-size proofs in QBF Frege if, and only if, there are functions
requiring superpolynomial-size NC1 circuits or there are propositional formulas requiring
superpolynomial-size propositional Frege proofs [14]. This characterisation unites central prob-
lems from circuit complexity (NC1 lower bounds) with central problems from proof complexity
(Frege lower bounds). However, such a connection has remained open for resolution systems
(either QBF or propositional), which are of prime importance, theoretically and practically.

1.1 Our contributions

A. Characterising QU-Res hardness. We obtain a tight characterisation of QU-Res hard-
ness in terms of circuit lower bounds. More precisely, we show that a sequence of QBFs Qn

of bounded quantifier complexity requires superpolynomial QU-Res proofs if and only if each
countermodel for Qn requires superpolynomial circuit size (in a natural circuit model defined
on decision lists as explained below) or if Qn exhibits propositional resolution hardness (de-
fined in a precise sense, Theorem 26). We thus identify a dichotomy for QU-Res hardness: it
either rests on circuit lower bounds or on propositional resolution lower bounds. We note that
the second case is inevitable: each propositional resolution lower bound (e.g. for the pigeonhole
principle [26]) can be easily turned into a QU-Res lower bound. The surprising insight is that
‘genuine QBF hardness’ (cf. [12,19]) can be completely characterised by circuit hardness.

Our result is best obtained in a model of QBF systems that ‘filters out’ propositional
hardness (the second case above). For this we use the model of oracle QBF proof systems
defined in [12], which employs an NP oracle to perform arbitrary propositional entailments

in one inference step. For example, in the oracle system QU
NP
- Res, propositional resolution

derivations of arbitrary size can be performed in just one step. The use of an NP oracle in

QU
NP
- Res is akin to the use of SAT solvers as oracles in QBF solving [36].

The hardness characterisation we obtain for QU
NP
- Res is in terms of unified decision lists

(UDL). This is a natural adaptation of the classical model of decision lists [41], which computes
functions {0, 1}n → {0, 1}, to multi-output functions {0, 1}n → {0, 1}m. Our first main result

(Theorem 11) shows that for bounded-alternation QBFs, proof size in QU
NP
- Res is polynomially

related to the size of UDLs computing countermodels of the QBF.

Technically, this result is shown via two simulations. The first efficiently extracts UDLs

from QU
NP
- Res proofs (Theorem 14). Single-output decision lists have been used before to

extract winning strategies for QBFs [1,8,6]. Here we show that winning strategies can also
be extracted via multi-output decision lists, and these can be combined via a direct product
construction (Definition 12) into one single UDL that computes the countermodel. We argue
that representing the countermodel by just one function (computed by the UDL) is quite
natural. However, it differs from the conventional approach, which represents the countermodel
as a collection of Herbrand functions, one for each universal variable.

The second simulation turns a UDL into a QU
NP
- Res refutation (Theorem 19). This is

conceptually novel, as – to the best of our knowledge – the efficient construction of proofs
from countermodels has not been considered before. In the course of the simulation, we obtain
a normal form for proofs via the entailment sequence associated with a UDL (Definition 17).
Inference steps in this entailment sequence also allow us to pinpoint sources for propositional
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hardness that arise when replacing NP oracle calls with actual resolution derivations. This
way we obtain the dichotomy for QU-Res explained above (Theorem 26).

B. QU-Resolution and Q-Resolution. While QU-Res is arguably the simplest QBF resolu-
tion system from a logical perspective (it just adds the universal reduction rule to propositional
resolution), there are other QBF resolution systems that better correspond to ideas in QBF
solving. A core system among these is Q-Resolution (Q-Res), which is also historically the first
QBF resolution system [30]. Q-Res is a restriction of QU-Res in which resolution pivots must
be existential. This corresponds to techniques in QCDCL solving [35] (even though Q-Res
does not capture QCDCL precisely [28]).

The system QU-Res is exponentially stronger than Q-Res [24], the separation provided by
the prominent KBKFn formulas [30]. These formulas use unbounded quantifier alternations,
and indeed, we show that every separation must be of this form. We obtain the surprising
result that Q-Res and QU-Res are polynomially equivalent on QBFs of bounded quantifier
alternation (Theorem 31). This simulation is shown by a direct construction.

As a consequence, our hardness characterisation in terms of UDLs transfers directly to
Q-Res (Corollary 33).

C. Size and width for QBF Resolution. Our new connection between QBF resolution and
UDLs does not only provide a tight characterisation of QBF resolution hardness, it also paves
the way towards a powerful lower-bound method. We show that lower bounds on resolution
width – defined as the size of the largest clause in the proof – directly imply lower bounds for
proof size. The celebrated result of Ben-Sasson & Wigderson [3] provides such a size-width
result for propositional resolution. Indeed, the vast majority of resolution hardness results are
nowadays shown via this method.

Here we provide the first size-width result for QBF (Theorem 35). In a nutshell it says
that each short QU-Res proof can be transformed into a narrow proof, where a proof is narrow
if it does not contain a clause with many existential literals. What is perhaps most surprising
is that the authors of [10,20] have previously ruled out such a size-width result for Q-Res and
QU-Res. Not only did they show that the proof method of [3] does not lift to QBF, they also
provided concrete QBF counterexamples to their size-width relation.

Here we use our UDL characterisation, together with a size-width transfer for decision
lists of Bshouty [17], to obtain a size-width result for QU-Res (indeed even for the model

of QU
NP
- Res, yielding stronger size lower bounds). Our result, however, is not a mere QBF

replication of Ben-Sasson & Wigderson’s result [3]. There are two crucial differences. First,
in contrast to [3] our size-width result does not depend on the initial width of the formula.
This makes the technique easier to apply and avoids the need for Tseitin transformations,
which are often required in the propositional domain [3]. Second, our size bound depends on
the number of quantifier alternations of the QBF. Crucially, the counterexamples of [10,20]
use unbounded alternations, thus ruling out the relation of [3], but not contradicting our
Theorem 35.

D. Unification of previous lower-bound techniques. Our hardness characterisation in
terms of UDLs together with the size-width method encompasses and extends previous lower
bound methods for QBF resolution. In addition to lifted propositional techniques [11,9], there
exist two genuine QBF techniques: strategy extraction [7,6] and the size-cost-capacity tech-
nique [5]. These techniques are orthogonal in the sense that each yields hardness results that
cannot be shown by the other. Here we demonstrate that UDL hardness captures both.

In the strategy extraction method [7,6], lower bounds are shown by extracting strategies
in terms of a collection of single-output decision lists, which can be turned into bounded-
depth circuits. The authors of [7,6] then construct QBFs with a single universal variable
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whose unique Herbrand function is hard to compute by bounded-depth circuits (such as the
parity function [27]). Such functions are also hard for UDLs (Section 4.5). Moreover, we show
that width bounds for QBFs based on the parity and majority functions are easy to obtain
(Section 6.2). We thus elegantly reprove previous hardness results for parity and majority
formulas [7,6] with our technique, without the need to import substantial circuit complexity
results [27,40,44].

The size-cost-capacity technique [5] establishes hardness for QBFs where countermodels
might be easy to compute by single-output decision lists, but must have large range. The large
range immediately implies large UDLs (Section 4.5), hence again we can show the hardness
results with our new technique. We illustrate this with the equality formulas (Theorem 39).

Organisation. The remainder of this article is organised as follows. In Section 2 we review
notions from logic. Section 3 introduces our UDL model and explains how UDLs compute
countermodels. In Section 4 we show our characterisation of QU-Res proof size by UDL size,
which is extended to Q-Res in Section 5. Section 6 contains the size-width relation together
with a number of applications. We conclude in Section 7 with a discussion and open problems.

2 Preliminaries

Propositional logic. V is a countable set of Boolean variables. A literal is a variable z in V
or its negation z, with var(z) = var(z) = z. The literals z and z are complementary. For any
literal a, the complementary literal is denoted a.

A clause is a disjunction c := a1 ∨ · · · ∨ ak of pairwise non-complementary literals, with
vars(c) := {var(ai) : i ∈ [k]}. We often remove the disjunction symbols from a written clause,
for example we write z1z2z3 for z1 ∨ z2 ∨ z3. Given a set Z of Boolean variables, c�Z is the
disjunction of literals a appearing in c with var(a) ∈ Z.

A conjunctive normal form formula (CNF) is a conjunction F := c1 ∧ · · · ∧ ck of clauses,
with vars(F ) :=

⋃k
i=1 vars(ci).

A term is a finite conjunction t := a1 ∧ · · · ∧ ak of non-complementary literals, with
vars(t) := {var(ai) : i ∈ [k]}. t�Z is defined similarly as for clauses. The negation of t is the
clause t := a1 ∨ · · · ∨ ak. The negation of a clause c is the unique term c whose negation is c.

An assignment τ to a set Z of Boolean variables is a function from Z into the set of
Boolean constants {0, 1}. The set of all assignments to Z is denoted 〈Z〉. A partial assignment
to Z is an assignment to a subset of Z. We often represent assignments as terms, as there is
a natural one-one correspondence between the two. The term t with vars(t) = Z represents
the assignment τ : Z → {0, 1} which maps z ∈ Z to 0 if, and only if, z is a conjunct in t.

The restriction of a literal, clause, CNF or term φ by τ , denoted φ [τ ], is the result of
substituting each variable z in Z by τ(z), followed by applying the standard simplifications
for Boolean constants, i.e. 0 7→ 1, 1 7→ 0, c ∨ 0 7→ c, c ∨ 1 7→ 1, t ∧ 1 7→ t, and t ∧ 0 7→ 0. We
say that τ satisfies φ when φ [τ ] = 1, and falsifies φ when φ [τ ] = 0.

Otherwise, a formula, and substitution of formulas for variables, is defined in the standard
way for propositional logic (cf. [45]). A formula F entails another formula G (written F � G)
when every assignment to vars(F ) ∪ vars(G) satisfying F also satisfies G. Formulas F and G
are logically equivalent (written F ≡ G) when they entail one another.

Quantified Boolean formulas. A quantified Boolean formula (QBF) Q of alternation depth
d is a formula of the form P ·F , where P := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 is called the quantifier
prefix and F is a CNF called the matrix. The Xi, Ui are pairwise-disjoint sets of Boolean
variables called the blocks of Q.

The sets vars∃(Q) :=
⋃d+1

i=1 Xi and vars∀(Q) :=
⋃d

i=1 Ui are referred to as the existential
variables and universal variables of Q, respectively, and their union vars(Q) as the variables
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of Q. Given two variables z, z′ in vars(Q), we say that z is left of z′ (written z <P z′) when z
belongs to a block quantified before that of z′. We deal only with closed QBFs, i.e. those for
which vars(F ) ⊆ vars(Q). The restriction of Q by an assignment τ is Q [τ ] := P [τ ]·F [τ ], where
P [τ ] is obtained from P by deleting each variable in vars(τ) and any redundant quantifiers.

A set of QBFs has bounded alternation if each has alternation depth at most d, for some
constant d.

QBF resolution proof systems. We work with refutational QBF proof systems, i.e. systems
proving the falsity of a given QBF. We call a refutational QBF proof system P sound when
there is no P-refutation of a true QBF, and complete when every false QBF has a P-refutation.
Given two refutational QBF proof systems P and Q, we say that P p-simulates Q (written
Q ≤p P) when there exists a polynomial-time computable translation mapping Q-refutations
into P-refutations, while preserving the refuted QBF [22]. We say that P and Q are p-equivalent
(written P ≡p Q) when they p-simulate one another.

QU-Resolution (QU-Res) is the QBF analogue of propositional resolution [15,42], defined
as follows.

Definition 1 (QU-Res [24,30]). A QU-Res derivation from a QBF P · F is a sequence of
clauses π := c1, . . . , cs in which each ci is derived by one of the following rules:

• Axiom: ci is a clause in the matrix F ;
• Resolution: ci = a ∨ b, where cr = a ∨ z and cs = b ∨ z for some r, s < i and variable z.
• Weakening: ci = cr ∨ b for some r < i and clause b.
• Universal reduction: ci = cr [µ] for some r < i and some universal assignment µ with

vars∃(cr) <P vars(µ).1

The size of π is |π| = s, and π is a refutation when cs = ⊥.

The axiom, resolution and weakening rules together are propositionally implicationally
complete; that is, if F � c, then there exists a derivation of c from F . The refutational QBF

proof system QU
NP
- Res allows any such correct propositional implication to be derived in a

single step, eliminating all hardness due to propositional resolution.2

Definition 2 (QU
NP
- Res [12]). QU

NP
- Res is defined as for QU-Res, except that the resolution

and weakening rules are replaced by the following single rule:

• Σ1-rule:
∧i−1

j=1 cj � ci.

3 Countermodels as decision lists

A countermodel witnesses the falsity of a QBF. In the literature, countermodels are usually
defined in one of two equivalent ways (under various names): either as a collection of func-
tions, one for each universal variable (called here distributed countermodel), or as a single
function (unified countermodel). In this section, we recall the definitions of distributed and
unified countermodels. We show that distributed countermodels represented by term decision

lists are unsuitable for characterising hardness in QU
NP
- Res (Subsection 3.1) and propose a

model for multi-output term decision lists which serves as a natural representation for unified
countermodels (Subsection 3.2).

1 Some definitions of QU-Res disallow deriving tautological clauses [30]. The definition of universal reduction
chosen here eliminates this restriction.

2 Note that proofs in QU
NP
- Res cannot necessarily be checked in polynomial time, hence QU

NP
- Res is not a proof

system in the sense of [22], but conforms to our definition of proof system above (cf. also [13] for a formal
definition of oracle proof systems).
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3.1 Distributed countermodels

A distributed countermodel defines a set of formulas which, when substituted for the univer-
sal variables, leaves the matrix unsatisfiable. In order to respect the variable dependencies
imposed by the order of quantification, each function must depend only on the preceding
existential variables.3

Definition 3 (distributed countermodel). Let Q be a QBF with vars∀(Q) = u1, . . . , um,
and let Di denote the union of the existential blocks preceding ui in the prefix. A distributed
countermodel for Q is a collection of functions {fi}i∈[m] of the form fi : 〈Di〉 → {0, 1},
such that the substitution of formula representations of f1, . . . , fm for the universal variables
u1, . . . , um in F yields an unsatisfiable formula.

We illustrate this concept with the equality formulas, which we will use as a running
example.

Definition 4 (equality [5]). The nth equality formula is

QEQ
n := ∃x1 · · ·xn∀u1 · · ·un∃z1 · · · zn · (z1 ∨ · · · ∨ zn) ∧

n∧
i=1

(
(xi ∨ ui ∨ zi) ∧ (xi ∨ ui ∨ zi)

)
.

Example 5. The nth equality formula has the unique distributed countermodel {fi}i∈[n], where

fi : 〈{x1, . . . , xn}〉 → {0, 1}

τ 7→

{
0 if τ(xi) = 0 ,

1 if τ(xi) = 1 .

Here, each function fi is represented by the atomic formula xi. It is easy to see that substituting
each ui for xi in the matrix of QEQ

n yields an unsatisfiable formula. �

Particularly in the context of strategy extraction, whereby one translates QBF refutations
into countermodels, it is quite natural to represent a distributed countermodel as a set of term
decision lists, one for each individual function [6]. Let us recall the traditional definition of a
term decision list.

Definition 6 (decision list [41]). Given a set X of variables, a decision list is a sequence
of pairs L := (ε1, b1), . . . , (εs, bs) where

• the εi are terms with vars(εi) ⊆ X and
∨s

i=1 εi ≡ >,
• the bi are Boolean constants, i.e. 0 or 1.

L computes the function from 〈X〉 into {0, 1} mapping τ to µi, where i is the least natural
number for which τ satisfies εi.

As far as characterising QU-Res hardness is concerned, the problem with this computation
model – distributed countermodels represented as decision lists – is that it is too strong,
even for bounded alternation depth. For example, the distributed countermodel {fi}i∈[n] from
Example 5 can be computed by n constant-size decision lists, namely

Li := (xi, ui), (xi, ui) , i ∈ [n] ,

but the equality formulas require exponential-size QU
NP
- Res refutations [5].

3 Preceding universals can also be included as dependencies (cf. [6]), producing a potentially stronger model.
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3.2 Unified countermodels

A unified countermodel is a single function which simultaneously represents the individual
functions of a distributed countermodel. Formally, there are two differences. First, the output
of the function is not a {0, 1} value, but a total assignment to the universal variables, giving a
{0, 1} value for each universal variable. Secondly, the prefix dependencies, which are implicit
in the function signatures of a distributed countermodel, must be explicitly enforced.

Definition 7 (unified countermodel). Let Q := P · F be a QBF of alternation depth
d. A unified countermodel for Q is a function f : 〈vars∃(Q)〉 → 〈vars∀(Q)〉 satisfying two
conditions:

(a) for each τ ∈ dom(f), τ ∧ f(τ) falsifies F ;
(b) for each τ, ρ ∈ dom(f) and each i ∈ [d], if τ, ρ agree on the first i existential blocks, then

f(τ), f(ρ) agree on the first i universal blocks.

Example 8. The nth equality formula has the unique unified countermodel

fEQ : 〈(x1, . . . , xn)〉 → 〈{u1, . . . , un}〉

where fEQ(τ) : {u1, . . . , un} → {0, 1} is the assignment mapping each ui to τ(xi). It is easy to
see that fEQ is a single-function representation of the distributed countermodel from Exam-
ple 5, and readily verified that conditions (a) and (b) of Definition 7 are satisfied. �

In order to represent a unified countermodel as a decision list, we specify a new format
to allow simultaneous output for multiple Boolean variables. This is achieved in the most
natural way, specifying a term over the universal variables which represents the desired output
assignment.

Definition 9 (multi-output decision list). Given sets X and U of Boolean variables, a
multi-output term decision list is a sequence of pairs L := (ε1, µ1), . . . , (εs, µs) where

• the εi are terms with vars(εi) ⊆ X and
∨s

i=1 εi ≡ >,
• the µi are terms with vars(µi) = U .

L computes the function from 〈X〉 into 〈U〉 mapping τ to µi, where i is the least natural
number for which τ satisfies εi.

We refer to a multi-output term decision list computing a unified countermodel for a QBF
Q as a unified decision list (UDL) for Q. Without ambiguity, we will use the same symbol
(e.g. L) to represent both the UDL and its computed function.

Note that the insistence on a single function suitably reduces the strength of the compu-
tational model, in terms of representation size. For example, UDLs for the equality formulas

must have exponential size, matching the exponential-size QU
NP
- Res refutations. This is due to

the fact that the range of the unique unified countermodel, which is the complete set of univer-
sal assignments, has cardinality 2n. The minimal range cardinality of a unified countermodel
is an obvious lower bound to the size of a UDL.

4 Characterising hardness in QU-Res

In this section, we demonstrate that UDLs have exactly the right strength to characterise

QU
NP
- Res refutation size on bounded alternation QBFs. For this, we cast UDLs as a refutational

QBF proof system.
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Definition 10 (UDL). A UDL-refutation of a QBF Q is a UDL L := (ε1, µ1), . . . , (εs, µs) for
Q. The size of L is |L| := s.

Our central result is the following.

Theorem 11. QU
NP
- Res ≡p UDL on bounded-alternation QBFs.

The two individual p-simulations are shown in Subsection 4.1 (Corollary 15) and Sub-
section 4.2 (Corollary 20). In Subsection 4.3 we demonstrate that the equivalence cannot be
extended to unbounded alternation depth.

In Subsection 4.4 we characterise bounded-alternation hardness in QU-Res, insofar as su-
perpolynomial QU-Res lower bounds come either from large UDLs or from an embedded
propositional resolution lower bound. Finally, in Subsection 4.5, we discuss how UDL lower
bounds encompass both the strategy extraction [7,6] and size-cost techniques for QU-Res [5].

4.1 From QU
NP
- Res to unified decision lists

In this subsection, we show an efficient transformation from QU
NP
- Res refutations into unified

decision lists. The transformation is a two-step process.

In the first step, we transform the refutation into a collection of multi-output term decision
lists, each of which computes the countermodel for just a single universal block, based on
assignments to all previous blocks. This constitutes a modification of the strategy extraction
procedure from [1,7], which works per universal variable, rather than per universal block.

In the second step, we transform the collection into a single unified decision list. This
involves taking a kind of ‘direct product’ of multi-output term decision lists. We turn first to
the definition of this operation.

Definition 12 (direct product). Let X1, U1, X2 and U2 be pairwise-disjoint sets of Boolean
variables, and let L := (ε1, µ1), . . . , (εs, µs) and M := (δ1, ν1), . . . , (δt, νt) be multi-output term
decision lists with

vars(εi) ⊆ X1 and vars(µi) = U1 , for i ∈ [s] ,
vars(δj) ⊆ X1 ∪ U1 ∪X2 and vars(νj) = U2 , for j ∈ [t] .

The direct product L×M is the decision list

(ε1 ∧ δ1 [µ1] , µ1 ∧ ν1), . . . , (εs ∧ δ1 [µs] , µs ∧ ν1) ,
...

(ε1 ∧ δt [µ1] , µ1 ∧ νt), . . . , (εs ∧ δt [µs] , µs ∧ νt) .

The direct product L×M computes a function based on M , which first queries L for the
assignment to U1. Informally, the U1 variables in M are substituted for the function computed
by L, while U1 is moved from the domain to the codomain. This is stated formally as follows.

Proposition 13. Let X1, U1, X2 and U2 be pairwise-disjoint Boolean variable sets, and let L
and M be multi-output decision lists computing L : 〈X1〉 → 〈U1〉 and M : 〈X1 ∪ U1 ∪X2〉 →
〈U2〉. Then L×M computes the function

L×M : 〈X1 ∪X2〉 → 〈U1 ∪ U2〉
τ 7→ f(τ�X1

) ∧ g(τ ∧ f(τ�X1
)) .
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Proof. Let L := (ε1, µ1), . . . , (εs, µs), M := (δ1, ν1), . . . , (δt, νt). Let τ ∈ 〈X1 ∪X2〉, and let
a and b be the least natural numbers such that τ�X1

satisfies εa and τ satisfies δb [µa]. By
definition of decision list (Definition 9),

(L×M)(τ) = µa ∧ νb .

Clearly, L(τ�X1
) = µa by definition of decision list, therefore τ ∧ L(τ�X1

) = τ ∧ µa. Aiming
for contradiction, suppose that M(τ ∧ µa) 6= νb. Since τ satisfies δb [µa], τ ∧ µa satisfies δb.
Therefore τ ∧ µa satisfies some δb′ with b′ < b. It follows that τ satisfies δb′ [µa], contradicting
the minimality of b. ut

We note that the size of a direct product is the product of the sizes of the original decision
lists.

Proof of the simulation. The complete transformation is detailed in the proof of the
following theorem.

Theorem 14. A QU
NP
- Res refutation π of a QBF Q of alternation depth d can be transformed

into a UDL t(π) for Q, where |t(π)| ≤ |π|d. The transformation t is computable in time
O(|π|d).

Proof. Let Q := P := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 · F be a QBF, and let π := c1, . . . , cs be a

QU
NP
- Res refutation of Q. We assume without loss of generality that each universal reduction

step in π is due to a total assignment to a universal block.
For each i ∈ [d] and j ∈ [s + 1], we define a collection of multi-output term decision

lists as follows: Ls+1
i := (>, αi), where αi is some fixed assignment to Ui; for each j ∈ [s],

Lj
i := (cj , µ), Lj+1

i if cj was derived by universal reduction due to µ ∈ 〈Ui〉, and Lj
i := Lj+1

i

otherwise.
By backwards induction on j ∈ [s+ 1], we show that the combined direct product of these

lists

Lj := Lj
1 × (Lj

2 × · · · × (Lj
d−1 × L

j
d) · · · )

is a UDL for P · F ∧
∧j−1

k=1 ck. We therefore prove the theorem, i.e. that L1 is a UDL for Q of
size at most |π|d, that can clearly be constructed in time O(|π|d).

It is clear by construction that each Lj
i computes a function

Lj
i : 〈X1 ∪ · · · ∪Xi ∪ U1 ∪ · · · ∪ Ui−1〉 → 〈Ui〉 .

Hence, by definition of direct product (Definition 12), Lj computes a function

Lj : 〈vars∃(Q)〉 → 〈vars∀(Q)〉

satisfying condition (b) for a unified countermodel (Definition 7). It remains to show that
condition (a) is satisfied; that is, for each τ ∈ 〈vars∃(Q)〉, we must show that τ ∧Lj(τ) falsifies
F ∧

∧j−1
k=1 ck.

Base case j = s+ 1. Since cs is the empty clause, τ ∧Ls+1(τ) always falsifies F ∧
∧s

k=1 ck.
Inductive step j ∈ [s]. We consider two cases, based on how cj was derived.
Suppose that cj was introduced as an axiom, or derived by the Σ1-rule. In either case,

Lj = Lj+1 and F ∧
∧j−1

k=1 ck � cj . By the inductive hypothesis we know that τ ∧ Lj+1(τ)

falsifies F ∧
∧j

k=1 ck. It follows that τ ∧ Lj(τ) falsifies F ∧
∧j−1

k=1 ck.
On the other hand, suppose that cj was derived by universal reduction from cr due to the

assignment µ ∈ Ui. In this case, Lj
k = Lj+1

k for each k 6= i. We consider two cases.

9



(a) Suppose that τ ∧ Lj+1(τ) falsifies cj . Consider the direct product of lists up to, but not

including Lj
i , namely

M j := Lj
1 × (Lj

2 × · · · × (Lj
i−2 × L

j
i−1) · · · ) ,

and let Di and Di−1 denote the union of existential blocks preceding Ui and Ui−1 respec-
tively. It is easy to see that

τ�Di
∧M j(τ�Di−1

) satisfies cj ,

from which it follows that

Li
j(τ�Di

∧M j(τ�Di−1
)) = µ .

As a result, Lj(τ) extends µ. Therefore τ ∧Lj(τ) falsifies cr, which belongs to F ∧
∧j−1

k=1 ck.
(b) On the other hand, suppose that τ ∧ Lj+1(τ) satisfies cj . Then the addition of (cj , µ) to

Lj+1
i has no effect on Lj+1, so that Lj(τ) = Lj+1(τ). Hence τ ∧Lj(τ) falsifies F ∧

∧j−1
k=1 ck

by the inductive hypothesis. ut

Corollary 15. QU
NP
- Res ≤p UDL on bounded alternation.

4.2 From unified decision lists to QU
NP
- Res

In this subsection, we show an efficient translation from UDLs back into QU
NP
- Res refutations.

The transformation uses a notion of restriction for UDLs.

Definition 16 (restriction of a UDL). Given an assignment α and a multi-output decision
list L := (ε1, µ1), . . . , (εs, µs), the restriction of L by α is

L [α] := (ε1 [α] , µ1 [α]), . . . , (εs [α] , µs [α]) .

The entailment sequence. We summarise our method as follows: we transform a UDL L
into a sequence of clauses E(L). Each clause in the sequence is entailed by the QBF and the
universal reduction of the previous clauses in the sequence. The final clause is fully universal,
yielding a refutation. We refer to the sequence E(L) as the entailment sequence for L.

First, some extra notation and nomenclature. Given a clause b and a sequence of clauses
π := c1, . . . , cs, we define

b⊗ π := b ∨ c1, . . . , b ∨ cs .

Given a UDL L := (ε1, µ1), . . . , (εs, µs) for a QBF Q and block Z of Q, the Z-component of
(εi, µi) is (εi ∧ µi)�Z .

Also, we note the following: without loss of generality we can assume that rightmost
existential variables (on which no universal variable can depend) do not appear in a UDL.
That is, given a QBF with prefix

P := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 ,

the Xd+1-components in any UDL for Q can be deleted while preserving the computed coun-
termodel. This is an easy consequence of condition (b) in the definition of unified countermodel
(Definition 7).

Definition 17 (entailment sequence). Given a UDL L := (ε1, µ1), . . . , (εs, µs) for a QBF
Q, the entailment sequence E(L) is defined recursively on the alternation depth d of Q.

10



• if d = 1, E(L) := ε1 ∨ µ1, . . . , εs ∨ µs,
• if d ≥ 2, for each i ∈ [s] define Li as the list obtained from L by replacing the first i − 1

existential terms by their X1 components, and setting all U1 components to µi�U1
. We

define E(L) as the sequence π1, . . . , πs, where

πi := (εi�X1
∨ µi�U1

)⊗ E(Li

[
εi�X1

∧ µi�U1

]
) .

The size of E(L), denoted |E(L)|, is the number of clauses in the sequence.

The intuition behind the construction of the entailment sequence, in particular when the
alternation depth exceeds 1, is not obvious. We will elaborate upon this later. For now, the
important property is the fulfilment of the following lemma.

Lemma 18. Let L be a unified decision list for a QBF Q := P ·F , and let E(L) = c1, . . . , cr.
Then cr is fully universal, and, for each i ∈ [r],

F ∧
i−1∧
j=1

red(cj) � ci .

We defer the proof of this lemma to the end of the subsection. The entailment of each clause
by the universal reduction of its predecessors (in conjunction with the matrix F ) gives rise to

a straightforward QU
NP
- Res refutation.

Theorem 19. A UDL L for a QBF Q of alternation depth d can be transformed into a

QU
NP
- Res refutation t(L) for Q, where |t(L)| ≤ O(|L|d). The transformation t is computable

in time O(|L|d).

Proof. Let E(L) = c1, . . . , cr. By Lemma 18, the sequence π, consisting of the clauses of the
matrix of Q followed by

c1, red(c1), . . . , cr, red(cr) ,

is a QU
NP
- Res refutation of Q. By a simple induction on alternation depth d, one verifies that

r ≤ sd, and that π can be constructed in time O(r). ut

Corollary 20. UDL ≤p QU
NP
- Res on bounded alternation.

Intuition and example. In the simplest case, with alternation depth d = 1, the entailment
sequence is composed merely of the negations of the combined existential and universal terms
in the UDL (i.e. εi ∧ µi). The universal reduction of each clause is merely εi, the negation of
the corresponding existential term. In this case, the fact that each clause is entailed by the
universal reductions of its predecessors in conjunction with the matrix (Lemma 18) follows
straightforwardly from the definition of UDL.

This forms the base case for a general argument by induction, when the alternation
depth exceeds 1. In the entailment sequence definition, the lists Li are defined so that
Li

[
εi�X1

∧ µi�U1

]
is a UDL for the QBF(

P · F ∧
i−1∧
k

ck�X1

)[
εi�X1

∧ µi�U1

]
. (1)

Note that each of the negated X1-components ck�X1
is the universal reduction of a clause

already appearing in E(L) before πi. This is not obvious; it relies on the fact that the final
clause of each E(Lk

[
εk�X1

∧ µk�U1

]
) is fully universal.

11



The addition of these negated X1-components to the matrix is the reason why the first i−1
existential terms in Li are replaced by their X1 components. Assignments satisfying the ith

term are guaranteed to falsify one of these clauses. One might suspect that the first i−1 lines
could be removed altogether, somewhat simplifying the definition of E(L). Unfortunately, it is
not clear that such a construction would produce a UDL for the QBF in (1). The assignments
satisfying the removed lines are distributed arbitrarily across the remaining ones, so that the
computed function may not satisfy the proper dependencies (condition (b) of Definition 7).

Note that the U1-components in Li are set uniformly to µi�U1
merely so that restriction

by that assignment deletes them all.

Construction of the entailment sequence, along with the corresponding QU
NP
- Res refutation,

is illustrated by the following example.

Example 21. We will construct an entailment sequence for the QBF

∃x1∀u1∃z1∃x2∀u2∃z2 · x1u1z1 ∧ x1u1z1 ∧ x2u2z2 ∧ x2u2z2 ∧ z1z2 .

This QBF is QINT
2 , the second instance of the interleaved equality family, which we will meet

in the following subsection. We write the blocks of QINT
2 as follows: X1 := {x1}, U1 := {u1},

X2 := {z1, x2}, U2 := {u2}, and X3 := {z2}. Note that the alternation depth of QINT
2 is 2.

Similar to the original equality formulas, a unified countermodel for this QBF sets each ui
equal to the corresponding xi, with the values of the zi essentially ignored. This countermodel
is computed by the following UDL L:

(x1 ∧ x2, u1 ∧ u2), (x1 ∧ x2, u1 ∧ u2), (x2, u1 ∧ u2), (>, u1 ∧ u2).

We now construct the entailment sequence E(L). First we obtain the lists L1, L2, L3, L4 and
their appropriate restrictions. These restrictions are easily transformed (they have alternation
depth 1), and pieced together to obtain the complete entailment sequence.

L1 is obtained from L by replacing each U1-component by the U1-component of the first
line, namely the term u1. So the restriction of L1 by the X1- and U1-components of the first
line, namely the assignment x1 ∧ u1, is

(x2, u2), (x2, u2), (x2, u2), (>, u2) .

Since the final two lines are redundant, this simplifies to L1 [x1 ∧ u1] = (x2, u2), (>, u2). Hence
we have

E(L1 [x1 ∧ u1]) = x2u2, u2 ,
π1 = x1u1 ⊗ E(L1 [x1 ∧ u1])

= x1u1x2u2, x1u1u2 .

L2 is obtained from L by replacing the first existential term by its X1-component x1, then
replacing each U1-component by the U1-component of the second line, namely the term u1:

(x1, u1 ∧ u2), (x1 ∧ x2, u1 ∧ u2), (x2, u1 ∧ u2), (>, u1 ∧ u2) .

Restriction of L2 by the X1- and U1-components of the second line, namely x1 ∧ u1, yields

(>, u2), (x2, u2), (x2, u2), (>, u2) .

Every line except the first is redundant, so this simplifies to L2 [x1 ∧ u1] = (>, u2). In this
case we get

E(L2 [x1 ∧ u1]) = u2 ,
π2 = x1u1 ⊗ E(L2 [x1 ∧ u1])

= x1u1u2 .

12



Continuing in this way for L3 and L4, one verifies that

L3 [u1] = L4 [u1] = (x1, u2), (x2, u2), (>, u2) ,
π3 = π4 = x1u1u2, u1x2u2, u1u2 .

The fact that π3 = π4 is coincidental (note that the X1-components of the third and fourth
lines are both empty, and both U1-components are u1).

Piecing together the πi, the entailment sequence for L is

E(L) = π1, π2, π3, π4
= x1u1x2u2, x1u1u2, x1u1u2, x1u1u2, u1x2u2, u1u2,
x1u1u2, u1x2u2, u1u2 .

We can now illustrate how the entailment sequence gives rise to a QU
NP
- Res refutation. In

fact, several clauses in this particular entailment sequence are superfluous and can be ignored,
so we work with the subsequence

x1u1x2u2, x1u1u2, u1x2u2, u1u2 .

The essential point is that each each clause in the sequence is entailed by the matrix of QINT
n

in conjunction with the universal reduction of the preceding clauses. For example, the first
clause is entailed by the matrix of QINT

2 alone; in fact

x1u1z1 ∧ x2u2z2 ∧ z1z2 � x1u1x2u2 .

An easy way to verify this is to construct a resolution derivation:

x1u1z1 z1z2
x1u1z2 x2u2z2

x1u1x2u2

The second clause in the sequence is entailed by the matrix of QINT
2 and the universal

reduction of the first clause (x1u1x2):

x1u1z1 ∧ x2u2z2 ∧ z1z2 ∧ x1u1x2 � x1u1u2 .

Again, we can verify this with a resolution derivation:

x2u2z2 x1u1x2
x1u1u2z2 z1z2

x1u1u2z1 x1u1z1
x1u1u2

Similarly the third clause is entailed by the matrix and the universal reductions of the
first two clauses (strictly, only the reduction of the second (x1) is required)

x1u1z1 ∧ x2u2z2 ∧ z1z2 ∧ x1 � u1x2u2 ,

and the pattern continues for the final clause:

x1u1z1 ∧ x2u2z2 ∧ z1z2 ∧ u1x2 � u1u2 .

Resolution derivations verifying these steps can be found easily.
Each individual entailment can be derived immediately using the Σ1-rule. As the final

clause u1u2 is fully universal, its universal reduction is the empty clause, yielding a refutation
of QINT

n . �

13



The formal proof. Since a UDL always outputs a total universal assignment (each universal
term µi satisfies vars(µi) = vars∀(Q)), each clause ci in E(L) contains exactly one literal in
each universal variable. So there is an obvious maximal universal reduction for ci. This is the
assignment

νi : {u ∈ vars∀(Q) : vars∃(ci) <P u} → {0, 1} .

that maps u to 1 if, and only if, u is in ci. We use the notation red(ci) := ci [νi].

Proof (of Lemma 18). Let L := (ε1, µ1), . . . , (εs, µs), and let

P := ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 .

Without loss of generality, we can assume that the Xd+1-components of L are all empty, and
that the final existential term is >. We proceed by induction on the alternation depth d of Q.
Let i ∈ [r].

Base case d = 1. In this case r = s, ci = εi ∨ µi, and red(ci) = εi. Let τ be a total
assignment falsifying εi ∨ µi. If the existential part τ∃ satisfies

∨i−1
k=1 εk, then it falsifies

i−1∧
k=1

εk =
i−1∧
k=1

red(ck) .

Otherwise, since τ∃ satisfies εi, and the universal part τ∀ is equal to µi, τ falsifies F by
definition of countermodel. Since εs = >, cs = ⊥ ∧ µs is fully universal.

Inductive step d ≥ 2. For each j ∈ [s], we put

αj := εj�X1
∧ µj�U1

,

and claim that Lj [αj ] is a unified decision list for

Qj := P [αj ] ·

(
F ∧

j−1∧
k=1

εk�X1

)
[αj ] ,

which is a QBF of alternation depth d− 1. We prove the claim later.
Let p and q be natural numbers such that

ci = εp�X1
∨ µp�U1

∨ bq

where E(Lp [αp]) = b1, . . . , bsp . By the inductive hypothesis,(
F ∧

p−1∧
k=1

εk�X1

)
[αp] ∧

q−1∧
k=1

red(bk) � bq ,

from which it follows that

F ∧
p−1∧
k=1

εk�X1
∧

q−1∧
k=1

red(εp�X1
∨ µp�U1

∨ bk) (2)

entails εp�X1
∨ µp�U1

∨ bq = ci.
We show that each conjunct in (2) besides F is red(c) for some c appearing in E(L) before

ci. For each k ∈ [q − 1], the clause εp�X1
∨ µp�U1

∨ bk appears in E(L) before ci by definition.
For each k ∈ [p− 1],

εk�X1
= red(εk�X1

∨ µk�U1
∨ fk)

14



where fk is the final clause of E(Lk [αk]), which is fully universal by the inductive hypothesis,
and the clause εk�X1

∨ µk�U1
∨ fk appears in L before ci.

Since εs = >, cr = ⊥ ∨ µs�U1
∨ fs is fully universal. This completes the inductive step.

Proof of claim. Fixing j ∈ [s], we show that Lj [αj ] computes a unified countermodel for
Qj by checking both conditions in Definition 7.

(a) Let τ ∈ 〈vars∃(Qj)〉, and let

σ := εj ∧ τ�vars(τ)\vars(εj)
.

If τ falsifies
∧j−1

k=1 εj�X1
[αj ], then τ ∧ Lj [αj ] (τ) already falsifies the matrix of Qj , so we

assume otherwise. Then L(σ) = µj , and since εj�X1
∧ τ agrees with σ on X1, L(εj�X1

∧ τ)
agrees with µj on U1. It follows that

L(εj�X1
∧ τ) = µj�U1

∧ Lj [αj ] (τ) ,

whereby αj ∧ τ ∧Lj [αj ] (τ) falsifies F , by definition of countermodel. Hence τ ∧Lj [αj ] (τ)
falsifies F [αj ], and therefore falsifies the matrix of Qj .

(b) Let τ, ρ ∈ 〈vars∃(Qj)〉, and suppose that τ and ρ agree on the first r existential blocks
of Qj for some r ∈ [d − 1]. Since τ and ρ agree on X1 in particular, if either of them

satisfies
∧j−1

k=1 εk�X1
[αj ], then we have Lj [αj ] (τ) = Lj [αj ] (ρ) satisfying the condition

trivially, so we assume otherwise. Notice that Lj [αj ] (τ) is L(εj�X1
∧ τ) with the U1-

component removed, and likewise for ρ. Since εj�X1
∧ τ and εj�X1

∧ ρ agree on the first
r+1 existential blocks of Q, L(εj�X1

∧τ) and L(εj�X1
∧ρ) agree on the first r+1 universal

blocks of Q, thus Lj [αj ] (τ) and Lj [αj ] (ρ) agree on the first r universal blocks of Qj . ut

4.3 Unbounded alternation

Theorem 11 does not extend to QBFs in general; UDLs prove to be too weak for QBFs of
unbounded alternation depth. To show this, we consider a version of the equality formulas
with an unbounded, ‘interleaved’ prefix.

Definition 22 (interleaved equality). The nth interleaved equality formula QINT
n is ob-

tained from QEQ
n by replacing the prefix with ∃x1∀u1∃z1 · · · ∃xn∀un∃zn.

Recall that the countermodel range for the original equality formulas is the complete set
of universal assignments. In fact, this remains true under the interleaved prefix.

Proposition 23. If f is a unified countermodel for QINT
n , then rng(f) = 〈{u1, . . . , un}〉.

Proof. For each i ∈ [n], let Di denote the existential variables appearing before ui in the
prefix of QINT

n . We show that the range of any countermodel for QINT
n is 〈{u1, . . . , un}〉, and the

proposition follows.

Let f be a countermodel for QINT
n , and let µ be an arbitrary total assignment to the

universal variables. We prove that µ = f(ε), where

ε(xi) :=

{
0 if µ(ui) = 0

1 if µ(ui) = 1
, for i ∈ [n] ,

ε(zi) := 1 , for i ∈ [n] .
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{z1, . . . , zn}{xn, un, zn} {xn, un, zn}

{z1, . . . , zn−1, xn, un} {z1, . . . , zn−1, xn, un}

{z1, . . . , zn−1, xn} {z1, . . . , zn−1, xn}

{z1, . . . , zn−1}{xn−1, un−1, zn−1} {xn−1, un−1, zn−1}

Fig. 1. First portion of a QU-Res refutation of QINT
n .

Aiming for contradiction, let j be the least natural number for which f(ε)�{uj} 6= µ�{uj}.
The matrix of QINT

n [ε�Dj
] is

azj ∧ zj · · · zn ∧
n∧

i=j+1

(xiuizi ∧ xiuizi)

where a is the literal represented by the assignment f(ε)�{uj}. This matrix is satisfied by the
assignment

f(ε)�{uj} ∧ zj ∧ zj+1 ∧ · · · ∧ zn .
Now, let δ be any total existential assignment that extends

ε�Dj
∧ zj ∧ zj+1 ∧ · · · ∧ zn .

Since ε and δ agree on Dj , the assignments f(ε)�{uj} and f(δ)�{uj} are identical. It follows
that the assignment δ ∪ f(δ) satisfies the matrix of QINT

n , contradicting the fact that f is a
countermodel for QINT

n . ut

As a consequence, the interleaved equality family requires UDLs of exponential size. How-
ever, they also admit short QU-Res refutations. As shown in Figure 1, QINT

n can be reduced to
QINT

n−1 in a constant-size derivation.

Proposition 24. The interleaved equality formulas admit linear-size QU-Res refutations.

Thus distributed decision lists are unsuitable for characterising QU
NP
- Res refutation size

when the alternation depth is unbounded.

Corollary 25. QU
NP
- Res �p UDL on unbounded alternation.

4.4 Characterisation of hardness for QU-Res

If we consider only families of bounded alternation QBFs, given the equivalence between UDLs

and the oracle system QU
NP
- Res (Theorem 11), there can be only two reasons for hardness in

the classical system QU-Res: either

(a) the family requires large UDLs, or
(b) the family harbours propositional resolution hardness.

The main question here is regarding case (b), and what it really means for a QBF family to
‘harbour’ propositional hardness. In fact, we can give a precise answer: for every family of
small UDLs, some steps in the entailment sequences are hard for resolution. This gives rise to
a hard sequence of unsatisfiable CNFs for each small family of UDLs.

The result, stated in the following theorem, is a complete characterisation of QU-Res
hardness (on bounded alternation), analogous to the hardness characterisations for Frege+∀red
and EF+∀red from [14].
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Theorem 26. Given a bounded-alternation QBF family {Pn·Fn}n∈N requiring superpolynomial-
size QU-Res refutations, either

(a) {P · F}n∈N requires superpolynomial-size UDLs, or
(b) for each family of polynomial-size UDLs {Ln}n∈N for Pn · Fn with entailment sequences
E(Ln) = cn1 , . . . , c

n
rn, there exist natural numbers in ∈ [rn] such that the CNF family{(

Fn ∧
in−1∧
k=1

red(cnk)

)[
cnin
]}

n∈N

requires superpolynomial-size resolution refutations.

Proof. For n ∈ N and in ∈ [rn], we put

φin :=

(
Fn ∧

in−1∧
k=1

red(cnk)

)[
cnin
]
.

Note that φin is unsatisfiable by Lemma 18.
Suppose now that neither condition (a) nor condition (b) holds. Then there exists some

polynomial-size family of UDLs {Ln}n∈N with E(Ln) = cn1 , . . . , c
n
rn , such that for all in ∈ [rn]

the CNFs φin have polynomial-size resolution refutations. Let p(n) be a polynomial bound
for the size of Ln, let q(n) be a polynomial bound for the size of the refutations of φin , and
let in ∈ [rn].

By assumption, the alternation depth of each Pn · Fn is bounded above by a constant d.
A simple induction shows that |E(Ln)| ≤ p(n)d. Given an arbitrary CNF G and clause b,
it is easy to see that a resolution refutation π of G [b] can be transformed into a resolution
derivation of b from G of size |π| + 1 (it may be necessary to add a weakening step). Hence,
there exist derivations of cnin from Fn ∧

∧in−1
k=1 red(cnk) of size q′ = q(n) + 1.

Now, beginning with the axiom clauses Fn, and successively deriving and reducing the
clauses in E(Ln), we obtain QU-Res refutations of Pn · Fn of size O(|Pn · Fn| + p(n)d · q′(n)).
Hence Pn · Fn has polynomial-size QU-Res refutations. ut

4.5 Unification of lower-bound techniques

The two main existing lower-bound techniques for resolution-based QBF proof systems are
strategy extraction [7,6] and size-cost-capacity [5]. As far as proof-size lower bounds for
bounded-alternation QBFs are concerned, our hardness characterisation (Theorem 26) en-
compasses both.

Indeed, the exact lower bounds for all known bounded-alternation hardness results (all
of which have alternation depth 1) can be shown as the result of a UDL lower bound. For
QBFs with a single universal block, we have the following immediate corollary to Theorems 14
and 19.

Corollary 27. Let {Qn}n∈N be a QBF family of alternation depth 1. Then the following are
equivalent statements:

• {Qn}n∈N admits UDLs of size O(s(n));

• {Qn}n∈N admits QU
NP
- Res refutations of size O(s(n)).

Lower bounds by strategy extraction. In [6,7], a general method was exhibited for forming
a QBF Qf whose unique countermodel is a given Boolean function f . Proof-size lower bounds
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were shown via strategy extraction, instantiating the function f by PARITY [7, Thm. 14],
MAJORITY [6, Cor. 5.7] and SIPSERd [6, Cor. 5.12], and importing known hardness results
for these functions from circuit complexity [27,40,44]. In all three cases, the resulting QBF
family has a single universal variable, and the imported circuit lower bound holds also for

UDLs. As such, all three lower bounds for QU
NP
- Res follow from Corollary 27.

Lower bounds by size-cost-capacity. A largely orthogonal technique was proposed in [5].

Here it was shown that the so-called cost of a QBF is an absolute lower bound on its QU
NP
- Res

refutation size.4

In fact, for alternation depth 1, the cost of a QBF is equal to the minimal cardinality
of countermodel range, which in turn is a trivial lower bound on UDL size. As such, the
lower bounds for equality [5, Thm. 3.5] and random QBFs [5, Thm. 7.9], both of which have
alternation depth 1, follow from Corollary 27 once the exponential countermodel-range lower
bound is established.

5 Equivalence of QU-Res and Q-Res on bounded alternation

The natural follow-up question, prompted by our work in Section 4, is whether our results
also hold for Q-Resolution (QU-Res without universal pivots). In particular, does the UDL
characterisation (Theorem 11) continue to hold? In this section, we show that the answer is yes.

An immediate corollary is that Q
NP
- Res and QU

NP
- Res are p-equivalent on bounded-alternation

QBFs.
Perhaps the most obvious approach would be to show that our transformations between

QU
NP
- Res and UDL go through without resolution on universal pivots. However, we choose

another approach. We show directly that Q
NP
- Res is equivalent to QU

NP
- Res, and therefore to

UDL. This approach throws up a further interesting result, namely that the classical systems
Q-Res and QU-Res are also p-equivalent on bounded alternation.

Definitions of Q-Res and Q
NP
- Res. Q-Res is identical to QU-Res, except that resolution

pivots must be existential variables.

Definition 28 (Q-Res [30]). A Q-Res derivation from a QBF P · F is a sequence of clauses
π := c1, . . . , cs in which each ci is derived by one of the following rules:

• Axiom: ci is a clause in the matrix F ;
• ∃-Resolution: ci = a ∨ b, where cr = a ∨ x and cs = b ∨ x for some r, s < i and some

existential variable x.
• Weakening: ci = cr ∨ b for some r < i and clause b.
• Universal reduction: ci = cr [µ] for some r < i and some universal assignment µ with

vars∃(cr) <P vars(µ).

The size of π is |π| = s, and π is a refutation when cs = ⊥.

For the oracle version of Q-Res, we want to specify a rule which allows a propositional
derivation to be collapsed into a single inference. This is complicated by the fact that Q-Res
is not propositionally implicationally complete; that is, from F � c it does not follow that c
can be derived from F using the axiom, ∃-resolution and weakening rules. As such we do not

reuse the Σ1-rule from QU
NP
- Res, but rather define a new version capturing the insistence on

existential pivots.

4 This is actually shown in the proof of Theorem 14. The cost of Q is equal to the maximum, over the
individual lists Li, of the minimal list size (cf. [5]).
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Definition 29 (Q
NP
- Res). Q

NP
- Res is defined as Q-Res, except that the resolution and weakening

rules are replaced by the following rule:

• Σ∃1 -rule: For some G ⊆ {c1, . . . , ci−1},
(a)

∧
b∈G b

∃ � c∃i , and
(b) for each b ∈ G, b∀ is a subclause of c∀i ,

where c∃ and c∀ denote the existential and universal subclauses of any clause c.

Equivalences on bounded alternation depth. Both of the p-equivalences that we want
to show can be proved constructively, and the essential observation is the following: all of
the universal resolutions from a single block can be removed from a QU-Res refutation in
quadratic time.

It is also important that the number of universal reduction steps grows only quadratically
during the transformation. We denote the number of universal reduction steps in a refutation
π by |π|∀.

Lemma 30. Let π be a QU-Res refutation of a QBF Q of alternation depth d. For each i ∈ [d],
π can be transformed into a refutation t(π) of Q with |t(π)| = O(|π|2) and |t(π)|∀ = O(|π|2∀)
in which there are no resolutions on the ith universal block. The transformation is computable
in time O(|π|2).

Proof. Let c1, . . . , cs be a QU-Res refutation of a QBF ∃X1∀U1 · · · ∃Xd∀Ud∃Xd+1 · F , and let
i ∈ [d]. We describe the transformation t recursively on the number r of Ui reductions in π.

If r = 0, we obtain t(π) from π by removing all Ui resolutions in the following way: we
delete all clauses containing a positive Ui literal, and add the empty clause at the end of the
refutation. The negative Ui literals, which are no longer resolved away, accumulate through the
refutation, and are removed at the conclusion by the addition of a single universal reduction
step (hence the addition of the empty clause).

If r ≥ 1, we find the first Ui reduction step cj appearing in π, and consider its subderivation
πj . Suppose that the antecedent of cj is cj ∨ R. Now we remove all Ui resolutions from
πj , obtaining a new sequence π′j , as follows: for each Ui literal in R, we remove all clauses
containing the complementary literal; for each variable in Ui not appearing in R, we remove
all clauses containing the positive literal. Once again, all Ui literals that are no longer resolved
away accumulate through the derivation, and are universally reduced at the conclusion. Then
we define t(π) := π′j , t(π

′), where π′ is identical to π, except that cj is introduced as an axiom,
rather than derived by universal reduction.

It is clear that |t(π)| = O(|π|2) and |t(π)|∀ = O(|π|2∀), and that t can be computed in time
O(|π|2). It remains to prove that t(π) is a valid QU-Res refutation of Q with no Ui resolutions.
We do this by induction on r.

The base case r = 0 is clear. For the inductive step r ≥ 1, it is clear that π′j is a valid
QU-Res derivation of cj with no Ui resolutions. Since π′ is a QU-Res refutation of P · F ∧ cj
with r−1 Ui reductions, t(π′) is a valid QU-Res refutation of P ·F ∧ cj with no Ui resolutions,
by the inductive hypothesis. The inductive step follows, as cj is the conclusion of π′j . ut

Now we show the p-equivalence of the classical systems, which is an easy consequence of
Lemma 30.

Theorem 31. Q-Res ≡p QU-Res on bounded alternation.

Proof. Since QU-Res trivially p-simulates Q-Res, we need only show the reverse simulation.
By repeated application of Lemma 30, QU-Res refutations π of QBFs of alternation depth
d can be transformed into Q-Res refutations of size O(|π|2d) in time O(|π|2d). Hence Q-Res
p-simulates QU-Res when d is bounded above by a constant. ut
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Next, we show the p-equivalence of the oracle systems.

Theorem 32. Q
NP
- Res ≡p QU

NP
- Res on bounded alternation.

Proof. QU
NP
- Res trivially p-simulates Q

NP
- Res, so we need only show the reverse simulation. Let

π be a QU
NP
- Res refutation of a QBF Q of alternation depth d. We transform π into a Q

NP
- Res

refutation t(π) of size O(|π|2d).

Since resolution is implicationally complete, whenever the Σ1-rule is applied, the con-
sequent can be derived by resolution from the antecedents. Hence we can obtain a QU-Res
refutation π0 from π by replacing each entailment step with a resolution derivation. Moreover,
|π0|∀ = |π|∀.

Next we remove the universal resolution steps from π0 by applying Lemma 30 for each
i ∈ [d]. We obtain a Q-Res refutation π1 with |π1|∀ = O(|π|2d∀ ).

Finally, we transform π1 into a Q
NP
- Res refutation t(π) as follows. Call a clause in π1 surplus

if it is neither an axiom, nor the conclusion, nor the antecedent of a reduction step. We obtain
t(π) from π1 by deleting all surplus clauses.

To see that t(π) is indeed a QU
NP
- Res refutation, observe that the removal of surplus

clauses from the antecedents preserves ∃-entailment steps (realised by the Σ∃1 -rule), since
surplus clauses are already ∃-entailed by the preceding clauses. As t(π) contains only axioms,
reduction steps, and antecedents of reduction steps, its size is at most

|Q|+ 2(|π1|∀) = |Q|+O(|π|2d) .

Assuming without loss of generality that |Q| ≤ |π|, we have |t(π)| = O(|π|2d). ut

As a corollary of Theorems 11 and 32, UDLs characterise Q
NP
- Res refutation size on bounded

QBFs.

Corollary 33. Q
NP
- Res ≡p UDL on bounded alternation.

Unbounded alternation depth. The equivalences in Theorems 31 and 32 cannot be ex-
tended to QBFs in general. The former case is ruled out by the fact that Q-Res does not
simulate QU-Res [24], the separation being shown by the QBFs {KBKFn}n∈N introduced by
Kleine Büning, Karpinski and Flögel [30], which have unbounded alternation depth. Indeed,
Theorem 31 shows that any such constructive separation must be due to a QBF family with
unbounded alternation.

The latter case is ruled out by the same QBFs. It is clear that the exponential Q-Res lower
bound for KBKFn [30,8] is due to exponentially many universal reduction steps (see the proof

by size-cost in [5]), giving rise to an exponential lower bound for Q
NP
- Res. The existence of

short (i.e. polynomial-size) QU
NP
- Res refutations follows from the existence of short QU-Res

refutations. So Q
NP
- Res does not simulate QU

NP
- Res on unbounded alternation.

6 Size-width for QBF resolution

The seminal paper of Ben-Sasson and Wigderson [3] introduced the celebrated size-width
relations, equations which show that short resolution refutations must also be narrow. This
powerful technique allows resolution size lower bounds to be obtained via width lower bounds,
the point being that width lower bounds are often much easier to show.
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Let us first recall the size-width relation for (general) resolution.5 The width of a clause
is the number of literals it contains, and the width of a resolution refutation is the maximal
width of a clause in the sequence. The initial width of a CNF is the maximal width amongst
its clauses.

Theorem 34 ([3]). Let F be a CNF with n variables, let w(F ) denote the initial width of F ,
and let s(F ` ⊥) and w(F ` ⊥) denote the minimal size and minimal width of a resolution
refutation of F . Then

s(F ` ⊥) = exp

(
Ω

(
(w(F ` ⊥)− w(F ))2

n

))
.

Size-width is arguably the main lower-bound technique for resolution, and its applica-
bility to QBFs has already been investigated [10,20]. Unfortunately, only negative results
were obtained, ruling out the exact relations of Ben-Sasson and Wigderson for various width
measures.

In this section, we use the connection to UDLs to show the first positive results, and we
apply our new size-width relation to reprove some superpolynomial lower bounds.

6.1 A size-width relation for QU
NP
- Res

Previous work [10] considered two natural width measures for QBF refutations:

(a) the standard notion of width, i.e. the maximal number of literals appearing in a single
clause;

(b) existential width, i.e. the maximal number of existential literals appearing in a single clause.

We argue that the correct measure of width for a QU
NP
- Res refutation is existential width

with the axiom clauses not considered. Thus, we define the existential width of a QU
NP
- Res

refutation as the maximal number of existential literals appearing in a non-axiom clause.6

With this definition of existential width, the following size-width relation holds.

Theorem 35. Let Q be a QBF of alternation depth d with n existential variables, and let

s(F ` ⊥) and w∃(F ` ⊥) denote the minimal size and minimal existential width of a QU
NP
- Res

refutation of Q. Then

s(F ` ⊥) = exp

(
Ω

(
(w∃(Q ` ⊥))2

d3n log n

))
.

Before we proceed to prove Theorem 35, a couple of remarks are in order, by way of
comparison with the original relation of Ben-Sasson and Wigderson [3].

The first notable difference is the absence of an initial width term. This is essentially a
by-product of ignoring the width of axiom clauses. Moreover, it actually turns out to be quite
convenient, as we avoid the need for Tseitin transformations (cf. [3,10]).

The second obvious difference is in the denominator of the exponent. Here we inherit an
extra log n factor (from the transformation of Bshouty [17] which we come to shortly) and a
factor of d3, related to alternation depth. Hence our relation works best when the alternation
depth is bounded.

5 There is a separate relation for tree-like resolution [3].
6 With this definition, the width of an axiom clause c implicitly enters the calculation of the width of a proof

in case there is a universal reduction step performed on c.
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Proof of the QBF size-width relation. We prove Theorem 35 via a transformation from

QU
NP
- Res to UDL and back. A central step in the transformation is based on the following

Lemma of Bshouty [17]. It states a size-width relation for (single-output) term decision list.
Here, the width of a decision list is the maximal width of a term in the list.

Lemma 36 ([17]). Let f : 〈Z〉 → {0, 1} be a function, where Z is a set of n Boolean variables.
If f is computed by a decision list of size s, then it is also computed by a decision list of width
O(
√
n log n log s).

However, UDLs are multi-output term decision lists, so we need to generalise this result
for multiple outputs. This is actually quite straightforward. The proof in [17] is based on
manipulating the terms in the list, using a hybrid of decision trees and decision lists, and a
result of Blum [16]. However, the argument does not depend anywhere on the codomain of
the computed function, and therefore goes through even for multi-output term decision lists.

Thus, we obtain a corresponding result for UDLs. We define the existential width of a
UDL as the maximal width of an existential term in the list.

Lemma 37. Let f be a unified countermodel for a QBF Q with n existential variables. If
f is computed by a UDL of size s, then it is also computed by a UDL of existential width
O(
√
n log n log s).

We may now prove Theorem 35.

Proof. Let Q be a QBF of alternation depth d with n existential variables, and let π be a

shortest QU
NP
- Res refutation of Q, i.e. s(Q ` ⊥) = |π|. By Theorem 14, π can be transformed

into a UDL L of size at most |π|d. By Lemma 37, L can be transformed into a UDL M of
existential width

w∃(M) = O

(√
n log n log(|π|d)

)
= O

(√
dn log n log |π|

)
.

Now, for any UDL, it is clear by construction that the existential width of each clause
in the entailment sequence is at most the existential width of the UDL, multiplied by the

alternation depth. It follows that the QU
NP
- Res refutation ρ of Q based on E(M) (i.e. t(M) as

described in the proof of Theorem 19) has existential width at most d · w∃(M).
Therefore

w∃(Q ` ⊥) = O
(
d ·
√
dn log n log |π|

)
,

and solving for |π| yields the theorem statement. ut

6.2 QU
NP
- Res lower bounds by size-width

We illustrate the application of the QBF size-width relation by reproving three superpolyno-
mial QU-Res lower bounds from the literature.7

A useful feature of our translation via UDLs is that UDL width lower bounds imply

QU
NP
- Res width lower bounds. Indeed, it is readily verified that the translation in Theorem 19

(from UDL to QU
NP
- Res) preserves existential width when the alternation depth is 1.

Proposition 38. A UDL for a QBF Q of alternation depth 1 can be transformed into a

QU
NP
- Res refutation of Q with no increase in existential width.

7 Note that we do not obtain the optimal lower bounds.
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In the forthcoming examples, linear lower bounds on the existential width of UDLs can be
shown with relative ease, whereby application of Proposition 38 and Theorem 35 yields a size
lower bound of exp(Ω(n/ log n)). This is in contrast to the application of size-width relations
for propositional resolution, where showing width lower bounds still entails quite some work
(cf. [3]).

The equality family. We first show that UDLs for the equality formulas require linear
existential width.

Theorem 39. Any UDL for QEQ
n has existential width n.

Proof. Let L := (ε1, µ1), . . . , (εn, µn) be a UDL for QEQ
n , and note that L computes the unique

countermodel
fEQ : 〈(x1, . . . , xn)〉 → 〈{u1, . . . , un}〉

τ 7→ f(τ) ,

where fEQ(τ)(ui) = τ(xi) for each i ∈ [n]. Note that the countermodel f amounts to setting
each ui = xi.

Aiming for contradiction, suppose that L has existential width w < n. In particular, ε1 is
a term of width less than n, so there exists some variable xi that does not appear in ε1. It
follows that there exist two assignments τ, ρ ∈ 〈{x1, . . . , xn}〉, both of which satisfy ε1, with
τ(xi) 6= ρ(xi). We deduce that fEQ(τ) = fEQ(ρ), but also that τ(xi) 6= ρ(xi), in contradiction
with the definition of fEQ. ut

The parity family. Arguing along the same lines, we obtain a linear lower bound on the
existential width of UDLs for the parity formulas.

Definition 40 (parity [7]). The nth parity formula is

QPAR
n := ∃x1 · · ·xn∀u∃z1 · · · zn · (x1 ∨ z1) ∧ (x1 ∨ z1) ∧

(u ∨ zn) ∧ (u ∨ zn) ∧
n−1∧
i=1

⊕(xi+1, zi, zi+1) ,

where ⊕(xi+1, zi, zi+1) consists of the four clauses

(xi+1 ∨ zi ∨ zi+1) ∧ (xi+1 ∨ zi ∨ zi+1) ∧
(xi+1 ∨ zi ∨ zi+1) ∧ (xi+1 ∨ zi ∨ zi+1) .

Theorem 41. Any UDL for QPAR
n has existential width n.

Proof. Let L := (ε1, µ1), . . . , (εn, µn) be a UDL for QPAR
n , and note that L computes the unique

countermodel
fPAR : 〈(x1, . . . , xn)〉 → 〈{u}〉

τ 7→ (u 7→ (Σn
i=1τ(xi)) (mod 2)) ,

which amounts to u = ⊕(x1, . . . , xn).
Similarly as for equality, if the width of ε1 is strictly less than n, then there exist two

assignments τ, ρ ∈ 〈{x1, . . . , xn}〉, both of which satisfy ε1, and which disagree only at some
variable xi. It follows that fPAR(τ) = fPAR(ρ), and also that

(Σn
i=1τ(xi)) (mod 2) 6= (Σn

i=1ρ(xi)) (mod 2) ,

contradicting the definition of the function fPAR. ut

23



The majority family. The majority function MAJ is defined as

MAJ(x1, . . . , xn) =

⌊
1

2
+

(Σn
i=1xi)− 1/2

n

⌋
.

For each n ∈ N, let QMAJ
n := ∃x1 · · ·xn∀u∃z1 · · · zm · Fn denote a polynomial-size QBF whose

unique countermodel fMAJ amounts to u = MAJ(x1, . . . , xn); that is,

fMAJ : 〈(x1, . . . , xn)〉 → 〈{u}〉
τ 7→

(
u 7→ MAJ(τ(x1), . . . , τ(xn))

)
.

(For the explicit construction of such formulas, see [6].) We can show straightforwardly that
UDLs for {QMAJ

n }n∈N also require linear existential width.

Theorem 42. A UDL for QMAJ
n has existential width Ω(n).

Proof. Let L := (ε1, µ1), . . . , (εn, µn) be a UDL for QMAJ
n . If the width of ε1 is strictly less than

n/2, then there exist two assignments τ, ρ ∈ 〈{x1, . . . , xn}〉, both of which satisfy ε1, such that

MAJ
(
τ(x1), . . . , τ(xn)

)
6= MAJ

(
ρ(x1), . . . , ρ(xn)

)
.

We reach a contradiction, since L(τ) = L(ρ), implying that L does not compute the unique
countermodel fMAJ. ut

Application. Application of Proposition 38 and Theorem 35 gives the following refutation
size lower bounds.

Corollary 43. {QEQ
n }n∈N, {QPAR

n }n∈N, and {QMAJ
n }n∈N require QU

NP
- Res refutations of size

exp(Ω(n/ log n)).

We note that, in contrast to the original hardness proofs for the parity and majority
families [8,6], we obtained Corollary 43 without importing any lower bounds from circuit
complexity.

6.3 Relation to previous work

As it was shown in [10,20] that the propositional size-width relations (Theorem 34) do not lift
to Q-Res or QU-Res, it is worthwhile taking a moment to see how those results are consistent
with our size-width relation (Theorem 35).

The authors of [10,20] showed that the ‘existential-width analogue’ of the propositional
size-width relation, namely

s(Q ` ⊥) = exp

(
Ω

(
(w∃(Q ` ⊥)− w∃(Q))2

n

))
, (3)

does not hold in Q-Res or QU-Res. In particular, there exist QBFs {φn}n∈N (based on formulas
from [29]) that

• have a linear number of variables: |vars(φn)| = O(n);
• have constant initial existential width: w∃(φn) = O(1);
• require QU-Res refutations of linear existential width: w∃(φn ` ⊥) = Ω(n):
• admit QU-Res refutations of polynomial size: s(φn ` ⊥) = nO(1).

The QBFs {φn}n∈N clearly violate (3). However, no contradiction follows from Theorem 35.
Since {φn}n∈N are unbounded alternation QBFs, the nth instance having alternation depth
n, Theorem 35 yields only a constant lower bound.
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7 Conclusions

It is interesting to compare our characterisation of QBF resolution hardness with the charac-
terisation of QBF Frege systems [14]. There the authors show a direct correspondence between
C-Frege (where lines in the system are C-circuits) and the circuit class C, e.g. hardness in QBF
NC1-Frege is characterised by NC1 hardness. This is not the case in our results here. Reso-
lution works with CNFs, i.e. formulas of depth 2. By a result of Krause [33], the complexity
of decision lists (and hence of UDLs) is strictly intermediate between depth-2 and depth-3
circuits. Hence in QBF resolution, our circuit model is strictly stronger than the model we
use to represent the formulas. This partly explains why ideas from [6,14] do not suffice to
characterise QBF resolution [12]. In addition to finding the right circuit model of UDLs, new
technical ideas (such as the entailment sequence) are needed.

It is also clear from our results that UDLs do not characterise QU-Res hardness for QBFs of
unbounded quantifier complexity. While QBFs of bounded quantification succinctly represent
all problems from the polynomial hierarchy, which covers most applications of modern QBF
solving and is prominently represented in QBF evaluation benchmarks [34,39], we leave open
the question of finding the right computational model to characterise QBF resolution for
unbounded quantifier complexity.
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