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Abstract

We prove that for all constants a, NQP = NTIME[npolylog(n)] cannot be (1/2 + 2− loga n)-
approximated by 2loga n-size ACC0 ◦ THR circuits (ACC0 circuits with a bottom layer of THR

gates). Previously, it was even open whether ENP can be (1/2 + 1/
√

n)-approximated by
AC0[⊕] circuits. As a straightforward application, we obtain an infinitely often (NE∩ coNE)/1-
computable pseudorandom generator for poly-size ACC0 circuits with seed length 2logε n, for
all ε > 0.

More generally, we establish a connection showing that, for a typical circuit class C , non-
trivial nondeterministic algorithms estimating the acceptance probability of a given S-size C

circuit with an additive error 1/S (we call it a CAPP algorithm) imply strong (1/2 + 1/nω(1))
average-case lower bounds for nondeterministic time classes against C circuits. Note that the
existence of such (deterministic) algorithms is much weaker than the widely believed conjec-
ture PromiseBPP = PromiseP.

We also apply our results to several sub-classes of TC0 circuits. First, we show that for
all k, NP cannot be (1/2 + n−k)-approximated by nk-size Sum ◦ THR circuits (exact R-linear
combination of threshold gates), improving the corresponding worst-case result in [Williams,
CCC 2018]. Second, we establish strong average-case lower bounds and build (NE ∩ coNE)/1-
computable PRGs for Sum ◦ PTF circuits, for various regimes of degrees. Third, we show that
non-trivial CAPP algorithms for MAJ ◦MAJ indeed already imply worst-case lower bounds for
TC0

3 (MAJ ◦MAJ ◦MAJ). Since exponential lower bounds for MAJ ◦MAJ are already known,
this suggests TC0

3 lower bounds are probably within reach.
Our new results build on a line of recent works, including [Murray and Williams, STOC

2018], [Chen and Williams, CCC 2019], and [Chen, FOCS 2019]. In particular, it strengthens the
corresponding (1/2 + 1/polylog(n))-inapproximability average-case lower bounds in [Chen,
FOCS 2019].

The two important technical ingredients are techniques from Cryptography in NC0 [Ap-
plebaum et al., SICOMP 2006], and Probabilistic Checkable Proofs of Proximity with NC1-
computable proofs.
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1 Introduction

1.1 Background and Motivation

A holy grail of theoretical computer science is to prove unconditional circuit lower bounds for
explicit functions (such as NP 6⊂ P/poly). To approach this notoriously hard central open problem,
the first step is to understand the power of various constant depth circuit classes. Back in the 1980s,
there was a lot of significant progress in proving lower bounds for constant depth circuits. A line
of works [Ajt83, FSS84, Yao85, Hås89] established exponential lower bounds for AC0 (constant
depth circuits consisting of AND/OR gates of unbounded fan-in), and [Raz87, Smo87] proved
exponential lower bounds for AC0[p] (AC0 circuits extended with MODp gates) when p is a prime.

However, the progress had stopped there—the power of AC0[m] for a composite m had been
elusive, despite that it had been conjectured that they cannot even compute the majority function.
In fact, it had been a notorious long-standing open question in computational complexity whether
NEXP (nondeterministic exponential time) has polynomial-size ACC0 circuits1, until a seminal
work by Williams [Wil14b] a few years ago, which proved NEXP does not have polynomial-size
ACC0 circuits, via a new algorithmic approach to circuit lower bounds [Wil13].

Not only being an exciting new development after a long gap, the new circuit lower bound
is also remarkable as it surpasses all previous known barriers for proving circuit lower bounds:
relativization [BGS75], algebrization [AW09], and natural proofs [RR97]2. Moreover, the under-
lying method (the algorithmic method) puts many important classical complexity gems together,
ranging from nondeterministic time hierarchy theorem [SFM78, Žák83], IP = PSPACE [LFKN92,
Sha92], hardness vs randomness [NW94], to PCP Theorem [ALM+98, AS98].

Recent development of the algorithmic approach to circuit lower bounds. Recently, Murray
and Williams [MW18] significantly advanced the algorithmic approach by proving that strong
enough circuit-analysis (Gap-UNSAT)3 algorithms can also imply circuit lower bounds for NQP
(nondeterministic quasi-polynomial time) or NP, instead of the previous gigantic class NEXP.
Building on the new connection and the corresponding algorithms for ACC0 ◦ THR [Wil14a], they
showed that NQP 6⊂ ACC0 ◦ THR.

Building on [MW18], [Che19] recently generalized the connection to the average-case, by show-
ing that strong enough circuit-analysis algorithms also imply (1/2+ o(1))-inapproximability average-
case lower bounds for NQP or NP. In particular, it was shown that NQP cannot be (1/2+ 1/polylog(n))-
approximated by ACC0 ◦ THR. This is very interesting for two reasons: first, average-case lower
bounds tend to have other applications such as constructing unconditional PRGs; second, the
proof techniques do not apply the easy-witness lemma of [Wil14b, MW18], and follows a more
direct approach.

Still, the (1/2 + 1/polylog(n))-inapproximability result is not enough to get us a non-trivial
(say, with no(1) seed length) PRG construction for ACC0, which requires at least a (1/2 + 1/nω(1))-
inapproximability bound.

1It had been stressed several times as one of the most embarrassing open questions in complexity theory, see [AB09].
ACC0 denotes the union of AC0[m] for all constant m.

2We remark that there is no consensus on whether the natural proof barrier applies to ACC0: i.e., there is no widely
accepted construction of PRFs in ACC0. A candidate construction [BIP+18] is proposed recently, which still needs to be
tested. But we can say that if there is a natural proof barrier for ACC0, then this lower bound has surpassed it. (We also
remark that there is a recent proposal on getting ACC0 circuit lower bounds via torus polynomials [BHLR19].)

3The Gap-UNSAT problem asks one to distinguish between an unsatisfiable formula and a formula accepting a
random input with probability > 1/2.
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The 1/2 + 1/
√

n Razborov-Smolensky barrier. Indeed, proving a non-trivial (1/2 + n−ω(1))-
inapproximability result is even open for AC0[⊕] circuits (AC0 circuits extended with parity gates).
Using the renowned polynomial approximation method, [Raz87, Smo87, Smo93] showed that the
majority function cannot be (1/2 + n1/2−ε)-approximated by AC0[⊕]. However, it is even open
that whether ENP can be (1/2+ 1/

√
n)-approximated by (log n)-degree F2-polynomials. Improv-

ing the (1/2 + 1/
√

n)-bound (and constructing the corresponding PRGs) is recognized as a sig-
nificant open question in circuit complexity [Vio09a, Vad12, FSUV13, CHLT19].

1.2 Our Results

In this paper, we significantly improve the circuit-analysis-algorithms-to-average-case-lower-bounds
connection in [Che19]. We first define the circuit-analysis task of our interest.

• CAPP4 for C circuits with inverse-circuit-size error: Given a C circuit C of size S on n input
bits, estimate Prx∈{0,1}n [C(x) = 1] within an additive error 1/S.

For simplicity, throughout this paper, we will just refer to the above problem as CAPP. We
remark that under the widely believed assumption PromiseBPP = PromiseP, this problem has a
poly(S) time algorithm even for C = P/poly. In the following, we show that indeed a non-trivial
improvement on the brute-force 2n · poly(S)-time algorithm already implies strong average-case
lower bounds for C .

From Non-trivial CAPP Algorithms to Strong Average-case Circuit Lower Bounds

Theorem 1.1. Let C be a typical circuit class5 such that C circuits of size S can be implemented by (general)
circuits of depth O(log S). The following hold.

(NP Average-Case Lower Bound) Suppose there is a constant ε > 0 such that the CAPP problem of AND4 ◦
C circuits of size 2εn can be solved in 2n−εn time. Then for every constant k ≥ 1, NP cannot be
(1/2 + n−k)-approximated by C circuits of nk size.

(NQP Average-Case Lower Bound) Suppose there is a constant ε > 0 such that the CAPP problem of
AND4 ◦ C circuits of size 2nε

can be solved in 2n−nε
time. Then for every constant k ≥ 1, NQP

cannot be (1/2 + 2− logk n)-approximated by C circuits of 2logk n size.

(NEXP Average-Case Lower Bound) Suppose the CAPP problem of AND4 ◦C circuits of size poly(n) can
be solved in 2n/nω(1) time. Then NE cannot be (1/2 + 1/poly(n))-approximated by C circuits of
poly(n) size.

By the standard Discriminator Lemma [HMP+93], we immediately obtain worst-case lower
bounds for MAJ ◦ C circuits as well.

Corollary 1.2. Under the algorithmic assumptions of Theorem 1.1, we obtain worst-case lower bounds for
MAJ ◦ C circuits in the corresponding cases: (1) NP not in nk-size MAJ ◦ C for all k; (2) NQP not in
2logk n-size MAJ ◦ C for all k; (3) NE not in poly(n)-size MAJ ◦ C .

4The acronym CAPP denotes the CIRCUIT ACCEPTANCE PROBABILITY PROBLEM.
5A circuit class C is typical if it is closed under both negation and projection.
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Remark 1.3. We remark that the conclusions of Theorem 1.1 still hold if the corresponding CAPP
algorithms are non-deterministic. That is, on any computational branch, it either outputs a correct
estimation6 or rejects, and it does not reject all branches.

Remark 1.4. Theorem 1.1 assumes C is a sub-class of NC1 (e.g., THR ◦THR, TC0, or ACC0). On the
other hand, if C is stronger than NC1 (e.g., NC2, P/poly), [Che19, Theorem 1.3] already showed that7

even CAPP with constant error suffices to prove the stated average-case lower bounds in Theo-
rem 1.1. Although we still left open the possible case that C is uncomparable to NC1, our theorem
together with [Che19] cover nearly all interesting circuit classes.

Comparison with [Che19]. Our Theorem 1.1 improves on the corresponding connection in [Che19]
in two ways: (1) we get a much better inapproximability bound, which is crucial for our construc-
tion of nondeterministic PRGs; (2) we only need CAPP algorithms for AND4 ◦ C , while [Che19]
requires algorithms for AC0 ◦ C . On the other hand, our requirement on the CAPP algorithms is
stronger (additive error 1/S) than that of [Che19] (constant additive error).

More on our definition on CAPP. We remark that our definition of CAPP is a bit non-standard,
comparing to the usual definition with a constant error. Nonetheless, such a CAPP algorithm is
much weaker than a full-power #SAT algorithm, and (as discussed before) is widely believed to
exist even for P/poly circuits.

Strong Average-Case Lower Bounds for ACC0 ◦ THR

Applying the non-trivial #SAT algorithms for ACC0 ◦THR circuits in [Wil14a], it follows that NQP
cannot be even weakly approximated by ACC0 ◦THR circuits, and it is (worst-case) hard for MAJ ◦
ACC0 ◦ THR circuits.

Theorem 1.5. For every constant k ≥ 1, NQP cannot be (1/2 + 2− logk n)-approximated by ACC0 ◦ THR
circuits of size 2logk n. Consequently, NQP cannot be computed by MAJ ◦ACC0 ◦THR circuits of size 2logk n

(in the worst-case), for all k ≥ 1.
The same holds for (N∩coN)QP/1 in place of NQP.

Very recently, building on [CW19] and the FGLSS reduction [FGL+91], Vyas and Williams [VW20]
proved that NQP cannot be computed by EMAJ ◦ ACC0 ◦ THR8 circuits of size 2logk n for all k ≥ 1.
Our result improves on theirs as EMAJ ◦ ACC0 ◦ THR circuits is a subclass of MAJ ◦ ACC0 ◦ THR
circuits (see, e.g. [HP10]).

Nondeterministic PRGs for ACC0 with Sub-Polynomial Seed Length

As an important application of the above strong average-case lower bound, we also obtain the first
PRG with no(1) seed length for ACC0 circuits (previous, this was open even for AC0[⊕] circuits),
albeit it is nondeterministic and infinitely often.

6It is allowed that on different branches it outputs different estimations as long as they are all within an additive
error of 1/S.

7[Che19, Theorem 1.3] only states the result with inapproximability 1/2 + n−c for a constant c, but it is easy to see
that its proof can be generalized to the inapproximability corresponding to Theorem 1.1.

8EMAJ is the “exact majority” function which outputs 1 on an n-bit input if and only if the number of ones in the
input equals d n

2 e.
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Theorem 1.6. For every constant ε > 0, there is an infinitely often, (NE ∩ coNE)/1-computable PRG
fooling polynomial size ACC0 circuits with seed length 2(log n)ε

.9

Remark 1.7. We can indeed optimize the seed length to be the inverse of any sub-fourth-exponential
function. See Section 7.2 for details.

Previously, the best PRG for ACC0 is from [COS18], which is (NE ∩ coNE)/1-computable and
has seed length n− n1−β for any constant β > 0. Our construction significantly improves on that.

Lower Bounds and PRGs for Sum ◦ C Circuits

For a circuit class C , a Sum ◦ C circuit is an R-linear combination C(x) := ∑t
i=1 αiCi(x), such that

each αi ∈ R, each Ci is a C circuit on n input bits, and C(x) ∈ {0, 1} for all x ∈ {0, 1}n. We denote
t as the sparsity of the circuit, and we define the size of C as the total size of all C sub-circuits Ci’s.

We first show that if we have the corresponding non-trivial #SAT algorithms instead of the
non-trivial CAPP algorithms, we would have average-case lower bounds for Sum ◦ C circuits. To
avoid repetition, in the following we only state the version for NQP.

Corollary 1.8. Let C be a typical circuit class such that C circuits of size S can be implemented by (general)
circuits of depth O(log S). Suppose there is a constant ε > 0 such that the #SAT problem of AND4 ◦ C
circuits of size 2nε

can be solved in 2n−nε
time. Then for every constant k ≥ 1, NQP cannot be (1/2 +

2− logk n)-approximated by Sum ◦ C circuits of 2logk n size.

This immediately implies a strong average-case lower bound for Sum ◦ ACC0 ◦ THR.

Corollary 1.9. For every constant k ≥ 1, NQP cannot be (1/2+ 2− logk n)-approximated by Sum ◦ACC0 ◦
THR circuits of size 2logk n. Consequently, NQP cannot be computed by MAJ ◦ Sum ◦ACC0 ◦THR circuits
of size 2logk n (in the worst-case), for all k ≥ 1.

The same holds for (N∩coN)QP/1 in place of NQP.

Now we discuss some applications of our new techniques to some sub-classes of TC0 circuits.
We begin with some notation. Recall that a degree-d PTF gate is a function defined by sign(p(x)),

where p is a degree-d polynomial on x over R, and sign(z) outputs 1 if z ≥ 0 and 0 otherwise.
Clearly, a THR gate is simply a degree-1 PTF gate.

[Wil18] proved that NP cannot be computed by nk-size Sum ◦ THR circuits for all k > 0. With
our improved connection, we apply the #SAT algorithm for AND4 ◦ THR of [Wil18] to improve it
to a corresponding average-case lower bound.

Theorem 1.10. For all constants k, NP cannot be (1/2 + 1/nk)-approximated by nk-size Sum ◦ THR
circuits. Consequently, NP cannot be computed by nk-size MAJ ◦ Sum ◦THR circuits for all constants k.10

We remark that MAJ ◦ Sum ◦ THR is a sub-class of THR ◦ THR with no previous known lower
bounds. So Theorem 1.10 can be viewed as progress toward resolving the notorious open question
of proving super-polynomial THR ◦ THR lower bounds.

Applying the non-trivial zero-error #SAT algorithm for PTF in [BKK+19], we also obtain NQP
(NE) average-case lower bounds for Sum ◦ PTFd circuits.

9 That is, this PRG G is computable by a nondeterministic machine M with one bit of advice such that for a seed
s ∈ {0, 1}2(log n)ε

, M(s) either outputs G(s) or rejects on any computational branch, and it outputs G(s) on some compu-
tational branches. See Definition 2.7 for a formal definition.

10This average-case lower bound can also be extended to against Sum ◦ReLU circuits, similar to the exact Sum ◦ReLU
lower bounds in [Wil18].
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Theorem 1.11. The following hold.

• For every constants d, k ≥ 1, NQP cannot be (1/2+ 2− logk n)-approximated by Sum ◦PTFd circuits
of sparsity 2logk n. Consequently, NQP does not have 2logk n-size MAJ ◦ Sum ◦ PTFd circuits.

• Let d(n) = 0.49 log n
log log n , then NE cannot be (1/2 + 1/poly(n))-approximated by Sum ◦ PTFd(n)

circuits of sparsity poly(n). Consequently, NE 6⊂ MAJ ◦ Sum ◦ PTFd(n).

From the above theorem, we can also obtain non-trivial nondeterministic PRGs for Sum ◦ PTF
circuits.

Theorem 1.12. For every constants d, k ≥ 1 and ε > 0, there is an (NE ∩ coNE)/1-computable i.o. PRG
with seed length O(2logε n) that (1/nk)-fools Sum ◦ PTFd circuits of sparsity nk.11

Previously, the best (constant-error) PRG for degree-d PTF has seed length O(log n · 2O(d)) [MZ13].
Our construction has a worse seed-length, is nondeterministic and infinitely often, but works for
the larger class Sum ◦ PTF.

Towards TC0
3 Lower Bounds

In [CW19], it is shown that non-trivial CAPP algorithms for MAJ ◦MAJ circuits with inverse-
polynomial additive error would already imply THR ◦THR circuit lower bounds. We significantly
improve that connection by showing it would indeed imply TC0

3 lower bounds!

Theorem 1.13. If there is a 2n/nω(1) time CAPP algorithm for poly(n)-size MAJ ◦MAJ circuits. Then
NEXP 6⊂ MAJ ◦MAJ ◦MAJ.

We remark that MAJ ◦MAJ ◦MAJ is actually equivalent to MAJ ◦ THR ◦ THR (since MAJ ◦
MAJ = MAJ ◦ THR [GHR92]). Since exponential-size (worst-case) lower bounds against MAJ ◦
MAJ are already known. If only we can “mine” a non-trivial CAPP algorithm (which is widely
believed to exist) for MAJ ◦MAJ circuits from these lower bounds, we would have worst-case
lower bounds against TC0

3.

1.3 Intuition

In the following, we sketch the intuitions for our new average-case lower bounds.
In this section, we will aim for a simpler version that NQP cannot be (1/2+ n−k)-approximated

by ACC0 for a large constant k (say, k = 103) for simplicity. We believe this version already captures
all important technical ideas of our new average-case circuit lower bounds.

1.3.1 Review of [Che19] and the Bottleneck

First, since our work crucially builds on [Che19] (which proved NQP cannot be (1/2+ 1/polylog(n))-
approximated by ACC0), it would be very instructive to review the proof structure of [Che19], and
understand what is the bottleneck of extending [Che19] to prove a (1/2 + n−k)-inapproximability
bound.

11We did not attempt to optimize this seed length.
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A high-level overview of [Che19]: three steps. Suppose we are proving NQP cannot be (1− δ)-
approximated by ACC0 for now, where δ is a small constant. On a very high level, the proof
of [Che19] involves the following three steps.12

Step I (Conditional collapse from NC1 to ACC0.)

Assuming NQP can be (1− δ)-approximated by ACC0, [Che19] shows that NC1 collapses to
ACC0, using the existence of self-reducible NC1-complete languages [Bab87, Kil88, Bar89].

Step II (An NE algorithm certifying low depth hardness.)

Next, making use of the non-trivial SAT algorithm for ACC0 circuits [Wil14b], [Che19] shows
that there is an NE algorithm V(·, ·) certifying nε-depth hardness. Formally, V(x, y) takes
inputs such that |y| = 2|x|; for infinitely many n’s, V(1n, ·) is satisfiable, and V(1n, y) = 1
implies y, interpreted as a function fy : {0, 1}n → {0, 1}, does not have nε-depth circuits.

Step III (Certifying low depth hardness implies average-case lower bounds for low depth circuits.)

Finally, [Che19] shows that the above algorithm V would be sufficient to imply that NQP
cannot be (1− δ)-approximated by NC1 (and also ACC0).

The bottleneck of the argument: Step I. Suppose we are going to prove NQP cannot be (1/2 +
n−k)-approximated by ACC0, let us examine which one of the above three steps would break.

Clearly, Step II is unaffected (assuming Step I works). Another observation is that since NC1

can compute majority13, we can use the XOR Lemma [Yao82, IJKW10, GL89] to show that NQP
cannot be (1/2 + n−k)-approximated by NC1 circuits.14 Therefore, Step III still works if we want
to prove the stronger (1/2 + n−k)-inapproximability result.

However, Step I completely breaks. Assuming NQP can be (1/2+ n−k)-approximated by ACC0

circuits, it seems hopeless to show that NC1 collapse to ACC0 using some random self-reducible
languages. This is because the given circuit only (1/2 + n−k)-approximates the given random
self-reducible language, and to the best of our knowledge, all known correcter for such languages
in this error regime requires computing at least some variants of the majority function, while ACC0

is conjectured not to be able to compute majority [Smo87]!

1.3.2 A Detour: Chen and Williams [CW19] and S̃umδ ◦ ACC0 Circuit Lower Bounds

So it seems unlikely that we can show a collapse theorem from NC1 to ACC0 under the assumption
that NQP can be (1/2 + n−k)-approximated by ACC0. A natural idea to avoid this obstacle is to
show NC1 collapses to some other larger classes under the same assumption. Examining the proof
idea of [Che19], it seems at least we can show NC1 collapses to MAJ ◦ACC0 under the assumption.
However, the issue is that then we don’t know how to implement Step II, as we don’t have a
non-trivial SAT (or even Gap-UNSAT) algorithm for MAJ ◦ ACC0 circuits.

So we indeed want a collapse theorem which would collapse NC1 to a circuit class C for which we at
least know some non-trivial algorithms for, and of course C also has to contain ACC0. Perhaps the best

12Actually, in [Che19], Step III is much more complicated than the previous two steps, and Step II just follows
from [Wil16]. In the presentation of [Che19], Step III is decomposed into several sub-steps [Che19, Section 6.2, 7-9].
We choose to give the overview in this way because we essentially make use of Step III as a black box, and our im-
provement is mostly focusing on the first two steps. In particular, our improved Step II is much more involved than
that of [Che19], and crucially builds on [CW19].

13It is proved that black-box hardness amplification requires majority [SV10, GSV18].
14Precisely speaking, we have to start with our (N∩coN)QP/1 lower bounds for that purpose.
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choice for us is the S̃umδ ◦ACC0 circuits which has recently been studied by [CW19]. So let us take
a detour into this circuit class and the corresponding lower bounds in [CW19].

S̃umδ ◦C Circuits. Let C be a class of functions from {0, 1}n → {0, 1} and δ ∈ [0, 0.5). We say
f : {0, 1}n → {0, 1} admits a S̃umδ ◦ C circuit of sparsity S, if there are S functions C1, C2, . . . , CS
from C , together with S coefficients α1, α2, . . . , αS in R, such that for all x ∈ {0, 1}n,∣∣∣∣∣ S

∑
i=1

αi · Ci(x)− f (x)

∣∣∣∣∣ ≤ δ.

Given a valid S̃umδ ◦ ACC0 circuit C, we say C(x) = 1 if the corresponding output value
|∑i αiCi(x) − 1| ≤ δ, and C(x) = 0 otherwise. [CW19] gives a 2n−nε

-time Gap-UNSAT (in fact,
constant-error CAPP) algorithm for S̃umδ ◦ ACC0 of 2nε

-size when δ is small (the algorithm is in-
deed already implicit in [Wil18]). Building on this algorithm (and more importantly, PCP of prox-
imity), [CW19] proves that NQP 6⊂ S̃umδ ◦ ACC0 for any constant δ ∈ [0, 1/2).

1.3.3 Key Technical Ingredient: A ⊕L-complete Language CMD with a S̃umδ Error Correcter

So given the result of [CW19], the question becomes:

A New Collapse Theorem?: Can we show a collapse from NC1 to S̃umδ ◦ACC0 circuits,
assuming NQP can be (1/2 + n−k)-approximated by ACC0 circuits?

Our improvement of Step I answers the question affirmatively, by making use of a⊕L-complete15

language CMD [IK02, AIK06, GGH+07] with very nice reducibility properties. We remark that the
underlying techniques play a crucial part in the famous construction of NC0-computable one-way
functions (and low-stretch PRGs) [AIK06] (see also the book [App14]).

1. (⊕L-completeness under projections.) That is, for every language L ∈ ⊕L, there is a polynomial-
time computable projection P such that L(x) = CMD(P(x)).

2. (Single-query error correctability with a randomized image DCMD.) For technical reasons,
we also have to introduce another ⊕L-complete language DCMD, which is a “randomized
image” of CMD under projections (when randomness is fixed) [GGH+07, Claim 2.19].

That is, given n ∈ N, there is m = poly(n) and a randomized reduction P(x, r) (r is the
random bits) from CMD on input length n to DCMD on input length m, such that:

(a) For all x ∈ {0, 1}n, P(x,U`) distributes uniformly on {0, 1}m, where ` is the number of
random bits involved, and U` is the uniform distribution over {0, 1}`.

(b) For all fixed random bits r, P(x, r) is a projection of x.

(c) For all x ∈ {0, 1}n, CMDn(x) = DCMDm(P(x, r))⊕ r0 for all r, where r0 is the first bit of
r.

15Roughly speaking,⊕L consists of languages L such that there is an O(log n) space nondeterministic Turing machine
M, such that on every input x, x ∈ L if and only if there is an odd number of computational paths making M accept on
input x.
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An error corrector in S̃umδ ◦ f . The second property of CMD stated above is amazing. It enables
us to do the desired error correction with S̃umδ ◦ f circuits (a linear sum of f functions composed
with projections). See Section 3 for the details. It then follows that if NQP can be (1/2 + n−k)-
approximated by ACC0 circuits, we would have the desired collapse from NC1 to S̃umδ ◦ ACC0.

1.3.4 A Simpler Proof for a Worst-Case Lower Bound Against MAJ ◦ ACC0

With the improved collapse result, we can already prove worst-case lower bounds against MAJ ◦
ACC0. For simplicity, here we only show the following weaker version.

Theorem 1.14 (Toy Example). NQP 6⊂ MAJ ◦ ACC0.

Proof Sketch. There are two cases.

• First, we assume DCMD (which is in NQP) cannot be (1/2 + 1/poly(n))-approximated by
ACC0. This implies that NQP 6⊂ MAJ◦ACC0, via the standard Discriminator Lemma [HMP+93].

• Second, suppose DCMD can be (1/2 + 1/nk)-approximated by nk-size ACC0 circuits for a
constant k. This implies that NC1 collapses to S̃umδ ◦ ACC0.

By [CW19], NQP 6⊂ S̃umδ ◦ ACC0. This in turn implies that NQP 6⊂ NC1, and clearly also
NQP 6⊂ MAJ ◦ ACC0.

1.3.5 Toward Average-Case Hardness: The Updated Three Steps Plan

Now we switch to the new average-case circuit lower bounds. With the new conditional collapse
theorem, the following are our updated three steps plan for the new average-case lower bounds.

Step I’ (Conditional collapse from NC1 to S̃umδ ◦ ACC0.)

Assuming NQP can be (1/2 + n−k)-approximated by ACC0, we show that NC1 collapses to
S̃umδ ◦ ACC0, utilizing the nice properties of the problems CMD and DCMD.

Step II’ (An NE algorithm certifying low depth hardness.)

Next, making use of the non-trivial constant error CAPP algorithm for S̃umδ ◦ ACC0 cir-
cuits [Wil18, CW19], we show that there is an NE algorithm V(·, ·) certifying nε-depth hard-
ness.

Step III’ (Certifying low depth hardness implies average-case lower bounds for low depth circuits.)

Finally, we show that the above algorithm V would be sufficient to imply that NQP cannot
be (1/2 + n−k)-approximated by NC1 (and also ACC0).

As previously discussed, Step III’ can be achieved easily by combing [Che19] and the XOR
Lemma [Yao82, IJKW10, GL89]. It remains to implement Step II’, which is the most technical part
of this work.

1.3.6 Review of Step II: Certifying Hardness via PCP and Nondeterministic Time Hierarchy

To implement Step II’, the natural idea is to directly modify Step II ([Che19, Section 6.1]), and
follow [Wil16]. Now we briefly review the details of Step II and explain why it seems hard to
adapt it directly.
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Setting up the verifier Vcert. Let L be a unary language in NTIME[2n] \ NTIME[2n/n] [Žák83].
Fix an efficient PCP verifier VPCP for L (such as [BV14]). That is, for a function ` := `(n) =
n + O(log n), VPCP(1n) takes ` random bits as input, runs in poly(n) time, is given access to an
oracle O : {0, 1}` → {0, 1}, and satisfies the following conditions:

1. (Completeness) if 1n ∈ L, then there exists an oracle O such that VPCP(1n)O always accepts;

2. (Soundness) if 1n /∈ L, then for all oracles O, the probability VPCP(1n)O accepts is ≤ 1/n.

Now, we define Vcert as follows: Vcert(1n, y) treats y as the truth-table of an oracle Oy : {0, 1}` →
{0, 1}, and verifies whether VPCP(1n)Oy always accepts16. Clearly, Vcert runs in poly(n + |y|) time.

Since any depth-d circuit is equivalent to some 2O(d)-size S̃umδ ◦ ACC0 circuit (recall that now
NC1 collapses to S̃umδ ◦ ACC0), to show that Vcert certifies nε1-depth hardness, it suffices to show
that Vcert certifies hardness for 2nε

-size S̃umδ ◦ ACC0 circuits for ε > ε1.
Let us suppose the opposite that Vcert does not certify hardness for 2nε

-size S̃umδ ◦ACC0 circuits.
In particular, this means for all large enough n, if Vcert(1n, ·) is satisfiable, then there is a 2nε

-size
S̃umδ ◦ACC0 circuit C such that Vcert(1n, tt(C)) = 1, where tt(C) is the truth-table of C. Translating
it to the setting of PCP, for large enough n, the following hold:

1. (Succinct Completeness) if 1n ∈ L, then there exists a 2nε
-size S̃umδ ◦ACC0 circuit C : {0, 1}` →

{0, 1} such that VPCP(1n)C always accepts;

2. (Soundness) if 1n /∈ L, then for all oracles O, the probability VPCP(1n)O accepts is ≤ 1/n.

The issue with the direct approach. Given the above two conditions, the natural idea for putting
L in NTIME[2n/n] to obtain a contradiction would be to try the following nondeterministic algo-
rithm for L: Given an input 1n, we (non-deterministically) guess a 2nε

-size S̃umδ ◦ACC0 circuit C17,
and try to estimate

pacc(VPCP(1n)C) = Pr
r∈{0,1}`

[VPCP(1n)C(r)].

Let DC := VPCP(1n)C. We would like to accept when pacc(DC) = 1, and reject when pacc(DC) <
1/n, so a constant additive error (say, 1/10) approximation to pacc(DC) would suffice.

The issue here is that, DC is not a S̃umδ ◦ ACC0 circuit anymore. So we don’t know how to
estimate pacc(DC) using the constant error CAPP algorithm for Sumδ ◦ ACC0 in [Wil18, CW19].

We remark that by [BV14], VPCP can indeed be implemented by a 3-CNF, hence if C is only an
ACC0 circuit, VPCP(1n)C is still an ACC0 circuit. This is why this argument works in the original
Step II, where we have a collapse from NC1 to ACC0 instead of S̃umδ ◦ ACC0.

1.3.7 Getting Around of the Issue with PCP of Proximity

To avoid the aforementioned issue, we would like to adopt the PCP of Proximity framework in-
troduced in [CW19], which also plays a crucial part in the PNP construction of rigid matrices
in [AC19]. For more intuition on this framework and how it compares to and improves on the
earlier works [Wil13, Wil14b], one is referred to [CW19, Section 1.6].

16Strictly speaking, here |y| = 2` = 2n · poly(n) which is slightly larger than 2n, but this slight difference does not
really matter in the proof.

17Note that here we are waiving the very important issue of how to test whether the guessed S̃umδ ◦ ACC0 is valid. We
will discuss this issue at the end of the section.
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For a SAT instance F, Y a subset of its variables, and y ∈ {0, 1}|Y|, we use FY=y to denote the
resulting instance obtained by assigning the Y variables in F to y.18 We also use OPT(F) to denote
the maximum fraction of clauses that can be satisfied by any assignment.

The following transformation is the key technical part of [CW19].19

Theorem 1.15 (Implicit in [CW19]). Let Enc be the encoder of some constant-rate error correcting code.
There is a polynomial-time transformation that, given a circuit D on n inputs of size m ≥ n, outputs a
2-SAT instance F on variable set Y ∪ Z, where |Y| = O(n), |Z| ≤ poly(m) and F has poly(m) clauses,
such that for two constants cPCPP > sPCPP, the following hold for all x ∈ {0, 1}n.

• If D(x) = 1, then OPT(FY=Enc(x)) ≥ cPCPP. Furthermore, there is a poly(m)-time algorithm
computing a corresponding zD(x) given x which satisfies at least a cPCPP fraction of clauses.

• If D(x) = 0, then OPT(FY=Enc(x)) ≤ sPCPP.

The key idea of [CW19] is to apply the above transformation on the obtained circuit DC, and
guess the corresponding C circuits for each output bit of the function zDC(x). In [CW19], the focus
is to prove worst-case lower bounds like NQP 6⊂ C for a circuit class C . Therefore, we can safely
assume P ⊆ C and there exist corresponding C circuits for each output bit of zDC(x).

However, in our case, we only have the collapse from NC1 to S̃umδ ◦ ACC0. So we need the
following adaption where the given circuit D is a formula, and the proof is also computable by a
formula.

Theorem 1.16. Let Enc be the encoder of some constant-rate error correcting code. There is a polynomial-
time transformation that, given a formula D on n inputs of size m ≥ n, outputs a 2-SAT instance F on
variable set Y ∪ Z, where |Y| = O(n), |Z| ≤ poly(m) and F has poly(m) clauses, such that for two
constants cPCPP > sPCPP, the following hold for all x ∈ {0, 1}n.

• If D(x) = 1, then OPT(FY=Enc(x)) ≥ cPCPP. Furthermore, there is a poly(m)-size formula com-
puting a corresponding zD(x) given x which satisfies at least a cPCPP fraction of clauses.

• If D(x) = 0, then OPT(FY=Enc(x)) ≤ sPCPP.

The algorithm. Again, suppose for the sake of contradiction that Vcert does not certify nε-depth
hardness. In particular, this means for all large enough n, it follows that if Vcert(1n, ·) is satisfiable,
then there is an nε-depth circuit C such that Vcert(1n, tt(C)) = 1. Translating it to the setting of
PCP, the following hold for large enough n:

1. (Low Depth Completeness) if 1n ∈ L, then there exists an nε-depth circuit C : {0, 1}` →
{0, 1} such that VPCP(1n)C always accepts;

2. (Soundness) if 1n /∈ L, then for all oracles O, the probability that VPCP(1n)O accepts is≤ 1/n.

Recall that we set DC := VPCP(1n)C. Our goal now is still to accept when pacc(DC) = 1, and
reject when pacc(DC) ≤ 1/n.

18Here we don’t remove the already satisfied clauses or the clauses which cannot be satisfied after the partial assign-
ment.

19This formulation is due to [VW20].
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By previous discussions, VPCP can be taken as a 3-CNF, so DC is indeed a circuit of depth
nε +O(log n) = O(nε), and therefore it is also a formula of size 2O(nε). Now we apply Theorem 1.16
to the formula DC to obtain a 2-SAT instance F with nclause = 2O(nε) clauses on variable set Y ∪ Z.

Now we guess |Z| Sumδ ◦ ACC0 circuits T1, T2, . . . , T|Z| and use π̃(x) to denote the concatena-
tion of T1(x), T2(x), . . . , T|Z|(x). Then we estimate the following quantity

pkey := E
x∈{0,1}`

E
i∈[nclause]

Fi(Enc(x), π̃(x)) = E
i∈[nclause]

E
x∈{0,1}`

Fi(Enc(x), π̃(x)), (1)

where Fi is the i-th clause in the 2-SAT instance F, so it only depends on two bits in Enc(x) ◦ π̃(x).
By a simple manipulation, one can show that Fi(Enc(x), π̃(x)) also has a SumO(δ) ◦ ACC0 circuit.
Therefore, setting δ to be a small enough constant, we can apply the constant error CAPP algorithm
from [Wil18, CW19] to estimate pkey in 2n−nε

time. Now we verify the correctness of the algorithm.

1. When pacc(DC) = 1, on the correct guess that π̃(x) = zDC(x) for all x, by Item (1) of Theo-
rem 1.16, it follows pkey ≥ cPCPP.

2. When pacc(DC) ≤ 1/n, on all possible guesses, by Item (2) of Theorem 1.16, we have pkey ≤
sPCPP + 1/n.

Therefore, to distinguish the above two cases, it suffices to estimate pkey within an additive
error of cPCPP−sPCPP

10 , and accept if our estimation is ≥ cPCPP+sPCPP
2 . Putting everything together, this

puts L ∈ NTIME[2n/n], contradiction.

Checking the guessed S̃umδ ◦ ACC0 circuits. Finally, as we have remarked briefly before, we
waived an important issue on checking whether the guessed S̃umδ ◦ ACC0 circuits are valid (that
is, whether the linear sum is close to either 0 or 1 on all inputs x). This is because in the algo-
rithm described above, when x /∈ L, it is still possible that we guess some invalid S̃umδ ◦ ACC0

circuits T1, T2, . . . , T|Z| and conclude that pkey > cPCPP+sPCPP
2 , as the constant error CAPP algorithm

for S̃umδ ◦ ACC0 may behave arbitrarily on invalid S̃umδ ◦ ACC0 circuits.
More formally, given a presumed S̃umδ ◦ACC0 circuit C, let f (x) be the corresponding ∑i αiCi(x),

and

bin f (x) :=

{
1 f (x) > 1/2,
0 otherwise.

To test whether C is valid, we want to check whether ‖bin f − f ‖∞ ≤ δ. Ideally, we want a test
which accepts when ‖bin f − f ‖∞ ≤ δ and reject when (say) ‖bin f − f ‖∞ ≥ 3δ. But this turns out
to be too hard.

Luckily, a careful examination shows that we only have to reject when ‖bin f − f ‖2 ≥ 3δ, and
this can be solved by a careful polynomial manipulation as in [CW19]. See Section 5 for the details.
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2 Preliminaries

We use GF(pr) to denote the finite field of size pr, where p is a prime and r is an integer. For
n ∈ N, we use Un to denote the uniform distribution over {0, 1}n. We use boldface letters to
denote random variables, e.g. x ∼ Un denotes an n-bit string sampled uniformly at random.

We say a function f : N→N is a good resource function if the following hold:

• f is nondecreasing, and

• there is a polynomial time algorithm that on input 1n, outputs the value of f (n).

For a non-decreasing function f : N→N, define its inverse function f−1 as

f−1(n) = max{m : f (m) ≤ n}.

It is easy to see that if f is a good resource function and f (n) ≥ n, then f−1 is also a good
resource function.

2.1 Complexity Classes and Basic Definitions

We assume knowledge of basic complexity theory (see [AB09, Gol08] for excellent references on
this subject).

2.1.1 Basic Circuit Families

A circuit family is a collection of circuits {Cn : {0, 1}n → {0, 1}}n∈N. A circuit class is a collection
of circuit families. The size of a circuit is the number of wires in the circuit, and the size of a circuit
family is a function of the input length that upper-bounds the size of circuits in the family. The
depth of a circuit is the maximum number of wires on a path from an input gate to the output gate.

We will mainly consider classes in which the size of each circuit family is bounded by some
polynomial; however, for a circuit class C , we will sometimes also abuse notation by referring to
C circuits with various other size or depth bounds.

By default, (general) circuits have fan-in two AND and OR gates and unary NOT gates. AC0

is the class of circuit families of constant depth and polynomial size, with AND,OR, and NOT
gates, where AND and OR gates have unbounded fan-in. For an integer m, the function MODm :
{0, 1}∗ → {0, 1} is one if and only if the number of ones in the input is not divisible by m. The class
AC0[m] is the class of constant-depth circuit families consisting of polynomially-many unbounded
fan-in AND, OR and MODm gates, along with unary NOT gates. We sometimes also use AC0[⊕] to
denote AC0[2]. We use the notation AC0

d and AC0
d[m] when we explicitly specify the depth of the

circuit as d. We denote ACC0 =
⋃

m≥2 AC
0[m].

The function majority, denoted as MAJ : {0, 1}∗ → {0, 1}, is the function that outputs 1 if the
number of ones in the input is no less than the number of zeros, and outputs 0 otherwise. TC0 is
the class of circuit families of constant depth and polynomial size, with unbounded fan-in MAJ
gates. We also use TC0

d to denote the sub-class of TC0 of depth d. NCk for a constant k is the class of
O(logk n)-depth and polynomial-size circuit families consisting of fan-in two AND and OR gates
and unary NOT gates.

A linear threshold function (LTF) is a function Φ : {0, 1}n → {0, 1} of the form Φ(x) =
sign(〈x, w〉 − θ), where w ∈ Rn, θ ∈ R and 〈x, w〉 = ∑i∈[n] xi · wi is the standard inner product
over R. We use THR to denote the class of linear threshold functions. Similarly, a polynomial
threshold function (PTF) is a function Φ : {0, 1}n → {0, 1} of the form Φ(x) = sign(P(x)), where
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P(x) is a polynomial over R. The degree of the PTF is simply the degree of the polynomial, and
we use PTFd to denote the class of PTF of degree d. Clearly, THR is equivalent to PTF1.

We say a circuit family {Cn}n∈N is uniform, if there is a deterministic algorithm A, such that
A(1n) runs in time polynomial of the size of Cn, and outputs Cn.20

For a circuit class C , we say a circuit C is a C oracle circuit, if C is also allowed to use a special
oracle gate (which can occur multiple times in the circuit, but with the same fan-in), in addition to
the usual gates allowed by C circuits. We say an oracle circuit is non-adaptive, if on any path from
an input gate to the output gate, there is at most one oracle gate.

We say a circuit class C is typical, if given the description of a circuit C of size s, for indices
i, j ≤ n and a bit b, the following functions

¬C, C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn)

all have C circuits of size s, and their corresponding circuit descriptions can be constructed in
poly(s) time. That is, C is typical if it is closed under both negation and projection.

2.1.2 Notation

We say a circuit C : {0, 1}n → {0, 1} γ-approximates a function f : {0, 1}n → {0, 1}, if C(x) = f (x)
for a γ fraction of inputs from {0, 1}n.

For a function f : {0, 1}n → {0, 1}, we define SIZE( f ) (resp. DEPTH( f )) to be the minimum
size (resp. depth) of a circuit computing f exactly. Similarly, for an error parameter γ > 1/2, we
define heurγ-SIZE( f ) (resp. heurγ-DEPTH( f )) to be the minimum size (resp. depth) of a circuit
γ-approximating f .

We say a language L can be γ(n)-approximated by C , if there is a circuit family {Cn}n∈N ∈ C
such that Cn γ(n)-approximates Ln for all sufficiently large n. We also say a class of language L
can be γ(n)-approximated by C , if all languages L ∈ L can be γ(n)-approximated by C .

2.1.3 Circuit Analysis Problems

We mainly consider two circuit-analysis problems.

• #SAT: Given a circuit C on n inputs, count the number of satisfying assignments of C.

• CAPP with inverse-circuit-size error: Given a circuit C on n inputs, estimate the probability
that C(x) = 1 for a uniformly random x ∈ {0, 1}n, within error ±1/|C|. Here |C| denotes
the size of C.

In this paper, unless otherwise stated, the problem CAPP means CAPP with inverse-circuit-size
error.

We say the #SAT or CAPP problem for C circuits of size S(n) can be solved in nondeterministic
T(n) time, if the following hold. There is a nondeterministic Turing machine M such that, when
given a size-S(n) C circuit C over n Boolean variables as input,

• M accepts at least one of its nondeterministic branches.

• On every accepted nondeterministic branch, M outputs a correct answer. For the #SAT prob-
lem, the only correct answer is the number of satisfying assignments of C; for the CAPP

20That is, we use the P-uniformity by default.
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problem, any rational number q such that∣∣∣∣ Pr
x∼{0,1}n

[C(x) = 1]− q
∣∣∣∣ < 1
|C|

is a correct answer.

We remark that the CAPP problem is widely believed to be solvable in polynomial time even
for polynomial-size general circuits (P/poly).

2.2 MA∩ coMA and NP∩ coNP Algorithms

We introduce convenient definitions of (MA ∩ coMA)TIME[T(n)] or (N∩coN)TIME[T(n)] algo-
rithms, which simplify the presentation.

Definition 2.1. Let T : N → N be a time-constructible function. A language L is in (MA ∩
coMA)TIME[T(n)], if there is a deterministic algorithm A(x, y, z) (which is called the predicate)
such that:

• A takes three inputs x, y, z such that |x| = n, |y| = |z| = O(T(n)) (y is the witness while z is
the collection of random bits), runs in O(T(n)) time, and outputs an element from {0, 1, ?}.

• (Completeness) For every x, there exists a y such that

Pr
z∼UO(T(n))

[A(x, y, z) = L(x)] ≥ 2/3.

• (Soundness) For all x and y,

Pr
z∼UO(T(n))

[A(x, y, z) = 1− L(x)] ≤ 1/3.

We say the predicate has depth d, if for every x, y, there is a depth-d circuit Cx,y such that Cx,y(z) =
A(x, y, z).

Remark 2.2. (MA∩ coMA) languages with advice are defined similarly, with A being an algorithm
with the corresponding advice.

Remark 2.3. The definition of predicate depth here is a little bit unusual: we allow Arthur to
choose different circuits (that process the randomness z) on each input x and proof y. It makes es-
sentially no difference in this paper if we change the definition to the actual depth of the predicate
A, but the current definition of depth is more convenient to work with.

Definition 2.4. Let T : N→N be a time-constructible function. A language L is in (N∩coN)TIME[T(n)],
if there is an algorithm A(x, y) (which is called the predicate) such that:

• A takes two inputs x, y such that |x| = n, |y| = O(T(n)) (y is the witness), runs in O(T(n))
time, and outputs an element from {0, 1, ?}.

• (Completeness) For every x, there exists a y such that

A(x, y) = L(x).
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• (Soundness) For all x and y,
A(x, y) 6= 1− L(x).

Remark 2.5. (N∩coN)TIME[T(n)] languages with advice are defined similarly, with A being an
algorithm with the corresponding advice.

Note that by the above definition, the semantic of (MA ∩ coMA)/1 is different from MA/1 ∩
coMA/1. A language in (MA ∩ coMA)/1 has both an MA/1 algorithm and a coMA/1 algorithm,
and their advice bits are the same. In contrast, a language in MA/1 ∩ coMA/1 can have an MA/1
algorithm and a coMA/1 algorithm with different advice sequences. Similar relationship holds for
(NP∩ coNP)/1 and NP/1 ∩ coNP/1.

2.3 Pseudorandom Generators

We are going to deal with different types of Pseudorandom Generators (PRG) throughout the
paper. In the following, we recall their definitions.

Definition 2.6. Let S, ` : N → N and ε : N → (0, 1) be functions, where S, `, ε denote size,
seed length and error respectively. Let C be a circuit class. A function G : {0, 1}∗ → {0, 1}∗ is a
pseudorandom generator (PRG) with seed length `(n) that ε-fools C circuits of size S, if for every C
circuit C : {0, 1}n → {0, 1} of size S(n),∣∣∣∣∣ Pr

s∼U`(n)
[C(G(s)) = 1]− Pr

r∼Un
[C(r) = 1]

∣∣∣∣∣ < ε(n). (2)

If (2) holds for infinitely many lengths n, then we say G is an infinitely often PRG (i.o. PRG).

Definition 2.7. Let G : {0, 1}∗ → {0, 1} be a PRG. We say G is E-computable if there is a deter-
ministic Turing machine M that on input x ∈ {0, 1}∗, computes G(x) in 2O(|x|) time. We say G is
(NE∩ coNE)-computable if there is a deterministic Turing machine M(x, y) that on input x ∈ {0, 1}n

and y ∈ {0, 1}2O(n)
:

• M either rejects or outputs G(x);

• there is at least one input y such that M does not reject;

• M runs in 2O(n) time.

Furthermore, if M needs a bits of advice, then we say G is E/a-computable or (NE ∩ coNE)/a-
computable respectively.

We also need the concept of “nondeterministic pseudorandom generator” (NPRG).

Definition 2.8. Let S, ` : N→N and ε : N→ (0, 1) be functions, and C be a circuit class. Suppose
there is a deterministic Turing machine M(x, y) such that:

1. On input x ∈ {0, 1}`(n) and y ∈ {0, 1}2O(`(n))
, M(x, y) either rejects or outputs a string, and

whether M(x, y) rejects only depends on y (i.e. not x).
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2. If M(x, y) does not reject, then there is a function Gy : {0, 1}`(n) → {0, 1}n such that for every
C circuit C of size S, ∣∣∣∣∣ Pr

x∼U`(n)
[C(Gy(x)) = 1]− Pr

z∼Un
[C(z) = 1]

∣∣∣∣∣ < ε(n),

and M(x, y) outputs Gy(x) in nondeterministic 2O(`(n)) time.

3. There is at least one input y such that M(x, y) does not reject.

Then we say M is a nondeterministic pseudo-random generator (NPRG) with seed length `(n) that
ε-fools C circuits of size S.

If the above conditions hold for infinitely many n’s, then we say M is an infinitely often NPRG
(i.o. NPRG).

Although NPRG in general does not output the same PRG in its different nondeterministic
branches, it is still useful for many tasks such as derandomizing MA. Also, we can potentially
shorten the seed length by allowing different PRGs in different nondeterministic branches. The
concept of NPRG is implicit in [IKW02], and also used in [Che19].

We also remark that an NPRG implies an ENP-computable PRG: we can find the lexicographi-
cally smallest string y such that M(x, y) accepts in ENP, and output Gy(x).

2.4 Approximate Linear Sum of Circuits

Approximate linear sum of circuits, first explicit studied in [CW19], will be used heavily in this
paper. We recall its definition below.

Definition 2.9. Let C be a class of functions from {0, 1}n → {0, 1} and ε ∈ [0, 0.5). We say
f : {0, 1}n → {0, 1} admits a S̃umε ◦ C circuit of sparsity S, if there are S functions C1, C2, . . . , CS
from C , together with S coefficients α1, α2, . . . , αS in R, such that for all x ∈ {0, 1}n,∣∣∣∣∣ S

∑
i=1

αi · Ci(x)− f (x)

∣∣∣∣∣ ≤ ε.

In particular, if ε = 0, we say f admits a Sum ◦ C circuit (of sparsity S).

Note when C is the class of AND gates (or ⊕/XOR gates, respectively), we are asking for
the sparsest ε-approximate polynomial for f , with respect to the standard (or Fourier basis, re-
spectively). This is closely related to the ε-approximate degree21 of f , which is already a highly-
nontrivial notion; for instance, the approximate degrees of simple natural functions have only
recently been determined [BT17, BKT18, She18].

We define the size of a S̃umδ ◦ C circuit to be the total size of all its sub C circuits.

Remark 2.10. By [CW19, Proposition 6.8], we may assume that the S̃umε ◦C circuits have “reason-
able” coefficients. In particular, suppose ε ∈ [0, 0.5) be a rational number j/k where max{|j|, |k|} ≤
2b. For every S̃umε ◦ C circuit C of sparsity s, there is an equivalent S̃umε ◦ C circuit C′ of sparsity
also s, in which every weight αi in the linear combination can be written as j/k where both j, k are
integers in [−spoly(s,b), spoly(s,b)].

21The ε-approximate degree of f is the lowest degree of all polynomial p : {0, 1}n → {0, 1} such that ‖p− f ‖∞ ≤ ε.
Note that a low degree polynomial is also sparse.
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2.5 The Boolean Formula Evaluation Problem (Formula-Eval)

Our results rely on PCPP for Formula-Eval. Here we discuss the precise definition of this problem.
We define Formula-Eval as a pair language, i.e. a subset of {0, 1}∗ × {0, 1}∗. Intuitively, let C be a

formula and w be an input, then (C, w) ∈ Formula-Eval if and only if C(w) = 1. However, we need
to specify the exact input format of the problem Formula-Eval so that it is indeed in NC1.

Let C be a formula over n variables with S leaves. We encode C as a pair (T, L), where T ∈
{0, 1}S−1 represents a complete binary tree with S leaves, and L : [S] → [n] is a map from leaves
to variables. In particular, C has 2S− 1 gates, and for every 1 ≤ i ≤ 2S− 1, the i-th gate of C is
defined as follows.

• If i > S− 1, then the i-th gate is a leaf, and its value is equal to the L(i− S + 1)-th input bit.

• If i ≤ S− 1, then the i-th gate receives as two inputs from the (2i)-th gate and the (2i + 1)-th
gate. If Ti = 0, then the i-th gate is an AND gate, otherwise it is an OR gate.

Let C = (T, L) be a formula over n variables, and w ∈ {0, 1}n. We define (C, w) ∈ Formula-Eval
if the first gate of C evaluates to 1 when given w as input.

It is easy to see that Formula-Eval is indeed in NC1.

2.6 Error Correcting Codes

We also need standard constructions of constant-rate linear error correcting codes.

Lemma 2.11 ([Spi96]). There is a constant δ > 0 such that there is a constant-rate linear error correcting
code ECC with minimum relative distance δ, an efficient encoder Enc and an efficient decoder Dec recovering
error up to c1 · δ, where c1 is a universal constant. Moreover, both Enc and Dec can be implemented in NC1.

We will use a slight modification of the above codes by [CW19], which is convenient when we
want to guess-and-verify a circuit for the encoder.

Theorem 2.12 ([CW19, Lemma 2.10]). There is a constant δ > 0 such that there is a constant-rate linear
error correcting code ECC with minimum relative distance δ, an efficient encoder Enc, and an efficient
decoder Dec recovering error up to c1 · δ, where c1 is a universal constant. Moreover, each bit of the
codeword depends on at most n/2 bits of the input, and both Enc and Dec can be implemented in NC1.

2.7 Probabilistic Checkable Proofs of Proximity (PCPP)

The concept of probabilistically checkable proofs of proximity is useful for this paper. In the fol-
lowing, we introduce its definition and an instantiation for Formula-Eval.

Definition 2.13 (Probabilistic Checkable Proofs of Proximity (PCP of proximity, or PCPP)). For
c, s, δ : N→ [0, 1] and r, q : N→ N, a verifier V is a PCP of proximity system for a pair language
L ⊆ {0, 1}∗×{0, 1}∗with proximity parameter δ, completeness parameter c, soundness parameter
s, number of random bits r, and query complexity q if the following hold for all x, y:

• If (x, y) ∈ L, there is a proof π such that V(x) accepts oracle y ◦ π with probability at least
c(|x|);

• if y is δ(|x|)-far from L(x) := {z : (x, z) ∈ L}, then for all proofs π, V(x) accepts oracle y ◦ π
with probability at most s(|x|);
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• V(x) tosses r(|x|) random coins, and makes at most q(|x|) non-adaptive queries.

Lemma 2.14 ([CW19]). For any constant δ > 0 there are two constants 0 < s < c < 1, such that there
is a PCP of proximity system for Formula-Eval with proximity δ, soundness s, completeness c, random
bits r = O(log n), and query complexity q = 2, where each query is simply an OR on two bits or their
negations. Moreover, there is a circuit of depth O(log |C| + log |w|) such that, given a pair (C, w) ∈
Formula-Eval, outputs a proof π that makes V(C) accepts with probability ≥ c.

We provide a proof sketch of Lemma 2.14 in Appendix A. In particular, we verify that the
PCPP proof can be computed in low depth.

2.8 Hardness Amplification

We define black-box hardness amplification.

Definition 2.15. A (1/2− ε, δ)-black-box hardness amplification from input length k to input length
n = n(k) is a pair of oracle Turing machines (Amp,Dec), where Amp takes an oracle of k-bit inputs
and computes an n-bit function, and Dec takes an oracle of n-bit inputs and an advice string of
length a = a(k), and computes a k-bit function. Furthermore, for every pair of functions f :
{0, 1}k → {0, 1} and h : {0, 1}n → {0, 1}, if

Pr
x∼Un

[h(x) = Amp f (x)] ≥ 1/2 + ε,

then there is a string α ∈ {0, 1}a(k), such that

Pr
x∼Uk

[ f (x) = Dech(x, α)] ≥ 1− δ.

The name “hardness amplification” is justified by the fact that, to prove Amp f cannot be (1/2+
ε)-approximated by some computational resources C, we only need to prove that f cannot be
(1− δ)-approximated by DecC , which should not be too powerful compared with C.

We need the following hardness amplification where Amp is very efficient.

Theorem 2.16. Let ε, δ > 0. There is a (1/2− ε, δ)-black-box hardness amplification (Amp,Dec) from
input length n to input length ` = O(nδ−1 log(ε−1)), where Amp is a poly(`)-time uniform AC0[⊕]
oracle circuit, and Dec is a nonadaptive TC oracle circuit of size poly(`, ε−1) with poly(`, ε−1)-bit advice.

Proof Sketch. This is essentially Yao’s XOR lemma [Yao82], and a good exposition can be found
in Section 19 of [AB09]. The complexity of Dec is the same as the complexity of Impagliazzo’s
hardcore lemma ([AB09, Section 19.1.2]), which is in TC0.

Alternatively, this theorem can be proved by combining the local decoder for Walsh-Hadamard
codes [GL89] (which is in TC0) with the local decoder for direct-product codes [IJKW10] (which is
in AC0).

We also need a black-box hardness amplification that amplifies worst-case hardness.

Theorem 2.17 ([GR08]). Let ε > 2−c
√

n for some absolute constant c. There is a (1/2 − ε, 0)-black-
box hardness amplification (Amp,Dec) from input length n to input length O(n), where Amp runs in
exponential time, and Dec is a TC0 oracle circuit of size poly(n, ε−1) with poly(ε−1)-bit advice.
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2.9 ⊕L-complete Problems with Good Properties

The⊕L-complete problems with good reducibility properties will be important for us. (Recall that
⊕L is the class of problems solvable by a nondeterministic logspace Turing machine that accepts
the input if the number of accepting paths is odd.) We define the following two problems, called
Connected Matrix Determinant (CMD) and Decomposed Connected Matrix Determinant (DCMD):

Definition 2.18. An instance of CMD is an n × n matrix over GF(2) where the main diagonal
and above may contain either 0 or 1, the second diagonal (i.e. the one below the main diagonal)
contains 1, and other entries are 0. In other words, the matrix is of the following form (where ∗
represents any element in GF(2)): 

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


.

The instance is an (n(n + 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over GF(2)) of the matrix corresponding to x
is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is computed
as follows: we partition x into blocks of length n2, let yi(1 ≤ i ≤ n(n + 1)/2) be the parity of the
i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, as we only need the follow-
ing two important facts about them.

Theorem 2.19 ([AIK06, GGH+07]). There is a function P : {0, 1}n(n+1)/2×{0, 1}O(n4) → {0, 1}n3(n+1)/2

such that the following hold.

• For any input x ∈ {0, 1}n(n+1)/2, the random variable P(x,UO(n4)) is uniformly distributed in
{0, 1}n3(n+1)/2.

• For any x ∈ {0, 1}n(n+1)/2 and r ∈ {0, 1}O(n4), let P(x, r) = y, then CMD(x) = DCMD(y)⊕ r0,
where r0 is the first bit of r.

• For each fixed randomness r, P(x, r) is a projection over x, computable in polynomial time given r.

Theorem 2.20 ([IK02]). CMD is ⊕L-complete under projections.

We provide self-contained proofs for the above theorems in Appendix B for completeness. We
also refer the interested readers to Section 4 of [Vio09b] that contains an excellent exposition of
these theorems.

Remark 2.21. Theorem 2.19 is essentially a decomposable randomized encoding (see, e.g. [App17]) of
⊕L. Such a randomized encoding of NC1 can also be obtained via Yao’s garbled circuit [Yao86,
BHR12], which is also enough for our application.
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2.10 Elementary Properties of Norm and Inner Product

Finally, we discuss some properties of norms and inner product of functions on Boolean cubes
witch will be useful for us.

For a function f : {0, 1}n → R, we define its `p-norm as

‖ f ‖p =

(
E

x∼Un
[| f (x)|p]

)1/p

.

In particular, the `∞-norm is defined as the maximum absolute value of f :

‖ f ‖∞ = max
x∈{0,1}n

| f (x)|.

For two functions f , g : {0, 1}n → R, we define their inner product as

〈 f , g〉 := E
x∼Un

[ f (x) · g(x)].

Note that the Cauchy-Schwarz inequality implies |〈 f , g〉| ≤ ‖ f ‖2 · ‖g‖2. In particular, ‖ f ‖1 =
〈| f |, 1〉 ≤ ‖ f ‖2 where 1 is the all-one function. We need the following simple lemma for this
paper.

Lemma 2.22 (see, e.g. [CW19, Lemma 28]). For functions f1, f2 and g1, g2 from {0, 1}n → R and
positive ε, α ∈ R, suppose for all i ∈ [2] we have:

• ‖ fi‖2 ≤ α and ‖gi‖2 ≤ α,

• ‖ fi − gi‖2 ≤ ε.

Then |〈 f1, f2〉 − 〈g1, g2〉| ≤ 2 · α · ε.

Proof. We have

|〈 f1, f2〉 − 〈g1, g2〉| ≤ |〈 f1, f2〉 − 〈 f1, g2〉|+ |〈 f1, g2〉 − 〈g1, g2〉|
≤ |〈 f1, f2 − g2〉|+ |〈 f1 − g1, g2〉|
≤ 2 · α · ε.

3 A Strong Collapse Theorem for ⊕L
By using CMD and DCMD, we are able to prove a theorem stronger than [Che19, Theorem 5.3],
namely that if ⊕L can be (1/2 + ε)-approximated by C circuits, then ⊕L has small S̃um ◦ C cir-
cuits. In contrast, Theorem 5.3 of [Che19] only works for (1− δ)-approximation for some small
constant δ. Furthermore, the sum of absolute values of coefficients of the S̃umδ ◦C circuit is also small
(polynomially related to its size), which will be useful in Section 5.

Lemma 3.1. Let C be a typical circuit class and ε : N → (0, 1/2] be an error parameter. Suppose that
on input length n3(n + 1)/2, DCMD can be (1/2 + ε(n))-approximated by a C circuit. Then for every
δ > 0, CMD on input length n(n + 1)/2 has a S̃umδ ◦ C circuit of sparsity O(ε(n)−2δ−2n2). Moreover,
the sum of absolute values of all coefficients of the S̃umδ ◦ C circuit is O(ε(n)−1).
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Proof. Let C be the C circuit that (1/2 + ε(n))-approximates DCMD and suppose

ε′(n) = Pr
x∼Un3(n+1)/2

[C(x) = DCMD(x)]− 1/2,

then ε′(n) ≥ ε(n).
On input length |x| = n(n + 1)/2, let P(x, r) be the randomized projection given in Theo-

rem 2.19 such that CMD(x) = DCMD(P(x, r))⊕ r0 for all r, and P(x, r) is uniformly distributed in
{0, 1}n3(n+1)/2 if r is drawn from UO(n4).

Let D be a distribution of C -circuits such that a sample D from D is generated by setting
D(x) := C(P(x, r))⊕ r0 where r is drawn from UO(n4). Let D ∼ D. Then for any x ∈ {0, 1}n(n+1)/2,
Pr[D(x) = CMD(x)] = 1/2 + ε′(n). The reason is that D(x) = CMD(x) if and only if C(P(x, r)) =
DCMD(P(x, r)), which happens with probability exactly 1/2 + ε′(n) since P(x, r) is uniformly
distributed.

Now, we draw t = Θ(ε′(n)−2δ−2n2) i.i.d. random samples C1, C2, . . . , Ct from D, and by a
Chernoff bound, for any particular x ∈ {0, 1}n(n+1)/2, we have

Pr
[

Pr
i
[Ci(x) = CMD(x)] ∈

(
1/2 + (1− 2δ)ε′(n), 1/2 + (1 + 2δ)ε′(n)

)]
> 1− 2−2n2

.

By a union bound, we can select C1, C2, . . . , Ct such that for every x ∈ {0, 1}n(n+1)/2,

Pr
i
[Ci(x) = CMD(x)] ∈

(
1/2 + (1− 2δ)ε′(n), 1/2 + (1 + 2δ)ε′(n)

)
.

To obtain a valid S̃umδ ◦ C for CMD, we can simply scale the coefficients accordingly.
Consider the following linear combination of C circuits, which has sparsity t + 1:

E(x) = − 1
4ε′(n)

+
1
2
+

t

∑
i=1

1
2ε′(n) · t · Ci(x). (3)

If CMD(x) = 1, it follows that

t

∑
i=1

1
2ε′(n) · t · Ci(x) ∈

(
1

4ε′(n)
+

1
2
− δ,

1
4ε′(n)

+
1
2
+ δ

)
and therefore E(x) ∈ (1− δ, 1 + δ).

Otherwise, CMD(x) = 0, then

t

∑
i=1

1
2ε′(n) · t · Ci(x) ∈

(
1

4ε′(n)
− 1

2
− δ,

1
4ε′(n)

− 1
2
+ δ

)
and therefore E(x) ∈ (−δ, δ). Hence, E is a valid S̃umδ ◦ C circuit that computes CMD.

It can be seen from (3) that the sum of absolute values of all coefficients in E is at most t
2ε′(n)·t +

O(1) = O(ε(n)−1).

By the standard Discriminator Lemma [HMP+93], we have the following corollary.

Corollary 3.2. Let C be a typical circuit class. If ⊕L ⊆ MAJ ◦ C , then ⊕L ⊆ S̃um1/n10 ◦ C .
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4 Certifying Depth hardness Implies Strong Average-case Circuit Lower
Bounds

To prove the strong average-case hardness, we need to adopt the techniques from [Che19]. We
first define the notion of certifying depth hardness in NE.

Definition 4.1. Let d : N → N be a function. We say NE can certify d(n)-depth hardness, if there
exists a verifier V(x, y) taking inputs x, y with |y| = 2|x| and running in 2O(|x|) time, such that
the following hold for infinitely many n’s: V(1n, ·) is satisfiable, and V(1n, y) = 1 implies that y
(interpreted as a function from {0, 1}n → {0, 1}) cannot be computed by d(n)-depth circuits.

In this section, we show that certifying hardness in NE implies average-case lower bounds for
various nondeterministic time classes. The following theorem can be proved using similar ideas
from [Che19]. We remark that the second and the third item below already essentially follow
from [Che19, Section 10], while for the first item we need to tighten some technical building blocks
in [Che19].

Theorem 4.2 (Certifying Depth hardness to Average-case Circuit Lower Bounds). The followings
hold.

(NP Average-Case Lower Bound) If NE can certify Ω(n)-depth hardness, then for every constant k ≥ 1,
NP cannot be (1/2 + 1/nk)-approximated by circuits of k log n depth. The same holds for (NP ∩
coNP)/1 in place of NP.

(NQP Average-Case Lower Bound) If NE can certify nΩ(1)-depth hardness, then for all constants k ≥ 1,
NQP cannot be (1/2 + 1/2logk n)-approximated by circuits of logk n depth. The same holds for
(N∩coN)QP/1 in place of NQP.

(NEXP Average-Case Lower Bound) If NE can certify ω(log n)-depth hardness, then NE cannot be (1/2+
1/poly(n))-approximated by circuits of O(log n) depth. The same holds for (NE∩ coNE)/1 in place
of NE.

In the following, we provide a proof for the first Item (which is the hardest case).22 In Ap-
pendix D.1, we include a proof sketch of the general tradeoff (Theorem D.2) between certifying
depth hardness and average-case circuit lower bounds, which implies all three items of Theo-
rem 4.2.

Remark 4.3 (The Easy Witness Lemma Perspective). We remark that one can also view Theo-
rem 4.2 as a certain easy witness lemma (which is similar to that of [IKW02, MW18]) for unary
languages.23 In particular, the contrapositive of first item of Theorem 4.2 is that if NP can be
(1/2 + 1/nk)-approximated by circuits of k log n depth for some constant k, then all unary lan-
guages in NE have ε · n-depth witness for all ε > 0.

4.1 Building Blocks: Low Depth PRG and A.a.e. MA ∩ coMA Average-case Circuit
Lower Bounds

We list the tightened technical building blocks as follows. Their proofs can be found in Ap-
pendix C.

22For more intuition on the proof, the reader is referred to [Che19, Section 1.3].
23See also [Che19, Lemma 4.1].
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First, we need a standard construction of PRGs from functions which are worst-case hard for
low depth circuits. This essentially follows from [STV01] together with a low depth computable
extractor.

Theorem 4.4 (Implicit in [STV01]). Let d(`) = ω(log `). There are universal constants c and g, and a
function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for every good resource function d : N → N, the
following hold. Let sseed = g`2/d(`) and Sout = 2c·d(`), if Y : {0, 1}` → {0, 1} does not have circuits of
depth d(`), then for all circuits C with depth log(Sout),∣∣∣∣∣ Pr

t∼Usseed

[C(G(Y, t)) = 1]− Pr
x∼USout

[C(x) = 1]

∣∣∣∣∣ < 1/Sout.

That is, G(Y, ·) 1/Sout-fools all log(Sout)-depth circuits. Moreover, G is computable in 2O(sseed) time.

Next, we need an almost almost-everywhere (a.a.e.) (MA∩ coMA)/1 average-case lower bound
against low depth circuits.24 [Che19] only proves such an average-case lower bound for (MAQP∩
coMAQP)/1. The proof for the theorem below follows the same steps as in [Che19], but with some
technical improvements so that it also works for (MA∩ coMA)/1 now.

Theorem 4.5. There is a universal constant d ∈ N such that the following hold. For all integers a > 0,
there are constants b, t > 0, and a language L ∈ (MA ∩ coMA)TIME[nb]/1, such that for all sufficiently
large τ ∈N and n = 2τ, either

• heur(1−n−d)-DEPTH(Ln) > a · log n, or

• heur(1−m−d)-DEPTH(Lm) > a · log m, for some m ∈ (nt, 2nt) ∩N.

Moreover, the predicate depth of L is ≤ b log n.

4.2 (1− 1/poly(n))-Inapproximability Results

We first prove (NP ∩ coNP)/2 cannot be (1 − 1/poly(n))-approximated by low depth circuits.
Then in Section 4.3 we use standard hardness amplification (Theorem 2.16) to amplify the inap-
proximability to (1/2 + 1/poly(n)). We also use the enumeration trick [COS18] to show the same
lower bound for NP and (NP∩ coNP)/1.

We remark that the proof essentially follows the same structure of [Che19, Section 9], with
technical building blocks tightened in Section 4.1.

Theorem 4.6. Let d be the universal constant d in Theorem 4.5. If NE can certify Ω(n)-depth hardness,
then for every constant k ≥ 1, there is some b ∈ N such that (N∩coN)TIME[nb]/2 cannot be (1− n−d)-
approximated by circuits of k log n depth.

Proof. Let V(·, ·) be the NE verifier as in Definition 4.1 that can certify εn-depth hardness, for some
constant ε > 0. By Theorem 4.4, there are two absolute constants c, g > 0 and an i.o. NPRG that
stretches sseed = gε−1 · `PRG random bits into Sout = Sout(`PRG) = 2cε·`PRG pseudorandom bits, and
1/Sout-fools all depth-log(Sout) circuits.

In particular, on input t ∈ {0, 1}sseed , the i.o. NPRG computes `PRG = ε|t|/g and guesses some
yhard ∈ {0, 1}2`PRG such that V(1`PRG , yhard) accepts. It then computes G(yhard, t) in 2O(`PRG) time,

24This notion is borrowed from [MW18], meaning it is “almost” an almost-everywhere circuit lower bound.

25



where G is the function specified in Theorem 4.4. For infinitely many `PRG’s. V(1`PRG , ·) is satis-
fiable, and for every yhard ∈ {0, 1}2`PRG such that V(1`PRG , yhard) accepts, yhard is the truth table of
some function that cannot be computed by circuits of depth ε · `PRG. Therefore, by Theorem 4.4,
G(y, ·) 1/Sout-fools all depth-log(Sout) circuits. We call these `PRG’s good for NPRG.

By Theorem 4.5, there are constants d, t, b′ and a language Lhard ∈ (MA ∩ coMA)TIME[nb′ ]/1,
such that for every sufficiently large τ ∈N and n = 2τ, either

• heur(1−n−d)-DEPTH(Lhard
n ) > (k + 1) · log n, or

• heur(1−m−d)-DEPTH(Lhard
m ) > (k + 1) · log m for some m ∈ (nt, 2nt) ∩N.

Moreover, the predicate depth of Lhard is ≤ b′ log n. In other words, let {αn}n∈N be the sequence
of advice bits for Lhard, and A(x, y, z, a) be Lhard’s (MA ∩ coMA)/1 predicate. Here x is the input,
y is the proof from Merlin, z is the randomness used by Arthur and a is the advice bit. (See
Definition 2.1.) Then for any possible x, y and the correct advice bit α|x|, the function A(x, y, ·, α|x|)
(over randomness z) can be implemented by a circuit Cx,y of depth ≤ b′ log |x|.

In the following, we apply the nondeterministic PRG to derandomize the (MA ∩ coMA)/1 al-
gorithm for Lhard above, and put the hard language in (NP∩ coNP)/2.

Technical definitions. We need to introduce some technical definitions first.
Let n ∈N, we define `(n) = d2b′t log n/(cε)e. Recall that Sout(`(n)) = 2cε·`(n), then Sout(`(n)) ≥

(2nt)b′ . The point is that if any `PRG ≥ `(n) is good for NPRG, then we can use the i.o. NPRG men-
tioned above on input 1`PRG , and successfully derandomize Lhard on any input length ≤ 2nt.

We also need an injective function pair(m, n) that encodes two positive integers into one posi-
tive integer, and satisfies the following:

• For every m, n ∈N, max(m, n) ≤ pair(m, n) ≤ O(mn2).

• Given m, n ∈N in binary, we can compute pair(m, n) in O(log m + log n) time.

• Given pair(m, n) in binary, we can compute m and n in O(log m + log n) time.

Such an encoding is easy to construct: see e.g. [Che19, Section 9.1]. 25

The language L. Formally, we define a language L ∈ (N∩coN)TIME[nb]/2 as follows. On in-
put length ñ, we first decode ñ = pair(n, `PRG). If there does not exist n, `PRG ∈ Z such that
pair(n, `PRG) = ñ, we reject every input. Otherwise we receive two advice bits α′ñ and βñ, where
α′ñ = αn is the advice bit of Lhard on input length n, and βñ is 1 if and only if `PRG is good for NPRG.
The language is defined as follows.

If any of the following are true, we reject every input of length ñ:

• βñ = 0, i.e. `PRG is not good for NPRG,

• `PRG > 2`(n), i.e. `PRG is too large that we cannot afford run time 2O(`PRG), or

• cε · `PRG < b′ log n.

25In [Che19], the function pair(m, n) is defined as follows. For a number a ∈ N, let bin(a) be a string of length
blog ac+ 1 that denotes the binary representation of a. Denote ` = |bin(n)|, we duplicate each bit of bin(`) and obtain
a string zlen. (For example, if ` = 5, then bin(`) = 101 and zlen = 110011.) Then we let z = bin(m) ◦ bin(n) ◦ 01 ◦ zlen,
where ◦means concatenation. We define pair(m, n) be the integer with binary representation z.
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(The last item means that `PRG is too small. In particular, recall that Sout = Sout(`PRG) = 2cε·`PRG ,
it follows log(Sout) = cε · `PRG is less than the predicate depth b′ log n of Lhard

n . Therefore the
i.o. NPRG constructed above with seed length g · `PRG cannot derandomize Lhard

n , even if `PRG is
good for NPRG.)

If none of the above happens, we say ñ is a non-trivial input length. Let x ∈ {0, 1}ñ where ñ is
non-trivial. We define x ∈ L if and only if x′ ∈ Lhard, where x′ is the first n bits of x. That is, in this
case, Lñ essentially computes Lhard

n .

The (N∩coN)TIME[nb]/2 algorithm for L. Let ñ = pair(n, `PRG) be a non-trivial length and x ∈
{0, 1}n be the length-n prefix of some input, we show how to compute Lhard(x) in (NP ∩ coNP)/2.
We guess a string yhard of length 2`PRG such that V(1`PRG , yhard) accepts, as well as the proof y that
Merlin gives Arthur. We then use G(yhard, ·) to fool the (MA ∩ coMA)/1 predicate of Lhard

n . To be
more precise, let Sout = 2cε·`PRG ≥ nb′ . For every ξ ∈ {0, 1}, let

px,y(ξ) = Pr
z∼USout

[A(x, y, z, αn) = ξ], and p′x,y(ξ) = Pr
w∼Ug·`PRG

[A(x, y, G(yhard, w), αn) = ξ].

Since `PRG is good for NPRG, and the predicate depth of A is ≤ log(Sout), it follows that

|px,y(ξ)− p′x,y(ξ)| < 1/Sout.

We compute p′x,y(ξ) by enumerating the seed w ∈ {0, 1}g·`PRG . If there is some ξ ∈ {0, 1} such that
p′x,y(ξ) > 0.6, then we output ξ. Otherwise we output ?.

Since A satisfies MA ∩ coMA promise, it is easy to see that our algorithm satisfies NP ∩ coNP
promise:

• We only consider nontrivial input lengths ñ = pair(n, `PRG).

• For any input x ∈ {0, 1}n, there is an input y such that px,y(Lhard(x)) ≥ 2/3. Hence
p′x,y(Lhard(x)) ≥ 2/3− 1/Sout > 0.6 and the nondeterministic machine above indeed outputs
Lhard(x).

• For any input x ∈ {0, 1}n and any input y, px,y(1 − Lhard(x)) ≤ 1/3. Hence p′x,y(1 −
Lhard(x)) < 1/3 + 1/Sout < 0.6 and the nondeterministic machine above never outputs
1− Lhard(x).

It follows that L satisfies NP ∩ coNP promise. The machine uses 2O(`PRG) time to generate yhard,
and O(2gε−1·`PRG · nb′) time to compute each p′x,y(ξ). Recall that `PRG ≤ 2`(n) = O(log n), and thus
ñ = O(n log2 n). Note that the above algorithm takes two advice bits α′ñ and βñ on inputs of length
n, it follows that L ∈ (N∩coN)TIME[ñb]/2 for some large enough constant b.

The lower bound for L. Let `PRG be a large enough number that is good for NPRG, τ = d`PRG ·
(cε)/(3b′t)e, and n = 2τ. Then either

heur(1−n−d)-DEPTH(Lhard
n ) > (k + 1) · log n, (4)

or there is some m ∈ (nt, 2nt) ∩N such that

heur(1−m−d)-DEPTH(Lhard
m ) > (k + 1) · log m. (5)
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If (4) holds, then let ñ = pair(n, `PRG). Since `PRG is good for NPRG, 2`(n) = 2d2b′t log n/(cε)e ≥
`PRG, and b′ log n ≤ `PRG · cε/t < cε · `PRG, ñ is a non-trivial input length. Therefore Lñ computes
Lhard

n . Since ñ = O(n log2 n),

heur(1−ñ−d)-DEPTH(Lñ) > k · log ñ.

If (5) holds, then let m̃ = pair(m, `PRG). Since `PRG is good for NPRG, 2`(m) = 2d2b′t log m/(cε)e ≥
`PRG, and b′ log m ≤ 1.1b′t · τ ≤ cε · `PRG, m̃ is a non-trivial input length. Therefore Lm̃ computes
Lhard

m . Since m̃ = O(m log2 m),

heur(1−m̃−d)-DEPTH(Lm̃) > k · log m̃.

It follows that for infinitely many input lengths n, we have

heur(1−n−d)-DEPTH(Ln) > k · log n.

4.3 Proof of Theorem 4.2

Now we are ready to prove Theorem 4.2, we first use standard hardness amplification to strengthen
the previous inapproximability to (1/2 + n−k).

Theorem 4.7. If NE can certify Ω(n)-depth hardness, then for every constant k ≥ 1, there is some b ∈N

such that (N∩coN)TIME[nb]/2 cannot be (1/2 + n−k)-approximated by circuits of k log n depth.

Proof. Let a, k′ be constants to be fixed later. Let d be the universal constant in Theorem 4.6, and L′

be a language in (N∩coN)TIME[nb]/2 that cannot be (1− n−d)-approximated by circuits of a log n
depth. We need a (1/2− n−k′ , n−d)-black-box hardness amplification (Amp,Dec) specified in The-
orem 2.16, from input length n to input length m(n) = nd+2. (The hardness amplification is actu-
ally from length n to length Õ(nd+1). For convenience, we pad it to length exactly nd+2.)

We define a language L that on input length m:

• if m = m(n) for some n ∈N, computes the language AmpL′n ;

• otherwise reject every input.

We prove that L ∈ (N∩coN)TIME[mO(b)]/2. On input length m = m(n), the advice we receive
is the advice α′n ◦ βn for L′s on input length n. For every query to the oracle L′n made by Amp (which
is a string xquery ∈ {0, 1}n), we guess the proof yquery ∈ {0, 1}nb

used by the machine for L′ (call
this machine ML′) on input xquery. We then simulate ML′ . If ML′ outputs ?, we immediately output
? and halt. Otherwise we treat the output of ML′ as the return value of this oracle call. We can
thus compute AmpL′n by an (NP ∩ coNP) algorithm of time complexity poly(m, nb) = mO(b) with
two advice bits.

Let the depth for Dec be Ck′ log n for some constant C depending on d. For infinitely many n’s,

heur(1−n−d)-DEPTH(L′n) > a · log n.

Therefore by Theorem 2.16,

heur(1/2+n−k′ )-DEPTH(Lm) > (a− Ck′) log n,

which implies

heur(1/2+m−k′/(d+2))-DEPTH(Lm) >
a− Ck′

d + 2
log m.

Let k′ = k(d + 2), a = k(d + 2) + Ck′. It follows that for infinitely many m’s,

heur(1/2+m−k)-DEPTH(Lm) > k log m.
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Then we use the enumeration trick to put our hard language into NP and (NP ∩ coNP)/1 re-
spectively.

Reminder of Item 1 of Theorem 4.2. If NE can certify Ω(n)-depth hardness, then for every constant
k ≥ 1, NP cannot be (1/2 + n−k)-approximated by circuits of k log n depth. The same holds for (NP ∩
coNP)/1 in place of NP.

Proof. Let k′ be some constant that we fix later, L′ ∈ (N∩coN)TIME[nb]/2 be the language spec-
ified in Theorem 4.7 that cannot be (1/2 + n−k′)-approximated by circuits of k′ log n depth. Let
A(x, y, a) be the predicate of L′ (Definition 2.4), where x is the input, y is the nondeterministically
guessed proof and a is the advice.

NP lower bounds. We define a language L, computed by the following nondeterministic ma-
chine. On input x ∈ {0, 1}m, let m1 = bm/4c and m2 = m mod 4. We treat m2 as a two-bit string
corresponding to the advice for L′m1

. Let x′ be the first m1 bits of x, we accept x if there is some y
such that A(x′, y, m2) accepts.

For every length m′ such that

heur(1/2+(m′)−k′ )-DEPTH(L′m′) > k′ log(m′),

let am′ ∈ {0, 1, 2, 3} be the advice used by L′m′ , and m = 4m′ + am′ . Then Lm computes exactly the
same function as L′m′ (except that Lm ignores all but the first m′ bits of its inputs). It follows that
there are infinitely many m’s such that

heur(1/2+bm/4c−k′ )-DEPTH(Lm) > k′ logbm/4c.

If we let k′ = k + 1, then
heur(1/2+m−k)-DEPTH(Lm) > k log m.

(NP∩ coNP)/1 lower bounds. We use the same language L as the NP lower bound, with a minor
modification. Let m be the input length, m1 = bm/4c and m2 = m mod 4. If m2 is the correct
advice for L′m1

, then the advice bit is 1 and we compute L′m1
, otherwise the advice bit is 0 and

we reject every input. If m2 is the correct advice for L′m1
, the machine for L′m1

satisfies NP ∩ coNP
promise and decides Lm. We can thus compute this (modified) L in (NP∩ coNP)/1.

The same argument as above shows that this modified L cannot be (1/2+ m−k)-approximated
by circuits of depth k log m, on infinitely many input lengths m.

5 Non-trivial CAPP Algorithms Imply Strong Average-case Circuit Lower
Bounds

In this section we prove the main theorem of the paper, establishing the connection between non-
trivial CAPP algorithms and average-case circuit lower bounds. (Recall that CAPP means estimat-
ing the approximate probability of a circuit C within error ±1/|C|, where |C| is the size of C.)

Reminder of Theorem 1.1. Let C be a typical circuit class such that C circuits of size S can be imple-
mented by (general) circuits of depth O(log S). The following hold.
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(NP Average-Case Lower Bound) Suppose there is a constant ε > 0 such that the CAPP problem of AND4 ◦
C circuits of size 2εn can be solved in 2n−εn time. Then for every constant k ≥ 1, NP cannot be
(1/2 + n−k)-approximated by C circuits of nk size.

(NQP Average-Case Lower Bound) Suppose there is a constant ε > 0 such that the CAPP problem of
AND4 ◦ C circuits of size 2nε

can be solved in 2n−nε
time. Then for every constant k ≥ 1, NQP

cannot be (1/2 + 2− logk n)-approximated by C circuits of 2logk n size.

(NEXP Average-Case Lower Bound) Suppose the CAPP problem of AND4 ◦C circuits of size poly(n) can
be solved in 2n/nω(1) time. Then NE cannot be 1/2 + 1/poly(n)-approximated by C circuits of
poly(n) size.

We also include a more general version of Theorem 1.1 (Theorem D.4) in Appendix D.2. We
remark that all bullets of Theorem 1.1 are implied by Theorem D.4. In this section, we provide a
detailed proof of Item 2 of Theorem 1.1.

To prove our theorem, we need the following Average-Product Estimation problem over func-
tions from C . (This problem can be seen as a relaxation of the Sum-Product problem defined
in [Wil18].)

Average-Product Estimation over C within error δ: Given k functions f1, . . . , fk : {0, 1}n → R

from C , estimate

E
x∼Un

[
k

∏
i=1

fi(x)

]
. (6)

within absolute error δ.
Given a S̃um ◦ C circuit f = ∑i∈[S] αi · Ci, we define the complexity of f to be the maximum of

its size and the sum of absolute values of its coefficients, i.e.

max

{
∑

i∈[S]
|Ci|, ∑

i∈[S]
|αi|
}

.

Although the coefficients for a general S̃umδ ◦ C circuit could be very large, in this section we
mainly focus on linear combinations of reasonable complexity (i.e. polynomial in the circuit size).

The following theorem is the most important technical ingredient of this section.

Theorem 5.1. Let C be a typical circuit class. There is a universal constant δ > 0 such that, if the following
hold:

• CMD has S̃umδ ◦ C circuits of complexity 2logO(1) n, and

• there is a constant ε > 0 such that the Average-Product of 4 C circuits of size 2nε
can be estimated

within error 2−nε
, in 2n−nε

time.

Then NE can certify nΩ(1) depth hardness.

Before proving Theorem 5.1, we show that it implies item 2 of Theorem 1.1.

Proof of Theorem 1.1, Item (2). Fix k ≥ 1. We assume DCMD can be (1/2 + 2− logk n)-approximated
by C circuits of size 2logk n (otherwise the theorem is trivial). Let δ be the constant in Theorem 5.1.
Then by Lemma 3.1, CMD has S̃umδ ◦ C circuits of complexity 2logO(k) n.
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The problem of estimating Average-Product for 4 C ’s (of size 2nε
, within error 2−nε

) is exactly
the CAPP problem for AND4 ◦ C (of size 2nε

), thus is solvable in 2n−nε
time. By Theorem 5.1, NE

can certify nΩ(1) depth hardness. By Theorem 4.2, it follows that NQP cannot be (1/2+ 2− logk+1 n)-
approximated by logk+1 n-depth circuits, which contains 2logk n-size C circuits by our assumption.

5.1 Proof of Theorem 5.1

To prove Theorem 5.1, we first define the Gap-UNSAT problem.
Gap-UNSAT with gap δ: Given a circuit C of n inputs, output YES when C(x) = 0 for all

x ∈ {0, 1}n, and NO when C has at least δ · 2n satisfying assignments.
We need the following theorem, which is implicit in [Wil13, Wil16].

Theorem 5.2 ([Wil13, Wil16]). Suppose there is a constant ε > 0 such that Gap-UNSAT with gap 1−
1/n10 for nε-depth circuits can be solved in nondeterministic 2n−nε

time. Then NE can certify nΩ(1) depth.

We prove a more general version of Theorem 5.2 (Theorem D.3) in Appendix E.1. Theorem 5.2
is simply a direct corollary of Theorem D.3 in which f (n) = nε.

It will be convenient to introduce some notation. Let dbin(z) = minb∈{0,1} |z− b|. Intuitively,
dbin(z) measures how close z is to a bit-value. For a function f : {0, 1}n → R, define its closest
binary function bin f as follows: for all x ∈ {0, 1}, if f (x) ≥ 1/2, bin f (x) := 1, otherwise bin f (x) :=
0.

We use the following lemma, adapted from [CW19, Lemma 33], to approximately test whether
a linear combination of C circuits is a valid S̃umδ ◦ C circuit. Actually, as in [CW19], it suffices
to distinguish between linear combinations that are close to Boolean w.r.t. `∞ norm, and linear
combinations that are far from Boolean w.r.t. `2 norm. Lemma 33 of [CW19] claims to require a
Sum-Product algorithm (i.e. an exact Average-Product algorithm), but their proof also works for
algorithms that only estimates Average-Product.

Lemma 5.3. For S ∈ N, suppose we are given S reals {αi}i∈[S], S C circuits {Ci}i∈[S], and a parameter
ε < 0.01. Let αtot = ∑i∈[S] |αi| and δ = ε2

2(αtot+1)4 . Suppose the Average-Product of 4 C circuits on n bits

can be estimated within error δ in T(n) time. Let f = ∑S
i=1 αi · Ci. There is an algorithm A running in

O(T(n) · (S + 1)4) time such that:

• If ‖ f − bin f ‖∞ ≤ ε, then A always accepts;

• if ‖ f − bin f ‖2 ≥ 3ε, then A always rejects;

• otherwise, A can output anything.

For completeness, we provide a proof of this lemma in Appendix E.2.
We also need the following transformation on formulas, which is proved by combing PCPP

of Formula-Eval and error correcting codes. This generalizes the corresponding transformation for
circuits in [CW19] (Theorem 1.15).

Recall that, for a SAT instance F, Y a subset of its variables, and y ∈ {0, 1}|Y|, we use FY=y
to denote the resulting instance obtained by assigning the Y variables in F to y. (Here we don’t
remove the already satisfied clauses or the clauses which cannot be satisfied after the partial as-
signment.) We also use OPT(F) to denote the maximum fraction of clauses that can be satisfied
by any assignment.
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Reminder of Theorem 1.16. Let Enc : {0, 1}n → {0, 1}cn be the encoder of the error correcting code
specified in Theorem 2.12. There is a polynomial-time transformation that, given a formula D on n inputs
of size m ≥ n, outputs a 2-SAT instance F on variable set Y ∪ Z, where |Y| = O(n), |Z| ≤ poly(m) and
F has poly(m) clauses, such that for two constants cPCPP > sPCPP, the following hold for all x ∈ {0, 1}n.

• If D(x) = 1, then OPT(FY=Enc(x)) ≥ cPCPP. Furthermore, there is a poly(m)-size formula com-
puting a corresponding zD(x) given x which satisfies at least cPCPP fraction of clauses.

• If D(x) = 0, then OPT(FY=Enc(x)) ≤ sPCPP.

Proof. Let δ1 be the minimum relative distance of the error correcting code specified in Theo-
rem 2.12. Let Dec : {0, 1}cn → {0, 1}n be the corresponding decoder.

Let E(y) = D(Dec(y)), then

E(Enc(x)) = 1 ⇐⇒ D(x) = 1.

Recall that Dec can be implemented in NC1, thus E is a formula of size m · poly(n).
Consider the 2-query PCPP system V(E) of Formula-Eval with proximity δPCPP < c1 · δ1, and

let sPCPP, cPCPP be its soundness and completeness parameters respectively.
The verifier V(E) consists of mcons = 2O(log |E|) = poly(m) constraints Fi(E)Enc(x)◦π (i ∈ [mcons]),

and each constraint Fi only depends on 2 bits of Enc(x) ◦ π. We assume |π| = `proof = poly(m) is
the proof length. Lemma 2.14 translates into the following.

• If D(x) = 1, then E(Enc(x)) = 1 and there is a proof π ∈ {0, 1}`proof (constructible by a
poly(m)-size formula with input x) that satisfies at least a cPCPP-fraction of constraints, i.e.

Pr
i∼[mcons]

[Fi(E)Enc(x)◦π = 1] ≥ cPCPP;

• if D(x) = 0, then E(Enc(x)) = 0 and for all proof π ∈ {0, 1}`proof , at most an sPCPP-fraction
of constraints are satisfied, i.e.

Pr
i∼[mcons]

[Fi(E)Enc(x)◦π = 1] ≤ sPCPP.

Now, we construct the 2-SAT instance where the variable set is Y ∪ Z where Y = Enc(x) and
Z = π, and the constraints are all the Fi’s (note that since each query computes an OR on two
bits or their negations, it is indeed a 2-SAT instance). The correctness of our construction follows
directly from the above two conditions.

Recall that the complexity of a S̃umδ ◦ C circuit is the maximum over its size and the sum of
absolute values of its coefficients. We now prove Theorem 5.1.

Proof of Theorem 5.1. Let ε′ = ε/K for a large enough constant K > 1, we show that the Gap-UNSAT
problem with gap 1− 1/n10 for nε′-depth circuits can be solved in nondeterministic 2n−nε′

time. It
follows from Theorem 5.2 that NE can certify nΩ(1) hardness.

Suppose we are given an nε′-depth circuit C, and we want to distinguish between the case
that C has no satisfying assignments, and that C has ≥ (1− 1/n10) · 2n satisfying assignments,
in nondeterministic 2n−nε′

time. For notation convenience, we first replace C by ¬C, and now we
need to distinguish between C is a tautology, and C has at most 2n/n10 satisfying assignments.
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Now we apply Theorem 1.16 to C, which is a formula of 2O(nε′ ) size, to obtain a 2-SAT instance
F with variables set Y ∪ Z and nclause = 2O(nε′ ) clauses, where |Y| = O(n) and |Z| = 2O(nε′ ). Let
`proof = |Z|.

Since each output bit of Enc is the parity of a subset of input bits of size at most n/2, and
PARITY ∈ ⊕L, we can in nondeterministic 2n/2+o(1) time guess-and-check a S̃umδ ◦ C circuit of
complexity 2logO(1) n that computes PARITY on n/2 bits. Then we obtain, for every output bit of
Enc, a S̃umδ ◦ C circuit of complexity 2logO(1) n that computes it.

We guess a sequence T1, T2, . . . , T`proof , where each Ti is a linear combination of C circuits of

complexity 2nO(ε′)
. If C is always satisfiable, then there are depth-O(nε′) circuits T̃1, T̃2, . . . , T̃`proof

such that for every x ∈ {0, 1}n, π̃(x) := T̃1(x) ◦ T̃2(x) ◦ · · · ◦ T̃`proof (x) satisfies

E
i∈[nclause]

[Fi(Enc(x), π̃(x))] ≥ cPCPP,

where Fi is the i-th clause of F.
Since circuits of depth d can be implemented by parity branching programs of size 2O(d)

[Bar89], each T̃i can be computed by a parity branching program of size 2O(nε′ ). By Theorem 2.20,

for each T̃i, there is a projection pi : {0, 1}n → {0, 1}2O(nε′ )
such that for every x ∈ {0, 1}n,

T̃i(x) = CMD(pi(x)). Since CMD has S̃umδ ◦C circuits of complexity 2logO(1) n, each T̃i has S̃umδ ◦C

circuits of complexity 2nO(ε′)
.

We are going to show an algorithm that accepts if each Ti we guessed coincides with this circuit
for T̃i, and always rejects if C has at most 2n/n10 satisfying assignments.

We first apply the test in Lemma 5.3 to each Ti. Since the complexity of each Ti is 2nO(ε′)
, it

suffices to estimate the Average-Product of 4 C circuits within error 2−nO(ε′) ≥ 2−nε
. We reject if

any Ti was rejected by the test. For any 1 ≤ i ≤ `proof , if ‖Ti − binTi‖∞ ≤ δ, then it passes the test.
On the other hand, if Ti passes the test, then we have ‖Ti − binTi‖2 ≤ 3δ. For each Ti, the test runs

in 2n−nε · 2nO(ε′)
time.

For any x ∈ {0, 1}n, let π(x) = binT1(x) ◦ binT2(x) ◦ · · · ◦ binT`proof
(x) be our guessed assignment

for Z. Slightly abusing notation, we write Fi(x) = Fi(Enc(x), π(x)). For each clause Fi, we can
write it as Fi(x) = Pi(binC1(x), binC2(x)) where C1, C2 are two linear combinations of C circuits and
Pi is a Boolean function over two variables. Furthermore, for each i ∈ {1, 2}, ‖Ci − binCi‖2 ≤ 3δ.
Let

pi = E
x∼Un

[Fi(x)], and p = E
i∼[nclause]

pi.

If C is a tautology, then on the correct guess, p ≥ cPCPP. If C has at most 2n/n10 satisfying assign-
ments, then p ≤ sPCPP + 1/n10 for all possible π(x). Thus it suffices to estimate each pi within
error < γ = (cPCPP − sPCPP − 1/n10)/2.

We write Pi : {0, 1}2 → {0, 1} as a multi-linear polynomial:

Pi(z) = ∑
S⊆[2]

αS ·∏
j∈S

zj,

where each αS ∈ [−4, 4]. Therefore it suffices to estimate

E
x∼Un

[
∏
j∈S

binCj(x)

]
(7)
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within error < γ/16.
First we show that

E
x∼Un

[
∏
j∈S

Cj(x)

]
. (8)

is a good estimation of (7). When |S| = 1, w.l.o.g. assume S = {1}, we have

|(7)− (8)| = E
x∼Un

[binC1(x)− C1(x)] ≤ ‖C1 − binC1‖1 ≤ ‖C1 − binC1‖2 ≤ 3δ.

Now suppose |S| = 2 and S = {1, 2}. Since binC1 is Boolean, ‖binC1‖2 ≤ 1 and by triangle
inequality ‖C1‖2 ≤ 1 + 3δ. Similarly ‖binC2‖2 ≤ 1 and ‖C2‖2 ≤ 1 + 3δ. By Lemma 2.22 we have

|(7)− (8)| = |〈binC1 , binC2〉 − 〈C1, C2〉| ≤ 2 · (1 + 3δ) · 3δ.

We set δ such that 6δ(1 + 3δ) ≤ γ/32, so (8) is a good estimate of (7).
Then we estimate (8) within error < γ/32. W.l.o.g. we assume |S| = 2 and S = {1, 2}, i.e. we

want to estimate
E

x∼Un
[C1(x) · C2(x)] . (8)

Suppose C1, C2 are S̃umδ ◦ C circuits of sparsity Ssparsity = 2nO(ε′)
, C1(x) = ∑

Ssparsity

i=1 αi Ai(x), and

C2(x) = ∑
Ssparsity

i=1 βiBi(x). Here Ai, Bi are C circuits of size 2nO(ε′) ≤ 2nε
. Then

(8) = E
x∼Un

[(
Ssparsity

∑
i=1

αi Ai(x)

)
·
(

Ssparsity

∑
j=1

β jBj(x)

)]

=
Ssparsity

∑
i=1

Ssparsity

∑
j=1

αiβ j · E
x∼Un

[
Ai(x)Bj(x)

]
.

Since we can estimate the Average-Product of 2 C circuits within error 2−nε
, we can estimate (8)

within error

2−nε ·
(

Ssparsity

∑
i=1

Ssparsity

∑
j=1
|αi| · |β j|

)
≤ 2−nε · 2nO(ε′)

< γ/32.

For each i ≤ `proof = 2O(nε′ ), we run a test on Ti in 2n−nε · 2nO(ε′)
time. For each clause i ≤

nclause = 2O(nε′ ), we estimate O(S2
sparsity) instances of Average-Product, in 2n−nε · 2nO(ε′)

time. It

follows that the total time complexity is 2n−nε · 2nO(ε′) ≤ 2n−nε′
.

5.2 Extensions of Theorem 1.1

We also mention some extensions of Theorem 1.1.

Non-trivial #SAT algorithms imply Sum ◦C average-case lower bounds. If we have non-trivial
#SAT algorithms for C circuits (which is stronger than CAPP algorithms), then we obtain average-
case lower bounds against Sum ◦ C circuits, as shown in the following corollary.

Corollary 5.4. Let C be a typical circuit class such that C circuits of size S can be implemented by (general)
circuits of depth O(log S). Suppose there is a constant ε > 0 such that the #SAT problem of AND4 ◦ C
circuits of size 2nε

can be solved in 2n−nε
time. Then for every constant k ≥ 1, NQP cannot be (1/2 +

2− logk n)-approximated by Sum ◦ C circuits of 2logk n size.
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Proof Sketch. Fix k ≥ 1. We assume DCMD can be (1/2 + 2− logk n)-approximated by Sum ◦ C cir-
cuits of size 2logk n (otherwise the corollary is trivial). Then CMD has S̃umδ ◦ Sum ◦ C circuits of
size 2O(logk n), which is equivalent to S̃umδ ◦ C circuits of the same size. (Note that we do not have
bounds on the sum of absolute values of coefficients of this circuit. Hence CAPP algorithms do not
work here. But #SAT algorithms will be fine.)

Inspecting the proof of Lemma 5.3, we see that we can test whether a linear combination of
C circuits is close to Boolean with a #SAT algorithm for AND4 ◦ C , even if there is no constraint
on the coefficients of the input linear combination. Inspecting the proof of Theorem 5.1, we can
also compute (8) exactly with a #SAT algorithm for AND2 ◦ C , even if there is no constraint on the
coefficients. Therefore NE can certify nΩ(1) depth hardness.

By Theorem 4.2, it follows that NQP cannot be (1/2 + 2− logk+1 n)-approximated by circuits of
depth logk+1 n, which contains Sum ◦ C circuits of 2logk n size.

Circuit-analysis algorithms for OR4 ◦ C or ⊕4 ◦ C also imply lower bounds. Let C be a circuit
class. We show that CAPP (or #SAT resp.) algorithms for OR4 ◦ C or ⊕4 ◦ C imply CAPP (or #SAT
resp.) algorithms for AND4 ◦C . Hence by Theorem 1.1, these algorithms also imply lower bounds.

Lemma 5.5. Let C be a circuit class. Suppose there is a CAPP (or #SAT resp.) algorithm for s(n) size
OR4 ◦ C circuits running in time T(n). Then there is a CAPP (or #SAT resp.) algorithm for (s(n)/16)
size AND4 ◦ C circuits running in time O(T(n)). The same holds for ⊕4 ◦ C in place of OR4 ◦ C .

Proof. We write the AND4 function in the basis of OR functions:

AND4(z1, z2, z3, z4) = ∑
S⊆[4]

αS ·
∨
i∈S

zi, (9)

where each αS is a constant in [−1, 1].
Let C(x) =

∧4
i=1 Ci(x) be an AND4 ◦ C circuit of size s(n)/16, where each Ci(x) is a C circuit.

Then

E
x∼Un

[C(x)] = E
x∼Un

[
4∧

i=1

Ci(x)

]
= ∑

S⊆[4]
αS · E

x∼Un

[∨
i∈S

Ci(x)

]
.

We enumerate S ⊆ [4]. For #SAT algorithms, it suffices to compute

E
x∼Un

[∨
i∈S

Ci(x)

]
(10)

exactly, which can be done by the #SAT algorithm for OR4 ◦ C . For CAPP algorithms, it suffices to
estimate (10) within error (16/s(n))/16 = 1/s(n), which can be done by the CAPP algorithm for
OR4 ◦ C .

The case that we have circuit-analysis algorithms for⊕4 ◦C is essentially the same, except that
we write AND4 in the basis of XOR functions instead of (9):

AND4(z1, z2, z3, z4) = ∑
S⊆[4]

α′S ·
⊕
i∈S

zi,

and use the CAPP or #SAT algorithm for ⊕4 ◦ C instead.
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Nondeterministic algorithms also imply lower bounds. It is easy to see from the proofs of
Lemma 5.3 and Theorem 5.1 that, Theorem 5.1 holds even when the corresponding CAPP or #SAT
algorithms are nondeterministic. We state without proof the following corollary:

Corollary 5.6. Let C be a typical circuit class such that C circuits of size S can be implemented by (general)
circuits of depth O(log S). Then:

• Suppose there is a constant ε > 0 such that the CAPP problem of AND4 ◦ C circuits of size 2nε

can be solved in nondeterministic 2n−nε
time. Then for every constant k ≥ 1, NQP cannot be

(1/2 + 2− logk n)-approximated by C circuits of 2logk n size.

• Suppose there is a constant ε > 0 such that the #SAT problem of AND4 ◦ C circuits of size 2nε

can be solved in nondeterministic 2n−nε
time. Then for every constant k ≥ 1, NQP cannot be

(1/2 + 2− logk n)-approximated by Sum ◦ C circuits of 2logk n size.

6 Non-trivial CAPP Algorithms Imply Nondeterministic PRGs

In this section, we show that to construct nondeterministic infinitely often PRGs fooling a circuit
class C , it suffices to have nontrivial CAPP algorithms for a related class C ′. Recall that Juntak is
the family of k-juntas, i.e. functions that only depend on k input bits. If there is a nontrivial CAPP
algorithm for C ′ = AND4 ◦ C ◦ Juntalog n, then we can construct nondeterministic infinitely often
PRGs fooling polynomial-size C circuits.

Theorem 6.1. Let C be a typical circuit class such that C circuits of size S can be implemented by (general)
circuits of depth O(log S). Suppose there is a constant ε > 0 such that the CAPP problem of AND4 ◦ C ◦
Juntalog n circuits of size 2nε

can be solved in 2n−nε
time. For every k ≥ 1 and δ > 0:

1. there is an i.o. NPRG with seed length 2logδ n that (1/nk)-fools C circuits of nk size, and

2. there is an (NE ∩ coNE)/1-computable PRG with seed length 2logδ n that (1/nk)-fools C circuits of
nk size.

In Section 6.2 and Section 6.3, we prove generalized versions of the i.o. NPRG and the (NE ∩
coNE)/1-computable PRG provided in Theorem 6.1. We discuss these generalizations below.

Seed length. The seed lengths in Theorem 6.1 can be shorten to other less “natural” functions.
We choose 2logδ n in Theorem 6.1 only for ease of presentation.

• Let f : N → N be a good resource function. If for every constant k ≥ 1, f ( f (nk)k) = 2no(1)
,

then we say f is sub-half-exponential. Actually, the seed length of the i.o. NPRG in Item 1 of
Theorem 6.1 can be shortened to be polynomially related to the inverse of a sub-half-exponential
function. It is easy to see that f (n) = 2logk n is sub-half-exponential for any constant k ≥ 1.

• Let f : N→N be a good resource function. If for every constant k ≥ 1, f ( f ( f ( f (nk)k)k)k) =

2no(1)
, then we say f is sub-fourth-exponential. The seed length of the (NE ∩ coNE)/1-

computable PRG in Item 2 of Theorem 6.1 can be shortened to be polynomially related to
the inverse of a sub-fourth-exponential function. It is also easy to see that f (n) = 2logk n is sub-
fourth-exponential for any constant k ≥ 1.
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One can also compare our i.o. NPRG with our (NE ∩ coNE)/1-computable PRG. Ignoring the
advice bit, the requirements of (NE∩ coNE)/1-computable PRG is stronger than that of i.o. NPRG.
(The former construction computes a single PRG over every nondeterministic branch, but the lat-
ter does not necessarily compute the same PRG over its nondeterministic branches. See Defini-
tion 2.7 and Definition 2.8). However, our i.o. NPRG has a smaller seed length (inverse-sub-half-
exponential) than that of (NE ∩ coNE)/1-computable PRG (inverse-sub-fourth-exponential). We
believe that the seed length of our i.o. NPRG can be shortened to polylog(n), which we leave as
an open problem.

Juntas. Note that we need CAPP algorithms for AND4 ◦C ◦ Juntalog n in order to construct PRGs
fooling C . The reason is that we use Nisan-Wigderson PRG [NW94]: Given an oracleO that breaks
the PRG, [NW94] shows that there is a circuit of the form O ◦ Juntalog n that weakly approximates
the underlying hard function.

For some circuit classes C , we only know how to do circuit-analysis for C ◦ Juntaa, where
a = o(log n) is a parameter. In this case we can also construct i.o. NPRGs and (NE ∩ coNE)/1-
computable PRGs, but with a larger seed length. We refer to Theorem 6.5 and Theorem 6.7 for
more details.

6.1 Preliminaries

We need the following generalization of Theorem 5.1. A proof can be found in Appendix D.2.

Lemma 6.2. Let C be a typical circuit class. Let SCMD, Scert : N → N be good resource functions such
that SCMD(n) ≤ 20.1n, and Scert(n) = nω(1). There are universal constants δ > 0 and K > 4 such that, if
the following hold:

• CMD has S̃umδ ◦ C circuits of complexity SCMD(n), and

• the Average-Product for 4 C circuits of size S(n) = SCMD(Scert(n)K)K can be estimated in T(n) =
2n/S(n) time, within error 1/S(n).

Then NE can certify log Scert(n) depth hardness.

The following lemma concerns the best circuit lower bounds for NE provable by our ap-
proaches. To prove NE cannot be (1/2 + 1/S(n))-approximated by C circuits of S(n) size, we
need S(n) to satisfy some technical properties. We say a function S(n) that satisfies those proper-
ties is nice. As the definition of nice functions is very technical, we don’t bother to formally define
it here. We refer the reader to Definition D.5.

We remark that all “natural” functions S(n) that is super-polynomial and sub-fourth-exponential
are nice, e.g. S(n) = 2logk n and S(n) = 2logk log log n n.

Lemma 6.3. Let S : N → N be a nice function. If for every constant d ≥ 1 and SCAPP(n) =
S(S(S(S(n2)d)d)d)d, the CAPP problem for AND4 ◦C circuits of size SCAPP(n) can be solved in 2n/SCAPP(n)
time, then (NE∩ coNE)/1 cannot be (1/2 + 1/S(n))-approximated by C circuits of size S(n).

We use the standard construction of Nisan-Wigderson PRG. As discussed above, it is important
that given a C circuit that breaks the NW PRG based on some hard function, the complexity of
approximating that hard function is C ◦ Juntaa, where a is some parameter. Therefore we stress
that the hard function required by the NW PRG needs to be hard to approximate by C ◦ Juntaa
circuits.
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Lemma 6.4 ([NW94]). Let m, `, a be integers such that a ≤ `, and t = O(`2 · m1/a/a). Let C be a
circuit class closed under negation. There is a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the
following hold. For any function Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot
be (1/2 + ε/m)-approximated by C ◦ Juntaa circuits (where the top C circuit has size S), then G(Y,Ut)
ε-fools every C circuit (of size S). That is, for any C circuit C (of size S),∣∣∣∣ Pr

s∼Ut
[C(G(Y, s)) = 1]− Pr

x∼Um
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(m, 2t) time.

We include a proof of Lemma 6.4 in Appendix E.3, showing that the construction only puts
juntas at the bottom.

6.2 An i.o. NPRG

In this section, we construct an i.o. NPRG with inverse-sub-half-exponential seed length.

Theorem 6.5. There is an absolute constant d = 8 such that the following hold. Let C be a typical
circuit class such that C circuits of size S can be implemented by (general) circuits of depth O(log S). Let
a = a(n) ≤ log n be a parameter, and f : N→N be a good resource function.

Suppose that for every constant k ≥ 1, the CAPP problem of AND4 ◦ C ◦ Juntaa circuits of size
f ( f (n)k)k can be solved in 2n/ f ( f (n)k)k time. Then at least one of the following holds.

• For every k ≥ 1, there is an E-computable i.o. PRG with seed length O
(

f−1(nk)d · n1/a/a
)
, that

(1/nk)-fools C circuits of nk size.

• For every k ≥ 1, there is an i.o. NPRG with seed length O
(

f−1(nk)d), that (1/nk)-fools (general)
circuits of k log n depth.

Proof. We divide the argument into two cases.

Case I. Suppose that for infinitely many n’s, DCMD on input length n3(n+ 1)/2 cannot be (1/2+
1/ f (n)2)-approximated by C ◦ Juntaa circuits, where the size of the top C circuit is f (n). Let
m = n, s = f−1(nk) + 1, `PRG = s3(s + 1)/2, εadv = m/ f (s)2 (i.e. εadv/m = 1/ f (s)2) and Y
be the function DCMD`PRG . Since a(n) ≤ log n and f (n) ≤ 2n, we have f (a) ≤ nk, therefore
`PRG > f−1(nk) ≥ a. By Lemma 6.4, there is an i.o. PRG with seed length

O(`2
PRG · n1/a/a) = O

(
( f−1(nk))8 · n1/a/a

)
,

that εadv-fools C circuits of f (s) ≥ nk size, where

εadv = n/ f (s)2 ≤ 1/nk.

Since DCMD ∈ P, this PRG is E-computable.
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Case II. Suppose that for all large enough n, DCMD on length n3(n+ 1)/2 can be (1/2+ 1/ f (n)2)-
approximated by C ◦ Juntaa circuits, where the size of the top C circuit is ≤ f (n). By Lemma 3.1,
CMD has S̃umδ ◦ C ◦ Juntaa circuits of complexity SCMD(n) = poly( f (n)).

Let δ and K be the universal constants in Lemma 6.2, and c be the universal constant c in
Theorem 4.4. Let Scert(n) = f (n)1/c and S(n) = SCMD(Scert(n)K)K. Then S(n) ≤ f ( f (n)C)C for
some constant C. The problem of estimating Average-Product for 4 C ◦ Juntaa circuits (of size
S(n), within error 1/S(n)) is equivalent to the CAPP problem for AND4 ◦C ◦ Juntaa (of size S(n)),
thus is solvable in 2n/S(n) time. By Lemma 6.2, NE can certify log Scert(n) depth hardness.

Let V(·, ·) be the NE verifier in Definition 4.1 that certifies log Scert(n) depth hardness. Let
`PRG = f−1(nk) + 1 and Sout = Scert(`PRG)

c ≥ nk. By Theorem 4.4, there is an i.o. NPRG with seed
length

sseed ≤ O(`2
PRG) = O

(
f−1(nk)2

)
,

that ε′adv-fools circuits of depth log(Sout) ≥ k log n, where

ε′adv = 1/Sout ≤ 1/nk.

The two PRGs in Theorem 6.5 imply an i.o. NPRG fooling C circuits:

Corollary 6.6. Let circuit class C , functions a, f and constant d be as in Theorem 6.5. For every k ≥ 1,
there is an i.o. NPRG with seed length O

(
( f−1(nk))d · n1/a/a

)
that (1/nk)-fools C circuits of nk size.

It is easy to see that the following extensions hold:

• The conclusion of Theorem 6.5 still holds even if the CAPP algorithm is nondeterministic.

• If there is a (possibly nondeterministic) #SAT algorithm for C with the same time bounds,
then the i.o. NPRG constructed in Theorem 6.5 also fools Sum ◦ C circuits of the same size
with the same advantage.26

6.3 An (NE∩ coNE)/1-computable PRG

If one insists that each nondeterministic branch should output the same PRG (i.e. as in Defini-
tion 2.7), then we can still achieve a seed length of inverse-sub-fourth-exponential.

Theorem 6.7. Let C be a typical circuit class such that C circuits of size S can be implemented by circuits
of depth O(log S). Let a = a(n) ≤ log n be a parameter, and f : N→N be a nice function.

Suppose that for every constant k ≥ 1, the CAPP problem of AND4 ◦ C ◦ Juntaa circuits of size
f ( f ( f ( f (n2)k)k)k)k can be solved in 2n/ f ( f ( f ( f (n2)k)k)k)k time. Then for every constant k ≥ 1, there
is an (NE ∩ coNE)/1-computable i.o. PRG with seed length O

(
f−1(nk)2 · n1/a/a

)
that (1/nk)-fools C

circuits of nk size.

Proof. Let S(n) = f (n)2. By Definition D.5, S(n) is also a nice function. For every d ≥ 1, let
SCAPP(n) = S(S(S(S(n2)d)d)d)d, then the CAPP problem for AND4 ◦ C ◦ Juntaa circuits of size
SCAPP(n) can be solved in 2n/SCAPP(n) time. By Lemma 6.3, there is a language L ∈ (NE∩ coNE)/1
that cannot be (1/2 + 1/S(n))-approximated by C ◦ Juntaa circuits of S(n) size.

26If DCMD is not well-approximated by Sum ◦ C circuits, we directly use Nisan-Wigderson PRG. Otherwise, we can
still certify depth hardness, construct an i.o. NPRG fooling low depth circuits, which contains Sum ◦ C circuits.
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Let ` = `PRG = f−1(nk) + 1, m = n and the function Y be L`PRG . By Lemma 6.4, there is a PRG
G(Y, ·) with seed length

sseed = O
(
`2
PRG · n1/a/a

)
= O

(
f−1(nk)2 · n1/a/a

)
,

that εadv-fools C circuits of size S(`PRG) ≥ n2k, where

εadv = n/S(`PRG) ≤ 1/nk.

It remains to argue that G(Y, ·) is (NE ∩ coNE)/1-computable. Let t ∈ {0, 1}sseed be the random
seed that the PRG receives as an input. We first compute the value of `PRG from the value of
|t|. Then we receive the advice bit for L`PRG , and guess the truth table of L`PRG . In particular,
for every x ∈ {0, 1}`PRG we guess the value of L(x). Then for each x ∈ {0, 1}`PRG , we use the
(NE ∩ coNE)/1 algorithm for L to verify that the x-th entry of the truth table is correct. After that,
we use Lemma 6.4 to output G(L`PRG , t) in poly(n, 2sseed) time. It is easy to verify that the whole
algorithm runs in (nondeterministic) 2O(sseed) time.

It is easy to see that the following extensions hold:

• The conclusion of Theorem 6.7 still holds even if the CAPP algorithm is nondeterministic.

• If there is a (possibly nondeterministic) #SAT algorithm for C with the same time bounds,
then the PRG constructed in Theorem 6.7 also fools Sum ◦ C circuits of the same size, and
with the same advantage.

7 Applications

In this section we discuss various applications of our results in Section 5 and Section 6.

7.1 Strong Average-case Lower Bounds for ACC0 ◦ THR
We first apply the non-trivial #SAT algorithm for ACC0 ◦THR of [Wil14a] to prove our average-case
lower bound against ACC0. In particular, [Wil14a] showed that for every constants d? ≥ 1, m? ≥ 2,
there is a constant ε > 0 such that the number of satisfying assignments for an AC0

d? [m?] ◦ THR
circuit of size 2nε

can be computed in 2n−nε
time.

Reminder of Theorem 1.5. For every constant k > 0, NQP cannot be (1/2 + 2− logk n)-approximated
by ACC0 ◦ THR circuits of size 2logk n. Consequently, NQP cannot be computed by MAJ ◦ ACC0 ◦ THR
circuits of size 2logk n (in the worst-case), for all k ≥ 1.

The same holds for (N∩coN)QP/1 in place of NQP.

Proof of Theorem 1.5. We assume DCMD can be (1/2 + 2− logk n)-approximated by ACC0 ◦ THR cir-
cuits of size 2logk n (otherwise the theorem is trivial). In particular, this means there are constants
d?, m? such that DCMD can be (1/2 + 2− logk n)-approximated by AC0

d? [m?] ◦ THR circuits of size

2logk n. By Lemma 3.1, CMD has S̃umδ ◦ AC0
d? [m?] ◦ THR circuits of size 2logO(k) n, where δ is the

constant in Theorem 5.1.
By Theorem 5.1, and applying the #SAT algorithm for AC0

d? [m?] ◦ THR, it follows that NE can

certify nΩ(1)-depth hardness. By Theorem 4.2, NQP ((N∩coN)QP/1) cannot be (1/2 + 2− logk+1 n)-

approximated by logk+1 n-depth circuits, which contains 2logk n-size ACC0 ◦ THR circuits.
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As the algorithm is indeed for #SAT, the lower bounds also hold for Sum ◦ACC0 ◦THR circuits.

Reminder of Corollary 1.9. For every constant k ≥ 1, NQP cannot be (1/2 + 2− logk n)-approximated
by Sum ◦ ACC0 ◦ THR circuits of size 2logk n. Consequently, NQP cannot be computed by MAJ ◦ Sum ◦
ACC0 ◦ THR circuits of size 2logk n (in the worst-case), for all k ≥ 1.

The same holds for (N∩coN)QP/1 in place of NQP.

7.2 Nondeterministic Infinitely Often PRG for AC0
d? [m?] Circuits

Now we construct PRGs for polynomial-size AC0
d? [m?] circuits for every constant d? ≥ 1, m? ≥ 2.

Recall that a function f : N → N is sub-half-exponential if for every constant k ≥ 1, f ( f (nk)k) =

2no(1)
, and f is sub-fourth-exponential if for every constant k ≥ 1, f ( f ( f ( f (nk)k)k)k) = 2no(1)

. We
also call a function satisfying some technical conditions nice, see Definition D.5 for details.

Fix some d? ≥ 1, m? ≥ 2. Then there is a constant d′? = d? + O(1) such that

AND4 ◦ AC0
d? [m?] ◦ Juntalog n ⊆ AC0

d′?
[m?].

Recall that there is a constant ε > 0 such that the number of satisfying assignments for an
AC0

d′?
[m?] circuit of size 2nε

can be computed in 2n−nε
time [Wil14a]. We have the following corol-

laries of Theorem 6.5 and Theorem 6.7:

Theorem 7.1 (An i.o. NPRG for AC0
d? [m?] Circuits). Let d? ≥ 1, m? ≥ 2 be constants, f : N → N be

a good resource function that is sub-half-exponential, and d be the absolute constant in Theorem 6.5. Then
at least one of the following holds.

• For every k ≥ 1, there is an E-computable i.o. PRG with seed length O
(
( f−1(nk))d) that (1/nk)-

fools AC0
d? [m?] circuits of nk size.

• For every k ≥ 1, there is an i.o. NPRG with seed length O
(
( f−1(nk))d) that (1/nk)-fools circuits of

k log n depth.

As a consequence, for every k ≥ 1, there is an i.o. NPRG with seed length O
(
( f−1(nk))d) that (1/nk)-fools

AC0
d? [m?] circuits of nk size.

Theorem 7.2 (An (NE ∩ coNE)/1-computable PRG for AC0
d? [m?] Circuits). Let d? ≥ 1, m? ≥ 2 be

constants, f : N→N be any nice function that is sub-fourth-exponential. For every constant k ≥ 1, there
is an (NE ∩ coNE)/1-computable i.o. PRG with seed length O

(
( f−1(nk))2) that (1/nk)-fools AC0

d? [m?]

circuits of nk size.

For comparison, the previous best (NE ∩ coNE)/1-computable i.o. PRG for polynomial-size
AC0[6] circuits needs n(1− o(1)) seed length [COS18].

Remark 7.3. Theorem 7.1 and Theorem 7.2 only show that for every fixed d? ≥ 1, m? ≥ 2, we
can construct PRGs fooling AC0

d? [m?] circuits. However, looking inside the proofs, we can actually
construct a single PRG that fools AC0

d[m] circuits for every d ≥ 1, m ≥ 2 simultaneously, with the
same seed length and complexity.

• For Theorem 7.1, we divide the argument into two cases. If DCMD cannot be (1/2+ 1/ f (n)2)-
approximated by ACC0 =

⋃
d,m AC0

d[m] circuits of size f (n), then we construct an E-computable
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i.o. PRG fooling ACC0 circuits as in Case I of Theorem 6.5. Otherwise, DCMD can be approx-
imated by AC0

d? [m?] circuits for some fixed d?, m?, we use the #SAT algorithm for AC0
d? [m?] and

proceed as in Case II of Theorem 6.5. In this case, the i.o. NPRG we constructed actually
fools NC1 circuits, which contains ACC0 circuits.

• For Theorem 7.2, we prove an average-case lower bound for ACC0 using the same argument
as the proof of Theorem 1.5, and plug it into the Nisan-Wigderson construction.

7.3 Lower Bounds and PRGs for Sum ◦ PTF Circuits

Recall that a polynomial threshold function (PTF) of degree k is a Boolean function f : {0, 1}n →
{0, 1}, such that there is a degree-k polynomial p(x1, . . . , xn) ∈ R[x1, . . . , xn], such that for every
x ∈ {0, 1}n,

f (x) = 0 ⇐⇒ p(x1, . . . , xn) ≥ 0.

We denote PTFk as the class of functions computed by degree-k PTFs. Clearly, THR is just PTF1.
Note that every PTF of degree k can be sign-represented by an integer polynomial with coeffi-

cients 2Õ(nk) [Mur71].
In this section, we prove lower bounds and construct (nondeterministic) PRGs for Sum ◦ PTF

circuits, i.e. linear combination of PTF gates. We remark that [KKL17] proved lower bounds for PTF
circuits (of constant depth and slightly superlinear wire complexity), and [Kan12, MZ13, KL18]
constructed PRG fooling PTF gates. However, our results for Sum ◦ PTF circuits are novel. In
particular, even for fooling Sum ◦ THR circuits, no nontrivial PRG was known before our results.

We first discuss the special case Sum ◦ THR, as we can prove the stronger NP lower bounds
for them. Since the #SAT problem for AND4 ◦ THR circuits can be computed in 2n/2poly(n) time
[Wil18, HS74], by Theorem 1.1 (its first extension in Section 5.2) we have:

Reminder of Theorem 1.10. For all constants k, NP cannot be (1/2 + 1/nk)-approximated by nk-size
Sum ◦ THR circuits. Consequently, NP cannot be computed by nk-size MAJ ◦ Sum ◦ THR circuits for all
constants k.

To prove our results for Sum ◦ PTF circuits, we use the following #SAT algorithm for AND4 ◦
PTF.

Theorem 7.4 ([BKK+19]). For every parameter k = k(n), there is a ZPP algorithm that counts the
number of satisfying assignments of any AND4 ◦ PTFk circuit over n variables in 2n−m · poly(n) time,
where m = n1/(k+1)/ log n.

Remark 7.5. [BKK+19, Section 3] only presented a #SAT algorithm for a single PTF gate, but it is
easy to extend their algorithm to the AND of four PTF gates. For completeness, we include a proof
sketch of Theorem 7.4 in Appendix E.4.

Therefore, the following hold.

• For every constant d ≥ 1, there is a constant ε > 0 such that the #SAT problem for AND4 ◦
PTFd can be solved in 2n−nε

time by a ZPP algorithm.

• Let d(n) = 0.49 log n
log log n , then n1/(d(n)+1)/ log n = ω(log n). Thus the #SAT problem for

AND4 ◦ PTFd(n) can be solved in 2n/nω(1) time by a ZPP algorithm.
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As ZPP algorithms are also nondeterministic algorithms, the following lower bounds follow
from Theorem 1.1:

Reminder of Theorem 1.11. The following hold.

• For every constant d, k ≥ 1, NQP cannot be (1/2 + 2− logk n)-approximated by Sum ◦ PTFd circuits
of sparsity 2logk n. Consequently, NQP does not have 2logk n-size MAJ ◦ Sum ◦ PTFd circuits.

• Let d(n) = 0.49 log n
log log n , then NE cannot be (1/2 + 1/poly(n))-approximated by Sum ◦ PTFd(n)

circuits of sparsity poly(n). Consequently, NE 6⊂ MAJ ◦ Sum ◦ PTFd(n).

Since PTFk ◦ Juntaa ⊆ PTFk·a, we can also use Theorem 6.7 to construct PRGs fooling Sum ◦
PTF circuits. We prove that there is an (NE∩ coNE)/1-computable i.o. PRG fooling Sum ◦ PTFO(1),
that only requires 2logε n seed length, for any constant ε > 0.

Reminder of Theorem 1.12. For every constants d, k ≥ 1 and ε > 0, there is an (NE ∩ coNE)/1-
computable i.o. PRG with seed length O(2logε n) that (1/nk)-fools Sum ◦ PTFd circuits of sparsity nk.

Proof. Let a = Θ(log n/ logε/2 n), then PTFd ◦ Juntaa ⊆ PTFa·d. Let

m = n1/(ad+1)/ log n ≥ Ω(2logε/3 n).

By Theorem 7.4, the #SAT algorithm for AND4 ◦ PTFa·d can be solved in nondeterministic 2n−m

time.
Let f (n) = 2log4/ε n, then f (n) is a nice function. For every constant k ≥ 1, f ( f ( f ( f (n2)k)k)k)k =

2logO(1) n ≤ 2m. Therefore, by Theorem 6.7, there is an (NE∩ coNE)/1-computable i.o. PRG with seed
length

O
(
(2logε/4 n)2 · n1/a/a

)
= O(2logε n),

that (1/nk)-fools Sum ◦ PTFk circuits of sparsity nk.

7.4 Towards TC0
3 Lower Bounds

Finally, we show that non-trivial derandomization of MAJ ◦MAJ circuits implies lower bounds
for depth-3 TC circuits.

Reminder of Theorem 1.13. If there is a 2n/nω(1) time CAPP algorithm for poly(n)-size MAJ ◦MAJ
circuits. Then NEXP 6⊂ MAJ ◦MAJ ◦MAJ.

Proof. Suppose there is a 2n/nω(1) time CAPP algorithm for poly(n) size MAJ ◦MAJ circuits. Since
⊕4 ◦MAJ ◦MAJ ⊆ MAJ ◦MAJ,27 there is a 2n/nω(1) time CAPP algorithm for poly(n) size ⊕4 ◦
MAJ ◦MAJ circuits. The theorem follows from Lemma 5.5 and Theorem 1.1.

27[CW19, Lemma 50] proved ⊕4 ◦THR ◦THR ⊆ THR ◦THR, and the proof can be adapted to MAJ ◦MAJ.
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8 Open Problems

We conclude with several interesting open problems stemming from our work.

1. The most exciting open question would be to apply Theorem 1.13 to prove super-polynomial
lower bounds for TC0

3.

2. Are there P-complete problems with similar random-reducibility properties of CMD and
DCMD? Besides being an interesting problem in its own right, the existence of such a prob-
lem would greatly simplify our framework for strong average-case lower bounds. In partic-
ular, we will no longer need hard MA problems with low depth predicates, and PCPP with
low depth computable proofs.

3. The seed length of our i.o. NPRG fooling ACC0 circuits is only inverse sub-half-exponential.
Can we obtain an i.o. NPRG with polylog(n) seed length? As a related question, can we
show that there is a constant ε > 0 such that ENP cannot be (1/2 + 1/2nε

)-approximated
by ACC0 circuits of 2nε

size? (This paper only implicitly proves that ENP cannot be (1/2 +
1/ f (n))-approximated by ACC0 circuits of f (n) size for sub-half-exponential f (n).)

4. Since we have proved lower bounds for MAJ ◦ACC0, the natural next step would be to prove
lower bounds for THR ◦ ACC0. Can we formulate any algorithmic approach to prove such a
lower bound? That is, are there certain non-trivial circuit-analysis algorithms for C which
would imply THR ◦ C lower bounds?

It seems plausible to us that non-trivial #SAT algorithms would suffice (note that that we
already proved non-trivial #SAT algorithms for C imply MAJ◦Sum◦C lower bounds, which
is a non-trivial sub-class of THR ◦ C ). Such a connection would also imply lower bounds
for THR ◦ ACC0 ◦ THR, which is (much) stronger than the already notorious circuit class
THR ◦ THR.

5. Is THR contained in MAJ ◦ACC0? (Or even MAJ ◦ Sum ◦ACC0?) We don’t have an inclination
on the answer. But if it is contained in MAJ ◦ ACC0, it would immediately imply super-
polynomial lower bounds for THR ◦ THR.

6. Vyas and Williams [VW20] conjectured that SYM ◦C lower bounds should follow from #SAT
algorithms for C , where SYM denotes arbitrary symmetric functions. Can the new tech-
niques in this paper help to prove this conjecture?
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A PCPP for Formula-Eval with NC1-computable Proofs

In this section, we verify that the PCPP construction in [Har04] applied to Formula-Eval has NC1

computable proofs. Formally, we prove Lemma 2.14 restated below.

Reminder of Lemma 2.14. For any constant δ > 0 there are two constants 0 < s < c < 1, such
that there is a PCP of proximity system for Formula-Eval with proximity δ, soundness s, completeness
c, random bits r = O(log n), and query complexity q = 2, where each query is simply an OR on two
bits or their negations. Moreover, there is a circuit of depth O(log |C|+ log |w|) such that, given a pair
(C, w) ∈ Formula-Eval, outputs a proof π that makes V(C) accepts with probability ≥ c.

The rest of this section contains a proof sketch for Lemma 2.14. In particular, we show that a
PCPP proof for a YES instance of Formula-Eval can be constructed in NC1. We choose to follow the
PCPP protocol described in Section 5 of [Har04]. Then we use methods in [CW19, Section A] to
reduce the query complexity of PCPP to 2 bits.

In the following, we assume the reader is familiar with the Section 3 and 5 of [Har04] (which
contains a very accessible self-contained proof of the PCP theorem [AS98, ALM+98]).28

Notation. We begin with some notation. Given a circuit of depth d, let n = 2O(d) be an integer
greater than the circuit size, m = log n/ log log n, |H| = n1/m = log n, d = m|H|, and F be a field
of characteristic 2 and size in [Cd3, 2Cd3] for some large constant C. Let H be a specific subset
of F of size |H|. W.l.o.g. assume m and n1/m are integers. We can see that |F|m is bounded by a
polynomial of |H|m, so the output lengths of problems below (e.g. Lemma A.2) are polynomially
bounded by their input lengths.

A.1 Low Depth Circuits for Basic Algebraic Tasks

To argue the proof is computable in NC1, we first review some basic algebraic tasks which are
computable in low depth.

In fact, all of them are computable in TC0, but we choose to use NC1 circuits for convenience.
Throughout the section, we use TC0 or NC1 to denote P-uniform TC0 or NC1 circuits.

Iterated Addition / Multiplication in low depth. In the iterated addition problem, we are given a
list a1, a2, . . . , at of GF(2n) elements, and we want to compute ∑t

i=1 ai. In the iterated multiplication
problem, we want to compute ∏t

i=1 ai instead. Both problems are solvable in depth O(log n +
log t) [HAB02].

Two representations of multivariate polynomials. When we deal with multivariate polynomi-
als, there are two types of representations:

• by coefficients: a degree-d m-variate polynomial p is represented as a list~α, where

p(~x) = ∑
e1+···+em≤d

αe1,...,em

m

∏
i=1

xei
i ∀~x ∈ Fm;

• by values: an m-variate polynomial is represented as the values of p(~x) for every ~x ∈ Fm.

28We wish this section could be self-contained, but that would make it unnecessarily long (we would have to basically
provide a proof for PCP theorem). It is highly recommended reading Section 5 of [Har04] before reading this section.
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A straightforward corollary of iterated addition being in NC1 is:

Lemma A.1 (Representation by Coefficients to Representation by Values). Given an m-variate degree-
d polynomial represented by coefficients, we can output its representation by values in depth O(m log |F|).

Extension in low depth. We need to extend a partial function f : Hm → F to a low-degree
polynomial defined on the entire Fm. We show this is doable in low depth:

Lemma A.2. Given a function f : Hm → F represented by values, there is a depth-O(m log |F|) circuit
that computes a polynomial f̂ : Fm → F with degree at most |H| − 1 in each variable, such that for every
~h ∈ Hm, f̂ (~h) = f (~h). The circuit outputs f̂ both by coefficients and by values.

Proof. For~h ∈ Hm, ~x ∈ Fm, let

p~h(~x) =
m

∏
i=1

∏
h′∈H\{hi}

(xi − h′),

q~h(~x) = p~h(~x) · p~h(~h)
−1.

Then q~h is a polynomial that takes value 1 on ~h and 0 on all other points in Hm. Since H is pre-
determined, we can precompute every q~h both by coefficients and by values, and hardcode them
into the circuit. We define

f̂ (~x) = ∑
~h∈Hm

q~h(~x) · f (~h).

It is easy to see that f̂ agrees with f in Hm, and is a polynomial with degree at most |H| − 1 in
each variable. Since iterated addition is in NC1, f̂ can be computed in depth O(m log |F|) both by
coefficients and by values.

Single variate low degree testing in low depth. We will frequently use the following algorithm:

Lemma A.3. Given a function f : F→ F and an integer d, there is a depth-O(log |F|) circuit that decides
whether f is a (univariate) polynomial of degree at most d.

Proof. Let ~v be a column vector such that vx = f (x) for x ∈ F. Let ~α be a column vector such
that f (x) = ∑|F|−1

i=0 αixi. Let A be the Vandermonde matrix such that for every i ∈ F and 0 ≤ j ≤
|F| − 1, Aij = ij. Then A is invertible over F, and we can precompute A−1 and hardcode it into the
circuit. We have~α = A−1 ·~v, thus~α can be computed in O(log |F|) depth. We finish by checking
αi = 0 for every i > d.

A.2 Low Depth Verifiers and Composition of PCPPs

The first subtlety arises from the composition theorem: it turns out that we not only need to show
that the proofs can be constructed in low depth, but we also need to check that the verifier itself
can be implemented by a low depth circuit.

Recall that the verifier is given input x and randomness R, outputs q(n) indices as query bits,
and a circuit D with q(n) inputs that decides the output of the verifier, given the query outcomes.
The proof required by the composed verifier (refer to the algorithm in [Har04, p.49]) consists of
two parts:
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• The proof π for the outer verifier.

• For each possible randomness R, a proof that D(πi1 , πi2 , . . . , πiq) accepts, where (i1, i2, . . . , iq)
and D are indices and the decision circuit generated by the outer verifier respectively, on
randomness R.

Therefore, to compute the second part of the proof, we need to simulate the outer verifier,
and compute a proof for (D, (πi1 , . . . , πiq)) ∈ Formula-Eval. That means we require both the outer
verifier and D to have small depths. Equivalently, the outer verifier has to be a low depth (non-
adaptive) oracle circuit with the proof oracle as the oracle gate. We define the depth of a verifier
(of Formula-Eval) to be the maximum depth of the following two circuits:

• The verifier itself as an oracle circuit.

• The circuit that computes the proof from a YES input of Formula-Eval.

Let dout(n) be the depth of the outer verifier, din(n) be the depth of the inner verifier, and |D| be
the size of the decision circuit outputted by the outer verifier. Inspecting [Har04, p.49], we can see
that the depth of the composed verifier (i.e. both of its implementation and of proof construction)
is O(dout(n) + din(|D|)). Therefore if both verifiers are low depth, then the composed verifier is
also low depth.

We also care about the size of D (since it is the input length of the inner verifier), so we say the
decision complexity for a verifier is the size of D. The decision circuit of the composed verifier is the
same as the decision circuit of the inner verifier (on input length |D|).

Composition of PCPPs. In Appendix A.3, we will verify that the main PCPP described in [Har04,
Section 5] has depth O(m log |F|) = O(log n) and decision complexity poly(m, |F|) = polylog(n).
We compose the final PCPP as follows:

(a) We compose the PCPP in Appendix A.3 with itself, and obtain a PCPP for Formula-Eval with
depth O(log n) and decision complexity polylog(polylog(n)) = poly(log log n).

(b) We fix an arbitrary 3-query PCPP for Formula-Eval (say [CW19, Lemma 25]) whose depth
is trivially bounded by poly(n). The input length for this PCPP is only poly(log log n), so
we compose the (previously composed) PCPP in (a) with this PCPP, and obtain a PCPP for
Formula-Eval with depth O(log n) that only needs to query 3 bits of the proof.

(c) We use the same method as [CW19, Appendix A] to transform the PCPP verifier in (b) into a
2-query PCPP with imperfect completeness.29 The proof of the 2-query PCPP can in fact be
computed in NC0 given the proof of the PCPP in (b). Lemma 2.14 then follows.

A.3 The Main Construct

It remains to check that the verifiers in [Har04, Section 5] have depth O(m log |F|) and decision
complexity poly(m, |F|).

PCPP-LDT. (See [Har04, p.66].) It queries a line L : F→ F represented by values, then checks if
L is a polynomial of degree ≤ d. By Lemma A.3, this verifier has depth O(log(m|F|)). Its decision
complexity is thus 2O(log(m|F|)) = poly(m, |F|).

This verifier receives no proof.
29As a technical detail, the transformation in [CW19, Section A] requires the decision circuit of the 3-query PCPP to

be an OR3 gate, which is true for (b). The decision circuit of the final PCPP is an OR2 gate.
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ROBUST-PCPP-ZERO-ON-SUBCUBE. (See [Har04, p.70].) It invokes Lemma A.3 O(m) times,
each time checking whether a function f , Pi or Qi : F → F is a low-degree polynomial. It then
performs Division Check [Har04, Eq (5.4)] and Identity Check [Har04, Eq (5.5)] which are O(m)
arithmetic operations over F, and computes an AND of fanin O(m). It follows that the verifier has
depth-O(log(m|F|)) circuits. Therefore its decision complexity is poly(m, |F|).

The proofs are computed by [Har04, Eq (5.1)], as follows. We are given an m-variate polyno-
mial p0(·) by coefficients, and for every 1 ≤ i ≤ m, we compute polynomials pi(·) and qi(·) as
follows:

pi−1(~x) = gH(xi) · qi(~x) + pi(~x),

where gH(x) = ∏h∈H(x − h) is a predetermined univariate polynomial, and qi(~x), pi(~x) are the
quotient and reminder of pi−1(~x) divided by gH(xi).

Consider the task of computing p(~x) = gH(xi) · q(~x) + r(~x), where we are given the poly-
nomial p(·) represented by coefficients, and want to compute q(·) and r(·) also by coefficients.
Let

p(~x) = ∑
e1+···+em≤d

αe1,...,em

m

∏
j=1

x
ej
j .

For every i ≥ 1, let q̂i(x), r̂i(x) be the quotient and reminder of xi divided by gH(x), i.e.

xi = gH(x) · q̂i(x) + r̂i(x).

Then we have

q(x1, . . . , xm) = ∑
e1+···+em≤d

αe1,...,em · q̂ei(xi) ·∏
j 6=i

x
ej
j ,

r(x1, . . . , xm) = ∑
e1+···+em≤d

αe1,...,em · r̂ei(xi) ·∏
j 6=i

x
ej
j .

Let~α(p) as the column vector consisting of the representation of p by coefficients, and define
column vectors ~α(q), ~α(r) similarly. Then there are matrices Mq

i,H and Mr
i,H (superscripts q, r are

mnemonics) such that ~α(q) = Mq
i,H ·~α(p), and ~α(r) = Mr

i,H ·~α(p). Moreover, both Mq
i,H and Mr

i,H
only depends on i and H. Therefore we can precompute the following matrices:

Pq
i,H = Mq

i,H ·M
r
i−1,H ·Mr

i−2,H · · · · ·Mr
1,H, and Pr

i,H = Mr
i,H ·Mr

i−1,H · · · · ·Mr
1,H.

It follows that both ~α(pi) = Pr
i,H ·~α(p0) and ~α(qi) = Pq

i,H ·~α(p0) can be computed in depth
O(m log |F|). We then use Lemma A.1 to compute the representations by values of each pi and qi,
also in depth O(m log |F|).

ROBUST-PCP-CIRCUIT-SAT. (See [Har04, p.75].) The verifier computes a function C′ : H3m+3 →
F from the input circuit C ([Har04, Eq (5.6)]), and uses Lemma A.2 to extend it to a (3m+ 3)-variate
polynomial Ĉ over F. It then invokes PCPP-LDT and ROBUST-PCPP-ZERO-ON-SUBCUBE, and
does O(m) additional arithmetic operations over F. It follows that the verifier has depth-O(m log |F|)
circuits. Its decision complexity is the sum of the decision complexity of PCPP-LDT, ROBUST-
PCPP-ZERO-ON-SUBCUBE and O(m) arithmetics over F, thus bounded by poly(m, |F|).

In our application, we are given a depth-d circuit C and a satisfying assignment w of C, and
we want to compute a valid proof for this verifier that (C, w) ∈ Formula-Eval. We first compute an
“extended assignment” A in depth O(d) which contains the output value of every gate in C. The
proof consists of the following.
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• An extension Â of A computable in depth O(m log |F|) by Lemma A.2.

• A polynomial p(Â) computed from A by [Har04, Eq (5.7)], which can be done in depth
O(log(m|F|)).

• The proof oracle for ROBUST-PCPP-ZERO-ON-SUBCUBE. Recall that we need a represen-
tation of p(Â) by coefficients to compute a proof for this verifier. It follows from [Har04,
Eq (5.7)] that it suffices to compute both Â and Ĉ by coefficients. Since both Â and Ĉ are
computed by Lemma A.2, our circuit can easily obtain these representations by coefficients.

It follows that this verifier has depth O(d + m log |F|), which is O(log n) when d = O(log n).

ROBUST-PCPP-CIRCUIT-SAT. (See [Har04, p.78].) The verifier invokes ROBUST-PCP-CIRCUIT-
SAT, tests whether a line L : F → F is a low-degree polynomial, and performs O(1) extra arith-
metic operations over F. It follows that the verifier has depth O(d + m log |F|) and decision com-
plexity poly(m, |F|).

The verifier needs no extra proof except those of ROBUST-PCP-CIRCUIT-SAT.

Translating into binary alphabet. The proof oracle for ROBUST-PCPP-CIRCUIT-SAT consists
of entries in the alphabet Σ = F6m+6. Fix an error correcting code (Enc,Dec) as in Lemma 2.11,
where Enc has NC1 circuits. Let the original proof oracle be Γ, we augment it with an auxiliary
proof oracle Υ. For each entry Γ[x] in Γ, we interpret Γ[x] as a (log |Σ|)-bit string and let Υ[x] =
Enc(Γ[x]). For every entry Γ[x] the old verifier probes, the new verifier also probes Υ[x] and tests
whether Υ[x] = Enc(Γ[x]). This transformation adds at most O(m log |F|) to the verifier depth,
and multiplies at most poly(m, |F|) to the decision complexity.

B A Self-contained Exposition of Properties of CMD and DCMD

The nice random reducibility properties of the problem Connected Matrix Determinant (CMD) and
Decomposed Connected Matrix Determinant (DCMD) are the key ingredients of our new average-
case circuit lower bounds. We believe these two problems could be useful for other questions in
average-case complexity, or complexity theory in general.

Therefore, in this section, we provide a self-contained exposition of the properties of these
problems here. We also refer the readers to [IK02, GGH+07, GGH+08, Vio09b, FSUV13, App14]
for more applications and motivations of these two problems.

In this section, all matrices and vectors are over GF(2). We may use ∗ to denote an arbitrary
element in GF(2).

We first recall the definitions of CMD and DCMD.

Reminder of Definition 2.18. An instance of CMD is an n × n matrix over GF(2) where the
main diagonal and above may contain any entry, the second diagonal (i.e. the one below the main
diagonal) contains 1 and other entries are 0. In other words, the matrix is of the following form
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(where ∗ represents any element in GF(2)):

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


. (11)

The instance is an (n(n + 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over GF(2)) of the matrix corresponding to x
is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is computed
as follows: we partition x into blocks of length n2, let yi(1 ≤ i ≤ n(n + 1)/2) be the parity of the
i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

We say an n× n matrix is a valid CMD matrix if it is of the form of (11).

B.1 ⊕L-completeness

We first show that CMD is ⊕L-complete (it is then easy to see that DCMD is also ⊕L-complete by
definition). The following theorem is proved in [IK97].

Reminder of Theorem 2.20. CMD is ⊕L-complete under projections.

Proof. We first prove ⊕L-hardness. Consider any problem L ∈ ⊕L. Suppose that on input length
n, L is solved by a parity branching program P = (G, σ, f ), where:

• G = (V, E) is a directed acyclic graph with m = poly(n) nodes.

• σ1, σ2, . . . , σm is a permutation of V that forms a topological order of G.

• f : E→ [n]× {0, 1} gives each edge in G a label. Intuitively, let e ∈ E and f (e) = (i, b), then
e “reads” the i-th bit of the input and “works” if this bit is equal to b.

• For x ∈ {0, 1}n, we define Gx as a subgraph of G, such that an edge e is in Gx if and only if
f (e) = (i, b) and xi = b. Then x ∈ L if and only if Gx contains an odd number of paths that
starts at σ1 and ends at σm.

Since G is fixed in advance, for any x ∈ {0, 1}n, the adjacency matrix Ax of Gx can be computed
by a projection over x. In particular, (Ax)ij = 1 if and only if there is an edge e ∈ Gx from σi to
σj. Since σ is a topological order of G, Ax is always an upper triangular matrix (with zeros on the
diagonal). Let Im be the m×m identity matrix over GF(2), then Im − Ax has full rank, and

(Im − Ax)
−1 =

m

∑
i=0

(Ax)
i.

(To see this, multiply both sides by (Im − Ax), and notice that since Gx is an m-vertex DAG,
(Ax)m+1 is the all-zero matrix.)

Let B = (Im − Ax)−1, then for any s, t ∈ V(Gx), Bst is the parity of the number of s-t paths in
Gx. Since det(Im − Ax) = 1, we have Bst = adj(Im − Ax)st, where adj(A) is the adjugate matrix of
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A. Recall that the (s, t)-th element of adj(A) is the (t, s)-th cofactor of A, which (over GF(2)) is the
determinant of the sub-matrix of A formed by deleting the t-th row and s-th column. Let Cm,1 be
the sub-matrix formed by removing the m-th row and first column of Im − Ax. It follows that

B1,m = det(Cm,1).

It’s easy to verify that Cm,1 is a valid CMD matrix and is computable by a projection over x. There-
fore L reduces to CMD by a projection, and CMD is ⊕L-hard.

By the same reasoning as above, we can see that CMD ∈ ⊕L: Given a valid (n− 1)× (n− 1)
CMD matrix C, we create a DAG G whose vertex set is [n] = {1, 2, . . . , n}. For 1 ≤ i ≤ j ≤ n− 1,
if Cij = 1, we add to G an edge from vertex i to vertex (j + 1). Let A be the adjacency matrix of
G, B = (In − A)−1, then C is the sub-matrix of B formed by deleting the n-th row and the first
column. As argued above, det(C) over GF(2) is the parity of the number of paths from vertex 1 to
vertex n, thus can be easily computed in ⊕L.

B.2 A Randomized Reduction from CMD to DCMD

We prove Theorem 2.19 in this section. We follow the exposition in [Vio09b] and [GGH+07].
LetR1 be the set of upper-triangular matrices over GF(2) with 1’s in the diagonal:

1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1

 .

LetR2 be the subset ofR1 where every 1’s are either in the diagonal or in the last column:
1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1

 .

It is easy to see that bothR1 andR2 form groups w.r.t. matrix multiplication.
We need the following lemma.

Lemma B.1 ([Vio09b]). For every valid CMD matrix A, there is some R1 ∈ R1 and R2 ∈ R2 such that

R1 · A · R2 =



0 0 · · · 0 0 det(A)
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


. (12)

Proof. Since A is a valid CMD matrix, we can write A as

A =

(
~u> w
A′ ~v

)
,
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where ~u,~v ∈ GF(2)n−1, w ∈ GF(2), and A′ is a (n − 1) × (n − 1) upper triangular matrix over
GF(2), with 1s along the diagonals. Therefore, A′ is invertible. We let

R1 =

(
1 ~u>(A′)−1

0 (A′)−1

)
,

where 0 is the all-zero column vector in GF(2)n−1. Since A′ is upper-triangular with 1’s along the
diagonal, it is easy to see that R1 ∈ R1. We have

R1 · A =

(
0> w + ~u>(A′)−1~v

In−1 (A′)−1~v

)
,

where In−1 is the (n− 1)× (n− 1) identity matrix over GF(2). We then define

R2 =

(
In−1 (A′)−1~v
0> 1

)
,

then it is easy to see R2 ∈ R2. We have

R1 · A · R2 =

(
0> w + ~u>(A′)−1~v

In−1 0

)
,

which is of the form (12). Since det(R1) = det(R2) = 1, we have

det(A) = det(R1 · A · R2) = w + ~u>(A′)−1~v.

Inspecting the above proof, we also have:

Corollary B.2. Let A be a valid CMD matrix and A′ be the same matrix as A, except that we flip the
(1, n)-th entry in A′. Then det(A)⊕ det(A′) = 1.

The following lemma and proof comes from [GGH+07]:

Reminder of Theorem 2.19. There is a function P : {0, 1}n(n+1)/2 × {0, 1}O(n4) → {0, 1}n3(n+1)/2

such that the following hold.

• For any input x ∈ {0, 1}n(n+1)/2, the random variable P(x,UO(n4)) is uniformly distributed in
{0, 1}n3(n+1)/2.

• For any x ∈ {0, 1}n(n+1)/2 and r ∈ {0, 1}O(n4), let P(x, r) = y, then CMD(x) = DCMD(y)⊕ r0,
where r0 is the first bit of r.

• For each fixed randomness r, P(x, r) is a projection over x, computable in polynomial time given r.

Proof. We first describe a random self-reduction for CMD. Given a valid CMD matrix A, we choose
a random bit b ∼ {0, 1}, and two random matrices R1 ∼ R1, R2 ∼ R2. We then compute A′ =
R1 · A · R2, and flip the entry A′1n if b = 1. We output P(A, r) = A′ where r is the random string
encoding (b, R1, R2).

For b ∈ GF(2), let Mb be the matrix that has 1 on the second diagonal, b in the (1, n)-th entry,
and 0 in all other entries. (For instance, the RHS of (12) is equal to Mdet(A).) Let A? be any valid
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CMD matrix such that det(A) = det(A?), then there are matrices R1, R?
1 ∈ R1 and R2, R?

2 ∈ R2,
such that

R1 · A · R2 = Mdet(A) = R?
1 · A? · R?

2 .

It follows that (
(R?

1)
−1R1

)
· A ·

(
R2(R?

2)
−1)
)
= A?.

Therefore, for every valid CMD matrix A? such that det(A) = det(A?), there are R◦1 ∈ R1 and
R◦2 ∈ R2 such that R◦1 · A · R◦2 = A?. Since |R1| · |R2| = 2n(n−1)/2 · 2n−1, and there are 2n(n+1)/2−1 =
|R1| · |R2| valid CMD matrices with determinant equal to det(A), we conclude that for each A, A?

with the same determinant, there is exactly one pair of (R1, R2) that transforms A into A?. Now it
is easy to see that A′ is uniformly randomly distributed among valid CMD instances.

Unfortunately, this reduction cannot be implemented by projections. Still, the same method
can be used to construct a randomized projection that reduces CMD to DCMD. In particular, for
every 1 ≤ i, j ≤ n, we have

A′ij =
n⊕

k=1

n⊕
l=1

(
(R1)ik · Akl · (R2)kj

)
.

(The only exception is that we may flip A′1n.) Recall that the instance for DCMD is a length-n3(n +
1)/2 string partitioned into chunks of length n2. For each 1 ≤ i ≤ j ≤ n we sample a random
string z(ij) of length n2. For each 1 ≤ i ≤ j ≤ n and each 1 ≤ k, l ≤ n, the ((k− 1)n + l)-th bit of
the chunk corresponding to A′ij is

z(ij)
(k−1)n+l−1 ⊕

(
(R1)ik · Akl · (R2)kj

)
⊕ z(ij)

(k−1)n+l , (13)

where we define z(ij)0 = z(ij)n2 . We then flip the last bit of the chunk corresponding to A′1n if b = 1.
For every string x of length n2 (think of x as the concatenation of

(
(R1)ik · Akl · (R2)kj

)
over all

1 ≤ k, l ≤ n), and every string y of length n2 and same parity with x (think of y as the outcome of
(13)), there are exactly two strings z of length n2 such that the concatenation of

(zi−1 ⊕ xi ⊕ zi)
n2

i=1

is y. Therefore, the DCMD instance we generated is a uniformly random one. Furthermore, it is
easy to verify that for each fixed randomness, (13) is a projection over the input matrix A.

C Technical Building Blocks for Section 4

In this section, we prove the technical building blocks used for Section 4. In particular, we prove
Theorem 4.4 in Appendix C.1, and prove Theorem 4.5 in Appendix C.3. In Appendix C.2 we
improve the result in Section 8 of [Che19], which plays a crucial part of the proof of Theorem 4.5.

C.1 A PRG Construction for Low Depth Circuits

We first prove Theorem 4.4, which shows one can construct a PRG with nearly optimal seed length
fooling low depth circuits, with a truth-table which is only worst-case hard for low depth circuits.

Reminder of Theorem 4.4. Let d(`) = ω(log `). There are universal constants c and g, and a function
G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for every good resource function d : N → N, the following
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hold. Let sseed = g`2/d(`) and Sout = 2c·d(`), if Y : {0, 1}` → {0, 1} does not have circuits of depth d(`),
then for all circuits C with depth log(Sout),∣∣∣∣∣ Pr

t∼Usseed

[C(G(Y, t)) = 1]− Pr
x∼USout

[C(x) = 1]

∣∣∣∣∣ < 1/Sout. (14)

That is, G(Y, ·) 1/Sout-fools all log(Sout)-depth circuits. Moreover, G is computable in 2O(sseed) time.
Before presenting the proof, let us discuss the previous approach by [Che19] and point out

why we need a different one.

Review of [Che19]. In [Che19], we are given a hard truth table Y which is worst-case hard for
low depth circuits. We first amplify it by Theorem 2.17 to a truth table that cannot be (1/2+ 2−`

δ
)-

approximated by low depth circuits, and then plug it into the Nisan-Wigderson [NW94] PRG.
In our case when d(`) = 2Ω(`), we need to stretch sseed = O(`) random bits to Sout = 2Ω(`)

pseudorandom bits. The hybrid argument of the Nisan-Wigderson PRG would require a (1/2 +
2−Ω(`))-inapproximable truth table. However, Theorem 2.17 does not produce (1/2+ ε)-inapproximable
truth tables when ε < 2−ω(

√
`). Therefore we have to take a different approach.

It turns out that [STV01]30 only requires a mildly hard (e.g. 0.99-inapproximable) truth table.
Therefore, to prove Theorem 4.4, we can first use Theorem 2.17 to transform the (worst-case) hard
truth table Y into a 0.99-inapproximable one, and then plug it into the PRG constructed in [STV01].

C.1.1 A Brief Review of [STV01]

We give a very brief introduction to the PRG construction of [STV01]. Recall that the reason we
cannot use Nisan-Wigderson PRG directly is that we cannot amplify worst-case hardness to 2−Ω(n)

hardness directly by Theorem 2.17. Fortunately, the PRG in [STV01] only needs a hard truth table
that cannot be 0.99-approximated. It then uses a variant of the Nisan-Wigderson generator that
stretches a short random seed into a distribution over longer strings. Since the truth table is not
(1/2 + ε)-hard, the distribution of output string is not indistinguishable from the uniform distri-
bution. Instead, [STV01] managed to show that this distribution is indistinguishable from some
distribution with high min-entropy. One can then apply an extractor to convert this distribution
into one which is indistinguishable from the uniform one. We refer the interested readers to the
original paper of [STV01] for more details of this approach.

The actual definition of min-entropy is not very important here, but we include it for com-
pleteness.

Definition C.1. Let X be a random variable, we define the min-entropy of X, denoted as H∞(X), as
the largest real number k such that for any x in the support of X,

Pr[X = x] ≤ 2−k.

Definition C.2. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if, for any distribu-
tionD over {0, 1}n that has min-entropy at least k, the statistical distance between the distribution
Ext(D,Ud) and Um is at most ε.

We also need the following construction of extractors, which can be computed in AC0[⊕].
30Indeed, [STV01] provides two different PRG construction, one is based on pseudo-entropy generator and extractor,

another one is based on local-list decodable codes. We are going to apply the first one.
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Lemma C.3 ([SU05]). There is a (k, ε)-extractor Ext : {0, 1}n × {0, 1}O(log n) → {0, 1}m with k = n2/3,
ε = n−2/3 and m = n1/3. Moreover, Ext can be implemented in AC0[⊕].31

In our final PRG, we will combine the following theorem with the above extractor construction.

Lemma C.4 ([STV01, Theorem 11]). Suppose we are given a truth table Y of length 2` that cannot be
(1− δ)-approximated by depth-d circuits. For any m ≤ 2`, there is a generator PEY : {0, 1}O(`2/ log m) →
{0, 1}m computable in poly(m, 2`

2/ log m) time such that the following hold. There is a distribution D
of min-entropy at least δm/2 such that, any adversary circuit of depth d − C log m does not distinguish
between PEY(UO(`2/ log m)) and D with advantage Ω(1/δm), where C is a universal constant.

Proof Sketch. Everything except the adversary depth follows directly from [STV01]. It is easy to
verify that the construction has depth O(log m).

C.1.2 Proof of Theorem 4.4

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let (Amp,Dec) be a (0.01, 0)-fully-black-box hardness amplification in Theo-
rem 2.17. We denote the truth table of AmpY (of length 2O(`)) as Y′. If Y cannot be computed by
depth-d(`) circuits, then Y′ cannot be 0.99-approximated by cGR · d(`)-depth circuits for a univer-
sal constant cGR > 0.

Fix a small constant γ > 0 and let m = 2γ·d(`). From Lemma C.4, we obtain a generator
PEY′ stretching from O(`2/ log m) = O(`2/d(`)) bits to m bits. This generator PEY′(UO(`2/d(`))) is
indistinguishable from some distributionD of min-entropy at least Ω(m) with advantage Ω(1/m),
by adversary circuits of depth (cGR · d(`)−O(log m)) ≥ cGR/2 · d(`).

Let Ext : {0, 1}m × {0, 1}O(log m) → {0, 1}m1/3
be the (k, ε)-extractor specified in Lemma C.3,

with k = m2/3 and ε = m−2/3. Let sseed = O(`2/d(`)) + O(log m) = O(`2/d(`)) be the sum of the
seed lengths of PEY′ and Ext.

The generator G treats the seed t ∈ {0, 1}sseed as the concatenation of two strings t1 ◦ t2, where
|t1| = O(`2/d(`)) and |t2| = O(log m) = O(d(`)), and outputs Ext

(
PEY′(t1), t2

)
. Note that the

length of the output is Sout = Ω(m)1/3 = 2Ω(d(`)).
Now, let C be a circuit with depth at most cGR/3 · d(`). First, since D has min-entropy at least

Ω(m), it follows ∣∣∣E[C(Ext(D,UO(log n)))]−E[C(USout
)]
∣∣∣ ≤ ε.

Now, note that for each fixed u ∈ {0, 1}O(log n), C(Ext(·, u)) is a circuit of depth at most cGR/2 ·
d(`). Hence, let E = PEY′(UO(`2/d(`))), it follows

|E[C(Ext(D, u))]−E[C(Ext(E , u))]| ≤ O(1/m),

and hence ∣∣∣E[C(Ext(D,UO(log n)))]−E[C(Ext(E ,UO(log n)))]
∣∣∣ ≤ O(1/m).

Putting them together, we have∣∣∣E[C(Ext(E ,UO(log n)))]−E[C(USout
)]
∣∣∣ ≤ ε + O(1/m),

31Indeed, it is a linear extractor in the sense that for every u ∈ {0, 1}O(log n), the function Ext(·, u) is a linear function
over GF(2).
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which establishes the correctness of the PRG.
Finally, by Theorem 2.17, we can compute Y′ in 2O(`) time. By [STV01], given Y′, the above

PRG can be computed in 2O(`2/d(`)) time, which completes the proof.

C.2 A TC0 Error Correctable PSPACE-complete Language

In this section we review the PSPACE-complete language LPSPACE constructed in Section 8 of
[Che19] with nice reducibility properties (see Definition C.7). This language will be used in Ap-
pendix C.3 to prove lower bounds for MA∩ coMA.

We show that LPSPACE is indeed TC0 error correctable. Previously [Che19] only proved that
LPSPACE is NC3 error correctable, so it did not imply circuit lower bounds for NP.

Theorem C.5 ([Che19]). There is a constant d > 0 and a PSPACE-complete language L = LPSPACE

that is paddable, TC0 downward self-reducible, TC0 same-length checkable, and (1 − 1/nd,TC0) error-
correctable.

Remark C.6. [Che19] established the error correctability with a constant error, which requires to
apply a more involved error corrector for polynomials, where the computational bottleneck is
solving linear equations (which we don’t know how to implement even in NC1). Our observation
here is that it indeed suffices to have an error corrector with inverse-polynomial error, so a much
simpler error corrector can be used, which can be implemented in TC0.

C.2.1 Preliminaries

Desired properties. The problem LPSPACE is paddable, downward self-reducible, same-length
checkable and error correctable. We will focus on error correctability in this section, but for com-
pleteness (and for the sake of Appendix C.3), we define all these properties as follows.

Definition C.7. Let L : {0, 1}∗ → {0, 1} be a language and C be a circuit class. We say L is

• paddable, if there is a polynomial-time computable projection Pad such that the following
hold. For all integers 1 ≤ n < m and input x ∈ {0, 1}n, x ∈ L iff Pad(x, 1m) ∈ L, where
Pad(x, 1m) is always an m-bit string.

• C downward self-reducible, if there is a polynomial-size uniform oracle C circuit A with non-
adaptive oracles, such that for all x ∈ {0, 1}n, ALn−1(x) = Ln(x).

• C same-length checkable, if there is a probablistic polynomial-size uniform oracle C circuit
M with nonadaptive oracles, which receives the input x and randomness r, and outputs
{0, 1, ?}, such that for any x,

– M only has oracle gates of fanin |x|;
– if M is given L as the oracle, then Prr[ML(x) = L(x)] = 1;

– for any oracle O, Prr[MO(x) = 1− L(x)] ≤ 1/3.

(We call M the instance checker for L.)

• (δ, C ) error-correctable, if for every oracle O : {0, 1}n → {0, 1} that δ-approximates Ln, there
is a polynomial-size oracle C circuit D such that DO computes Ln exactly.
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A TC0 decoder for Reed-Muller code. We need a TC0 decoder for Reed-Muller code that has few
errors. In particular, given an oracle that is close to a (hidden) low-degree m-variate polynomial P
over a field K, it computes the polynomial P correctly on all inputs.

We also observe that the decoder works correctly when the domain of P is restricted to Fm,
where F is a sub-field of K. In other words, now we can only query the oracle about inputs in Fm,
and we also only want to compute P on this domain. (This observation will be useful for handling
the field-transferring polynomials Ftrans

k,i in Appendix C.2.2.)

Lemma C.8 (Low Depth Decoder for Reed-Muller Code, [AB09, Section 19.3, 19.4]). Let K =
GF(2n), F be a sub-field of K, and m be an integer. Suppose there is a (hidden) degree-d m-variate polyno-
mial P over K, and δ < 1

3(d+1) . For any oracle O : Fm → K such that

Pr
~x∼Fm

[O(~x) = P(~x)] > 1− δ,

there is a TC0 circuit C of size poly(m, n) with nonadaptive O oracle gates, such that for every ~x ∈ Fm,
CO(~x) = P(~x).

Proof. Let ~x ∈ Fm be the input, recall that we want to compute P(~x). We will show a randomized
TC0 oracle circuit CO (with O oracle gates) of size poly(m, n) that computes P(~x) w.p.≥ 2/3. Then
by Adleman’s argument, we can obtain a deterministic TC0 oracle circuit of size poly(m, n) that
correctly computes P, by drawing poly(m, n) samples from CO and taking their majority votes.

We choose a random vector ~v ∼ Fm, and for every t ∈ F we define Q(t) = P(~x + t ·~v). We
randomly select d + 1 values t0, t1, . . . , td ∈ F and compute O(~x + ti ·~v). Let z denote the number
of i’s such that O(~x + ti ·~v) 6= Q(ti), then E[z] ≤ δ(d + 1), and by Markov bound Pr[z = 0] ≥ 2/3.
If z = 0, we use Lagrange polynomial interpolation to compute Q(0) = P(~x), which is in TC0

[HAB02].

C.2.2 Review of the Constructions in [Che19]

The PSPACE-complete problems with nice properties have found many applications to complex-
ity theory [FS04, TV07, San09, Che19]. The high-level idea of constructing such languages is to
engineer the proof of IP = PSPACE [LFKN92, Sha92].

In the following we first give a self-contained but concise exposition of the construction in [Che19],
the interested readers are referred to [Che19] for a more detailed exposition.

We start with a family of multivariate polynomials constructed in [TV07], which are arith-
metizations of TQBF and thus PSPACE-hard to compute. In particular, for every integer n, we
have a list of multivariate polynomials fn,0, fn,1, . . . , fn,m(n), where m(n) = poly(n), such that the
following hold.

(a) Each fn,i is a degree-poly(n) polynomial over a field GF(2n).

(b) Each fn,m(n) is computable in polynomial time.

(c) Each fn,i (for i < m(n)) is computed by one of the following rules from fn,i+1:

1. fn,i(x1, . . . , x`) = fn,i+1(x1, . . . , x`, 0) · fn,i+1(x1, . . . , x`, 1);

2. fn,i(x1, . . . , x`) = 1− (1− fn,i+1(x1, . . . , x`, 0)) · (1− fn,i+1(x1, . . . , x`, 1));

3. fn,i(x1, . . . , xk, . . . , x`) = xk · fn,i+1(x1, . . . , 1, . . . , x`) + (1− xk) · fn,i+1(x1, . . . , 0, . . . , x`).

(The particular rule used to define fn,i is chosen in some way easily computable from n and i.)
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In [Che19], to ensure paddability, each polynomial fn,i is defined to be over the field GF(2pow(n)),
where pow(n) is the smallest power of 2 no less than n. (The reason is that F = GF(22i

) is al-
ways a sub-field of K = GF(22i+1

), while the same does not necessarily hold for F = GF(2i) and
K = GF(2i+1).) Then we fix a bijection φn from GF(2pow(n)) to {0, 1}pow(n), such that for any el-
ement a ∈ GF(2pow(m)) where pow(m) < pow(n), the first pow(m) bits of φn(a) is equal to the
representation φm(a).

The particular method of wrapping these polynomials into one language used in [Che19] is as
follows. We list the polynomials in the following order:

f1,m(1), f1,m(1)−1, . . . , f1,0, f2,m(2), . . . , f2,0, . . . , fn,m(n), . . . , fn,0, . . . ,

and let gk = fn,j be the k-th polynomial in the list. Suppose gk is a d-variate polynomial over
F = GF(2`) where ` = pow(n).

Now we want to wrap g1, g2, . . . , gk into a single polynomial Gk for a fixed k. We treat all
polynomials gi(i ≤ k) as d-variate polynomials over F. If gi has less than d variables, we add
some dummy variables at the end. If gi is not over F, then it is over some sub-field of F, and we
can extend gi as a polynomial over F. Then we interpolate g1, g2, . . . , gk into a polynomial Gk as
follows. For variables ~x ∈ Fd, ~y ∈ Fk,

Gk(~x,~y) =
k

∑
i=1

gi(~x)yi.

It seems that we can now wrap these polynomials Gk into one language that satisfies Theo-
rem C.5. However, if Gk and Gk+1 are over different fields, it is unknown how to compute Gk+1
using an oracle of Gk. To circumvent this issue, [Che19] introduces the field-transferring polynomials
Hint

k,i as follows. Let the underlying fields of Gk and Gk+1 be F = GF(2`) and K = GF(22`) respec-
tively, where ` = pow(n). Let Gk be nk-variate (nk = d + k), and G̃k : Knk → K be the extension
of polynomial Gk over K. We construct nk + 1 oracles Hint

k,0, Hint
k,1, . . . , Hint

k,nk
. The i-th oracle Hint

k,i

receives an input ~x ∈ Ki × Fnk−i, and outputs G̃k(~x). Therefore Hint
k,0 is actually the same function

as Gk, and Hint
k,nk

is the polynomial G̃k over K. Downward self-reducibility still holds:

• We can use polynomial interpolation to compute each Hint
k,i given an oracle of Hint

k,i−1, which is
in TC0 by Lagrange interpolation formula and the iterated multiplication algorithm [HAB02].

• For every i ≤ k, we can compute the polynomial gi over the field K given an oracle of
Hint

k,nk
. We compute gk+1 by one of the three rules in Item (c). Then it is easy to compute the

polynomial Gk+1.

Now we can wrap the polynomials Gk and Hint
k,i into a single language as follows.

• For every integer k ≥ 1, we define a function Fk that encodes the polynomial Gk. In particu-
lar, for~z ∈ Fnk and r ∈ {0, 1}`, define

Fk(~z, r) = 〈φn(Gk(~z)), r〉,

where the inner product is over GF(2).

We note that Fk can be seen as a Boolean function on e(k) = ` · (nk + 1) input bits.
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• For every integer k ≥ 1, if Gk and Gk+1 are over different fields F = GF(2`) and K =
GF(22`), then for every 0 ≤ i ≤ nk, we similarly define a function Ftrans

k,i that encodes Hint
k,i . In

particular, for~z ∈ Ki ×Fnk−i and r ∈ {0, 1}2`, define

Ftrans
k,i (~z, r) = 〈φn+1(Hint

k,i (~z)), r〉,

where the inner product is over GF(2).

We also note that Ftrans
k,i can be seen as a Boolean function on e(k, i) = ` · (i + nk + 2) inputs.

Furthermore, e(k) < e(k, 0) < e(k, 1) < · · · < e(k, nk − 1) < e(k, nk) < e(k + 1).

• For an input x ∈ {0, 1}m, let k be the largest k such that e(k) ≤ m, and i be the largest i such
that e(k, i) ≤ m. If Gk and Gk+1 are over different fields, we define x ∈ LPSPACE if and only if
Ftrans

k,i (x′) = 1, where x′ is the first e(k, i) bits of x. Otherwise, we define x ∈ LPSPACE if and
only if Fk(x′) = 1, where x′ is the first e(k) bits of x.

C.2.3 LPSPACE is TC0 Error Correctable

Now we are ready to prove Theorem C.5.

Proof of Theorem C.5. We only need to prove that LPSPACE is (1− 1/nd,TC0) error correctable for
some constant d > 0. Other properties are already proved in Section 8 of [Che19].

Let O : {0, 1}m → {0, 1} be an oracle that (1− 1/md)-approximates LPSPACE
m . There are two

cases:

1. Suppose LPSPACE
m computes Fk for some k. Let nk and ` be defined as in Appendix C.2.2, and

F = GF(2`). By Markov bound, for 1− 1/md−1 fraction of inputs~z ∈ Fnk , we have

Pr
r
[O(~z, r) = 〈φ(Gk(~z)), r〉] ≥ 1− 1/m. (15)

We say an input~z is good if (15) holds. If some~z ∈ Fnk is good, then for every 1 ≤ i ≤ `, we
can compute the i-th bit of φ(Gk(~z)) by the following algorithm:

We pick r ∼ U` uniformly at random, and compute φ(Gk(~z)) = O(~z, r)⊕O(~z, r ⊕ ei),
where ei is the `-bit string with 1 on the i-th bit and 0 everywhere else. We repeat this
procedure poly(nk, `) times and take the majority of the results.

By Adleman’s argument, we can fix the randomness used by the above algorithm, and obtain
a TC0 oracle circuit C with O oracle gates that correctly computes φ(Gk(~z)) for every good
~z. In other words, CO computes φ(Gk(~z)) on a (1 − 1/md−1) fraction of inputs ~z. Since
Gk : Fnk → F is a degree-poly(m) polynomial, if d is large enough, we can use Lemma C.8
to compute Gk in the worst-case by a TC0 oracle circuit with O oracle gates. It is easy to use
this circuit to compute Fk.

2. Suppose LPSPACE computes Ftrans
k,i for some k, i. Let nk, ` be defined as in Appendix C.2.2,

F = GF(2`) and K = GF(22`). Similarly we have a TC0 oracle circuit with O oracle gates that
computes Hint

k,i on a (1− 1/md−1) fraction of inputs. We notice that Hint
k,i : Ki × Fnk−i → K

is a polynomial over K. Moreover, since K is a quadratic extension of F, there is an element
α ∈ K such that for any z ∈ K, there are elements x, y ∈ F such that z = x · α + y. We write
Hint

k,i , in an equivalent form, as a polynomial from Fnk+i to K: for ~x,~y ∈ Fi and~z ∈ Fnk−i,

Hint
k,i (~x,~y,~z) = Hint

k,i (~x · α +~y,~z),
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where · denotes element-wise scalar multiplication. Then we can still use Lemma C.8 to
compute Hint

k,i in the worst-case. It is then easy to compute Ftrans
k,i in the worst-case.

C.3 A.a.e. Average-Case Lower Bounds for MA∩ coMA Against Low Depth Circuits

Finally, we prove Theorem 4.5. For that purpose, we need a hard problem in PSPACE constructible
by direct diagonalization.

Lemma C.9 ([Che19], folklore). There is a universal constant c such that for all good resource func-
tion S(n) ≤ 2o(n), there is a language Ldiag ∈ SPACE[S(n)c] such that for all sufficiently large n,
heur0.99-DEPTH(Ldiag

n ) > log S(n).

Let LPSPACE be the PSPACE-complete problem in Theorem C.5. We define a promise problem
L′, which is essentially a padded version of LPSPACE. In particular, L′ = (L′YES, L′NO) where

L′YES = {〈x, 1s〉 : x ∈ LPSPACE and DEPTH(LPSPACE
|x| ) ≤ log s},

L′NO = {〈x, 1s〉 : x 6∈ LPSPACE and DEPTH(LPSPACE
|x| ) ≤ log s}.

The following theorem follows from the same-length checkability of LPSPACE.

Lemma C.10. L′ is in PromiseMA ∩ coPromiseMA. Moreover, on inputs of length n, the predicate depth
of L′ is O(log n).

Proof. Let the input be 〈x, 1s〉 ∈ L′YES ∪ L′NO. Suppose Arthur wants to decide whether x ∈
LPSPACE. Merlin sends Arthur a circuit C of depth ≤ log s and size poly(s) which is supposed to
decide LPSPACE

|x| (such a circuit exists by the promise of L′). Arthur then runs the instance checker
MC for LPSPACE on input x and outputs the result of the instance checker. By the definition of
instance checkers:

• if x ∈ LPSPACE and the circuit C indeed decides LPSPACE
|x| , then Arthur outputs LPSPACE(x)

w.p. 1;

• for any circuit C, Arthur outputs 1− LPSPACE(x) w.p. at most 1/3.

Therefore this protocol satisfies MA∩ coMA promise.
This protocol runs in poly(|x|, s) time. Since M is a TC0 nonadaptive oracle circuit, the predi-

cate has depth O(log(|x|+ s)).

Now we are ready to prove Theorem 4.5. The proof follows [Che19, Section 7].

Reminder of Theorem 4.5. There is a universal constant d ∈ N such that the following hold. For all
integers a > 0, there are constants b, t > 0, and a language L ∈ (MA ∩ coMA)TIME[nb]/1, such that for
all sufficiently large τ ∈N and n = 2τ, either

• heur(1−n−d)-DEPTH(Ln) > a · log n, or

• heur(1−m−d)-DEPTH(Lm) > a · log m, for some m ∈ (nt, 2nt) ∩N.

Moreover, the predicate depth of L is ≤ b log n.

Proof. By Lemma C.9, there is a language Ldiag ∈ PSPACE such that heur0.99-DEPTH(Ldiag) >
a · log n. Since LPSPACE is PSPACE-complete and paddable, there is a constant t such that length-n
instances of Ldiag reduces to length-nt instances of LPSPACE.

Let L′ be the promise problem in Lemma C.10.
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The language L. We first define the language L. On input x, let n = |x| and m0 = nt. We are
going to define some input lengths n as good. Our advice bit αn is set to 1 if n is good, and to 0
otherwise. Let D be a large enough constant. The particular definition is as follows.

• If n is a power of 2, and DEPTH(LPSPACE
m0

) ≤ (a + D) log m0, then n is good. We directly
define Ln = Ldiag

n . To see Ldiag on input length n can be computed by an (MA ∩ coMA)
protocol, we run the reduction from Ldiag to LPSPACE on x, and obtain a length-nt instance
x′ of LPSPACE. We then use Lemma C.10 to decide whether x ∈ Ldiag by checking whether
〈x′, 1ma+D

0 〉 is in L′YES or L′NO.

• If there is some integer k such that

– n = 2k + n1 for some 1 ≤ n1 < 2k,
– DEPTH(LPSPACE

2k ) > (a + D)k, and

– n1 = max{n′ : n′ < 2k, and DEPTH(LPSPACE
n′ ) ≤ (a + D)k},

then n is good. Let x′ be the first n1 bits of x, we treat x′ as an input to LPSPACE, and check
whether 〈x′, 12(a+D)k〉 is in L′YES or L′NO. We define x ∈ L if and only if x′ ∈ LPSPACE.

• Other input lengths are not good, and we reject every input of such lengths.

The (MA ∩ coMA)/1 protocol has running time O(nb) and predicate depth b log n, for some large
enough constant b. (In particular, the reduction from Ldiag to LPSPACE does not count into the depth
of the predicate, see Definition 2.1.)

The lower bound. Now we establish the desired lower bound for L. Consider some large
enough τ ∈N, let n = 2τ and m0 = nt. There are two cases:

• If DEPTH(LPSPACE
m0

) ≤ (a + D) log m0, then input length n is good, and Ln = Ldiag
n . By

Lemma C.9, if n is large enough, then heur(1−n−d)-DEPTH(Ldiag
n ) > a log n.

• If DEPTH(LPSPACE
m0

) > (a + D) log m0, let

n1 = max{n′ : n′ < m0, and DEPTH(LPSPACE
n′ ) ≤ (a + D) log m0}.

Then input length m = m0 + n1 is good, and m ∈ (nt, 2nt). By the definition of Lm, it suffices
to show

heur(1−m−d)-DEPTH(LPSPACE
n1

) > (a + 1) log m0 > a log m.

By definition of n1, we have

DEPTH(LPSPACE
n1+1 ) > (a + D) log m0.

Since LPSPACE is TC0 downward self-reducible, there is a constant d1 such that

DEPTH(LPSPACE
n1

) > (a + D− d1) log m0.

Since LPSPACE is (1− 1/nd,TC0) error-correctable, there is a constant d2 such that

heur(1−n−d
1 )-DEPTH(LPSPACE

n1
) > (a + D− d1 − d2) log m0.

Since 1− n−d
1 < 1−m−d, if we set D > d1 + d2 + 1, then

heur(1−m−d)-DEPTH(Lm) > a log m.

In conclusion, for every large enough τ ∈ N, let n = 2τ, then either heur(1−n−d)-DEPTH(Ln) >

a log n, or there is some m ∈ (nt, 2nt) ∈N such that heur(1−m−d)-DEPTH(Lm) > a log m.
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D The General Connection Between Strong Average-Case Lower Bounds
and CAPP Algorithms

In this section we prove the general versions of Theorem 1.1, Theorem 4.2, and Theorem 5.1.
They are the most general versions of our results and are also useful for the PRG constructions in
Section 6. As you will see, these general versions involve very technical statements. We choose not
to present them in the main body of the paper because we want to present the cleanest version
first.

Throughout the section, we assume all functions are good resource functions. Recall that f :
N→N is a good resource function if the following hold:

• f is nondecreasing, and

• there is a polynomial time algorithm that on input 1n, outputs the value of f (n).

Additionally, we say a function f is smooth, if there is a constant c such that f (2n) ≤ c f (n) for
every n ≥ 1.

D.1 Certifying Depth hardness Implies Strong Average-case Circuit Lower Bounds

We first state without proof the following generalization of Theorem 4.5.

Theorem D.1. Let S(n) = 2o(n) be a good resource function such that for each n ∈ N, S(n) is a power
of 2, and log S(n) is smooth. There are universal constants d, t ∈ N, T(n) = S(S(n)O(1))O(1), and a
language L ∈ (MA∩ coMA)TIME[T(n)]/1, such that for all sufficiently large τ ∈N and n = 2τ, either

• heur(1−n−d)-DEPTH(Ln) > log S(n), or

• heur(1−m−d)-DEPTH(Lm) > log S(m), for some m ∈ (S(n)t, 2S(n)t) ∩N.

Moreover, the predicate depth of L is ≤ log T(n).

We first prove the most general version of Theorem 4.2, which is stated below.

Theorem D.2 (Certifying Depth Hardness to Average-case Circuit Lower Bounds). Let dcert(n) ≤ n
be a depth parameter, S(n) be a size parameter, and `(n) ≤ n be a function. Suppose

1. `(n), dcert(n) and log S(n) are smooth functions,

2. the function `(n)2/dcert(`(n)) is nondecreasing, and

3. for every n ≥ 1, S(S(S(n)K)K)K ≤ 2dcert(`(n)), where K is a large constant depending on the func-
tions `, S and dcert.32

Let

T(n) = exp
(

K · `(n)2

dcert(`(n))

)
.

Suppose NE can certify dcert(n)-depth hardness, then NTIME[T(n)] cannot be (1/2+ 1/S(n))-approximated
by circuits of depth log S(n). The same holds for (N∩coN)TIME[T(n)]/1 in place of NTIME[T(n)].

Proof Sketch. Let C, K′ be large enough constants. Let S′(n) be a function that we define later. We
assume that log S′(n) is smooth, and for every n ∈ N, S′(n) is a power of 2. We also assume that
S′(S′(S′(n)K′)K′)K′ ≤ 2dcert(`(n)). The following proof follows closely with the proof of the first Item
of Theorem 4.2 in Section 4.

32Actually, the constant K only depends on the “smoothness” of these functions, i.e. the constant c such that `(2n) ≤
c`(n), dcert(2n) ≤ cdcert(n) and S(2n) ≤ S(n)c.
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Step I: Construction of a mildly-average-case hard language Lmild. In the first step, we construct
a problem Lmild that cannot be (1− 1/poly(n))-approximated by circuits of depth C · log S′(n).
This corresponds to Theorem 4.6.

Suppose NE can certify dcert(n)-depth hardness. Let ` ∈ N, sseed = O(`2/dcert(`)) and Sout =
2c·dcert(`) for some small constant c. By Theorem 4.4, there is an i.o. NPRG G` that stretches sseed
random bits into Sout pseudorandom bits. For infinitely many `’s (which we call good for NPRG),
G` 1/Sout-fools circuits of depth log(Sout).

Let d, t > 0 be absolute constants, C1 be a large enough constant. Let TMA(n) = S′(S′(n)C1)C1 ,
and Lhard ∈ (MA ∩ coMA)TIME[TMA(n)]/1 be a hard problem (guaranteed by Theorem D.1) with
predicate depth log TMA(n) such that, for every large enough τ ∈N and n = 2τ,

• either heur(1−n−d)-DEPTH(Lhard
n ) > C log S′(n),

• or there is some m ∈ (S′(n)t, 2S′(n)t) such that heur(1−m−d)-DEPTH(Lhard
m ) > C log S′(m).

The language Lmild is defined as follows. On input length ñ = pair(n, `PRG) (recall the pair
function was defined in Section 4.2), we reject every input if any of the following hold:

• `PRG is not good for NPRG (this criterion is encoded by an advice bit);

• `PRG > `(n), i.e. `PRG is too large and we cannot afford 2O(`2
PRG/dcert(`PRG)) running time; or

• log(Sout) = c · dcert(`PRG) < log TMA(n), i.e. `PRG is too small to derandomize Lhard
n .

Otherwise we say the input length ñ is non-trivial. Let x be the first n input bits. We treat x as an
input to Lhard

n , and accept x if and only if x ∈ Lhard. In particular, we use G`PRG to derandomize the
predicate of Lhard

n . Let sseed = O(`(n)2/dcert(`(n))), then Lmild ∈ (N∩coN)TIME[2O(sseed)]/2.
It remains to prove the circuit lower bound. For every `PRG good for NPRG, let n be the

smallest power of 2 such that `PRG ≤ `(n). Then there is some m ∈ {n} ∪ ((S′(n)t, 2S′(n)t) ∩N)
such that Lhard

m cannot be (1−m−d)-approximated by circuits of C log S′(m) depth. We check that
the input length m̃ = pair(m, `PRG) is non-trivial:

• By monotonicity of `(·), we have `PRG ≤ `(m).

• Since `(n) is a smooth function, we have `PRG > `(n/2) ≥ c1 · `(n) for some constant c1 > 0.
Since dcert(n) is also a smooth function, we have c · dcert(`PRG) ≥ c2 · dcert(`(n)) for some con-
stant c2 > 0. Recall that for some large enough constant K′, TMA(m) ≤ S′(S′(S′(n)K′)K′)c2K′ ≤
2c2·dcert(`(n)) ≤ 2c·dcert(`PRG). Therefore log(Sout) ≥ log TMA(m).

Thus Lmild
m̃ essentially computes Lhard

m . Since m̃ = pair(m, `PRG) ≤ O(m`2
PRG), and `PRG ≤ `(n) ≤

m, we have m = Ω(m̃1/3). It follows that

heur(1−m̃−d)-DEPTH(Lmild
m̃ ) ≥ C log S′(m̃1/3).

Step II: Mild-to-strong hardness amplification. We amplify Lmild to a strongly inapproximable
language Lstrong. This corresponds to Theorem 4.7.

Let m = nd+2. We use a (1/2− 1/S(m), n−d)-black-box hardness amplification (Amp,Dec) as
in Theorem 2.16, from input length n to input length O(n · nd · log(S(m))) ≤ m. Let the new lan-
guage Lstrong be AmpLmild

. By padding, we assume the language Lstrong receives exactly m = nd+2

inputs. It follows by Theorem 2.16 that Lstrong cannot be (1/2+ 1/S(m))-approximated by circuits
of depth C log S′(n1/3)−O(log S(m)). We also have that Lstrong ∈ (N∩coN)TIME[poly(m, 2sseed)]/2,
where sseed = O(`(n)2/dcert(`(n))).

63



Finale. Let S′(n) be the smallest power of 2 no less than S(n3(d+2)). Since log S(n) is smooth, it
follows that log S′(n) is also smooth. Let K be large enough, then S′(S′(S′(n)K′)K′)K′ ≤ S(S(S(n)K)K)K ≤
2dcert(`(n)). It follows that for infinitely many m ∈N, Lstrong

m cannot be (1/2+ 1/S(m))-approximated
by circuits of depth

C log S′((m1/(d+2))1/3)−O(log S(m)) ≥ log S(m).

Since the function `(n)2/dcert(`(n)) is monotone, we have

T(m) = 2O(`(n)2/dcert(`(n))) ≤ 2O(`(m)2/dcert(`(m))),

thus Lstrong ∈ (N∩coN)TIME[T(n)]/2.
We can use enumeration tricks to put Lstrong into NTIME[T(n)] and (N∩coN)TIME[T(n)]/1 re-

spectively.

D.2 Non-trivial CAPP Algorithms Imply Strong Average-case Circuit Lower Bounds

We need the following theorem implicit in [Wil13, Wil16]. We provide a proof in Appendix E.1.

Theorem D.3. Let f (n) = ω(log n) be a good resource function. Suppose Gap-UNSAT with gap
1− 1/n10 for depth- f (n) circuits can be solved in nondeterministic 2n/nω(1) time. Then NE can certify
0.99 f (n) depth.

Recall that the complexity of a S̃umδ ◦ C circuit is the maximum of its size and the sum of
absolute values of its coefficients. Now we are ready to provide a proof sketch of Lemma 6.2,
which is the most general version of Theorem 5.1.

Reminder of Lemma 6.2. Let C be a typical circuit class. Let SCMD, Scert : N → N be good resource
functions such that SCMD(n) ≤ 20.1n, and Scert(n) = nω(1). There are universal constants δ > 0 and
K > 4 such that, if the following hold:

• CMD has S̃umδ ◦ C circuits of complexity SCMD(n), and

• the Average-Product for 4 C circuits of size S(n) = SCMD(Scert(n)K)K can be estimated in T(n) =
2n/S(n) time, within error 1/S(n).

Then NE can certify log Scert(n) depth hardness.

Proof Sketch. We show that Gap-UNSAT problem with gap 1− 1/n10 for circuits of depth 2 log Scert(n)
can be solved in 2n/nω(1) time. By Theorem D.3, NE can certify log Scert(n) depth hardness.

Given a circuit C of depth 2 log Scert(n), where we want to distinguish between C is a tautology,
and C has at most 2n/n10 satisfying assignments. We apply Theorem 1.16 to C, and obtain a 2-SAT
instance F on variable set Y ∪ Z, where |Y| = O(n) and |Z| = `proof = poly(Scert(n)). The instance
F has nclause = poly(Scert(n)) clauses, and there are absolute constants cPCPP > sPCPP such that
the following hold.

• If C is a tautology, there are depth-O(log Scert(n)) circuits T̃1, T̃2, . . . , T̃`proof such that for every
x ∈ {0, 1}n, the assignment Y = Enc(x) and Z = π̃(x) = T̃1(x) ◦ T̃2(x) ◦ · · · ◦ T̃`proof (x)
satisfies at least a cPCPP fraction of clauses.

• If C(x) = 0 for some x ∈ {0, 1}n, then OPT(FY=Enc(x)) ≤ sPCPP.
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Since NC1 ⊆ ⊕L and CMD has S̃umδ ◦C circuits of complexity SCMD(n), if C is a tautology, then
each T̃i can also be implemented by a S̃umδ ◦C circuit of complexity Scompl(n) = SCMD(Scert(n)K′),
where K′ is a large enough constant.

For each i ∈ [`proof ], we guess a S̃umδ ◦ C circuit Ti of complexity Scompl(n), with the hope that
Ti = T̃i. Then we perform the following operations.

• First, we verify that each Ti is a valid S̃umδ ◦ C circuit. Since the complexity of Ti is at most
Scompl(n) and we can estimate the Average-Product of 4 C circuits within error 1/Scompl(n)5,
we can use Lemma 5.3. For each Ti, the time complexity for this step is O(T(n) · Scompl(n)4).

• Then we estimate the accept probability of each clause, within error Scompl(n)2 · (1/Scompl(n)5) =
o(1). For each clause, the time complexity for this step is O(T(n) · Scompl(n)2).

• After that, we can distinguish between C is a tautology and C has at most 2n/n10 satisfying
assignments, accordingly.

If C is a tautology and the S̃umδ ◦C circuits {Ti}we guessed are correct, this algorithm accepts
C. If C has at most 2n/n10 satisfying assignments, this algorithm rejects C regardless of the circuits
T1, . . . , T`proof we guessed.

Let K be a large enough constant, T(n) = 2n/Scompl(n)K. The time complexity of our nonde-
terministic Gap-UNSAT algorithm is

O(nclause + `proof) · T(n) · Scompl(n)4 ≤ 2n/nω(1).

Finally, we are ready to prove Theorem D.4, which is most general version of Theorem 1.1.

Theorem D.4 (Non-trivial CAPP Algorithms Imply Strong Average-case Circuit Lower Bounds).
Let C be a typical circuit class such that C circuits of size S can be implemented by (general) circuits of
depth O(log S). Let `, S, Scert : N → N be good resource functions, and K be a large enough constant
depending on `, S.33 Suppose that

• S(n) = nω(1);

• `(n), log S(n) and log Scert(n) are smooth;

• the function `(n)2/ log Scert(`(n)) is nondecreasing; and

• Scert(`(n)) ≥ S(S(S(n)K)K)K.

Let
SCAPP(n) = S(Scert(n)K)K, and T(n) = exp

(
O
(
`(n)2/ log Scert(`(n)

))
.

Suppose the CAPP problem for AND4 ◦C circuits of SCAPP(n) size can be solved in 2n/SCAPP(n) time,
then NTIME[T(n)] and (N∩coN)TIME[T(n)]/1 cannot be (1/2 + 1/S(n))-approximated by C circuits
of S(n) size.

Proof. We simply combine Lemma 6.2 and Theorem D.2. Let K′ be some large enough constant
depending on `, S.

We assume DCMD can be (1/2 + 1/S(n))-approximated by C circuits of S(n) size (otherwise
the theorem is trivial). Let δ be the constant in Lemma 6.2, then by Lemma 3.1, CMD has S̃umδ ◦C

33Similar as in Theorem D.2, this constant K also only depends on the “smoothness” of `(n) and log S(n).
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circuits of complexity SCMD(n) = S(n)K′ . We also assume that C circuits of size S(n) can be
implemented by formulas of size SNC(n) = S(n)K′ .

The problem of estimating the Average-Product for 4 C circuits of size S′CAPP(n) = SCMD(Scert(n)K′)K′

within error 1/S′CAPP(n) is equivalent to the CAPP problem for AND4 ◦C circuits of size S′CAPP(n).
When K is large enough, we have S′CAPP(n) ≤ SCAPP(n), thus the problem is solvable in 2n/S′CAPP(n)
time. Then by Lemma 6.2, NE can certify log Scert(n)-depth hardness.

Let dcert(n) = log Scert(n), then dcert(n) is a smooth function, and the function `(n)2/dcert(`(n))
is nondecreasing. For every n ≥ 1, SNC(SNC(SNC(n)K′)K′)K′ ≤ Scert(`(n)). By Theorem D.2,
NTIME[T(n)] and (N∩coN)TIME[T(n)]/1 cannot be (1/2 + 1/SNC(n))-approximated by circuits
of depth log SNC(n), which contains C circuits of size S(n).

To conclude this section, we formulate the best NE lower bounds provable by our techniques.
We define a family of nice functions f . If f is nice and there exist corresponding CAPP algo-

rithms for AND4 ◦ C circuits, then we can use Theorem D.4 to show that NE cannot be (1/2 +
1/ f (n))-approximated by C circuits of f (n) size.

Definition D.5. A good resource function f : N → N is nice if f (n) = nω(1), log f (n) is smooth,
and for every integer d ≥ 1, the following are true:

• n/ log f ( f ( f (n)d)d)d is a nondecreasing function, and

• log f ( f ( f (n2)d)d)d is a smooth function.

Reminder of Lemma 6.3. Let S : N → N be a nice function. If for every constant d ≥ 1 and
SCAPP(n) = S(S(S(S(n2)d)d)d)d, the CAPP problem for AND4 ◦ C circuits of size SCAPP(n) can be
solved in 2n/SCAPP(n) time, then (NE∩ coNE)/1 cannot be (1/2 + 1/S(n))-approximated by C circuits
of size S(n).

Proof Sketch. This is immediate from Theorem D.4 by setting `(n) = d
√

ne and Scert(n) = S(S(S(n2)K)K)K.

E Missing Proofs

In this section, we provide the missing proofs in the paper.

E.1 Proof of Theorem D.3

We first prove Theorem D.3 (restated below). Note that the proof below essentially follows the
same idea of the ACC0 witness lower bounds of [Wil16].

Reminder of Theorem D.3. Let f (n) = ω(log n) be a good resource function. Suppose Gap-UNSAT
with gap 1− 1/n10 for depth- f (n) circuits can be solved in nondeterministic 2n/nω(1) time. Then NE can
certify 0.99 f (n) depth.

Proof. By the nondeterministic time hierarchy theorem [Žák83], there is a unary language L ∈
NTIME[2n] \ NTIME[2n/n10]. We apply the highly efficient PCP system of [BV14] to L, such that
the following are true for input 1n.

• The PCP verifier VPCP uses `(n) = n + O(log n) random bits and receives a proof oracle
π : {0, 1}`(n) → {0, 1}.
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• VPCP first computes a function Query : {0, 1}`(n) → ({0, 1}`(n))t to map the random bits to
the locations of π that we query. Here t = poly(n) is the number of queries. Moreover, Query
is a projection.

• VPCP next computes a function Dec : {0, 1}t → {0, 1} to decide whether it accepts the in-
put and the proof. Let r ∈ {0, 1}`(n) be the randomness and (q1, q2, . . . , qt) = Query(r), if
Dec(π(q1), π(q2), . . . , π(qt)) = 1 then VPCP accepts, otherwise it rejects. Moreover, Dec is a
3-CNF (a.k.a. AND ◦OR3).

• If 1n ∈ L, then there is some proof π : {0, 1}`(n) → {0, 1} such that VPCP accepts with
probability 1. Otherwise, regardless of the proof, VPCP accepts with probability at most
1/`(n)10 over the randomness.

It follows that L has an (ordinary) NE verifier V(x, y) that works as follows. It treats y (y is
assumed to be a string of length 2`(n)) as the proof π for VPCP, enumerates every possible random-
ness and computes the accept probability of VPCP. It then accepts if this probability is 1 and rejects
otherwise. Clearly, V runs in 2npoly(n) time.

For the sake of contradiction, we assume V has witnesses of 0.99 f (`(n)) depth. (That is, the
witness y, as a truth table of a function over `(n) bits, can be computed by a circuit of 0.99 f (`(n))
depth.) The goal is to use the Gap-UNSAT algorithm to speed up V and contradict the nondeter-
ministic time hierarchy.

On the input x = 1n, we first guess a circuit C of depth 0.99 f (`(n)) on `(n) bits, and hope that
the truth table of C is the correct proof π for x. Then we compute the circuit

E(r) = ¬Dec(C(Query(r)1), C(Query(r)2), . . . , C(Query(r)t)),

which has depth 0.99 f (`(n)) + O(log n) and `(n) input bits. Since 0.99 f (`(n)) + O(log n) ≤
f (`(n)), we can apply the Gap-UNSAT algorithm to E. For a particular randomness r ∈ {0, 1}`(n),
if VPCP accepts r then E(r) = 0, otherwise E(r) = 1. We then accept x if E has no satisfying
assignments, and reject x if E has at least (1− 1/`(n)10) · 2`(n) satisfying assignments.

If x ∈ L, then there is a circuit C such that E has no satisfying assignments, and we accept
x. If x 6∈ L, then for every circuit C, E has at least (1− 1/`(n)10) · 2`(n) satisfying assignments,
and we reject x. The whole algorithm runs in 2`(n)/`(n)ω(1) < 2n/n10 time, contradicting the
nondeterministic time hierarchy.

Therefore, the verifier V does not have witnesses of 0.99 f (`(n)) depth. Although V requires
a proof of length 2`(n) (rather than 2n), by a simple padding we can construct a verifier V ′ that
receives a proof of length 2n, and certifies 0.99 f (n) depth.

E.2 Proof of Lemma 5.3

Next we prove Lemma 5.3, which is an adaption of [CW19, Lemma 6.1]. Recall that for a function
f : {0, 1}n → R, bin f is the Boolean function closest to f .

Reminder of Lemma 5.3. For S ∈ N, suppose we are given S reals {αi}i∈[S], S C circuits {Ci}i∈[S],
and a parameter ε < 0.01. Let αtot = ∑i∈[S] |αi| and δ = ε2

2(αtot+1)4 . Suppose the Average-Product of 4 C

circuits on n bits can be estimated within error δ in T(n) time. Let f = ∑S
i=1 αi · Ci. There is an algorithm

A running in O(T(n) · (S + 1)4) time such that:

• If ‖ f − bin f ‖∞ ≤ ε, then A always accepts;
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• if ‖ f − bin f ‖2 ≥ 3ε, then A always rejects;

• otherwise, A can output anything.

Proof. We define a polynomial P(z) = z2(1− z)2, and let

p = E
x∼Un

[P( f (x))].

In the proof of Lemma 6.1 of [CW19], it is shown that:

• If ‖ f − bin f ‖∞ ≤ ε, then p ≤ ε2 · (1 + 0.01)2;

• if ‖ f − bin f ‖2 ≥ 3 · ε, then p ≥ (3/2)2 · ε2.

Therefore, it suffices to estimate p within error ε2/2.
For convenience, we denote the circuit 1− f as ∑S+1

i=1 βi · Di. That is:

• For i ∈ [S], βi = −αi, Di = Ci;

• βS+1 = 1, and DS+1 is the circuit that outputs the constant 1.

We have

p = E
x∼Un

( S

∑
i=1

αi · Ci(x)

)2

·
(

S+1

∑
i=1

βi · Di(x)

)2


=
S

∑
i=1

S

∑
j=1

S+1

∑
k=1

S+1

∑
l=1

(αiαjβkβl) · E
x∼Un

[
Ci(x)Cj(x)Dk(x)Dl(x)

]
. (16)

For each 1 ≤ i, j ≤ S, 1 ≤ k, l ≤ S + 1, we estimate

E
x∼Un

[
Ci(x)Cj(x)Dk(x)Dl(x)

]
within error δ = ε2

2(αtot+1)4 . Therefore we can estimate (16) within error

S

∑
i=1

S

∑
j=1

S+1

∑
k=1

S+1

∑
l=1
|αiαjβkβl | · δ ≤ (αtot + 1)4 · δ ≤ ε2/2.

The algorithm runs in O
(
T(n) · (S + 1)4) time.

Remark E.1. It is easy to see that if our Average-Product estimation algorithm is nondeterministic,
then the algorithm A in Lemma 5.3 is also nondeterministic, and also runs in O(T(n) · (S + 1)4)
time.
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E.3 Proof of Lemma 6.4

To prove Lemma 6.4, we need the following construction of sets with small pairwise intersections,
a.k.a. designs.

Lemma E.2 ([Tre01]). For all integers m, `, and a ≤ `, there is a family of m sets S1, S2, . . . , Sm ⊆ [t]
(denoted as an (m, t, `, a)-design), such that

• t = O(`2 ·m1/a/a);

• for every i, |Si| = `;

• for every i 6= j, |Si ∩ Sj| ≤ a.

Moreover, the family is constructible in deterministic poly(m, 2t) time.

Now we are ready to prove Lemma 6.4.

Reminder of Lemma 6.4. Let m, `, a be integers such that a ≤ `, and t = O(`2 · m1/a/a). Let C be
a circuit class closed under negation. There is a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the
following hold. For any function Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot
be (1/2 + ε/m)-approximated by C ◦ Juntaa circuits (where the top C circuit has size S), then G(Y,Ut)
ε-fools every C circuit (of size S). That is, for any C circuit C (of size S),∣∣∣∣ Pr

s∼Ut
[C(G(Y, s)) = 1]− Pr

x∼Um
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(m, 2t) time.

Proof. Let S1, S2, . . . , Sm be an (m, t, `, a)-design specified in Lemma E.2, the PRG is defined as

G(Y, w) = Y(w|S1) ◦Y(w|S2) ◦ · · · ◦Y(w|Sm),

where w|S is the |S|-bit string obtained by taking the bits in w with indices in S.
Suppose some C circuit C distinguishes G(Y,Ut) between Um with advantage≥ ε. Let w ∼ Ut.

A standard hybrid argument implies that there is some 1 ≤ i ≤ m such that C distinguishes the
following two distributions with advantage ≥ ε/m:

Di−1 =Y(w|S1) ◦Y(w|S2) ◦ · · · ◦Y(w|Si−1) ◦ Um−i+1, and
Di =Y(w|S1) ◦Y(w|S2) ◦ · · · ◦Y(w|Si) ◦ Um−i.

Since C is closed under negations, we may assume Pr[C(Di−1) = 1] ≥ Pr[C(Di) = 1] + ε/m.
We construct a randomized C ◦ Juntaa circuit C′ that (1/2+ ε/m)-approximates Y, contradict-

ing the hardness of Y. Given a random input x ∼ U`, we fix a random seed w as follows. We let
w|Si = x and the other bits of w are independent and uniform random bits. It is easy to see that
the distribution of w is exactly Ut. We also choose z ∼ Um−i+1, to form an input

input = Y(w|S1) ◦Y(w|S2) ◦ · · · ◦Y(w|Si−1) ◦ z.

Then we let C′(x) = C(input)⊕ zi.
We show that C′ is correct w.p. ≥ 1/2 + ε/m, where the probability space is over the random

input x and the internal randomness of C′. Let

pright = Pr[C(input) = 1 | zi = Y(x)], and pwrong = Pr[C(input) = 1 | zi 6= Y(x)].
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Then
Pr[C(Di) = 1] = pright, and Pr[C(Di−1) = 1] =

1
2
(pwrong + pright),

and

Pr[C′(x) = Y(x)] =
1
2

pwrong +
1
2
(1− pright)

=
1
2
+ Pr[C(Di−1) = 1]− Pr[C(Di) = 1]

≥1
2
+ ε/m.

By averaging, we can fix the internal randomness of C′ to obtain a deterministic circuit C′ that
(1/2 + ε/m)-approximates Y. Since for each j < i, |Sj ∩ Si| ≤ a, each bit of input depends on at
most a bits in x. It follows that C′ is a valid C ◦ Juntaa circuit, contradicting the hardness of Y.

E.4 Proof of Theorem 7.4

We present the #SAT algorithm for PTF gates in [BKK+19, Section 3], and verify that it also works
for the AND of 4 PTF gates.

First, we need to define linear decision trees, which is crucial to the algorithm.

Definition E.3. A linear decision tree (over n variables z1, z2, . . . , zn ∈ Z) is a decision tree such that
the following hold.

• Every leaf node is labeled with an output (in some output space).

• Every nonleaf node is labeled with a linear inequality ∑n
i=1 wizi ≥ θ, where wi and θ are

parameters of the node. Furthermore, every nonleaf node has a Yes child and a No child.

• Given an input ~z = (z1, z2, . . . , zn) ∈ Zn, we start at the root and proceed until we reach a
leaf node. At every nonleaf node, if the linear inequality labeled on the node is satisfied, we
go to its Yes child, otherwise we go to its No child. At a leaf node, we output the label of that
node and stop.

Given a linear decision tree T and an input ~z, we denote T(~z) as the output (i.e. label of the
visited leaf) of the query algorithm.

We need the following lemma from [BKK+19, KLMZ17], which constructs linear decision trees
computing the number of common satisfying assignments of 4 PTF gates.

Lemma E.4. Let k be an integer, r = ∑k
i=0 (

m
i ) be the number of different monomials over m variables of

degree ≤ k. There is a randomized algorithm that on input m, produces a (randomized) linear decision tree
T, such that

• The input to T is the coefficients of 4 polynomials (i.e. 4r numbers).

• The coefficients (i.e. wi in Definition E.3) in each nonleaf node are in {−2,−1, 0, 1, 2}.

• The decision tree depth is ∆ = O(mk+1 log m).

• For every m-variate polynomials P1, . . . , P4 of degree k, let~z be the list of coefficients of the 4 polyno-
mials. Then T(~z) is either the symbol ?, or the number of assignments x ∈ {0, 1}m that makes the
values of all these 4 polynomials nonnegative. Furthermore, PrT[T(~z) =?] ≤ 1/2 (over the internal
randomness of the algorithm).
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The randomized algorithm runs in time 2O(∆).

Reminder of Theorem 7.4. For every parameter k = k(n), there is a ZPP algorithm that counts the
number of satisfying assignments of any AND4 ◦ PTFk circuit over n variables in 2n−m · poly(n) time,
where m = n1/(k+1)/ log n.

Proof Sketch. Let m = n1/(k+1)/ log n. We use n1 = 10n independent runs of Lemma E.4 on input
m, and produce n1 random linear decision trees T1, T2, . . . , Tn1 .

Let P1, . . . , P4 be 4 input polynomials. We enumerate all possible assignments of the first n−m
variables. For each such assignment and each 1 ≤ i ≤ 4, we can restrict the polynomial Pi to
a degree-k m-variate polynomial P̃i. We then use the previously constructed decision trees to
compute the number of assignments xn−m+1, . . . , xn, such that all of P̃1, . . . , P̃4 are nonnegative. In
particular, if any of the n1 decision trees outputs a value other than ?, this value is the desired
number, and we then add this number to our answer. If the output of every decision tree is ?, the
algorithm fails.

By union bound, the probability that the algorithm fails is at most

2n−m · 2−n1 � 1/2.

Since mk+1 log m ≤ O(n/ logk n), the time complexity of the algorithm is

O
(

n1 · 2O(mk+1 log m) + 2n−m ·mk+1 log m · poly(n)
)
= 2n−m · poly(n).
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[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Ap-
proximating clique is almost NP-complete (preliminary version). In 32nd Annual Sym-
posium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages
2–12. IEEE Computer Society, 1991.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polyno-
mial time. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, pages 316–324, 2004.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating
the hybrid argument. Theory of Computing, 9:809–843, 2013.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Roth-
blum. Verifying and decoding in constant depth. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
440–449, 2007.

[GGH+08] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Roth-
blum. A (de)constructive approach to program checking. In Cynthia Dwork, editor,
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 143–152. ACM, 2008.
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