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Abstract. We prove a sharp lower bound on the distributional communication
complexity of the exact gap-hamming problem.

1. Introduction

The gap-hamming function GH = GHn,k : {±1}n → {0, 1, ?} is defined by

GH(x, y) =


1 〈x, y〉 ≥ k,

0 〈x, y〉 ≤ −k,
? otherwise,

where 〈x, y〉 =
∑n

i=1 xiyi is the standard inner product (the Hamming distance

between x and y is n−〈x,y〉
2

). This problem naturally fits into the framework of two-
party communication complexity; for background and definitions, see the books [7, 9].
Alice gets x, Bob gets y, and their goal is to compute GH(x, y). It is a promise
problem — the protocol is allowed to compute any value when the input corresponds
to a ?, and it needs to be correct only on the remaining inputs. The standard choice
for k is d

√
ne, so we write GHn to denote GHn,d√ne.

The gap-hamming problem was introduced by Indyk and Woodruff in the context
of streaming algorithms [5], and was subsequently studied and used in many works
and in various contexts (see [6, 12, 1, 2, 3] and references within). Proving a sharp
Ω(n) lower bound on its randomized communication complexity was a central open
problem for almost ten years, until Chakrabarti and Regev [4] solved it. Later,
Vidick [11], Sherstov [10], and [8] found simpler proofs. The difficulties in proving
this lower bound are explained in [4, 10].

The exact gap-hamming function is defined by

EGHn,k(x, y) =


1 〈x, y〉 = k,

0 〈x, y〉 = −k,
? otherwise.

As before, we write EGHn to denote EGHn,d√ne. The exact gap-hamming function is
easier to compute than gap-hamming; the protocol only needs to worry about inputs
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whose inner product has magnitude exactly k. Proving a sharp lower bound on the
randomized communication complexity of EGH was left as an open problem.

One of the difficulties in proving a lower bound for EGH is the following somewhat
surprising property: for infinitely many values of n, the deterministic communication
complexity of EGHn is 2. The reason is that there is a simple deterministic protocol
of length 2 that computes 〈X, Y 〉mod 4 for all n. The players announce the parities

of their inputs
n−

∑n
j=1Xj

2
mod 2 and

n−
∑n
j=1 Yj

2
mod 2. Because n = 〈X, Y 〉mod 2, this

data determines 〈X, Y 〉mod 4. For example, this deterministic protocol computes
EGHn when

√
n is an odd integer, because then we have −

√
n 6=
√
nmod 4.

We overcome this difficulty and show that EGH is extraordinary in that although
it is a natural problem with communication complexity O(1) for infinitely many n’s,
the following holds.

Theorem. The randomized communication complexity of EGHn is at least Ω(n) for
infinitely many values of n.

There is a natural reduction between different parameters n, k, and from random-
ized protocols to distributional protocols. Denote by Un,k the uniform distribution
over the set of pairs (x, y) ∈ {±1}n×{±1}n so that 〈x, y〉 ∈ {±k}. For each integer t,
given inputs x, y ∈ {±1}n, the players can use padding and public randomness (and
no communication) to generate (X ′, Y ′) that is distributed according to Utn,tk for
k = 〈x, y〉. In other words, from a protocol that solves EGHtn,tk over the distribution
Utn,tk, we get a randomized protocol that solves EGHn,k. So, to prove the lower bound
stated above, it suffices to prove the following distributional lower bound.

Theorem 1. For every β > 0, there are constants n0 > 0 and α > 0 so that the
following holds. Let n, k be positive even integers so that n > n0 and k < α

√
n. Any

protocol that computes EGHn,k over inputs from Un,k with success probability 2/3
must have communication complexity at least (1− β)n.

Theorem 1 is sharp in the following two senses. First, if k 6= nmod 2 then EGHn,k
is trivial, and if k is odd then the deterministic communication complexity of EGHn,k
is 2. Secondly, for every α > 0, there is β > 0 so that if k > α

√
n then the randomized

communication complexity of EGHn,k is at most (1−β)n. In the randomized protocol,
Alice gets x, Bob gets y and the public randomness is a sequence I1, I2, . . . , Im of i.i.d.
uniform elements in [n] for m ≤ O( n

α2 ). By a standard coupon collector argument,
the number of (distinct) elements in the set S = {I1, . . . , Im} is at most (1− β)n− 1
with probability at least 5

6
. If |S| > (1− β)n− 1, the parties “abort”, and otherwise

Alice sends to Bob the value of xs for all s ∈ S. Bob uses this data to compute
z = sign

(∑m
j=1 xIjyIj

)
. Bob sends the output of the protocol z to Alice. Chernoff’s

bound says that if EGHn,k(x, y) 6= ? then Pr[z = EGHn,k(x, y)] ≥ 5
6
. The union bound

implies that the overall success probability is at least 2
3
.

The lower bounds [4, 11, 10, 8] for GH are based on anti-concentration. Roughly
speaking, these works prove that Pr[〈X, Y 〉 ∈ I] < p for all small intervals I ⊂ R
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and some small p > 0. The main ingredient for our lower bound on the complexity
of EGH is the following “smoothness” result (which implies anti-concentration).

Theorem 2. For every ε > 0, there is c0 > 0 so that the following holds. Let
A,B ⊆ {±1}n be of size |A| · |B| ≥ 2(1+ε)n. Let (X, Y ) be uniformly distributed in
A×B. For every integer k,∣∣Pr[〈X, Y 〉 = k]− P[〈X, Y 〉 = k + 4

∣∣ ≤ c0
n
.

Here is a simple application of the smoothness theorem. Consider the function
f defined by f(k) = Pr[〈X, Y 〉 = k], where here X, Y are uniformly random in a
large rectangle as in Theorem 2. The theorem shows that the “derivative” of f is
bounded from above, so that if f takes a large value at a point then it takes large
values on a large neighborhood of that point. For example, if f(k0) ≥ Ω( 1√

n
) for

some k0 then f(k) ≥ 9
10
f(k0) for all k so that |k − k0| �

√
n and k = k0mod 4. In

particular, f(k0) ≤ O( 1√
n
).

Theorem 2 is sharp in the following two senses. First, even for the case A = B =
{±1}n, there is a k so that1

|Pr[〈X, Y 〉 = k]− Pr[〈X, Y 〉 = k + 4| ≥ Ω( 1
n
).

So, O( 1
n
) is the best upper bound possible. Secondly, as the deterministic protocol

described above shows, there are sets A,B of size |A| = |B| = 2n−1 so that for all
j ∈ {1, 2, 3},

|Pr[〈X, Y 〉 = 0]− Pr[〈X, Y 〉 = j]| = Pr[〈X, Y 〉 = 0] = Ω( 1√
n
)

So, +4 is the minimum gap for which an O( 1
n
) upper bound holds.

2. Smoothness

To prove smoothness, we use the following theorem that was initially used to prove
anti-concentration [8].

Theorem 3. For every β > 0 and δ > 0, there is c > 0 so that the following holds.
Let B ⊆ {±1}n be of size 2βn. For each θ ∈ [0, 1], for all but 2n(1−β+δ) vectors
x ∈ {±1}n it holds that∣∣∣E

Y
[exp(2πiθ 〈x, Y 〉)]

∣∣∣ < 2 exp(−cn sin2(4πθ)).

Surprisingly, the constant 4π on the r.h.s. on the theorem above plays a crucial
role in our arguments.

1For an integer k = n
2 −
√
n, we have

(
n

k+1

)
−
(
n
k

)
=
(

n
k+1

)
n−2k−1

n−k & 2n

n .
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Proof of Theorem 2. Let β > 0 be so that |B| = 2βn so that |A| ≥ 2(1−β+ε)n. Theo-
rem 3 with δ = ε

3
promises that for each θ ∈ [0, 1], the size of

Aθ =
{
x ∈ A :

∣∣∣E
Y

[exp(2πiθ 〈x, Y 〉)]
∣∣∣ > 2 exp(−cn sin2(4πθ))

}
is at most 2n(1−β+δ). For each x ∈ A, define Sx = {θ ∈ [0, 1] : x ∈ Aθ}.

Fix x such that |Sx| ≤ 2−δn. Bound∣∣Pr
Y

[〈x, Y 〉 = k]− Pr
Y

[〈x, Y 〉 = k + 4]
∣∣

=
∣∣∣E
Y

[ ∫ 1

0

exp(2πiθ(〈x, Y 〉 − k))− exp(2πiθ(〈x, Y 〉 − k − 4)) dθ
]∣∣∣

≤
∫ 1

0

| exp(4πiθ)− exp(−4πiθ)| ·
∣∣∣E
Y

[exp(2πiθ 〈x, Y 〉)]
∣∣∣ dθ

≤ 2

∫ 1

0

| sin(4πθ)| ·
∣∣∣E
Y

[exp(2πiθ 〈x, Y 〉)]
∣∣∣ dθ.

Continue to bound∫ 1

0

| sin(4πθ)| ·
∣∣∣E
Y

[exp(2πiθ 〈x, Y 〉)]
∣∣∣ dθ

≤ 2−δn +

∫ 1

0

| sin(4πθ)| · exp(−cn sin2(4πθ)) dθ.

The integral goes around the circle twice, and it is identical in each quadrant. So,∫ 1

0

| sin(4πθ)| · exp(−cn sin2(4πθ)) dθ

= 8

∫ 1/8

0

sin(4πθ) · exp(−cn sin2(4πθ)) dθ

≤ 32π

∫ ∞
0

θ · exp(−16cnθ2) dθ

≤ c1
n

∫ ∞
0

φ · exp(−φ2) dφ ≤ c2
n
,

where c1, c2 > 0 depend on ε, and we used η
π
≤ sin(η) ≤ η for 0 ≤ η ≤ π

2
.

Finally, because

E
x
|Sx| = E

θ

|Aθ|
2n
≤ 2n(−β+δ),

the number of x ∈ A for which |Sx| > 2−δn is at most 2−δn|A|. Hence,∣∣ Pr
X,Y

[〈X, Y 〉 = k]− Pr
X,Y

[〈X, Y 〉 = k + 4]
∣∣ ≤ 2−δn + 2

(
2−δn + c2

n

)
≤ c0

n
. �
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3. The lower bound

Proof of Theorem 1. Suppose the assertion of the theorem is false. The space of
inputs can be partitioned into rectangles R1, . . . , RL with L ≤ 2(1−β)n, where the
output of the protocol on each R` is fixed.

Let X, Y be i.i.d. uniformly at random in {±1}n. Let E denote the event that
| 〈X, Y 〉 | = k. Define the collection of “typical” rectangles as

T =
{
` ∈ [L] : Pr

X,Y
[E|R`] ≥ PrX,Y [E]

10
& Pr

X,Y
[R`] ≥ 2−

(
1−β

2

)
n
}
.

For α ≤ 2, because k = nmod 2, we have PrX,Y [E] ≥ p√
n

for some universal constant

p > 0. The contribution of non-typical rectangles is small:∑
6̀∈T

Pr
X,Y

[R`|E] = 1
PrX,Y [E]

∑
`6∈T

Pr
X,Y

[R`] Pr
X,Y

[E|R`]

< 1
PrX,Y [E]

(
L2−

(
1−β

2

)
n +

PrX,Y [E]

10

)
< 1

5
,

for n large enough. Because k = −kmod 4 and |k| < α
√
n, for each ` ∈ T, Theorem 2

with ε ≥ β
2

implies that

| Pr
X,Y

[〈X, Y 〉 = k|R` ∧ E]− Pr
X,Y

[〈X, Y 〉 = −k|R` ∧ E]|

= | Pr
X,Y

[〈X, Y 〉 = k|Rj]− Pr
X,Y

[〈X, Y 〉 = −k|Rj]| · 1
PrX,Y [E|Rj ]

≤ α
√
n c0
n
· 10
√
n

p
< 1

6
,

for α small enough. So, the probability of error conditioned on R` for ` ∈ T is at
least 5

12
. The total probability of error is at least∑

`∈T

Pr
X,Y

[R`|E] · 5
12
> 4

5
· 5
12

= 1
3
.

This contradicts the correctness of the protocol. �
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