
Practical Relativistic Zero-Knowledge for NP
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Abstract. In this work we consider the following problem: in a Multi-Prover environment,
how close can we get to prove the validity of an NP statement in Zero-Knowledge ? We
exhibit a set of two novel Zero-Knowledge protocols for the 3-COLorability problem that
use two (local) provers or three (entangled) provers and only require them to reply two
trits each. This greatly improves the ability to prove Zero-Knowledge statements on very
short distances with very minimal equipment.

1 Introduction

The idea of using distance and special relativity (a theory of motion justifying that the speed of
light is a sort of asymptote for displacement) to prevent communication between participants to
multi-prover proof systems can be traced back to Kilian[1]. Probably, the original authors (Ben
Or, Goldwasser, Kilian and Wigderson) of [2] had that in mind already, but it is not explicitly
written anywhere. Kent was the first author to venture into sustainable relativistic commitments
[3] and introduced the idea of arbitrarily prolonging their life span by playing some ping-pong
protocol between the provers (near the speed of light). This idea was made considerably more
practical by Lunghi et al. in [4] who made commitment sustainability much more efficient. This
culminated into an actual implementation by Verbanis et al. in [5] where commitments were
sustained for more than a day!

As nice as this may sound, such long-lasting commitments have found so far very little prac-
tical use. Consider for instance the zero-knowledge proof for Hamiltonian Cycle as introduced by
Chailloux and Leverrier[6]. Proving in Zero-Knowledge that a 500-node graph contains a Hamil-
tonian cycle would require transmitting 250 000 bit commitments (each of a couple hundreds
of bits in length) and eventually sustaining them before the verifier can announce his choice of
unveiling the whole adjacency matrix or just the Hamiltonian cycle. For a graph of |V | vertices,
this would require an estimated 200|V |2 bits of communication before the verifier can announce
his choice chall (see Fig. 1). This makes the application prohibitively expensive. If you use a
larger graph, you will need more time to commit, leading to more distance to implement the
protocol of [6]. Either a huge separation is necessary between the provers (so that one of them
can unveil according to the verifier’s choice chall before he finds out the committal information
B used by the other prover while the former must commit all the necessary information before
he can find out the verifier’s choice chall) or we must achieve extreme communication speeds
between prover-verifier pairs. This would only be possible by vastly parallelizing communications
between them at high cost. Modern (expensive) top-of-line communication equipment may reach
throughputs of roughly 1Tbits/sec. A back of the envelope calculation estimates that the distance
between the verifiers must be at least 100 km to transmit 250 000 commitments at such a rate.
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Fig. 1. Space-Time diagrams of [6]’s ZK-MIP? for NP. (45◦ diagonals are the speed of light.)

In the above two diagrams, V1 at a first location sends a random matrix B to P1 who uses each entry

to commit an entry of the adjacency matrix Y of G. At another location, V2 sends a random challenge

chall to P2 who unveils all or some commitments as A . At all times, V1 and V2 must make sure that
the answers they get from P1 and P2 come early enough that the direct communication line between V1

and V2 (even at the speed of light) is not crossed. The transition from left to right shows that increasing
the number of nodes (and thus increasing the total commit time) pushes the verifiers further away from
each other. In [6] the distance must increase quadratically with the number of nodes in the graph.

In this work we consider the following problem: in a Multi-Prover environment, how close
can we get the provers in a Zero-Knowledge IP showing the validity of an NP statement ? We
exhibit a set of (3) novel Zero-Knowledge protocols for the 3-COLorability problem that use two
(local) provers or three (entangled) provers and only require them to communicate two trits each
after having each received an edge and two trits each from the verifier. This greatly improves the
ability to prove Zero-Knowledge statements on very short distances with very little equipment.
In comparison, the protocol of [6] would require transmitting millions of bits between a prover
and his verifier before the latter may disclose what to unveil or not. This implies the provers
would have to be very far from each other because all of these must reach the verifier before the
former can communicate with its partner prover.

Although certain algebraic zero-knowledge multi-prover interactive proofs for NP and NEXP
using explicitly no commitments at all have been presented before in [7], [8] (sound against local
provers) and [9],[10] (sound against entangled provers), in the local cases making these protocols
entanglement sound is absolutely non-trivial, whereas in the entangled case the multi-round
structure and the amount of communication in each round makes implementing the protocol
completely impractical as well. (To their defense, the protocols were not designed to be practical).

The main technical tool we use in this work is a general Lemma of Kempe, Kobayashi,
Matsumoto, Toner, and Vidick[11] to prove soundness of a three-prover protocol when the provers
are entangled based on the fact that a two-prover protocol version is sound when the provers are

2



only local. More precisely, they proved this when the three-prover version is the same as the
two-prover version but augmented with an extra prover who is asked exactly the same questions
as one of the other two at random and is expected to give the same exact answers.

Our protocols build on top of the earlier protocol due to Cleve, Høyer, Toner and Watrous[12]
who presented an extremely simple and efficient solution to the 3-COL problem that uses only
two provers, each of which is queried with either a node from a common edge, or twice the same
node. In the former case, the verifier checks that the two ends of the selected edge are of distinct
colours, while in the latter case, he check only that the provers answer the same colour given the
same node. On the bright side, their protocol did not use commitments at all but unfortunately it
did not provide Zero-Knowledge either. Moreover, it is a well established fact that this protocol
cannot possibly be sound against entangled provers, because certain graph families have the
property that they are not 3-colourable while having entangled-prover pairs capable of winning
the game above with probability one. This was already known at the time when they introduced
their protocol. The reason this protocol is not zero-knowledge follows from the undesirable fact
that dishonest verifiers can discover the (random) colouring of non-edge pairs of nodes in the
graph, revealing if they are of the same colour or not in the provers’ colouring.
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Fig. 2. Space-Time diagram of our ZK-MIP? for NP. (45◦ diagonals are the speed of light. )

We are able to remedy to the zero-knowledge difficulty by allowing the provers to use com-
mitments for the colour of their nodes. However they use these commitments in an innovative
way that we call the unveil-via-commit principle (of independent interest) explained below. For
this purpose we use commitments similar to those of Lunghi et al.[4] but in their simplest form
possible, over the field F3 (or F4 if you insist working in binary), and thus with extremely weak
binding property but also minimal in communication cost: a complete execution of the basic
protocol transmits exactly two node numbers (using only log |V | bits each) and two trits from
verifiers to provers and two trits back from the provers to verifiers (see Fig. 2). This implies that
for a fixed communication speed, the minimal distance of the provers in our protocol increases
logarithmically with the number of nodes whereas the same parameter grows quadratically in [6].
Nevertheless, this is good enough to obtain a zero-knowledge version of the protocol that remains
sound against local pairs of provers. The main idea being that the provers will each commit to
the colours of two requested nodes only if they form an edge of the graph. To unveil the colour
of any node, the verifiers must request commitment of the same node by both provers but using
different randomizations. This way the verifiers may compute the colour of a node from the linear
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system established by the two commitments and not by explicitly requesting anyone to unveil.
This is the unveil-via-commit principle (very similar to the double-spending mechanism of the
untraceable electronic cash of Chaum, Fiat and Naor[13]). We then use the Lemma of [11] to
prove soundness of the three-prover version of this protocol even when the provers are entangled.
A positive side of the protocol of [6], however, is the fact that only two provers are necessary while
we use three. Zero-Knowledge follows from the fact that only two edge nodes can be unveiled by
requesting the same edge to both provers. Otherwise only a single node may be unveiled. Finally,
we show that even the three-prover version of this protocol retains the zero-knowledge property:
requesting any three edges from the provers may allow the verifiers to unveil the colours of a
triangle in the graph but never two end-points that do not form an edge (going to four provers
would however defeat the zero-knowledge aspect).

An actual physical implementation of this protocol is currently being developed in collabo-
ration with Pouriya Alikhani (McGill), Nicolas Brunner, Sébastien Designolle, Weixu Shi, and
Hugo Zbinden (Université de Genève).

1.1 Implementations Issues

Traditionally in the setup of Multi-Prover Interactive Proofs, there is a single verifier interacting
with the many provers. However, when implementing no-communication via spatial separation
(the so called relativistic setting) it is standard to break the verifier in a number of verifiers equal
to the number of provers, each of them interacting at very short distance from their own prover.
The verifiers can use the timing of the replies of their respective provers to judge their relative
distance. In practice, this means that we can implement MIPs under relativistic assumptions if the
verifier are “split” into multiple verifiers, each locally interacting with its corresponding prover.
The verifiers use the distance between themselves to enforce the impossibility of the provers to
communicate: no message from a verifier can be used to reply to another verifier faster than the
speed of light wherever the provers are located.

Moreover, multi-prover interactive proof systems may have several rounds in addition to
several provers. In general, protocols with several rounds may cause a treat to the inherent
assumption that the provers are not allowed to communicate during the protocol’s execution.
Nevertheless, most of the existing literature resolves this issue by providing an honest verifier that
is non-adaptive. To simplify this task, most of the protocols are actually single-round. We stick
to these guidelines in this work. Moreover, in order to prove soundness of our protocols against
entangled provers, we use a theorem that is currently only proven for single-round protocols. The
protocols we describe are indeed single-round and non-adaptive.

2 Preliminaries

2.1 Notations

Random variables A,B ∈ Γ are said to be equivalent, denoted A = B, if for all x ∈ Γ ,
Pr (A = x) = Pr (B = x). The class of probabilistic polynomial-time Turing machines will be
denoted PPT in the following. A PPT Turing machine is one having access to a fresh infinite
read-only tape of random values (uniform values from the set of input symbols) at the outset of
the computation. In the following, adversaries will also be allowed (in some cases) to be quantum
machines. The precise ways quantum and classical machines are defined is not important in the
following.

For M a Turing machine, we denote by M(x) it execution with x on its input tape (x
being a string of the tape alphabet symbols). A Turing machine (quantum or classical) aug-
mented with read-only auxiliary-input tapes and write-only auxiliary-output tapes is called an
interactive Turing machine (ITM). Read-only input tapes provide incoming messages while the
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write-only output tapes allow to send messages. Interactive Turing machine M1 and M2 are
said to interact when for each of them, one of its write-only auxiliary-output tape corresponds
to one read-only auxiliary-input tape of the other Turing machine. An execution of interactive
Turing machines M1, . . . ,Mk on common input x is denoted [M1 . . .Mk](x). For 1 ≤ i ≤ k,
machine Mi accepts the interactive computation on input x if it stops in state accept after
the execution [M1 . . .Mk](x). When the ITM Mi that accepts a computation is clear from the
context, we say that [M1 . . .Mk](x) accepts when Mi’s final state is accept. In this scenario,
Pr ([M1 . . .Mk](x) = accept) denotes the probability that Mi terminates in state accept upon
common input x. Quantum machines are also interacting through communication tapes the
same way than for classical machines. When a quantum machine M1 interacts with a classical
machine M2, we suppose that the write-only auxiliary tape and the reade-only auxiliary tape
of M1 used to communicate with M2 are classical. This is the situation we will be addressing
almost all the time in the following. A quantum machine M is also allowed to have a quantum
auxiliary read-only input tape that may contain a part of a quantum state shared with other
machines. This allows to model machines sharing entanglement at the outset of an interactive
computation. Henceforth, we suppose that the (main) input tape of all machines (quantum or
classical) is classical.

In the following, G = (V,E) denotes an undirected graph with vertices V and edges E. If
n = |V | then we denote the set of vertices in G by V = {1, 2, . . . , n}. We suppose that (i, i) /∈ E
for all 1 ≤ i ≤ n (i.e. G has no loop). We denote uniquely each edge in E as (i, j) with j > i.
For i ∈ V , let Edges(i) := {(j, i) ∈ E}j<i ∪ {(i, j) ∈ E}j>i be the set of edges connecting vertex
i in G. For e, e′ ∈ E, we define e ∩ e′ = i ∈ V if e and e′ have only one vertex i ∈ V in common.
When e and e′ have four distinct vertices in V , we set e ∩ e′ = 0. Finally, when e = e′, we set
e ∩ e′ := ∞. For readability, we use the following special notations: (a, b) 6=6= (c, d) means a 6= c
and b 6= d, while as always, (a, b) 6= (c, d) simply means a 6= c or b 6= d.

2.2 Non-local Games, Multi-Prover Interactive Proofs, and Relativistic Proofs

Multi-provers interactive protocols are protocols involving a set of provers modelled by interactive
Turing machines, each of them interacting with an interactive PPT Turing machine called the
verifier V. Although all provers may share an infinite read-only auxiliary input tape at the outset
of their computation, they do not not interact with each other. When the provers are quantum,
an extra auxiliary read-only quantum input tape is given and can be entangled with other provers
at the beginning.

Definition 1. Let P1, . . . ,Pk be computationally unbounded interactive Turing machines and
let V be an interactive PPT Turing machine. The Pi’s share a joint, infinitely long, read-only
random tape (and an auxiliary reads-only quantum input tape if the provers are quantum). Each
Pi interacts with V but cannot interact with Pj for any 1 ≤ j 6= i ≤ k. We call [P1, . . . ,Pk,V] a
k-prover interactive protocol (k–prover IP).

A [P1, . . . ,Pk,V] k-prover interactive protocol is a multi-prover interactive proof system for L
if it can be used to show V that a public input x is such that x ∈ L. At the end of its computation,
V concludes x ∈ L if and only if it ends up in state accept. We restrict our attention to interactive
proof systems with perfect completeness since all our protocols have this property.

Definition 2. The k–prover interactive protocol Π = (P1, . . . ,Pk,V) is said to be a k-prover
interactive proof system with perfect completeness for L if there exists q(n) < 1 − 1

poly(n) such

that following holds:

perfect completeness: (∀x ∈ L)
[
Pr
(
[P1, . . . ,Pk,V](x) = accept

)
= 1
]
,

soundness: (∀x /∈ L)(∀P̃1, . . . , P̃k)
[
Pr
(
[P̃1, . . . , P̃k,V](x) = accept

)
≤ q(|x|)

]
.
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The parameter q(|x|) is called the soundness error of Π. Soundness can hold against classical
provers or against quantum provers sharing entanglements. The former case is called sound
against classical provers while to latter is called sound against entangled provers.

Consider a k–prover interactive proof system Π(x) (with or without perfect completeness) for
L executed with public input x /∈ L. In this situation,Π(x) defines what is called a quantum game.
The minimum value q(|x|) such that for all P′1, . . . ,P

′
k, Pr

(
[P′1, . . . ,P

′
k,V](x) = accept

)
≤ q(|x|)

is often called the classical value of game Π[x] and is denoted ω(Π(x)) when the provers are
restricted to be classical and unable to communicate with each other upon public input x. When
the provers, still unable to communicate with each other, are allowed to carry their computation
quantumly and share entanglements, we denote by ω∗(Π(x)) ≥ ω(Π(x)) the minimum value
q(|x|) such that for all such quantum provers P′1, . . . ,P

′
k, Pr

(
[P′1, . . . ,P

′
k,V](x) = accept

)
≤ q(|x|).

In this case, ω∗(Π(x)) is called the quantum value of game Π(x). A k–prover interactive proof
system for L is said to be symmetric if V can permute the questions to all provers without
changing their distribution. The following result of Kempe, Kobayashi, Matsumoto, Toner, and
Vidick[11] shows that the classical value of a symmetric one-round classical game cannot be
too far from the quantum value of a modified game. Given a symmetric one-round two-prover
game Π, one can always add a third prover P3 and V asks P3 the same question than P1 with
probability 1

2 or the same question than P2 with probability 1
2 . Then, V accepts if P1 and P2

would be accepted in Π(x) and if P3 returns the same answer than the one returned by the
prover it emulates. We call Π ′(x) the modified game obtained that way from Π(x).

Lemma 1 ([11], Lemma 17). Let Π(x) be a two-prover one-round symmetric game and let
Π ′(x) be its modified version with three provers. If ω∗(Π ′(x)) > 1 − ε then ω(Π(x)) > 1 − ε −
12|Q|

√
ε where Q is the set of V’s possible questions to a prover in Π.

Lemma 1 remains true for non-symmetric two-prover one-round protocol by first making them
symmetric at the cost of increasing the size of Q. This is always possible without changing the
classical value of the game and by using twice the number of questions |Q| of the original game
(Lemma 4 in [11]).

Let [P1, . . . ,Pk,V] be a k–prover IP. We denote by view(P1, . . . ,Pk,V, x) the probability
distribution of V’s outgoing and incoming messages with all provers according V’s coin tosses.

Definition 3. Let [P1, . . . ,Pk,V] be a k-prover interactive proof system for L. We say that

[P1, . . . ,Pk,V] is perfect zero-knowledge if for all PPT interactive Turing machines Ṽ there exists

a PPT machine Sim (i.e. the simulator) having blackbox access to Ṽ such that for all x,

view(P1, . . . ,Pk, Ṽ, x) = Sim(x) ,

and both random variables are equivalent. In the following, we allow Ṽ to be a quantum ma-
chine but our simulators will always be classical machines with blackbox access to Ṽ. If the
zero-knowledge condition holds against quantum Ṽ, we say that the proof system is perfect zero-
knowledge against quantum verifiers.

2.3 Multi-Prover Commitments with Implicit Unveiling

Our multi-prover proof systems for 3COL use a simple 2-committer commitment scheme with a
property allowing to guarantee perfect zero-knowledge. In this section, we give the description of
this simple commitment scheme with its important properties four our purposes.

Assume that provers P1 and P2 share ` values c1, c2, . . . , c` ∈ F where F is a finite set. V wants
to check that these values satisfy some properties without revealing them all. Assume that F is
a field with operations + and ·.
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Bit commitment schemes have been used in the multi-prover model ever since it was intro-
duced in [2]. The original scheme was basically wi := bi · ri+ ci, a commitment wi to value ci ∈ F
using pre-agreed random mask bi ∈R F and randomness ri 6= 0 provided by V. Kilian[14] had a
binary version where each bit ci := c1i ⊕ c2i ⊕ c3i is shared among provers P1 and P2 (and therefore

F needs only to be a group). To commit ci, V samples chi from P1 and cji from P2 at random.

If j = h but cji 6= chi , V immediately rejects the commitment. Otherwise either P1 or P2 may
unveil by disclosing c1i , c

2
i , c

3
i at a later time. Somehow, bad recollection of [2]’s scheme lead [15]

to a similar but different scheme defining wi := ci · ri + bi, a commitment wi to bit ci ∈ {0, 1}
using pre-agreed bit mask bi ∈R {0, 1} and binary randomness ri provided by their corresponding
verifiers. Although this form of commitment is intimately connected to the CHSH game [16] and
the Popescu-Rohrlich box[17], this proximity is not relevant for the soundness and the complete-
ness of our protocols, even against entangled provers. Although the (limited) binding property
of these schemes has been established in [3, 18, 5, 19, 4, 6] against entangled provers, we only use
this commitment scheme against classical provers, only sharing classical information before the
execution of the protocol. The weak binding property of these schemes against entangled provers
does not allow us to get sound and complete proof systems against these provers. We shall rather
get completeness and soundness against entangled provers using a different technique from [11]
that requires a third prover.

For an arbitrary field F, the commitment scheme produces commitment wi := ci · ri + bi to
field element ci ∈ F using pre-agreed field element mask bi (specific to value 1 ≤ i ≤ `) and
random field element ri 6= 0 provided by their corresponding verifiers. Many results were proven
for this specific form of the commitments. Notice however that the two versions discussed above,
wi := bi · ri + ci in the former case and wi := ci · ri + bi in the latter have equivalent binding
property(left as a simple exercice). Considering, the former as being the degree-one secret sharing
[20] of ci hidden in the degree zero term, while the latter being the degree-one secret sharing of
ci hidden in the degree one term, we decided to use the former (original BGKW form) because
all the known results about secret sharing are generally presented in this form. In particular, this
form is more adapted to higher degree generalizations such as wi := ai · r2i + bi · ri + ci being the
degree-two secret sharing of ci hidden in the degree zero term, and so on.

Moreover, this choice turns out to simplify our (perfect) zero-knowledge simulator. For the
rest of this paper, we use wi := bi · ri + ci where wi, bi, ci ∈ F3 and ri ∈ F∗3. Provers therefore
commit to trits, one value for each node corresponding to its colour in a 3–colouring of graph
G = (V,E). The values shared between P1 and P2 are therefore, for each node i ∈ V , the colour
ci of that node.

Suppose that V asks P1 to commit on the colour ci of node i ∈ V using randomness r ∈R F∗3.
Let w = bi · r + ci be the commitment returned to V by P1. Suppose V asks P2 to commit on
the colour c′j of node j ∈ V using randomness r′ ∈R F∗3. Let w′ = bj · r′ + c′j be the commitment
issued to V by P2. The following 3 cases are possible depending on V’s choices for i, j, r, and r′:

1. (forever hiding) if i 6= j then V learns nothing on neither ci nor c′j since w and w′ hide ci and
c′j with random and independent masks bi · r and bj · r′ respectively. Even knowing r, r′ ∈ F∗3,
bi · r and bj · r′ are uniformly distributed in F3.

2. (the consistency test) If i = j and r = r′ then V can verify that w = w′. This corresponds to
the immediate rejection of V in Kilian’s two-prover commitment described above. It allows
V to make sure that P1 and P2 are consistant when asked to commit on the same value.

3. (implicit unveiling) If i = j and r′ 6= r then V can learn ci (assuming w = bi · r + ci and
w′ = bi · r′ + ci) the following way. V simply computes ci := 2−1 · (w + w′) (Note that over
an arbitrary field ci := (wr′− w′r)(r′− r)−1 whenever r 6= r′). Interpreting the meaning
of this test can be done when considering a strategy for P1 and P2 that always passes the
consistency test. In this case, w = bi · r + ci and w′ = bi · r′ + ci are satisfied and V learns
the committed value ci.
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As long as P1 and P2 are local (or quantum non-local) they cannot distinguish which option V
has picked among the three. The consistency test makes sure that if P1 and P2 do not commit
on identical values for some 1 ≤ i ≤ ` then V will detect it when V picks the consistency test for
commitment w and w′ in position i.

3 Classical Two-Prover Protocol

First, consider a small variation over the protocol of Cleve et al. presented in [12]. In their
protocol, when P1 and P2 both know and act upon the same valid 3-colouring of G, V asks each
prover for the colour of a vertex in G = (V,E). Consistency is verified when V asks the same
vertex to each prover and compares that the same colour has been provided. The colorability
is checked when the provers are asked for the colour of two connected vertices in G. This way
of proceeding is however problematic for the zero-knowledge condition. V could be asking two
nodes that do not form an edge for which their respective colour will be unveiled. This certainly
allows V to learn something about P1’s and P2’s colouring. Indeed, repeating this many times
will allow V to efficiently reconstruct a complete colouring. To remedy partially this problem, V
is instead asking each prover the colouring of an entire edge of G. The colouring is (only) checked
when both provers are asked the same edge, while consistency is checked when two intersecting
edges are asked to the provers.

3.1 Distribution of questions

Let G = (V,E) be a connected undirected graph. Let us define the probability distribution
DG = {(p(e, e′), (e, e′))}e,e′∈E for the pair (e, e′) ∈ E × E that V picks with probability p(e, e′)
before announcing e to P1 and e′ to P2. For e, e′ ∈ E such that e ∩ e′ = 0, we set p(e, e′) := 0 so
that V never asks two disconnected edges in G (this would give no useful information).

The first thing to do is to pick e = (i, j) ∈ E uniformly at random. With probability ε (to be
selected later), we set e′ = e, which allows for an edge-verification test. With probability 1−ε, we
perform a well-definition test as follows. With probability 1

2 , e′ ∈ Edges(i) uniformly at random
and with probability 1

2 , e′ ∈ Edges(j) uniformly at random. In other words, the well-definition
test picks the second edge e′ with probability 1

2 among the edges connecting i ∈ V and with
probability 1

2 among the edges connecting j ∈ V . It follows that for e′ ∈ Edges(i)∪Edges(j) with
e 6= e′, we have, for e = (i, j) ∈ E,

p(e, e′) =
1− ε
2|E|

(
|{e′} ∩ Edges(i)|
|Edges(i)|

+
|{e′} ∩ Edges(j)|
|Edges(j)|

)
. (1)

We also get

p(e, e) =
ε

|E|
+

1− ε
2|E|

(
1

|Edges(i)|
+

1

|Edges(j)|

)
≥ ε

|E|
. (2)

It is easy to verify that DG is a properly defined probability distribution over pairs of edges.

3.2 A Variant Over the Two-Prover Protocol of Cleve et al.

Distribution DG produces two edges where the first one is provided to P1 while the second one
is provided to P2. Each prover then returns the colour of each node of the edge to V. We denote

the resulting protocol Π
(2)
std .
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Protocol Π
(2)
std [G] : Two-prover, 3-COL.

Provers P1,P2 pre-agree on a random 3-colouring of G: {(i, ci)|ci ∈ F3}i∈V such that
(i, j)∈E =⇒ cj 6= ci.
Interrogation phase:

– V picks ((i, j), (i′, j′)) ∈DG
E × E, sends (i, j) to P1 and (i′, j′) to P2.

– If (i, j)∈E then P1 replies with ci, cj .
– If (i′, j′)∈E then P2 replies with ci′ , cj′ .

Check phase:

– Edge-Verification Test:
if (i, j) = (i′, j′) then V accepts iff ci = ci′ 6= cj′ = cj .

– Well-Definition Test:
if (i, j) ∩ (i′, j′) = h ∈ V then V accepts iff ch = c′h.

The perfect soundness of this protocol is not difficult to establish along the same lines of the
proof of soundness for the original protocol in [12]. On the other hand, zero-knowledge does not
even hold against honest verifiers. V learns the colour of each node contained in any two edges
of G. This is certainly information about the colouring that V learns after the interaction. To
some extend, the modifications we applied to the 2-prover interactive proof system of [12] leaks
even more to V. In the next section, we show that the 2-prover commitment scheme, that we

introduced in Sect. 2.3, can be used in protocol Π
(2)
std to prevent this leakage completely.

4 Perfect Zero-Knowledge Two-Prover Protocol

We modify the protocol of section 3.2 to prevent V from learning the colours of more than two
connected nodes in G. The idea is simple, P1 and P2 will return commitments for the colours of
the nodes asked by V. The implicit unveiling of the commitment scheme described in section 2.3
will allow V to perform both the edge-verification and well-definition tests in a very similar way

that in protocol Π
(2)
std . The commitments require V to provide a random nonzero trit for each

node of the edge requested to a prover.

4.1 Distribution of questions

We now define the probability distribution D′G for V’s questions in protocol Π
(2)
loc [G] defined in

the following section. It consists in one edge and two nonzero trits for each prover:

D′G = {(p′(e, r, s, e′, r′, s′), ((e, r, s), (e′, r′, s′))}e,e′∈E,r,s,r′,s′∈F∗3

upon graph G = (V,E) and where (e, r, s) is the question to P1 and (e′, r′, s′) is the question to
P2. D′G is easily derived from the distribution DG = {(p(e, e′), (e, e′))}e,e′∈E for the questions in

Π
(2)
std [G], as defined in section 3.1. First, an edge e ∈R E is picked uniformly at random. Together

with e, two nonzero trits r, s ∈R F∗3 are picked at random. Then, as in DG, with probability ε
(to be selected later) the second edge e′ = e, in which case we always set r′ = −r and s′ = −s.
This case allows for an edge-verification test. Finally, with probability 1 − ε, we pick e′ with
probability p(e, e′) and pick r′, s′ ∈R F∗3 so that the couple ((e, r, s), (e′, r′, s′)) is produced with
probability 1

16p(e, e
′) for all e, e′ ∈ E, and r, s, r′, s′ ∈ F∗3. This will allow for a well-definition test.

A consequence of (1) is that for e = (i, j) ∈ E, e′ ∈ Edges(i) ∪ Edges(j) with e 6= e′,

p′(e, r, s, e′, r′, s′) ≥ 1− ε
16|E|

(
|{e′} ∩ Edges(i)|
|Edges(i)|

+
|{e′} ∩ Edges(j)|
|Edges(j)|

)
. (3)

9



According to (2), we also get

p′(e, r, s, e, r, s) =
p(e, e)

4
≥ ε

4|E|
. (4)

It is easy to verify that D′G is a properly defined probability distribution.

4.2 The Protocol

The protocol is similar to Π
(2)
std except that instead of returning to V the colour for each node

of an edge in G, each prover returns commitments with implicit unveilings of these colours. If V
asks two disjoint edges then V learns nothing about the values committed by the forever-hiding
property of the commitment scheme. The resulting 2–prover one-round interactive proof system

is denoted Π
(2)
loc .

Protocol Π
(2)
loc [G] : Two-prover, 3-COL

P1 and P2 pre-agree on random masks bi ∈R F3 for each i ∈ V and a random 3-colouring
of G: {(i, ci)|ci ∈ F3}i∈V such that (i, j)∈E =⇒ cj 6= ci.
Commit phase:

– V picks (((i, j), r, s), ((i′, j′), r′, s′)) ∈D′G
(
E × (F∗3)2

)2
, sends ((i, j), r, s) to P1 and

((i′, j′), r′, s′) to P2.
– If (i, j) ∈ E then P1 replies wi = bi · r + ci and wj = bj · s+ cj .
– If (i′, j′) ∈ E then P2 replies w′i′ = bi′ · r′ + ci′ and w′j′ = bj′ · s′ + cj′ .

Check phase:

Edge-Verification Test:
– if (i, j) = (i′, j′) and (r′, s′) 6=6= (r, s) then V accept iff wi + w′i 6= wj + w′j .

Well-Definition Test:
– If (i, j) = (i′, j′) and ¬ ((r′, s′) 6=6= (r, s)) then V accepts iff ((wi = w′i) ∨ (r 6= r′)) ∧

((wj = w′j) ∨ (s 6= s′)).
– if (i, j) ∩ (i′, j′) = i and r′ = r then V accepts iff wi = w′i.
– If (i, j) ∩ (i′, j′) = j and s′ = s then V accepts iff wj = w′j .

Clearly, Π
(2)
loc satisfies perfect completeness. The following theorem establishes that in addition

to perfect completeness, Π
(2)
loc is sound against classical provers.

Theorem 1. The two-prover interactive proof system Π
(2)
loc is perfectly complete with classical

value ω(Π
(2)
loc [G]) ≤ 1− 1

12·|E| upon any graph G = (V,E) /∈ 3COL.

Proof. Perfect completeness is obvious. Assume G /∈ 3COL and let us consider the probability δ
that V detects an error in the check phase when interacting with two local dishonest provers P̃1

and P̃2. Π
(2)
loc is a one-round protocol where the provers cannot communicate directly with each

other nor through V’s questions since they are independent of the provers’ answers. It follows
that the strategy of P̃1 and P̃2 can be made deterministic without damaging the soundness error
by letting each prover choosing the answer that maximizes her/his probability of success given
her/his question. Therefore, consider a deterministic strategy as a pair of arrays W `[i, r, j, s] ∈ F2

3

to be used by prover P̃` for ` ∈ {1, 2} (i.e. we only care about the entries where (i, j) ∈ E
upon question ((i, j), r, s)). For z ∈ {1, 2}, W `

z [·, ·, ·, ·] is the z-th component of the output pair
W `[·, ·, ·, ·]. We let W `

1 (i, r, j, s) = W `
2 (j, s, i, r), as the order in which the vertices of an edge are

10



given to a prover is irrelevant (V can always choose the same order). We say that W [i, r] for
[i, r] ∈ E × F∗3 is well defined if for all j, k such that (i, j), (i, k)∈Edges(i) 6= ∅ and ∀s, t ∈ F∗3,

W 1
1 [i, r, j, s] = W 2

1 [i, r, k, t] . (5)

ForW [i, r] well defined, we setW [i, r] := W 1
1 [i, r, j, 1] for an arbitrary j such that (i, j) ∈ Edges(i).

We now lower bound the probability δwdt > 0 that, when W [i, r] is not well-defined for some
i ∈ V and r ∈ F∗3, the well-definition test will detect it. When (5) is not satisfied , we have
W 1

1 [i, r, j, s] 6= W 2
1 [i, r, k, t] for some (i, j), (i, k) ∈ Edges(i). Let e = (i, j) and e′ = (i, k) be these

two edges. According to (3) (and (1) when e = e′), the well-definition test will then detect an
error with probability

Pr (V picks e and e′ with randmoness r, s, t) = p′(e, r, s, e′, r, t) ≥ 1− ε
16 · |E||Edges(i)|

. (6)

We can do much better. Consider W 1
1 [i, r,m, u],W 2

1 [i, r,m, u] for (i,m) ∈ Edges(i) and u ∈ F∗3.
For i ∈ V and and value r ∈ F∗3 fixed, three cases can happen:

1. W 1
1 [i, r,m, u] 6= W 2

1 [i, r, k, t], in which case e = (i,m) and e′ = (i, k) are incompatibe for
values u and t, or

2. W 1
1 [i, r, j, s] 6= W 2

1 [i, r,m, u], in which case e = (i, j) and e′ = (i,m) are incompatible for
values s and u, or

3. W 1
1 [i, r,m, u] = W 2

1 [i, r, k, t] and W 2
1 [i, r,m, u] = W 1

1 [i, r, j, s], in which case W 1
1 [i, r,m, u] 6=

W 2
1 [i, r,m, u] and e = e′ = (i,m) are incompatible for value u on both sides.

In other words, if (i, j), (i, k) ∈ Edges(i) are such that W 1
1 [i, r, j, s] 6= W 2

1 [i, r, k, t] then for any
(i,m) ∈ Edges(i) and for any randomness u ∈ F∗3 associated to node m, V catches the provers with
probability expressed on the right hand side of (6). It follows that if W [i, r] is not well defined
then there are 2 · |Edges(i)| ways for V to catch the provers and each of these has probability at
least 1−ε

16·|E|·|Edges(i)| to be picked. It follows that,

δwdt ≥
2(1− ε) · |Edges(i)|
16 · |E| · |Edges(i)|

=
1− ε
8 · |E|

.

Now, assume that for all i ∈ E and r ∈ F∗3, W [i, r] is well-defined, which means that the
commitment values produced by the provers satisfy the consistency test. As discussed in section
2.3, when the commitments are consistent, the unique values committed upon are defined by
ci := 2−1 · (W [i, r] +W [i,−r]). Since G /∈ 3COL, two of the nodes must be of the same colour
at the end-points of at least one edge (i∗, j∗) ∈ E. In this case the edge-verification test will
detect it when (i∗, j∗) is the edge announced to both provers and if randomness (r, s) ∈ F∗3 × F∗3
is announced to P1 then (−r,−s) is the randomness announced to P̃2. Using (4), the probability
δevt to detect such an edge when W [i, r] is well defined for all i ∈ V and r ∈ F∗3 satisfies

δevt ≥ min
e∈E

(p′(e, r, s, e, r, s)) ≥ ε

4 · |E|
.

Therefore, the detection probability δ of any deterministic strategy for G /∈ 3COL satisfies

δ ≥ min(δwdt, δevt) ≥
1

12 · |E|
(maximized at ε = 1/3) .

The result follows as the classical value of the game ω(Π
(2)
loc [G]) ≤ 1− δ. �
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To prove (perfect) zero-knowledge, it suffices to show that if ((i, j), r, s) and ((i′, j′), r′, s′)
are selected arbitrarily, V can determine at most the colours of two nodes (that form an edge).

The commitments prevent a dishonest prover Ṽ to learn the colours of two nodes that are not
connected by an edge in G. Proving this is not very hard and will be done in Section 5.3 for the
three-prover case (although with three provers, Ṽ may also learn the colour of three nodes that
form a triangle). The addition of a third prover will allow, using lemma 1, to get soundness against
entangled provers without compromising zero-knowledge. As shown in [12], their protocol is not

necessarily sound against two entangled provers. We also do not know whether Π
(2)
std is sound

against two entangled provers.

5 Three-Prover Protocol Sound Against Entangled Provers

The three-prover protocol Π
(3)
qnl, defined below, is identical to Π

(2)
loc except that P3 is asked to

repeat exactly what P1 or P2 has replied. The prover that P3 is asked to emulate is picked

at random by V. An application of lemma 1 allows to conclude the soundness of Π
(3)
qnl against

entangled provers. Zero-knowledge remains since the only way to provide V with the colours of
more than two connected nodes is if they form a complete triangle of G. This reveals nothing
beyond the fact that G ∈ 3COL to V, since all nodes will then show different colours.

5.1 Distribution of questions

The probability distribution D′′G for V’s questions to the three provers is easily obtained from the

distributionD′G for the questions in protocolΠ
(2)
loc [G]. V picks ((e, r, s), (e′, r′, s′)) ∈D′G

(
E × (F∗3)2

)2
and sets e′′ = e, r′′ = r, and s′′ = s with probability 1

2 or sets e′′ = e′, r′′ = r′, and s′′ = s′ also
with probability 1

2 . Defined that way, D′′G is a properly defined probability distribution for V’s
three questions, each one in E × (F∗3)2.
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5.2 The Protocol

Protocol Π
(3)
qnl[G] : Three-prover, 3-COL.

Provers P1,P2, and P3 pre-agree on random values bi ∈R F3 for all i ∈ V and a random
3-colouring of G: {(i, ci)|ci ∈ {0, 1, 2}}i∈V such that (i, j)∈E =⇒ cj 6= ci.
Commit phase:

– V picks (((i, j), r, s), ((i′, j′), r′, s′), ((i′′, j′′), r′′, s′′)) ∈D′′G
(
E × (F∗3)2

)3
, sends ((i, j), r, s)

to P1, sends ((i′, j′), r′, s′) to P2, and sends ((i′′, j′′), r′′, s′′) to P3.
– If (i, j) ∈ E then P1 replies wi = bi · r + ci and wj = bj · s+ cj .
– If (i′, j′) ∈ E then P2 replies w′i′ = bi′ · r′ + ci′ and w′j′ = bj′ · s′ + cj′ .
– If (i′′, j′′) ∈ E then P3 replies w′′i′′ = bi′′ · r′′ + ci′′ and w′′j′′ = bj′′ · s′′ + cj′′ .

Check phase:
Consistency Test:

– If ((i′′, j′′), r′′, s′′) = ((i, j), r, s) then V rejects if (wi, wj) 6= (w′′i′′ , w
′′
j′′).

– If ((i′′, j′′), r′′, s′′) = ((i′, j′), r′, s′) then V rejects if (w′i′ , w
′
j′) 6= (w′′i′′ , w

′′
j′′).

Edge-Verification Test:
– if (i, j) = (i′, j′) and (r′, s′) 6=6= (r, s) then V accept iff wi + w′i 6= wj + w′j .

Well-Definition Test:
– if (i, j) ∩ (i′, j′) = i and r = r′ then V accepts iff wi = w′i.
– If (i, j) ∩ (i′, j′) = j and s = s′ then V accepts iff wj = w′j .

In protocol Π
(3)
qnl, after the three questions picked according D′′G by V have been answered by the

the provers, V accepts if and only if the replies of P1 and P2 are accepted in Π
(2)
loc and in addition,

P3 gave the same reply than the prover it emulates.

The soundness of protocol Π
(3)
qnl against entangled provers can easily be shown a direct conse-

quence of the soundness of protocol Π
(2)
loc against classical provers, by an application of Lemma 1.

Indeed, the soundness error corresponds to the quantum value of the game when G /∈ 3COL and

Π
(2)
loc is obviously symmetric.

Theorem 2. The three-prover interactive proof system Π
(3)
qnl is perfectly complete and has quan-

tum value

ω∗(Π
(3)
qnl [G]) ≤ 1−

(
1

25|E|

)4

(7)

upon any graph G = (V,E) /∈ 3COL.

Proof. Assume G = (V,E) /∈ 3COL. The contrapositive of Lemma 1 indicates any one-round

symmetric game Π
(2)
loc [G] with classical value ω(Π

(2)
loc [G]) ≤ 1 − δ − 12|Q|

√
δ is such that the

modified game Π
(3)
qnl[G] has quantum value ω∗(Π

(3)
qnl[G]) ≤ 1 − δ. The set Q of questions to

each player satisfies |Q| = 4|E|. Theorem 1 establishes that δ + 12|Q|
√
δ ≥ 1

12|E| , which implies
√
δ ≥ 1

(1+12|Q|)·12·|E| = 1
12|E|+576|E|2 ≥

1
588|E|2 , and the result follows. �

As an immediate consequence of Theorem 2, Ω(|E|4) sequential repetitions of Π
(3)
qnl produces

an interactive proof system for 3COL with negligible soundness error. Although the resulting
proof system can be implemented on short distances, these many sequential communication
rounds need to be performed at high rate for a given proof to be concluded in reasonable time.

A few executions of Π
(3)
qnl could be run in parallel without having to increase (significantly) the

distances while reducing the number of sequential rounds. However, we don’t know how the

soundness error decreases when Π
(3)
qnl is run only a few times in parallel, even though the results

of Kempe and Vidick, a quantum version of Raz’s parallel repetition theorem[21], indicate that
Ω(|E|4) runs in parallel produces a proof system with negligible soundness error[22].
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5.3 Proof of Perfect Zero-Knowledge

In this section, we prove that protocol Π
(3)
qnl is perfect zero-knowledge. As a consequence, Π

(2)
loc is

also zero-knowledge since everything Ṽ sees in Π
(2)
loc can also be observed in Π

(3)
qnl. The proof of

zero-knowledge proceeds using the fact that a vertex must appear at least twice to have its colour
unveiled. This is the forever hiding property of the commitment scheme described in Section 2.3.
Notice that this would be enough for Ṽ to learn something about the colouring if no extra
condition on these three vertices is observed. In fact, we can easily show that only a few cases
of colour disclosure are possible and in each of these cases, Ṽ learns nothing about the colouring
that it could not have computed on its own. Ṽ can only learn colour of two connected vertices in
G and nothing else or the colours of three vertices forming a triangle in G. In each of these cases,
Ṽ learns random distinct colours for these vertices, which is to be expected by a valid 3-colouring
of G. Let us show why this is enforced by the properties (see Section 2.3) of the commitment

scheme. Remember that in order to learn the colour assigned to a vertex i ∈ V , Ṽ must ask
that vertex to at least 2 distinct provers. Otherwise, Ṽ sees only random values returned by the
provers. There are 7 cases of figure depending on how Ṽ selects the 3 edges asked. Figure 4 shows
all cases. The 3 edges indicated for each case are the one picked by Ṽ. The colours associated
to white vertices remain hidden by the forever hiding property of the commitment scheme. For
these vertices, the committed values received from the provers are just random and independent
elements in F3. In each of the 7 cases, the unveiled colours of the vertices are displayed in shade
of grey. We see that the only way to unveil the colour of two vertices (cases 2, 3, 4, 5, and 6) is
when they are connected by an edge, which means that the colours of both vertices are random
but distinct. The only way for Ṽ to learn the colour of 3 distinct vertices is when they form a
triangle (case 7). In this case, Ṽ learns three random and distinct colours. Clearly, this is nothing
more than something necessarily true when G ∈ 3COL.

These properties of the commitment scheme allows, for any quantum polynomial-time dis-
honest verifier Ṽ, an easy simulator for view(P1,P2,P3, Ṽ, G) when G ∈ 3COL, thus establishing

that Π
(3)
qnl is perfect zero-knowledge.

Theorem 3. The three-prover interactive proof system Π
(3)
qnl is perfect zero-knowledge against

quantum verifiers.

Proof. The simulator Sim, see Fig. 3, is classical given blackbox access to Ṽ (and Ṽ can be
quantum). Consider an execution Sim(G) upon graph G = (V,E). It first picks a random per-
mutation col[·] : F3 7→ F3 over three colours, each corresponding to a distinct element in F3.
Table mark[i, r] ∈ {true, false}, for i ∈ V and r ∈ F∗3, is initialized to false and will indicate if the
output of a prover has already been simulated for vertex i with randomness r. Table count[i],
for i ∈ V , counts the number of times vertex i has been asked so far during the simulation.
Variable c ∈ F3, initialized to 0, indicates the next colour index the simulator should use when a
new colour must be unveiled during the simulation.

Ṽ is then invoked to produce questions ((i`, j`), r`, s`) for all provers P`, ` ∈ {1, 2, 3}. Sim now
aims at setting the values (w`i` , w

`
j`

) for P`’s commitments. If (i`, j`) /∈ E, Sim produces no value

for (w`i` , w
`
j`

), exactly as P` in Π
(3)
qnl.

When (i`, j`) ∈ E, Sim first produces P`’s commitment w`i` for i` ∈ V and then produces P`’s

commitment w`j` for j` ∈ V . We show how to compute w`i` , w
`
j`

is computed similarly mutatis
mutandis:

– if mark[i`, r`] then Sim returns the value of w`i` already determined for the simulation of
the commitment of an earlier prover Ph, h < `. This ensures that both the commitment’s

consistency test performed and the well-definition test are always successful, as in Π
(3)
qnl with

honest provers.
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Simulator Sim(G) : Simulator for Ṽ’s view upon graph G in Π
(3)
qnl.

All arithmetic below is performed in F3.
1. Let col[·] be a uniform permutation of F3 and let c := 0.
2. ∀i∈V, ∀r∈F∗

3, let mark[i, r] := false and count[i] := 0.

3. Run Ṽ until it returns ((i1, j1), r1, s1), ((i2, j2), r2, s2), ((i3, j3), r3, s3).
4. For each ` ∈ {1, 2, 3} do:

– Whenever (i`, j`)∈E is provided by Ṽ, output (w`
i`
, w`

j`
) ∈ F3×F3 to Ṽ, both computed

as follows:
(a) If ¬mark[i`, r`] then
• If count[i`] = 0 then pick W [i`, r`] ∈R F3.
• If count[i`] = 1 then
∗ W [i`, r`] := −col[c]−W [i`,−r`],
∗ c := c+ 1.

• count[i`] := count[i`] + 1.
(b) If ¬mark[j`, s`] then
• If count[j`] = 0 then pick W [j`, s`] ∈R F3.
• If count[j`] = 1 then
∗ W [j`, s`] := −col[c]−W [j`,−s`],
∗ c := c+ 1.

• count[j`] := count[j`] + 1.
(c) mark[i`, r`] := true, mark[j`, s`] := true.
(d) w`

i`
:= W [i`, r`], w

`
j`

:= W [j`, s`].

Fig. 3. Simulator for Π
(3)
qnl.

– if ¬mark[i`, r`] then Sim has never simulated a commitment of the colour for vertex i` with
randomness r`. The value count[i`] indicates the number of time prior to this value for `,
vertex i` has been asked:
• If count[i`] = 0 then w`i` ∈R F3 is picked uniformly at random, as it should be when the

commitment value for the colour of vertex i` is observed in isolation.
• If count[i`] = 1 then the colour associated to vertex i` has been committed to value whi`

by an earlier simulated prover Ph, h < ` upon randomness −r` (otherwise, mark[i`, r`] =
true). Sim sets w`i` = −col[c]−whi` , which satisfies the implicit unveiling of random colour

col[c] = −w`i` − w
h
i`

. The current colour c is incremented.
The value of count[i`] is increased by one and mark[i`, r`] = true, as the colour of vertex i`
with randomness r` has been committed upon by the simulated prover P`.

Let (w1
i1
, w1

j1
), (w2

i2
, w2

j2
), and (w3

i3
, w3

j3
) be all commitment values simulated by Sim. As

discussed above and shown in Fig. 4, the colours of no more than 3 vertices are unveiled in the
process. Sim always unveils as many different colours there are colours unveiled to Ṽ. If Sim’s
simulated committed values unveils only the colour of one vertex then that colour is random, as

it should in this case in Π
(3)
qnl. If Sim’s committed values unveils the colours of exactly 2 vertices

then these 2 vertices form an edge in G and the colours are two different random colours, as it

should be in Π
(3)
qnl. Finally, when Sim’s committed values unveil the colours of exactly 3 vertices

then these vertices form a triangle in G. The 3 colours unveiled by Sim to Ṽ are different and

assigned randomly to each of the 3 vertices, as it is in Π
(3)
qnl. Otherwise, if w`i for i ∈ V has been

generated with only one random value then w`i is random and uniform in F3, exactly as it is in

Π
(3)
qnl in the same situation. It is now clear that,

view(P1,P2,P3, Ṽ, G) = Sim(G) ,
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and Π
(3)
qnl is perfect zero-knowledge. �

Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7

Fig. 4. The 7 ways to unveil the colours of at most 3 nodes in Π
(3)
qnl.

6 Conclusion and Open Problems

We have provided a three-prover perfect zero-knowledge proof system for NP sound against
entangled provers that is implementable in some well controlled environment. In order to make
it fully practical, it would be better to find a protocol with smaller soundness error and also
requiring only two provers. Is it possible? Moreover, we would like to extend our techniques to
prove any language in QCMA or QMA, the natural quantum extensions of NP. We would also

want to prove whether Π
(2)
std is sound against entangled provers. Finally, we seek a variant of Π

(2)
std

that would be sound against No-Signalling provers and a variant of Π
(2)
loc and Π

(3)
qnl that is both

sound against No-Signalling provers and Zero-Knowledge.
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