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Abstract

We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We follow a
new approach: looking at the first Fourier level of the function after a suitable random restriction and
applying the Log-Sobolev inequality appropriately. In particular, we avoid using the hypercontractive in-
equality that is common to the original proofs. Our proofs might serve as an alternate, uniform exposition
to these theorems and the techniques might benefit further research.

1 Introduction

Let us consider the Boolean cube {0, 1}n equipped with the uniform measure and let f : {0, 1}n → {0, 1} be
a function. The influence of a coordinate i ∈ [n], denoted by Ii[f ], is defined to be Prx [f(x) 6= f(x⊕ ei)],
where x ∈ {0, 1}n is sampled uniformly and x ⊕ ei denotes the input x with the ith bit flipped. The total
influence of f is I[f ] =

∑n
i=1 Ii[f ]. One of the most basic inequalities, known as Poincare’s inequality,

states that I[f ] > var(f), where var(f) is the variance of the random variable f(x) when x ∈ {0, 1}n is
sampled uniformly. In general, Poincare’s inequality may be tight, which raises the following question: can
it be the case that not only I[f ] ≈ var(f), but actually Ii[f ] ≈ var(f)

n for all i ∈ [n]? In other words, can
all influences of f be as small as possible simultaneously? The landmark result of Kahn, Kalai, and Linial
[KKL88] gives a negative answer to this question:

Theorem 1.1. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1}, there is a
coordinate i ∈ [n] with Ii[f ] > c · logn

n var(f).

The KKL Theorem and its strengthenings by Friedgut [Fri98] and Talagrand [Tal94] are foundational
results in analysis of Boolean functions. These have found several applications, e.g. to the threshold
phenomena, computational learning theory, extremal combinatorics, communication complexity, hardness
of approximation, non-embeddability results in metric geometry, and coding theory [FK96, OS07, DF09,
GKK+08, CKK+06, DS05, KR08, KR09, DKSV06, KKM+16]. Before we discuss the theorems of Friedgut
and Talagrand, let us state a dimension-free variant of the KKL Theorem (that is morally equivalent to The-
orem 1.1 and is easily implied by the techniques in [KKL88]).
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Theorem 1.2. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1}, there is a

coordinate i ∈ [n] with Ii[f ] > 2
−K I[f ]

var(f) .

We note that Theorem 1.2 implies Theorem 1.1: if I[f ] > logn
2K var(f), then clearly there is a corodinate

i ∈ [n] such that Ii[f ] > I[f ]
n > 1

2K
logn
n var(f). Otherwise, by Theorem 1.2, there is a coordinate i ∈ [n]

such that Ii[f ] > 2
−K I[f ]

var(f) > 1√
n

and we are done either way. Friedgut’s Junta Theorem can now be stated
as below.

Theorem 1.3. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1} and ε > 0,
the function f is ε-close to a function g : {0, 1}n → {0, 1} (in Hamming distance) that depends on at most

2K
I[f ]
ε coordinates.

Morally speaking, Theorem 1.3 states that not only that there is a coordinate with significant influence as
in Theorem 1.2, but actually all coordinates that have smaller influence, combined, barely affect the output
of the function f (and this is how its proof proceeds). Talagrand’s strengthening of the KKL Theorem is
stated below.

Theorem 1.4. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1},
n∑
i=1

Ii[f ]

log(1/Ii[f ])
> c · var(f).

We note that Theorem 1.4 implies Theorem 1.2 as follows: suppose on the contrary that all influences

Ii[f ] are at most 2
−K I[f ]

var(f) . Then the “Talagrand sum” as above is at most var(f)
KI[f ]

∑n
i=1 Ii[f ] = var(f)

K , a
contradiction for a large enough constant K.

A key technique used in the original proofs of all the theorems above is the hypercontractive inequality
(stated in Section 2.3). The use of this inequality is, by now, nearly ubiquitous in analysis of Boolean func-
tions. Still, using this inequality might impose limitations of its own, limiting the discovery of new results,
both qualitatively and quantitatively. As far as we know, researchers in this area have wondered whether
there is “life” beyond the hypercontractive inequality, and certainly there have been efforts to prove the
KKL Theorem (and its strengthenings) without using it. In particular, proofs using “only” the Log-Sobolev
inequality (stated in Section 2.3) for the KKL Theorem and Friedgut’s Junta Theorem are known [FS07]
(their argument though does not seem to extend to Talagrand’s Theorem). There is also a recent proof of the
KKL Theorem (as well as Talagrand’s result and some strengthenings) using stochastic calculus [EG19].

In this paper, we prove Theorems 1.1, 1.2, 1.3, 1.4 using “only” the Log-Sobolev inequality. Since
the hypercontractive inequality and the Log-Sobolev inequality are equivalent to each other and both have
separate not-so-difficult proofs as well, whether one uses one or the other is, admittedly, splitting hairs.
Still, another interesting aspect of this paper is that our proof approach is very different from all earlier
proofs. We look at the first Fourier level of the function after a suitable random restriction and apply the
Log-Sobolev inequality appropriately. The approach is, in our subjective opinion, more direct, natural, and
less mysterious, though the overall proofs are not necessarily “easier”. The additional structural information
implicit in these proofs might benefit further research. In Section 3, we describe the basic skeleton that is
common to all our proofs and the main technical lemma, Lemma 3.5. The paper might have some benefit
from expository perspective as all our proofs are uniformly built around the same skeleton.

Before proceeding to formal proofs, we illustrate here the underlying intuition and how it morally ex-
plains the KKL Theorem (translating the intuition into a formal proof takes some effort). We assume here
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that the reader is somewhat familiar with the area and the standard terminology. Let f : {0, 1}n → {0, 1} be
a balanced function and suppose all its influences are at most (say) 1√

n
. We hope to conclude that the total

influence is then Ω(log n). Suppose f has degree d (we are referring to the so-called average degree, but
never mind). Consider a 1

d -random restriction fJ̄→z of the function where each coordinate stays alive with
probability 1

d independently and denoting the set of alive coordinates as J , the coordinates in J̄ = [n]\J are
set to a uniformly random setting z. Since f has degree d, we expect that the restricted function fJ̄→z has
constant Fourier weight at the first level and ideally, is even a dictatorship function (indeed, if the Fourier
weight at the first level exceeds a certain threshold, a Boolean function is necessarily a dictatorship). Sup-
pose, for the sake of illustration, that the restricted function fJ̄→z is always a dictatorship function. However,
it could be the dictatorship of a different coordinate for different settings of z. Let Aj ⊆ {0, 1}J̄ consist of
those settings of z for which fJ̄→z is the dictatorship of coordinate j ∈ J . We note that the fractional size
of Aj , denoted µ(Aj), is at most the influence of the coordinate j (why?) and hence µ(Aj) 6 1√

n
for all

j ∈ J . Now we simply note that since the sets A1, . . . , A|J | are all polynomially small in size and form a

partition of {0, 1}J̄ , at least logn
n fraction of the edges in the hypercube {0, 1}J̄ are across some Aj and Aj′

with j 6= j′. These edges, along with the fact that Aj and Aj′ are restrictions leading to dictatorships of j
and j′ respectively, contribute Ω(log n) to the total influence of the function f as desired (why?)! We use
here the standard isoperimetric result on the hypercube that for a small set A ⊆ {0, 1}n, at least log(1/µ(A)))

n
fraction of hypercube edges incident on it, go outside of A (this is also a special case of the Log-Sobolev
inequality, see Lemma 2.7).

2 Preliminaries

We denote [n] = {1, 2, . . . , n}. We write X & Y to say that there exists an absolute constant c > 0 such
that X > c · Y .

2.1 Standard Fourier Analysis

We consider the space of real-valued functions f : {0, 1}n → R, equipped with the inner product 〈f, g〉 =

Ex∈R{0,1}n [f(x)g(x)]. Here and throughout the paper, we consider the uniform distribution over {0, 1}n.
It is well-known that the collection of functions χS : {0, 1}n → {−1, 1}, one for each subset S ⊆ [n],
defined as χS(x) = (−1)⊕i∈Sxi , is an orthonormal basis w.r.t. the said inner product. Thus each function
f : {0, 1}n → R can be written uniquely as

f(x) =
∑
S⊆[n]

f̂(S)χS(x), where f̂(S) = 〈f, χS〉.

Since the basis {χS}S⊆[n] is orthonormal, one has the Plancherel/Parseval equality:

Fact 2.1. For any f, g : {0, 1}n → R, we have 〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S). Also

〈f, f〉 = E
x

[
f(x)2

]
= ‖f‖22 =

∑
S⊆[n]

f̂(S)2.

We will also consider other Lp norms of functions for p > 1 (mostly L1-norm), similarly defined as
‖f‖p =

(
Ex [|f(x)|p]

)1/p. It will be useful to consider the “Fourier weight” of a function on a given
“level”.
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Definition 2.2. For integer d > 1, the level d Fourier weight of a function f : {0, 1}n → R is W=d[f ] =∑
|S|=d

f̂(S)2. Also, its Fourier weight on the “chunk” d is W≈d[f ] =
∑

d6j<2d

W=j [f ].

For a noise parameter ε ∈ (0, 1), the noise operator T1−ε is defined as follows. For a function f :
{0, 1}n → R, the function T1−εf is

T1−εf(x) = E
y∼εx

[f(y)],

where the input y is obtained from input x by resembling each coordinate of x with probability ε indepen-
dently. It is well-known that the Fourier representation of T1−εf is

T1−εf =
∑
S⊆[n]

(1− ε)|S|f̂(S)χS .

2.2 Discrete Derivatives and Influences

For a coordinate i ∈ [n], the discrete derivatives of f along the ith direction is a function ∂if : {0, 1}n−1 →
R defined as

∂if(y) = f(x−i = y, xi = 1)− f(x−i = y, xi = 0).

Definition 2.3. The Lp-influence of a coordinate i ∈ [n] is defined as Ipi [f ] = ‖∂if‖pp. The Lp total-

influence is Ip[f ] =
n∑
i=1

Ipi [f ]. We stress here that in the notation Ipi [f ] and Ip[f ] herein, the “p” is a

super-script and not an exponent.

We will be concerned with only L2 and L1 influences. In the literature, the notion usually refers to L2-
influences, so in this case the superscript p is omitted, writing Ii[f ] = I2

i [f ] and I[f ] = I2[f ] for the
individual and total influence respectively. We note that for Boolean functions, all the Lp-influences are
equal. We will be concerned with the more general case of bounded functions, i.e. functions taking values
in the interval [−1, 1], and state our variants of Theorems 1.1, 1.2, 1.3, and 1.4 using L1-influences instead.
We remark that for bounded functions, one has Ipi [f ] 6 Iqi [f ] for p > q > 1. In particular and via Cauchy-
Schwartz, Ii[f ] 6 I1

i [f ] 6
√
Ii[f ]. Using the Fourier expansion of the discrete derivatives and Parseval

equality gives the following standard formula for the total L2-influence.

Fact 2.4. For any f : {0, 1}n → R, we have I[f ] = 4
∑
S⊆[n]

|S| f̂(S)2. In particular, by an averaging

argument, for any ε > 0,
∑

|S|>I[f ]/ε

f̂(S)2 6 ε.

2.3 Hypercontractive Inequality and Log-Sobolev Inequality

The hypercontractive inequality states that for each ε > 0, there is p > 2 such that T1−ε is a contraction
from L2 to Lp, i.e. that ‖T1−εf‖p 6 ‖f‖2 for any f : {0, 1}n → R. The inequality has an equivalent form
(which is often times used) that does not involve the noise operator T1−ε, and is instead concerned with
bounded degree functions.

The degree of a function f , denoted deg(f), is the maximum of |S| over all S such that f̂(S) 6= 0. The
Bonami-Beckner hypercontractive inequality [Bon70, Bec75] asserts that the Lp-norm and the L2-norm of
a low-degree function are comparable. More precisely, for any f : {0, 1}n → R and any p > 2,

Theorem 2.5. ‖f‖p 6 (p− 1)deg(f)/2‖f‖2.
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To motivate the Log-Sobolev inequality and its relationship to the hypercontractive inequality, let us
rewrite the above as

deg(f) >
2

log(p− 1)
log

(
‖f‖p
‖f‖2

)
. (1)

Instead of looking at the maximal degree of a non-zero monomial that appears in f , one may consider
the average degree of f , defined as

∑
S |S| f̂(S)2, where the weight given to a characters S equals the

squared Fourier coefficient f̂(S)2. When f is {−1, 1}-valued, the squared Fourier coefficients sum up to
1, giving a probability distribution over them, explaining the term “average degree”. As noted, the average
degree is same as the total influence I[f ] (up to the factor 4). The Log-Sobolev inequality, established by
Gross [Gro75], can be seen as the limiting case of the above inequality as p → 2 and replacing the degree
by average degree (see [Gro75], [O’D14, Chapter 10.1] and [O’D14, Pages 319-320] for the equivalence
between the two inequalities and also separate inductive proofs). Towards stating this inequality, one needs
the notion of entropy of a non-negative function h : {0, 1}n → [0,∞):

Ent(h) := E
x

[h(x)] log

(
1

E [h(x)]

)
− E

x

[
h(x) log

(
1

h(x)

)]
,

with the convention that 0 log(1/0) = 0. The Log-Sobolev inequality is (note that the entropy is of the
non-negative function f2):

Theorem 2.6. For any f : {0, 1}n → R, we have I[f ] > 1
2Ent(f

2).

A simple corollary of this inequality, when f : {0, 1}n → {0, 1} is Boolean, is below. This is also known
as the standard isoperimetric inequality for the Boolean hypercube.

Lemma 2.7. For any f : {0, 1}n → {0, 1}, β = E [f ] 6 1
2 , we have I[f ] > 1

2β log(1/β).

It will be more convenient for us to use the following easy consequence of the Log-Sobolev inequality.

Lemma 2.8. There exists an absolute constant K > 0, such that for any f : {0, 1}n → [−1, 1], we have

I[f ] & ‖f‖22 log

(
1

‖f‖22

)
−K · ‖f‖

1
2
1 ‖f‖2.

Proof. By Theorem 2.6, I[f ] & Ent(f2), so it is enough to show that the entropy of f2 is at least the right
hand side. Indeed, the first term in the definition of the entropy is precisely ‖f‖22 log(1/‖f‖22). The second
term is (using Cauchy-Schwarz and that t2 log2(1/t2) . |t| for t ∈ [−1, 1])

E
x

[
f(x)2 log

(
1

f(x)2

)]
6

√
E
x

[
f(x)2 log2

(
1

f(x)2

)]
E
x

[f(x)2] .
√
E
x

[|f(x)|]E
x

[f(x)2] = ‖f‖
1
2
1 ‖f‖2.

2.4 Random Restrictions

Let J ⊆ [n] be a subset of coordinates thought of as “alive” and coordinates in J̄ = [n] \ J thought of as
“restricted”. Given a function f : {0, 1}n → R and a setting z ∈ {0, 1}J̄ , we denote by fJ̄→z , the restriction
of f to the domain z × {0, 1}J . More precisely, fJ̄→z : {0, 1}J → R is defined as fJ̄→z(y) = f(xJ̄ =
z, xJ = y). The following standard fact gives the Fourier coefficients of the restricted function:
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Fact 2.9. For any T ⊆ J , we have f̂J̄→z(T ) =
∑

S⊆J̄ f̂(S ∪ T )χS(z).

For a parameter δ > 0, a δ-random restriction is the function fJ̄→z after choosing J to be a random
subset of [n] in which each j ∈ [n] is included with probability δ independently and choosing z ∈ {0, 1}J̄
uniformly. Using Fact 2.9 and Parseval, one can easily compute the expectated squared Fourier coefficient
of a random restriction and then the expected level d Fourier weight.

Fact 2.10. Let f : {0, 1}n → R and T ⊆ J . Then Ez
[
|f̂J̄→z(T )|2

]
=
∑

S⊆J̄ f̂(S ∪ T )2.

Fact 2.11. Let f : {0, 1}n → R, d > 1 be an integer, and δ ∈ [0, 1]. Let fJ̄→z denote the δ-random
restriction. Then

E
J,z

[W=d[fJ̄→z]] =
∑
S

f̂(S)2 · Pr
J

[|J ∩ S| = d].

3 A Basic Argument towards the KKL Theorem

In this section, we prove the lemma below. It proves the KKL Theorem in the special case when the function
f : {0, 1}n → [0, 1] has a constant fraction of its Fourier weight on some “chunk”. Alternately, it proves
the KKL Theorem at a loss of log log n factor. More importantly, the proof illustrates the basic approach
underlying all the subsequent proofs.

Lemma 3.1. Let f : {0, 1}n → [0, 1] be a function and d > 1 be an integer. Then there exists a coordinate
i ∈ [n] such that I1

i [f ] & logn
n W≈d[f ].

We make some remarks before proceeding to the proof. Firstly, we note that the lemma holds for
bounded functions and with respect to the L1-influences. Secondly, we note that if a constant fraction of the
Fourier weight is on some chunk, i.e. if for some d,W≈d[f ] & var(f), then there is a coordinate i ∈ [n] with
I1
i [f ] & logn

n var(f), proving the KKL Theorem. Thirdly, we note that it proves the KKL Theorem at a loss
of factor log logn as follows. We may assume that I[f ] 6 1

2 log n var(f). Since var(f) =
∑

16|S| f̂(S)2

and I[f ] = 4
∑

S |S|f̂(S)2, by Markov’s inequality, we have∑
16|S|6logn

f̂(S)2 >
1

2
var(f).

Thus, by partitioning the interval [1, log n] into log logn dyadic intervals
⋃log logn
k=0 [2k, 2k+1), it follows that

there is some 1 6 d 6 log n such that W≈d & var(f)
log logn . Hence by the lemma, there is a coordinate i ∈ [n]

such that I1
i [f ] & logn

n W≈d[f ] & logn
n

var(f)
log logn .

3.1 Proof of Lemma 3.1

We now prove Lemma 3.1. The proof formalizes the intuition described at the end of the introductory
section. One begins by considering a 1

d -random restriction of the function, notes that the expected Fourier
weight at the first level of the restricted function is at least W≈d[f ], and then one examines the coefficients
at the first level and applies Log-Sobolev appropriately.
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Weight on the First Level after Random Restriction.

Let fJ̄→z be a 1
d -random restriction, J being the set of coordinates left alive. We have by Fact 2.11 that

E
J,z

[W=1[fJ̄→z]] >
∑

d6|S|<2d

f̂(S)2 · Pr
J

[|S ∩ J | = 1] &W≈d[f ], (2)

where we used the simple fact that for any set S with d 6 |S| < 2d, the probability it intersects J in a single
element is constant. For the rest of the argument, we fix some J ⊆ [n] such that (it exists due to Equation
(2))

E
z

[W=1[fJ̄→z]] &W≈d[f ]. (3)

Relating First Level Coefficients after Restriction and Influences of f

We now consider the first level coefficients of the restricted function fJ̄→z and somehow relate them to the
influences of the original function f . We note that J is the set of alive coordinates. For each j ∈ J , define
a function gj : {0, 1}J̄ → R by gj(z) = f̂J̄→z({j}). That is, gj(z) is the jth coefficient of the first level
(= linear part) of the restricted function. By definition, W=1[fJ̄→z] =

∑
j∈J gj(z)

2. Let pj = ‖gj‖22 =

Ez
[
gj(z)

2
]
. For the sake of future reference, let qj = ‖gj‖1. Thus (3) can be re-stated as

E
z

[W=1[fJ̄→z]] =
∑
j∈J

pj &W≈d[f ]. (4)

Since f is bounded, so is its restriction, and hence |gj(z)| 6 1 for every z, j.

Lemma 3.2. pj = ‖gj‖22 and qj = ‖gj‖1 satisfy

• qj = ‖gj‖1 6 1
2 · I

1
j [f ].

• pj = ‖gj‖22 6 1
4 · Ij [f ].

• pj 6 qj 6
√
pj .

Proof. The third item is because of the boundedness |gj(z)| 6 1 and Cauchy-Schwartz. Towards the first
two items, we note that

gj(z) = f̂J̄→z({j}) = E
y

[
f(z, y)χ{j}(yj)

]
= E

y−j

[
f(z, y−j , yj = 0)− f(z, y−j , yj = 1)

2

]
.

Taking expectation over z gives (and using Cauchy-Schwartz in the second case)

‖gj‖1 = E
z

[|gj(z)|] 6 E
z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)

2

∣∣∣∣] =
1

2
· I1
j [f ].

‖gj‖22 = E
z

[
|gj(z)|2

]
6 E

z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)

2

∣∣∣∣2
]

=
1

4
· Ij [f ].

Summing the previous inequality over all j ∈ J , we conclude that:
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Lemma 3.3.
∑

j∈J qj =
∑
j∈J
‖gj‖1 6 1

2 · I
1[f ].

The following lower bound on I[f ] is a key observation.

Lemma 3.4.
∑
j∈J

I[gj ] 6 I[f ].

Proof. We lower bound I[f ] by
∑

i∈J̄ Ii[f ]. Fix some i ∈ J̄ for now. As before, z and y denote the inputs
on the parts J̄ and J respectively.

Ii[f ] = E
z,y

[
|f(z, y)− f(z ⊕ ei, y)|2

]
= E

z

[
‖fJ̄→z − fJ̄→z⊕ei‖

2
2

]
.

By Parseval, we express the squared norm in terms of Fourier coefficients and then lower bound by consid-
ering only coefficients of size one.

Ii[f ] = E
z

∑
T⊆J
|f̂J̄→z(T )− f̂J̄→z⊕ei(T )|2

 > E
z

∑
j∈J
|f̂J̄→z({j})− f̂J̄→z⊕ei({j})|

2

.
The latter are simply gj(z) and gj(z ⊕ ei) by definition and hence

Ii[f ] >
∑
j∈J

E
z

[
|gj(z)− gj(z ⊕ ei)|2

]
=
∑
j∈J

Ii[gj ].

Summing over i ∈ J̄ gives

I[f ] >
∑
i∈J̄

Ii[f ] >
∑
i∈J̄

∑
j∈J

Ii[gj ] =
∑
j∈J

∑
i∈J̄

Ii[gj ] =
∑
j∈J

I[gj ].

The Main Argument

Our main argument tries to obtain a lower bound on I[f ] as follows. Using Lemma 3.4 and the Log-Sobolev
Lemma 2.8,

I[f ] >
∑
j∈J

I[gj ] >
∑
j∈J

(
pj log(1/pj)−K

√
qj ·
√
pj
)
.

Using Cauchy-Schwartz, we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
√∑

j∈J
qj ·
√∑

j∈J
pj .

By Lemma 3.3,
∑

j∈J qj 6 I1[f ], so we get our main technical inequality

I[f ] >
∑
j∈J

pj log(1/pj)−K
√
I1[f ] ·

√∑
j∈J

pj . (5)

We recall that pj 6 1
2I

1
j [f ] by Lemma 3.2. Letting W :=

∑
j∈J pj = Ez [W=1[fJ̄→z]], we rewrite this

inequality, for future reference, as below. We note that in application, J is the subset of alive coordinates
after a random restriction. In our proof of KKL and Friedgut Theorems, the set J is fixed so as to maximizes
the expected first level Fourier weight. In the proof of Talagrand Theorem, we average over the choice of J
as well.
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Lemma 3.5. Let f : {0, 1}n → [0, 1] be a function and J ⊆ [n]. Then

I[f ] > log

(
1

maxj∈J I1
j [f ]

)
·W −K

√
I1[f ] ·

√
W, W = E

z
[W=1[fJ̄→z]] =

∑
S⊆[n],|S∩J |=1

f̂(S)2.

The proof of Lemma 3.1 is now completed immediately. We may assume that for all coordinates i ∈ [n],
I1
i [f ] 6 logn

n W≈d[f ] 6 1√
n

as otherwise we are done already. This implies that the total L1-influence

I1[f ] 6 log n W≈d[f ]. Lemma 3.5 (= Equation (5)) then gives (the log-factor therein is at least 1
2 log n

since all L1-influences are at most 1√
n

)

I[f ] >
1

2
log n ·W −K

√
log n ·W≈d[f ] ·

√
W, W &W≈d[f ].

Clearly, the first term above dominates the second, giving I[f ] > 1
4 log n ·W & log n ·W≈d[f ], implying

now that there is a coordinate with in fact L2-influence & logn
n W≈d[f ].

4 The KKL Theorem

We now prove the KKL Theorem, stated below for a bounded function, with respect to L1-influences, and
in a slightly different form.

Theorem 4.1. There exists an absolute constant c > 0 such that the following holds. Let f : {0, 1}n → [0, 1]
be a function. Then either I1[f ] > c · log n var(f), or there is a coordinate i ∈ [n] such that I1

i [f ] > 1√
n

.

It will be more convenient for us to prove a dimension-independent version of the KKL Theorem below.
It is easily seen to imply the statement above.

Theorem 4.2. There exists an absolute constant C > 0 such that the following holds. Let f : {0, 1}n →

[0, 1] be a function. Then there is a coordinate i ∈ [n] such that I1
i [f ] > 2

−C· I
1[f ]

var(f) .

In the proof of Lemma 3.1, we only “utilized” Fourier weight from a single chunk of Fourier coefficients,
i.e. those of size in the range [d, 2d), and this led to a loss of factor log logn if used towards the KKL
Theorem. In this section, we show how to utilize and combine the Fourier weight from multiple chunks,
avoiding this loss. The idea is to “partition” f into chunks as f = f̂(∅) +

∑
d=2k,k>0 h

∗
d, apply the main

technical inequality (5) to each chunk h∗d, and then “sum up”. A natural way to partition is to let h∗d =∑
d6|S|<2d f̂(S)χS . The problem with this approach however is that the chunk functions h∗d as here are not

necessarily bounded functions and the earlier arguments cannot be applied directly. To get around this, we
instead consider a soft notion of chunks, f ≈ f̂(∅) +

∑
d=2k,k>0 hd, that behaves similarly, that is∑

d

var(hd) = Θ(var(f)),
∑
d

Ii[hd] = Θ(Ii[f ]),
∑
d

I[hd] = Θ(I[f ]),

and in addition, preserves boundedness and the L1-influences of each soft chunk hd are bounded by those
of the original function!
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4.1 Soft Chunks

Definition 4.3. Let f : {0, 1}n → [0, 1] be a function and let d > 1 be integer (thought of as a power
of 2). The soft chunk of f of degree d is given by the function hd : {0, 1}n → [0, 1] defined by hd =
(T1− 1

2d
− T1− 1

d
)f .

The following lemma summarizes the useful properties of soft chunks (the proof appears in Appendix A.1).
We point out, in particular, that the L1-influences of the soft chunk are upper bounded by those of the
original function (up to a factor 2).

Lemma 4.4. Let f : {0, 1}n → [0, 1] and for integer d = 2k, k > 0, let hd = (T1− 1
2d
− T1− 1

d
)f denote the

soft chunk of f of degree d. Then (the sums are over d = 2k, k > 0 and i ∈ [n] is arbitrary)

• hd is bounded in [−1, 1], ĥ(∅) = 0.

• I1
i [hd] 6 2I1

i [f ].

• For any S ⊆ [n], d 6 |S| < 2d, we have |f̂(S)| . |ĥd(S)| 6 |f̂(S)|. In particular, we have lower
bounds

‖hd‖22 >W≈d[hd] & W≈d[f ],
∑
d

Ii[hd] & Ii[f ],
∑
d

I[hd] & I[f ].

• And the upper bounds, ∑
d

‖hd‖22 6 var(f),
∑
d

I[hd] 6 I[f ].

For technical reasons, we will be able to “utilize” only those chunks that have a significant amount of Fourier
weight, referred to as the good chunks. It will turn out that the good chunks still capture a constant fraction
of the variance of f , so this will not be a problem. Towards this end, we have (proof appears in Appendix
A.2)

Lemma 4.5. Let

Dgood :=

{
d = 2k, k > 0 | W≈d[f ] >

var(f)2

16 · I1[f ]

}
.

Then ∑
d∈Dgood

W≈d[f ] & var(f).

4.2 Proof of Theorem 4.2

Assume, for the sake of contradiction, that for all coordinates i ∈ [n], I1
i [f ] 6 2

−C· I
1[f ]

var(f) where C is a large
enough constant chosen later. Let hd, d ∈ Dgood be any good soft chunk. We recall that

• hd is a bounded function.

• Its L1-influences are upper bounded by those of f up to a factor 2 (and hence also the total L1-
influence).

• W≈d[hd] &W≈d[f ] > var(f)2

16·I1[f ]
.

10



We apply Lemma 3.5 to the function hd, considering 1
d -random restriction, and letting J to be the subset of

alive coordinates (fixed so as to maximize expected weight at first Fourier level). This yields the inequality

I[hd] > log

(
1

maxj∈J I1
j [hd]

)
·W −K

√
I1[hd] ·

√
W, W &W≈d[hd] &W≈d[f ] >

var(f)2

16 · I1[f ]
.

Since the L1-influences of hd are bounded by those of f , in particular all of them at most 2
−C· I

1[f ]
var(f) , we get

I[hd] > C · I
1[f ]

var(f)
·W −K

√
I1[f ] ·

√
W, W &W≈d[f ] >

var(f)2

16 · I1[f ]
.

It is easily seen that for a large enough constant C, the first term dominates the second term (this is why we
considered only the good chunks) and thus

I[hd] & C · I
1[f ]

var(f)
·W≈d[f ].

Now summing over all good d gives a contradiction:

I1[f ] > I[f ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]

var(f)

∑
d∈Dgood

W≈d[f ] & C · I
1[f ]

var(f)
· var(f) = C · I1[f ].

We used Lemma 4.4 in the second step and Lemma 4.5 in the second-last step. Taking the constant C large
enough gives a contradiction.

5 The Friedgut’s Junta Theorem

Friedgut’s Junta Theorem (restated below) is proved by a careful adjustment to the argument in the previous
section.

Theorem 5.1. There is an absolute constant C > 0 such that the following holds. For every function
f : {0, 1}n → [0, 1] and for every ε > 0, there exists a function g : {0, 1}n → [0, 1] depending on at most
2C·I

1[f ]/ε variables such that ‖f − g‖22 . ε.

We provide a proof sketch. While in the proof of the KKL Theorem, we may assume that all influences
are small, this is not the case with Friedgut’s Theroem. Here we “separate out” the set L of coordinates with
“non-negligible” influence and apply the previous argument to the remaining set L̄ = [n] \ L. Towards this
end, let

L =
{
i | I1

i [f ] > τ := 2−C·I
1[f ]/ε

}
.

Clearly, |L| 6 I1[f ]
τ 6 22C·I1[f ]/ε. Let g =

∑
S⊆L

f̂(S)χS . It is easily observed that

• g depends only on the coordinates of L.

• g is also bounded in [0, 1] since g is simply the average of f over coordinates in L̄ and

• for the same reason, L1-influences of g are bounded by those of f .
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Let ϕ = f − g. We will show that ‖ϕ‖22 . ε. Clearly, ϕ is bounded in [−1, 1] and its L1 influences are
also bounded by those of f up to a factor 2. We intend to apply the same argument used to prove the KKL
Theorem to ϕ, except that all “action” happens only on the set of coordinates L̄. More specifically:

• The “size” of any Fourier term is counted as |S ∩ L̄| instead of as |S|.

• For an integer d > 1 (thought of as power of 2), the Fourier weight on the corresponding chunk is
defined as

W L̄
≈d[ϕ] :=

∑
d6|S∩L̄|<2d

f̂(S)2.

• Towards defining the soft chunk hd of ϕ, the noise operator is applied only to coordinates in L̄. We
denote this as

hd =
(
T L̄

1− 1
2d

− T L̄
1− 1

d

)
ϕ.

• In a random restriction, only coordinates in L̄ may stay alive. That is, a 1
d -random restriction amounts

to letting J to be a random subset of L̄ where every coordinate in L̄ is included with probability 1
d and

then the coordinates outside J (including those in L) are set uniformly at random.

• Since J ⊆ L̄, we have I1
j [ϕ] 6 2−C·I

1[f ]/ε for all j ∈ J .

Modulo these considerations, we repeat the proof in Section 4.2. We apply Lemma 3.5 to the function hd,
considering 1

d -random restriction, and letting J be the subset of alive coordinates (fixed so as to maximize
expected weight at first Fourier level). This yields the inequality

I[hd] > log

(
1

maxj∈J I1
j [hd]

)
·W −K

√
I1[hd] ·

√
W, W &W L̄

≈d[hd] &W L̄
≈d[ϕ].

Since the L1-influences of hd are bounded by those of ϕ which are in turn bounded by those of f and those

for coordinates in J ⊆ L̄ are at most 2−C·
I1[f ]

ε , we get

I[hd] > C · I
1[f ]

ε
·W −K

√
I1[f ] ·

√
W, W &W L̄

≈d[ϕ].

Let Dgood be the subset of d = 2k such that W L̄
≈d[ϕ] > ε2

16I1[f ]
so that for such good d and for large enough

constant C, the first term above dominates the second and we get

I[hd] & C · I
1[f ]

ε
W L̄
≈d[ϕ].

Now summing over all good d ∈ Dgood gives:

I1[f ] > I1[ϕ] > I[ϕ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]

ε
·
∑

d∈Dgood

W L̄
≈d[φ].

By Lemma 4.5 (applied to ϕ), the last sum is at least & var(ϕ) and we get var(ϕ) . ε as desired. An astute
reader might object that the definition of the good soft chunks here seems different than that in Lemma 4.5,
i.e. the threshold is set at ε2

16I1[f ]
instead of var(ϕ)2

16I1[ϕ]
therein. However since I1[ϕ] 6 I1[f ] and we could

assume a priori that var(ϕ) > ε (otherwise we would already be done), this slight difference only works in
our favor.
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6 The Talagrand’s Theorem

In this section, we prove Talagrand’s Theorem, restated as Theorem 6.2 later. For now we prove the follow-
ing weaker theorem to illustrate the main idea.

Theorem 6.1. Let any f : {0, 1}n → [0, 1] be a function and d > 1 an integer (thought of as power of 2).
Then one of these two conclusions holds:

• (Case 1):
∑
j∈[n]

Ij [f ]

log(1/I1j [f ])
& d(W≈d[f ])2

I[f ] .

• (Case 2):
∑
j∈[n]

I1j [f ]

log(1/I1j [f ])
& dW≈d[f ].

We make a few remarks. On the left hand side of the inequalities, what appear in the numerators are the
L2-influences in Case 1 and L1-influences in Case 2. This distinction will be important later. In both cases,
in the denominator, it does not matter whether we write L1 or L2 influences since their logarithms are the
same up to a factor 2 (since Ij [f ] 6 I1

j [f ] 6
√
Ij [f ]). If one pretends that all non-zero Fourier coefficients

of f have size between d and 2d, we have W≈d[f ] = var(f) and I[f ] = Θ(d · var(f)) and we get var(f) on
the right hand side in Case 1 and (even better) d · var(f) in Case 2, giving Talagrand’s Theorem.

We now prove Theorem 6.1. Consider a 1
d -random restriction as in Section 3 letting J to be the set of

coordinates alive. As therein, let gj(z) = f̂J̄→z({j}), pj = ‖gj‖22, qj = ‖gj‖1. Unlike therein however, we
will not fix the set J and instead take expectation over its choice. Exactly as in Equation (5), we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
∑
j∈J

√
qj
√
pj .

We now divide into two cases depending on whether or not, on the right hand side, the first term domi-
nates the second. It will be more convenient to do this after considering expectation over choice of J .

Case 1: EJ
[∑

j∈J pj log(1/pj)
]
> 2 · EJ

[
K
∑

j∈J
√
qj
√
pj

]
.

In this case, we get

I[f ] & E
J

∑
j∈J

pj log(1/pj)

.
Cauchy-Schwartz gives,

E
J

∑
j∈J

pj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

pj

2

.

The second term is bounded by I[f ] (as above) and on the right hand side we have, EJ
[∑

j∈J pj

]
&

W≈d[f ]. This gives

E
J

∑
j∈J

pj
log(1/pj)

 &
(W≈d[f ])2

I[f ]
.
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Replacing pj by its upper bound Ij [f ] in the numerator and its upper bound I1
j [f ] in the denominator, and

noting that each coordinate appears in J with probability 1
d , gives the desired inequality

∑
j∈[n]

Ij [f ]

log(1/I1
j [f ])

&
d(W≈d[f ])2

I[f ]
.

Case 2: EJ
[∑

j∈J
√
qj
√
pj

]
& EJ

[∑
j∈J pj log(1/pj)

]
.

In this case, Cauchy-Schwartz gives

E
J

∑
j∈J

qj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

√
qj
√
pj

2

&

E
J

∑
j∈J

pj log(1/pj)

2

.

Canceling EJ
[∑

j∈J pj log(1/pj)
]

from both sides gives

E
J

∑
j∈J

qj
log(1/pj)

 & E
J

∑
j∈J

pj log(1/pj)

 > E
J

∑
j∈J

pj

.
As before, the right hand side is & W≈d[f ], and qj , pj are upper bounded by I1

j [f ], and each coordinate
appears in J with probability 1

d . This gives the desired inequality

∑
j∈[n]

I1
j [f ]

log(1/I1
j [f ])

& d W≈d[f ].

6.1 Talagrand’s Theorem by Combining Chunks: First Attempt

We (re-)state Talagrand’s Theorem below.

Theorem 6.2. For any f : {0, 1}n → [0, 1], we have
∑
j∈[n]

I1j [f ]

log(1/I1j [f ])
& var(f).

We attempt to prove this result by splitting

f = f̂(∅) +
∑

d=2k,k>0

hd,

where hd =
∑

d6|S|<2d f̂(S)χS are the chunks of f . The strategy is to apply Theorem 6.1 to each chunk hd
separately and “sum up” or “combine” the outcomes. A crucial observation is that the L2-influences indeed
sum up, that is

Ii[f ] =
∑
d

Ii[hd].

This strategy (almost) works with a careful consideration of whether the Case 1 or the Case 2 applies for
different chunks. The catch, as before, is that the chunks hd are not necessarily bounded functions and their
L1-influences might not be under control. To get around this issue, we instead work with the soft chunks as
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before and the full proof is completed in the next sub-section. For now, we pretend that the chunks hd are
bounded functions and see how the proof proceeds. We also pretend that the L1-influences of hd are upper
bounded by those of f (both these conditions do hold when soft chunks are considered!).

We apply Theorem 6.1 to hd. Noting that W≈d[hd] > W≈d[f ], I[hd] = Θ(d ·W≈d[f ]), and that L1-
influences of hd are upper bounded by those of f , we conclude that for every d = 2k, k > 0, one of these
conclusions holds (perhaps both conclusions hold and if so, we pick one arbitrarily):

• (Case 1):
∑
j∈[n]

Ij [hd]

log(1/I1j [f ])
&W≈d[f ]. Let D′ be the set of such d.

• (Case 2):
∑
j∈[n]

I1j [f ]

log(1/I1j [f ])
& d W≈d[f ]. Let D′′ be the set of such d.

Now we complete the proof as follows. Since var(f) =
∑

d∈D′W≈d[f ] +
∑

d∈D′′W≈d[f ], either of the
two sums is at least 1

2var(f). If the first sum is, then (crucially using the fact that L2-influences sum up)∑
j∈[n]

Ij [f ]

log(1/I1
j [f ])

>
∑
j∈[n]

∑
d∈D′

Ij [hd]

log(1/I1
j [f ])

=
∑
d∈D′

∑
j∈[n]

Ij [hd]

log(1/I1
j [f ])

&
∑
d∈D′

W≈d & var(f),

as desired. Otherwise, we may assume
∑

d∈D′′W≈d[f ] > 1
2var(f). Since d ranges only over powers of 2,

it follows that there is some d ∈ D′′ such that d W≈d[f ] & var(f) (why!). Using this particular choice of d
in the Case 2 above, we get as desired ∑

j∈[n]

I1
j [f ]

log(1/I1
j [f ])

& var(f).

6.2 Talagrand’s Theorem by Combining Soft Chunks

We now complete the proof of Talagrand’s Theorem 6.2. We carry out the same proof as in the previous sub-
section, except that we use the soft chunks hd = (T1− 1

2d
− T1− 1

d
)f . It holds that W≈d[hd] = Θ(W≈d[f ]).

However one place we need to be careful about is that we required that I[hd] = Θ(d W≈d[f ]). This need
not be true in general. Hence we restrict ourselves to only those d ∈ Dgood for which this condition holds.
The lemma below shows that there is still a constant fraction of variance on these good chunks and this is
enough to complete the proof (the sets D′ and D′′ above are subsets of Dgood now).

Lemma 6.3. Let

Dgood =

{
d = 2k, k > 0 | d W≈d[f ] >

1

40
I[hd]

}
.

Then ∑
d∈Dgood

W≈d[f ] >
1

2
var(f).

Proof. As we will see, it suffices to show that
∑

d
I[hd]
d 6 20 var(f). To see that, as var(f) =

∑
S 6=∅ f̂(S)2,

it is enough to show that for each S 6= ∅, the term f̂(S)2 appears in the sum
∑

d
I[hd]
d with a multiplicative

factor of at most 20. Note that this factor is

|S|
∑
d

1

d

((
1− 1

2d

)|S|
−
(

1− 1

d

)|S|)2

.
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We analyze the contribution from d 6 |S| and d > |S| separately, showing that each one of them contributes
at most 10

|S| . Let k be such that 2k 6 |S| < 2k+1. The first part is bounded as

∑
d6|S|

1

d
(1− 1

2d
)2|S| 6

∑
d6|S|

1

d
e−|S|/d 6

k∑
j=0

1

2j
e−2k−j

6 2−k
∞∑
`=0

2`e−2` 6 5 · 2−k 6 10

|S|
.

The second part is bounded as (we approximate 1− rα 6 (1− α)r in this range).

∑
d>|S|

1

d

(
1− (1− 1

d
)|S|
)2

6
∑
d>|S|

1

d
6
∑
r=k+1

1

2r
=

2

2k+1
6

2

|S|
.

This shows that
∑

d
I[hd]
d 6 20 var(f). Now we complete the proof of the lemma as:∑
d∈Dgood

W≈d[f ] =
∑
d

W≈d[f ]−
∑

d6∈Dgood

W≈d[f ]

> var(f)− 1

40

∑
d 6∈Dgood

I[hd]

d

> var(f)− 1

40
· 20 · var(f) >

var(f)

2
.
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A Missing Proofs

A.1 Proof of Lemma 4.4

Towards the first property, we note that both functions T1−1/2df and T1−1/df , being averages of f , are
bounded in the interval [0, 1]. Towards the second property, we note that I1

i [hd] 6 I1
i [T1−1/2df ]+I1

i [T1−1/df ]
and that the latter are at most I1

i [f ], again because T1−1/2df and T1−1/df are averages of f . Towards the
third property, we note that by definition

ĥd(S) =

((
1− 1

2d

)|S|
−
(

1− 1

d

)|S|)
f̂(S).
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The multiplicative factor in front of f̂(S), when d 6 |S| 6 2d, is easily seen to be a constant. Towards the
last property, we note that for each set S 6= ∅, its contribution to var(f) is f̂(S)2 and to I[f ] is |S|f̂(S)2,
whereas the corresponding contributions to

∑
d ‖hd‖22 and

∑
d I[hd] are similar up to the multiplicative

factor ∑
d

((
1− 1

2d

)|S|
−
(

1− 1

d

)|S|)2

.

It is enough to show that this sum is at most 1. Indeed, since each summand is square of a number in the
range [0, 1], we can ignore the squares and then it is just a telescoping sum upper bounded by 1.

A.2 Proof of Lemma 4.5

In the following, sums run over all d that are powers of 2 unless the sum is restricted explicitly to a subset.
Clearly,

∑
dW≈d[f ] = var(f), so it is enough to show that this sum over only those d 6∈ Dgood is at most

1
2var(f). We consider two cases: those d that are “large”, that is d > T = 4I1[f ]

var(f) , and those d that are “not
large” but not in Dgood. In the first case, we use Markov and in the second case, we note that there are only
a few summands. Indeed, in the first case (using I[f ] 6 I1[f ]),

I[f ] > T ·
∑
d>T

W≈d[f ], implying that
∑
d>T

W≈d[f ] 6
I[f ]

T
=
I[f ] var(f)

4I1[f ]
6

1

4
var(f).

In the second case, d 6 T , so there are at most log T chunks and when d 6∈ Dgood, we have W≈d[f ] 6
var(f)2

16·I1[f ]
= var(f)

4T . Hence

∑
d6T,d6∈Dgood

W≈d[f ] 6 log T · 1

4T
· var(f) 6

1

4
var(f).
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