
Linear-time Erasure List-decoding of Expander Codes

Noga Ron-Zewi∗ Mary Wootters† Gilles Zémor‡

February 17, 2020

Abstract

We give a linear-time erasure list-decoding algorithm for expander codes. More precisely, let
r > 0 be any integer. Given an inner code C0 of length d, and a d-regular bipartite expander
graph G with n vertices on each side, we give an algorithm to list-decode the expander code
C = C(G, C0) of length nd from approximately δδrnd erasures in time n · poly(d2r/δ), where δ
and δr are the relative distance and the r’th generalized relative distance of C0, respectively. To
the best of our knowledge, this is the first linear-time algorithm that can list-decode expander
codes from erasures beyond their (designed) distance of approximately δ2nd.

To obtain our results, we show that an approach similar to that of (Hemenway and Woot-
ters, Information and Computation, 2018) can be used to obtain such an erasure-list-decoding
algorithm with an exponentially worse dependence of the running time on r and δ; then we
show how to improve the dependence of the running time on these parameters.

1 Introduction

In coding theory, the problem of list-decoding is to return all codewords that are close to some
received word z; in algorithmic list-decoding, the problem is to do so efficiently. While there
has been a great deal of progress on algorithmic list-decoding in the past two decades [GS99,
PV05,GR06b,GW17,GX12,GX13,Kop15,GK16,HRW19,KRSW18], most work has relied crucially
on algebraic constructions, and thus it is interesting to develop combinatorial tools to construct
efficiently list-decodable codes with good parameters.

In this work, we consider the question of list-decoding expander codes, introduced by Sipser
and Spielman in [SS96]. We define expander codes formally in Section 2, but briefly, the expander
code C(G, C0) is a linear code constructed from a d-regular bipartite expander graph G and a linear

inner code C0 ⊆ Fd2. A codeword of C(G, C0) is a vector in FE(G)
2 which is a labeling of edges in

G. The constraints are that, for each vertex v of G, the labels on the d edges incident to v form a
codeword in C0.

Expander codes are notable for their very efficient unique decoding algorithms [SS96, Zém01,
LMSS01, SR03, AS05, BZ02, BZ05, BZ06, RS06, HOW15]. However, very little is known about the

∗Department of Computer Science, University of Haifa. noga@cs.haifa.ac.il. Research supported in part by
BSF grant 2017732
†Department of Computer Science and Department of Electrical Engineering, Stanford University.

marykw@stanford.edu. Research supported in part by NSF CAREER award CCF-1844628 and by NSF-BSF award
CCF-1814629, as well as by a Sloan Research Fellowship.
‡Institut de Mathmatiques de Bordeaux, Université de Bordeaux. zemor@math.u-bordeaux.fr.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 13 (2020)

algorithmic list-decodability of expander codes, and it is an open problem to find a family of ex-
pander codes that admit fast linear-time list-decoding algorithms with good parameters. Motivated
by this open problem, our main contribution is a linear-time algorithm for list decoding expander
codes from erasures.

Erasure list-decoding. Erasure-list-decoding is a variant of list-decoding where the received
word z may have some symbols which are “⊥” (erasures), and the goal is to recover all codewords
consistent with z. More formally, let C ⊆ FN2 be a binary code of length N . For z ∈ (F2 ∪ ⊥)N ,
define

ListC(z) := {c ∈ C : ci = zi whenever zi 6= ⊥} .

We say that C is erasure-list-decodable from e erasures with list size L if for any z ∈ (F2 ∪ {⊥})N
with at most e symbols equal to ⊥, |ListC(z)| ≤ L.

Erasure list-decoding has been studied before [Gur03,GI02,GI04,GR06a,DJX14,HW18,BDT18],
motivated both by standard list-decoding and as an interesting combinatorial and algorithmic
question in its own right. It is known that the erasure-list-decodability of a linear code is precisely
captured by its generalized distances. The r’th (relative)1 generalized distance δr of a linear code
C ⊆ FN2 is the minimum fraction of coordinates which are not identically zero in an r-dimensional
subspace of C, that is,

δr =
1

N
min
V

∣∣ {i : ∃v ∈ V, vi 6= 0}
∣∣,

where the minimum is taken over all linear subspaces V ⊆ C of dimension r. Thus, δ1 coincides
with the traditional (relative) distance δ of the code, which for linear codes equals the minimum
relative weight of any nonzero codeword. The generalized distances of a linear code C characterize
its erasure list-decodability:

Lemma 1.1 ([Gur03]). Let C ⊆ FN2 be a linear code. Then C is erasure-list-decodable from e
erasures with list size L if and only if δr(C) > e/N , where r = 1 + blog2(L)c.

If C is linear, then it can be erasure list-decoded in polynomial time by solving a linear system.
Thus, the combinatorial result of Lemma 1.1 comes with a polynomial-time algorithm.

Our goal in this paper is twofold. First, we aim to develop algorithms to erasure list-decode
expander codes beyond the minimum distance of the code with small list size. Second, we aim to
do so in linear time, faster than the straightforward algorithm described above.

Our Results. Our main result is a linear-time erasure list-decoding algorithm for expander codes
beyond the (designed) minimum distance.

Theorem 1.2. Let C0 ⊆ Fd2 be a linear code with distance δ and r’th generalized distance δr. Let
G = (L ∪ R,E) be the double cover 2 of a d-regular expander graph on n vertices with expansion
λ = max{λ2, |λn|}. Let C = C(G, C0) be the expander code that results. Let ε > 0, and suppose that
λ
d ≤

ε2δ2

2r+4 .

1Throughout this paper, we will work with the relative generalized distances (that is, measured as a fraction of
coordinates). We will omit the adjective “relative” to describe these quantities in the future.

2The double cover of a graph G̃ = (Ṽ , Ẽ) is the bipartite graph G = (L ∪ R,E) defined as follows. Let L and R
be two copies of Ṽ ; there is an edge between u ∈ L and v ∈ R if and only if (u, v) ∈ Ẽ (see Section 2).

2

Then there is an algorithm ListDecode which, given a received word z ∈ (F2 ∪ {⊥})E with
at most (1− ε)δδrdn erasures, runs in time n · poly

(
2rd
εδ

)
, and returns a matrix L ∈ Fnd×a2 and a

vector ` ∈ Fnd2 so that L := ListC(z) = {Lx+ ` : x ∈ Fa2} where a := dim(L) satisfies a ≤ 22r+7

ε4δ4
.

Because δr > δ for any non-trivial linear code (any code of dimension > 1), the radius that
Theorem 1.2 achieves is beyond the (designed) minimum distance of C, which is approximately δ2dn.
To the best of our knowledge, this is the first linear-time list-decoding algorithm for expander codes
that achieves this with a non-trivial list size.

In light of Lemma 1.1, the ultimate result we can hope for is an algorithm that list-decodes
up to δr(C) fraction of erasures with list size 2r−1 for any r ≥ 1. The quantity δ(C0) · δr(C0)
in Theorem 1.2 may suggest it plays the role of a ’designed’ r’th generalized distance, especially
since for r = 1 it does (up to an ε term) coincide with the expander designed distance. However,
we cannot expect δ(C0) · δr(C0) to be a general lower bound on the r’th generalized distance of an
expander code, which implies in particular that the list-size in Theorem 1.2 has to be larger than 2r.
Indeed, already in the special case of tensor codes (i.e., when the graph G is the complete bipartite
graph that has perfect expansion), the generalized distance has been shown [WY93,Sch00] to be a
complicated quantity that can be lower than δ(C0) · δr(C0): in the general expander case, finding a
reasonable description of the worst-case behavior of generalized distances seems quite challenging.

Note however that our results do imply a weak bound on the generalized distances of an expander
code, namely that δr(C) is approximately at least δ(C0) · δΘ(log r)(C0). Moreover, for the special case
of r = 2, we are able to show the following bound on the second generalized distance of an expander
code.

Lemma 1.3. Let C0 ⊆ Fd2 be a linear code with distance δ and second generalized distance δ2, and
let G = (L ∪ R,E) be the double-cover of a d-regular expander graph with expansion λ. Let ε > 0,

and suppose that λ
d ≤

δ2δ2ε2

16 . Then the expander code C(G, C0) has second generalized distance at
least (1− ε) · δ ·min{δ2, 2δ}.

Note that under the mild assumption that δ2(C0) ≤ 2δ(C0) (satisfied by any code that has
two minimum-weight codewords with disjoint support), the above lemma gives a lower bound of
approximately δ2(C0)δ(C0) on the second generalized distance of expander codes.

Finally, note that while we do not know if the list size returned by our algorithm can be generally
improved, our algorithm can still list-decode an expander code C from up to a δr(C) fraction of
erasures with list size 2r−1 for some values of r: If r′ is such that δr′(C) < δ(C0)δr(C0) for some
r = O(1), our algorithm will run in linear time and return a list of size 2r

′−1 given a δr′(C) fraction
of erasures.

1.1 Technical Overview

In this section, we give a brief overview of our approach. The basic idea is similar to the approach
in [HW18]; however, as we discuss more in Section 1.2 below, in that work the goal was list-recovery,
a generalization of list-decoding. In this work we can do substantially better by restricting our
attention to list-decoding, as well as by tightening the analysis of [HW18].

Let G = (L ∪ R,E) be the double-cover of a d-regular expander graph, and let C0 ⊆ Fd2 be a
linear code with distance δ and r-th generalized distance δr. Since the inner code C0 is linear and
has r’th generalized distance δr, there is an O(d3)-time algorithm to erasure list-decode C0 from up

3

to δrd erasures. Our first step will be to do this at every vertex v ∈ L∪R that we can, to produce
a list Lv at each such vertex.

In order to “stitch together” these lists, we define a notion of equivalence between edges, similar
to the notion in [HW18]. Suppose that (u, v) and (w, v) are edges incident to a vertex v, so that
there is some b ∈ F2 so that for any c ∈ Lv, c(u,v) = b + c(w,v). Then, even if we have not
pinned down a symbol for (u, v) or (w, v), we know that for any legitimate codeword c ∈ ListC(z),
assigning a symbol for one of these edges implies an assignment for the other. In this case, we
say that (u, v) ∼ (w, v). Because the lists Lv are actually affine subspaces, there are not many
equivalence classes at each vertex (and in particular substantially fewer equivalence classes than in
the approach used in [HW18]).

With these equivalence classes defined, we actually give two algorithms, SlowListDecode
and ListDecode. As the name suggests, SlowListDecode is a warm-up that has a worse
dependence on ε, δ and r, but is easier to understand. We describe SlowListDecode (given in
Section 3, Figure 2) here first, and then describe the changes that need to be made to arrive at our
final algorithm, ListDecode (given in Section 4, Figure 4).

The main idea of SlowListDecode is to choose s = poly(2r, 1/ε, 1/δ) large equivalence classes
and generate a list of all 2s possible labelings for these equivalence classes. For each such labeling,
we now hope to uniquely fill in the rest of the codeword, to arrive at a list of size 2s. One might
hope that labeling these s large equivalence classes would leave a fraction of unlabeled symbols
less than the designed distance of C, allowing us to immediately use the known linear-time erasure
unique decoding algorithm for the expander code. Unfortunately, this is not in general the case.
However, we show that there are many vertices v so that the number of unlabeled edges incident
to v is at most δ(C0)d. Thus, we may run the unique decoder for C0 (in time O(d3)) at each such
vertex to generate yet more labels. It turns out that at this point, there are enough labels to run
C’s unique decoding algorithm and finish off the labeling.

Naively, the algorithm described above runs in time at least 2s, since we must loop over all 2s

possibilities. This is exponential in ε and δ and doubly-exponential in r. The idea behind our final
algorithm ListDecode is to take advantage of the linear structure of the lists Lv to find a short
description of all of the legitimate labelings. We will show in Section 4 how to do this in time
n · poly(d2r/εδ) by leveraging the sparsity of C’s parity-check matrix.

1.2 Related Work

Work on list-decoding expander codes. The work that is perhaps the most related to ours
is [HW18], which seeks to list-recover expander codes in the presence of erasures in linear time.3

List-recovery is a variant of list-decoding which applies to codes over a large alphabet Σ: instead
of receiving as input a vector z ∈ {0, 1}N , the decoder receives a collection of lists, S1, . . . , SN ⊆ Σ,
and the goal is to return all codewords c ∈ ΣN so that ci ∈ Si for all i. In the setting of erasures,
some lists have size |Σ|, in which case we may as well replace the whole list by a ⊥ symbol.

List decoding from erasures is a special case of list-recovery with erasures, where the Si that are
not ⊥ have size one. However, existing list-recovery algorithms will not immediately work in our
setting, as we consider binary codes: list-recovery is only possible for codes with large alphabets.

Our first observation is that the approach of [HW18] for erasure list-recovery can be used to

3We note that other works, such as [GI04], have also had this goal, but to the best of our knowledge [HW18]
obtains the best known results, so we focus on that work here.

4

obtain an algorithm for erasure list-decoding in linear time, even for binary codes. As described
above, our first step is to erasure list-decode C0 at each vertex, leaving us with lists Lv that need
to be “stitched together.” The approach of [HW18] does precisely this, although in their context
the lists that they are stitching together come from list-recovering the inner code.

However, the results of [HW18] about stitching together lists do not immediately yield anything
meaningful for erasure list-decoding. More precisely, those results imply that an expander code
C(G, C0) formed from a graph G with expansion λ and an inner code C0 with distance δ and

r’th generalized distance δr is list-decodable from up to a δδr

(
δ−λ/d

6

)
fraction of erasures in time

N · exp(exp(exp(r))). In particular, the fraction of erasures that those results tolerate is smaller
than the distance of the expander code, yielding only trivial results in this setting.

Thus, while we use the same ideas as [HW18], our analysis is different and significantly tighter.
This allows us to obtain a meaningful result in our setting, corresponding to the algorithm SlowList-
Decode. Moreover, as described above, we are able to take advantage of the additional linear
structure in our setting to improve the dependence on r in the running time.

To the best of our knowledge, there is no algorithmic work on list-decoding expander codes from
errors (rather than erasures) in linear time with good parameters. We note that [MRR+19] recently
showed that there are expander codes which are combinatorially near-optimally list-decodable from
errors, but this work is non-constructive and does not provide efficient list decoding algorithms.

Work on erasure list-decoding more generally. It is known that, non-constructively, there
are erasure-list-decodable codes of rate Ω(ε) which can list-decode up to a 1−ε fraction of erasures,
with list sizes O(log(1/ε)) [Gur03]. However, this proof is non-constructive and does not provide
efficient algorithms, and it has been a major open question to achieve these results efficiently.
Recent progress has been made by [BDT18], who provided a construction (although no decoding
algorithm) with parameters close to this for ε which is polynomially small in n.

Our work is somewhat orthogonal to this line of work on erasure list-decoding for several
reasons. First, that line of work is mostly concerned with low-rate codes that are list-decodable
from a large fraction of erasures (approaching 1), while expander codes tend to perform best at
high rates. Second, we are less concerned with the trade-off between rate and erasure tolerance and
more concerned with efficiently erasure-list-decoding an arbitrary expander code as far beyond its
(designed) distance as possible. Finally, much of the line of work described above has focused on
getting the list size down to O(log(1/ε)), which is known to be impossible for linear codes, where
the best list size possible is Ω(1/ε) [Gur03]. Since the expander codes we consider are linear, we
do not focus on that goal in our work.

Organization. In Section 2, we formally introduce the notation and definitions we will need.
In Section 3, we introduce our preliminary algorithm SlowListDecode, while in Section 4 we
describe the final algorithm that has better dependence on ε, δ and r in the running time. This
proves our Main Theorem 1.2. We conclude in Section 5 with the proof of Lemma 1.3, showing a
bound on the second generalized distance of expander codes.

5

2 Preliminaries

Expander Graphs. Let G = (L ∪R,E) be a bipartite graph.4 For a vertex v ∈ L ∪R, let Γ(v)
denote the set of vertices adjacent to v. For S ⊆ L and T ⊆ R, let E(S, T) denote the set of edges
with endpoints in S ∪ T , and for A ⊆ L ∪R, let E(A) := E(A ∩ L,A ∩R).

Let G̃ = (Ṽ , Ẽ) be a (not necessarily bipartite) d-regular graph on n vertices. The expansion
of G̃ is λ := max{λ2, |λn|}, where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of the adjacency matrix
of G. The double-cover of G̃ is the bipartite graph G = (L∪R,E) defined as follows. Let L and R
be two copies of Ṽ ; there is an edge between u ∈ L and v ∈ R if and only if (u, v) ∈ Ẽ. If G̃ is an
expander graph, then G obeys the Expander Mixing Lemma:

Theorem 2.1 (Expander Mixing Lemma, see e.g. [HLW06]). Suppose that G = (L ∪ R,E) is the
double cover of a d-regular expander graph on n vertices with expansion λ. Then for any S ⊆ L
and T ⊆ R, ∣∣∣∣E(S, T)− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
Expander Codes. Let G = (L ∪ R,E) be the double cover of a d-regular expander graph on n
vertices, as above. Let C0 ⊆ Fd2 be a linear code, called the inner code. Fix an order on the edges
incident to each vertex of G, and let Γi(v) denote the i’th neighbor of v.

The expander code C := C(G, C0) is defined as the set of all labelings of the edges of G that
respect the inner code C0. More precisely, we have the following definition.

Definition 2.2 (Expander Code). Let C0 ⊆ Fd2 be a linear code, and let G = (L ∪ R,E) be the
double cover of a d-regular expander graph on n vertices. The expander code C(G, C0) ⊆ FE2 is a
linear code of length nd, so that for c ∈ FE2 , c ∈ C if and only if, for all v ∈ L ∪R,(

c(v,Γ1(v)), c(v,Γ2(v)), . . . , c(v,Γd(v))

)
∈ C0.

By counting constraints, it is not hard to see that if C0 ⊆ Fd2 is a linear code of rate R, then
C(G, C0) ⊆ FE2 is a linear code of rate at least 2R − 1. Moreover, it is known that expander codes
have good distance:

Lemma 2.3 ([SS96,Zém01]). Let C0 ⊆ Fd2 be a linear code with distance δ, and let G = (L∪R,E)
be the double cover of a d-regular expander graph with expansion λ. Then the expander code C(G, C0)
has distance at least δ(δ − λ/d).

Moreover, C can be uniquely decoded up to this fraction of erasures in linear time.

Lemma 2.4. Let C0 ⊆ Fd2 be a linear code with distance δ, and let G = (L ∪ R,E) be the double
cover of a d-regular expander graph on n vertices with expansion λ. Let ε > 0, and suppose that
λ
d < δ

2 . Then there is an algorithm UniqueDecode which uniquely decodes the expander code
C(G, C0) from up to (1− ε)δ(δ − λ/d) erasures in time n · poly(d)/ε.

The above lemma is by now folklore, but for completeness, we include a proof in Appendix A.

4In this paper we only consider undirected graphs.

6

3 A preliminary algorithm

For clarity of exposition, we begin the proof of our Main Theorem 1.2 by proving the following
weaker theorem.

Theorem 3.1. Let C0 ⊆ Fd2 be a linear code with distance δ and r’th generalized distance δr. Let
G = (L ∪ R,E) be the double cover of a d-regular expander graph on n vertices with expansion
λ = max{λ2, |λn|}. Let C = C(G, C0) be the expander code that results. Let ε > 0, and suppose that
λ
d ≤

ε2δ2

2r+4 . Let s := 22r+7

ε4δ4
. Then there is an algorithm SlowListDecode which erasure-list-decodes

C from (1− ε)δδrdn erasures with list size at most 2s in time n · poly(d) · exp(s).

Theorem 3.1 still provides a linear-time algorithm (provided d, r, ε, δ are all constant), but the
dependence on r, ε, δ is not very good. We will prove Theorem 3.1 in this section to illustrate the
main ideas, and then in Section 4, we will show how to adapt the algorithm to achieve the running
times advertised in Theorem 1.2.

A formal description of our algorithm SlowListDecode is given in Figure 2. Roughly, the
first step is to list decode the inner codes to obtain an inner list Lv at each vertex v ∈ L ∪ R.
The second and main step then is to label large equivalence classes by iterating over all possible
assignments to representatives from these classes. In the third and final step we complete any such
possible assignment, by first uniquely decoding at inner codes where sufficient number of edges
are already labeled, followed by global unique decoding to recover the rest of the unlabeled edges.
Below we elaborate on each of these steps.

In what follows, suppose that z ∈ (F2 ∪ {⊥})E is a received word with at most (1 − ε)δδrdn
symbols that are ⊥, and let L = ListC(z) be the set of codewords of C that are consistent with z.

3.1 List decoding inner codes

The first step is to list decode all inner codes with not too many erasures. Specifically, let B ⊆ L∪R
be the set of bad vertices v so that z has more than δrd erasures incident to v.

B =
{
v ∈ L ∪R : z(v,u) = ⊥ for more than δrd vertices u

}
. (1)

Then by our assumption on the number of erasures in z,

|B ∩ L|δrd ≤ (1− ε)δδrnd

and the same for B ∩R, which implies that

|B ∩ L|, |B ∩R| ≤ (1− ε)δn. (2)

The first step of the algorithm will be to list-decode the inner code C0 at every vertex v 6∈ B.
For all such v, let

Lv := ListC0
(
(z(v,Γ1(v)), z(v,Γ2(v)), . . . , z(v,Γd(v)))

)
. (3)

Next we shall use the following notion of local equivalence relation to assign labels to many of
the edges. To define this notion, note first that since C0 has r’th generalized distance δr, for any
v /∈ B, Lv is an affine subspace of Fd2 of dimension rv ≤ r− 1. Let Gv ∈ Fd×rv2 and bv ∈ Fd2 be such
that

Lv = {Gvx+ bv : x ∈ Frv2 } .
Notice that each row of Gv corresponds to an edge adjacent to v.

Next we define, for any vertex v /∈ B, a local equivalence relation ∼v at the vertex v.

7

Algorithm: FindHeavyEdges
Inputs: A description of G = (L ∪R,E) and C0 ⊆ Fd2, and the lists Lv for v 6∈ B.
Output: The set E′ ⊆ E.

Initialize: E′ ← E.

1. Remove from E′ all edges incident to a vertex in B.

2. While true:

If there is some (u, v) ∈ E′, so that

∣∣{(w, v) ∈ E′ : (w, v) ∼v (u, v)
}∣∣ ≤ ε2δ2

2r+3
· d,

remove (u, v) and all edges (w, v) ∈ E′ so that (w, v) ∼v (u, v) from E′.

3. Break and return the set E′.

Figure 1: FindHeavyEdges

Definition 3.2 (Local equivalence relation). Suppose that v 6∈ B. For (u, v), (w, v) ∈ E, say that
(u, v) ∼v (w, v) if the row of Gv corresponding to (u, v) is the same as the row of Gv corresponding
to (w, v).

Notice that Definition 3.2 depends on both v and z; we suppress the dependence on z in the
notation. We make the following observations.

Observation 3.3. Suppose that v 6∈ B.

(A) If (u, v) ∼v (w, v), then for any c ∈ L, c(u,v) is determined by c(w,v).

(B) There are at most 2r−1 local equivalence classes at v, because there are at most 2r−1 possible
vectors in Frv2 that could appear as rows of the matrices Gv.

3.2 Labeling large equivalence classes

The next step is to assign labels to large global equivalence classes, defined below. For this, we
first define a new edge set E′ ⊆ E by first throwing out all edges touching B, and then repeatedly
throwing out edges whose local equivalence classes are too small. Specifically, define E′ to be the
output of the following Algorithm FindHeavyEdges, given in Figure 1.

Next we define a global equivalence relation ∼ on the edges in E′ as follows.

Definition 3.4 (Global equivalence relation). Suppose that e, e′ ∈ E′. We say that e ∼ e′ if there
is a path e = e1, e2, . . . , et = e′ so that e1, e2, . . . , et ∈ E′, and for any pair of adjacent edges
ei = (u, v), ei+1 = (v, w) on the path it holds that (u, v) ∼v (v, w).

The following lemma shows that E′ is partitioned into a small number of large global equiva-
lence classes. Consequently, one can assign labels to all edges in E′ by iterating over all possible
assignments for a small number of representatives from these classes.

8

Lemma 3.5. Any global equivalence class in E′ has size at least ε4δ4

22r+7dn. In particular, E′ is

partitioned into at most s := 22r+7

ε4δ4
different equivalence classes.

Proof. Let F be a global equivalence class in E′, and let S ⊆ L and T ⊆ R denote the left and
right vertices touching F , respectively. By the definition of E′, any vertex v ∈ S ∪ T is incident to
at least ε2δ2

2r+3 · d edges in F . Thus by the Expander Mixing Lemma (Theorem 2.1),

ε2δ2

2r+3
d
√
|S||T | ≤ |F | ≤ d

n
|S||T |+ λ

√
|S||T |,

and rearranging

n

(
ε2δ2

2r+3
− λ

d

)
≤
√
|S||T |.

This implies in turn that

|F | ≥ ε2δ2

2r+3
d
√
|S||T | ≥ ε2δ2

2r+3

(
ε2δ2

2r+3
− λ

d

)
dn,

which gives the final claim by our choice of λ
d ≤

ε2δ2

2r+4 .

Finally, by (A) in Observation 3.3, choosing a symbol on an edge determines all the symbols in
that edge’s equivalence class. Thus, we will exhaust over all choices of symbols for the equivalence
classes in E′; this leads to 2s possibilities. Next we show that any such choice determines a unique
codeword in C.

3.3 Completing the assignment

To complete the assignment we first show that many of the vertices have at least (1− δ)d incident
edges in E′. For any such vertex, the inner codeword at this vertex is completely determined by
the assignment to edges in E′, and so can be recovered by uniquely decoding locally at this vertex.
We then recover the small number of remaining edges using global unique decoding. Specifically,
let

B′ =
{
v ∈ L ∪R : (v, u) /∈ E′ for more than δd vertices u

}
. (4)

The next lemma bounds the size of B′, and the number of edges in E(B′).

Lemma 3.6. The following hold:

1. |B′ ∩ L|, |B′ ∩R| ≤
(
1− ε

2

)
δn.

2. |E(B′)| ≤
(
1− ε

4

) (
δ − λ

d

)
δnd.

Proof. For the first item, let B1 ⊆ (L ∪ R) \ B be the subset of vertices v /∈ B so that more than(
1− ε

2

)
δd edges incident to v are removed on Step 1 of FindHeavyEdges, and let B2 ⊆ (L∪R)\B

be the subset of vertices v /∈ B so that more than ε
2δd edges incident to v are removed on Step 2 of

FindHeavyEdges. Note that B′ ⊆ B ∪B1 ∪B2, so it suffices to show that |(B ∪B1 ∪B2) ∩L| ≤(
1− ε

2

)
δn, and similarly for R. By (2), |B ∩ L|, |B ∩ R| ≤ (1 − ε)δn. Claims 3.7 and 3.8 below

show that each of the sets B1, B2 has size at most ε
4δn which gives the desired conclusion.

9

For the second item, note that by the first item and the Expander Mixing Lemma,∣∣E(B′)
∣∣ ≤ d

n

(
δn
(

1− ε

2

))2
+ λδn

(
1− ε

2

)
≤
(

1− ε

2

)(
δ +

λ

d

)
δnd

≤
(

1− ε

4

)(
δ − λ

d

)
δnd,

where the last inequality follows by our choice of λ
d ≤

εδ
8 .

Claim 3.7. |B1| ≤ ε
4δn.

Proof. By the description of FindHeavyEdges, B1 is the set of all vertices v ∈ (L ∪ R) \ B that
are incident to more than

(
1− ε

2

)
δd vertices of B. Thus by the Expander Mixing Lemma,

|B1 ∩ L|
(

1− ε

2

)
δd ≤ |E(B1 ∩ L,B ∩R)|

≤ d

n
|B1 ∩ L||B ∩R|+ λ

√
|B1 ∩ L||B ∩R|

≤ d

n
|B1 ∩ L|nδ(1− ε) + λ

√
|B1 ∩ L|nδ(1− ε),

where the last inequality follows by (2).
Rearranging, we have √

|B1 ∩ L| ≤
λ
√
nδ(1− ε)
dδε/2

,

and

|B1 ∩ L| ≤ 4n

(
λ

d

)2

· 1

δε2
≤ ε

8
δn,

where the last inequality follows by our choice of λ
d ≤

ε3/2δ
8 . As the same holds for B1 ∩ R, we

conclude that B1 has size at most ε
4δn.

Claim 3.8. |B2| ≤ ε
4δn.

Proof. Since there are at most 2r−1 local equivalence classes at each vertex v, the algorithm Find-
HeavyEdges performs at most 2n·2r−1 iterations at Step 2. At each such iteration, at most ε2δ2

2r+3 ·d
edges are removed, and so the total number of edges removed at Step 2 of FindHeavyEdges is
2n · 2r−1 · ε2δ2

2r+3 · d = ε2δ2

8 · dn. Finally, by averaging this implies that there are at most ε
4δn vertices

v so that more than ε
2δd edges incident to v are removed at this step.

Next observe that for any vertex v 6∈ B′, the choices for symbols on E′ uniquely determine the
codeword of C0 that belongs at the vertex v. This is because C0 has distance δ, and at least (1−δ)d
edges incident to v have been labeled. Note that since C0 is a linear code of length d, this unique
codeword can be found in time O(d3) by solving a system of linear equations. Once this is done,
the only edges that do not have labels are those in E(B′). By Item (2) of Lemma 3.6, there are
at most

(
1− ε

4

) (
δ − λ

d

)
δnd such edges. By Lemma 2.4, these edges can be recovered using global

unique decoding in time n · poly(d)/ε. In this way, we can recover the entire list L.

10

The algorithm described above is given as SlowListDecode in Figure 2. This algorithm runs
in time n ·poly(d) ·exp(s), which proves Theorem 3.1. We will show how to speed it up in Section 4,
where we will conclude the proof of Theorem 1.2.

4 Final algorithm

The algorithm SlowListDecode runs in timeOr,δ,ε(n·poly(d)), but the constant inside theOr,δ,ε(·)
is exponential in poly

(
2r

εδ

)
, since there are s = poly

(
2r

εδ

)
equivalence classes, and we exhaust over

all 2s possible assignments to representatives from these classes. In this section, we will show how
to do significantly better and obtain a running time that depends polynomially on 2r, 1/δ, 1/ε,
finishing the proof of Theorem 1.2. The basic idea is as follows. Instead of exhausting over all
possible ways to assign values to the edges e(1), . . . , e(s), we will set up and solve a linear system
to find a description of the ways to assign these values that will lead to legitimate codewords.
Specifically, we prove the following lemma.

Lemma 4.1. There is an algorithm FindList which, given the state of SlowListDecode at the
end of Step 2, runs in time n · poly(d, s) and returns A ∈ Fnd×s2 , b ∈ Fnd2 , Â ∈ Fs×a2 , and b̂ ∈ Fs2 so
that

ListC(z) =
{
Ax+ b : x = Âx̂+ b̂ for some x̂ ∈ Fa2

}
,

where a := dim(ListC(z)) satisfies a ≤ s.

The above lemma immediately implies Theorem 1.2: We first run Steps 1 and 2 in SlowList-
Decode in order to find the set E′ and its partition into equivalence classes. As before, this takes
time n ·poly(d). Next, we run FindList in order to find a linear-algebraic description of the list L,
which we return. This second step takes time n ·poly(s, d), for a total running time of n ·poly(s, d).
Plugging in our definition of s proves Theorem 1.2. The formal description of the final algorithm
ListDecode is given in Figure 4. The rest of this section is devoted to the proof of Lemma 4.1.

First, note that every value ye determined by SlowListDecode is some affine function of the
labels on e(1), . . . , e(s). That is, there is some matrix A ∈ Fdn×s2 and some vector b ∈ Fdn2 so that
the list generated by SlowListDecode is

{Ax+ b : x ∈ Fs2} ,

where x := y(advice). Our goal in FindList will thus be to find this A and b efficiently, as well as
to find a description of the x’s so that Ax + b is actually a codeword in C. An overview of the
algorithm FindList is given in Figure 3, and the steps are described below.

4.1 Finding A and b

The first step of the algorithm will be to find A and b. To find this efficiently, we will mirror the
decoding algorithm in SlowListDecode, except we will do it while keeping the choices of y(advice)

as variables. As we will see below, this can be done in time n · poly(s, d). For this, we shall find a
series

(
A(t), b(t)

)
for t = 0, 1, . . . , T , where (A, b) =

(
A(T), b(T)

)
as follows.

11

Algorithm: SlowListDecode
Inputs: A description of G = (L ∪R,E) and C0 ⊆ Fd2, and z ∈ (F2 ∪ {⊥})E .
Output: The list L = ListC(z).

Initialize: L = ∅.

1. Let B ⊆ L∪R be as in (1). For each v 6∈ B, run C0’s erasure list-decoding algorithm
to obtain the lists Lv as in (3). For each v, this entails finding the kernel of a sub-
matrix of Gv, which can be done in time O(d3). Thus, the time for this step is
n · poly(d).

2. Run the algorithm FindHeavyEdges given in Figure 1 to find the set E′, find the
partition of E′ into s global equivalence classes, and choose representative edges
e(1), . . . , e(s) from each of the equivalence classes. This can be done in time O(nd)
using Breadth-First-Search.

3. For each y(advice) ∈ F{e
(1),...,e(s)}

2 :

(a) For each i ∈ [s], and for each e ∼ e(i), define ye to be the value uniquely

determined by y
(advice)

e(i)
, as given in Item (A) of Observation 3.3. This can be

done in time O(nd), again by Breadth-First-Search.

(b) Let B′ ⊆ L∪R be as in (4). For each v 6∈ B′, find the unique y|{v}×Γ(v) so that
y(v,u) is consistent with existing assignments to y, or determine that no such
y exists. As above, this can be done in time n · poly(d). If no such y exists for
some v, continue to the next choice of y(advice).

(c) Use the linear-time erasure unique decoding algorithm UniqueDecode from
Lemma 2.4 to find a unique y ∈ FE2 that agrees with all the choices of y made
so far, or determine that none exists. If it exists, add y to L. By Lemma 2.4,
this can be done in time n · poly(d)/ε.

4. Return L.

Figure 2: SlowListDecode: Returns ListC(z) in time Or,δ,ε(n). However, the dependence on r, δ, ε is not
good, and is improved in ListDecode, given in Figure 4.

12

Finding A(0) and b(0). First, let E0 := E′, and let A(0) ∈ FE0×s
2 and b(0) ∈ FE0

2 such that

(A(0)x+ b(0))e = ye,

where x := y(advice), and ye is as in Step (3a) in Algorithm SlowListDecode. Note that A(0) has
rows which are 1-sparse, and that A(0), b(0) can be created in time O(nd) given the matrices Gv
and vectors bv. Further note that, for any c ∈ C, c|E0 = A(0)c|{e(1),...,e(s)} + b(0).

Finding A(1) and b(1). Recalling B′ from (4), let E1 := (E \ E(B′)) ∪ E0. Note that for each
e ∈ E1 \E0, the label on e can be determined in an affine way from the labels on edges in E0. More
precisely, there is some vector f (e) ∈ FE0

2 of weight at most d and some h(e) ∈ F2 so that for any
c ∈ C,

ce = (f (e))T · c|E0 + h(e),

and moreover f (e) and h(e) can be found in time poly(d) by inverting a submatrix of one of the
matrices Gv.

Let F ∈ F(E1\E0)×E0

2 be the matrix with the f (e) as rows, let h ∈ FE1\E0

2 be the vector with
entries h(e), and let

A(1) :=


A(0)

FA(0)

 and b(1) :=



|
b(0)

|
|

Fb(0) + h
|

 .

Note that A(1), b(1) can be created in time n · poly(d) · s given A(0), b(0), F , and h. Further note
that for any c ∈ C, c|E1 = A(1)c|{e(1),...,e(s)} + b(1).

Finding A(t) and b(t) for t = 2, . . . , T . At this point, by the analysis above (following from
Lemma 3.6), we know that there are at most

(
1− ε

4

) (
δ − λ

d

)
δnd edges which are not in E1. If we

had labels for the edges in E1, then by Lemma 2.4 we can use the algorithm UniqueDecode to
recover the rest.

The algorithm UniqueDecode is given in Appendix A in Figure 5. The basic idea is to
iteratively decode C0 at vertices in L, then R, then L, and so on, to arrive at a unique assignment
for all of the edges. In order to do this with matrices, we will continue as above, creating A(t), b(t)

from A(t−1), b(t−1) for larger t just as we did for t = 1. Note that the sets Et in UniqueDecode
play the same role that they do here; Et represents the set of edges for which a label can be assigned
in step t.

More precisely, suppose that at step t − 1, UniqueDecode has assigned labels to Et−1, and

suppose that we have A(t−1) ∈ FEt−1×s
2 and b(t−1) ∈ FEt−1

2 so that for any c ∈ C,

c|Et−1 = A(t−1)c|{e(1),...,e(s)} + b(t−1).

At the next step, UniqueDecode would have assigned labels to edges in Et \Et−1. We note that
the total amount of time (over all iterations) to determine the edges in Et \Et−1 is the same as in
UniqueDecode, which, with the right bookkeeping, is n · poly(d)/ε.

13

Then as above, for every e ∈ Et \ Et−1, there is some vector f (e) ∈ FEt−1

2 of weight at most d,
and some h(e) ∈ F2 so that for any c ∈ C,

ce = (f (e))T · c|Et−1 + h(e),

and moreover, these vectors can be found in time poly(d). Then, as above, let F ∈ F(Et\Et−1)×Et−1

2

be the matrix with the f (e) as rows, let h ∈ FEt\Et−1

2 be the vector with entries h(e), and let

A(t) :=


A(t−1)

FA(t−1)

 and b(t) :=



|
b(t−1)

|
|

Fb(t−1) + h
|

 .

As above, A(t), b(t) can be created in time |Et \ Et−1| · poly(d) · s, and for any c ∈ C,

c|Et = A(t)c|{e(1),...,e(s)} + b(t).

We continue this way until ET = E, which happens eventually by Lemma 2.4. Then, the
amount of work that has been done to compute A := A(T) and b := b(T) is

n · poly(d) · s+

T∑
t=2

|Et \ Et−1| · poly(d) · s = n · poly(d, s),

as claimed.

4.2 Finding Â and b̂

Once we have found A and B, our goal is to find the set of x ∈ Fs2 so that

HAx+Hb = 0, (5)

where H ∈ F2nd(1−R)×nd
2 is the parity-check matrix for C.

First, notice that given the parity-check matrix for C0, H0 ∈ Fd(1−R)×d
2 , and a description of G,

we can access any entry of H in time O(1): for each vertex v, there is a parity check for each row
of H0 on the edges incident to v. Next, notice that we can compute HA in time O(nd2s): each row
of H has at most d nonzeros, so for each of the O(nd) rows of H, we take time O(ds) to compute
the corresponding row of HA. Similarly we can compute Hb in time O(nd2).

Our goal then is to find the space of x’s which lead to legitimate codewords, which is

W = {x ∈ Fs2 : HAx = Hb} .

To find a description of W, we first find a basis for the row space of HA, which we can do in
time O(nds3): we iterate through the O(nd) rows of HA, and check (in time O(s3)) to see if
they are linearly independent from the rows we have already found. If so, we add the new row
to our basis and continue. Suppose that t ≤ s is the dimension of the row space of HA, and let

14

j1, . . . , jt ≤ 2nd(1 − R) be the indices of the rows in the basis; let J ∈ Ft×s2 be the submatrix of
HA with these rows.

Let Â ∈ Fs×(s−t)
2 be a matrix so that the columns of Â span Ker(J) = Ker(HA). Note that we

can compute such an Â in time poly(s) given J . Next suppose there is some b̂ ∈ Fs2 so that

HAb̂ = Hb. (6)

Then the space we are after is

W =
{
Âx̂+ b̂ : x̂ ∈ Fs−t2

}
.

If there is no such b̂, then L = ∅ and we should return ⊥. If such a b̂ exists, we may compute
it by finding a solution to the system

Jb̂ = (Hb)j1,...,jt (7)

which can be done in time poly(s). Indeed, suppose that there is some b̂ satisfying (6). Then b̂
satisfies (7), and for any b′ which also satisfies (7), b′ ∈ b̂ + Ker(J) = b̂ + Ker(HA), and hence b′

satisfies (6) as well. Then we check to see if this b̂ satisfies HAb̂ = Hb, which can be done in time
O(nds). If so, we return A, b and Â, b̂. If not (or if no b̂ satisfying (7) exists), then we return ⊥.

5 Second generalized distance of expander codes

In this section we prove Lemma 1.3, restated below.

Lemma 1.3 (restated). Let C0 ⊆ Fd2 be a linear code with distance δ and second generalized
distance δ2, and let G = (L ∪ R,E) be the double-cover of a d-regular expander graph with ex-

pansion λ. Let ε > 0, and suppose that λ
d ≤

δ2δ2ε2

16 . Then the expander code C(G, C0) has second
generalized distance at least (1− ε) · δ ·min{δ2, 2δ}.

We first note the following simple claim which provides an equivalent definition of generalized
distance. For a vector x ∈ FN2 , let Supp(x) := {i ∈ [n] | xi 6= 0}.

Claim 5.1. Let C ⊆ FN2 be a linear code. The r’th generalized distance of C is

1

N
min

c1,c2,...,cr
|Supp(c1) ∪ Supp(c2) ∪ · · · ∪ Supp(cr)| ,

where the minimum is taken over all r-tuples c1, c2, . . . , cr of linearly independent codewords in C.

We proceed to the proof of Lemma 1.3. Let c, c′ be two distinct non-zero codewords in C(G, C0).
Let F := Supp(c) and F ′ := Supp(c′), by Claim 5.1 it suffices to show that

|F ∪ F ′| ≥ (1− ε) · δ ·min{δ2, 2δ}dn.

Let W denote the subset of vertices v ∈ L ∪ R which satisfy that c|Γ(v), c
′|Γ(v) are two distinct

non-zero codewords in C0. Let ε0 := δ2ε
8 . Below we divide into cases.

15

Algorithm: FindList
Inputs: The state of SlowListDecode after step 2.
Output: A ∈ Fnd×s2 , b ∈ Fnd2 , Â ∈ Fs×a2 , b̂ ∈ Fs2 so that

L =
{
Ax+ b : x = Âx̂+ b̂ for some x̂ ∈ Fa2

}
or returns ⊥ if such things do not exist.

1. Form A(1), b(1), and find E1 as described in the text in time n · poly(d, s). Let
P0 ⊆ R,P1 ⊆ L be the sets of vertices incident to an edge in E \ E1.

2. For t = 2, 3, . . .:

(a) If Pt−1 = ∅, break.

(b) Initialize Pt ← ∅ and Et ← Et−1.

(c) For each vertex v ∈ Pt−1 so that |({v} × Γ(v)) ∩ Et−1| > (1− δ)d:

◦ Remove v from Pt−1.

◦ For any (v, u) /∈ Et−1, add (v, u) to Et.

(d) For each vertex v ∈ Pt−1, for any (v, u) /∈ Et−1, add u to Pt.

By Lemma 2.4, the total time (over all iterations) for the above steps is n ·
poly(d)/ε.

(e) Find A(t) and b(t) given A(t−1), b(t−1) so that for all c ∈ C,

c|Et = A(t)c|e(1),...,e(s) + b(t).

This can be done in time |Et \ Et−1| · poly(s, d) as described in the text.

3. Let A = A(t) and b = b(t).

4. Compute HA and Hb, which can be done in time O(nd2s). Let t ≤ s be the
dimension of the row space of HA, and find j1, . . . , jt so that the rows of HA
indexed by j1, . . . , jt form a basis for the row space of HA. This can be done in
time O(nds3). Let J ∈ Ft×s2 be the submatrix of HA with these rows.

5. Find Â ∈ Fs×(s−t)
2 whose columns are a basis for the kernel of J , and find b̂ ∈ Fs2 so

that Jb̂ = (Hb)|j1,...,jt . This can be done in time poly(s).

6. If HAb̂ 6= Hb, return ⊥. In this case, L = ∅.

7. Otherwise, return A, b, Â, b̂.

Figure 3: FindList: prunes the list of advice strings y(advice) in SlowListDecode to a space L =
{Lx+ ` : x ∈ Fa2} and returns this description.

16

Algorithm: ListDecode
Inputs: A description of G = (L ∪R,E) and C0 ⊆ Fd2, and z ∈ (F2 ∪ {⊥})E .
Output: A matrix L ∈ Fnd×a2 and a vector ` ∈ Fnd2 so that

ListC(z) = {Lx+ ` : x ∈ Fa2}

for some integer a (which does not depend on n), or else ⊥ if ListC(z) is empty.

1. Run Steps 1 and 2 from SlowListDecode (Figure 2).

2. Run FindList (Figure 3).

3. If FindList returns ⊥, return ⊥.

4. Otherwise, FindList returns A, b, Â, B̂.

5. Compute L = AÂ and ` = Ab̂+ b.

6. Return L, `.

Figure 4: ListDecode: Returns a description of ListC(z) in time n · poly(d, 2r, 1/δ, 1/ε).

Case 1: |F ∩ F ′| ≤ ε0dn. In this case,

|F ∪ F ′| = |F |+ |F ′| − |F ∩ F ′|
≥ (2δ(δ − λ/d)− ε0) dn

≥ (1− ε)2δ2dn,

where the first inequality follows since by Lemma 2.3, the code C(G, C0) has relative distance at
least δ(δ − λ/d), and the second inequality follows by choice of λ

d ≤
δε
2 and ε0 ≤ δ2ε.

Case 2: |W | ≥ ε2
0n. Without loss of generality, we may assume that |W ∩ L| ≥ |W ∩ R|, so

|W ∩L| ≥ ε20
2 n. We apply the expander mixing lemma with S1 := W ∩L, and T1 ⊆ R the set of all

right vertices that are incident to an edge from F ∪ F ′.
Recall that for any vertex v ∈ S1 it holds that c|Γ(v), c

′|Γ(v) are two distinct non-zero codewords
in C0, and so ∣∣Supp

(
c|Γ(v)

)
∪ Supp

(
c′|Γ(v)

) ∣∣ ≥ δ2 · d.
Therefore, any vertex v ∈ S1 is incident to at least δ2d edges in F ∪F ′, and so |E(S1, T1)| ≥ δ2d|S1|.

By the expander mixing lemma, the above implies in turn that

δ2d|S1| ≤ |E(S1, T1)| ≤ d

n
|S1||T1|+ λ

√
|S1||T1|,

and rearranging gives

|T1| ≥

(
δ2 −

λ

d

√
|T1|
|S1|

)
n ≥

(
δ2 −

λ

d
· 2

ε0

)
· n,

17

where the second inequality follows by assumption that |S1| ≥
ε20
2 n.

Finally, note that any vertex v ∈ T1 has at least δd incident edges in F ∪ F ′, and so

|F ∪ F ′| ≥ δd|T1| ≥ δ
(
δ2 −

λ

d
· 2

ε0

)
dn ≥ δδ2(1− ε)dn,

where the last inequality follows by choice of λ
d ≤

δ2δ2ε2

16 = δ2ε0ε
2 .

Case 3: |F ∩ F ′| ≥ ε0dn and |W | ≤ ε2
0n. Under these assumptions, Claims 5.2 and 5.3 below

show that both the intersection F ∩ F ′ and the symmetric difference F4F ′ are of size at least
(1− ε)δ2dn. This implies in turn that

|F ∪ F ′| = |F ∩ F ′|+ |F4F ′| ≥ (1− ε)2δ2dn.

Claim 5.2. |F ∩ F ′| ≥ (1− ε)δ2dn.

Proof. We apply the expander mixing lemma with S2 (T2, resp.) being the set of all vertices
v ∈ L \W (v ∈ R \W , resp.) that are incident to an edge from F ∩ F ′. Without loss of generality
we may assume that |S2| ≥ |T2|.

Next observe that since C0 has relative distance at least δ, any vertex v ∈ S2 is incident to at
least δd edges in F ∪ F ′. We claim that these edges are in fact contained in F ∩ F ′; Otherwise, v
is incident to some edge from F ∩ F ′ and another edge from F4F ′ which means that c|Γ(v), c

′|Γ(v)

are two distinct non-zero codewords in C0, contradicting the assumption that v /∈W . We conclude
that any vertex v ∈ S2 has at least δd incident edges that are incident to either T2 or W .

Consequently, we have that

|E(S2, T2)| ≥ δd|S2| − d|W | =
(
δ − |W |
|S2|

)
d|S2| ≥

(
δ − ε0

1− ε0

)
d|S2|,

where the last inequality uses the assumptions that |W | ≤ ε2
0n and |F ∩ F ′| ≥ ε0dn, implying in

turn that

|S2| ≥
|F ∩ F ′|

d
− |W | ≥ ε0(1− ε0)n.

On the other hand, by the expander mixing lemma we have that

|E(S2, T2)| ≤ d

n
|S2||T2|+ λ

√
|S2||T2|,

Combining the above, rearranging, and recalling our assumption that |S2| ≥ |T2|, gives

|T2| ≥
(
δ − ε0

1− ε0
− λ

d

)
n.

Finally, similarly to the above, we conclude that

|F ∩ F ′| ≥
(
δ − ε0

1− ε0

)
d|T2| ≥

(
δ − ε0

1− ε0
− λ

d

)2

dn ≥ δ2 (1− ε) dn,

where the last inequality follows by choice of ε0 ≤ δε
8 and λ

d ≤
δε
4 .

18

Claim 5.3. |F4F ′| ≥ (1− ε)δ2dn.

Proof. Similarly to the previous claim, we apply the expander mixing lemma with S3 (T3, resp.)
being the set of all vertices v ∈ L \W (v ∈ R \W , resp.) that are incident to an edge from F4F ′,
and we may assume that |S3| ≥ |T3|.

Once more we observe that any vertex v ∈ S3 is incident to at least δd edges in F4F ′, and we
conclude that any vertex v ∈ S3 has at least δd incident edges that are incident to either T3 or W .
Consequently, as before we have that

|E(S3, T3)| ≥
(
δ − |W |
|S3|

)
d|S3| ≥

(
δ − ε2

0

δ
(
δ − λ

d

)
− ε2

0

)
d|S3|,

where the last inequality uses the assumption that |W | ≤ ε2
0n, and the fact that |F4F ′| ≥

δ
(
δ − λ

d

)
dn (since F4F ′ is the support of the non-zero codeword c + c′ ∈ C(G, C0)), implying

in turn that

|S3| ≥
|F ∩ F ′|

d
− |W | ≥ δ

(
δ − λ

d

)
n− ε2

0n.

On the other hand, by the expander mixing lemma we have that

|E(S3, T3)| ≤ d

n
|S3||T3|+ λ

√
|S3||T3|,

and combining with the above, rearranging, and recalling our assumption that |S3| ≥ |T3|, this
gives

|T3| ≥

(
δ − ε2

0

δ
(
δ − λ

d

)
− ε2

0

− λ

d

)
n.

Finally, similarly to the above, we conclude that

|F ∩ F ′| ≥

(
δ − ε2

0

δ
(
δ − λ

d

)
− ε2

0

)
d|T3| ≥

(
δ − ε2

0

δ(δ − λ/d)− ε2
0

− λ

d

)2

dn ≥ δ2 (1− ε) dn,

where the last inequality follows by choice of ε2
0 ≤ δ3ε

8 and λ
d ≤

δε
4 .

Acknowledgements

Most of this work was done while the authors were participating in the Summer Cluster on Error-
correcting Codes and High-dimensional Expansion at the Simons Institute for the Theory of Com-
puting at UC Berkeley. We thank the Simons Institute for the hospitality.

References

[AS05] A. Ashikhmin and V. Skachek. Decoding of expander codes at rates close to capacity. In
Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pages
317–321. IEEE, 2005.

19

[BDT18] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Near-optimal erasure list-
decodable codes. Technical Report TR18-065, Electronic Colloquium on Computational
Complexity, 2018.

[BZ02] Alexander Barg and Gilles Zémor. Error exponents of expander codes. IEEE Transac-
tions on Information Theory, 48(6):1725–1729, June 2002.

[BZ05] Alexander Barg and Gilles Zémor. Concatenated codes: serial and parallel. IEEE
Transactions on Information Theory, 51(5):1625–1634, May 2005.

[BZ06] Alexander Barg and Gilles Zémor. Distance properties of expander codes. IEEE Trans-
actions on Information Theory, 52(1):78–90, January 2006.

[DJX14] Yang Ding, Lingfei Jin, and Chaoping Xing. Erasure list-decodable codes from random
and algebraic geometry codes. IEEE Transactions on Information Theory, 60(7):3889–
3894, 2014.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 812–
821, New York, NY, USA, 2002. ACM.

[GI04] Venkatesan Guruswami and Piotr Indyk. Linear-Time List Decoding in Error-Free
Settings. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors,
Automata, Languages and Programming, volume 3142 of Lecture Notes in Computer
Science, pages 695–707. Springer Berlin Heidelberg, 2004.

[GK16] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combina-
torica, 36(2):161–185, 2016.

[GR06a] Philippe Gaborit and Olivier Ruatta. Efficient erasure list-decoding of Reed-Muller
codes. In 2006 IEEE International Symposium on Information Theory, pages 148–152.
IEEE, 2006.

[GR06b] Venkatesan Guruswami and Atri Rudra. Achieving list decoding capacity using folded
Reed-Solomon codes. In Allerton ’06, 2006.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometry codes. IEEE Trans. Information Theory, 45(6):1757–1767, 1999.

[Gur03] Venkatesan Guruswami. List decoding from erasures: Bounds and code constructions.
IEEE Transactions on Information Theory, 49(11):2826–2833, 2003.

[GW17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. In Proceedings of the 44th annual ACM symposium
on Theory of computing (STOC), pages 339–350. ACM, 2012.

20

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, algebraic-
geometric, and Gabidulin subcodes up to the Singleton bound. In Proceedings of the
45th annual ACM symposium on Theory of Computing (STOC), pages 843–852. ACM,
2013.

[HLW06] Shlomo Hoory, Nati Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of AMS, 43(4):439–561, 2006.

[HOW15] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of ex-
pander codes. Inf. Comput, 243:178–190, 2015.

[HRW19] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes and applications. SIAM Journal on Computing, (0):FOCS17–157, 2019.

[HW18] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. Information and Computation, 261:202–218, 2018.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(5):149–
182, 2015.

[KRSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved
decoding of folded Reed-Solomon and multiplicity codes. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 212–223. IEEE, 2018.

[LMSS01] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A
Spielman. Efficient erasure correcting codes. IEEE Transactions on Information The-
ory, 47(2):569–584, 2001.

[MRR+19] Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Wootters.
LDPC codes achieve list decoding capacity. arXiv preprint arXiv:1909.06430, 2019.

[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in
polynomial time. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual
IEEE Symposium on, pages 285–294, Washington, DC, USA, October 2005. IEEE.

[RS06] Ron M Roth and Vitaly Skachek. Improved nearly-MDS expander codes. IEEE Trans-
actions on Information Theory, 52(8):3650–3661, 2006.

[Sch00] Hans Georg Schaathun. The weight hierarchy of product codes. IEEE Trans. Informa-
tion Theory, 46(7):2648–2651, 2000.

[SR03] Vitaly Skachek and Ron M Roth. Generalized minimum distance iterative decoding of
expander codes. In Proceedings 2003 IEEE Information Theory Workshop (Cat. No.
03EX674), pages 245–248. IEEE, 2003.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions on Infor-
mation Theory, 42(6):1710–1722, 1996.

[WY93] Victor K.-W. Wei and Kyeongcheol Yang. On the generalized Hamming weights of
product codes. IEEE Trans. Information Theory, 39(5):1709–1713, 1993.

[Zém01] Gilles Zémor. On expander codes. IEEE Transactions on Information Theory,
47(2):835–837, February 2001.

21

Algorithm: UniqueDecode
Inputs: A description of G = (L ∪R,E) and C0 ⊆ Fd2, and z ∈ (F2 ∪ {⊥})E .
Output: The unique c ∈ C(G, C0) so that c agrees with z on all un-erased positions.

Initialize:

• E1 := {e ∈ E|ze 6= ⊥}

• P0 := {v ∈ R | v is incident to an edge e ∈ E \ E1}

• P1 := {v ∈ L | v is incident to an edge e ∈ E \ E1}

For t = 2, 3, . . .:

1. If Pt−1 = ∅, return the fully labeled codeword.

2. Initialize Pt ← ∅ and Et ← Et−1.

3. For each vertex v ∈ Pt−1 so that |({v} × Γ(v)) ∩ Et−1| > (1− δ)d:

(a) Run C0’s erasure-correction algorithm to assign labels to the edges incident to
v.

(b) Remove v from Pt−1.

(c) For any (v, u) /∈ Et−1, add (v, u) to Et.

4. For each vertex v ∈ Pt−1, for any (v, u) /∈ Et−1, add u to Pt.

Figure 5: UniqueDecode: Uniquely decodes an expander code from up to δ(δ − λ/d)(1− ε) erasures.

A Erasure unique decoding of expander codes

In this appendix we prove Lemma 2.4, which we repeat here:

Lemma 2.4 (restated). Let C0 ⊆ Fd2 be a linear code with distance δ, and let G = (L ∪ R,E)
be the double cover of a d-regular expander graph on n vertices with expansion λ. Let ε > 0,
and suppose that λ

d <
δ
2 . Then there is an algorithm UniqueDecode which uniquely decodes the

expander code C(G, C0) from up to (1− ε)δ(δ − λ/d) erasures in time n · poly(d)/ε.

We note that this lemma is well-known and follows from the techniques of [SS96,Zém01]. How-
ever, we include its proof for completeness, because our algorithm FindList mirrors its structure.

The proof of the lemma follows from the algorithm UniqueDecode, given in Figure 5.
To see that UniqueDecode is correct, first notice that on any iteration t = 2, 3, . . ., the set

Et−1 is the subset of edges that have already been labeled before this iteration, and Pt−2 ∪ Pt−1 is
the set of vertices touching an edge in E \ Et−1 that we yet need to decode. The following claim

22

bounds the size of Pt, and consequently the number of steps the algorithm runs until it terminates
on Step 1.

Claim A.1. The following hold:

1. For any t ≥ 1, |Pt+1| ≤ (1− ε)
(
δ − λ

d

)
n.

2. For any t ≥ 2, |Pt+1| ≤
(

1
1+ε

)2
|Pt|.

Proof. For t = 1, 2, 3, . . ., let Bt−1 ⊆ Pt−1 be the subset of vertices v ∈ Pt−1 that are incident to
less than (1− δ)d edges in Et−1. Then we have

Pt+1 ⊆ Bt−1 ⊆ Pt−1, (8)

as all vertices v ∈ Pt−1 \ Bt−1 are removed from Pt−1 on Step (3b), and consequently will not be
present in Pt+1.

For the first item, note that |P3| ≤ |B1| by (8), and that |B1| ≤
(
δ − λ

d

)
(1− ε)n since there are

at most (1−ε)δ
(
δ − λ

d

)
nd erasures to begin with. Moreover, we have that |P3| ≥ |P5| ≥ |P7| ≥ · · · ,

and consequently |Pt+1| ≤ (1 − ε)
(
δ − λ

d

)
n for any even t ≥ 1. Similar reasoning shows that the

same holds for any odd t ≥ 1.
For the second item, note that by the expander mixing lemma, for t = 2, 3, . . .,

δd|Bt−1| ≤ |E(Bt−1, Pt)| ≤
d

n
|Bt−1||Pt|+ λ

√
|Bt−1||Pt|,

as any vertex v ∈ Bt−1 has at least δd unlabeled incident edges, and those edges are incident to Pt.
Rearranging, we have

|Bt−1| ≤
(

λ/d

δ − |Pt|/n

)2

|Pt| ≤
(

1

1 + ε

)2

|Pt|,

where the last inequality follows by assumption that λ
d ≤

δ
2 , and since |Pt|

n ≤ (1 − ε)(δ − λ/d) by
the first item. Finally, by (8) this implies in turn that

|Pt+1| ≤ |Bt−1| ≤
(

1

1 + ε

)2

|Pt|.

Using the above claim we conclude that after O((log n)/ε) iterations the set Pt−1 is empty, and
so the algorithm terminates. Moreover, the amount of work done is at most

poly(d) ·
∞∑
t=1

|Pt| = poly(d) · n
∞∑
t=1

(
1

1 + ε

)2t

= poly(d) · n
ε
,

which proves the lemma.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

