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Abstract

One of the major open problems in proof complexity is to prove lower bounds on AC0[p]-
Frege proof systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent
paper suggested to prove lower bounds on the size for Polynomial Calculus over the {±1}
basis. In this paper we show a technique for proving such lower bounds and moreover we
also give lower bounds on the size for Sum-of-Squares over the {±1} basis.

We show lower bounds on random ∆-CNF formulas and formulas composed with a
gadget. As a byproduct, we establish a separation between Polynomial Calculus and Sum-
of-Squares over the {±1} basis by proving a lower bound on the Pigeonhole Principle.

1 Introduction
The main task of proof complexity is to quantify the size of the smallest proof required to prove
that some given formula is unsatisfiable. Establishing superpolynomial lower bounds on the
sizes in all proof systems will imply that NP ̸= coNP.

In some situations if we can prove lower bound on some model of computations we can
translate it into a lower bound for a proof system based on this model. The major success in
such lower bounds was done by Ajtai for AC0-Frege proof system [Ajt94]. For a stronger proof
system AC0[p]-Frege we also can try to translate lower bounds from AC0[p] circuits, that were
proved by Razborov and Smolensky [Raz87; Smo87]. But despite on well-developed techniques
for AC0[p] circuits we still do not know how to apply algebraic reasoning used by Razborov and
Smolensky for proof systems. To deal with this approach it seems natural to study algebraic
and semialgebraic proof systems: Nullstellensatz [Bea+94], Polynomial Calculus (PCR) [CEI96]
and Sum-of-Squares (SOS) [Gri01].

Modp gates and limitations of current techniques. Despite the success in proving lower
bounds on Polynomial Calculus and Sum-of-Squares the lower bounds we still do not know how
to transfer lower bounds from these systems to AC0[p]-Frege. If we consider standard {0, 1}
basis then in these systems there is no efficient way to simulate Modp gates. In case of Sum-of-
Squares there is a canonical hard example: Tseitin formulas (that are particular case of linear
systems modulo 2) [Gri01]. In Polynomial Calculus over a proper field we can simulate limited
number of Modp gates (one per line), that is enough solve Tseitin formulas but not enough to
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say that we can simulate Modp gates in this proof system. This statement can be illustrated by
current technique for proving lower bounds: we deal with monomials independently.

If we consider proof systems that are restriction of AC0[p]-Frege that can simulate nontrivial
number of Modp gates per line [Bus+97; Kra97; GK18; RT08] then current techniques do not
give us lower bounds on the size of proofs. Even for Resolution with parity [IS19] any non-trivial
lower bound (without restrictions on the structure of proofs) on CNF formulas remains open.

The most popular approach for proving lower bounds is a “restriction technique”. The main
idea is the following: we hit a proof by some restriction in order to obtain a “well-structured”
proof. In particular, for algebraic proof systems by using this approach we can reduce a question
about the size of proof to a question about a degree of the proof:

• size-degree tradeoff [CEI96; IPS99; AH19];

• pure random restriction, for example [Ale+04].

For algebraic proof systems it is the only approach at current moment for size lower bounds,
but Modp gates are “immune” to the restrictions. This approach will most likely not work for
proof systems that can simulate Modp gates.

{±1} basis. One important benefit of the {±1} basis is that we can represent parity as a
monomial: Parity(x1, . . . , xn) :=

n∏
i=1

xi hence we can encode multiple parity gates in a single line

in the proof. In this representation Grigoriev [Gri98] shows Nullstellansatz proof of polynomial
size on Tseitin formulas as well as degree lower bound. Lower bound strategy was generalized
by Grigoriev [Gri01] to the Positivestellensatz and by Buss, Grigoriev, Impagliazzo and Pitassi
[Bus+01] to the Polynomial Calculus. These lower and upper bounds explain the power of the
{±1} basis as well as weak points of current techniques for proving lower bounds.

The question about size lower bound in the {±1} basis was explicitly stated by Impagliazzo,
Mouli and Pitassi [IMP19] as a step to lower bounds for AC0[p]-Frege.

1.1 Our results
In this work we give an answer to the question raised in [IMP19] by presenting a technique
for proving size lower bounds on Sum-of-Squares and Polynomial Calculus over the {±1} basis.
Denote these systems by SOS{±1} and PCR{±1} (we omit index if we can use any basis). We
also use notation PCRF to specify a field.

The first result is a lower bound on the size of SOS{±1}-proofs.

Theorem 1.1 (Informal). Let F be a polynomial system of degree d0 on n variables. There
is a function g on a constant number of variables such that if d is the minimal degree of an
SOS-proof of F then any SOS{±1}-proof of F ◦ g has size exp

[
Ω
(
(d−d0)2

n

)]
.

We show by analogy with [Ber18] that a small PCRR
{±1}-proof can be transformed into a

small SOS{±1}-proof. Hence Theorem 1.1 also gives us a lower bound for PCRR
{±1}-proofs. This

result shows the difference between the considered proof systems (SOS{±1} and PCRR
{±1}) and

AC0[p]-Frege since in the last system the size of the proofs should not depend on the small
gadgets substitution.

The second lower bound works for SOS{±1} and PCRF
{±1} over any field F. And it is the

canonical example of hard formulas.

2



Theorem 1.2 (Informal). If ∆ > 11 is a constant and φ is a random ∆-CNF formula on m
clauses where m = O(n) then whp any SOS{±1} of PCRF

{±1}-proof of φ has size exp(Ω(n)).

In the last part we show a lower bound on PCRF
{±1}-proofs over any field F on formulas that

encode the Pigeonhole Principle. Together with the upper bound on SOS-proofs (independent
of basis) from [GHP02] we show an exponential separation between SOS{±1} and PCRF

{±1} proof
systems. Moreover our proof works for a strengthening of the Pigeonhole Principle, so called
Graph Pigeonhole Principle.

Theorem 1.3 (Informal). Let G be an (r,∆, 4)-boundary expander. Then any PCRF
{±1}-proof

of G-PHPn+1
n has size exp (Ω(n)).

1.2 Related Work
Various restrictions on AC0-Frege were studied by Krajíček [Kra97]. In this paper Krajíček
showed exponential lower bounds on tree-like versions of proof system that can use one Modp
gate. Generalizations of these systems were considered by Garlík and Kołodziejczyk [GK18].

Raz and Tzameret [RT08] introduced Resolution with linear functions over reals. Itsykson
and Sokolov [IS19] considered similar proof system over F2. On both proof systems lower bounds
on CNF formulas are still open. Partial progress in this direction was achieved by Part and
Tzameret [PT18].

Pitassi [Pit96; Pit98] introduced strong generalization of Polynomial Calculus that operates
directly with formulas. Groshow and Pitassi [GP18] consider even more powerful version, so
called Ideal Proof System. On the one hand these proof systems are so strong that lower
bounds on it will imply separation between VP and VNP, but on the other hand we do not
have efficient deterministic verification algorithms for proofs hence these structures are not proof
systems in terms of Cook–Reckhow [CR79] definition.

Grigoriev and Hirsch [GH03] considered extensions of algebraic systems that are still sat-
isfy Cook–Reckhow definition. In this paper it was showed that even with small extensions
these systems may be powerful enough to solve various formulas that are hard for AC0-Frege.
“Constant depth” extensions was considered by Impagliazzo, Mouli and Pitassi [IMP19]. This
systems are powerful enough to quasi-polynomially simulate TC0-Frege. It is still an open
problem to prove any lower bound for these systems.

1.3 Technique
Let start with the {0, 1} basis. We describe the basic idea of an algorithm that transforms proofs
of small size into proofs of small degree. Together with a degree lower bound this algorithm
gives a proof of size lower bound.

1. If we have a small proof of a polynomial system F then there are not so many terms of
big degree.

2. Pick a literal x that appears in a significant fraction of terms of big degree.

3. Since 0 is a feasible assignment, we can assign x to 0 in the whole proof and thus banish
all terms that contain x.

4. After this assignment, the resulting proof is still a proof of F ↾ (x = 0).

5. After some number of steps we banished all terms of big degree and it remains to show
that after these partial assignments the system is still hard in terms of degree.
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We will try to implement similar strategy for the {±1} basis. As mentioned above in some
cases we have small proofs of big degree, which means that degree is not enough to prove
lower bounds on size. This phenomena is not the only difference, in particular, in Polynomial
Calculus, using the axiom x2 − 1, which is the analogue of the “boolean” axiom for the {0, 1}
variables, we can invert multiplication by the x variable.

xp

x2p

x2 − 1

x2p− p
p

This derivation says that if a variable x is contained in all terms of a proof line, then we
can erase it. This shows that degree is not really a representative measure. The crucial idea is
that instead of the usual degree we consider the quadratic representation of the proof. In
case of Polynomial Calculus we deal with the squares of the lines in the proof. The intuition
behind it is that we want to measure the symmetric difference between monomials that appear
in a single proof line.

The next problem that arises in the case of {±1} variables is that we do not have any
assignment that removes terms from the proof. To solve this problem, we “force” an assignment
that banishes a significant part of terms in the quadratic representation. The “forcing” operation
uses different properties of formulas for different lower bounds.

1. Symmetry. For formulas with a gadget (Theorem 1.1), we consider two copies of the
original proof with permuted variables. The symmetry of the formula then helps us to
combine these copies into a new proof.

2. Locality. For random formulas and the Pigeonhole Principle (Theorems 1.2 and 1.3), we
define a Splitx operation that depends on the considered proof system, but we can think of
it as a linear combination of the original proof, hit by different partial assignment. We use
locality to show that the result of the Splitx operation is a proof of a “locally damaged”
version of F .

In order to implement the last part of our strategy we have to show that the degree of the
quadratic representation is related to the degree of the proof and keep the system F hard in
terms of degree during the whole process.

1. For formulas with gadgets we use a result from [AH19] that states that we can carefully
choose a partial assignment that does not decrease the degree of the proof.

2. For random formulas and the Pigeonhole Principle we use the iterative analogue of the
closure operation on graphs, which seems to have originated in [AR03; Ale+04]. By
using ideas of this operation we show that these formulas are “self-reducible”: after some
applications of the Splitx operation we have a proof of smaller instance of original formula.

1.4 Outline
The paper is organized as follows. In section 3 we give the definitions of the used proof systems
and introduce the key notion of quadratic representation for Sum-of-Squares and Polynomial
Calculus. In section 4 we prove lower bounds on polynomial systems composed with a gadget. In
section 5 we show the lower bound on random ∆-CNF formulas, and in section 6 we prove lower
bounds on the Pigeonhole Principle that give us a separation between SOS{±1} and PCRF

{±1}.
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2 Preliminaries
For the rest of the paper we fix some notation: F := {f1 = 0, . . . , fm = 0} is a system of
polynomial equations and H = {h1 ≥ 0, . . . , hs ≥ 0} is a system of polynomial inequalities over
the set of variables X := {x1, . . . , xn}.

Let F be a field. A restriction is a partial assignment to the variables that is a function
ρ : X → X ∪ F such that the value of ρ(x) is either x or a constant from F. For a polynomial
p, we denote by p ↾ ρ the polynomial p in which any variable x is replaced by ρ(x).

In the rest of the paper we assume that F is an arbitrary field. Wlog the characteristic of F
is different from 2, as otherwise 1 = −1 and the {±1} basis does not make any sense.

2.1 Composition with Gadgets
Suppose we have a multilinear system (F ,H) and we want to compose it with a gadget. We
only consider gadgets that satisfy some properties.

Definition 2.1. Let Z be either {±1} or {0, 1}. A symmetric function g : Zk → Z is compliant
iff:

1. g is not parity i.e. not
∏
i
xi in the case of the {±1} basis;

2. for any b ∈ Z there is an assignment β := (β1β2 . . . βk) ∈ Zk such that β1 ̸= β2 and
g(β) = b.

Note that the second property holds for any pair of indices since g is symmetric.
MAJ(z1, z2, z3) is an example of a compliant function.

Remark 2.2. For our purposes (Theorem 1.1) we cannot use parity as a gadget. For Tseitin
formulas we have degree lower bound [Bus+01; GV01]. But composition of Tseitin formula with
parity is still a Tseitin formula and we have a short proof of it in all considered proof systems
[Gri98].

We say that the system (F ,H) ◦ g is the composed version of the system (F ,H) with a
gadget g, if it is the result of the following process: for each variable xi introduce new variables
zi,1, . . . , zi,k and replace each occurrence of xi in (F ,H) by a multilinear polynomial encoding
of the function g.

Proposition 2.3. 1. (F ,H) ◦ g is a multilinear system.

2. If p ∈ (F ,H) ◦ g and g is symmetric then for any i polynomial p is stable under any
permutation of the zi,· variables.

Proof. The first claim follows by multilinearity of (F ,H) and multilinearity of the encoding of
g.

For the second claim note that p := r ◦ g for some r ∈ (F ,H). Since g is the symmetric
gadget, then it is unaffected by permutations of zi,· variables. Hence r ◦ g is also unaffected by
permutation of zi,· variables. Due to uniqueness of multilinear representation of the functions
polynomial p remains the same after such permutations.

Remark 2.4. Suppose that each polynomial in (F ,H) depends only on a constant number
of variables and the gadget g has constant size. Let (F ′,H′) and (F ′′,H′′) be two encodings
of the system (F ,H) ◦ g, that means for each constraint p ∈ (F ,H) ◦ g there are constraints
p′ ∈ (F ′,H′) and p′′ ∈ (F ′′,H′′) with the same set of satisfing assignment, but maybe not the
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the same type (equality or inequality). Then each polynomial f ′′ ∈ F ′′ (or h′′ ∈ H) can be
derived in SOS and PCRF (independent of basis) from (F ′,H′) in constant size.

Hence if start with a proper polynomial system (F ,H) for which we have linear degree lower
bound (for example polynomial encoding of Tseitin formula) the results from section 4 can be
used for any encoding of (F ,H) ◦ g.

2.2 Encodings of CNF formulas
We consider semialgebraic proof systems and thus we need to encode formulas as polynomials.
There are two popular encodings: the CNF (aka multiplicative) and the Cutting Planes (CP,
aka additive) encodings. In both encodings we encode clauses separately.

CNF
∨
i
xaii ⇔

∏
i
xaii = 0 over {0, 1} or

∏
i

(1+(−1)1−aixi)
2 = 0 over {±1}.

CP
∨
i
xaii ⇔

∑
i
xaii − 1 ≥ 0 over {0, 1} or −

∑
i
((−1)1−aixi − 1)− 1 ≥ 0 over {±1}.

In this paper we deal with the CNF encoding. A very useful property of this encoding is
that for any variable there is an assignment that sets the whole polynomial to zero.

Remark 2.5. As in the previous case if we deal with formulas of constant width then for each
clause we can derive one encoding from the other in constant degree (and constant size). Hence
results from sections 5 and 6 hold for both encodings.

3 Proof Systems
Let x be a variable and x̄ its negation.

1. The range axiom for a variable x is one of the following polynomials:

• x2 − x for the {0, 1} basis;
• x2 − 1 for the {±1} basis.

2. The complementary axiom for a variable x is a polynomial:

• x+ x̄− 1 for the {0, 1} basis;
• x+ x̄ for the {±1} basis.

We will use proof systems with an index that represents the basis if it is important to
specify it, for example: SOS{±1},PCR

F
{0,1}. We omit the index to stress the fact that the

current statement is independent of the basis. In particular we can switch from the {0, 1} basis
to the {±1} basis via affine shift. Hence if we talk about the degree of a proof, we typically do
not care about basis (see Lemma 3.7).

3.1 The Sum-of-Squares Proof System
Sum-of-Squares (SOS) is a semi-algebraic proof system. Formally, a Sum-of-Squares proof of
f > 0 from (F ,H) is a sequence of polynomials (p1, . . . , pa; r1, . . . , rn; q1, . . . , qb) such that:

a∑
u=1

pufu +
m∑
j=1

rjRj +
b∑

v=1

q2vhv = f
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• Rj is a range axiom or a complementary axiom;

• fu ∈ F and

• hv ∈ H ∪ {1}.
Note that some polynomials h ∈ H may appear more than once in this sum. We do not

want to charge for range axioms, so we assume that all operations are in R[X]⧸I, where I is
the ideal that is generated by all range axioms. Since we care about the size in the {±1} basis,
we assume that there are no negated variables (we can replace the variable x̄ by −x without
increasing the size of the proof). Hence we can simplify the proof to:

a∑
u=1

pufu +

b∑
v=1

q2vhv = f,

where all polynomials assumed to be multilinear.
The degree of a proof is the maximum of the following two numbers: deg(pu) +

deg(fu), 2deg(qv) + deg(hv).
We need to be precise about the size and the degree measures. The monomial size of a

polynomial p is MSize(p) := number of monomials in p.
The size of a proof is:

a∑
u=1

(MSize(pu) +MSize(fu)) +
b∑

v=1

MSize(qv) +
∑
h∈H

MSize(h).

Here we count polynomials in H at most once.
To formulate the next property we need to consider another degree measure. The reduced

degree of a proof is the maximum of the following numbers: deg(pu), 2deg(qv).
The next lemma is a simplified version of Lemma 5 from [AH19] (w := 1, c(u) := deg(pu),

c(v) := deg(qv)).
Lemma 3.1 ([AH19]). For any variable x ∈ X. If the SOS{0,1}-reduced degrees of (F ,H) ↾
(x = 0) and (F ,H) ↾ (x = 1) are at most 2d then there is an SOS{0,1}-proof of (F ,H) of reduced
degree at most 2d+ 2.

Since the degree of any polynomial does not depends on basis the following corollary holds
for any basis.
Corollary 3.2. If SOS-reduced degree of (F ,H) is d then for any variable x there is an assign-
ment α such that the SOS-reduced degree of (F ,H) ↾ (x = α) is at least d− 3.
Proof. For contradiction we assume that for any assignment α there is an SOS-proof of (F ,H) ↾
(x = α) with reduced degree (d−4). By Lemma 3.1 there is a proof of (F ,H) of reduced degree
(d− 1), which contradicts with the statement.

Quadratic representation. Let π := (p1, . . . , pa; q1, . . . , qb) be a PCRF
{±1}-proof. The

quadratic representation of π is the sequence (p1, p2, . . . , pa; q
2
1, . . . , q

2
v) where squares are

expanded without cancellations. For example, if qv := (xy−x− y) then q2v := (1− y−x)− (y−
1− xy)− (x− xy − 1) and we assume that it contains nine terms.

The q-size (quadratic size) of the proof is:
a∑

u=1

MSize(pu) +
b∑

v=1

MSize(qv)
2

This definition of q-size is not usual.
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1. We do not charge for the original polynomials. In terms of the Cook–Reckhow definition
of proof system [CR79], this is not the right way to define size, since it is not clear whether
proofs are checkable in polynomial time. But it will help us to simplify the computations
in our proofs and makes our results only stronger.

2. Q-size is the monomial size of quadratic representation and quadratic representation is
the crucial object for our proofs. Hence it is more useful to deal with the size of quadratic
representation. Q-size is polynomially related to the usual size, the results hold for both
measures up to a constant in the exponent.

See also the discussion about size measures in [AH19].
The following Lemma gives a transformation of SOS{±1}-proof with low-degree quadratic

representation into a proof of low degree, that is not straightforward since we deal with factor
field and one can find a polynomial p such that deg(p2) < deg(p).

Lemma 3.3. Let π be an SOS{±1}-proof of (F ,H). If quadratic representation of π does not
contain any term of degree greater than d then there is an SOS-proof π′ of (F ,H) of reduced
degree 2d.

Proof. Let π := (p1, . . . , pa; q1, . . . , qb). Note that degree of all pu is at most d.
Let qv :=

∑
i
ti and q′v :=

∑
i
t1ti, where ti are terms. Note that (q′v)

2 = (qv)
2 and moreover

all terms t1ti are presented in the quadratic representation of qv hence q′v has degree at most d.
To conclude the proof note that π′ := (p1, . . . , pa; q

′
1, . . . , q

′
b) is a proof of (F ,H).

3.2 Polynomial Calculus
The PCRF proof system is equipped with range and complementary axioms and has the following
derivation rules:

• linear combination: p q
αp+βq for any α, β ∈ F, p, q ∈ F[X];

• multiplication: p
xp for any p ∈ F[X].

A polynomial f is derivable from a set of polynomials f1, . . . , fm (written f1, . . . , fk ⊢ f) if
there is a sequence of polynomials such that each polynomial is either an axiom (an fi, a range
or a complementarity), or the conclusion of a derivation rule obtained from previously derived
polynomials.

Definition 3.4. A PCR proof of a set of polynomials f1, . . . , fm is a derivation Π of the
polynomial 1 from the polynomials f1, . . . , fm.

Remark 3.5. Let say that an assignment is feasible if it satisfies all range axioms. Observe
that by definition, f1, . . . , fm ⊢ f is equivalent to saying that f is in the ideal generated by
f1, . . . , fm along with all range and complementarity axioms. Intuitively, a PCRF-proof is a
certificate that the system F has no feasible solution. It turns out that the converse is also true:
if a system of polynomial equations has no feasible solution, then 1 is in the ideal generated
by the polynomials arising in the system together with the polynomials from the range and
complementary axioms. In other words, the system is sound and complete.

As in case of SOS we do not want to charge for the usage of range axioms. So we assume
that all operations are in F[X]⧸I, where I is the ideal that is generated by all range axioms.
Further, in case of the {±1} basis we assume that there is no negated variables since we can
replace x̄ by −x.
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The size of a PCRF-proof is the total number of non-zero monomials (counted with repeti-
tion) that appear in a derivation when all polynomials are expanded out as linear combinations
of monomials. The degree of a PCRF-proof is the maximum degree of a non-zero monomial
that appears in the derivation.

Let π := (p1, p2, p3, . . . , pℓ) be a PCRF-proof. Define a lazy representation ((ℓπp)i) of poly-
nomials in π:

• (ℓπp)i := pi, if pi is an axiom or pi is obtained by multiplication rule.

• (ℓπp)i := αpj + βpk without cancellations, if pi is obtained by linear combination from pj
and pk with coefficients α, β.

The quadratic representation of π is the sequence ((ℓπp)
2
1, (ℓπp)

2
2, (ℓπp)

2
3, . . . , (ℓπp)

2
ℓ ) where

squares are expanded without cancellations. The q-size of π is the number of monomials in
the quadratic representation of π. Note that q-size of a proof π is bounded by O(size(π)2).

The notion of lazy representation is technical and we use only for the following Lemma. As
in case of Sum-of-Squares the statement is not trivial since we deal with factor field.

Lemma 3.6. Let F be a system of degree d0 and π be a PCRF
{±1}-proof of F . If quadratic

representation of π does not contain any term of degree greater than d then there is a PCRF-
proof π′ of F of degree max(2d, d0).

Proof. Let π := (p1, . . . , pℓ), pi :=
∑
j
ti,j and si :=

∑
j
ti,1ti,j . Note that pi = ti,1si and si = ti,1pi.

By definition all monomials that appear in p2i also appear in (ℓπp)
2
i , hence all terms of

si appear in (ℓπp)
2
i this implies that the degree of si is at most d. Consider the sequence

(s1, . . . , sℓ). It is not a PCRF-proof but we want to show that all si are derivable in degree 2d
from previous polynomials and polynomials from F . We prove it by induction on i. Consider
three cases.

1. pi ∈ F . Then si is derivable from pi in degree max(d, d0).

2. pi := xpj . Then si = sj .

3. pi := αpa + βpb. In this case consider (ℓπp)i := α
∑
j
ta,j + β

∑
j
tb,j and denote q :=

α
∑
j
ta,1ta,j + β

∑
j
ta,1tb,j without cancellations. All terms of q appear in (ℓπp)

2
i hence it

has degree at most d, in particular term ta,1tb,1 has degree at most d.
Note that q = αsa + β

∑
j
ta,1tb,j = αsa + βta,1tb,1

∑
j
βtb,1tb,j = αsa + βta,1tb,1sb. Hence it

is derivable in degree 2d from sa and sb.
si =

∑
j
ti,1ti,j but all ti,j appear in the collection

∪
k

{ta,k}∪
∪
k

{tb,k}. Wlog ti,1 := ta,k hence

si = ta,kta,1q and it is derivable from q in degree 2d.

3.3 Switching Between Bases
We can change the basis via affine shift. Let x ∈ {0, 1} and y := (1 − 2x). This fact allows us
to transform proofs from one basis to another.
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Lemma 3.7. Let C be either SOS or PCRF proof system and (F ,H) be a polynomial system
on n variables. If there a C{0,1}-proof of size s and degree d of (F ,H) then there is a C{±1}-proof
of size 2dpoly(n)s and degree d of (F ,H).

Proof. Let π be a C{0,1} proof of size s and degree d of (F ,H). If we apply substitution
xi ← 1−yi

2 to all variables xi then the result will be a C{±1}-proof in yi ∈ {±1} variables. To
conclude the proof note that range axiom for a xi can be derived in constant number of steps
from range axiom for the yi variable.

Remark 3.8. The same statement holds if we switch from the {±1} basis to the {0, 1} basis.

4 “Lifted” Systems
In this section, we prove lower bounds on the size of SOS{±1}-proofs. At first, if we have a
short proof of the “lifted” system then we can get low-degree proof for the original system
under certain partial assignment. Then, we show that we regain enough control over the partial
assignment so that the remaining system will still have large degree, contradicting the first step.

The following theorem illustrates the first step of our plan.

Theorem 4.1. Let (F ,H) be a system over X := {x1, . . . , xn}, let g be a compliant gadget of
size k and let α1, α2, . . . , αi, . . . be an arbitrary string consisting of ±1.

If there is an SOS{±1}-proof of (F ,H) ◦ g of size s, then there is a sequence of variables
xi1 , xi2 , . . . , xiℓ , where ℓ ≥ 4k2 n log s

d such that:

• the choice of xij is independent of (αj , αj+1, . . . );

• there is an SOS{±1}-proof of (F ,H) ↾ {xij = αj}ℓj=1 of reduced degree d.

We defer the proof of this Theorem to the next section. Assuming the above Theorem we
give the desired lower bound on the size.

Theorem 4.2 (Formalization of Theorem 1.1). Let (F ,H) be a system on n variables of degree
d0 and g be an compliant gadget of constant size. If d1 is the minimal degree of SOS-proof of
this system then any SOS{±1}-proof of (F ,H) ◦ g has size exp

[
Ω
(
(d1−d0)2

n

)]
.

Proof. Fix parameters d := d1−d0
2 and ε := 1

50k2
, where k is the size of the gadget g. For

contradiction, assume that we have an SOS{±1}-proof π of size s = exp
(
ε (d1−d0)2

n

)
.

We want to apply Theorem 4.1 for the parameter d and some carefully chosen sequence
α1, . . . , αℓ, where ℓ := 4k2 n log s

d = 4k2 2nε(d1−d0)2

n(d1−d0)
= 8k2ε(d1 − d0) <

d1−d0
6 .

The reduced SOS-degree of (F ,H) is at least d1 − d0. By Corollary 3.2 for any variable
there is an assignment that decrease the reduced degree by at most 3. By Theorem 4.1 there is
a choice of variable xi1 does not depend on αi for all i ≥ 1. Hence we can choose xi1 and choose
α1 to be the value such that any SOS-proof of (F ,H) ↾ (xi1 = α1) has reduced degree at least
(d1 − d0)− 3. We can repeat this process and choose xi2 dependent on xi1 and α1. Hence after
the second step we have the system (F ,H) ↾ {(xi1 = α1), (xi2 = α2)} such that any SOS-proof
of it has reduced degree at least (d1 − d0)− 6.

After ℓ repetitions we have a partial assignment ρ := {(xi1 = α1), . . . , (xiℓ = αℓ)} such that:

• the reduced SOS-degree of (F ,H) ↾ ρ is at least (d1 − d0)− 3ℓ (by the choice of αi) and

• there is an SOS-proof of (F ,H) ↾ ρ with reduced degree d (by Theorem 4.1).
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This implies that d ≥ (d1−d0)−3ℓ > (d1−d0)− d1−d0
2 = d, which is a contradiction. Hence

there is no proof of (F ,H) ◦ g of size exp
(

1
50k2

(d1−d0)2

n

)
.

Corollary 4.3. Let F be a system on n variables of degree d0 and g be a compliant gadget of
constant size. If d1 is the minimal degree of SOS-proofs of F then any PCRR

{±1}-proof of F ◦ g
has size at least exp

[
Ω
(
(d1−d0)2

n

)]
.

The proof of this corollary follows from the next statement which is an analogue of the
statement from [Ber18] for the {±1} basis.
Theorem 4.4. [Analogue of [Ber18]] Let F be a system of polynomial equations. If there is a
PCRR

{±1}-proof of F of size S and degree d then there is an SOS{±1}-proof of size poly(S) and
degree 2d.

The proof of this corollary is analogous to the proof for the {0, 1} basis [Ber18]. For the
sake of completeness, we state the proof in appendix A.2.

4.1 Proof of Theorem 4.1
Let f ′

i := fi ◦ g and h′i := hi ◦ g. Denote by Z := {zi,j | i ∈ [n], j ∈ [k]} the set of variables of
(F ,H) ◦ g. Let π := (p1, . . . , pa; q1, . . . , qb) be an SOS{±1}-proof of (F ,H) ◦ g of q-size sq ≤ s2.

We say that monomial t on Z variables touches a variable xi ∈ X iff there is an unordered
pair j′, j′′ ∈ [k] such that zi,j′ ∈ t and zi,j′′ /∈ t. We also say that term t is fat if it touches at
least d

2 variables from the set X.
Let H be a multiset of fat terms in the quadratic representation of π, i.e. in the collection of

polynomials (p1, . . . , pa; q21, . . . , q2b ), where polynomials q2v are represented without cancellations.
We would like to find a partial assignment that helps us to erase significant fraction of fat

terms, but since zi,j ∈ {±1} it is not so clear if such an assignment exists. Instead of it we
modify the proof by using symmetry of the gadget and “force” such an assignment to a new
proof.

Pick the most frequent variable xi ∈ X among variables that are touched by fat terms (it is
the first variable xi1 in the sequence). By an averaging argument xi is touched by at least d|H|

2n
fat terms. For each of these terms there is an unordered pair zi,j′ , zi,j′′ such that zi,j′ ∈ t and
zi,j′′ /∈ t or vise versa. Since there are at most k2

2 different pairs we can fix j′ and j′′ such that
there is at least d|H|

k2n
terms that contains exactly one of the variables zi,j′ and zi,j′′ . We say that

these terms are active.
Consider the permutation σ that swaps zi,j′ and zi,j′′ and leaves everything else in its place.

Denote by pσ the result of an application of the permutation σ to the polynomial p. Note
that the sequence π′ := (12(p1 + pσ1 ), . . . ,

1
2(pa + pσa);

1√
2
q1,

1√
2
qσ1 , . . . ,

1√
2
qb,

1√
2
qσb ) is a proof of

(F ,H) ◦ g. Indeed

−1 =

a∑
u=1

(puf
′
u)

σ +

b∑
v=1

(q2vh
′
v)

σ =

a∑
u=1

pσuf
′σ
u +

b∑
v=1

(qσv )
2h′σv =

a∑
u=1

pσuf
′
u +

b∑
v=1

(qσv )
2h′v,

where the last equality holds by symmetry of g and the symmetric encoding of it. Hence

−1 =
a∑

u=1

pu + pσu
2

f ′
u +

b∑
v=1

((
1√
2
qv)

2 + (
1√
2
qσv )

2)h′v.

Since g is compliant we have that by property 2 and symmetry of g we can find for any
α1 ∈ {±1} an assignment β ∈ {±1}k to the zi,· variables such that g(β) = α1 and βj′ ̸= βj′′ .
Let ρ be a restriction that maps the zi,· variable to β. Note that if term t
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• is active, then t := zi,j′r and tσ := zi,j′′r (or vice versa), hence (t+tσ) ↾ ρ = (zi,j′+zi,j′′)r ↾
ρ = 0;

• is not active then t = tσ, hence (t+ tσ) ↾ ρ = 2t ↾ ρ.

Thus for any u ∈ [a] the polynomial 1
2(pu + pσu) ↾ ρ only contains inactive terms t restricted

by ρ.
Now consider a polynomial qv for v ∈ [b]. Let us rewrite qv = rv,1 + zi,j′rv,2 + zi,j′′rv,3 and

denote rv,4 := zi,j′rv,2 + zi,j′′rv,3. We see that

(qv)
2 = r2v,1 + zi,j′rv,1rv,2 + zi,j′′rv,1rv,3 + zi,j′rv,2rv,1 + zi,j′′rv,3rv,1 + r2v,4

(qσv )
2 = r2v,1 + zi,j′′rv,1rv,2 + zi,j′rv,1rv,3 + zi,j′′rv,2rv,1 + zi,j′rv,3rv,1 + r2v,4

and hence
1

2

(
(qv)

2 + (qσv )
2
)
↾ ρ = r2v,1 + r2v,4

Not that only the following terms were active before the restriction: zi,j′rv,1rv,2, zi,j′′rv,1rv,3,
zi,j′rv,2rv,1, zi,j′′rv,3rv,1. In the representation r2v,1 + r2v,4, all of these terms are erased. Here
it is important that we do not allow any cancellation while representing squared polynomials,
as otherwise the size of the new representation may be bigger than the size of the original
polynomial q2v .

We conclude that the proof π′′ :=

−1 =

a∑
u=1

1

2
(pu + pσu)f

′
u ↾ ρ+

b∑
v=1

r2v,1h
′
v ↾ ρ+

b∑
v=1

r2v,4h
′
v ↾ ρ

is a proof of (F ,H) ◦ g ↾ ρ (and hence of ((F ,H) ↾ (xi = α1)) ◦ g) such that its quadratic
representation contains at most (1− d

k2n
)|H| fat terms.

By repeating this process ℓ times we get a partial assignment xi1 = α1, xi2 = α2, . . . , xiℓ = αℓ

such that the choice of xij only depends on the original proof π and αj′ for j′ < j. We end up
with a proof π0 of

(
(F ,H) ↾ {xij = αj}ℓj=1

)
◦ g such that its quadratic representation contains

at most (1− d
k2n

)ℓsq fat terms. But (1− d
k2n

)ℓsq ≤ (1− d
k2n

)4k
2n log s/ds2 ≤ exp(−4 log s)s2 < 1,

we see that in this setting, quadratic representation of π0 does not contain any fat term.
To conclude the proof we want to transform π0 into a proof of (F ,H) ↾ {xij = αj}ℓj=1 of

small degree. And here we use the fact that g is not parity: there are two points β, γ ∈ {±1}k
such that:

•
k∏

j=1
βj =

k∏
j=1

γj ;

• g(β) = 1;

• g(γ) = −1.

For all i ∈ [n], j ∈ [k] we make the following substitution in the proof π0:

• if βj = γj , we replace zi,j by βi;

• if βj = 1 and γj = −1, we replace zi,j by xi;

• if βj = −1 and γj = 1, we replace zi,j by −xi.

12



Denote the result of this replacement applied to a term t by tx. Note that after this replacement
g(zi,1, zi,2, . . . , zi,k) will return the value of xi

Suppose term t over Z variables does not touch xi, that means t does not contain any
variable zi,· or it contains zi,j for all j ∈ [k]. In the first case xi will not appear in tx. In the
second case we observe that β and γ are different in even number of positions hence xi will
appear in tx in even degree and we just erase it since we deal all operations in factor ring over
range axioms. This fact implies that degree of the quadratic representation of (π0)x is bounded
by maximum over all terms t that appear in the quadratic representation of π0 of number of
variables xi ∈ X that are touched by t. But the quadratic representation of π0 does not contain
any fat term hence this replacement produces terms of degree at most d

2 .
Also note that (f ′

u)
x pointwise equal to fu. We consider only multilinear polynomials for that

means for any function there is a unique representation hence (f ′
u)

x is the same polynomial as
fu. By analogy the same holds for hv and by analogy the same holds after a partial assignment.
Hence πx

0 is a proof of (F ,H) ↾ {xij = αj}ℓj=1 such that quadratic representation of it does not
contain any term of degree greater than d

2 . By Lemma 3.3 there is a proof of (F ,H) ↾ {xij =
αj}ℓj=1 of degree at most d+ d0.

5 Random ∆-CNF
In this section we prove a lower bound on the size of SOS{±1} and PCRF

{±1}-proofs of random
∆-CNF formulas. The general idea is the same as in the case of “lifted” systems: we want to
consider a linear combination of two proofs of the formula and hit it by a restriction in order to
kill all terms of high degree. Unfortunately, instances of random ∆-CNF do not have symmetry
that was crucially used in previous case, instead of it we will use “self-reducibility” of ∆-CNF
instances. We describe the “self-reducibility” in terms of the dependency graph of the formula,
hence lets start with some definitions and useful properties of graphs.

5.1 Expanders and Closure
We use the following notation: NG(S) is the set of neighbours of the set of vertices S in the
graph G, ∂G(S) is the set of unique neighbours of the set of vertices S in the graph G. We omit
the index G if the graph is evident from the context.

A bipartite graph G := (L,R,E) is an (r,∆, c)-expander if all vertices u ∈ L have degree
at most ∆ and for all sets S ⊆ L, |S| ≤ r, it holds that |N(S)| ≥ c · |S|. Similarly, G := (L,R,E)
is an (r,∆, c)-boundary expander if all vertices u ∈ L have degree at most ∆ and for all sets
S ⊆ L, |S| ≤ r, it holds that |∂S| ≥ c · |S|. In this context, a simple but useful observation is
that

|N(S)| ≤ |∂S|+ ∆|S| − |∂S|
2

=
∆|S|+ |∂S|

2
, (1)

since all non-unique neighbours have at least two incident edges. This implies that if a graph
G is an (r,∆, (1− ε)∆)-expander then it is also an (r,∆, (1− 2ε)∆)-boundary expander.

The next proposition is well known in the literature. In this form it was used in [GMT09].

Proposition 5.1. If G := (L,R,E) is an (r,∆, c)-boundary expander then for any set S =
{v1, . . . , vk} ⊆ L of size at most r there is a partition

⊔
i
Ri = N(S) such that Ri ⊆ N(vi) and

|Ri| ≥ c. In particular, there is a matching on the set S.

Proof. Since |S| ≤ r it holds that |∂S| ≥ c|S| and there is a vertex vi ∈ S such that |∂vi| ≥ c.
Let Ri := ∂vi, and repeat the process on S \ {vi}.
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Let G := (L,R,E) denote a bipartite graph. Consider a closure operation that seems to
have originated in [AR03; Ale+04].

Definition 5.2. For vertex sets S ⊆ L,U ⊆ R we say that the set S is (U, r, ν)-contained if
|S| ≤ r and |∂S \ U | < ν|S|. For any set J ⊆ R let S := Clr,ν(J) denote an arbitrary but fixed
set of maximal size such that S is (J, r, ν)-contained.

Lemma 5.3. Suppose that G is an (r,∆, c)-boundary expander and that J ⊆ R has size
|J | ≤ ∆r. Then |Clr,ν(J)| < |J |

c−ν .

Proof. By definition we have that |∂Clr,ν(J)\J | < ν|Clr,ν(J)|. Since |Clr,ν(J)| ≤ r by definition,
the expansion property of the graph guarantees that c|Clr,ν(J)| − |J | ≤ |∂Clr,ν(J) \ J |. The
conclusion follows.

Suppose J ⊆ R is not too large. Then Lemma 5.3 shows that the closure of J is not much
larger. Thus, after removing the closure and its neighbourhood from the graph, we are still left
with a decent expander. The following lemma makes this intuition precise.

Lemma 5.4. Let J ⊆ R be such that |J | ≤ ∆r and |Clr,ν(J)| ≤ r
2 and let G′ := G \ (Clr,ν(J)∪

J ∪N(Clr,ν(J))). Then any set S of vertices from the left side of G′, with size |S| ≤ r
2 , satisfies

that |∂G′S| ≥ ν|S|.

Proof. Suppose the set S ⊆ L(G′) violates the boundary expansion guarantee. Observe that
Clr,ν(J) and S are both sets of size at most r

2 . Furthermore, the set (Clr,ν(J) ∪ S) is (J, r, ν)-
contained in the graph G. As Clr,ν(J) is a (J, r, ν)-contained set of maximal cardinality, this
leads to a contradiction.

5.2 Random Formulas
Let φ be a formula on X variables. We denote a restriction of dependency graph of φ to a
subset of variables X0 ⊆ X by GX0

φ := (Lφ, X0, E
X0
φ ). To be precise Lφ corresponds to the set

of clauses of φ (and we identify these two sets) and (u, x) ∈ EX0
φ iff clause u contains a variable

xv or its negation. We omit superscript X0 if we assume the full set of variables. We will also
deal with the formulas after application of some partial assignment, in this case we erase all
vertices from the left part of dependency graph that correspond to satisfied constrains.

Definition 5.5. Let φ(m,n,∆) denote the distribution of random ∆-CNF on n variables ob-
tained by sampling m clauses (out of the

(
n
∆

)
2∆ possible clauses) uniformly at random with

replacement.

Lemma 5.6 ([CS88]). For any ∆ ≥ 3 whp φ ∼ φ(m,n,∆) is unsatisfiable if m ≥ ln 2 · 2∆n.

The next Lemma is a modification of well-known result for random graphs (see [Vad12]).

Lemma 5.7. If m = O(n), ∆ > 11 and φ ∼ φ(m,n,∆) then whp Gφ is an (r,∆, 5)-boundary
expander where r = Ω( n

∆).

Proof. For proof see appendix A.

A next Lemma is a straightforward corollary from the main result of [Gri01] (see also
[GV01]).

Lemma 5.8 ([Gri01]). If φ is an unsatisfiable ∆-CNF formula and Gφ is an (r,∆, 2)-expander
then SOS-degree of φ is Ω(r).
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5.3 Lower Bound on Random Formulas
Before we formulate the main theorem we want to reduce the degrees of all vertices in the
dependency of the instances of random formulas.

Lemma 5.9. Let φ be a ∆-CNF formula on n variables and m clauses. If Gφ is an (r,∆, c)-
boundary expander then there is a constant ℓ and partial assignment ρ of size at most (∆+1) r2
such that Gφ↾ρ is an ( r2 ,∆, ν)-boundary expander and the degree of all vertices of Gφ↾ρ is
bounded by 2∆m

r , where ν ≤ c− 1.

Proof. Pick a set J ⊆ R of vertices of degree greater than 2∆m
r . There are at most ∆m edges

in the graph G hence |J | ≤ r
2 . By Lemma 5.3 there is a set S := Clr,ν(J) such that |S| ≤ |J |.

By a straightforward corollary of Proposition 5.1 there is a matching M on the set S. Define a
partial assignment ρ in the following way:

• for all (s, xs) ∈M assign xs by the value that satisfy clause s;

• assign variables from N(S) ∪ J in an arbitrary way.

We assign all variables from J hence the degree of all vertices in Gφ↾ρ is bounded by 2∆m
r .

Note that Rφ↾ρ = Rφ \ (J ∪ N(S)) and Lφ↾ρ ⊆ Lφ \ S since ρ satisfy all clauses from S. By
Lemma 5.4 Gφ↾ρ is an ( r2 ,∆, ν)-boundary expander. |Vars(ρ)| ≤ |NGφ(S)|+ |J | ≤ (∆+1) r2 .

Now can formulate the main statement of this section.

Theorem 5.10. Let ∆ > 0 be an integer and φ be an unsatisfiable ∆-CNF formula on n
variables and m clauses.

If Gφ is an (r,∆, 4)-boundary expander such that degree of all vertices are bounded by η

then any SOS{±1}-proof of φ has size exp(Ω( r2

η2n
)).

We defer the proof of this Theorem to the section 5.5.

Corollary 5.11 (Formalization of Theorem 1.2). If ∆ > 11 is a constant, φ ∼ φ(m,n,∆) where
m = O(n) then whp any SOS{±1}-proof of φ has monomial size exp(Ω(n)).

Proof. Wlog m
n > 1 (otherwise φ is satisfiable with high probability). Let η := 2∆m

n . Fix a
formula φ. By Lemma 5.7 there is some δ > 0 such that whp Gφ is an (δ n

∆ ,∆, 5)-boundary
expander. Wlog assume that δ < 1

20 . By Lemma 5.9 there is assignment ρ of size at most n
5

such that Gφ↾ρ is an ( δ
2∆n,∆, 4)-boundary expander with degrees bounded by η. By Theorem

5.10 any SOS{±1}-proof of φ ↾ ρ has size exp(Ω(n)) hence the same holds also for φ.

5.4 Split Operation
The heart of proof of Theorem 5.10 is a Splitx operation. The idea of this operation is the
following:

• we want to banish all terms in the proof that contain a variable x;

• after application of this operation to an SOS{±1} or PCRF
{±1} proof the result still be a

proof, but maybe of a “damaged” formula.

Unfortunately it is not clear how to define this operation for both considered proof systems
in the same way, so we will do it separately. Let φ be a boolean formula and F is a CNF
encoding of φ as a polynomial system.
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Sum-of-Squares. Let π := (p1, . . . , pa; q1, . . . , qb) be an SOS{±1}-proof of F . Recall that we
consider CNF encodings of boolean formulas, hence there is no inequalities.

Pick a variable x and consider a linear combination of proof with different assignments to
x. Lets do it more formally and consider the following operation 1

2 (p ↾ (x = −1) + p ↾ (x = 1)).
Note that the result of this operation contains only terms of p and only those terms that do not
touch x.

1. If fu ∈ F is a constraint that does not depend on x then pufu ↾ (x = −1) + pufu ↾ (x =
1) = (pu ↾ (x = −1) + pu ↾ (x = 1))fu and we banish all terms that contain x variable.

2. If fu ∈ F is a constraint that depends on x then we cannot simplify the expression
pufu ↾ (x = −1) + pufu ↾ (x = 1) and we say that constraint fu (that correspond to some
clause in φ) is damaged.

3. Let qv := (rv + xev) where rv, ev are polynomials that do not contain x then:

q2v = r2v + 2xrvev + e2v

q2v ↾ (x = −1) + q2v ↾ (x = 1) = 2(r2v + e2v)

And rv and ev be a new representation of qv after restriction. Note that we banish all
terms that touch x. And as in case of lifted formulas this is a place there we use the fact
that we do not allow cancellations while computing squares.

The result of Splitx(π) is a proof:

−1 =
∑
u∈D

(
1

2
pufu ↾ (x = −1)

)
+
∑
u∈D

(
1

2
pufu ↾ (x = 1)

)
+
∑
u/∈D

p′ufu +
∑

r2v +
∑

e2v,

where p′u is a polynomial that contain only those terms of pu that do not touch x, D is a set of
damaged constraints.

Observe important property that damages constrains are original constraints with some
partial assignment and if we assign any variable except x in order to satisfy clause u ∈ D of φ
we will set to 0 all damaged constraints that correspond to u.

The result of Splitx(π) is an SOS{±1}-proof of damaged system, but the size of it maybe
bigger than the size of π because of damaged part. In our applications we will care about and:

• exclude monomials that corresponds to damaged part from counting (see. Remark 5.13)

• satisfy all damaged damaged constraints.

Polynomial Calculus. Let π := (p1, . . . , pa) be a PCRF
{±1}-proof of F . A naive idea is to do

the same operation as in case of SOS{±1}, but lets consider the following example:

p
xp
p

where p does not contain x. If we apply operation 1
2 (q ↾ (x = −1) + q ↾ (x = 1)) to all polyno-

mials in this proof then first and third line will not be affected but the middle line will be set
to 0 and it will not be a valid PCRF

{±1}-proof of anything.
For each line of the proof pi consider a decomposition pi := ri + xqi where ri and qi do not

contain x. We use this decomposition to define Split operation. More formally, the result of
Splitx(π) is a proof: (r1, q1, r2, q2, . . . , ra, qa) where we omit trivially zero polynomials.

We want to show that Splitx(π) gives a PCRF
{±1}-proof.
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1. If pi is an axiom that does not depend on x then ri := pi and qi := 0 hence we do not
change this line.

2. If pi is a CNF encoding of an axiom that depends on x and it corresponds to clause (C∨x)
of φ (with x̄ situation is similar) then:

• ri :=
1
2pc and qi :=

1
2pc, or equivalently

• ri :=
1
2pi ↾ (x = 1) and qi :=

1
2pi ↾ (x = 1),

where pc is a CNF encoding of the clause C. We say that this constraint is damaged.

3. Let pi = αpj + βpk where j, k < i then ri = αrj + βrk and qi = αqj + βqk.

4. Let pi = xpj where j < i then ri = qj and qi = rj .

5. Let pi = x′pj where j < i and x′ is different from x then ri = x′rj and qi = x′qj .

As in previous case observe important property that damages constrains are correspond to
clauses of φ without x and if we assign any variable except x in order to satisfy clause u ∈ D
of φ we will set to 0 all damaged constraints that correspond to u. We deal with the result of
Splitx(π) as with usual proof of damaged system, in particular quadratic representation of it is
well-defined (this situation is a bit easier than in Sum-of-Squares where we need to pay some
attention to the damaged part of the proof).

The only problem with this transformation that it does not kill any term. But lets consider
some polynomial p2i in the quadratic representation of π. p2i = r2i + xriqi + q2i the only parts
of this polynomial that touch x is xriqi and in the quadratic representation of Splitx(π) we
have only polynomials r2i and q2i . By analogy the same holds for lazy representations hence this
operation banish all terms that contain x in the quadratic representation.

Remark 5.12. In some sense Splitx corresponds to “double false” assignment since we erase
all occurrences of x from clauses of our formula independently of the signs.

5.5 Proof of Theorem 5.10
By Lemma 5.8 there is a constant ε0 such that there is no SOS and PCRF proof of degree ε0r
of any formula based on ( r2 ,∆, 2)-boundary expander. Fix ε := ε0

100 .
Let F be a CNF encoding of the formula φ as a polynomial system. For the sake of

contradiction assume that we have an SOS{±1} or PCRF
{±1} proof π of q-size exp( ε

η2
· r2n ) (here

we can choose size measure).
Fix the parameter d := ε0

10r. We say that a term t is fat if deg(t) ≥ d and H is a multiset
of all fat term in the quadratic representation of the proof π.

The idea of the proof is the following.

1. In order to erase all fat terms we iteratively apply Split operation (instead of ordinary
restrictions). On each iteration we choose a variable x and replace a proof π by Splitx(π)
to banish all fat terms in the quadratic representation that contain x.

2. During this process our formula may become “easy” for SOS or PCRF. To avoid this
situation we hit the formula after each iteration by a partial assignment. This allows us
to restore the expansion property on the remainder of the formula.
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Now we can describe the general algorithm. It takes a proof π and transforms it into a proof
of small degree of a “damaged” formula. On each iteration

Algorithm 1 Degree reduction
1: A1 := X ▷ Set of alive variables
2: J1 := ∅ ▷ Set of active variables
3: D1 := ∅ ▷ Set of damaged constraints
4: ℓ := 1
5: π1 := π
6: ρ1 := ∅
7: while H ̸= ∅ do
8: Pick the most frequent variable x in H
9: Jℓ+1 := Jℓ ∪ {x}

10: π′ := Splitx(π)

11: Gℓ+1 := G
Aℓ\{x}
φ↾ρℓ

12: Bℓ := max{B ⊆ Lℓ+1 | |B| ≤ r, |∂Gℓ+1
(B)| ≤ 3|B|}

13: Dℓ+1 :=
(
Dℓ ∪NGφ↾ρℓ

(x)
)
\Bℓ

14: Find a matching M on Bℓ in Gℓ+1 ▷ Proposition 5.1
15: ρℓ+1 := ρℓ
16: for (u, xu) ∈M do
17: ρℓ+1 := ρℓ+1 ∪ {xu = value that satisfies u} ▷ −1 is True, 1 is False
18: πℓ+1 := π′ ↾ ρℓ+1

19: Aℓ+1 := Aℓ \ ({x} ∪Vars(ρℓ+1))
20: H := set of fat terms of the quadratic representation of πℓ+1 ▷ See remark 5.13
21: ℓ := ℓ+ 1

return πℓ

Remark 5.13. In case of SOS{±1} we do not add fat terms to H that correspond to the
damaged part of the formula.

We start with the system F and assume that all constraints are not damaged.
In each iteration we pick a variable x that appears in at least d

n |H| fat terms and consider
Splitx(π). The fact that Splitx(π) banish all terms that contain x allows us to estimate the
number of iterations. In case of SOS{±1} the Splitx(π) may not kill terms in the damaged part
of the proof but we do not count these terms (see Remark 5.13) since we will set the damaged
constraints to 0 later.

Proposition 5.14. ℓ ≤ r
5η2

.

Proof. We kill at least fat d
n |H| terms. Hence the process will terminate when (1− d

n)
ℓ|H| < 1.

|H| is at most the q-size of the proof π and (1− d
n)

ℓ|H| ≤ (1− d
n)

ℓ exp( ε
η2

r2

n ) ≤ exp(− ℓd
n + ε

η2
r2

n )

is less than 1 if ℓd > ε
η2
r2. This implies that ℓ ε010 > ε

η2
r and hence ℓ > 10ε

ε0η2
r. By the choice of ε

we obtain desired result.

Damaged axioms are axioms from F that are hit by partial assignments to active variables. If
we assign to any alive variable x the value that satisfies clause u in our formula, then all damaged
axioms that correspond to u will be set to 0. Note that this assignment is independent of ρi
and the assignments to the active variables. In order to find such an assignment and keep the
formula hard for SOS (and PCRF), we polish it after each iteration by a partial assignment that
satisfy the set Bi.
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First we want to show that all sets Bj are not too big and we can always find a matching on

Bj . Let Ci :=
i∪

j=1
Bj . The following Lemma formalizes this statement. The proof is similar to

the proof of Lemmas 5.3 and 5.4, but, unfortunately, we need to care about parameters during
all iterations simultaneously.

Proposition 5.15. 1. |Cℓ| ≤ ℓ.

2. ∀i ∈ [ℓ], GAi
φ↾ρi is an (r,∆, 3)-boundary expander.

Proof. See appendix A.1.

Since GAi
φ↾ρi is an (r,∆, 3)-boundary expander, Gi+1 is an (r,∆, 2)-boundary expander (as

we just remove one vertex on the right side). By Proposition 5.1 there is a matching on Bi.
To conclude the proof we note that the number of damaged constraints in the end is at most

η|J ′| ≤ r
5η and by Proposition 5.15 we have an (r,∆, 3)-boundary expander on alive variables.

Denote it by G and consider S := Clr,2G (NG(Dℓ)). By Lemma 5.3 |S| ≤ |NG(Dℓ)| ≤ r
5 . By

Proposition 5.1 there is a matching on S ∪ Dℓ and hence there is a partial assignment γ on
NG(S ∪Dℓ) that satisfies all clauses in S ∪Dℓ. But by Lemma 5.4 the graph of the remaining
formula will be an ( r2 ,∆, 2)-boundary expander and πℓ ↾ γ is a proof of this formula. Moreover
the quadratic representation of πℓ ↾ γ does not contain any fat terms and hence by Lemmas
3.6 and 3.3 the proof πℓ ↾ γ can be transformed into a proof of degree at most 2d. This is a
contradiction with the choice of d.

6 Separation Between PCRF
{±1} and SOS{±1}

In this section we show a separation between PCRF
{±1} and SOS{±1}.

6.1 Pigeonhole Principle
We consider a graph version of the Pigeonhole Principle for two reasons:

• our lower bounds depends on the number of variables and we want to reduce it;

• in case of constant width formulas we can choose the encoding that suit us best.

It is convenient to think of the Pigeonhole Principle in terms of a bipartite graph G :=
(L,R,E) with pigeons L := [m] and holes R := [n] for m ≥ n+ 1. Every pigeon i can fly to its
neighbouring holes N(i) as specified by the graph G.

We encode the claim that there does in fact exist an injective mapping of pigeons to holes
as a CNF formula consisting of pigeon axioms

f i =
∨

j∈NG(i)

xi,j for i ∈ [m]

and hole axioms
f i,i′

j = (x̄i,j ∨ x̄i′,j) for i ̸= i′ ∈ [m], j ∈ NG(i) ∩NG(i
′)

that require that every hole contains get at most one pigeon (where the intended meaning of
the variables is that xi,j is true if pigeon i flies to hole j).

We consider a CNF encoding of the Pigeonhole Principle G-PHPm
n .
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Theorem 6.1 ([AR03; MN15]). Let G be an (r,∆, 2)-boundary expander. Then any PCRF
{0,1}-

proof of the G-PHPm
n has degree Ω(r) and size exp

[
Ω
(

r2

∆m

)]
.

The next claim is an interpretation of the result from [GHP02].

Theorem 6.2 ([GHP02]). Let G be a constant degree graph. Then there is an SOS{0,1}-proof
of the G-PHPm

n in CNF encoding of constant degree and size poly(n).

Theorem 6.3. Let G be an (r,∆, 4)-boundary expander then any PCRF
{±1}-proof of the

G-PHPm
n has size exp

[
Ω
(

r2

∆m

)]
.

6.2 Proof of Theorem 6.3
The proof is similar to the lower bound proof of random formulas, but we need to take care of
hole axioms.

We choose a constant ε0 such that there is no PCRF proof of degree ε0r of Pigeonhole
Principle based on ( r2 ,∆, 2)-boundary expander. By Theorem 6.1 such constant exists. Fix
ε := ε0

100 .
Let F be a CNF encoding of G-PHPm

n as a polynomial system. For the sake of contradiction
assume that we have a PCRF

{±1} proof π of size exp( ε2 ·
r2

∆m) and hence of q-size exp(ε r2

∆m).
Fix the parameter d := ε0

10r. We say that a term t is fat if deg(t) ≥ d and let H be the
multiset of all fat term in the quadratic representation of the proof π.

The idea of the proof is similar to the proof of Theorem 5.10.
The following algorithm takes a proof π and transforms it into a proof of small degree of a

Pigeonhole Principle over a smaller graph. This case is a bit simpler than in section 5.5 since
we do not need to take care about SOS{±1}.
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Algorithm 2 Degree reduction. PHP

1: R1 := R ▷ Set of alive holes
2: L1 := L ▷ Set of pigeons that are not yet satisfied
3: J1 := ∅ ▷ Set of active variables
4: ℓ := 1
5: π1 := π
6: ρ1 := ∅
7: while H ̸= ∅ do
8: Pick the most frequent variable xi,j in H.
9: Jℓ+1 := Jℓ ∪ {xi,j}

10: π′ := Splitxi,j
(π)

11: ρℓ+1 := ρℓ
12: for k ∈ (N(j) \ {i}) do
13: ρℓ+1 := ρℓ+1 ∪ (xk,j = False)
14: Lℓ+1 := Lℓ

15: Rℓ+1 := Rℓ \ {j}
16: Bℓ := max{B ⊆ Lℓ+1 | |B| ≤ r, |∂Rℓ+1

(B)| ≤ 3|B|}
17: Find a matching M on Bℓ in (Lℓ+1, Rℓ+1, E) ▷ Proposition 5.1
18: for (i′, j′) ∈M do
19: Lℓ+1 := Lℓ+1 \ {i′}
20: Rℓ+1 := Rℓ+1 \ {j′}
21: ρℓ+1 := ρℓ+1 ∪ {xi′,j′ = True}
22: for k ∈ NLℓ+1

(j′) do
23: ρℓ+1 := ρℓ+1 ∪ (xk,j′ = False)
24: πℓ+1 := π′ ↾ ρℓ+1

25: H := set of fat terms of the quadratic representation of πℓ+1

26: ℓ := ℓ+ 1
return πℓ

Note that Splitxi,j
(π):

• transforms polynomial representation of pigeon axiom for the pigeon i into the polynomial
representation of the same axiom without hole j;

• damages hole axioms for hole j;

• does not affect all other axioms.

After Splitxi,j
(π) operation we assign all variables xk,j to False that sets all “damaged” hole

axioms to zero and remove hole j from our graph. Hence at line 14 π′ is a proof of G-PHP based
on graph without hole j. In the last part we try to restore expansion property on the graph of
Pigeonhole Principle after removing hole j. We put some pigeons into holes and remove these
pigeons and holes from the graph. Hence in the end of iteration πℓ+1 will be a proof of G-PHP
on graph induced by Lℓ+1 and Rℓ+1.

We start with the system F . In each iteration we pick a variable xi,j that appears in at
least d

∆m |H| fat terms and consider Splitxi,j
(π). The fact that Splitxi,j

(π) banishes all terms
that contain x allows us to estimate the number of iterations.

Proposition 6.4. ℓ ≤ r
5 .
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Proof. We kill at least fat d
∆m |H| terms. Hence the process will terminate if (1− d

∆m)ℓ|H| < 1.
|H| is at most the q-size of the proof π and (1− d

∆m)ℓ|H| ≤ (1− d
∆m)ℓ exp(ε r2

∆m) ≤ exp(− ℓd
∆m +

ε r2

∆m) is less than 1 if ℓd > εr2. The choice of ε implies the desired result.

We know that damaged axioms are pigeon axioms that are hit by a partial assignment. If
we put all damaged pigeons into alive holes, this assignment will set all damaged axioms to
zero. Again, as in case of random formulas, in order to be able to find such an assignment, and
keep the formula hard for PCRF we polish it after each iteration by a partial assignment that
satisfies the set Bi.

The next Proposition is an analogue of Proposition 5.15 in section 5.10 and the proof of this
Proposition is the same.

Proposition 6.5. 1. |Cℓ| ≤ ℓ.

2. ∀i ∈ [ℓ], (Li, Ri, E) is an (r,∆, 3)-boundary expander.

Where Ci :=
i∪

j=1
Bj .

Since (Li, Ri, E) is an (r,∆, 3)-boundary expander then (Li, Ri \ {x}, E) is an (r,∆, 2)-
boundary expander (we just remove one vertex on the right side). By Proposition 5.1 there is
a matching on Bi.

πℓ is a proof of the G-PHP on a graph that is (r,∆, 3)-boundary expander. Moreover the
quadratic representation of πℓ does not contain any fat terms. Hence by Lemma 3.6 the proof
πℓ can be transformed into a proof of degree at most 2d which is a contradiction to the choice
of d.

6.3 Separation
Theorem 6.6 (Formalization of 1.3). Let G be an (r,∆, 4)-boundary expander then:

• there is an SOS{0,1} and SOS{±1}-proof of the G-PHPn+1
n of size poly(n);

• any PCRF
{±1} or PCRF

{0,1}-proof of G-PHPn+1
n has size exp(n).

Proof. The upper bounds follows from Theorem 6.2 and Lemma 3.7.
For the lower bounds we apply Theorems 6.1 and 6.3 to an (Ω(n),∆, 4)-boundary expander.

7 Concluding Remarks
In this paper we present techniques for proving lower bounds on the algebraic proof systems on
the {±1} basis. We demonstrate that gadget substitution helps us to transfer the lower bound
from degree to size. But this bound was demonstrated only for real numbers (since we can prove
it for Sum-of-Squares but can not prove it directly for Polynomial Calculus). It is interesting
to do it directly for Polynomial Calculus.

Also we showed the lower bounds for the classical hard formula examples. The main idea of
all the results based on the quadratic representation of the proofs. It is interesting to find other
applications of this representation and also to study the power of the high-order representations.

22



Open problems. To develop new techniques it would be interesting to study the size of
proofs for concrete formulas.

1. The proof of Theorem 6.3 works only for the basic version of the Pigeonhole Principle.
Can we prove lower bounds for Functional or Onto Pigeonhole Principle?

2. Algebraic proof systems over {±1} basis are exponentially stronger than proof systems
over {0, 1} on Tseitin formulas. Can we find the opposite separation? Can we simulate
Resolution in PCRF

{±1} or SOS{±1}?
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A Missed Proofs
A.1 Proposition 5.15
At first note a simple auxiliary statement.

Lemma A.1. Suppose that G := (L,R,E) is an (r,∆, c)-boundary expander and that J ⊆ R

has size |J | ≤ ∆r. Then if X ⊆ L has size |X| ≤ r and |∂X \ J | ≤ ν|X| then X < |J |
c−ν .

Proof. The expansion property of the graph guarantees that c|X| − |J | ≤ |∂X \ J |. The con-
clusion follows.

Proposition 5.15. 1. |Cℓ| ≤ ℓ.

2. ∀i ∈ [ℓ], GAi
φ↾ρi is an (r,∆, 3)-boundary expander.

Proof. At first by induction on i we show that |Ci| ≤ ℓ. C0 = ∅. Assume that |Ci−1| ≤ ℓ.
Note that ρi−1 assign only variables from NGφ(Ci−1) that implies that right part of Gi is

a superset of X \
(
NGφ(Ci−1) ∪ Jℓ

)
. Hence |∂GφBi \ NGφ(Ci−1) ∪ Jℓ| ≤ |∂GiBi| ≤ 3|Bi|. By

definition |Bi| ≤ r hence by Lemma A.1 |Bi| ≤ |NGφ(Ci−1) ∪ Jℓ| ≤ 2∆|Jℓ|25r and |Ci| ≤ 3
5r.

By analogy with previous expression: ∂GφCi ⊆
∪
i
∂GiBi ∪ Jℓ, but:

4|Ci| ≤
|∂GφCi| ≤ by expansion

i∑
j=1

|∂GjBj |+ |Jℓ| ≤

3
i∑

j=1

|Bj |+ |Jℓ| ≤ by the choice of Bi

3|Ci|+ |Jℓ| since all Bj are disjoint

Thus |Ci| ≤ |Jℓ| = ℓ as desired.
We prove the second item by contradiction. Pick the minimal i such that G := GAi

φ↾ρi is
not an (r,∆, 3)-boundary expander and S be a subset of its left part of size |S| ≤ r such that
|∂GS| ≤ 3|S|. As in previous case |∂GφS \

(
NGφ(Ci−1) ∪ Jℓ

)
| ≤ |∂GS| ≤ 3|S| hence by Lemma

A.1 |S| ≤ ∆ℓ+ 1 ≤ 2
5r.

Consider a set S∪Bi−1 and note that size of it at most r. ∂Gi−1(S∪Bi−1) ⊆ ∂GiS∪∂Gi−1Bi−1

since Vars(ρi) \ Vars(ρi−1) ⊆ ∂Gi−1Bi−1. This implies |∂Gi−1(S ∪ Bi−1)| ≤ 3|Si| + 3|Bi−1| =
3|Si ∪Bi−1|. That contradicts with the choice of Bi−1.

A.2 Theorem 4.4
Theorem 4.4. [Analogue of [Ber18]] Let F be a system of polynomial equations. If there is a
PCRR

{±1}-proof of F of size S and degree d then there is an SOS{±1}-proof of size poly(S) and
degree 2d.

Proof. Let p1, p2, . . . , pa be a Polynomial Calculus proof of F of size S. We construct by
induction on i an SOS{±1}-derivation of −p2i from F . More formally, we represent each pi in a
following way: ∑

f∈F
(−ai,ff)f +

i∑
v=1

ci,vq
2
v = −p2i
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where ai,f , ci,v ∈ R and ci,v ≥ 0.
If pi ∈ F then −p2i is already in this form. If pi := xℓpj for some j < i then p2i = p2j hence

we consider factor field over range axioms. Representation of pj is a representation of pi. The
remaining case pi := αpj + βpk for some j, k < i. By induction we have:

∑
f∈F

(−aj,ff)f +

j∑
v=1

c2v,jq
2
v = −p2j

∑
f∈F

(−ak,ff)f +

k∑
v=1

c2v,kq
2
v = −p2k

Let a′f := α2aj,f + β2ak,f and c′v := α2cv,j + β2cv,k, hence:

∑
f∈F

(−a′ff)f +

i−1∑
v=1

c′vq
2
v = −(αpj)2 − (βpk)

2

Note that −p2i = −(αp)2j − 2αβpjpk − (βpk)
2. Let qi := αpj − βpk then:

−2(αpj)2 − 2(βpk)
2 + q2i = −(αpj)2 − 2αβpjpk − (βpk)

2 = −p2i

and hence

∑
f∈F

(−2a′ff)f +

i−1∑
v=1

2c′vq
2
v + q2i = −p2i

that is desired representation.
Since pa = 1 this representation for−p2a is an SOS{±1}-proof of F . To conclude the proof note

that at each iteration we add at most one polynomial that is square of linear combination of two
polynomials from PCRR

{±1}-proof. Hence the size of the SOS{±1}-proof is at most poly(S).

A.3 Lemma 5.7
Lemma 5.7. If m = O(n), ∆ > 11 and φ ∼ φ(m,n,∆) then whp Gφ is an (r,∆, 5)-boundary
expander where r = Ω( n

∆).

Proof. Let m := Kn. Fix r := 1
104K

n
∆ and c := ∆+5

2 ≤ 3
4∆. Let Gφ := (L,X,E). We first

estimate the probability that a set S ⊆ R of size at most r violates the boundary expansion.
This probability can be bounded by:

Pr[|∂S| < 5s] ≤ Pr

[
|N(S)| <

(
∆− 5

2
+ 5

)
s

]
≤
(
n

cs

)
·

((
cs
∆

)(
n
∆

))s

≤
(
n

cs

)
·
(cs
n

)∆s

≤
(ne
cs

)cs
·
(cs
n

)∆s

≤

((
100cs

n

)∆−c
)s

,
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where s := |S|.
Hence the probability that Gφ is not a boundary expander can be bounded by:

Pr[G is not an expander] ≤
r∑

s=1

(
m

s

)(
nc−∆(cs)∆−cec

)s
≤

r∑
s=1

(
Kne

s

(
100cs

n

)∆−c
)s

≤
r∑

s=1

(
cK

(
100cs

n

)∆−c−1
)s

≤

√
n∑

s=1

(
cK

(
100cs

n

)∆−c−1
)s

+

r∑
s=

√
n+1

(
cK

(
100cs

n

)∆−c−1
)s

≤

√
n∑

s=1

(
cK

(
100∆√

n

)∆−c−1
)s

+
r∑

s=
√
n+1

(
cK

(
100cs

n

)∆−c−1
)s

≤ O

(
1√
n

)
+

r∑
s=

√
n+1

(
cK

(
1

10K

)∆−c−1
)s

≤ O

(
1√
n

)
+ exp(−

√
n)
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