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Abstract

We prove new lower bounds for computing some functions f : {0, 1}n → {0, 1} in
ENP by polynomials modulo 2, constant-depth circuits with parity gates (AC0[⊕]),
and related classes. Results include:

(1) Ω(n/ log2 n) lower bounds probabilistic degree. This is optimal up to a factor
O(log2 n). The previous best lower bound was Ω(

√
n) proved in the 80’s by Razborov

and Smolensky.
(2) exp(Ω(n/ log2 n)1/(h−1)) lower bounds on the size of depth-h AC0[⊕] circuits,

for any h. This almost matches the exp(Ω(n1/(h−1))) lower bounds for AC0 by H̊astad.
The previous best lower bound was exp(Ω(n1/(h+1))) by Rajgopal, Santhanam, and
Srinivasan who recently improved Razborov and Smolensky’s exp(Ω(n1/(2h−2))) bound.

(3) (1/2 − (logO(h) s)/n) average-case hardness for size-s depth-h AC0[⊕] circuits
under the uniform distribution, for say polynomial or quasi-polynomial s, and any fixed
h. The previous best was (1/2− (logO(h) s)/

√
n).

(4) any majority of t AC0[⊕] circuits, MAJt ◦ AC0[⊕], of size s and depth h, has
t ≥ n2/ logO(h)(s), for any s, h. The previous best was t ≥ n/ logO(h)(s).

(5) any AC0[⊕]◦LTFt ◦AC0[⊕]◦LTF circuit, where LTF are threshold functions,
has t ≥ n/ logO(h)(s), for any s, h. The previous best was t ≥

√
n/ logO(h)(s) recently

proved by Alman and Chen.
The mentioned previous best lower bounds in (1), (3), and (4) held for the Majority

function. Each of the new lower bounds in this paper is false for Majority. For (2) and
(5) the previous best held for ENP .

The proofs build on Williams’ “guess-and-SAT” method. For (1) we show how
to use a PCP by Ben-Sasson and Viola towards probabilistic-degree lower bounds.
Results (2), (4), and (5) are then more or less automatic, as is (3) under a non-
uniform distribution. To strengthen (3) to hold under the uniform distribution we
use a different argument which combines the recent work by Alman and Chen with
hardness amplification.

A concurrent work by Chen and Ren obtains a result stronger than (3).
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1 Introduction

Probabilistic degree is a fundamental complexity measure of boolean functions that has been
intensely studied since it was introduced by Razborov [Raz87]. Probabilistic degree mea-
sures how well a function can be computed by a “random” polynomial. One can consider
polynomials over different fields. For simplicity in this paper we focus on the field F2 with
two elements, and we only mention here that the results can be extended to Fp for prime p.

Definition 1. The ε-error degree of a function f : {0, 1}n → {0, 1} is the minimum d such
that there is a distributionD on polynomials over F2 of degree d such that P[D(x) 6= f(x)] ≤ ε
for every x ∈ {0, 1}n.

The parameter ε ranges from 0 to at most 1/2, because outputting a random bit yields
error 1/2. In this work we will consider both the setting when ε is close to 0, and the setting
when ε approaches 1/2. The interplay between the two settings will be important.

Papers by Razborov and Smolensky [Raz87, Smo87, Smo93] proved that the Majority
function on n bits has constant-error degree Ω(

√
n). The notation O and Ω denotes abso-

lute constants. Better lower bounds have not been obtained despite much research. One
difficulty is that many classes of functions do have O(

√
n) probabilistic degree. Alman and

Williams [AW15], Theorem 1.2, show that any symmetric function on n bits has ε-error
polynomials of degree O(

√
n log(1/ε)). Earlier, Srinivasan [Sri13] proved a slightly weaker

bound. The recent work [STV19] gives a nearly tight characterization of the probabilistic
degree of symmetric functions. Srinivasan [Sri13], Theorem 12, also proved that threshold
functions (with arbitrary weights) have ε-error polynomials of degree

√
n(log n · log 1/ε)O(1).

[GKW18] conjecture that DeMorgan formulas of size s have probabilistic degree O(
√
s).

Razborov and Smolensky actually proved a tradeoff between the error and the degree.
For degree Ω(

√
n) we can get constant error as mentioned above, but for lower degree we

can push the error to be close to 1/2. Formally, the tradeoff gives that for any degree d the
error is

ε ≥ 1/2− Ω(d/
√
n). (1)

This tradeoff is tight for Majority [Vio19], and is the best available for an explicit function,
for any degree d ≥ log2 n. In particular, conceivably every explicit function has (1/2−1/

√
n)-

degree log2 n. For small degrees, d < log2 n, the iterated Cauchy-Schwarz argument of
[BNS92] gives stronger error bounds. See [Vio06b, VW08, Vio09a] for direct arguments.
However in this paper we are only concerned with d ≥ log2 n.

We note that by Yao’s duality principle [Yao77], the claim that a function h has ε-error
degree d is equivalent to the claim that there exists a distribution over the inputs such that
any fixed degree-d polynomial fails to compute h with probability ε over inputs drawn from
that distribution. In the special case where the latter distribution is uniform we call the
function h ε-hard for polynomials of degree d.

Definition 2. Let h : {0, 1}n → {0, 1} be a function, and let F be a set of boolean functions
on n bits. We say that h is ε-hard for F if for every f ∈ F we have Px[f(x) 6= h(x)] ≥ ε,
where x is uniform in {0, 1}n.
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We remark that the state of lower bounds is the same for probabilistic degree and hardness
against polynomials: No better hardness lower bounds are known if we allow a non-uniform
distribution. Hardness results for polynomials are surveyed in [Vio09a], Chapter 1.

Probabilistic degree is linked to a wide range of other problems. In particular, progress
on probabilistic degree is necessary for progress on circuit lower bounds, rigidity, and com-
munication complexity. For some of these problems, it is also sufficient. We now elaborate
on this. We begin by observing that improving the trade-off (1) for small d is easier than
improving it for large d. Specifically, if a function f has (1/2− ε)-error degree d then it has
constant-error degree O(d/ε) (see Lemma 18).

Circuit lower bounds for AC0[⊕]. The circuits AC0[⊕] consist of And, Or, and Par-
ity gates with unbounded fan-in, and have constant depth. This class lies at the frontier
of the techniques in circuit lower bounds. The works by Razborov and Smolensky used
probabilistic-degree lower bounds to obtain lower bounds of exp(Ω(n1/(2h−2))) on the size of
AC0[⊕] circuits of depth h. This bound was recently improved to exp(Ω(n1/(h+1))) by Raj-
gopal, Santhanam, and Srinivasan [RSS18], see also [OSS19]. Still, these lower bounds are
lower than the exp(Ω(n1/(h−1))) that can be obtained for AC0 via switching lemmas [H̊as87].

The gap betweenAC0 andAC0[⊕] lower bounds is closely related to the state of probabilistic-
degree lower bounds: If we could prove linear lower bounds on constant-error degree, that is
eliminate the square root in (1), then we would obtain lower bounds for AC0[⊕] that are as
strong as the AC0 ones.

Also, we don’t have strong hardness lower bounds. It is consistent with our knowledge
that for every explicit function there is a polynomial-size AC0[⊕] circuit computing it cor-
rectly on 1/2 + 1/

√
n fraction of the inputs {0, 1}n. Note that degree-d polynomials are a

special case of depth-2 AC0[⊕] circuits of size nO(d), so this is similar (but not equivalent to)
the fact that we don’t have such strong hardness lower bounds for degree log n.

Rigidity. More than forty years ago Valiant [Val77] asked to construct matrices that cannot
be approximated by matrices with low-rank. We can say that a {0, 1}n × {0, 1}n matrix M
is ε-error rigid for rank r if for any rank-r matrix F we have Pi,j[Mi,j 6= Fi,j] ≥ ε, where i
and j are uniform. Viewing matrices as truth-tables of functions, this is the same as ε-hard
for rank-r functions. Again this can be considered over different fields and we focus on F2 in
this work. The rigidity question is motivated by a host of applications ranging from circuit
lower bounds to communication complexity. Non-explicitly, there exist matrices which are
constant-error rigid for r = Ω(2n). But despite intense research the available constructions
are far from this. Recently, an exciting work by Alman and Chen [AC19] constructed in the
complexity class Time(2O(n))NP = ENP matrices M with are constant-error rigid for rank

2n
1/4−ε

, for any ε > 0. They also gave a conditional construction for higher rank 2n
1−α

for all
α > 0. For a discussion of previous rigidity bounds and applications we refer the reader to
[AC19] and Lokam’s survey [Lok09].

Probabilistic-degree lower bounds stand in the way of further progress. Indeed, as pointed
out by Servedio and Viola [SV12], sparse polynomials are a special case of low-rank matrices.
Specifically, write the truth-table of a polynomial on 2n variables as a 2n × 2n matrix (par-
titioning the variables in half arbitrarily). Now observe that each monomial is a rank one
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matrix. Hence a polynomial with s monomials yields a rank s matrix. Because a polynomial
of degree

√
2n has ≤ nO(

√
n) monomials, we see that better probabilistic-degree lower bounds

are necessary for improving the results in [AC19] to any rank 2ω(
√
n logn). (We can remove

the log factor when considering sparsity, see [SV12] for discussion. Here we focus on degree
for simplicity.)

Communication complexity. In the influential number-on-forehead communication model
introduced by Chandra, Furst, and Lipton [CFL83], k parties collaboratively wish to com-
pute a function on n bits. The bits are divided in k blocks (figuratively corresponding to
the foreheads) and the twist is that Party i knows all blocks except the i. For this model,
we have no lower bounds when k ≥ log n (for k ≤ log n they were first proved in [BNS92],
see [CT93, Raz00, VW08] for expositions). For background on communication complexity
see the books [KN97, RY19].

Interestingly, it turns out that proving communication lower bounds for more parties
requires better probabilistic-degree lower bounds. We include in this paper a stronger quan-
titative version of this connection from [Vio17], see Theorem 25, which already kicks in for
k = O(log2 n) parties exchanging O(log3 n) bits of communication. In particular, improving
the tradeoff (1) is necessary to rule out such protocols.

Other circuit classes. Many papers in the literature study AC0[⊕] circuits augmented
with other types of gates. In fact, average-case lower bounds for AC0[⊕] are closely related
to worst-case lower bounds for the circuit class Maj◦AC0[⊕] of such circuits with a majority
gate at the output [HMP+93]. Correspondingly, we only have lower bounds when the fan-in of
the majority gate is t < n/poly log(n). Such a lower bound follows simply by approximating
the entire circuit by a polynomial of degree

√
n/poly log(n), and then using the probabilistic

degree lower bound. Thus this lower bound holds for Majority, and is in fact almost optimal
for that function because obviously we can compute majority with t = n.

Alman and Chen [AC19] consider the class of AC0[⊕] ◦ Ltft ◦ AC0[⊕] ◦ Ltf circuits,
where Ltf are threshold functions with arbitrary weights, and prove that the fan-in t of the
middle Ltf gates satisfies t ≥ n/ logO(h) s for depth-h and size-s circuits that compute some
function in ENP . A lower bound for this class could not just rely on probabilistic degree,
because the Ltf gates at the input already require

√
n probabilistic degree.

Related classes of circuits were studied by Alman, Chan, and Williams (ACC0◦LTFn2−Ω(1)◦
LTF , [ACW16], Corollary 1.1), and Tamaki (depth-2 circuits with n2/poly log(n) gates,
where each gate can be any symmetric function or an Ltf, [Tam16]).

Pseudorandom generators. Another important motivation for improving the tradeoff
(1) and average-case lower bounds for AC0[⊕] is the construction of pseudorandom gen-
erators. Nisan’s landmark paper [Nis91] showed how to use a (1/2 − ε)-hard function to
obtain approximately 1/ε bits of pseudorandomness. Hence, a suitable improvement to the
tradeoff would yield better generators for low-degree polynomials [BV10, Lov09, Vio09b],
a long-standing problem for which several new approaches have recently been proposed
[CHHL18, CHLT19]. Nisan’s approach yields pseudorandom generators with small error, in
which case improving probabilistic degree lower bounds is known to be necessary [Vio09b].
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The situation with constant-error generators is less clear. We remark that for pseudorandom
generators one needs hardness under the uniform distribution, and that other pseudorandom-
generator constructions that have been proposed do not go through for classes such as
AC0[⊕], see [SV10, GSV18, Vio].

We consider it worthwhile to try to identify an open problem which is as simple as possible
while at the same time being a bottleneck for as wide a range of complexity lower bounds as
possible. The above discussion suggests that probabilistic degree may be a good candidate
for this.

1.1 Our results

In this work we show that ENP requires nearly-linear constant-error degree, improving on
the Ω(

√
n) lower bounds established by Razborov and Smolensky [Raz87, Smo87, Smo93]

for the majority function.

Theorem 3. There is a function f : {0, 1}n → {0, 1} in ENP with 1/3-error degree
Ω(n/ log2 n), for infinitely many n.

The bound in Theorem 3 is tight up to a factor of O(log2 n) because every function on n
bits has polynomials of degree n with error 0. We note that, as mentioned earlier, the bound
in Theorem 3 is false for any symmetric or threshold function [Sri13, AW15].

Theorem 3 has several corollaries stated next. First, as mentioned earlier, it actually
improves the tradeoff (1) for every setting of parameters (and not just constant error).

Corollary 4. The function in Theorem 3 has (1/2 − ε)-error degree Ω(εn/ log2 n), for in-
finitely many n and any ε.

So in particular we can set ε = (log4 n)/n and still get degree Ω(log2 n). While from the
tradeoff (1) we could not set ε larger than 1/2 − 1/

√
n. Error larger than 1/2 − 1/

√
n was

not even available for polynomials of degree log n.
Then we improve the size lower bounds for AC0[⊕].

Corollary 5. Any depth-h AC0[⊕] circuit computing f in Theorem 3 has size ≥ exp(Ω(n/ log2 n)1/(h−1)),
for infinitely many n.

This improves on the exp(Ω(n1/(h+1))) lower bounds by Rajgopal, Santhanam, and Srini-
vasan [RSS18]. The bound in Corollary 5 is false for any symmetric function [OSS19], and it
almost matches the exp(Ω(n1/(h−1))) lower bounds that are available for AC0 via switching
lemmas [H̊as87].

Next we prove a general lower bound for AC0[⊕] circuits suitably augmented with gates
computing threshold or arbitrary symmetric functions. We show that we can allow such
gates as long as the product of their fan-in’s along any root-leaf path in the circuit is at most
n2/poly log(n). First we formally define the class.

Definition 6. The class t-SoT-AC0[⊕] consists of circuits made of And, Or, Parity, Sym,
and Ltf gates such that the product of the fan-in of the Sym and Ltf gates along any root-
leaf path in the circuit is at most t. Here each Sym gate computes an arbitrary symmetric
function, and each Ltf gate computes a threshold function with arbitrary weights.
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Corollary 7. Any t-SoT-AC0[⊕] circuit of depth h and size s computing the function f in
Theorem 3 requires t ≥ n2/ logO(h) s, for infinitely many n.

In particular, Majt ◦ AC0[⊕] circuits of size s and depth h have t ≥ n2/ logO(h) s, im-
proving on the previous best of t ≥ n/ logO(h) s which follows from Razborov [Raz87] and
Smolensky [Smo87, Smo93] and the probabilistic degree of Majority [Sri13, AW15].

Also, AC0[⊕]◦Ltf t◦AC0[⊕]◦Ltf circuits of size s and depth h have t ≥ n/ logO(h) s. The
previous best was t ≥

√
n/ logO(h) s recently proved by Alman and Chen [AC19]. Our proof

of this result simply approximates the circuit and then invokes the probabilistic degree lower
bound. By contrast Alman and Chen rely on a combination of degree and rank arguments.

Uniform distribution. Corollary 4 implies that for any distribution C on polynomial-size
constant-depth AC0[⊕] circuits one has PC [C(x) 6= f(x)] ≥ 1/2 − poly log(n)/n for some
fixed input x. As mentioned earlier, Yao’s duality principle [Yao77] then guarantees hardness
under some distribution, not guaranteed to be uniform. With a different argument, we show
how to strengthen this to hold under the uniform distribution.

Theorem 8. Let s = s(n) and h = h(n) be non-decreasing functions satisfying s(O(n log n)) ≤
s8(n) and h(O(n log n)) ≤ h(n) + 9.

There is a function f : {0, 1}n → {0, 1} in ENP that is (1/2 − (logO(h) s)/n)-hard for
size-s depth-h AC0[⊕] circuits, for infinitely many n.

Note that in particular this holds for s(n) = nc and h = c for any constant c. It also
holds for quasi-polynomial s(n) = 2logc n.

Again, the previous best was hardness 1/2−(logO(h) s)/
√
n, under any distribution. The-

orem 8 gets us closer to a correlation bound that could be used to obtain new pseudorandom
generators via Nisan’s method [Nis91]. For example hardness (1/2 − 1/n2.1) would already
imply a new generator for AC0[⊕]. Perhaps, the result in Theorem 8 can already be used to
improve on the seed length of the state-of-the-art generator from [FSUV13].

A concurrent paper by Chen and Ren [CR20] obtains a result stronger than Theorem 8.
([CR20] and the present paper were independently submitted to the same conference.)

1.2 Techniques

The results in this paper rely on a masterful method by Williams [Wil13a] which we call
the “guess-and-SAT” method. This method has been used to prove several lower bounds
for computing functions in ENP , NEXP,NQP and related classes; lower bounds which we
do not know how prove by other means. Researchers have established lower bounds against
several non-uniform circuit classes starting with Williams’ ACC0 lower bound [Wil14b], see
[Wil11, Wil13b, Wil14a, ACW16, Tam16, Che19, COS18, MW18, AC19].

To explain the proof of Theorem 3 let us quickly review the method. Suppose we aim to
prove a lower bound for computing a function in ENP by a circuit class CKT . We begin
by considering a language L in non-deterministic time 2n which cannot be solved in non-
deterministic time o(2n). Such a language exists by the non-deterministic time-hierarchy
theorem. We note that this hierarchy only holds for infinitely may input lengths, as opposed
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to all sufficiently large input lengths, which is why all these lower bounds, including the ones
in this paper, only hold for infinitely many input lengths.

We reduce L efficiently to 3SAT with about 2n clauses (and variables) using the Cook-
Levin theorem. We then consider the function f that on input x and i computes the i bit
of the satisfying assignment corresponding to x, if it is the case that x ∈ L. One can show
f ∈ ENP . Towards a contradiction we assume that f has a small circuit C ∈ CKT . The
algorithm for L guesses C and then combines it with the indexing circuit that given z of
about n bits outputs the variables in clause z of the 3CNF (and with a post-process circuit
which possibly negates the outcomes, and outputs Or). This gives a new circuit C ′ such
that it suffices to know if C ′ accepts every input z to decide membership in L. If this can
be done in time o(2n), we contradict the hierarchy theorem.

Actually, the original method does not work this way, due to the lack of reductions to
3SAT with efficient indexing circuit. This modular version of the method has been obtained
in [JMV18].

Using PCP. In the original paper [Wil13a] it was already suggested that rather than
reducing to 3SAT we can reduce to gap-3SAT, or in other words use probabilistically checkable
proofs (PCP). In a PCP we refer to the input z of about n bits as the randomness.

Again, existing PCPs did not come equipped with an indexing circuit that was efficient
enough for a modular version of the method as above. This was remedied by Ben-Sasson
and Viola in [BV14] building on [BGH+05, BS08]. Their PCP is critical for this work. In
this PCP, the indexing circuit simply computes projections (a.k.a. 1-local functions). In
other words, on input the randomness z, the PCP queries the proof at locations q1, q2, . . . , qt
where each qi is about n bits, and each bit of qi depends on only one bit of z.

Projections work well for probabilistic degree, because they do not increase degree. How-
ever, the PCP makes a polynomial number t of queries which are then post-processed by a
3CNF φ. It is not known if a similar PCP with only a constant number of queries exists,
see discussion in [BV14]. This 3CNF φ on a polynomial number of variables is problematic,
because it may not have small degree. (Note that we cannot approximate it by a polynomial,
as we could get a bad approximation which accepts wrong proofs, and we would have no
way of detecting it.) Another issue is that we are trying to prove a lower bound against a
distribution on polynomials. Typical instantiations of the method work against fixed circuits.

Our approach. To go around these issues we begin by modifying slightly the PCP in
[BV14]. Rather than making a polynomial number of queries and applying the 3CNF φ
to their answers, the modification simply picks a random clause i in φ, queries its three
variables, negates the outputs as needed, and outputs Or.

This PCP will still accept correct proofs with probability 1, because the 3CNF evaluates
to 1 and so all clauses are true.

If on the other hand the proof is incorrect, by the soundness of the PCP [BV14] φ evaluates
to 0 on at least say a 0.5 fraction of the choices for the randomness z. For each such z, at
least one of the clauses is not satisfied. Because the number of clauses is a polynomial, we
have at least a polynomial probability, over the choice of i, to pick a false clause. Hence,
over the choice of both z and i, this PCP will accept an incorrect proof with probability
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≤ 1− 0.5/nb for some fixed b.
Now an important point is that we are allowed to amplify the error of the polynomial.

This is possible because we have a distribution on polynomials that has an advantage on
every fixed input. So we can just sample many times from the distribution and compute
majority to drive the error down exponentially. Specifically, by sampling c log n many times,
for a constant c depending on b, we can drive the error to ε < 0.5/nb.

At this point by an averaging argument it is possible to fix a polynomial p that maintains
a gap between the accept and reject probabilities of the PCP. Hence, for inputs in the
language L, there exists a proof given by a polynomial p such that the PCP will still accept
with probability > 1− 0.5/nb, while for inputs not in L, the PCP will accept any proof with
probability < 1− 0.5/nb.

The algorithm for L proceeds by guessing the polynomial p and combining it with the
PCP. So if we can give an algorithm running in time o(2n) to compute the acceptance
probability of this PCP exactly, we derive the desired contradiction.

This PCP cannot yet be written as a low-degree polynomial. This is because the map
from i to the clause is not known to be of low degree. However, there are only a polynomial
number of choices for i. So we simply enumerate over all of them. For a fixed i, the
acceptance probability of the PCP is now a low-degree polynomial in z.

Summarizing, we have reduced proving probabilistic-degree lower bounds to computing
the number of satisfying assignments to a polynomial.

To finish the proof of Theorem 3, we note that one can compute the number of sat-
isfying assignments to a degree-d polynomial in n variables in time 2n−Ω(n/d)+O(logn). The
algorithm for this is a fairly straightforward combination of techniques that have been used
in the corresponding algorithms for ACC0, Orthogonal Vectors, and systems of polynomial
equations [Wil14b, CW16, LPT+17]. However we are not aware that this claim appears in
the literature. A direct application of the Orthogonal Vectors algorithm gives slightly worse
bounds (see Section 2.1). [LPT+17] obtain running time 2n−Ω(n/d)+o(n) which is not sufficient
for our purposes. This concludes the overview of the proof of Theorem 3.

The corollaries then follow using known simulations of circuit classes by probabilistic
polynomials.

Proof of Theorem 8. To prove the lower bound under the uniform distribution in Theo-
rem 8 we use a different argument. Here our starting point is a conditional result by Alman
and Chen [AC19]. Under the assumption that non-deterministic quasi-polynomial time has
polynomial-size circuits (i.e., NQP ⊆ P/poly) they show how to construct 2n × 2n matrices
which are constant-error rigid for rank 2n

1−α
for any α > 0. Recall that (the functions whose

truth tables are) such matrices are also Ω(1)-hard for polynomials of degree n1−α−o(1).
In this paper we also give a streamlined exposition of their result for the case of polyno-

mials, achieving slightly better parameters than what claimed in [AC19] (see Section 5).
At the high level, Theorem 8 is established by combining this result by Alman and Chen

with hardness amplification, a technique to transform hard functions into harder functions.
For background we refer the reader to Chapter 17 “Hardness Amplification and Error Cor-
recting Codes” in the textbook [AB09], and to the discussion in [SV10].
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However, the use of hardness amplification is not straightforward. One issue is that hard-
ness amplification in general cannot be used for classes such as AC0[⊕], see [GSV18] and
the discussion in [SV10, Vio06a]. Our proof will use hardness amplification twice, for rather
different purposes. Let us give an overview. Towards a contradiction let us assume that
every function in ENP has AC0[⊕] circuits of size nc which compute the function correctly
on a 1/2+1/n0.9 fraction of the inputs. By worst-case to average-case hardness amplification
[BFNW93, Imp95, STV01a], this means that ENP has small circuits, not necessarily of con-
stant depth. However, this is sufficient to satisfy the assumption in the result by Alman and
Chen, which then yields a function which is Ω(1)-hard for polynomials of degree n1−α−o(1),
for any α. In particular, this function is Ω(1)-hard for MAJn2−2α−o(1) ◦ AC0[⊕] circuits of
size nc

′
. An important point is that here we can set c′ > c, which is necessary for the final

contradiction. Now in our second application of hardness amplification we use a fine analysis
of Yao’s famous XOR lemma [GNW95] which follows from Impagliazzo’s theory of hard-core
sets [Imp95] and essentially appears in a beautiful paper by Klivans [Kli01]. The analysis
essentially says that if a function f is Ω(1)-hard for MAJt2 ◦ C circuits then then XOR of
O(log t) independent copies of f is (1/2−1/t)-hard for circuits C. Applying this analysis we
produce another function in ENP which violates our initial assumption and concludes the
proof.

We note that these uses of hardness amplification change the input length, and so we
require some mild conditions on the size function s = s(n) to finish the argument. (One can
actually relax the conditions at the price of having a more complicated statement.)

Comparison with rigidity lower bound in [AC19]. We mentioned earlier that Alman
and Chen gave [AC19] an unconditional construction of 2n×2n matrices which are constant-

error rigid for rank 2n
1/4−ε

. This result does not imply new probabilistic-degree lower bounds.
For the latter, we would need to obtain rank larger than 2

√
n.

It is natural to ask whether the approach in [AC19] can yield new probabilistic-degree
lower bounds. We now explain what the problem is and why rank 2

√
n is in fact a natural

barrier for their approach. [AC19]’s argument uses PCPs twice. The first application is
similar to what we described above. The second application, following [CW19], is a PCP of
proximity that helps in computing the acceptance probability of the first PCP.

The critical point is this: when using this approach to prove a lower bound against a set
of functions (for example polynomials of degree d) this second PCP is applied to evaluate a
circuit which contains, and so is at least as big as, one of these functions. This makes the
proof length of this PCP at least as long as the description of the functions. In the case of
polynomials of degree d, this would be at least nd ≥ 2d. In particular, the randomness used by
the second verifier has length u at least d. Now, the algorithm in [AC19] involves enumerating
over all 2u choices for this randomness, and running for each choice an algorithm that counts
the number of satisfying assignments. For the latter problem, there are algorithms running
in time 2n−Ω(n/d) (see Section 2.2). The overall run-time, accounting for going over the 2u

choices and running the counting algorithm on each is then 2d · 2n−Ω(n/d). However, this is
only better than 2n when d ≤

√
n.

The paper [AC19] also contains an argument which they call bootstrapping. As discussed
in [AC19], bootstrapping runs into difficulties when the rank is larger than

√
n; the same
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difficulties arise for degree larger than
√
n.

1.3 Towards probabilistic rank

As mentioned earlier, probabilistic degree is a special case of rigidity. The notion of rigidity
is in fact the same as that of hardness (Definition 2) for low-rank matrices. Razborov
introduced [Raz89] a variant of rigidity which is to rigidity what probabilistic degree is to
hardness for low-degree polynomials: we have a distribution on low-rank matrices that on
every entry has the correct value except with probability ε. By Yao’s duality principle,
this is the same as hardness with respect to some distribution. Following the literature
we call this notion probabilistic rank. Probabilistic rank has been studied by several works
including [Wun12, AW17]. This notion is particularly interesting because lower bounds for
probabilistic rank, besides being a prerequisite for rigidity lower bounds, also suffice for some
of the applications of rigidity lower bounds. For example they suffice for communication lower
bounds, see [Wun12], and for AC0[⊕]◦Ltft ◦AC0[⊕]◦Ltf lower bounds, see [AC19, AW17].
For another application to circuits operating on matrices see Jukna’s book [Juk12], Chapter
12.8.

It is natural to ask if Theorem 3 can be extended to bound probabilistic rank as well. From
our approach it follows that either a strengthening of the PCP [BV14] or a strengthening of
the algorithms for counting orthogonal vectors [AWY15, CW16] would give improved lower
bounds for probabilistic rank.

On the PCP side we would need a PCP that on input randomness z makes queries of
the type z⊕ ai where ai are fixed strings, and ⊕ is bit-wise XOR. One of the components of
the PCP [BV14] does have this form, but another (the PCP of proximity for Reed Solomon
codes, which remains the most intricate part of the proof) does permute bits.

On the side of orthogonal vectors, it would suffice to solve the following problem.

Problem 9. Given six functions f ′1, f
′′
1 , f

′
2, f

′′
2 , f

′
3, f

′′
3 : {0, 1}n → {0, 1}r and six subsets

s′1, s
′′
1, s
′
2, s
′′
2, s
′
3, s
′′
3 ⊆ 1, 2, . . . , 2n of size n each, compute

Pz∈{0,1}2n

[
3∑
i=1

〈f ′i(z|s′i), f
′′
i (z|s′′i )〉 = 1 mod 2

]
in time 22n−Ω(n/ log r) when r ≤ 2αn for a small enough α > 0. Here z|s denotes the n bits of
z indexed by s.

The connection to rank is that a rank-r 2n× 2n matrix can be written as the truth-table
of a function f : {0, 1}n × {0, 1}n → {0, 1}r defined as g(x, y) := 〈f ′(x), f ′′(y)〉 where 〈, 〉 is
inner product. Thus Problem 9 considers the sum of three low-rank functions of different
projections of 2n bits. As pointed out in [AC19], when the projections are the same this can
be reduced to a single matrix, and for that one can apply algorithms for orthogonal vectors
[CW16]. It is not clear what happens for different projections. Here’s a special case that we
can’t yet solve. Divide the 2n bits z into 4 blocks z = (x, y, v, w) of n/2 bits each. Can one
compute

Pz∈{0,1}2n [〈f(x, y), f(v, w)〉+ 〈f(x, v), f(y, w)〉+ 〈f(x,w), f(y, v)〉 = 1 mod 2]

in time 22n−Ω(n/ log r)?

9



Organization. In Section 2 we prove the probabilistic-degree lower bound Theorem 3. The
corollaries are then proved in Section 3. The hardness result under the uniform distribution,
Theorem 8 is proved in Section 4. This latter theorem relies on a slightly stronger version of
a result by Alman and Chen specialized to polynomials. We give a streamlined exposition of
this in Section 5. In Section 6 we include a quantitative version of a connection from [Vio17]
between communication protocols and probabilistic degree.

2 Probabilistic degree lower bound

In this section we prove Theorem 3. We begin with two subsections, then prove the main
theorem.

2.1 PCP tools

We need a simple variant of a PCP by Ben-Sasson and the author [BV14]. This PCP in
turn is a relatively minor modification of the PCP [BGH+05] in which the verifier’s query
indexes are just projections of the verifier’s randomness bits. In fact, for the application in
this paper it is sufficient to have soundness polynomially bounded away from 1, so one can
dispense with the soundness amplification step in [BV14].

First we state the result from [BV14], then state and prove our variant.

Lemma 10. [BV14] Let M be an algorithm running in time T = T (n) ≥ n on inputs of the
form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output in time poly(n, log T ) circuits
Q : {0, 1}r → ({0, 1}r)t for t = poly(r) and R : {0, 1}t → {0, 1} such that:

Proof length. 2r ≤ T · poly log T ,
Completeness. If there exists y such that M(x, y) accepts then there exists a map

π : {0, 1}r → {0, 1} such that for any z ∈ {0, 1}r we have R(π(q1), . . . , π(qt)) = 1 where
(q1, . . . , qt) = Q(z),

Soundness. If no y causes M(x, y) to accept, then for every map π : {0, 1}r → {0, 1}, at
most 1/n10 fraction of the z ∈ {0, 1}r have R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z),

Complexity. Q is a projection (a.k.a. 1-local), i.e., each output bit of Qi is one input
bit, the negation of an input bit, or a constant; R is a 3CNF.

Next is our variant.

Lemma 11. Let M be an algorithm running in time T = T (n) ≥ n on inputs of the form
(x, y) where |x| = n. Given x ∈ {0, 1}n one can output in time poly(n, log T ) a collection of
poly(r) circuits Qi : {0, 1}r → ({0, 1}r)3 and Ri : {0, 1}3 → {0, 1} such that:

Proof length. 2r ≤ T · poly log T ,
Completeness. If there exists y such that M(x, y) accepts then there exists a map π :

{0, 1}r → {0, 1} such that for any z ∈ {0, 1}r and any i ≤ poly(r) we have Ri(π(q1), π(q2), π(q3)) =
1 where (q1, q2, q3) = Qi(z),

Soundness. If no y causes M(x, y) to accept, then for every map π : {0, 1}r → {0, 1}, at
most a 1−1/rO(1) fraction of the pairs (z, i) ∈ {0, 1}r×[poly(r)] have Ri(π(q1), π(q2), π(q3)) =
1 where (q1, q2, q3) = Qi(z),
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Complexity. Each Qi is a projection (a.k.a. 1-local), i.e., each output bit of Q is one
input bit, the negation of an input bit, or a constant; each Ri is an Or of three literals.

Proof. We start with the PCP in Lemma 10. Rather than computing all of the 3CNF
R, the verifier only checks that clause i is satisfied. The function Ri is therefore an Or
of three literals. Completeness is immediate. To argue soundness, note that for every
choice of z such that R(π(q1), . . . , π(qt)) = 0, there is at least one clause of R that is not
satisfied. Because the number of clauses is poly(r), and by the soundness of the PCP in
Lemma 10, we have that the probability over (z, i) that Ri(π(q1), π(q2), π(q3)) = 0 is at least
(1− 1/n10) · (1/rO(1)) ≥ 1/rO(1).

2.2 #SAT poly

In this subsection we show how to count efficiently the satisfying assignments of a low-degree
polynomial.

Theorem 12. Given an F2-polynomial p of degree d in n variables we can compute the
number of satisfying assignments (a.k.a. non-roots) in time 2n−Ω(n/d)+O(logn).

For the proof we use modulus-amplifying polynomials from the 90’s. We use them in a way
similar to their use for orthogonal-vector algorithms ([CW16] Theorem 1.2). However using
the latter algorithms directly appears to give a slightly worse bound. (For example, the di-
mension of the corresponding vectors is Ω(nd) and so the running time would be 2n−Ω(n/d logn)

according to [CW16] Theorem 1.2.) Instead we use a classic dynamic-programming approach
going back to Yates in the 30’s, see [Wil14b].

Lemma 13. [Modulus-amplifying polynomials] [Yao90, BT94] For every integer ` there is a
univariate polynomial F` of degree 2`− 1 over the integers such that for every input y:

- y ≡ 0 mod 2⇒ F`(y) ≡ 0 mod 2`, and
- y ≡ 1 mod 2⇒ F`(y) ≡ 1 mod 2`.
Without loss of generality, the coefficients of F` are in {0, 1, . . . , 2` − 1}.

Lemma 14. [Yates in the 30’s, see [Wil14b]] Let f : {0, 1}n → {0, 1, . . . , 2poly(n)}. Given
the truth-table of f we can compute in time 2npoly(n) the truth-table of the function g :
{0, 1}n → Z defined as g(x) =

∑
y⊆x f(y), where we identify {0, 1}n with the subsets of

{1, 2, . . . , n}.

The proof of this lemma is an undergraduate exercise on dynamic programming.

Proof. [Of Theorem 12] Let ` := αn/d for an α > 0 to be determined later. View p as a
polynomial over the integers (with coefficients in {0, 1}). Let F`+1 be the modulus amplifying
polynomial of degree 2(` + 1) − 1. Compose F`+1 and p to obtain polynomial p′ of degree
O(d`) = O(αn). Because we are only interested in the values {0, 1} for the variables, we can
simplify p′ replacing terms xji with j ≥ 1 with xi.

With this simplification, the number of monomials in p′ is M :=
∑O(αn)

i=0

(
n
i

)
≤ 2H(O(α))n

where H is the binary entropy function. The coefficients of p′ have O(`) bits.
Note that we can write down p′ in time poly(`) · poly(M). For example we can perform

the poly(`) operations in the definition of F` to the polynomial p′.
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Now define p′′(x1, x2, . . . , xn−`) :=
∑

xn−`+1,xn−`+2,...,xn
p′(x1, x2, . . . , xn).

We can write down p′′ in time 2` · poly(M) · poly(`). Note p′′ has again ≤M monomials,
and coefficients of O(`) bits.

Note that for any input x ∈ {0, 1}n−`, p′′(x) counts the number of satisfying assignments
among the 2` completions of x to an input of length n. This is because p′ has been amplified
to work modulo 2`+1,so there is not “wrap-around” when summing over 2` inputs. Hence we
only need to evaluate p′′ on all inputs.

At this point we forget that p′′ has low degree and we just consider p′′ as a function f :
{0, 1}n−` → {0, 1, . . . , 2O(`)}.Lemma 14 solves the evaluation problem in time 2n−` · poly(n).

Overall, the algorithm’s running time is

2`poly(M) · poly(`) + 2n−` · poly(n) ≤ 2O(H(O(α)))n + 2n−αn/d+O(logn).

For a small enough α the first term is less than the second, and the result follows.

2.3 Proof of Theorem 3

Assume towards a contradiction that every function in ENP has 1/3-error polynomials of
degree d = αn/ log2 n. First, we reduce the error. Consider the majority of t independent
polynomials. This is a probabilistic polynomial of degree t · d, simply writing the majority
exactly as a degree-t polynomial and composing polynomials. On every input, by a Chernoff
bound the error of this new polynomial is 2−Ω(t). Taking t = O(c log n) we obtain that every
f ∈ ENP on n bits has 1/nc-error polynomials of degree d′ := O(dc log n). We will set c
later.

Let L ∈ NTime(2n) \ NTime(o(2n)) [Coo73, SFM78, Zák83]. We want to show that
L ∈ NTime(o(2n)) to reach a contradiction. Consider the algorithm f(x, y) that on input
x ∈ {0, 1}n and y ∈ {1, 2, . . . , 2npoly(n)} constructs the circuits from the PCP in Lemma 11,
computes the first satisfying assignment if one exists, and outputs its bit y. This algorithm
can be implemented in ENP by computing the satisfying assignment one bit at the time.

Recalling (q1, q2, q3) = Qi(z), where z ∈ {0, 1}r and r = n + O(log n), we have for every
x ∈ L:

Pz∈{0,1}r,i∈[rO(1)][Ri(f(x, q1), f(x, q2), f(x, q3)) = 1] = 1;

while for every x 6∈ L and every function π

Pz,i[Ri(π(q1), π(q2), π(q3)) = 1] ≤ 1− 1/nb

for a constant b = O(1).
By the argument above, f has a 1/nc-error polynomial of degree d′. We pick c = b + 1.

For a fixed input x ∈ L we can hard-wire the input x in the probabilistic polynomials for f
and write P = Px for the corresponding distribution of polynomials. Because P has error
1/nc on every fixed input, and because each constraint is an Or of three literals, we have for
x ∈ L:

Pz,i,P [Ri(P (q1), P (q2), P (q3)) = 1] ≥ 1− 1/nc.

The bound 1− 3/nc follows by a union bound; but it suffices that one input to Ri is 1 to
have Ri = 1. Also we can take each occurrence of P inside the probability to be the same
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sample from the distribution of polynomials. Neither observation is crucial here but may be
useful elsewhere.

By an averaging argument, there exists a fixed polynomial p of degree d such that

Pz,i[Ri(p(q1), p(q2), p(q3)) = 1] ≥ 1− 1/nc.

On the other hand for any x 6∈ L and for every proof π and so in particular for p = π we
have:

Pz,i[Ri(p(q1), p(q2), p(q3)) = 1] ≤ 1− 1/nb < 1− 1/nc.

Hence, there is a gap between the probabilities. We now give an algorithm to detect the
gap. Specifically, we give an efficient non-deterministic algorithm that decides if there exists
a polynomial p such that Pz,i[Ri(p(q1), p(q2), p(q3)) = 1] ≥ 1− 1/nc.

On input x, the algorithm guesses a polynomial p′ of degree d′ on n′ = n + O(log n)

variables. The number of bits required to specify such a polynomial is ` =
∑d′

i=0

(
n′

i

)
≤

(en′/d′)d
′ ≤ nd

′
= nO(dc logn) = 2O(αcn) which is o(2n) for a small enough α depending only on

c. The algorithm then computes the corresponding probability, and accepts if it is at least
1− 1/nc.

Computing the probability. The algorithm will compute the probability for every fixed
value of i, and then sum the values. Because the number of i is only poly(r) = poly log T =
poly(n), this only incurs a polynomial slow-down.

Once i is fixed, the queries q1, q2, q3 are linear functions of the input z. Composing these
functions with p′ and writing the output Ri exactly as a degree-3 polynomial, we obtain
a polynomial q of degree O(d′). To write down the polynomial we need first to compute
the query circuits Qi and the circuit Ri. This can be done in time poly(n) by Lemma 11.
Composing these with p′ can be done in time polynomial in the length of the representation
of p′ which is poly(`). As above, the latter quantity can be made say ≤ 2n/2, again for
α small enough depending on c. We then compute the number of inputs that cause q to
accept using Lemma 12. The degree of q is O(d′) ≤ O(αcn/ log n). The running time of the
algorithm in Lemma 12 is 2n−Ω(logn)/(αc)+O(logn). For a small enough α the overall running
time of the algorithm is o(2n), concluding the proof.

3 Proofs of corollaries

In this section we prove corollaries 4, 5, and 7. We need several upper bounds on probabilistic
degree from the literature.

3.1 Probabilistic degree upper bounds

We rely on Razborov’s seminal approximation result [Raz87]. We use the recent tighter
version by Kopparty and Srinivasan [KS18], who also show their bound is nearly tight.

Lemma 15. [KS18] Any AC0[⊕] circuit of depth d and size s has ε-error degree ≤ O(log s)d−1 log(1/ε).

We also need upper bounds on the probabilistic degree of symmetric and threshold func-
tions, by Alman and Williams, and Srinivasan.
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Lemma 16. ([AW15], Theorem 1.2). Any symmetric function on n bits has ε-error polyno-
mials of degree O(

√
n log(1/ε)).

Lemma 17. ([Sri13], Theorem 12) Any threshold function (a.k.a. LTF) has ε-error degree
≤
√
n(log n · log 1/ε)O(1).

3.2 Proofs of corollaries

First we prove Corollary 4 by connecting two settings of parameters for probabilistic degree,
showing that improving the state-of-the-art for small degree and error approaching 1/2 is
easier than improving it for large degree and constant error. Then we prove Corollary 7.

Lemma 18. Suppose that f : {0, 1}n → {0, 1} has (1/2− ε)-error d. Then f has 1/10-error
degree O(d/ε).

In particular, for ε = 1/
√
n and d = log n we obtain degree O(log n ·

√
n).

Proof. Let P be a distribution witnessing (1/2 − ε)-error degree d. We take the majority
of t = O(1/ε2) independent copies of P . By a Chernoff bound this majority has error
≤ 1/20. Moreover, Majority on t bits has 1/20-error polynomials of degree O(

√
t) [AW15].

So replacing the majority with a probabilistic polynomial gives error 1/20 + 1/20 ≤ 1/10
and degree O(d/ε).

From this the proof of Corollary 4 is immediate. Now we prove the other two corollaries.

Proof. [of Corollary 5] We apply Lemma 15 with ε = 1/3 to obtain that the function com-
puted by the circuit has 1/3-error degree O(log s)h−1. By Theorem 3 we have O(log s)h−1 ≥
n/ log2 n and the result follows.

Proof. [of Corollary 7] We approximate each And and Or gate by a degree-logO(1)(s) poly-
nomial with error 0.1/s by Lemma 15. We approximate each Sym and Ltf gate with fan-in
m by a degree

√
m · logO(1)(s) polynomial with error 0.1/s by Lemmas 16 and 17. By a

union bound, the error is as desired. It remains to bound the degree. We prove by induction
that for every gate g at distance h′ from the input, the composed polynomial (obtained
by composing the polynomial for each gate) has degree

√
t′ · logO(h′) s, where t′ is the least

value such that the sub-circuit obtained by considering g as output is t′-SoT-AC0[⊕]. This
is obvious for h′ = 1, using the fact that the fan-in of a gate at this level is at most n. For
larger h′, suppose g is an And or Or gate. Then by induction the sub-circuits have degree√
t′ · logO(h′−1) s and the result follows. Otherwise, g is either a Sym or an Ltf gate with

fan-in m. Hence some child of g is t′/m-SoT-AC0[⊕], and others are t′′-SoT-AC0[⊕] for
t′′ ≤ t′/m. By induction they all have degree

√
t′/m · logO(h′−1) s and so the degree of g is√

m · logO(1)(s) ·
√
t′/m · logO(h′−1) s as desired.

4 Uniform distribution: Proof of Theorem 8

In this section we prove Theorem 8. We need some tools from the theory of hardness
amplification.
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4.1 Tools from hardness amplification

First we need a relatively standard connection between average-case and worst-case lower
bounds for general circuits. The important point here is that we are not claiming that the
circuits are of constant depth or have any other restriction except size.

Lemma 19. [BFNW93, Imp95, STV01b] Let s = s(n) satisfy s(O(n)) ≤ sO(1)(n). There is
a constant c such that the following holds.

Suppose that for every function f : {0, 1}n → {0, 1} in ENP there is a circuit of size
s(n) ≥ n such that Px∈{0,1}n [C(x) = f(x)] ≥ 1/2 + 1/n. Then for every function f :
{0, 1}n → {0, 1} in ENP there is a circuit of size sO(1)(n) such that C = f .

Remark 20. For the proof we can use Theorem 24 and Lemma 28 in [STV01b]. That gives
the size bound s′ = nO(1) · s(O(n)) which is ≤ sO(1)(n) by the assumptions on s. The only
thing that is left to verify is that their encoding procedure can be implemented in ENP .
Indeed, as observed already in [COS18], given a function f in ENP we can construct another
ENP function which first writes down the truth table of f by calling the algorithm for f
2n times, using the NP oracle for each call. Then we can run the encoding procedure in
[STV01b] which runs in polynomial time in the length 2n of the truth table.

We need another result from the hardness amplification literature. This time we need a
much finer bound on the complexity of the associated decoding procedure. We need that the
proof of a hardness amplification from constant to 1/2− ε can be implemented essentially by
a majority on 1/ε2 bits. Such a fine result actually follows from Impagliazzo’s hard-core-set
proof [Imp95] of Yao’s XOR lemma (see [GNW95]), as was made explicit in a beautiful paper
by Klivans [Kli01]. Klivans actually was working in a slightly different context and did not
need to bound the fan-in of the majority gate, but the bound is evident in his analysis.
We note that Klivans’ application (a switching-lemma free proof of the average-case lower
bounds for AC0) was later simplified by Klivans and Vadhan (see the exposition in [Vio09a]).
This simplification bypasses the XOR lemma, using instead the random self-reducibility of
parity. In our application, the function may not be randomly self-reducible.

Lemma 21. Let f : {0, 1}n → {0, 1} be a function that is Ω(1)-hard for Majt ◦ AC0[⊕]
circuits of size s and depth h. Then the function f ′ : ({0, 1}n)k → {0, 1} defined as
f ′(x1, x2, . . . , xk) := ⊕i≤kf(xi) is (1/2−O(1/

√
t)− (1−Ω(1))k)-hard for AC0[⊕] circuits of

size s/t and depth h− 1.

Remark 22. The combination of Theorem 8 and Fact 9 in [Kli01] show that there exists a
“hard-core” set S ⊆ {0, 1}n of size Ω(2n) such that for every AC0[⊕] circuit C of size s/t
and depth h− 1 one has Px∈S[C(x) 6= h(x)] ≥ 1/2− O(1/

√
t). Otherwise, one can take the

majority of t such circuits to obtain a contradiction. This suffices for a proof of the XOR
lemma (see Lemma 4 in [Imp95] or Theorem 10 in [Kli01]).

4.2 A result by Alman and Chen

We need the following result which is essentially Theorem 1.9 by Alman and Chen [AC19].

Lemma 23. Suppose that ENP has circuits of size s. Then there is a function in ENP that
is Ω(1)-hard for F2-polynomials of degree Ω(n/ log s), infinitely often.
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Theorem 1.9 by Alman and Chen [AC19] claims Ω(1)-hardness for rank n1−α for any
α > 0. As mentioned earlier and in [SV12], this implies the same hardness for degree n1−α

for any α > 0. We note here slightly stronger parameters, and we give a streamlined proof
for polynomials, following closely theirs, in Section 5.

4.3 Proof of Theorem 8

Towards a contradiction, suppose that for every constant c and for every f : {0, 1}n → {0, 1}
in ENP and for all sufficiently large input lengths n there are s and h and AC0[⊕] circuits
C of size s and depth h such that Px∈{0,1}n [f(x) 6= C(x)] ≤ 1/2− (logch s)/n.

By Lemma 19, ENP has circuits of size sO(1)(n).
By Lemma 23, there is a function in ENP that is Ω(1)-hard under the uniform distribution

for polynomials of degree Ω(n/ log s), for infinitely many n. In particular, for those n, the
latter function is Ω(1)-hard under the uniform distribution for MAJn2/ logO(h) s ◦ AC0[⊕]

circuits of size say s10(n) and depth h + 10. This is because the latter circuits have o(1)-

error degree d :=
√
n2/ logO(h) s · logh+O(1) s ≤ n/ logO(h) s≤ n/ log s by Lemma 16 and 15.

So if such a circuit computed h correctly on a δ fraction of the inputs there would be a
distribution P on polynomials of degree d such that Px,P [P (x) = h(x)] ≥ δ−o(1), where x is
uniformly distributed. And so by an averaging argument we could fix a specific polynomial
to contradict the claim above.

Now we can apply Lemma 21 to construct a function on nk bits for k = O(log n) which,

for infinitely many n, has hardness 1/2 − 1/
√
n2/ logO(h) s − 1/n ≥ 1/2 − logO(h) s/n for

circuits of size s10/(n2/ logO(h) s) ≥ s8, where the inequality holds without loss of generality,
and depth (h+ 10)− 1 = h+ 9. Here we are using that (1−Ω(1))k ≤ 1/n for k = O(log n).

To contradict our initial assumption, for a large enough constant c, it suffices that
s(O(n log n)) ≤ s8(n) and h(O(n log n)) ≤ h(n) + 9. Indeed, these are our assumptions.

5 Proof of Lemma 23

We need the following recent construction of smooth PCPs of proximity by Paradise [Par19],
which we state using notation similar to that in Section 2.1.

Lemma 24. For any constants δ, σ ∈ (0, 1/3] there is a constant c and an algorithm M
with the following properties. On input a circuit C of size s on ` ≤ s inputs, ` a power of
2, the algorithm M(C) computes in time sc circuits Q : {0, 1}r → ({0, 1}r)c, Q′ : {0, 1}r →
({0, 1}log `)c, and R : {0, 1}2c → {0, 1} such that:

Proof length. 2r ≤ sc,
Completeness. If y makes C(y) = 1 then there exists a map π : {0, 1}r → {0, 1} such

that for any z ∈ {0, 1}r we have R(y(q′1), . . . , y(q′c), π(q1), . . . , π(qc)) = 1 where (q1, . . . , qc) =
Q(z), (q′1, . . . , q

′
c) = Q′(z), and y(i) is the i bit of y,

Soundness. If y is δ-far in Hamming distance from any z such that C(z) = 1,
then for every map π : {0, 1}r → {0, 1}, at most a σ fraction of the z ∈ {0, 1}r have
R(y(q′1), . . . , y(q′c), π(q1), . . . , π(qc)) = 1 where (q1, . . . , qc) = Q(z), (q′1, . . . , q

′
c) = Q′(z),
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Smoothness. For every i ≤ c, each query qi is uniformly distributed in {0, 1}r over the
choice of z ∈ {0, 1}r.

Proof. [of Lemma 23] As in the proof of Theorem 3, let L ∈ NTime(2n) \ NTime(o(2n))
[Coo73, SFM78, Zák83]. We want to show that L ∈ NTime(o(2n)) to reach a contradiction
(assuming the opposite of the conclusion, which we will do shortly). Consider the algorithm
f(x, y) that on input x ∈ {0, 1}n and y ∈ {1, 2, . . . , 2npoly(n)} constructs the circuits from
the PCP in Lemma 10, computes the first satisfying assignment if one exists, and outputs its
bit y. This algorithm can be implemented in ENP by computing the satisfying assignment
one bit at the time. By the assumption, this algorithm can be implemented by a circuit C
of size s ≥ n.

The algorithm to show L ∈ NTime(o(2n)) proceeds by guessing this circuit C, and
composing it with the PCP in Lemma 10 to obtain another circuit C ′ of size sO(1). By the
properties of the PCP, it then suffices to efficiently compute

Pz∈{0,1}r [C ′(z) = 1].

We use the PCP in Lemma 24 to aid in this. We first have to encode z. Fix any efficient,
linear, binary error-correcting code ECC : {0, 1}r → {0, 1}rδ with Hamming distance δ and
efficient encoding and decoding, where rδ is linear in r for any fixed δ. By composing the
decoding procedure with C ′ we obtain another circuit C ′′ of size sO(1) and see that it suffices
to compute

Pz∈{0,1}r [C ′′(ECC(z)) = 1].

Applying the PCP in Lemma 24 to circuit C ′′ we see that if x ∈ L then there are proofs
πz such that

Pz∈{0,1}r,z′∈{0,1}O(log s) [R(ECC(z)(q′1), . . . , ECC(z)(q′c), πz(q1), . . . , πz(qc)) = 1] = 1,

while if x 6∈ L then for any proofs πz we have

Pz∈{0,1}r,z′∈{0,1}O(log s) [R(ECC(z)(q′1), . . . , ECC(z)(q′c), πz(q1), . . . , πz(qc)) = 1] ≤ 1/2,

where (q1, . . . , qc) = Q(z′), (q′1, . . . , q
′
c) = Q′(z′), and picking the soundness in the PCPs

in Lemmas 10 and 24 to be a small enough constant.
The proofs πz(q) can be computed as a function of z and q by an ENP algorithm f(z, q).

Now let us assume the opposite of the conclusion of the lemma. Then for every β > 0 there
are polynomials p of degree βd such that Pz,q[p(z, q) 6= f(z, q)] ≤ β. Because the queries q
are smooth, and by a union bound, we have that if x ∈ L then

Pz∈{0,1}r,z′∈{0,1}O(log s) [R(ECC(z)(q′1), . . . , ECC(z)(q′c), p(z, q1), . . . , p(z, qc)) = 1] ≥ 1− βc,

while if x 6∈ L then the above probability is ≤ 1/2 as above. Thus picking β < c/2 there is
a gap in the above probabilities. If we can detect this gap efficiently, we are done.

The algorithm will guess the polynomial p and then compute the above probability. To
compute the probability, it enumerates over all sO(1) choices for z′. For any fixed z′, the
function

R(ECC(z)(q′1), . . . , ECC(z)(q′c), p(z, q1), . . . , p(z, qc))
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is a polynomial of degree 2cβd. Here we simply write R as a polynomial of degree 2c, and
use that ECC is linear. Applying Theorem 12 allows us to compute this probability in
time 2n−Ω(n/βd)+O(logn). If d = n/ log s the running time is 2n−Ω(log s)/β+O(logn). Picking β
small enough the saving in time can compensate for the sO(1) slow-down that comes from
enumerating over all z′, and the proof is concluded.

6 Number-on-forehead

The connection between probabilistic degree and number-on-forehead lower bounds was
pointed out in [Vio17]. We present next a stronger quantitative relationship.

Theorem 25. Suppose that f : {0, 1}n → {0, 1} has (1/2 − ε)-error degree d. Then f has
number-on-forehead protocols with O(d log(n/ε)) parties and communication O(d log(n/ε) ·
log n), under any partition of the input.

To illustrate, if d = log n and ε = 1/
√
n (something which we cannot rule out for any

function in NP ) then we obtain O(log2 n) parties and O(log3 n) communication.

Proof. Let D be the distribution on degree-d polynomials witnessing the (1/2 − ε)-error
degree of f . By taking the majority of t = O(n/ε2) independent copies of D, we can drive
the error to < 2−n. By the probabilistic method we can fix the values of the D and obtain
that there are t polynomials p1, . . . , pt of degree d such that f(x) = Maj(p1(x), . . . , pt(x))
for every input x ∈ {0, 1}n.

Now view the pi as integer polynomials, and compose each with a modulus amplifying
polynomial F of degree O(log t) given by Lemma 13. This guarantees that the value of each
polynomial modulo 2 is the same as the value modulo 2O(log t) > t. Hence, the value of
Maj(p1(x), . . . , pt(x)) is determined by

q(x) :=
∑
i≤t

F (pi(x)).

Each F (pi(x)) is a polynomial of degree O(d log t) with O(log t)-bit coefficients. Hence
the same is true about q(x).

By H̊astad and Goldmann’s simulation [HG91], q(x) can be computed by a number-on-
forehead protocol with O(d log t) parties. Each party just sends the sum of a subset of the
monomials in q. This sum has magnitude at most the magnitude of one coefficient times
the number of monomials in q, which is ≤ poly(t) · nO(d log t). The number of bits is then
O(d log(n/ε) · log n).
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