THE COMMUNICATION COMPLEXITY OF THE EXACT GAP-HAMMING PROBLEM

ANUP RAO AND AMIR YEHUDAYOFF

ABSTRACT. We prove a sharp lower bound on the distributional communication complexity of the exact gap-hamming problem.

1. Introduction

The gap-hamming function $\text{GH} = \text{GH}_{n,k} : \{\pm 1\}^n \to \{0, 1, \ast\}$ is defined by

$$\text{GH}(x, y) = \begin{cases}
1 & \langle x, y \rangle \geq k, \\
0 & \langle x, y \rangle \leq -k, \\
\ast & \text{otherwise},
\end{cases}$$

where $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$ is the standard inner product (the Hamming distance between x and y is $\frac{n - \langle x, y \rangle}{2}$). This problem naturally fits into the framework of two-party communication complexity; for background and definitions, see the books [7, 9]. Alice gets x, Bob gets y, and their goal is to compute $\text{GH}(x, y)$. It is a promise problem — the protocol is allowed to compute any value when the input corresponds to a \ast, and it needs to be correct only on the remaining inputs. The standard choice for k is $\lceil \sqrt{n} \rceil$, so we write GH_n to denote $\text{GH}_{n, \lceil \sqrt{n} \rceil}$.

The gap-hamming problem was introduced by Indyk and Woodruff in the context of streaming algorithms [5], and was subsequently studied and used in many works and in various contexts (see [6, 12, 1, 2, 3] and references within). Proving a sharp $\Omega(n)$ lower bound on its randomized communication complexity was a central open problem for almost ten years, until Chakrabarti and Regev [4] solved it. Later, Vidick [11], Sherstov [10], and [8] found simpler proofs. The difficulties in proving this lower bound are explained in [4, 10].

The exact gap-hamming function is defined by

$$\text{EGH}_{n,k}(x, y) = \begin{cases}
1 & \langle x, y \rangle = k, \\
0 & \langle x, y \rangle = -k, \\
\ast & \text{otherwise},
\end{cases}$$

As before, we write EGH_n to denote $\text{EGH}_{n, \lceil \sqrt{n} \rceil}$. The exact gap-hamming function is easier to compute than gap-hamming; the protocol only needs to worry about inputs
whose inner product has magnitude exactly k. Proving a sharp lower bound on the randomized communication complexity of EGH was left as an open problem.

One of the difficulties in proving a lower bound for EGH is the following somewhat surprising property: for infinitely many values of n, the deterministic communication complexity of EGH$_n$ is 2. The reason is that there is a simple deterministic protocol of length 2 that computes $\langle X, Y \rangle \mod 4$ for all n. The players announce the parities of their inputs $\frac{n-\sum_{j=1}^{n} x_j}{2} \mod 2$ and $\frac{n-\sum_{j=1}^{n} y_j}{2} \mod 2$. Because $n = \langle X, Y \rangle \mod 2$, this data determines $\langle X, Y \rangle \mod 4$. For example, this deterministic protocol computes EGH$_n$ when \sqrt{n} is an odd integer, because then we have $-\sqrt{n} \neq \sqrt{n} \mod 4$.

We overcome this difficulty and show that EGH is extraordinary in that although it is a natural problem with communication complexity $O(1)$ for infinitely many n's, the following holds.

Theorem. The randomized communication complexity of EGH$_n$ is at least $\Omega(n)$ for infinitely many values of n.

There is a natural reduction between different parameters n, k, and from randomized protocols to distributional protocols. Denote by $U_{n,k}$ the uniform distribution over the set of pairs $(x, y) \in \{\pm 1\}^n \times \{\pm 1\}^n$ so that $(x, y) \in \{\pm k\}$. For each integer t, given inputs $x, y \in \{\pm 1\}^n$, the players can use padding and public randomness (and no communication) to generate (X', Y') that is distributed according to $U_{tn,tk}$ for $k = \langle x, y \rangle$. In other words, from a protocol that solves EGH$_{tn,tk}$ over the distribution $U_{tn,tk}$, we get a randomized protocol that solves EGH$_{n,k}$. So, to prove the lower bound stated above, it suffices to prove the following distributional lower bound.

Theorem 1. For every $\beta > 0$, there are constants $n_0 > 0$ and $\alpha > 0$ so that the following holds. Let n, k be positive even integers so that $n > n_0$ and $k < \alpha \sqrt{n}$. Any protocol that computes EGH$_{n,k}$ over inputs from $U_{n,k}$ with success probability $2/3$ must have communication complexity at least $(1 - \beta)n$.

Theorem 1 is sharp in the following two senses. First, if $k \neq n \mod 2$ then EGH$_{n,k}$ is trivial, and if k is odd then the deterministic communication complexity of EGH$_{n,k}$ is 2. Secondly, for every $\alpha > 0$, there is $\beta > 0$ so that if $k > \alpha \sqrt{n}$ then the randomized communication complexity of EGH$_{n,k}$ is at most $(1 - \beta)n$. In the randomized protocol, Alice gets x, Bob gets y and the public randomness is a sequence I_1, I_2, \ldots, I_m of i.i.d. uniform elements in $[n]$ for $m \leq O(\frac{\alpha}{\sqrt{n}})$. By a standard coupon collector argument, the number of (distinct) elements in the set $S = \{I_1, \ldots, I_m\}$ is at most $(1 - \beta)n - 1$ with probability at least $\frac{5}{6}$. If $|S| > (1 - \beta)n - 1$, the parties “aborts”, and otherwise Alice sends to Bob the value of x_s for all $s \in S$. Bob uses this data to compute $z = \text{sign} \left(\sum_{j=1}^{m} x_{I_j} y_{I_j} \right)$. Bob sends the output of the protocol z to Alice. Chernoff’s bound says that if $\text{EGH}_{n,k}(x, y) \neq \ast$ then $\Pr[z = \text{EGH}_{n,k}(x, y)] \geq \frac{5}{6}$. The union bound implies that the overall success probability is at least $\frac{2}{3}$.

The lower bounds [4] [11] [10] [8] for GH are based on anti-concentration. Roughly speaking, these works prove that $\Pr[\langle X, Y \rangle \in I] < p$ for all small intervals $I \subset \mathbb{R}$.
and some small \(p > 0 \). The main ingredient for our lower bound on the complexity of \(\text{EGH} \) is the following “smoothness” result (which implies anti-concentration).

Theorem 2. For every \(\epsilon > 0 \), there is \(c_0 > 0 \) so that the following holds. Let \(A, B \subseteq \{\pm 1\}^n \) be of size \(|A| \cdot |B| \geq 2^{1/(1+\epsilon)n}\). Let \((X,Y)\) be uniformly distributed in \(A \times B\). For every integer \(k \),

\[
|\Pr[\langle X,Y \rangle = k] - \Pr[\langle X,Y \rangle = k + 4]| \leq \frac{c_0}{n}.
\]

Here is a simple application of the smoothness theorem. Consider the function \(f \) defined by \(f(k) = \Pr[\langle X,Y \rangle = k] \), where here \(X,Y \) are uniformly random in a large rectangle as in Theorem 2. The theorem shows that the “derivative” of \(f \) is bounded from above, so that if \(f \) takes a large value at a point then it takes large values on a large neighborhood of that point. For example, if \(f(k_0) \geq \Omega(\frac{1}{\sqrt{n}}) \) for some \(k_0 \) then \(f(k) \geq \frac{9}{10}f(k_0) \) for all \(k \) so that \(|k - k_0| \ll \sqrt{n} \) and \(k = k_0 \mod 4 \). In particular, \(f(k_0) \leq O(\frac{1}{\sqrt{n}}) \).

Theorem 2 is sharp in the following two senses. First, even for the case \(A = B = \{\pm 1\}^n \), there is a \(k \) so that\(^1\)

\[
|\Pr[\langle X,Y \rangle = k] - \Pr[\langle X,Y \rangle = k + 4]| \geq \Omega(\frac{1}{n}).
\]

So, \(O(\frac{1}{n}) \) is the best upper bound possible. Secondly, as the deterministic protocol described above shows, there are sets \(A, B \) of size \(|A| = |B| = 2^{n-1} \) so that for all \(j \in \{1,2,3\} \),

\[
|\Pr[\langle X,Y \rangle = 0] - \Pr[\langle X,Y \rangle = j]| = \Pr[\langle X,Y \rangle = 0] = \Omega(\frac{1}{\sqrt{n}})
\]

So, +4 is the minimum gap for which an \(O(\frac{1}{n}) \) upper bound holds.

2. Smoothness

To prove smoothness, we use the following theorem that was initially used to prove anti-concentration \([8]\).

Theorem 3. For every \(\beta > 0 \) and \(\delta > 0 \), there is \(c > 0 \) so that the following holds. Let \(B \subseteq \{\pm 1\}^n \) be of size \(2^{3n} \). For each \(\theta \in [0,1] \), for all but \(2^{n(1-(\beta+\delta))} \) vectors \(x \in \{\pm 1\}^n \) it holds that

\[
\left| \mathbb{E}_y[\exp(2\pi i \theta \langle x,Y \rangle)] \right| < 2 \exp(-cn \sin^2(4\pi \theta)).
\]

Surprisingly, the constant \(4\pi \) on the r.h.s. on the theorem above plays a crucial role in our arguments.

\(^1\)For an integer \(k = \frac{n}{2} - \sqrt{n} \), we have \(\binom{n}{k+1} - \binom{n}{k} = \binom{n}{k+1} \frac{n-2k-1}{n-k} \geq \frac{2^n}{n} \).
Proof of Theorem 2. Let $\beta > 0$ be so that $|B| = 2^{\beta n}$ so that $|A| \geq 2^{(1-\beta+\epsilon)n}$. Theorem 3 with $\delta = \frac{\epsilon}{3}$ promises that for each $\theta \in [0, 1]$, the size of

$$A_\theta = \left\{ x \in A : \left| \mathbb{E}_Y \left[\exp(2\pi i \theta \langle x, Y \rangle) \right] \right| > 2 \exp(-cn \sin^2(4\pi \theta)) \right\}$$

is at most $2^{n(1-\beta+\delta)}$. For each $x \in A$, define $S_x = \{ \theta \in [0, 1] : x \in A_\theta \}$.

Fix x such that $|S_x| \leq 2^{-\delta n}$. Bound

$$\left| \mathbb{P}_Y [\langle x, Y \rangle = k] - \mathbb{P}_Y [\langle x, Y \rangle = k + 4] \right|$$

$$= \left| \mathbb{E}_Y \left[\int_0^1 \exp(2\pi i \theta \langle x, Y \rangle - k)) - \exp(2\pi i \theta \langle x, Y \rangle - k - 4)) \right) d\theta \right|$$

$$\leq \int_0^1 | \exp(4\pi i \theta) - \exp(-4\pi i \theta) | \cdot \left| \mathbb{E}_Y [\exp(2\pi i \theta \langle x, Y \rangle)] \right| d\theta$$

$$\leq 2 \int_0^1 | \sin(4\pi \theta) | \cdot \left| \mathbb{E}_Y [\exp(2\pi i \theta \langle x, Y \rangle)] \right| d\theta.$$

Continue to bound

$$\int_0^1 | \sin(4\pi \theta) | \cdot \left| \mathbb{E}_Y [\exp(2\pi i \theta \langle x, Y \rangle)] \right| d\theta$$

$$\leq 2^{-\delta n} + \int_0^1 | \sin(4\pi \theta) | \cdot \exp(-cn \sin^2(4\pi \theta)) d\theta.$$

The integral goes around the circle twice, and it is identical in each quadrant. So,

$$\int_0^{1/8} \sin(4\pi \theta) \cdot \exp(-cn \sin^2(4\pi \theta)) d\theta$$

$$= 8 \int_0^{1/8} \sin(4\pi \theta) \cdot \exp(-cn \sin^2(4\pi \theta)) d\theta$$

$$\leq 32\pi \int_0^{\infty} \theta \cdot \exp(-16cn \theta^2) d\theta$$

$$\leq \frac{c_1}{n} \int_0^{\infty} \phi \cdot \exp(-\phi^2) d\phi \leq \frac{c_2}{n},$$

where $c_1, c_2 > 0$ depend on ϵ, and we used $\frac{2}{\pi} \leq \sin(\eta) \leq \eta$ for $0 \leq \eta \leq \frac{\pi}{2}$.

Finally, because

$$\mathbb{E}_x |S_x| = \mathbb{E}_\theta \frac{|A_\theta|}{2^n} \leq 2^{n(-\beta+\delta)},$$

the number of $x \in A$ for which $|S_x| > 2^{-\delta n}$ is at most $2^{-\delta n} |A|$. Hence,

$$\left| \mathbb{P}_{X,Y} [\langle X, Y \rangle = k] - \mathbb{P}_{X,Y} [\langle X, Y \rangle = k + 4] \right| \leq 2^{-\delta n} + 2(2^{-\delta n} + \frac{c_2}{n}) \leq \frac{c_0}{n}. \quad \Box$$
3. The lower bound

Proof of Theorem 1 Suppose the assertion of the theorem is false. The space of inputs can be partitioned into rectangles R_1, \ldots, R_L with $L \leq 2^{(1-\beta)n}$, where the output of the protocol on each R_ℓ is fixed.

Let X, Y be i.i.d. uniformly at random in $\{\pm 1\}^n$. Let E denote the event that $|\langle X, Y \rangle| = k$. Define the collection of “typical” rectangles as

$$\mathcal{T} = \left\{ \ell \in [L] : \frac{\Pr_{X,Y}[E|R_\ell]}{10} \geq \frac{\Pr_{X,Y}[E|\mathcal{R}] \geq 2^{-\left(1-\frac{\beta}{2}\right)n}}{10} \right\}.$$

For $\alpha \leq 2$, because $k = n \mod 2$, we have $\Pr_{X,Y}[E] \geq \frac{2}{\sqrt{n}}$ for some universal constant $p > 0$. The contribution of non-typical rectangles is small:

$$\sum_{\ell \notin \mathcal{T}} \Pr_{X,Y}[R_\ell|E] = \frac{1}{\Pr_{X,Y}[E]} \sum_{\ell \notin \mathcal{T}} \Pr_{X,Y}[R_\ell|E] \Pr_{X,Y}[E|R_\ell]$$

$$< \frac{1}{\Pr_{X,Y}[E]} \left(L2^{-\left(1-\frac{\beta}{2}\right)n} + \frac{\Pr_{X,Y}[E]}{10} \right) < \frac{1}{5},$$

for n large enough. Because $k = -k \mod 4$ and $|k| < \alpha \sqrt{n}$, for each $\ell \in \mathcal{T}$, Theorem 2 with $\epsilon \geq \frac{\beta}{2}$ implies that

$$| \Pr_{X,Y}[\langle X, Y \rangle = k|R_\ell \land E] - \Pr_{X,Y}[\langle X, Y \rangle = -k|R_\ell \land E] |$$

$$= | \Pr_{X,Y}[\langle X, Y \rangle = k|R_j] - \Pr_{X,Y}[\langle X, Y \rangle = -k|R_j] | \cdot \frac{1}{\Pr_{X,Y}[E|R_j]}$$

$$\leq \alpha \sqrt{n} \frac{\epsilon_0}{n} \cdot \frac{10\sqrt{n}}{p} < \frac{1}{6},$$

for α small enough. So, the probability of error conditioned on R_ℓ for $\ell \in \mathcal{T}$ is at least $\frac{5}{12}$. The total probability of error is at least

$$\sum_{\ell \in \mathcal{T}} \Pr_{X,Y}[R_\ell|E] \cdot \frac{5}{12} > \frac{4}{5} \cdot \frac{5}{12} = \frac{1}{3}.$$

This contradicts the correctness of the protocol. □

Acknowledgement. We thank Oded Regev for helpful suggestions.

School of Computer Science, University of Washington

E-mail address: anuprao@cs.washington.edu

Department of Mathematics, Technion-IIT

E-mail address: amir.yehudayoff@gmail.com