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Abstract

A secret-sharing scheme allows to distribute a secret s among n parties such that only some pre-
defined “authorized” sets of parties can reconstruct the secret, and all other “unauthorized” sets learn
nothing about s. The collection of authorized sets is called the access structure. For over 30 years, it
was known that any (monotone) collection of authorized sets can be realized by a secret-sharing scheme
whose shares are of size 2n−o(n) and until recently no better scheme was known. In a recent break-
through, Liu and Vaikuntanathan (STOC 2018) have reduced the share size to 20.994n+o(n), which was
later improved to 20.892n+o(n) by Applebaum et al. (EUROCRYPT 2019).

In this paper we improve the exponent of general secret-sharing down to 0.637. For the special case
of linear secret-sharing schemes, we get an exponent of 0.762 (compared to 0.942 of Applebaum et al.).

As our main building block, we introduce a new robust variant of conditional disclosure of secrets
(robust CDS) that achieves unconditional security even under limited form of re-usability. We show that
the problem of general secret-sharing reduces to robust CDS with sub-exponential overhead and derive
our main result by implementing robust CDS with a non-trivial exponent. The latter construction follows
by presenting a general immunization procedure that turns standard CDS into a robust CDS.
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1 Introduction

Secret-sharing schemes, introduced by Shamir [49] and Blakley [17], are a central cryptographic tool with
a wide range of applications including secure multiparty computation protocols [14, 19], threshold cryptog-
raphy [24], access control [45], attribute-based encryption [33, 52], and oblivious transfer [50, 51]. In its
general form [36], an n-party secret-sharing scheme for a family of authorized sets F ⊆ 2[n] (referred to as
access structure) allows to distribute a secret s into n shares, s1, . . . , sn, one for each party, such that: (1)
every authorized set of parties, A ∈ F , can reconstruct s from its shares; and (2) every unauthorized set of
parties, A /∈ F , cannot reveal any partial information on the secret even if the parties are computationally
unbounded. For example, in the canonical case of threshold secret-sharing the family F contains all the sets
whose cardinality exceeds some certain threshold. For this case, Shamir’s scheme [49] provides a solution
whose complexity, measured as the total share-size

∑
i |si|, is quasi-linear, O(n log n), in the number of

parties n. Moreover, Shamir’s scheme is linear, that is, each share can be written as a linear combination of
the secret and the randomness which are taken from a finite field. This form of linearity turns to be useful
for many applications. (See Section 3 for a formal definition of secret sharing and linear secret sharing.)

The complexity of general secret sharing. Determining the complexity of general access structures is
a basic, well-known, open problem in information-theoretic cryptography. Formally, given a (monotone)
access structure1 F we let SS(F ) := minD realizes F |D|, where |D| denotes the total share size of a secret-
sharing scheme D.2 For over 30 years, since the pioneering work of Ito et al. [36], all known upper-bounds
on SS(F ) are tightly related to the computational complexity of the characteristic function F . Here we think
of F as the monotone function that given a vector x ∈ {0, 1}n outputs 1 if and only if the corresponding
characteristic set A = {i : xi = 1} is an authorized set. Specifically, it is known that the complexity of an
access structure is at most polynomial in the representation size of F as a monotone CNF or DNF [36], as a
monotone formula [15], as a monotone span program [39], or as a multi-target monotone span program [16].
This leads to an exponential upper-bound of 2n(1−o(1)) for any n-party access structure F .

On the other hand, despite much efforts, the best known lower-bound on the complexity of an n-party
access structure is Ω(n2/ log n) due to [23]. Moreover, we have no better lower-bounds even for non-
explicit functions!3 This leaves a huge exponential gap between the upper-bound and the lower-bound. For
the case of linear schemes, a counting argument (see, e.g., [9]) shows that for most monotone functions
F : {0, 1}n → {0, 1}, the complexity of the best linear secret-sharing scheme, denoted by LSS(F ) is
at least 2n/2−o(n).4 Furthermore, Pitassi and Robere [47] (building on results of [48, 46]) prove that for
every n there exist an explicit n-input function F such that LSS(F ) = 2Ω(n). In his 1996 thesis [6],
Beimel conjectured that an exponential lower-bound of 2Ω(n) also holds for the general case. Resolving this
conjecture has remained one of the main open problems in the field of secret-sharing [7]. Taking a broader
view, similar exponential communication-complexity gaps exist for a large family of information-theoretic
secure computation tasks [27, 35, 5, 31, 11]. Among these, secret-sharing is of special interest due to its
elementary nature: Secret data is only stored and revealed without being processed or manipulated.

1Monotonicity here means that for any A ⊂ B it holds that A ∈ F ⇒ B ∈ F . It is not hard to see that a non-monotone access
structure does not admit a secret-sharing scheme, and therefore this requirement is necessary.

2This complexity measure essentially ignores the bit-length of the secret. The alternative information-ratio measure normalizes
the bit length of the longest share by the length of the secret, and is therefore more suitable to the case of long secrets. Indeed,
recent results [2] suggest that the ratio achievable for (very) long secrets may be significantly better than the ratio achievable for
short secrets.

3In contrast, in the computational complexity setting, counting-based methods lead to exponential lower-bounds on the com-
plexity of most monotone functions over n-bits for various computational models including the ones mentioned above. These
bounds can be shown to be tight for a random (monotone) function; see, e.g., [38].

4The bound holds for any finite field. From now on when the field is unspecified we take it, by default, to be the binary field.
This only makes our positive results stronger.
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The LV construction. In a recent breakthrough, Liu and Vaikuntanathan [40] (hereafter referred to as LV)
showed, for the first time, that it is possible to construct secret-sharing schemes in which the total share size
is 2cn+o(n) with an exponent c strictly smaller than 1. In particular, they showed that every access structure
can be realized by a linear scheme of complexity 20.999n+o(n), and by a non-linear scheme of complexity
20.994n+o(n). In a nutshell, for a balancing parameter δ > 0, the LV construction decomposes an access
structure F into three access structures:

1. The “middle slice” Fmid,δ that agrees with F on all sets whose density is in (1
2 − δ,

1
2 + δ) and assigns

zero to sets of smaller density and one to sets of larger density.

2. Two other “extreme slices”, Fbot,δ and Ftop,δ, that essentially agree with F on bottom inputs of
density smaller than 1

2 − δ and on top inputs of density larger than 1
2 + δ. (A more accurate definition

appears in Appendix A.2.1.)

The extreme slices can be realized by a secret-sharing scheme with exponent smaller than 1 since they admit
a monotone formula (or even a monotone CNF/DNF) of this size. Thus, the main effort in [40] is devoted
to realizing Fmid,δ with a non-trivial, smaller-than-one, exponent. Towards this end, LV show that the
function Fmid,δ can be computed by an exponential-size constant-depth formula with a non-trivial exponent
of MLV(δ) < 1 that employs standard AND/OR-gates together with a special form of block-regular gates.
Roughly speaking, in such a gate, G : {0, 1}n → {0, 1}, the n-bit input is partitioned into equal-sized
blocks of size B each, and the main feature is that G is defined only on inputs x ∈ {0, 1}n that hit exactly
b of the indices in each block for some integer parameter b. Equivalently, the parties are partitioned into
B-size committees and we can determine whether a set A is authorized or not for every set A that consists
of exactly b members out of each committee.

Example 1.1. Assume that n = 8, B = 4, b = 2, and consider the partition to the first 4 coordinates and last
4 coordinates. There are

(
4
2

)2
inputs that G is defined on. E.g., G should be defined on the input 10100110,

and is not defined on the input 11100001.

LV then show how to implement block-regular gates with sub-exponential complexity of 2o(n) based on
recent sub-exponential constructions of Conditional Disclosure of Secrets (CDS) problem from [42]. (We
postpone the description of CDS protocols to a later point.) Taken together, this allows to realize Fmid,δ

with complexity of 2MLV(δ)n. The final result is obtained by choosing a parameter δ that balances the cost
of Fmid,δ with the cost of Fbot,δ and Ftop,δ.

In a follow-up work, Applebaum et al. [3] improved the LV bound to 20.942n+o(n) in the linear case,
and to 20.892n+o(n) in the non-linear case. This was done by reducing the problem of realizing the extreme
slices to (many) general secret-sharing problems over a smaller domain, leading to a recursive construction.
However, the complexity of mid-slice access structures has remained unchanged.

2 Our Contribution

In light of the exponential gap between the lower bounds and the upper-bounds, we believe that it is both
important and useful to study on the best-achievable exponent of secret-sharing sharing. Formally, we define
the secret-sharing exponent S to be

S = lim sup
n→∞

max
F∈M(n)

1

n
log SS(F ),

where M(n) is the family of all n-party access structures (equivalently, all monotone functions over
{0, 1}n). The linear exponent, S`, is defined analogously except that SS(F ) is replaced with LSS(F ), the
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minimal complexity of a linear scheme that realizes F . Under this definition, it holds that 1
2 ≤ S` ≤ 0.942

and 0 ≤ S ≤ 0.892. The existence of sub-exponential secret-sharing schemes would imply that S = 0,
whereas Beimel’s conjecture asserts that S is strictly positive.

In this work, we improve the upper-bounds on S and S`, and, more qualitatively, provide new directions
that may eventually lead to sub-exponential solutions. Along the way, we introduce a new notion of robust
conditional disclosure of secrets, that may be of independent interest. We proceed with a detailed account
of our results.

Better secret-sharing schemes. We significantly improve the secret-sharing exponent both for the linear
and non-linear case.

Theorem 2.1 (main theorem). Every access structure over n parties can be realized by a secret-sharing
scheme with a total share-size of 20.637n+o(n) and by a linear secret-sharing scheme with a total share size
of 20.762n+o(n). That is, S ≤ 0.637 and S` ≤ 0.762.

The proof of Theorem 2.1 is based on a new secret-sharing schemes for mid-slice access structures.
Recall that a mid-slice access structure with parameter δ is a monotone function Fmid,δ : {0, 1}n → {0, 1}
that takes the value zero on inputs of Hamming weight smaller than (1

2−δ)n, takes the value one on all inputs
of Hamming weight larger than 1

2 + δ, and may take arbitrary values in-between. As already mentioned, LV
showed that such functions can be implemented by a formula over OR/AND gates and block-regular gates
of exponential size 2MLV(δ)n. We begin by showing that if one considers a more powerful basis that consists
of somewhat-regular gates (together with general threshold gates), then this can be done by a linear-size
formula with only O(n) gates.

A somewhat-regular gate G : {0, 1}n → {0, 1} is parameterized by a pair of integers, (a, b), a block-
size parameter B where a ≤ b ≤ B and a partition Π of [n] to B-size blocks. An input x ∈ {0, 1}n is
parsed to B-size sub-strings (x1, . . . , xn/B) according to Π, and the gate can be arbitrarily programmed on
inputs that each of their components xi has Hamming weight of at least a and at most b. Such an input is
referred to as (Π, a, b)-regular. (Under the committee-based terminology, in each committee the set x has at
least a and at most b members.) We do not care what value G takes over all other inputs.5

Example 2.2. Assume that n = 8, B = 4, a = 1, b = 2, and consider the partition to the first 4 coordinates
and last 4 coordinates. There are

((
4
1

)
+
(

4
2

))2
inputs that G is defined on. E.g., G should defined on the

inputs 10100110 and 10100001, and is not defined on the input 11100001.

From somewhat-regular gates to mid-slice functions. We can realize any mid-slice access function
Fmid,δ by a formula that makes use of ` = O(n) somewhat-regular gates with parameters B =

√
n, a ≈

(1
2 − δ)B and b ≈ (1

2 + δ)B. Roughly speaking, we show (via the probabilistic method) that one can
choose ` = O(n) B-partitions Π1, . . . ,Π` of [n] such that any input x ∈ {0, 1}n of Hamming weight
wt(x) ∈ [(1

2 ± δ)n] is (Πi, a, b)-regular with respect to a majority of the Πi’s. In contrast, LV used regular
partitions and they needed exponentially many partitions to guarantee that an input x has exactly b ones in
each part of the partition.

By programming the i-th gate Gi according to the restriction of Fmid,δ to the (Πi, a, b)-regular inputs,
we can realize Fmid,δ by computing Majority over all the ` somewhat-regular gates. (One still has to make
sure that the formula works well for light/heavy inputs x of Hamming weight wt(x) /∈ [(1

2 ± δ)n], however,
this can be achieved easily with few additional threshold gates.) Using standard secret-sharing techniques,

5Technically, this means that the corresponding access structure is viewed as a partial (or promise) access structure. Interest-
ingly, it turns out that the freedom to work with partially-defined specifications as components (without enforcing a full specification
on each such sub-component) significantly simplifies the overall construction.
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the resulting formula allows us to efficiently reduce the problem of realizing a general mid-slice access
structure Fmid,δ to the problem of realizing somewhat-regular access structures with parameters B =

√
n,

a ≈ (1
2 − δ)B and b ≈ (1

2 + δ)B. Our next goal is therefore to realize somewhat-regular access structures.
For this, we will have to present a new notion of robust conditional disclosure of secrets.

Conditional disclosure of secrets. Conditional Disclosure of Secrets (CDS) protocols were introduced
by Gartner et al. [30] in the context of private information retrieval, and since then were used in many
cryptographic applications, such as attribute based encryption [29, 4, 53], priced oblivious transfer [1], and,
as already mentioned, secret-sharing schemes [40, 12, 3]. In a CDS protocol, there are k servers and a
referee; each server i holds a private input xi ∈ Xi, a common secret s, and a common random string r. The
referee holds all private inputs (x1, . . . , xk) but, prior to the protocol, it does not know neither the secret
nor the random string. The goal of the protocol is to let the referee learn the secret if and only if the inputs
of the servers satisfy some pre-defined condition f : X1 × · · · × Xk → {0, 1}. The challenge is that the
communication model is minimal – each server sends one message to the referee, without seeing neither the
inputs of the other servers nor their messages.

Example 2.3 (CDS for equality). One can define a 2-sever CDS protocol for the equality predicate EQ :
X × X → {0, 1} as follows. The common randomness consists of an hash function h : X → {0, 1}
that is sampled from a pair-wise independent hash function family, the first server sends the message h(x1)
and the second server sends the message h(x2) ⊕ s. The second message “perfectly-encrypts” the secret
under the “key” h(x2), and the first message releases the key if x1 = x2 and otherwise consists of a random
independent element.

It is shown in [40] that secret-sharing for general regular gates with block-size of B can be efficiently
realized based on CDS protocols for t = (n/B) servers for general predicates over the domain {0, 1}B ×
· · · × {0, 1}B . Loosely speaking, any set of secret-sharing parties x = (x1, . . . , xt) ∈ ({0, 1}B)t gets
to learn, for every server i ∈ [t], the CDS message that the i-th server computes over the input xi. (See
Section 5.1 for full details.) While this leads to an efficient implementation of regular secret-sharing schemes
based on the recent CDS constructions of [41], the transformation fails to produce the more powerful form
of somewhat-regular secret-sharing. The problem is that a somewhat-regular set of secret-sharing parties
x = (x1, . . . , xt) ∈ ({0, 1}B)t gets to learn the CDS messages that correspond to all inputs x′ ≤ x where≤
stands for the standard partial order over binary strings. Furthermore, all these CDS messages are computed
with the same randomness. In such a case, the privacy guarantees of the CDS are completely lost, even if
none of the inputs satisfy the CDS predicate f !

To get a better understanding of the problem, let us consider, for example, the CDS for equality from
Example 2.3. Suppose that the first server releases the CDS messages that correspond to two inputs, x1 and
x′1, that are both unequal to the second server’s input x2. Assuming that h is implemented via a random
affine function, the CDS privacy completely breaks. Given the values of h(x1) and h(x′1) together with x1

and x′1 (who are known to the referee) one can fully recover the description of h, evaluate it over x2 (which
is also public), and recover the secret s from h(x2)⊕ s.

We remedy the situation by showing that if one starts with a stronger form of CDS protocols, then the
LV transformation does lead to somewhat-regular secret-sharing schemes. Specifically, we introduce the
following new notion of robust CDS (RCDS) that may be of independent interest.

Robust conditional disclosure of secrets. We say that a CDS protocol is robust if it provides information-
theoretic privacy even if it is invoked on a bounded number of multiple inputs using the same randomness.
The general notion of robustness is parameterized by the input sets over which the protocol may be re-used.
For now, let us consider the special case where each server i may re-use the randomness over any set of t
different inputs. Since this may happen simultaneously for all servers, the randomness may be re-used over a
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set of tk inputs. We present a general transformation that takes any CDS protocol, and “immunizes” a single
server. By applying the construction to each server separately, we derive t-robustness with an overhead of
roughly (tpolylog u)k, where u is the number of possible input tuples that may be re-used together by a
single server. In order to explain the transformation, it will be instructive to consider the following more
abstract “secure channel” setting.

How to immunize a channel? Suppose that a sender wishes to send t private messages to a receiver. The
messages arrive in on online manner, one after the other, and the sender is connected to the receiver via
N unidirectional channels that offer one-time privacy. That is, once a channel is being used twice all the
messages that were sent over it are revealed to everyone. The goal is to minimize N as a function of t while
maintaining perfect privacy for all messages. Our sender is stateless, and so it cannot even remember how
many messages have been sent so far. In particular, the trivial solution of sending the i-th message over the
i-th channel is inapplicable.

Fortunately, each message mi arrives with some (non-private) unique tag xi ∈ X that is available to
both parties. Therefore, we can naively solve the problem with N = |X| channels by allocating a channel
to each possible tag. The question is can we do better when t is significantly smaller than |X|? More
generally, say that we know ahead of time that the sequence of t tags belong to one of u possible t-subsets
Z1, . . . , Zu ⊂ X which are a-priori fixed. How small can N be as a function of t and u?

A natural way to solve the problem is to secret share each message m ∈M to shares (s1, .., sN ) ∈MN

via some secret-sharing scheme D, and deliver these shares over a subset of the channels that is selected
according to the tag x. That is, we send si over the i-th channel if i is in the setH(x) whereH is some “hash”
function that maps a tag x ∈ X to subsets of N . Correctness is guaranteed as long as H(x) is an authorized
set of the secret-sharing scheme for every x ∈ X . On the other hand, as long as the pair-wise intersections of
H(x)x∈Z forms an unauthorized set, we get privacy for the set of inputs Z. The immunization question now
boils down to designing such an admissible hash-function/secret-sharing pair (D, H) for a given sequence
of t-size input sets Z1, . . . , Zu ⊂ X while minimizing N .

We describe two different solutions for the problem that achieve N = (tpolylog u) complexity. In both
cases, the starting point is an inefficient construction with quadratic overhead. The first approach is based
on a family of ` perfect hash functions H = {h1, . . . , h` : X → [t2]} for the set family (Zi)i∈[u]. That
is, for every i ∈ [u] there exists a function h ∈ H that perfectly hashes the elements of Zi to t distinct
values. We place the N channels on an `× t2 matrix, and given a message m labeled by x, we share m via
`-out-of-` secret-sharing scheme to (s1, .., s`), and send the secret si over the channel (i, j) iff hi(x) = j.
Accordingly, a subset of channels is authorized iff it contains at least a single channel in each row. Clearly,
every message is delivered over an authorized set of channels. On the other hand, since hj ∈ H is perfect
over Zi, the pair-wise intersections of H(x)x∈Zi completely avoids the j-th row of channels.

By taking ` to be logarithmic in u (as in the perfect hashing of [28]), we get a quasi-quadratic bound on
N . In order to reduce the overhead to tpolylog u, we apply the quadratic solution over the collection

(
X

log t

)
of all log t-subsets ofX . This effectively upgrades one-time security into a log t-security. The latter channel
can be further immunized via a more liberal combination of secret-sharing/hashing pair: Only log t-wise
intersections of H(x)x∈Z should form an unauthorized set. This condition translates to a weaker version
of perfect hashing that can be obtained with poly-logarithmic overhead. Overall, the resulting two-level
hashing construction resembles a similar construction of [21], that was suggested in the context of traitor-
tracing schemes.

We also present an alternative construction that achieves similar parameters based on “sparse-hashing”.
Roughly, the message is secret-shared via a threshold secret-sharing with threshold βN , and each x is
mapped to a β-sparse subset of N so that the Zi-intersection of the sets results in a sparser set of density
strictly smaller than β. This construction is inspired by the a similar construction of [32] that was presented
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in the context of Functional Encryption.6 To optimize the parameters, we apply it again in a two-level way.

Back to RCDS. The channel solution can be immediately adopted to the distributed CDS setting. The
servers use their shared randomness to secret-share the CDS secret s according to the secret-sharing scheme
D, and use N copies of CDS with independent random strings to deliver the shares s1, . . . , sN . The i-
th server, that should be immunized, sends his messages only for the CDS instances that are indexed by
H(xi) and remains silent in all other instances. All other parties send their messages for all the CDS
instances. Correctness and privacy follow immediately from the correctness and privacy guarantees of the
channel problem. As already mentioned, by immunizing the servers one after the other, we derive a general
immunization procedure that transforms a general CDS to a RCDS.

We do not know whether there is a more direct, cheaper approach for constructing a robust CDS. As a
positive sign, we show that the best known linear CDS constructions already achieve some partial form of
robustness. Indeed, for the linear case, it is more cheaper to use these robust schemes, than to apply the
immunization procedure. The existence of similar cheaper non-linear robust CDS remains as an intriguing
open question, whose resolution may lead to further improvement in the complexity of general secret-sharing
schemes.

Organization. Secret-sharing schemes and CDS protocols are defined in Section 3. Some parts of the
definitions are deferred to Appendix B. Robust CDS protocols are defined and constructed in Section 4.
The construction of secret-sharing schemes from RCDS protocols is described in Section 5. An abstraction
of the immunization construction that is used to transform a CDS protocol to a RCDS protocol as well as
an alternative immunization construction appears in Section 6. A simple construction of a secret-sharing
scheme with exponent less than 1 is described in Appendix A. Some additional probability background
(especially, on negatively associated random variables) is presented in Appendix C. Linear CDS and RCDS
protocols for arbitrary functions are discussed in Appendix D. Specifically, a proof that a variant of the linear
k-server CDS protocol of [12] is already robust for half of the servers is depicted in Appendix D.1 and a
construction of a more efficient linear 2-server RCDS protocol is given in Appendix D.2.

3 Preliminaries

Secret-sharing schemes. We present the definition of secret-sharing schemes, similar to [8, 22]. For the
privacy of these schemes, we use the following notation: For two random variables X and Y , we say that
X ≡ Y if they are identically distributed.

Definition 3.1 (Partial access structures). Let P = {P1, . . . , Pn} be a set of parties. A partial access
structure is a pair of collections Γ = (Γno,Γyes), where Γno,Γyes ⊆ 2P are non-empty collections of sets
such that B 6⊆ A for every A ∈ Γno, B ∈ Γyes.7 Sets in Γyes are called authorized, and sets in Γno are
called unauthorized. If Γno ∪ Γyes = 2P then Γ is called an access structure and will be denoted by the
collection of authorized sets Γyes.

We represent a subset of parties A ⊆ P by its characteristic string xA = (x1, . . . , xk) ∈ {0, 1}n, where
for every j ∈ [n] it holds that xj = 1 if and only if Pj ∈ A. A partial access structure Γ = (Γno,Γyes)
will also be described by the partial function F : {0, 1}n → {0, 1}, where F (xA) = 1 for every subset of
parties A ∈ Γyes and F (xA) = 0 for every set A ∈ Γno .

6Indeed, the fact that the channel abstraction captures previous scenarios suggests that this is a useful notion that may be also
applied in future contexts.

7We do not require that 2P \ Γno and Γyes are equal (this simplifies our presentation).
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Definition 3.2 (Secret-sharing schemes). A secret-sharing scheme, with domain of secrets S, domain of
random strings R, and finite domains of shares S1, . . . , Sn, is a deterministic function D : S × R → S1 ×
· · · × Sn. A dealer distributes a secret s ∈ S according to D by first sampling a random string r ∈ R with
uniform distribution, computing a vector of shares D(s, r) = (s1, . . . , sn), and privately communicating
each share si to party Pi. For a set A ⊆ P , we denote DA(s, r) as the restriction of D(s, r) to its A-entries
(i.e., the shares of the parties in A).

A secret-sharing scheme D realizes a partial access structure Γ = (Γno,Γyes) if the following two
requirements hold: (1) Perfect Correctness: The secret s can be reconstructed by any authorized set of
parties. That is, for any set B = {Pi1 , . . . , Pi|B|} ∈ Γyes there exists a reconstruction function ReconB :
Si1 × · · · × Si|B| → S such that for every secret s ∈ S and every random string r ∈ R, it holds that
ReconB (DB(s, r)) = s. (2) Perfect privacy: Any unauthorized set cannot learn anything about the secret
from its shares. Formally, for any set T = {Pi1 , . . . , Pi|T |} ∈ Γno, every pair of secrets s, s′ ∈ S, it holds
that DT (s, r) ≡ DT (s′, r), where r is sampled with uniform distribution from R.

The secret size in a secret-sharing scheme D is defined as log |S| and the complexity of the scheme D
is defined as the total share size

∑
1≤i≤n log |Si|.8 The scheme D is a linear secret-sharing scheme over a

finite field F if S = F, R = F` for some integer ` ≥ 1, the sets S1, . . . , Sn are vector spaces over F, and
the function D : F`+1 → S1 × · · · × Sn is a linear mapping over F. By default, linearity is defined over the
binary field F2.

Conditional disclosure of secrets protocols. Next, we define k-server conditional disclosure of secrets
(CDS) protocols, first presented in [30]. We consider a model where a set of k servers Q = {Q1, . . . , Qk}
hold a secret s and a common random string r. In addition, every server Qi holds an input xi for some
k-input function f . In a CDS protocol for f , for every i ∈ [k], server Qi sends a message to a referee, based
on r, s, and xi, such that the referee can reconstruct the secret s if f(x1, . . . , xk) = 1, and it cannot learn
any information about the secret s if f(x1, . . . , xk) = 0.

Definition 3.3 (Conditional disclosure of secrets protocols). Let f : X1 × · · · ×Xk → {0, 1} be a k-input
function. A k-server CDS protocol P for f , with domain of secrets S, domain of common random strings
R, and finite message domains M1, . . . ,Mk, consists of k deterministic message computation functions
ENC1, . . . , ENCk, where ENCi : Xi×S×R→Mi for every i ∈ [k]. For an input x = (x1, . . . , xk) ∈ X1×
· · ·×Xk, secret s ∈ S, and randomness r ∈ R, we let ENC(x, s, r) = (ENC1(x1, s, r), . . . , ENCk(xk, s, r)).
We say that a protocol P is a CDS protocol for f if it satisfies the following properties: (1) Perfect correct-
ness: There is a deterministic reconstruction function DEC : X1×· · ·×Xk×M1×· · ·×Mk → S such that
for every input x = (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 1, every secret s ∈ S, and
every common random string r ∈ R, it holds that DEC(x, ENC(x, s, r)) = s. (2) Perfect privacy: For every
input x = (x1, . . . , xk) ∈ X1 × · · · ×Xk for which f(x1, . . . , xk) = 0 and every pair of secrets s, s′ ∈ S it
holds that ENC(x, s, r) ≡ ENC(x, s′, r), where r is sampled with uniform distribution from R.

The message size of a CDS protocol P is defined as the size of the largest message sent by the servers,
i.e., max1≤i≤k log |Mi|.

The protocol P is a linear CDS protocol over a finite field F if S = F, R = F` for some integer ` ≥ 1,
M1, . . . ,Mk are vector spaces over F, and the function ENCi : F`+1 → Mi is a linear function over F for
every i ∈ [k]. By default, we take F to be the binary field F2.

Notations. We denote the logarithmic function with base 2 and base e by log and ln, respectively. For
0 ≤ α ≤ 1, we denote the binary entropy of α by H2(α) = −α logα− (1−α) log(1−α). Next, we present
the standard approximation of the binomial coefficients.

8The complexity is sometimes defined to be the maximal share size, i.e., max1≤i≤n{log |Si|}. However, since the two differ
by at most a linear factor of n, the difference is not important in our context.
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Fact 3.4. Let n be an integer and let k ∈ [n]. Then,
(
n
k

)
= Θ(k−1/22H2(k/n)n).

Sets and strings. We use the notation [n] to denote the set {1, . . . , n}. For a set A, we let 2A denote the
collection of all subsets of A, let

(
A
k

)
denote the collection of all subsets of A of size k and let

(
A
≤k
)

denote
the collection of all subsets of A of size at most k.

Given two binary strings of the same length, a = a1a2...an and b = b1b2 . . . bn, we say that a ≤ b if
ai ≤ bi for every i ∈ [n]. We denote wt(a) as the Hamming weight of the string a.

4 Robust CDS: Definition and Construction

4.1 Definition of Robust CDS

In the definition of CDS protocols in [30] (as presented in Definition 3.3), if a server sends messages for
two different inputs with the same randomness, then the privacy is not guaranteed and the referee can
possibly learn information on the secret s. We generalize the notion of CDS protocols to robust CDS
(RCDS) protocols, where the secret is hidden even if the referee sees multiple messages of servers computed
on different inputs with the same randomness. Of course, this requirement makes sense only if all the
corresponding inputs are zero inputs of f .

Definition 4.1 (Zero sets and robustness collections.). Let f : X1×· · ·×Xk → {0, 1} be a k-input function.
We say that a set of inputs Z ⊆ X1 × · · · ×Xk is a zero set of f if f(x) = 0 for every x ∈ Z.

A robustness collection is a product of k collections of inputs Z = Z1 × · · · × Zk ⊆ 2X1 × · · · × 2Xk ,
where each Zi is downward closed, i.e., if Z ∈ Zi and Z ′ ⊂ Z then Z ′ ∈ Zi, and contains all singletons,
i.e., {xi} ∈ Zi for every xi ∈ Xi. A robustness collection is a (u, t)-collection if each of the collections
Z1, . . . ,Zk contains at most u maximal sets, and each of these sets is of size at most t. We denote the
collection by (Z1, . . . ,Zk).

For sets Z1, . . . , Zk we denote ENCi(Zi, s, r) = (ENCi(xi, s, r))xi∈Zi , and ENC(Z1×· · ·×Zk, s, r) =
(ENC1(Z1, s, r), . . . , ENCk(Zk, s, r)).

Definition 4.2 (Robust conditional disclosure of secrets (RCDS) protocols). Let P be a k-server CDS pro-
tocol for a k-input function f : X1 × · · · × XK → {0, 1} and Z = Z1 × · · · × Zk ⊆ X1 × · · · × Xk

be a zero set of f . We say that P is robust for the set Z if for every pair of secrets s, s′ ∈ S, it holds that
ENC(Z, s, r) ≡ ENC(Z, s′, r). Let Z be a robustness collection. We say that P is a Z-RCDS protocol
if it is robust for every zero set Z ∈ Z .

For example, the original (non-robust) definition of privacy of CDS protocols is Z1 × · · · × Zk-robust,
where Zi contains all singletons, i.e., Zi = {{xi} : xi ∈ Xi} ∪ {∅}. We next discuss some choices made in
our definition of robustness.

Rectangles. Suppose that a 2-server CDS protocol is robust for a zero set Z that contains the inputs
(x, y), (x′, y′). This means that the messages ENC((x, y), s, r) = (ENC1(x, s, r), ENC2(y, s, r)), and
ENC((x′, y′), s, r) = (ENC1(x′, s, r), ENC2(y′, s, r)) perfectly hide the secret s. Observe that given these
messages, the referee can also compute the messages ENC((x′, y), s, r) and ENC((x, y′), s, r), which corre-
spond to the inputs (x, y′) and (x′, y), i.e., the referee can try to reconstruct the secret for every input in the
minimal combinatorial rectangle that contains (x, y), (x′, y′).9 For this reason, we always use combinatorial
rectangles as sets for robustness.

9A set Z ⊆ X1×· · ·×Xk is a combinatorial rectangle if it can be written as a product set Z = Z1×· · ·×Zk, where Zi ⊆ Xi.
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Monotonicity. We also observe that if a protocol is robust for a zero set Z = Z1 × · · · × Zk then it is
also robust for every sub-rectangle of Z. It will be convenient to keep this property even when Z is not a
zero-set. That is, we will always make sure that if Z is a member of our robustness collection Z then so are
all sub-rectangles of Z, i.e., Zi will always be downward closed collection for every i ∈ [k].

Product collections. For simplicity of notations, we focus on the case of product collections, i.e., Z =
Z1 × · · · × Zk, where Zi ⊆ 2Xi . We always require that Zi contains all the singletons of Xi, thus, Z-
robustness implies privacy as defined in Definition 3.3.

Example 4.3 (t-RCDS). Consider the case where each server may output, simultaneously, messages for
any subset of its inputs of size at most t. This notion, referred to as t-RCDS, can be captured by the
product collection (Z1, . . . ,Zk) where Zi =

(
Xi
≤t
)
. Consequently, this is a (u, t)-robustness collection,

where u = maxi(
(|Xi|
t

)
).

4.2 Construction of Robust CDS Protocols

In the rest of this section we show how to convert a CDS protocol for a function f to a Z-RCDS protocol
for f , where Z = Z1 × · · · × Zk is a (u, t)-robustness collection. The message size in the resulting RCDS
protocol is only Õ(t log u)k times the message size of the CDS protocol. The construction of the RCDS
protocol is done in k steps, where in the k′-th step we immunize the messages of the k′ server, that is, we
start with a protocol that is robust when servers Q1, . . . , Qk′−1 can send messages for many inputs and
servers Qk′ , . . . , Qk can only send a single message and transform it to a protocol that is robust also when
server Qk′ can send messages for many inputs.

To simplify notation, we say that a CDS protocol is a (Z1,Z2, . . . ,Zk′)-RCDS if it is Z-RCDS for
Z = (Z1, . . . ,Zk′ ,Zk′+1, . . . ,Zk), where Zi = {{xi} : xi ∈ Xi}∪ {∅} for every i ∈ {k′+ 1, . . . , k} (i.e.,
Zi contains all singletons).

Theorem 4.4 (Immunization Theorem). Let f : X1 × · · · × Xk → {0, 1} be a function, 1 ≤ k′ ≤ k be
an integer, and (Z1, . . . ,Zk′) ⊆ 2X1 × · · · × 2Xk′ be a (u, t)-robustness collection. Suppose there is a
(Z1, . . . ,Zk′−1)-RCDS protocol Pk′−1 for a secret taken from a domain S in which the size of the messages
of server Qi, for i ∈ [k], is ci. Then, there is a (Z1, . . . ,Zk′−1,Zk′)-RCDS protocol Pk′ for a secret taken
from the domain S in which the size of the messages of server Qi, for i ∈ [k]\{k′}, is Õ(t ci log |Xi| log u),
and the size of the messages of server Qk′ is Õt(ck′ log |Xi| log u). Moreover, if Pk′−1 is linear, then so is
Pk′ .

The main idea of our construction for immunizing a server Qk′ is to partition the input domain Xk′

of the server into sets and for each set to execute a CDS protocol with independent randomness. If the
server sends encodings of a few inputs such that each input is in a different set, then the referee gets at most
one encoding from each execution and the privacy of the CDS protocol implies the robustness of the new
protocol. However, one partition of the inputs is not good for all sets of inputs so we use several partitions.
We use a family of perfect hash functions to specify the partitions.

To reduce the message size in the construction, we use two levels of hashing. To provide robustness
for t inputs, we first use a family of hash functions with range of size 2t. This will ensure that for at least
one partition, the server sends encodings of at most log t inputs in the same execution of the CDS protocol.
Thus, the CDS protocol should be robust for log t inputs; this is done by a second level of hashing using a
family of perfect hash functions with range of size log2 t. The idea of using two levels of hashing is similar
to the construction of traitor-tracing schemes in [21].

By taking the best known CDS constructions and iteratively applying the immunization theorem, we
derive the following results.
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Theorem 4.5. Let f : X1×· · ·×Xk → {0, 1} be a k-input function, where |Xi| ≤ 2`, and (Z1, . . . ,Zk) ⊆
2X1 × · · · × 2Xk be a (u, t)-robustness collection. Then,

• There is a (Z1, . . . ,Zk)-RCDS protocol with a 1-bit secret, where the size of the messages of each
server is 2Õ(

√
k`)Õ(t)k−1(` log u)k, and

• If k is odd, then there is a linear (Z1, . . . ,Zk)-RCDS protocol with a 1-bit secret, where the size of
the messages of each server is Õ(t2` log u)(k−1)/2.

The rest of the section is organized as follows. In Section 4.2.1, we provide some results on families of
hash functions. In Section 4.3, we prove an immunization lemma, which is used for both levels of hashing,
and prove the immunization theorem (Theorem 4.4) using the immunization lemma. Finally, in Section 4.4,
we show how to use the immunization theorem to construct RCDS protocols and prove Theorem 4.5.

4.2.1 Families of Hash Functions

We next present the definition of a family of t′-collision free perfect hash functions; the original definition
of perfect hash functions [28] refers to the case that t′ = 1.

Definition 4.6 (Families of t′-collision free hash functions). A set of functions Hn,t,t′,v = {hd : [n]→ [v] :

d ∈ [`]} is a family of t′-collision free hash functions for a collection T ⊆
([n]
≤t
)

if for every set T ∈ T there
exists at least one function h ∈ Hn,t,t′,w for which for every b ∈ [v] it holds that |{x ∈ T : h(x) = b}| ≤ t′,
that is, h restricted to T is at most t′-to-one. A family Hn,t,v is a family of perfect hash functions if it is a
family of 1-collision free hash functions.

The following lemma is a well-known result, which can be proved, e.g., using the probabilistic method.

Lemma 4.7. Let n be an integer and t ∈ [
√
n]. Then, there exists a family of perfect hash functions (i.e.,

1-collision free) Hn,t,t2 = {hi : [n]→ [t2] : i ∈ [`]}, where ` = 16t lnn.

The following lemma is proved in Appendix C.2.

Lemma 4.8. Let n be an integer, t ∈ {15, . . . , n/2}, T ⊆
([n]
≤t
)
, and u be the number of maximal sets in T .

Then, there exists a family of log t-collision free hash functions Hn,t,log t,2t of size ` = 16 lnu.

4.3 The Immunization

The next lemma, called the immunization lemma, improves the immunization of server Qk′ , that is, it takes
a protocol that is robust when Qk′ sends encodings of t′ < t messages, and constructs a protocol that is
robust when Qk′ sends encodings of t messages. This is done using a few copies of the original protocol
and a family of t′-collision free hash functions.

Lemma 4.9. Let f, k′,Z1, . . . ,Zk′ , and t be as in Theorem 4.4 and Z ′k′ =
(
Xi
≤t′
)

for some integer t′ ≤ t.
Suppose there is a (Z1, . . . ,Zk′−1,Z ′k′)-RCDS protocol P with domain of secrets S in which the size of the
messages of server Qi, for i ∈ [k], is ci. Furthermore, suppose there is a family of t′-collision free hash
functions H|Xk′ |,t,t′,v = {h1, . . . , h`}. Then, there is a (Z1, . . . ,Zk′−1,Zk′)-RCDS protocol P ′ with secrets
from S in which the size of the messages of server Qi, for i ∈ [k] \ {k′}, is O(ci v`) and the size of the
messages of server Qk′ is O(ck′ `). Moreover, the transformation preserves linearity.

Proof. Let R be the set of random strings of P and let ENCi be the encoding of server Qi in this protocol.
The encoding function ENC′i of Qi in the RCDS protocol P ′ for f is as follows:
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• Common inputs: a secret s ∈ S, randomness r consisting of s1, . . . , s`−1 ∈ S and (rd,j)d∈[`],j∈[v],
where each rd,j ∈ R.

• Private input of server Qi: xi ∈ Xi.

• Let s` = s− (s1 + · · ·+ s`−1), where the sum is in S.
(If S is not a group, choose an injective mapping from S to Z|S| and use addition modulo |S|.)

• If i 6= k′, then ENC′i(xi, s, r) =
(
ENCi(xi, sd, rd,j)

)
d∈[`],j∈[v]

.

• ENC′k′(xk′ , s, r) =
(
ENCk′(xk′ , sd, rd,hd(xk′ )

)
)
d∈[`]

.

Notice that the encoding of server Qk′ contains one encoding from P for each sd; this will provide the
robustness. In contrast, the encoding of any other server contains many encodings from P for each sd (each
one with an independent random string); this will ensure the correctness of the protocol.

We first show the correctness of the RCDS protocol P ′. For input (x1, . . . , xk) ∈ X1 × · · · ×Xk such
that f(x1, . . . , xk) = 1, the referee can reconstruct sd, for every d ∈ [`], using the decoding function of
P on the encodings of the inputs x1, . . . , xk with the secret sd and random string rd,hd(xk′ )

. Overall, the
referee can learn all the strings s1, . . . , s`, so it can reconstruct the secret s by summing these strings.

For the robustness of the protocol P ′, let Z1 × · · · × Zk be a zero set of f such that Zi ∈ Zi for every
1 ≤ i ≤ k′ and |Zi| = 1 for every k′ + 1 ≤ i ≤ k, and let Zk′,d,j = {x ∈ Zk′ : hd(x) = j} for
every d ∈ [`] and j ∈ [v]. Since H|Xk′ |,t,t′,v is a family of t′-collision free hash functions, there is at least
one d ∈ [`] for which hd restricted to Zk′ is at most t′-to-one. Fix a j ∈ [v]; by the collision freeness,
|Zk′,d,j | ≤ t′. The referee gets the encodings of the inputs in Zk′,d,j from server Qk′ in the execution of the
RCDS protocol P for the secret sd and random string rd,j , i.e., it gets at most t′ encodings from Qk′ for
rd,j . Furthermore, in this execution the referee gets encoding of messages of server Qi on inputs Zi ∈ Zi
for 1 ≤ i ≤ k′ − 1 and an encoding of at most one message from server Qi for k′ + 1 ≤ i ≤ k. Since
P is a (Z1, . . . ,Zk′−1,Z ′k′)-RCDS protocol, the referee cannot learn any information about sd from this
execution, that is, for Y d,j = Z1 × · · · × Zk′−1 × Zk′,d,j × Zk′+1 × · · · × Zk and two secrets sd, s′d ∈ S

ENC(Y d,j , sd, rd,j) ≡ ENC(Y d,j , s′d, rd,j).

For two secrets s, s′ ∈ S, fix s1, . . . , s`−1. Let s` = s − (s1 + · · · + s`−1), and s′e = se for e 6= d and
s′d = sd + s′ − s. Note that s1, . . . , s` are used when the secret is s, while s′1, . . . , s

′
` are used when the

secret is s′. Since the random strings {re,j}e∈[`],j∈[v] are statistically independent,

(ENC(Y e,j , se, re,j))e∈[`],j∈[v] ≡ (ENC(Y e,j , s′e, re,j))e∈[`],j∈[v].

Hence, the referee cannot learn any information on the secret s.
The message size of each server Qe, for e 6= k′, in protocol P ′ is O(v|H|Xk′ |,t,t′,v|) = O(v`) times its

message size in P and the message size of server Qk′ in protocol P ′ is O(|H|Xk′ |,t,t′,v|) = O(`) times its
message size in P .

We next prove Theorem 4.4, the Immunization Theorem, by using two levels of the construction of
Lemma 4.9.

Proof of Theorem 4.4. Let t′ = log t, Yk′ =
(Xk′
≤t′
)
, andH|Xk′ |,t′,t′2 be the family of perfect hash functions of

size ` = O(t′ log |Xk′ |) guaranteed by Lemma 4.7. Note that this family is 1-collision free. By Lemma 4.9
applied toPk′−1 andH|Xk′ |,t′,t′2 , there exists a (Z1, . . . ,Zk′−1,Yk′)-RCDS protocolP ′k′ , where the message
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size of server Qi, for i 6= k′, is O(ci · t′2 · t′ log |Xk′ |) = O(ci log3 t log |Xk′ |), and the message size of
server Qk′ is O(ck′ log t log |Xk′ |).

We next apply Lemma 4.9 using P ′k′ . Let H|Xk′ |,t,log t,2t be the family of log t-collision free hash func-
tions for Zk′ of size ` = O(log u) guaranteed by Lemma 4.8 (where u is the number maximal sets in Zk′).
By Lemma 4.9 applied to P ′k′ and H|Xk′ |,t,log t,2t, there exists a (Z1, . . . ,Zk′−1,Zk′)-RCDS protocol where
the message size of server Qi, for i 6= k′, is O((ci log3 t log |Xk′ |) · 2t · log u) = Õ(cit log |Xk′ | log u), and
the message size of server Qk′ is O(ck′ log t log |Xk′ | log u) = Õt(ck′ log |Xk′ | log u).

4.4 Constructing RCDS protocols

In this section we present our constructions of RCDS protocols, proving Theorem 4.5. We begin by apply-
ing Theorem 4.4 k times, immunizing all parties.

Lemma 4.10. Let f : X1×· · ·×Xk → {0, 1} be a k-input function, where |Xi| ≤ 2`, and (Z1, . . . ,Zk) ⊆
2X1 × · · · × 2Xk be a (u, t)-robustness collection. Suppose there exists a CDS for f where the message size
of server Qi is ci. Then, there is a (Z1, . . . ,Zk)-RCDS protocol, where the size of the messages of server
Qi, for i ∈ [k], is ci · Õ(t)k−1 · (` log u)k. Moreover, this transformation preserves linearity.

Proof. We use Theorem 4.4 k times iteratively, starting with the original CDS protocol. In the k′-th it-
eration, we transform a (Z1, . . . ,Zk′−1)-RCDS protocol to a (Z1, . . . ,Zk′−1,Zk′)-RCDS protocol. The
communication overhead in each step is Õt(` log u) for the immunized server and Õ(t` log u) for all other
servers. Since every server is immunized once, the total communication overhead is Õ(t)k−1(` log u)k.

We move on, and prove Theorem 4.5.

Proof of Theorem 4.5. The non-linear RCDS protocol is obtained by applying Lemma 4.10 to the CDS
protocol of [42], which has message size 2Õ(

√
k`).

For the linear RCDS protocol, we start with the variant of the linear CDS protocol of [12] with message
size O(2`(k−1)/2) (a protocol with a similar message size also appears in [42]), and prove in Lemma D.1
that when k is odd, this protocol is already immune for (k+1)/2 servers. Thus, we need to immunize, using
Theorem 4.4, only (k − 1)/2 servers. The resulting RCDS protocol has message size Õ(t2` log u)(k−1)/2.

4.5 (a, b)-monotone RCDS

An important example of a robustness collection is the case of monotone robustness in which whenever a
server Qi, holding a string x ∈ {0, 1}`, sends all the messages that correspond to inputs x′ ≤ x. In fact,
we consider a more refined version of this scenario where the above happens only when x is of Hamming
weight at most b and x′ is of Hamming weight at least a for some integers a < b ≤ `.

Definition 4.11 ((a, b)-monotone RCDS). For an input x ∈ Xi, define the set Sx,a ⊂ Xi as

Sx,a = {x′ ∈ Xi : x′ ≤ x and wt(x′) ≥ a}.

Furthermore, for i ∈ {1, . . . , k}, let Zi = {Sx,a}x∈Xi,a≤wt(x)≤b. An (a, b)-monotone RCDS protocol is a
(Z1, . . . ,Zk)-RCDS protocol.

Let Xi ⊆ {0, 1}`. Each string of weight exactly b correspond to a maximal set of Zi. Hence, the
collection Z is a (u, t)-collection where

u =

(
`

b

)
and t =

b∑
i=a

(
b

i

)
. (1)
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5 Secret-Sharing Schemes for General Access Structures

In this section, we realize any access structure based on RCDS protocols. By plugging the RCDS construc-
tions from Theorem 4.5, we prove our main theorem – Theorem 2.1. We follow the outline sketched in
the introduction: We begin by realizing somewhat-regular access structures, then move to handle mid-slice
access structures, and end up by realizing general access structures. Throughout this section we will identify
an access structure with its characteristic Boolean function F , as described in Definition 3.1. We also make
use of partial (or promise) access structures.

5.1 Somewhat-regular Secret-Sharing from RCDS

Definition 5.1 ((k, a, b)-somewhat-regular access structure). Let Π be a partition of the set of n parties P
to k equal-sized sets (I1, . . . , Ik). A (partial) access structure Γ = (Γno,Γyes) over n parties is (Π, a, b)-
somewhat-regular if for every A ∈ Γno ∪ Γyes and every i ∈ [k],

a ≤ |A ∩ Ii| ≤ b. (2)

In other words, Γ puts no restriction on sets A ⊂ [n] that violates (2) for some i. We sometimes omit Π and
refer to Γ as being (k, a, b)-somewhat-regular.

Remark 5.2 (Function notation). Using the terminology of functions and strings, the partial function F
describing a (k, a, b)-somewhat-regular access structure is defined only on n-bit strings x ∈ {0, 1}n with
the following property. For every i ∈ [k], the string x[Ii], obtained by restricting x to the index set Ii, has
Hamming weight of at least a and at most b. That is, x can be parsed to (x1, . . . , xk) where xi ∈ {0, 1}n/k
and we care only about the case where the Hamming weight of each xi is in between a and b.

Remark 5.3. We can take a fully defined access structure F and “puncture it” according to a given partition
Π and parameters (a, b) and derive a (Π, a, b)-somewhat-regular version of F , denoted by FΠ,a,b, where
FΠ,a,b is undefined on inputs x for which some xi has weight greater than b or smaller than a.

As the first step towards secret-sharing schemes for general access structures, we build secret-sharing
schemes for any (k, a, b)-somewhat-regular access structures over n parties based on (a, b)-monotone robust
CDS protocols for k servers. (The latter notion is defined in Definition 4.11.)

Construction 5.4. Let Π be a partition of n parties to k equal-sized sets (I1, . . . , Ik) and let F be a (Π, a, b)-
somewhat-regular access structure over n parties for integers a < b. We share a secret s as follows.

1. Let Xi = {0, 1}n/k and let f : X1 × · · · × Xk → {0, 1} be some predicate that agrees with F .10

Sample a random string r for a k-server (a, b)-monotone RCDS protocol P = (ENCi)i∈[k] for f .

2. For every i ∈ k, and xi ∈ Xi such that the Hamming weight w = wt(xi) of xi is in the interval [a, b],
compute the message of the i-th server of P:

y(i, xi, s) := ENCi(xi, r, s),

and share it between all thew parties in (the set that corresponds to) xi via aw-out-of-w secret-sharing
scheme (using fresh randomness Rxi for each xi). We denote the share of j ∈ xi by y(i, xi, s, j).

3. The share of the j-th party (which is in a set Ii) is (y(i, xi, s, j))xi:j∈xi .
10We say that a pair of partial functions f and g agree with each other if they take the same value on every input x for which both

functions are defined.
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Lemma 5.5. Construction 5.4 realizes F with share sizes of m ·
∑b

j=a

(
n/k
j

)
for each party, where m is the

message size of the underlying RCDS protocol.

Proof. We start by proving correctness. Let x = (x1, . . . xk) be a string with a ≤ wt(xi) ≤ b for every
i ∈ [k] and F (x) = 1. For every i ∈ [k], the parties represented by xi can reconstruct the RCDS message
ENCi(xi, r, s) of the i-th server of P . Since the RCDS predicate f agrees with F , it holds that f(x) = 1, and
by the correctness of the RCDS protocol the parties can compute the secret s from the k RCDS messages.

We move on to prove privacy. Fix a string x = (x1, . . . , xk) that corresponds to an unauthorized set.
Consider a pair of secret s0 and s1. Our goal is to show that the corresponding shares of the parties in x,
denoted by Dx(s0) and Dx(s1), are identically distributed. To see this, consider a modified construction in
which for every i ∈ [k] and every u ∈ Xi for which u 6≤ xi, the random variable y(i, u, s0) (which is shared
via a wt(u)-out-of-wt(u) secret-sharing scheme) is replaced with some fixed string y(i, u) of appropriate
length (say the all zero string). We claim that, in the modified scheme, the view D′x(s0) of the parties in
x is distributed identically to Dx(s0). Indeed, since u 6≤ xi there exists at least one party j ∈ u that does
not participate in x. Therefore, by the privacy of the wt(u)-out-of-wt(u) secret-sharing scheme, and since
each y(i, u, s0) is shared with fresh randomness, the random variables Dx(s0) and D′x(s0) are identically
distributed. Similarly, Dx(s1) and D′x(s1) are identically distributed, and so it suffices to show that D′x(s0)
is distributed identically to D′x(s1). Let us condition on some fixing of the shares of y(i, u) for all u ∈ Xi

for which u 6≤ xi. By the robustness of the RCDS, the remaining random variables

{y(i, v, s0) : i ∈ [k], v ≤ xi} and {y(i, v, s1) : i ∈ [k], v ≤ xi}

are identically distributed, so the corresponding shares are also identically distributed and privacy follows.
For every j ∈ [n], the share of party Pj contain a share of the RCDS protocol for every string xi of

length n/k and weight between a and b such that j ∈ xi. Then the share size of Pj is m ·
∑b

j=a

(
n/k
j

)
.

5.2 Mid-slice Secret-Sharing from Somewhat-Regular Secret-Sharing

Definition 5.6 (Mid-slice access structure [40]). An n-party access structure F is a δ mid-slice access
structure with parameter δ ∈

(
0, 1

2

)
if:

1. F takes the value 0 for every input x of Hamming weight wt(x) <
(

1
2 − δ

)
n;

2. F takes the value 1 for every input x of Hamming weight wt(x) >
(

1
2 + δ

)
n;

A “middle-slice” input x of weight
(

1
2 − δ

)
n ≤ wt(x) ≤

(
1
2 − δ

)
n can be assigned any value (as long as

monotonicity is preserved).
A partial mid-slice access structure is defined similarly except that we drop the requirements (1) and (2),

and F is undefined over light inputs (wt(x) <
(

1
2 − δ

)
n) and over heavy inputs (wt(x) >

(
1
2 + δ

)
n).

We now turn to build a secret-sharing scheme for mid-slice access structures from (k, a, b)-somewhat-
regular secret-sharing schemes. Fix some parameter δ ∈

(
0, 1

2

)
and set a proximity parameter ε to be n−0.1.

Let Π = (I1, . . . , Ik) be a partition of [n] to k =
√
n subsets of size n/k =

√
n each.11 In the following, we

say that an input x ∈ {0, 1}n is good for the i-th block of Π, if the sub-string xi ∈ {0, 1}
√
n is of Hamming

weight at least
(

1
2 − δ − ε

)√
n and at most

(
1
2 + δ + ε

)√
n. We say that x is good for the partition Π if x is

good for all the blocks i ∈ [k] of Π. If x is not good then it is called bad. We will use the following lemma.

11The choice of
√
n is somewhat arbitrary and any choice of block size ω(logn) < |B| < o(n) suffices for the final result.
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Lemma 5.7. For every constant δ > 0, there exists a collection of ` = O(n) partitions Π1, . . . ,Π` of [n]
to
√
n subsets of size

√
n each, such that every n-bit string x of Hamming weight

(
1
2 − δ

)
n ≤ wt(x) ≤(

1
2 + δ

)
n is good for at least 0.7` of the partitions.

The hidden constant in the big-O notation depends on the constant δ.

Proof. We use the probabilistic method to choose at random such a collection of size ` = O(n), and see
that with positive probability all inputs are good for at least 0.7` of the partitions.

Fix an input x of weight
(

1
2 − δ

)
n ≤ wt(x) ≤

(
1
2 + δ

)
n. We start the analysis by sampling a partition

Π. We first focus on a single block i, and denote by Yj,i the indicator random variable that is equal to 1 if and
only if the j-th bit of the i-th block is 1. For every i ∈ [

√
n], the

√
n variables {Yj,i}j∈[

√
n] are negatively

associated (see Claim C.6). We now denote Yi =
∑

j Yj,i to be the random variable representing the number
of ones of x that are placed in the i-th block of Π. Due to the linearity of expectation, and to x being of
“middle” weight, we get that the expectation µ of Yi satisfies(

1

2
− δ
)√

n ≤ µ ≤
(

1

2
+ δ

)√
n

The probability that x is bad for the i-th block is a sum of two probabilities, that x puts too many ones or
too few. These probabilities behave the same asymptotically, so we will analyze only the former probability.
By the negative associativity we can use the Chernoff bound, and get

Pr

[
Yi ≥

(
1

2
+ δ + ε

)√
n

]
≤ e−

ε2c2µ
3 = e−Ω(c2n0.3),

where c = 1/
(

1
2 + δ

)
and the last equation follows since ε = n−0.1.

Now by union bound over all blocks, the probability that x is bad for the partition Π is at most

p =
√
ne−Ω(c2n0.3) = o(1)

Finally, if we independently sample ` partitions, the probability that x is bad for at least 0.3` of the partitions
is, by a Chernoff bound, at most 2−Ω(`). By taking ` = Cn for sufficiently large constant C, the latter
probability is smaller than 2−n, so the lemma follows by applying a union bound over all possible inputs.

We can now realize a mid-slice access structure.

Lemma 5.8. Let F be a mid-slice access structure over n parties with parameter δ ∈
(
0, 1

2

)
. Then, F

can be realized by a secret-sharing scheme with share size of m′ · O(n log n), assuming that any (k, a, b)-
somewhat-regular access structure can be realized by a secret-sharing scheme with share size of m′, where

k =
√
n, a =

(
1

2
− δ − n−0.1

)√
n, and b =

(
1

2
+ δ + n−0.1

)√
n.

Proof. We start by considering a partial mid-slice access structure. Recall (Definition 5.6) that such an
access structure is defined only over the middle slice, i.e., over inputs whose Hamming weight is in the
interval [0.5n± δn].
Construction 5.9. We realize such an access structure F as follows:

1. Let L = (Π1, . . . ,Π`) be the list of partitions of length ` = O(n) promised by Lemma 5.7.

2. Share s into ` shares (σ1, . . . , σ`) via an `/2-out-of-` threshold secret-sharing scheme (using fresh
randomness).
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3. For every i ∈ [`] share each σi with a different random string ri by a secret-sharing scheme realizing
the (k, a, b)-somewhat-regular access structure FΠi,a,b (as defined in Remark 5.3).

We analyze the construction. Fix some input x of Hamming weight
(

1
2 − δ

)
≤ wt(x) ≤

(
1
2 − δ

)
. Let

I ⊂ [`] denote the set {i : x is good for Πi}, and recall that, by Lemma 5.7, the set I is of size at least 0.7`.
Observe that F (x) = FΠi,a,b(x) for every i ∈ I . If F (x) = 1 then at least 0.7` shares σi, i ∈ I , can be
reconstructed by the parties in x and s can be recovered. If F (x) = 0 then at least 0.7` shares σi, i ∈ I , are
kept perfectly hidden (due to the privacy of FΠi,a,b) and so s remains perfectly hidden (i.e., we can perfectly
simulate the view of the parties that participate in x).12

We use Shamir’s secret-sharing to implement the threshold part and so each σi is of length O(log `).
Hence, the share size per party is O(m′` log `) = O(m′n log n) where m′ is the size of shares of the
underlying somewhat-regular scheme.

We move on to handle the case where F is defined over all inputs. This part of the construction is quite
start-forward. Recall (Definition 5.6) that such an access structure takes the value 0 over light inputs, the
value 1 over heavy inputs and may take arbitrary values over the middle slice. Letting F ′ denote the partial
mid-slice access structure that agrees with F over the mid slice, we realize F as follows:

1. Share s via a
((

1
2 + δ

)
n+ 1

)
-out-of-n secret-sharing scheme and give the i-th share, denoted by ui,

to the i-th party.

2. Share s via 2-out-of-2 secret sharing into s0 and s1.

3. Share s0 via a
(

1
2 − δ

)
n-out-of-n secret-sharing scheme and give the i-th share, denoted by vi, to the

i-th party.

4. Share s1 to all parties according to F ′ (using Construction 5.9) and give the i-the share, denoted by
wi, to the i-th party.

Correctness: Any input x of weight at least
(

1
2 + δ

)
n+1 can reconstruct s via the u shares, and any middle-

slice input x which is authorized (i.e., F (x) = 1) can recover s0 and s1 (via the v and w shares) and can
therefore recover s. Privacy: A coalition that corresponds to a light inputs learns nothing from the u shares
and from the v shares (due to the privacy of the threshold schemes) and therefore learns nothing about s.
A medium-slice coalition that is unauthorized (i.e., F (x) = 0) learns nothing from the u shares (due to the
privacy of the threshold scheme) and learns nothing from the w shares (due to the privacy of the F ′ scheme)
and so it learns nothing on s.

Since each wi is of length O(m′n log n) and the bit-length of ui and vi is O(log n), the share size per
party is O(m′n log n) +O(log n) = O(m′n log n).

5.3 The Exponent of Mid-slice Access Structures

Let us denote by M(δ) the exponent of mid-slice access structure with parameter δ. Namely,

M(δ) = lim sup
n→∞

max
F∈M(δ,n)

1

n
log SS(F ),

where M(δ, n) is the family of all n-party δ-mid-slice access structures. The linear exponent, M`(δ), is
defined analogously except that SS(F ) is replaced with LSS(F ).

12 Note that when i /∈ I there are no guarantees on the share σi, e.g., it is possible that F (x) = 0 and the parties in x can recover
σi or that F (x) = 1 and the parties in x would have no information on σi. However, since we use a threshold scheme to share s,
this does not affect the correctness and privacy of the construction.
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In [40] it was shown that

M(δ) ≤ H2(0.5− δ) + 0.2h(10δ) + 10δ − 0.2 log(10),

and for the linear case

M`(δ) ≤ H2(0.5− δ) + 0.2 H2(10δ) + 2 log(26)δ − 0.1 log(10).

Based on Lemma 5.8, and our constructions for robust CDS protocols we prove the following bound:

Lemma 5.10. For every δ ∈
(
0, 1

2

)
the following holds

M(δ) ≤

{(
1
2 + δ

)
H2

(
1/2−δ
1/2+δ

)
if δ < 1/6(

1
2 + δ

)
if δ ≥ 1/6

.

For the linear case, when δ < 1/6, it holds that

M`(δ) ≤
1

2
+

1

2

(
1

2
+ δ

)
H2

(
1/2− δ
1/2 + δ

)
.

Proof. Using the secret-sharing schemes with properties promised by Lemma 5.5 and Lemma 5.8, a mid-
slice secret-sharing scheme for an access structure Fmid,δ over n parties can be realized from an (a, b)-
monotone RCDS protocols with k servers for predicates f : ({0, 1}`)k → {0, 1} where k = ` =

√
n, and

a =
(

1
2 − δ − ε

)√
n, b =

(
1
2 + δ + ε

)√
n, where ε = n−0.1. Assuming that these RCDS protocols have

communication complexity m, we get a secret-sharing scheme for Fmid,δ with complexity

m ·O(n log n) ·
b∑

j=a

(
n/k

j

)
= m · poly(n) ·O(2

√
n) = m · 2o(n).

Similarly, we get a linear secret-sharing of complexity m` ·2o(n) wherem` is the share size of an underlying
linear robust CDS protocols. So, the exponent is derived solely from the cost of the underlying robust CDS
protocol. By definition (see (1)) an (a, b)-monotone collection is a (u, t)-collection where

u =

(
`

b

)
and t =

b∑
i=a

(
b

i

)
. (3)

So, by applying Theorem 4.5, we can realize (a, b)-monotone robust CDS with complexity of

m = 2o(n) ·
[ 2δ
√
n∑

j=0

( (
1
2 + δ + ε

)√
n(

1
2 − δ − ε

)√
n+ j

)]√n−1

·
[√

n log

( √
n(

1
2 + δ + ε

)√
n

)]√n
.

For the linear case, Theorem 4.5 yields the bound m` ≤ Ot(2
`t log u)

√
n/2 which, under our choice of

parameters, simplifies to

m` ≤ O(2n/2) ·
[ 2δ
√
n∑

j=0

( (
1
2 + δ + ε

)√
n(

1
2 − δ − ε

)√
n+ j

)
· log

( √
n(

1
2 + δ + ε

)√
n

)]√n/2
.
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Both terms m and m` have different asymptotic behavior for δ < 1/6 or δ ≥ 1/6. Specifically, recalling
that ε = n−0.1, and using the standard entropy-based bound for the binomial coefficients (Fact 3.4), we get

m =

2
( 1
2

+δ) H2

(
1/2−δ
1/2+δ

)
n+o(n) if δ < 1/6

2( 1
2

+δ)n+o(n) if δ ≥ 1/6
,

and for linear CDS we get

m` = 2
1
2
n+ 1

2( 1
2

+δ) H2

(
1/2−δ
1/2+δ

)
n+o(n)

when δ < 1/6, and m` = Ω(2n) when δ ≥ 1/6.

5.4 Putting it altogether (Proof of Theorem 2.1)

In [40] the exponent of general access structures was reduced to the exponent of mid-slice access structures.
To realize an access structure F , they realize the mid-slice of F and in addition they realize the access
structure whose minterms are the light minterms of F and the access structure whose maxterms are the heavy
maxterms of F (where a minterm is a minimal authorized set and a maxterm is a maximal unauthorized set);
the latter two access structures are realized by the trivial schemes. In [3] more efficient schemes realizing
the latter two access structures were presented (using schemes with exponent smaller than 1). Using the
current notation, we get the following lemma:

Lemma 5.11 ([3]). For every δ ∈
(
0, 1

2

)
it holds that

S ≤ max(X′(δ),M(δ)) and S` ≤ max(X′(δ),M`(δ))

where

X′(δ) = H2

(
1

2
− δ
)
−
(

1

2
− δ
)

log

(
1
2 + δ
1
2 − δ

)
.

The proof of Theorem 2.1 now follows directly from the combination of Lemma 5.10 and Lemma 5.11
with δ ∼ 0.1429 for the general case, and δ` ∼ 0.09 for the linear case. Indeed, Lemma 5.11 yields
exponents of 0.637 in the general case and 0.762 in the linear case.

6 Immunizing CDS Servers: Abstraction and an Alternative Construction

In this section we provide an abstraction of the construction in Theorem 4.4, which shows how to ‘immu-
nize” a single server. The goal is to transform a CDS protocol that is robust over some collection I × Y
(where I consists only of singletons of the input of the first server) to a CDS protocol that is robust over
Z×Y for some collectionZ . We begin with a general template that abstracts the work of [32] in Section 6.1.
The template requires a pair of hash function and secret-sharing scheme with specific properties. These are
chosen later in Section 6.2 in a way that immunizes a server over a (u, t) collection, of u maximal sets of
maximal cardinality t. This will allow us to turn any CDS protocol to one that is robust over any robustness
collection, by immunizing one server at a time.
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6.1 A Template for Immunizing a Single Server

We follow the outline suggested in the introduction. That is, we secret-share s to N shares and send each
one of them via an independent copy of a CDS protocol. The immunized server will only use a subset of
these copies that will be determined based on the input of the immunized server via the aid of some hash
function.

Construction 6.1. Let f : X1 × · · · × Xk → {0, 1} be a predicate for a CDS protocol P = (ENCi)i∈[k]

for secrets in S and randomness domain R. Let N be an integer, H : X1 → 2[N ] be a mapping, and let D
be a (randomized) sharing function that maps a secrets s ∈ T into a vector of N shares (s′1, ..., s

′
N ) ∈ SN

using randomness from the domain R0. Define the following new CDS for a secret s ∈ T , and randomness
domain of R0 ×RN :

1. Given s ∈ T and (r0, r1, . . . , rL) ∈ R0 × RN , each server applies D to s and r0 and generates the
shares (s′1, ..., s

′
N ).

2. Each server j computes a vector vj of N messages

vj = (ENCj(xj , s
′
1, r1), . . . , ENCj(xj , s

′
N , rN )).

3. The first server computes the set H(x1) ⊆ [N ] and outputs only the entries (v1[i])i∈H(x1).

4. Every other servers j > 1 outputs its entire vector of messages vj .

Before analyzing the construction we need the following simple definition. The set of collisions of a
collection of sets A1, . . . , Aq is the set of elements that appear in at least two of the sets A1, . . . , Aq.

Lemma 6.2. Suppose that:

1. For every x ∈ X1 the set H(x) is an authorized set of the secret-sharing scheme D

2. The underlying protocol P is a I × Y-RCDS protocol, where I = {{x} : x ∈ X1} ∪ ∅.

3. For every Z ∈ Z1, the set of collisions of the set system {H(x)}x∈Z is a non-authorized set of the
secret-sharing scheme D.

Then Construction 6.1 is a Z1 × Y-RCDS protocol.

Proof. We claim that the protocol is perfectly correct. Indeed, fix an input (x1, y) for which f(x1, y) = 1.
Then, the decoder computes the set A = H(x1) and for every i ∈ A it applies the decoder of the original
CDS to i-th component of the transcript, i.e., to (v1[i], . . . , vk[i]). By the correctness of the underlying
CDS, the value s′i is recovered. Since A is an authorized set of the secret-sharing scheme (by the lemma’s
hypothesis) the shares (s′i)i∈A can be used to recover the secret s.

Next, we prove that the protocol is robust over a zero-set Z × Y , where Z ∈ Z1 and Y ∈ Y . For
secret s ∈ T , input (x1, y), and randomness r = (r0, . . . , rL), let D(x1, y, r, s) denote the concatenation of
the messages that are sent by all the servers. Also, let D(x1, y, r, s)[i] denote the concatenation of the i-th
messages of the servers. (If i /∈ H(x1) then the first entry of D(x1, y, r, s)[i] is taken to be ⊥.) Fix a pair of
secrets s and s′, we show that the random variables

D(s) := (D(x1, y, r, s))(x1,y)∈Z , and D(s′) := (D(x1, y, r, s
′))(x1,y)∈Z ,

induced by a uniform choice of r, are distributed identically.
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Let A ⊆ [N ] be the set of collisions of {H(x1)}x1∈Z . To prove that D(s) and D(s′) are identical,
we show that (1) The restriction of D(s) and D(s′) to the indices in A is identically distributed; and (2)
Conditioned on every fixing of D(s)[A] and D(s′)[A], for every i /∈ A the random variables D(s)[i] and
D(s′)[i] are identically distributed, and are independent of all other i’s outside A.

We prove (1). Since the set A of collisions is a non-authorized set, the A-shares (si)i∈A of s and the
A-shares (s′i)i∈A of s′, induced by a uniform choice of r0, are identically distributed. Hence, for uniformly
chosen r0 and rA = (ri)i∈A (and every fixing of (ri)i/∈A), the A-components of D(s) and D(s′) are identi-
cally distributed.

We move on to (2). Fix some arbitrary r0, rA and let (si)i∈A and (s′i)i∈A denote the resulting A-shares
of s and s′. For every i ∈ A, let

Ii := {x1 ∈ Z : i ∈ H(x1)}
denote the set of inputs for which the first server “speaks” in the i-th session. By assumption, |Ii| ≤ 1 and
therefore the underlying CDS is robust over the zero-set Ii×Y . It follows that the i-th components of D(s)
and D(s′) are identically distributed when ri is uniformly chosen. Since the ri’s are chosen independently,
we conclude that D(s) is distributed identically to D(s′).

6.2 Instantiating the Template

The above template can be instantiated based on perfect hash functions as shown in Section 4.2. We provide
here an alternative instantiation based on sparse hash functions.

Recall that Construction 6.1 makes use of a secret-sharing scheme over a set of N parties. In the
following we letN = N1·N2, and view the set [N ] as [N1]×[N2]. Correspondingly a subsetM of [N ] can be
represented asN1×N2 binary matrix. We will need a (partial) access structure for whichM is an authorized
set if at least β-fraction of the rows have at least γN2 ones, and M is unauthorized if there are at most 0.5β
fraction of the rows with more than 0.6γN2 ones. (The parameters N1, N2, β, γ will be defined below.) We
refer to this access structure as a (β, γ,N1, N2)-access structure. Such an access structure can be easily
realized by applying a two-levels threshold secret sharing (or ramp-secret sharing). For example, distribute
the secret toN1 shares s1, . . . , sN1 , say via Shamir’s secret-sharing scheme with threshold 0.8βN1, and then
distribute each si to N2 shares si,1, . . . , si,N2 via Shamir’s secret-sharing scheme with threshold of 0.8γN2.
The share si,j is held by the (i, j)-th party.

Fact 6.3. For every positive integers N1, N2 and reals β, γ ∈ (0, 1) and every field F of size at least
max(N1, N2)+1, there exists a secret-sharing scheme that realizes the (β, γ,N1, N2)-access structure and
maps a secret s ∈ F to the shares (si,j)i∈[N1],j∈[N2] ∈ FN1×N2 .

Next, we need a hash function H that maps x ∈ X to subsets of [N1] × [N2] (or to N1 × N2 binary
matrices). It will be convenient to view H as a sequence of N1 hash functions h1, . . . , hN1 : X → 2[N2]

one for each row. That is, (i, j) ∈ H(x) if j ∈ hi(x). The collection should be compatible with the
(β, γ,N1, N2)-access structure and with the collection of input tuples against which we should immunize.

Definition 6.4. Let X be a set and let Z1, . . . , Zu be a sequence of t-subsets of X , i.e., Zi ∈
(
X
t

)
for every

i. A (β, γ,N1, N2) hash function family H = {h1, . . . , hN1}, hi : X → 2[N2] for Z satisfies the following
properties:

1. For every x ∈ X exactly βN1 functions in H , map x to a subset of [N2] of size at least γN2.

2. For every set of inputs Zi, i ∈ [u], for all but β/2-fraction of the hash functions hj , j ∈ [N1] it holds
that the family of sets {hj(x)}x∈Zi has at most 0.6γN2 collisions.

In Section 6.3 we will prove the following lemma.
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Lemma 6.5. For every X and Z1, . . . , Zu ∈
(
X
t

)
, there exists (β, γ,N1, N2)-hash function H with N1 =

O(t log u) and N2 = log t · polylog(t, log u) where for every x the set H(x) =
⋃
i hi(x) is of size exactly

βγN1N2, and behaves asymptotically as log2 u · polylog(t, log u).

We can now immunize a single server (the (k′ + 1)-th server) against u different t-subsets Z1, . . . , Zu
of the server’s input domain (and any subset of these sets). The communication overhead will be log2 u ·
polylog(t, log u) for the immunized server, and Õ(t log2 u) for the others. Formally, we prove the following
theorem.

Theorem 6.6. Let f : X1× · · ·×Xk → {0, 1} be a predicate. Suppose that P is a CDS for f that achieves
robustness over some k′-product collection Y = (Y1, . . . ,Yk′) for some 0 ≤ k′ < k. Let Z ∈ 2Xk′+1 be
a downward-closed collection of subsets of Xk′+1 that contains at most u maximal sets Z1, . . . , Zu each of
cardinally of at most t. Then the protocol P can be converted into a CDS P ′ for f which is robust over the
(k′ + 1)-product collection (Y,Z) in which the communication complexity of the k′ + 1 server grows by a
factor of log2 u · polylog(t, log u), and for all the servers grows by a factor of Õ(t log2 u).

Proof. We immunize the (k′ + 1)-th server against the sets Z ∈ Z by applying Construction 6.1 to the
original CDS (while treating the k′ + 1 party as the first party).

Let H be (β, γ,N1, N2)-hash family for (Z1, . . . , Zu) as promised by Lemma 6.5 where N1 =
O(t log u) , N2 = log u · polylog(t, log u) and β, γ are as promised by the lemma. Take N = N1 ×N2 =
Õ(t log2 u). Let F be a finite field of size at least max(N1, N2) + 1 < O(t log u) and let D denote a secret
sharing that realizes the (β, γ,N1, N2)-access structure (as promised in Fact 6.3) that maps a secret s ∈ F to
FN1×N2 . Furthermore, let us slightly modify the underlying CDS into a CDS P1 that supports secrets from
F. If the original domain S is larger than F we can simply take P as P1. Otherwise, this can be achieved
by concatenating several elements from S. This modification increases the communication complexity by a
factor of at most log |F| = O(log t+ log log u).

Instantiate Construction 6.1 with the underlying CDS, with the mapping H , and with the secret-sharing
D. (Recall that we view subsets of [N ] as N1 × N2 binary matrices and we abuse notation and let H(x)
denote the matrix whose (i, j)-th cell is 1 iff j ∈ hi(x).) Fix some zero-set Z × Y where Z ∈ Z , and
Y ⊂×j<k′ Yj ××j>k′

(Xj
1

)
. Recall that Z is a subset of Zi for some i ∈ [u]. Lemma 6.2 shows that the

protocol is robust over (Z × Y ), since the following three conditions hold:

1. By assumption, the underlying CDS protocol is robust for every set of the form I × Y for every
singleton I ⊂ Z.

2. Since H is (β, γ,N1, N2)-hash function for the maximal sets (Z1, . . . , Zu) and since Z ⊆ Zi for
some i ∈ [u], it follows that the set of collisions of {H(x)}x∈Z is a non-authorized set of the scheme
D. (Written as a matrix, this set has at most 0.5βN1 rows that have at least 0.6γN2 ones.)

3. For every x ∈ Xk′+1 the set H(x) is an authorized set of the secret-sharing scheme D.

A promised by Lemma 6.5, the immunized server sends βγN messages of the protocol P1 and each other
server sends N CDS messages. Compared to the original CDS P , the communication complexity of the
immunized server grows by a multiplicative factor of O(βγN log |F|) = log2 u · polylog(t, log u), and for
all other servers by a factor of O(N log |F|) = Õ(t log2 u).

By iterating over all parties, we derive the following corollary.

Corollary 6.7. Let P be a k-server CDS protocol for a predicate f : X1×· · ·×Xk → {0, 1} in which each
server has a communication complexity `. Let Z = (Z1, · · · ,Zk) be a (t, q)-product collection. Then, the
CDS P can be transformed into a robust CDS P ′ which is robust over the collection Z with multiplicative
communication overhead of Õ(qk−1 log2k t). Furthermore, if the original P is linear then so is P ′.
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Proof. We use Theorem 6.6 k times iteratively starting with the original CDS. At the i-th iteration, we
transform a CDS which is robust over the (i− 1, u, t)-product collection (Z1, · · · ,Zi−1) into a CDS which
is robust over the (i, u, t)-product collection (Z1, · · · ,Zi). The communication overhead in each step is
log2 u · polylog(t, log u) for the immunized server, and Õ(t log2 u) for all others. Since every server is
immunized once, the overall communication grows by a factor of Õ(tk−1 log2k u).

Finally, assume that the original protocol P is linear over a field F. In order to preserve F-linearity,
it suffices to employ an F-linear secret sharing in Fact 6.3. This is immediate when F is larger than
max(N1, N2) + 1; When F is smaller this can be achieved by combining a pair of ramp-secret sharing
(e.g., by using random linear codes) over F or by using an implementation over a larger extension field.

6.3 Proof of Lemma 6.5

The proof is via the probabilistic method. We define the family H in two steps. We start by selecting for
each x a random βN1-subset Ix ⊂ [N1]. In addition, we select N1 random functions h′i, ∀i ∈ [N1] from X
to γN2-subsets of [N2]. The final mapping is defined as follows: For every i ∈ [N1] let hi(x) be the empty
set if i /∈ Ix and otherwise let hi(x) = h′i(x). In matrix terminology, the 1-cells of the matrix H(X) that
corresponds to x are selected by first choosing a random βN1 rows and then choosing random γN2 cells in
each of these rows. Clearly, the mapping satisfies the first property of Definition 6.4 and the “Moreover”
part. Let

N1 = 2t log u, β =
c logN1

t
, N2 = c′(2βt)2 log(3tN1) = O(log2N1 log(N1u)),

and γ = 1/(4c2 log2N1) where c and c′ are some positive constants. Fix some tuple of inputs Z =
(x1, . . . , xt). We show that, except with probability 1/(3u), the collection H satisfies the second property
of Definition 6.4 for the input tuple Z, and so the lemma follows by a union bound over all input tuples.

Analyzing I . We say that a “row” j ∈ [N1] gets a copy of x if j ∈ Ix. Since each x ∈ Z is placed in a
random βN1 subset, each row j gets a copy of every x ∈ Z independently with probability β. Call a row
j bad if it holds more than 2βt of the elements of Z, and let χj be an indicator random variable that takes
the value 1 if the j-th row is bad. By a Chernoff bound, χj gets the value 1 with probability p < e−βt/3.
Say that I = {Ix} is good for Z if there are less than log t < 0.5βN1 bad rows. Since the random variables
χ1, . . . , χN1 are negatively associated (see proof in Claim C.5), the probability of having at least log u bad
cells can be upper-bounded by (

N1

log u

)
plog u ≤ (N1 · p)log u ≤ 1

3u
,

where the last inequality holds as long as p < 1/10N1 which holds for β = c logN1/q for sufficiently large
constant c.

Analyzing h′i. Fix some I and consider a good row i ∈ [N1] (i.e., has at most ` = 2βt inputs). We say
that h′i is good for Z, if h′i induces at most 0.6γN2 colliding cells. Here an index j ∈ [N2] is counted as a
collision if at least two distinct inputs x 6= x′ ∈ Z have i ∈ h(x)∩ h(x′) and j ∈ h′i(x)∩ h′i(x′). (In matrix
notation, both x and x′ put 1 in their (i, j)-th cell.) In the above we restrict the attention to good rows; If the
i-th row is bad then we treat h′i as being vacuously good.

Claim 6.8. Let ε = 1/(3uN1), and recall that γ = 1/`2 and that N2 = c′`2 log(1/ε). Then, for sufficiently
large constant c′, the following holds. For every i ∈ [N1], with probability 1 − ε over the choice of h′i, the
function h′i is good (i.e., it yields at most 0.6γN2 collisions).
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Proof of claim. Fix some good i ∈ [N1]. The function h′i(x) maps every input x independently to a random
γN2-subsets of [N2]. Therefore every index j ∈ [N2] gets x (i.e., j ∈ h′i(x)) independently with probability
γ. We define an indicator random variable ζj that takes the value 1 if the j’th index in the i’th row gets more
than one input mapped into it. By a union bound,

Pr[ζj = 1] ≤
∑

x 6=x′:i∈Ix∩Ix′

Pr[j ∈ h′i(x)] · Pr[j ∈ h′i(x′)].

Since i is a good row, there are at most
(
`
2

)
< `2/2 pairs x 6= x′ for which i is in both Ix and Ix′ . Hence,

Pr[ζj = 1] < 0.5`2γ2.

Next we define the random variable ζ =
∑

j ζj representing the number of collisions in the i’th row. By the
linearity of expectation and since γ`2 = 1 it holds that

E[ζ] < 0.5`2γ2N2 = 0.5γN2.

Finally, since the variables ζj are negatively associated (from the same reasons as the variables in Claim C.5),
we can apply the Chernoff bound and conclude that

Pr[ζ > 0.6γN2] ≤ exp(−Ω(γN2)) < ε

where the inequality holds for sufficiently large constant c′.

Since ε = 1/(3tN1), we can apply union bound over all i ∈ [N1] we conclude that all hi’s are good
except with probability 1/3u. Overall, the event that I and h′1, . . . , h

′
N1

are all good for all the u predefined
input vectors Z1, . . . , Zu happens with probability 1− u(1/3u+ 1/3u) > 1/3, and the proof follows.
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[9] A. Beimel, O. Farràs, Y. Mintz, and N. Peter. Linear secret-sharing schemes for forbidden graph access
structures. In Y. Kalai and L. Reyzin, editors, TCC 2017, volume 10678 of LNCS, pages 394–423.
Springer-Verlag, 2017.
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A A Simple General Schemes with Exponent Less Than One

In this section we present a relatively simple construction of a secret-sharing scheme for an arbitrary n-
party access structure with share size 2cn for a constant c < 1. To achieve this goal, we present a simple
2-server RCDS protocol in Appendix A.1 and a reduction from secret-sharing to 2-server RCDS protocols
in Appendix A.2. The purpose of this section is pedagogical and its aim is to give a full description of this
scheme without relying on undescribed schemes, e.g., on the CDS scheme of [42] (which uses a construction
of matching vectors of [34]). To understand this section, the reader needs the definitions given in Sections 3
and 4.1; no material from other sections is needed.
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A.1 A 2-Server Robust CDS Protocols

We say that an RCDS protocol is a (t1, t2)-RCDS if it is robust for every zero-set Z = Z1 × Z2 such that
|Z1| ≤ t1 and |Z2| ≤ t2. In this section, we present a 2-server (|X|, t)-RCDS protocol for a function
f : X × Y → {0, 1} (that is, the robustness is guaranteed when server Q1 can send unbounded number of
messages and server Q2 can send at most t messages). We start by showing that a CDS protocol described
in [12] (inspired by the protocol of [29]) is robust when server Q1 can send unbounded number of messages
and server Q2 can send only one message.

Protocol P2

The secret: A bit s ∈ {0, 1}.
Inputs: Q1 and Q2 hold the inputs x ∈ X and y ∈ Y , respectively.
Common randomness: The two servers hold |Y |+ 1 uniformly distributed and independent random bits
r0, r1, . . . , r|Y | ∈ {0, 1}.
The protocol:

1. Q1 sends to the referee the bit mx = s⊕ r0 ⊕
⊕

i∈Y,f(x,i)=0 ri.

2. Q2 sends to the referee the bits my = (r0, r1, . . . , ry−1, ry+1, . . . , r|Y |).

3. If f(x, y) = 1, the referee computes mx ⊕ r0 ⊕
⊕

i∈Y,f(x,i)=0 ri.

Figure 1: A 2-server CDS protocol P2 for a function f : X × Y → {0, 1}.

Lemma A.1. Let f : X×Y → {0, 1} be a function. Then, protocol P2, described in Figure 1, is a 2-server
(|X|, 1)-RCDS protocol for f in which the message size of Q1 is 1 and the message size of Q2 is |Y |.

Proof. For the correctness of the protocol P2, consider inputs x, y such that f(x, y) = 1. In this case ry is
not part of the exclusive-or in the message mx sent by Q1 and server Q2 sends all ri’s except for ry. Thus,
the referee can recover s from mx and my as described in P2.

For the robustness of the protocol, assume that Q2 sends the message of input y ∈ Y and Q1 sends
multiple messages for a subset of inputs Z ⊆ X , such that f(x, y) = 0 for every x ∈ Z. We prove below
that the probability of these messages is the same for s = 0 and s = 1. Recall that the referee gets the bits
r0, . . . , r|Y | except for ry from Q2 and the bit

mx = s⊕ r0 ⊕
⊕

i∈Y,f(x,i)=0

ri = (s⊕ ry)⊕ r0 ⊕
⊕

i∈Y \{y},f(x,i)=0

ri

for every x ∈ Z fromQ1. For every x ∈ Z, the element ry acts as a one-time-pad protecting s inmx, that is,
if the messages (mx)x∈Z ,my are generated with common randomness r0, r1, . . . , r|Y | and the secret s = 0,
then the same messages are generated from the common randomness r0, r1, . . . , ry−1, ry, ry+1, . . . , r|Y | and
the secret s = 1.

Next, we show how to transform the above CDS protocol to a (|X|, t)-RCDS protocol for |Y |1/4 ≤
t ≤ |Y |1/2. This is done by immunizing Q2 using a family of perfect hash functions H|Y |,t,t2 (introduced
in [28]), that is, a family of functions h : Y → [t2] such that for every set T ∈

(
Y
t

)
there exists at least one

h ∈ H|Y |,t,t2 such that h restricted to T is one-to-one, i.e., h(y1) 6= h(y2) for every distinct y1, y2 ∈ T .
The following lemma is proved by a simple probabilistic argument (i.e., choosing the hash functions with
uniform distribution from the functions satisfying (4)); we omit its proof.
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Lemma A.2. Let n be an integer and t ∈ [
√
n]. Then, there exists a family of perfect hash functions

Hn,t,t2 = {hi : [n] → [t2] : i ∈ [`]}, where ` = 16t lnn, such that for every i ∈ [`] and every b ∈ [t2] it
holds that

|{a ∈ [n] : hi(a) = b}| ≤ dn/t2e. (4)

Lemma A.3. Let f : X × Y → {0, 1} be a function and |Y |1/4 ≤ t ≤ |Y |1/2 be an integer. Then, there is
a 2-server (|X|, t)-RCDS protocol for f with one-bit secrets in which the message size is O(t3 log |Y |).

Proof. The desired protocol Pt2 is described in Figure 2. Let H|Y |,t,t2 = {hi : Y → [t2] : i ∈ [`]}, where
` = Θ(t log |Y |), be the family of perfect hash functions promised by Lemma A.2.

Protocol Pt2
The secret: A bit s ∈ {0, 1}.
Inputs: Q1 and Q2 hold the inputs x ∈ X and y ∈ Y , respectively.
Common randomness: The two servers hold ` − 1 uniformly distributed and independent random bits
s1, . . . , s`−1 and `t2 common random strings for the CDS protocol P2.
The protocol:

1. Compute s` = s⊕ s1 ⊕ · · · ⊕ s`−1.

2. For every i ∈ [`] do:

• Let Yj = {y ∈ Y : hi(y) = j}, for every j ∈ [t2].

• For every j ∈ [t2], independently execute the CDS protocol P2 of Lemma A.1 for the re-
striction of f to X × Yj with the secret si. That is, Q1 with input x sends a message for the
restriction of f to X × Yj , for every j ∈ [t2], and Q2 with input y sends a message only for
the restriction of f to X × Yhi(y).

Figure 2: A 2-server (|X|, t)-RCDS protocol Pt2 for a function f : X × Y → {0, 1}.

For the correctness of the protocol, let x ∈ X and y ∈ Y for which f(x, y) = 1. Then, for every i ∈ [`],
the input y is in Yhi(y), so the referee can reconstruct si using the messages on the inputs x, y in the CDS
protocol P2 for the restriction of f to the inputs of X × Yhi(y) with the secret si. Overall, the referee can
learn all the bits s1, . . . , s`, so it can reconstruct the secret s by xoring these bits.

For the robustness of the protocol, let (Z1, Z2) be a zero set of f such that |Z2| ≤ t. By Lemma A.2,
there is at least one i ∈ [`] for which |hi(Z2)| = |Z2|. We prove that the referee cannot learn any information
on si, and, thus, cannot learn the secret s.

Since hi is one-to-one on Z2, each input of Z2 is in a different subset Yj in the partition induced by hi,
and the referee gets at most one message of Q2 in each execution of the CDS protocol P2 for the restriction
of f to X × Yj with the secret si. Since the CDS protocol P2 is a (|X|, 1)-RCDS protocol and f(x, y) = 0
for every (x, y) ∈ Z1×Z2, the referee cannot learn any information about si from any execution of the CDS
protocol P2 for the restriction of f to the inputs of X × Yj with the secret si, for every j ∈ [t2]. Since each
execution of P2 for each function hi is done with independent common random strings, the referee cannot
learn any information on si, and, hence, it cannot learn any information on the secret s.

We next provide an analyzing of the message size. Consider the execution of step 2 of Pt2.
By Lemma A.2, |Yj | = O(|Y |/t2) for every j ∈ [t2]. The message size of Q1 is t2 times the mes-
sage size of Q1 in P2, i.e., it is t2. The message size of Q2 is the message size of Q2 in P2, i.e., it is
O(|Y |/t2). Since there are ` = Θ(t log |Y |) hash functions and t ≥ |Y |1/4, the message size of both servers
is O(t3 log |Y |).

28



A.2 A Secret-Sharing Scheme from a 2-Server RCDS

A.2.1 Liu and Vaikuntanathan Decomposition of Access Structures

As in [40], we decompose an access structure F to three parts, depending on a parameter δ ∈ (0, 1
2): A

bottom part Fbot,δ, which handles small sets, a middle part Fmid,δ, which handles medium-size sets, and a
top part Ftop,δ, which handles large sets. This decomposition presented in the following proposition.

Proposition A.4 (Liu and Vaikuntanathan [40]). Let F be an access structure over a set of n parties and
δ ∈ (0, 1

2). Define the following access structures Ftop,δ, Fbot,δ, and Fmid,δ.

A /∈ Ftop,δ ⇐⇒ ∃A′ /∈ F,A ⊆ A′ and |A′| >
(

1

2
+ δ

)
n,

A ∈ Fbot,δ ⇐⇒ ∃A′ ∈ F,A′ ⊆ A and |A′| <
(

1

2
− δ
)
n,

A ∈ Fmid,δ ⇐⇒ A ∈ F and
(

1

2
− δ
)
n ≤ |A| ≤

(
1

2
+ δ

)
n, or |A| >

(
1

2
+ δ

)
n.

Then, F = Ftop,δ ∩ (Fmid,δ ∪ Fbot,δ). Therefore, if Ftop,δ, Fbot,δ, and Fmid,δ can be realized by secret-
sharing schemes with share size O(2cn) then also F can be realized by a secret-sharing scheme with share
size O(2cn).

As mentioned in Proposition A.4, F = Ftop,δ∩(Fmid,δ∪Fbot,δ). Thus, by standard closure properties of
secret-sharing schemes, realizing F can be reduced to realizing Ftop,δ, Fbot,δ, and Fmid,δ (that is, choose a
random bit s1, share s1⊕swith a scheme realizing Ftop,δ and independently share s1 with schemes realizing
Fmid,δ and Fbot,δ). In [40], the access structures Fbot,δ was realized by sharing the secret independently for
each minimal authorized set, resulting in a scheme realizing Fbot,δ with share size

(
n

( 1
2
−δ)n

)
≤ O(2H2( 1

2
−δ)n)

(where H2(·) is the binary entropy function). A similar construction was used for Ftop,δ. The properties of
the resulting scheme for F are stated in the following lemma.

Lemma A.5 ([40]). Let F be an access structure and δ ∈ (0, 1
2), and assume that Fmid,δ can be realized

by secret-sharing schemes with share size 2M(δ)n. Then, F can be realized by a secret-sharing scheme with
share size 2(max{H2( 1

2
−δ),M(δ)})n.

A.2.2 Secret-Sharing Schemes Realizing the Access Structure Fmid,δ

Our main construction in this section is a secret-sharing scheme realizing the middle access structure Fmid,δ

whose exponent is smaller than 1. Towards this construction, we defined balanced access structures in Def-
inition A.6, represent Fmid,δ as a union of a polynomial number of balanced access structures, and show
how to realize each such access structure using an RCDS protocol. By closure properties of secret-sharing
schemes, we can realize Fmid,δ using the schemes for the balanced access structures, and, hence, we can
realize F with a smaller share size.

Definition A.6 (The access structure FB,mid,δ). Let F be an access structure with n parties, δ ∈ (0, 1
2), and

B be a subset of parties. The access structure FB,mid,δ is the access structure that contains all subsets of
parties of size greater than (1

2 + δ)n, and all subsets of parties that contain authorized subsets A′ ∈ F of
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size between (1
2 − δ)n and (1

2 + δ)n that contain exactly b|A′|/2c of their parties from B. That is,

FB,mid,δ = {A : ∃A′ ∈ F,A′ ⊆ A,
(

1

2
− δ
)
n ≤ |A′| ≤

(
1

2
+ δ

)
n, and |A′ ∩B| = b|A′|/2c}

∪ {A : |A| >
(

1

2
+ δ

)
n}.

Following the above definition, we present our main secret-sharing scheme, which realizes the access
structure FB,mid,δ.

Lemma A.7. Let F be a an access structure over a set of n parties, δ ∈ (0.027, 1
6), and B be a subset of

parties such that |B| = n/2. Then, there is a secret-sharing scheme realizing FB,mid,δ with a one-bit secret

in which the share size is 2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n.

Proof. Assume without loss of generality that n is even (this can be done by adding dummy parties). Define

B1 =

{
S1 ⊆ B :

(
1

4
− δ

2

)
n ≤ |S1| ≤

(
1

4
+
δ

2

)
n

}
and

B2 =

{
S2 ⊆ B :

(
1

4
− δ

2

)
n ≤ |S2| ≤

(
1

4
+
δ

2

)
n

}
.

Note that |B1| = |B2| < 2n/2. Moreover, define the function f : B1 × B2 → {0, 1}, where f(S1, S2) = 1
if and only if S1 ∪ S2 ∈ F , (1

2 − δ)n ≤ |S1 ∪ S2| ≤ (1
2 + δ)n, and |S1| = |S2| or |S1| = |S2| − 1. The

scheme DB,mid realizing FB,mid is described in Figure 3.

Scheme DB,mid,δ

The secret: A bit s ∈ {0, 1}.
The scheme:

1. Share the secret s among the n parties using a (( 1
2 + δ)n+ 1)-out-of-n secret-sharing scheme.

2. Choose a random bit s1 ∈ {0, 1} and define s2 = s⊕ s1.

3. Let t = O
(
n2H2(

1−2δ
1+2δ )(

1
4+

δ
2 )n
)

(this choice of t will be explained later).

4. Execute the 2-server (2|B1|, t)-RCDS protocol of Lemma A.3 for the function f with the secret s1;
for every S1 ∈ B1 (respectively, S2 ∈ B2) share the message ofQ1 (respectively, Q2) when holding
the input S1 (respectively, S2) among the parties of S1 (respectively, S2) using an |S1|-out-of-|S1|
(respectively, |S2|-out-of-|S2|) secret-sharing scheme.

5. Execute the 2-server (t, 2|B2 |)-RCDS protocol of Lemma A.3 for the function f with the secret s2;
for every S1 ∈ B1 (respectively, S2 ∈ B2) share the message ofQ1 (respectively, Q2) when holding
the input S1 (respectively, S2) among the parties of S1 (respectively, S2) using an |S1|-out-of-|S1|
(respectively, |S2|-out-of-|S2|) secret-sharing scheme.

Figure 3: A secret-sharing scheme DB,mid,δ realizing the access structure FB,mid,δ.

For the correctness of the scheme, take a minimal authorized set A ∈ FB,mid,δ, that is, A = S1 ∪ S2

for some S1 ⊆ B,S2 ⊆ B such that S1 ∪ S2 ∈ F , (1
2 − δ)n ≤ |S1 ∪ S2| ≤ (1

2 + δ)n, and |S1| = |S2| or

30



|S1| = |S2| − 1. The parties in A = S1 ∪ S2 can reconstruct the messages of Q1 and Q2 when holding the
inputs S1 and S2, respectively, in the first RCDS protocol (i.e., the protocol of step 4), and can reconstruct s1

from these messages using the reconstruction function of this protocol (since f(S1, S2) = 1). By symmetric
arguments, the parties in A can reconstruct s2 (using the protocol of step 5), and, thus, the parties in A can
reconstruct the secret s by xoring s1 and s2. Authorized sets of size greater than (1

2 + δ)n can reconstruct
the secret s using the ((1

2 + δ)n+ 1)-out-of-n secret-sharing scheme (i.e., the scheme of step 1).
For the privacy of the scheme, take an unauthorized set A /∈ ΓB,mid,δ, that is, A = S1 ∪ S2 such that

S1 ⊆ B,S2 ⊆ B and |S1∪S2| ≤ (1
2 +δ)n (subsets of size greater than (1

2 +δ)n are authorized), and assume
without loss of generality that |S1| ≤ (1

4 + δ
2)n (otherwise, |S2| ≤ (1

4 + δ
2)n and we consider the second

RCDS protocol, i.e, the protocol of step 5). In the first RCDS protocol (i.e, the protocol of step 4), the parties
in S1 know a message of Q1 on an input S′1 ∈ B1 if and only if S′1 ⊆ S1. That is, they can reconstruct the

messages of the inputs (which are sets) in B1 for the set TS1

∆
= {S′1 ∈ B1 : S′1 ⊆ S1, |S′1| ≥ (1

4 −
δ
2)n}. The

number of subsets in TS1 is at most

t
∆
=

( 1
4

+ δ
2

)n∑
i=( 1

4
− δ

2
)n

(
(1

4 + δ
2)n

i

)
.

Since δ < 1
6 , we have that (1

4 −
δ
2)n > 1/2(1

4 + δ
2)n and

t = O

(
n ·
( 1

4 + δ
2)n

(1
4 −

δ
2)n

))
= O

(
n2H2( 1−2δ

1+2δ
)( 1

4
+ δ

2
)n
)
.

For every S′1 ⊆ S1 and S′2 ⊆ S2, we have that (S′1, S
′
2) is a zero set of f , and the parties in A = S1 ∪S2

(which learn the messages on the inputs of TS1 of Q1 and possibly many messages of Q2) learn only
messages of the zero set TS1 × {S′2 ∈ B2 : S′2 ⊆ S2} in the first RCDS protocol. Thus, by the robustness of
the RCDS protocol, the parties in A cannot learn any information on s1, and, hence, they cannot learn any
information on the secret s.

Overall, in the resulting scheme each party Pi gets a share of size log n from the threshold scheme
of step 1 and less than |B1| = |B2| < 2n/2 shares from the threshold schemes of step 4 (respectively,
step 5), one for each message of the RCDS protocol for f on an input S such that Pi ∈ S. Thus, since
δ > 0.027 implies that t = 2H2( 1−2δ

1+2δ
)( 1

4
+ δ

2
+o(1))n > 2n/8 > |B2|1/4, the message size of the RCDS protocols

osstep 4 and step 5 is O(t3n), and the share size of each party in the scheme DB,mid,δ is O(2n/2 · t3n) =

2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n.

We use the following family of subsets, in which every set of medium size is equally partitioned by one
of the subsets in the family (a similar family appears in [3]). The proof of the claim is by a simple use of the
probabilistic method.

Claim A.8. Let P be a set of n parties for some even n and δ ∈ (0, 1
2). Then, there are ` = Θ(n3/2) subsets

B1, . . . , B` ⊆ P , each of them of size n/2, such that for every subset A ⊆ P for which (1
2 − δ)n ≤ |A| ≤

(1
2 + δ)n it holds that |A ∩Bi| = b|A|/2c for at least one i ∈ [`].

We use the above scheme and the family of “balancing” subsets of Claim A.8 to construct a scheme that
realizes the access structure Fmid,δ.

Theorem A.9. Let F be an access structure over a set of n parties and δ ∈ (0.027, 1
6). Then,

there is a secret-sharing scheme realizing Fmid,δ with a one-bit secret in which the share size is

2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n.
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Proof. As in Lemma A.7, assume without loss of generality that n is even. By Claim A.8, there exist
` = Θ(n3/2) subsetsB1, . . . , B` ⊆ P , where |Bi| = n/2 for every i ∈ [`], such that for every subsetA such
that (1

2 − δ)n ≤ |A| ≤ (1
2 + δ)n, it holds that |A ∩Bi| = b|A|/2c for at least one i ∈ [`]. Thus, we get that

Fmid,δ = ∪`i=1FBi,mid,δ. By Lemma A.7, for every i ∈ [`] there is a secret-sharing scheme DBi,mid,δ realiz-

ing the access structure FBi,mid,δ with a one bit secret in which the share size is 2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n.
For every i ∈ [`], we independently share the secret s using the secret-sharing schemeDBi,mid,δ realizing the
access structure FBi,mid,δ. The combined scheme is a secret-sharing scheme realizing the access structure

Fmid,δ in which the share size is O(n3/2) · 2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n = 2( 1
2

+H2( 1−2δ
1+2δ

)( 3
4

+ 3δ
2

)+o(1))n.

A.2.3 Secret-sharing Schemes Realizing any Access Structure

Theorem A.10. There exists a constant c < 1 such that for every n and every n-party access structure F
there is a secret-sharing scheme realizing F with a one-bit secret in which the share size is 2(c+o(1))n.

Proof. By Lemma A.5 and Theorem A.9, for every δ ∈ (0.027, 1
6) the access structure F can be realized by

a secret-sharing scheme with share size

2(max{H2( 1
2
−δ), 12+H2( 1−2δ

1+2δ )(
3
4

+ 3δ
2 ))}+o(1))n. (5)

By taking δ ≈ 0.04063789 (i.e., t ≈ O(20.165076564n)) the above two expressions in the exponent are
equal, and we achieve share size of 2(c+o(1))n for c = 0.99523.

B Known Secret-Sharing Schemes

In this section we present known results on threshold and ramp secret-sharing schemes and closure properties
of secret-sharing schemes. First, we define threshold secret-sharing schemes, and provide some known result
for such schemes.

Definition B.1 (Threshold secret-sharing schemes). We say that an n-party secret-sharing scheme is a k-
out-of-n secret-sharing scheme if it realizes the access structure Γk,n = {A ⊆ P : |A| ≥ k}.
Claim B.2 ([49]). For every k ∈ [n] there is a linear k-out-of-n secret-sharing scheme realizing Γk,n for
secrets of size m in which the share size is max{m,O(log n)}.

Now, we define ramp secret-sharing schemes as in [18] and present results about an efficient ramp
secret-sharing scheme implicit in [20].

Definition B.3 (Ramp secret-sharing schemes). Let D be a secret-sharing scheme on a set of n parties and
let 0 ≤ k1 < k2 ≤ n. The scheme D is a (k1, k2, n)-ramp secret-sharing scheme if each subset of parties
of size at least k2 can reconstruct the secret and each subset of parties of size at most k1 cannot learn any
information about the secret. There are no restrictions on other subsets of parties.

Claim B.4. For every constants 0 ≤ b < a ≤ 1 there is p0 such that for every prime-power q > p0, there
is a linear (bn, an, n)-ramp secret-sharing scheme over the field Fq in which each share is a field element
(where p0 is independent of n).

Finally, we present the following claim, dealing with decomposition of secret-sharing schemes.

Claim B.5 ([15]). Let Γ1, . . . ,Γt be access structures over the same set of n parties, and let Γ = Γ1∪· · ·∪Γt
and Γ′ = Γ1 ∩ · · · ∩ Γt. If there exist secret-sharing schemes realizing Γ1, . . . ,Γt with share size at most c,
then there exist secret-sharing schemes realizing Γ and Γ′ with share size at most ct. Moreover, if the former
schemes are linear over a finite field F, then there exist linear secret-sharing schemes over F realizing Γ and
Γ′ with share size at most ct.
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C Some Probabilistic Facts

C.1 Negative Association

Definition C.1 (Negative association [37]). Let X := (X1, . . . , X`) be a vector of random variables. The
random variables X are negatively associated if for every two disjoint index sets, I, J ∈ [`],

E[f(Xi, i ∈ I) · g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)] · E[g(Xj , j ∈ J)]

for all functions f : R|I| → R and g : R|J | → R that are both non-decreasing or both non-increasing.

We are interested in this definition since the Chernoff-Hoeffding bounds are applicable to sums of vari-
ables that satisfy the negative association condition [43] (see also [26, Proposition 5]). We will also use the
following facts. The first one is presented in [25] in the context of applications of negative associativity in
statistical physics, and the description of the Fermi-Dirac occupancy numbers for particle ensembles. Con-
sider the so-called Fermi-Dirac model, in which m balls are thrown into ` bins with the restriction that each
bin contains at most one ball. Let Xi denote the random variable that counts the number of balls in the i-th
bin. The following fact asserts that the Xi are negatively associated.

Fact C.2 ([25, Theorem 10]). Let X := (X1, . . . , X`) be random variables that take values in {0, 1} and
are distributed uniformly overm-weight vectors wherem ≤ `. That is, for every x = (x1, . . . , x`) ∈ {0, 1}`
of Hamming weight m it holds that

Pr[X = x] =

(
`

m

)−1

,

and Pr[X = x] = 0 for every x of Hamming weight wt(x) 6= m. Then, the random variables (X1, . . . , X`)
are negatively associated.

Fact C.3 ([37, Property 7]). If two vectors of negatively associated random variablesX and Y are mutually
independent, then the random variables (X,Y ) are negatively associated.

Fact C.4 ([37, Property 6]). Let X := (X1, . . . , X`) be negatively associated random variables, and
I1, . . . , Ik ⊆ [`] disjoint index sets, for some positive integer k. For j ∈ [k], let hj : R|Ik| → R be
functions that are all non-decreasing or all non-increasing. Then the random variables Y1, . . . Yk defined as
Yj := hj(Xi, i ∈ Ij) are also negatively associated. That is, non-decreasing (or non-increasing) functions
of disjoint subsets of negatively associated variables are also negatively associated.

Now we turn to prove that the random variables χ1, . . . , χN1 defined in the proof of Section 6.3 are
negatively associated. Recall that these random variables are defined via the following experiment. Given
N1 rows and a list of q inputs, each input u is placed in a random βN1 subset of the rows. We call a row j
bad if it has more than 2βq inputs mapped into it, and let χj be an indicator random variable that takes the
value 1 if the j-th row is bad. For ease of notation we use N to denote N1.

Claim C.5. The random variables χ1, . . . , χN are negatively associated.

Proof. We call Xi,u the indicator random variable that takes the value 1 if the input u was mapped to the
i-th row. We notice that when we observe a specific u′ that is mapped uniformly to βN out of N rows,
the variables Xi,u′s with i ∈ [N ] behave like the random variables described in Fact C.2 with ` = N and
m = βN . Therefore they are negatively associated.

Since every input is mapped independently, the q vectorsX1,u, . . . XN,u each defined by different inputs
u are mutually independent, and therefore due to Fact C.3, for every input u in the list and i ∈ [N ], the
random variables Xi,u are negatively associated.
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For the last step we use Fact C.4. We take the random variables Xi,u and look at disjoint sets Ii =
Xi,u1 , . . . , Xi,uq for all i ∈ N . We define a non-decreasing mapping

hi(Ii) =

{
1 if

∑q
j=1Xi,uj ≥ 2βq

0 otherwise,

and get that the random variables Yi = hi(Ii) are negatively associated. We finish the proof by noticing that
each Yi is distributed like an indicator random variable that takes the value 1 if the i-th row is bad.

Next we prove a probabilistic statement from the proof of Lemma 5.7.

Claim C.6. Given a fixed n-bit string x and a uniformly chosen partitions Π of [n] to
√
n subsets of size√

n each, denote by Yj,Bi the random variable that takes the value 1 when the j-th bit in the i-th block is 1.
Then for every index i ∈ [

√
n], the

√
n variables {Yj,Bi}1≤j≤√n are negatively associated.

Proof. The
√
n ·
√
n random variables Yj,Bi for 1 ≤ i, j ≤

√
n satisfy the conditions for Fact C.2 for

` = n, m = wt(x), and they are therefore negatively associated. It is easy to see that any subset of
negatively associated variables are also negatively associated [37, Property 4], and with that the proof is
completed.

C.2 Family of log t-Collision Free Hash Functions

We next prove a strong version of Lemma 4.8, i.e., show the existence of a family of log t-collision free hash
functions Hn,t,log t,2t of size ` = 16t lnu, as in the lemma, with some additional properties (we need this
stronger version for our RCDS protocols in Appendix D.2).

Lemma C.7. Let n be an integer, t ∈ {15, . . . , n/2}, T ⊆
([n]
≤t
)
, and u be the number of maximal sets in

T . Then, there exists a family of of log t-collision free hash functions Hn,t,log t,2t = {h1, . . . , h`} of size
` = 16 lnu, such that for every i ∈ [`] and every b ∈ [2t] it holds that |{a ∈ [n] : hi(a) = b}| ≤ dn/2te,
and for every subset T ∈ T there are at least `/4 functions h ∈ Hn,t,2t such that for every b ∈ [2t] it holds
that |{a ∈ T : h(a) = b}| < log t.

Proof. Without loss of generality, we assume that t divides n (this can be achieved by increasing n by at
most t − 1), and let t′ = log t. We show that there exists a family of hash function Hn,t,t′,2t as above with
` = 16 lnu functions using the probabilistic method. As a first step in the proof, we choose at random a
function h : [n] → [2t] such that for every b ∈ [2t] it holds that |{a ∈ [n] : h(a) = b}| ≤ dn/2te, and
fix a subset T ∈ max(T ), where max(T ) is the set of maximal sets in T (recall that |max(T )| = u). The
probability that for some b ∈ [2t] it holds that |{a ∈ T : h(a) = b}| ≥ log t is

Pr[ ∃b∈[2t]|{a ∈ T : h(a) = b}| ≥ log t ]

= Pr[ ∃j1 6= · · · 6= jlog t ∈ T : h(j1) = · · · = h(jlog t) ]

≤
∑

j1 6=···6=jlog t∈T
Pr[ h(j1) = · · · = h(jlog t) ] <

(
t

log t

)
·
(

1

2t

)log t−1

≤
(

et

log t

)log t

· 1

(2t)log t−1
=

(
e

2 log t

)log t

· 2t < 1

2

(where the last inequality holds since t ≥ 15).
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Next, we claim that if we choose at random ` = 16 lnu functions as above, we get the desired family
Hn,t,2t = {h1, . . . , h`}. We bound the probability that for a given subset T ∈ max(T ) of size at most t,
there exist at most `/4 functions h ∈ Hn,t,t′,2t that we choose at random, such that for every b ∈ [2t] it holds
that |{a ∈ T : h(a) = b}| < t′.

For every i ∈ [`], let Xi be a Boolean random variable such that Xi = 1 if for every b ∈ [2t] it holds that
|{a ∈ T : hi(a) = b}| < log t and Xi = 0 otherwise. Additionally, let X =

∑`
i=1Xi, i.e., X is the number

of hash functions hi, for i ∈ [`], such that for every b ∈ [2t] it holds that |{a ∈ T : hi(a) = b}| < log t. As
we have shown above, Pr[Xi = 0 ] = Pr[ ∃b ∈ [2t] : |{a ∈ T : h(a) = b}| ≥ log t ] < 1

2 , so by linearity of
expectation, E(X) =

∑`
i=1 E(Xi) =

∑`
i=1 Pr[Xi = 1 ] > ` · 1

2 = `
2 .

Using a Chernoff bound [44] (Pr[X ≤ (1− δ) · E(X) ] ≤ e−E(X)·δ2/2 for all 0 < δ < 1) we get that

Pr[X ≤ `/4 ] ≤ Pr[X ≤ E(X)/2 ] ≤ e−
E(X)(1/2)2

2 < e−
`
16 =

1

elnu
=

1

u
.

By the union bound, the probability that there exists a subset T ∈ max(T ) with at most `/4 functions
hi, for i ∈ [`], such that ∃b ∈ [2t] : |{a ∈ T : h(a) = b}| ≥ log t, is less than 1. Thus, there exists a family
Hn,t,t′,2t with ` = 16 lnu hash functions as required.

Moreover, using similar arguments we can prove the following strong version of Lemmas 4.7 and A.2.

Lemma C.8. Let n be an integer and t ∈ [
√
n], and T ⊆

([n]
≤t
)
. Then, there exists a family of hash functions

Hn,t,t2 = {hi : [n] → [t2] : i ∈ [`]}, where ` = 16 ln |T |, such that for every i ∈ [`] and every b ∈ [t2] it
holds that |{a ∈ [n] : hi(a) = b}| ≤ dn/t2e, and for every subset T ∈ T there are at least `/4 functions
h ∈ Hn,t,t2 for which |h(T )| = |T |.

D Linear Robust CDS Protocols

D.1 A k-Server CDS Protocol

We show that for an odd k a (non-optimized) variant of the linear CDS protocol of [12] is robust when half
of the servers can send an unbounded number of messages (a variant of this protocol has similar properties
when k is even). We assume without loss of generality that for the k-input function f , for every j ∈
{(k + 3)/2, . . . , k} there exists an input aj ∈ Xj such that f(i1, . . . ij−1, aj , ij+1, . . . , ik) = 0 for every
i1 ∈ X1, . . . , ij−1 ∈ Xj−1, ij+1 ∈ Xj+1, . . . , ik ∈ Xk (this can be done by adding a dummy element to the
input domain of server Qj).

Lemma D.1. Let f : X1 × · · · ×Xk → {0, 1} be a function, where |Xi| ≤ 2`, for some odd integer k > 2.
Then, for every finite field F, protocol Pk, described in Figure 4, is a linear k-server

(
2X1 , . . . , 2X(k+1)/2

)
-

RCDS protocol for f with domain of secrets F, in which the message size is 2`(k−1)/2 log |F|.

Proof. For proving the correctness of the protocol Pk let x1, . . . , xk be inputs such that f(x1, . . . , xk) = 1.
In this case, serverQ1 sends sx1,...,xk to the referee (in addition to other elements), serverQj , for 2 ≤ j ≤ k′,
sends qjx1,...,xk′ to the referee, and for every (ik′+1, . . . , ik) 6= (xk′+1, . . . , xk) at least one server Qj (where
k′+ 1 ≤ j ≤ k) sends rik′+1,...,ik . Sincef(x1, . . . , xk) = 1, the random element rxk′+1,...,xk does not appear
in sx1,...,xk . Thus, the referee can compute the expression in step 5 of Pk, which equals s.

For the robustness of the protocol, recall that k′ = (k + 1)/2. Assume that servers Qk′+1, . . . , Qk
send messages of inputs xk′+1 ∈ Xk′+1, . . . , xk ∈ Xk, respectively,13 and servers Q1, . . . , Qk′

13If such server does not send any message, we will assume that it sends the message of the dummy input aj .
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Protocol Pk

The secret: An element s ∈ F.
Inputs: Servers Q1, . . . , Qk hold the inputs x1 ∈ X1, . . . , xk ∈ Xk, respectively.
Common randomness: Let k′ = (k + 1)/2. The k servers hold the following uniformly distributed and
independent random elements.

• qji1,...,ik′ ∈ F for every j ∈ {2, . . . , k′} and every i1 ∈ X1, . . . , ik′ ∈ Xk′ .

• rik′+1,...,ik ∈ F for every ik′+1 ∈ Xk′+1, . . . , ik ∈ Xk.

The protocol:

1. Define qi1,...,ik′ =
∑k′

j=2 q
j
i1,...,ik′

for every i1 ∈ X1, . . . , ik′ ∈ Xk′ .

2. Server Q1 sends to the referee the elements

sx1,i2,...,ik′ = s+ qx1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2...,ik)=0
rik′+1,...,ik

for every i2 ∈ X2, . . . , ik′ ∈ Xk′ .

3. For every j ∈ {2, . . . , k′}, server Qj sends to the referee the elements qji1,i2,...,ij−1,xj ,ij+1...,ik′
for

every i1 ∈ X1, . . . , ij−1 ∈ Xj−1, ij+1 ∈ Xj+1, . . . , ik′ ∈ Xk′ .

4. For every j ∈ {k′ + 1, . . . , k}, server Qj sends to the referee the elements rik′+1,...,ik for every
ik′+1 ∈ Xk′+1, . . . , ik ∈ Xk such that ij 6= xj .

5. If f(x1, . . . , xk) = 1, the referee computes

sx1,x2,...,xk′ − qx1,...,xk′ −
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,...,xk′ ,ik′+1,...,ik)=0
rik′+1,...,ik .

Figure 4: A linear k-server CDS protocol Pk for a function f : X1 × · · · ×Xk → {0, 1}.
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send multiple messages for subsets of inputs Z1 ⊆ X1, . . . , Zk′ ⊆ Xk′ , respectively, such that
f(x1, . . . , xk′ , xk′+1, . . . , xk) = 0 for every (x1, . . . , xk′) ∈ Z1 × · · · × Zk′ . We prove below that these
messages are statistically independent from the secret.

The referee gets the following messages:

The messages of Q1. The elements

sx1,i2,...,ik′ = s+ qx1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2,...,ik′ ,ik′+1,...,ik)=0
rik′+1,...,ik

for every (i2, . . . , ik′) ∈ X2 × · · · ×Xk′ and every x1 ∈ Z1.

The messages of Q2, . . . , Qk′ . The elements qji1,i2,...,ik′
for every j ∈ {2, . . . , k′} and every i1 ∈

X1, . . . , ik′ ∈ X ′k such that ij ∈ Zj . In particular, for every (x1, . . . , xk′) ∈ Z1 × · · · × Zk′ , the
referee gets the elements q2

x1,...,xk′
, q3
x1,...,xk′

, . . . , qk
′
x1,...,xk′

, thus it can compute qx1,...,xk′ .

The messages of Qk′+1, . . . , Qk. The elements rik′+1,...,ik for every ik′+1 ∈ Xk′+1, . . . , ik ∈ Xk except
for rxk′+1,...,xk .

Intuitively, for every (x1, . . . , xk′) ∈ Z1 × · · · × Zk′ , the element rxk′+1,...,xk acts as a one-time-pad
protecting s in sx1,x2,...,xk′ , and for every x1 ∈ Z1 and every (i2, . . . , ik′) /∈ Z2 × · · · × Zk′ , the element
qx1,i2,...,ik′ acts as a one-time-pad protecting s in sx1,i2,...,ik′ .

Formally, for every two secrets s, s′ ∈ F we show a bijection φ from the randomness of Pk to itself such
that the messages in Pk with secret s and randomness r are the same as the messages in Pk with secret s′

and randomness r′ = φ(r). Consider the random elements

r =
(

(qji1,...,ik′
)j∈{2,...,k′},i1∈X1,...,ik′∈Xk′ , (rik′+1,...,ik)ik′+1∈Xk′+1,...,ik∈Xk

)
and the messages generated from them for the secret s. The bijection is as follows:

1. Define r′ik′+1,...,ik
= rik′+1,...,ik for every (ik′+1, . . . , ik) 6= (xk′+1, . . . , xk) and r′xk′+1,...,xk

=

rxk′+1,...,xk + s − s′. Since no server sends rxk′+1,...,xk , these values and the secret s′ generate the
same messages of Qk′+1, . . . , Qk as the messages in Pk with the secret s and randomness r.

2. For every x1 ∈ Z1 and every i2 ∈ X2, . . . , ik′ ∈ Xk′ such that f(x1, i2, . . . , ik′ , xk′+1, . . . , xk) = 0
(in particular, for every (x1, i2, . . . , ik′) ∈ Z1 × · · · × Zk′): Define q′x1,i2,...,ik′ = qx1,i2,...,ik′ and for

every j ∈ {2, . . . , k′} let q′jx1,i2,...,ik′ = qjx1,i2,...,ik′
.

Since f(x1, i2, . . . , ik′ , xk′+1, . . . , xk) = 0, the element rxk′+1,...,xk appears in the sum in sx1,i2,...,ik′
and

sx1,i2,...,ik′ = s+ qx1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2,...,ik′ ,ik′+1,...,ik)=0
rik′+1,...,ik

= s′ + q′x1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2,...,ik′ ,ik′+1,...,ik)=0
r′ik′+1,...,ik

.

Thus, the same message sx1,i2,...,ik′ is generated for s and s′ with r and r′ = φ(r), respectively.

3. For every x1 ∈ Z1 and every i2 ∈ X2, . . . , ik′ ∈ Xk′ such that f(x1, i2, . . . , ik′ , xk′+1, . . . , xk) = 1,
let let j0 be the minimal index such that ij0 /∈ Zj0 and define q′j0x1,i2,...,ik′ = qj0x1,i2,...,ik′

+ s − s′ and

q′jx1,i2,...,ik′
= qjx1,i2,...,ik′

for every j 6= j0, thus,

q′x1,i2,...,ik′ =
k′∑
j=2

q′jx1,i2,...,ik′
=

k′∑
j=2

qjx1,i2,...,ik′
+ s− s′ = qx1,i2,...,ik′ + s− s′.
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Since f(x1, i2, . . . , ik′ , xk′+1, . . . , xk) = 1, the element rxk′+1,...,xk does not appear in the sum in
sx1,i2,...,ik′ and

sx1,i2,...,ik′ = s+ qx1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2,...,ik′ ,ik′+1,...,ik)=0
rik′+1,...,ik

= s′ + q′x1,i2,...,ik′ +
∑

ik′+1∈Xk′+1,...,ik∈Xk,f(x1,i2,...,ik′ ,ik′+1,...,ik)=0
r′ik′+1,...,ik

.

Thus, the same message sx1,i2,...,ik′ is generated for s and s′ with r and r′ = φ(r), respectively.
Notice that q′j0x1,i2,...,ik′ is not sent by Qj0 these values and the secret s′ generate the same messages of
Q2, . . . , Qk′ as the messages in Pk with the secret s and randomness r.

4. For every i1 /∈ Z1, i2 ∈ X2, . . . , ik′ ∈ Xk′ and every j ∈ {2, . . . , k′}, let q′ji1,i2,...,ik′ = qji1,i2,...,ik′
.

To conclude, the messages have the same probability for s and s′. which implies the robustness.

D.2 A Linear 2-Server CDS Protocol

In this section, we present a linear 2-server RCDS protocol that is robust for every zero-set Z1 × Z2, where
Z1 can be an arbitrary subset of the inputs of Q1 and Z2 can be an arbitrary subset of size at most t of the
inputs of Q2, in which the message size is Õ((t + 2`/2) log |Z2|). This protocol can be used to construct
an alternative linear secret-sharing scheme for arbitrary n-party access structures with the same share size
as the linear secret-sharing scheme of Theorem 2.1. Furthermore, when the secret contains log |Z2| field
elements, the share size remains Õ((t+ 2`/2) log |Z2|), i.e, the normalized share size (the share size divided
by the secret size) is only Õ(t+ 2`/2).

We start with the protocol P2, as described in Figure 5. Similarly to Lemma D.1, the protocol P2 is
(2X)-RCDS protocol, that is it robust when Q1 sends an unbounded number of messages and Q2 sends one
message. This protocol is a simple generalization of the protocol described in Figure 1 to an arbitrary field;
its properties, as described in Lemma D.2, follow from the same arguments as in the proof of Lemma A.1.

Protocol P2

The secret: An element s ∈ F.
Inputs: Q1 and Q2 hold the inputs x ∈ X and y ∈ Y , respectively.
Common randomness: The two servers hold |Y | uniformly distributed and independent random elements
r0, r1, . . . , r|Y | ∈ F.
The protocol:

1. Q1 sends to the referee the element mA = s+ r0 +
∑

i∈Y,f(x,i)=0 ri.

2. Q2 sends to the referee the elements mB = (r0, r1, . . . , ry−1, ry+1, . . . , r|Y |).

3. If f(x, y) = 1, the referee computes mA − r0 −
∑

i∈Y,f(x,i)=0 ri.

Figure 5: A linear 2-server CDS protocol P2 for a function f : X × Y → {0, 1}.

Lemma D.2. Let f : X × Y → {0, 1} be a function. Then, for every finite field F, protocol P2, described
in Figure 5, is a linear 2-server

(
2X
)
-RCDS protocol for f with domain of secrets F secrets, in which the

message size of Q1 is log |F| and the message size of Q2 is |Y | log |F|.
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The next protocol, originally appearing in [10], balances the sizes of messages of Q1 and Q2. Its idea is
to partition the set of inputs of Q2 to disjoint sets and execute the protocol P2 independently for every set of
inputs.

Claim D.3 ([10]). Let f : X × Y → {0, 1} be a function. Then, for every finite field F and every d ≤ |Y |
there is a linear 2-server (2X)-RCDS protocolPbalanced

2 for f with one-element secrets in which the message
size of Q1 is O(d log |F|) and the message size of Q2 is O((|Y |/d) log |F|).

Proof. The description of the protocol Pbalanced
2 is as follows: Let s be the secret, and partition the set Y

to d disjoint sets Y1, . . . , Yd of size at most d|Y |/de, that is, every input y ∈ Y is in exactly one set Yi. For
every i ∈ [d], we execute the linear CDS protocol P2 independently for the restriction of f to the inputs of
X × Yi with the secret s. Server Q1, when holding the input x ∈ X , sends the messages in all the above
independent protocols. Server Q2, when holding the input y ∈ Y , only sends the message in the protocol
for the restriction of f to the inputs of X × Yi for which y ∈ Yi.

For the correctness of the protocol, if f(x, y) = 1 then the referee can reconstruct the secret from the
messages of the CDS protocol for the restriction of f to the inputs of X × Yi for which y ∈ Yi. For the
robustness of the protocol, let Z1 ⊆ X and y ∈ Y such that f(x, y) = 0 for every x ∈ Z1. The referee
cannot learn any information on the secret from the messages on y and the inputs of Z1 from each of the
above independent protocols, which follows by the robustness of each of these protocols. Thus, the resulting
protocol Pbalanced

2 is (2X)-RCDS protocol.
The message of Q1 contains d field elements and the message of Q2 contains at most d|Y |/de field

elements (since it sends a message in one execution of P2 in which the input domain size of Q2 is at most
d|Y |/de).

Next, we show how to transform the above CDS protocol to a (2X ,
(
Y
≤t
)
)-RCDS protocol. This is done

by immunizing Q2 as in Theorem 4.4, that is, we use two levels of hashing. However, in this case we
optimize the share size by using the fact that each copy of the CDS protocol is applied to a function with a
smaller domain of Q2.

Lemma D.4. Let f : X×Y → {0, 1} be a function, and t ≤
√
|Y | be an integer. Then, for every finite field

F, there is a linear 2-server (2X ,
(
Y
≤t
)
)-RCDS protocol for f with one-element secrets in which the message

size of Q1 is O((t3 + |Y |t/
√
|X|) log |Y | log |F|) and the message size of Q2 is O(

√
|X|t log |Y | log |F|) .

Furthermore, there is p0 such that for every prime-power q > p0, there is a multi-linear 2-server (2X ,
(
Y
≤t
)
)-

RCDS protocol for f over Fq with secrets of size Θ(qt log |Y |) in which the normalized message size of Q1

is O(t2 + |Y |/
√
|X|) and the normalized message size of Q2 is O(

√
|X|) .

Proof. The desired protocol Pt2, described in Figure 6, is a special case of the protocol of Lemma 4.9,
when k = k′ = 2, t′ = 1, and P is the protocol of Claim D.3 with d = max{1, |Y |/(

√
|X|t2)}. Let

H|Y |,t,t2 = {hi : Y → [t2] : i ∈ [`]}, where ` = Θ(t log |Y |), be the family of perfect hash functions
promised by Lemma C.8.

The correctness and privacy of Pt2 follow by Lemma 4.9. We next provide a refined analyzing of its mes-
sage size. Consider the execution of step 2 of Pt2. By Lemma C.8, |Yj | = O(|Y |/t2) for every j ∈ [t2]. The
message ofQ1 contains t2 messages ofQ1 inPbalanced

2 , i.e., it contains t2d = t2 ·max{1, |Y |/(
√
|X|t2)} =

O(t2 + |Y |/
√
|X|) field elements, The message of Q2 contains one message of Q1 in Pbalanced

2 , i.e., it con-

tains O(|Yhi(y)|/d) = O

(
|Y |/t2

max{1,|Y |/(
√
|X|t2)}

)
= O(min{|Y |/t2,

√
|X|}) ≤ O(

√
|X|) field elements.

Since there are ` = Θ(t log |Y |) hash functions, the sizes of the messages is as in the lemma.
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Protocol Pt2
The secret: An element s ∈ F.
The protocol:

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Yj = {y ∈ Y : hi(y) = j}, for every j ∈ [t2].

• For every j ∈ [t2], independently execute the CDS protocol Pbalanced
2 of Claim D.3 for the

restriction of f to X × Yj with the secret si and d = max{1, |Y |/(
√
|X|t2)}. That is, Q1

with input x sends a message for the restriction of f to X × Yj , for every j ∈ [t2], and Q2

with input y sends a message only for the restriction of f to X × Yhi(y).

Figure 6: A linear 2-server (2X ,
(
Y
≤t
)
)-RCDS protocol Pt2 for a function f : X × Y → {0, 1}.

To construct the desired protocol for long secrets, let s = (s′1, . . . , s
′
`/4) ∈ F`/4q be the secret. We change

step 1 in the protocol Pt2 (described in Figure 6) such that s1, . . . , s` ∈ Fq are the shares of a (3`/4, `, `)-
ramp secret-sharing scheme of the secret s = (s′1, . . . , s

′
`/4) ∈ F`/4q , where p0 is the constant from Claim B.4

and q > p0.
As before, for every inputs x ∈ X, y ∈ Y such that f(x, y) = 1, the referee can learn all the secrets in

those ` protocols from the messages on the inputs x, y, so it can reconstruct the secret s using the reconstruc-
tion function of the ramp scheme. Moreover, for every (Z1, Z2) that is a zero set of f such that |Z2| ≤ t,
by Lemma 4.7, there are at least `/4 values of i ∈ [`] for which |hi(Z2)| = |Z2|. Thus, the referee cannot
learn any information on at least `/4 of the shares s1, . . . , s` in the above ` protocols from the messages on
the inputs of Z1, Z2. By the security of the ramp scheme, the referee cannot learn any information on the
secret s.

We improve our linear robust 2-server CDS protocol using the family of hash functions of Lemma 4.8.

Theorem D.5. Let f : X × Y → {0, 1} be a function, where |X| = |Y | = 2`. Then, for ev-
ery finite field F, every integer t ≤ |X|/(2 log2 |X|) ≤ 2`−1/`2, and every Z2 ⊆

(|Y |
≤t
)
, there is

a linear 2-server (2X ,Z2)-RCDS protocol for f with one-element secrets in which the message size
is O((t log2 t + 2`/2)` log t log |Z2| log |F|). Furthermore, there is p0 such that for every prime-power
q > p0, there is a multi-linear 2-server (

(
X
≤|X|

)
,Z2)-RCDS protocol for f over Fq with secrets of size

Θ(q` log t log |Z2|) in which the normalized message size is O(t log2 t+ 2`/2).

Proof. As the protocol of Lemma D.4, the desired protocol PL2RCDS is a special case of the proto-
col of Lemma 4.9, when k = k′ = 2, t′ = log t, and P is the protocol Pt2 of Lemma D.4. Let
H|Y |,t,log t,2t = {hi : Y → [2t] : i ∈ [`]}, where ` = Θ(log |Z2|), be the family of hash functions
promised by Lemma C.7 for Z2 (that is, for every Z2 ∈ Z2, at least `/4 hash functions prevent a collision
of log t elements of Z2).

The protocol PL2RCDS is described explicitly in Figure 7. It contains 2t` = O(t log |Z2|) executions
of the protocol Pt′2 with t′ = log t and |Y ′| = |Y |/(2t) (since t ≤ |X|/(2 log2 |X|), we have that log t ≤
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Protocol PL2RCDS

The secret: An element s ∈ F.
The protocol:

1. Choose ` random elements s1, . . . , s` ∈ F such that s = s1 + · · ·+ s`.

2. For every i ∈ [`] do:

• Let Yj = {y ∈ Y : hi(y) = j}, for every j ∈ [2t].

• For every j ∈ [2t], independently execute the linear 2-server (2X ,
(

Y
≤log t

)
)-RCDS protocol

P log t
2 of Lemma D.4 for the restriction of f to X × Yj with the secret si. That is, Q1 with

input x sends a message for the restriction of f to X × Yj for every j ∈ [2t], and Q2 with
input y sends a message only for the restriction of f to X × Yhi(y).

Figure 7: A linear 2-server (2X ,Z2)-RCDS protocol PL2RCDS for a function f : X × Y → {0, 1}.

√
|X|/(2t) as required). Since Q1 sends 2t messages of Pt′2 for every hi ∈ H|Y |,t,2t, her message contains

O

(
(log3 t+

2` log t/(2t)

2`/2
)` · 2t log |Z2|

)
= O((t log2 t+ 2`/2)` log t log |Z2|)

field elements. Since Q2 sends only one message of Pt′2 for every hi ∈ H|Y |,t,2t, his message contains
O(2`/2` log t log |Z2|) field elements.

To construct the desired protocol for long secrets, let s = (s′1, . . . , s
′
`/4) ∈ (F`′)`/4 be the secret, where

`′ = Θ(` log t). Similarly to the multi-linear protocol of Lemma D.4, we change step 1 in the protocol
PL2RCDS such that s1, . . . , s` ∈ F`′ are the shares of a (3`/4, `, `)-ramp secret-sharing scheme of the secret
s = (s′1, . . . , s

′
`/4) ∈ (F`′)`/4, but now in step 2 we execute the multi-linear 2-server (2X ,

(
Y
≤log t

)
)-RCDS

protocol of Lemma D.4, instead of the linear protocol.
Overall, we results in a 2-server (2X ,Z2)-RCDS protocol for f with secrets of size Θ(`′` log |F|) =

Θ(` log t log |Z2| log |F|) in which the normalized message size is O(t log2 t+ 2`/2).
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