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Abstract

A hitting set is a “one-sided” variant of a pseudorandom generator (PRG), naturally suited
to derandomizing algorithms that have one-sided error. We study the problem of using a given
hitting set to derandomize algorithms that have two-sided error, focusing on space-bounded
algorithms. For our first result, we show that if there is a log-space hitting set for polynomial-
width read-once branching programs (ROBPs), then not only does L = RL, but L = BPL as
well. This answers a question raised by Hoza and Zuckerman [HZ18].

Next, we consider constant-width ROBPs. We show that if there are log-space hitting sets for
constant-width ROBPs, then given black-box access to a constant-width ROBP f , it is possible
to deterministically estimate E[f ] to within ±ε in space O(log(n/ε)). Unconditionally, we give
a deterministic algorithm for this problem with space complexity O(log2 n+ log(1/ε)), slightly
improving over previous work.

Finally, we investigate the limits of this line of work. Perhaps the strongest reduction along
these lines one could hope for would say that for every explicit hitting set, there is an explicit
PRG with similar parameters. In the setting of constant-width ROBPs over a large alphabet, we
prove that establishing such a strong reduction is at least as difficult as constructing a good PRG
outright. Quantitatively, we prove that if the strong reduction holds, then for every constant
α > 0, there is an explicit PRG for constant-width ROBPs with seed length O(log1+α n). Along
the way, unconditionally, we construct an improved hitting set for ROBPs over a large alphabet.
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1 Introduction

Suppose some decision problem can be solved by an efficient randomized algorithm. That’s good, but
an efficient deterministic algorithm would be even better. We would therefore like to deterministically
analyze the acceptance probability of the randomized algorithm on a given input. An ambitious
approach to derandomization is to try to design a suitable pseudorandom generator (PRG).

Definition 1.1. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a function
G : {0, 1}s → {0, 1}n such that for every f ∈ F ,

∣∣E[f ]− EX∈{0,1}s [f(G(X))]
∣∣ ≤ ε.

Let n be the number of random bits used by the randomized algorithm, and ensure that F
can compute the action of the randomized algorithm on its random bits. By iterating over all
“seeds” x ∈ {0, 1}s and plugging G(x) into the randomized algorithm, we can get an estimate of its
acceptance probability with additive error ε.

Unfortunately, designing efficient PRGs has proved to be extremely difficult. Constructing a
hitting set is sometimes less difficult.

Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-hitting set for F is a set
H ⊆ {0, 1}n such that for every f ∈ F with E[f ] ≥ ε, there is some x ∈ H such that f(x) = 1.

The image of any PRG is clearly a hitting set. By iterating over all strings in a hitting set, we
can at least distinguish acceptance probability 0 from acceptance probability ≥ ε. This is already
sufficient for derandomizing some algorithms (namely, those with “one-sided error”). In this paper,
we investigate the possibility of using a hitting set in a nontrivial way to obtain an estimate of the
acceptance probability with a small additive error, just like what a PRG would have provided.

This possibility was previously studied in the context of derandomizing time-bounded algorithms.
Several proofs have been discovered showing that if there is a polynomial-time hitting set for size-n
circuits, then P = BPP [ACR96, BF99, ACRT99, GVW11]. In Appendix A we provide yet another
proof of this theorem; our short proof is arguably simpler than all previous proofs. However, the
focus of our paper is derandomizing space-bounded algorithms.

1.1 Derandomizing log-space algorithms

The behavior of a small-space algorithm as a function of its random bits can be modeled by a
read-once1 branching program (ROBP). A width-w length-n ROBP is a directed graph consisting
of n + 1 layers with w vertices per layer. There is a designated “start vertex” in the first layer.
Every vertex not in the last layer has two outgoing edges labeled 0 and 1 leading to the next layer.
An n-bit input string naturally identifies a path through the graph by reading from left to right.
The program accepts or rejects this string depending on whether the path ends at the designated
“accept vertex” in the last layer.

Recall that BPL and RL are the classes of languages that can be decided by randomized
log-space algorithms that always halt with two-sided and one-sided error respectively. A log-space
hitting set for polynomial-width ROBPs would immediately imply L = RL. For our first result, we
show that such a hitting set would also imply L = BPL.

Theorem 1.3. Assume that for every n ∈ N, there is a 1
2 -hitting set for width-n, length-n ROBPs

that can be computed in space O(log n). Then L = BPL.

1Because space-bounded algorithms only have read-once access to their random bits, it does not seem possible to
adapt the existing derandomizations of BPP using a hitting set to the BPL case.
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1.2 Motivation: Recent work on hitting sets

Theorem 1.3 is especially interesting in light of recent constructions of improved hitting sets for
ROBPs [BCG18, HZ18]. The best known PRG for polynomial-width ROBPs is still Nisan’s PRG
[Nis92], which has seed length

O(log2 n+ log n log(1/ε)).

Until recently, Nisan’s PRG also provided the best hitting set for polynomial-width ROBPs. Using
sophisticated and novel techniques, Braverman, Cohen, and Garg obtained a hitting set with space
complexity

Õ(log2 n+ log(1/ε)),

which is an improvement when ε is very small [BCG18].
Actually, Braverman, Cohen, and Garg constructed something better than a hitting set, called a

pseudorandom pseudodistribution (PRPD).

Definition 1.4 ([BCG18]). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRPD for F
is a function D : {0, 1}n → R such that for every f ∈ F ,∣∣∣∣∣∣

∑
x∈{0,1}n

f(x)D(x)− E[f ]

∣∣∣∣∣∣ ≤ ε.
A PRPD can be used to estimate E[f ] to within ±ε, provided there is an efficient algorithm that

enumerates all x ∈ supp(D) and computes D(x). The concept of a PRPD generalizes the concept
of a PRG, because given a PRG G with seed length s, one can set D(x) = |G−1(x)| · 2−s. In turn,
if D is a PRPD, then supp(D) is a hitting set. So a PRPD is intermediate between a hitting set
and a genuine PRG.

After Braverman, Cohen, and Garg’s work [BCG18], Hoza and Zuckerman gave a simpler
construction of an ε-hitting set for polynomial-width ROBPs, with the slightly improved seed length
O(log2 n + log(1/ε)) [HZ18]. Their construction is weaker in that it does not provide a PRPD.
Theorem 1.3 bridges the gap between the two concepts somewhat: by Theorem 1.3, any generic
hitting set can be used for two-sided derandomization, which was the main strength of a PRPD
over a hitting set in the first place.

1.3 The constant-width setting

However, there is a weakness of Theorem 1.3. A PRG or a PRPD would provide a black-box
derandomization, whereas the algorithm of Theorem 1.3 is not black-box. This weakness is especially
acute when we consider the constant-width case. Given a constant-width ROBP f directly as input,
it is trivial to compute E[f ] with high accuracy, so the algorithm of Theorem 1.3 is meaningless.
Nevertheless, constant-width ROBPs can compute many interesting functions, and it is a major
open challenge to design improved PRGs, PRPDs, or hitting sets for constant-width ROBPs. (For
width 2, optimal PRGs are known [BDVY13]. For width 3, the current best PRG has seed length
Õ(log n log(1/ε)) [MRT19]. The best hitting sets for width 3 are superior, with space complexity
Õ(log(n/ε)) for small ε [GMR+12] or O(log n) for ε ≈ 1 [ŠŽ11]. For width 4, the state of the art is
simply the best results for polynomial-width ROBPs.)

To address this weakness of Theorem 1.3, we abstract the “black-box” feature of PRGs and
PRPDs in the following definition.
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Figure 1: The relationships between different derandomization goals. The solid arrows are impli-
cations that are immediate from the definitions and hold for essentially any class F . The dashed
arrows are theorems in this paper, holding for ROBPs specifically.

Definition 1.5. Let F be a class of functions f : {0, 1}n → {0, 1}. A deterministic ε-sampler for
F is a deterministic oracle algorithm A that outputs a real number such that for every f ∈ F ,

|Af − E[f ]| ≤ ε.

The concept of a deterministic sampler generalizes that of a PRPD, because given a PRPD D,
one can set Af =

∑
x f(x)D(x). In the other direction, deterministic samplers imply hitting sets.

Proposition 1.6. Identify 0 with the constant 0 function on {0, 1}n, and assume 0 ∈ F . Let A
be a deterministic ε-sampler for F , and let H ⊆ {0, 1}n be the set of points where A0 queries its
oracle. Then for every ε′ > 2ε, H is an ε′-hitting set for F .

Proof. Let f ∈ F satisfy E[f ] > 2ε. Since |A0 − 0| ≤ ε and |Af − E[f ]| ≤ ε, A0 6= Af . Therefore,
Af must query f at some point x ∈ f−1(1). The first such query must be at a point x ∈ H.

All known derandomizations of BPP using a hitting set [ACR96, BF99, ACRT99, GVW11],
including our new derandomization in Appendix A, are black-box. That is, one can generically
“upgrade” a polynomial-time hitting set for size-n circuits into a polynomial-time deterministic
sampler for size-n circuits. For our second result, we prove the analogous reduction for constant-width
ROBPs. (See Figure 1.)

Theorem 1.7. Assume that for every constant w, for all n ∈ N, there is a 1
2 -hitting set for width-w

length-n ROBPs that can be computed in space O(log n). Then for every constant w, for all n ∈ N
and all ε > 0, there is a deterministic ε-sampler for width-w length-n ROBPs that runs in space
O(log(n/ε)).
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The proof of Theorem 1.7 uses different techniques than that of Theorem 1.3. The space
complexity of our deterministic sampler is proportional to the width parameter w (see Theorem 4.1),
so the sampler becomes meaningless when w is large. Thus, Theorems 1.3 and 1.7 are incomparable.

We also obtain a new unconditional deterministic sampler. Using prior work, the best determin-
istic sampler for constant-width ROBPs was from Braverman, Cohen, and Garg’s PRPD [BCG18]
if ε is small (space complexity Õ(log2 n+ log(1/ε)), or else just from Nisan’s PRG [Nis92] if ε is
not so small (space complexity O(log2 n+ log n log(1/ε))). By applying the reduction underlying
Theorem 1.7 to the hitting set of Hoza and Zuckerman [HZ18], we achieve a slight improvement.

Theorem 1.8 (Unconditional sampler). For every constant w, for all n ∈ N and all ε > 0, there is
a deterministic ε-sampler for width-w length-n ROBPs running in space O(log2 n+ log(1/ε)).

In light of Theorem 1.8, when it comes to deterministic samplers, there is now a slight gap
between the state of the art for polynomial-width ROBPs vs. the state of the art for width-w ROBPs
with w a large constant. In other words, Theorem 1.8 is a case where we can take advantage of
narrowness. There is no such gap when it comes to PRGs, PRPDs, or hitting sets.

1.4 Negative result

Theorem 1.7 raises the question of whether we can go even further and upgrade any hitting set into a
genuine PRG. In the time-bounded setting, this is indeed possible via the “hardness vs. randomness”
paradigm. (If for every n there is a hitting set for size-n circuits computable in poly(n) time, then
there is a language in E that requires circuits of size 2Ω(n). A major achievement in complexity
theory was to show that assuming such a language exists, for every n, there is a polynomial-time
logarithmic-seed PRG for size-n circuits [IW97].) Also, in the context of low-degree polynomials,
Bogdanov showed how to convert any hitting set with a certain density property into a PRG [Bog05].
Can a similar reduction be proven for small-space models?

We focus on the setting of constant-width ROBPs over a large alphabet. (An ROBP over
the alphabet Σ computes a function f : Σn → {0, 1}; each vertex not in the last layer has |Σ|
outgoing edges labeled with the symbols in Σ.) We prove that if for every explicit hitting set in
this setting, there is an explicit PRG with similar parameters, then there is in fact an explicit PRG
for constant-width binary ROBPs with seed length O(log1+α n), where α > 0 is an arbitrarily small
constant. See Theorem 5.3 for the precise statement.

1.4.1 Interpretation

Like any conditional theorem, Theorem 5.3 has both a positive and a negative interpretation.2

According to the negative interpretation, Theorem 5.3 shows that it would be difficult to establish
a general reduction from PRGs to hitting sets. After all, it’s as difficult as constructing a good
PRG for constant-width ROBPs, which is a challenge that researchers have been struggling with for
decades. In this sense, Theorem 5.3 provides an “excuse” for the fact that Theorems 1.3 and 1.7 do
not provide genuine PRGs.

We feel that the negative interpretation is more realistic, but there is also a sensible positive
interpretation. According to the positive interpretation, our work provides a new approach to
constructing improved PRGs or hitting sets for constant-width ROBPs. One “merely” needs to
bridge the gap between deterministic samplers and PRGs. This could be done in one of two ways.
One could improve Theorem 1.7 so that it concludes with a PRG instead of a deterministic sampler.

2Throughout this discussion, we will ignore the issue of alphabet size, to simplify matters. The proof of Theorem 1.7
does generalize well to the large-alphabet case.
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Alternatively, one could improve the construction of Theorem 5.3 so that rather than relying on
the equivalence of hitting sets and PRGs, it merely relies on the equivalence of hitting sets and
deterministic samplers. (In exchange, presumably the conclusion would merely be a deterministic
sampler rather than a true PRG, but that would still be a breakthrough.)

1.5 Overview of techniques

1.5.1 Techniques for Theorem 1.3

We begin by outlining the proof of Theorem 1.3 (on derandomizing BPL). Suppose we are given as
input a width-n length-n ROBP f . To derandomize BPL, it suffices to estimate E[f ] to within a
small additive error. We use the given hitting set H ⊆ {0, 1}poly(n). We think of a string x ∈ H as
providing, for each vertex v in f , a list of poly(n) “sample inputs,” and we compute the fraction of
those sample inputs that lead to v.

That fraction is an estimate of the probability that a random walk from the start vertex of
f reaches v. If x were chosen at random, with high probability, each estimate would be a close
approximation to the truth. However, for x ∈ H, the estimates are not necessarily good. We look
for an x ∈ H such that these estimates are at least locally consistent, i.e., the estimates for each pair
of consecutive layers are consistent with the arrangement of edges between those layers. Having
found such an x ∈ H, we output the corresponding estimated probability of reaching the accept
vertex of f .

A straightforward calculation shows that if the estimates are locally consistent with one another,
then each estimate is indeed close to the corresponding true probability. To complete the proof, we
must use the fact that H is a hitting set to show that there is always some x ∈ H that passes the
local consistency test. The local consistency test can easily be computed in small space, but that
involves reading the bits of x multiple times, so H is not immediately guaranteed to hit it.

Instead, we observe that there exists a polynomial-width ROBP that reads x and determines
whether each estimate is close to the corresponding true probability. The ROBP simply has the
true probabilities hard-coded in. There is no need to algorithmically construct that ROBP; the
mere fact that it exists implies the existence of an x ∈ H such that the estimates are all close to the
corresponding true probabilities. This readily implies that the estimates are locally consistent with
one another.

1.5.2 Techniques for Theorem 1.7

The proof of Theorem 1.7 (on deterministic samplers) uses different techniques. Let f be a constant-
width ROBP. To estimate E[f ], we attempt to work our way backward through the branching
program, computing the probabilities of acceptance from each vertex. This plan is complicated by
the fact that we only have black-box access to f . At a high level, for each layer, we use the assumed
hitting set H to approximately compute the transitions at that layer, which allows us to continue
computing the probabilities of acceptance from each vertex.

In more detail, the hitting set assists us in two different ways. First, we identify each prefix of
a string in H with the vertex that is reached when f reads the prefix. In this way we are able to
“find” all the vertices of f – or at least, all non-negligible vertices.

However, we are now effectively dealing with a width-|H| branching program, because we have a
copy of v for each string in H that leads to v. This interferes with our plan, because |H| = poly(n)
and hence we cannot afford to store the acceptance probabilities of all vertices in a single layer.
The second way we use H is to determine which of these vertices are redundant. If there is some
string in H that leads to accept from one vertex and reject from another, then the two vertices are
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not equivalent. Otherwise, the two vertices can be safely merged, because they must be two copies
of the same vertex in f – or at least, they must correspond to two very similar vertices in f . The
merging condition can be checked by making queries to f . By merging vertices, we effectively bring
the width back down to a constant.

Unfortunately, the fact that two vertices are equivalent does not imply that their outneighbors
are equivalent, so it is not immediately clear how to “merge” the outgoing edges. We show that it
suffices to retain the outgoing edges from whichever vertex has the higher acceptance probability.

1.5.3 Techniques for Theorem 5.3

Recall that to prove Theorem 5.3, we must (conditionally) construct a PRG with seed length
O(log1+α n), where α > 0 is an arbitrarily small constant. For simplicity, in this overview, we will
focus on the case α = 1/2, i.e., seed length O(log3/2 n). Recall also that we are focusing on the
constant-width case.

The starting point of the construction is the INW PRG, which ε-fools constant-width ROBPs
over the alphabet {0, 1}t with seed length O(t + log(n/ε) log n) [INW94]. (Nisan’s PRG [Nis92]
does not achieve the same optimal dependence on t.) Next, we present a reduction, showing how
to convert a PRG with moderate error into a hitting set with very small threshold (Theorem 5.4).
Hoza and Zuckerman gave a similar reduction [HZ18], but their reduction only applies to binary
ROBPs (the case t = 1). Our reduction is based on a more sophisticated variant of a key lemma in
Hoza and Zuckerman’s work [HZ18].

Applying our new reduction to the INW generator, we unconditionally obtain an improved
hitting set. The best previous hitting sets had space complexity O(t + log2 n + log(1/ε) log n)
[INW94] or O(t log n+ log2 n+ log(1/ε)) [HZ18]. Our new hitting set (Corollary 5.8) achieves the
“best of both worlds,” with space complexity O(t+ log2 n+ log(1/ε)).

The next step in the proof of Theorem 5.3 is to apply the assumption of Theorem 5.3, converting
our hitting set into a PRG. The final step is to use traditional “seed recycling” techniques to trade
the excellent dependence on ε for an improved dependence on n. Briefly, starting with a length-n
ROBP over the alphabet {0, 1}t, we first use a randomized sampler [GW97] to reduce the alphabet
size to poly(n). Then we divide our length-n ROBP of interest into blocks of length m = 2

√
logn. We

can fool each chunk to within error 1/ poly(n) using a seed of length O(log2m+ log n) = O(log n).
Using the randomized sampler again, this allows us to effectively pay O(log n) truly random bits
and reduce the length of the branching program by a factor of m. After repeating this process√

log n times, the length is reduced to a constant, and we have paid a total of O(log3/2 n) truly
random bits. (To achieve seed length O(log1+α n), we start the whole process over again and iterate
roughly 1/α times.)

1.6 Related work

We have already referenced most of the work related to this paper, such as work on derandomizing
BPP using a hitting set [ACR96, BF99, ACRT99, GVW11]. However, a few additional papers
deserve mention.

1.6.1 BPL ⊆ ZP∗L

Our derandomization of BPL given a hitting set is similar to Nisan’s unconditional proof that
BPL ⊆ ZP∗L [Nis93]. To estimate the acceptance probability of a width-n length-n ROBP f ,
Nisan, like us, interprets a string x ∈ {0, 1}poly(n) as a list of sample inputs, which he uses to
compute estimates for the probabilities of reaching each vertex of f . Nisan’s algorithm picks x
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at random, and then in a similar fashion as our algorithm, performs certain “local tests” at each
vertex to verify that the sample inputs are trustworthy. Nisan’s local tests can be computed in small
space given two-way access to x, and passing the local tests implies that the estimates are close
to the corresponding true probabilities. Our local consistency test also satisfies these properties,
and indeed, one can obtain an alternative proof that BPL ⊆ ZP∗L from our analysis. However, a
technical point is that we use fresh samples for each vertex, whereas Nisan uses one set of n-bit
sample inputs for all the vertices. This crucial distinction is how we are able to ensure the existence
of a polynomial-width ROBP that compares our estimates to the true probabilities. Unfortunately,
using fresh samples breaks Nisan’s local tests, hence our new local consistency test.

1.6.2 Deterministically simulating BPL with very low error

The current best hitting sets for polynomial-width ROBPs [BCG18, HZ18] are superior to the
best known PRGs [Nis92] when ε is very small. One might hope that by plugging in the recent
hitting sets, our reductions could provide a new unconditional deterministic algorithm for estimating
the acceptance probability of a BPL algorithm to within ±ε, with an improved space complexity
when ε is very small. Unfortunately, this idea doesn’t get off the ground, because to estimate the
acceptance probability to within ±ε, we rely on a 1

2 -hitting set for ROBPs of length poly(n/ε)
rather than an ε-hitting set for ROBPs of length n. The good news is that Ahmadinejad et al.
recently tackled this same problem with different techniques. They designed an algorithm that runs
in space O(log3/2 n+ log n log log(1/ε)) [AKM+19].

1.6.3 Using equivalences to conditionally construct PRGs

Our theorem about the limitations of this line of work (Theorem 5.3) is similar to a result by Hoza
and Umans [HU17]. Like us, Hoza and Umans showed that if PRGs are equivalent to a seemingly
weaker notion, then the equivalence itself can be used to construct a good PRG. Hoza and Umans
focused on the distinction between PRGs and non-black-box derandomization, whereas we focus
on the distinction between PRGs and hitting sets. The proofs of the two theorems rely on similar
iterative strategies, but the specific reductions are different.

1.7 Outline of this paper

In Section 3, we present our derandomization of BPL given a hitting set for polynomial-width
ROBPs. In Section 4, we present our deterministic sampler for constant-width ROBPs given a
hitting set. Finally, in Section 5, we present our theorem on the limitations of this line of work.

2 Notation

Let Un denote the uniform distribution over {0, 1}n. For two strings x, y, let x ◦ y denote the
concatenation of x with y. Suppose an ROBP f is clear from context. Let vstart denote the
start vertex of f and let vacc denote the accept vertex. If u and v are vertices, let pu→v be the
probability that a random walk starting at u reaches v. We use the shorthand p→v = pvstart→v
and pu→ = pu→vacc . We use Vi to denote the set of vertices in the i-th layer of the ROBP, where
i ∈ {0, 1, . . . , n}.
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3 Derandomizing BPL given a hitting set

In this section, we show that the acceptance probability of an arbitrary polynomial width ROBP
can be approximated within a small bias in small space, given a certain hitting set. Theorem 1.3
will follow from this.

Theorem 3.1. Assume there is a 1
2 -hitting set H for width-w′ length-n′ ROBPs that can be computed

in space s. Then the acceptance probability of a given width-w length-n ROBP f can be approximated
within a bias ±ε, in space O(s+ log wn

ε ).

Here w′ =
⌈
9w

3n2 log(wn)
ε2

⌉
, n′ =

⌈
5w

3n4 log(wn)
ε2

⌉
.

Strictly speaking, Theorem 3.1 ought to be phrased in terms of families of ROBPs, to make
the space bounds meaningful. That is, we assume there is an algorithm that constructs a 1

2 -hitting
set for width-w length-n ROBPs, given w and n as inputs, running in space s(w, n). Then given
inputs f, ε, Theorem 4.1 should be understood to say that we can estimate E[f ] to within ±ε in
space O(s(w′, n′) + log(wn/ε)).

We are most interested in the case that ε is a small constant, but we remark that when ε is
very small, the parameters of Theorem 3.1 could be improved by applying the recent amplification
technique by Ahmadinejad et al. [AKM+19].

We first give the derandomization and then give the analysis.

3.1 Derandomization based on a local consistency test

For x ∈ {0, 1}n′ , we interpret it as a concatenation of wn segments. For each i ∈ [n] and each v ∈ Vi,
there is a segment corresponding to v consisting of a concatenation of t sample strings of length
i, where t is a power of two satisfying t ≥ 4(wnε )2 log(wn). Let p̂→v(x) be the fraction of strings
that lead to v from the start vertex, among these t sample strings for v. When x is clear, we simply
denote it as p̂→v. Also, for v ∈ V0, we let p̂→v = 1 if v = vstart and p̂→v = 0 otherwise.

The derandomization conducts a local consistency test Test : {0, 1}n′ → {0, 1} for every x ∈ H
as follows. For all i ∈ [n], for all v ∈ Vi, check if∣∣∣∣∣∣p̂→v −

 ∑
u∈Vi−1

p̂→u · pu→v

∣∣∣∣∣∣ ≤
1 +

∑
u∈Vi−1

pu→v

 ε′, (1)

where ε′ = ε
2wn . If x passes the checks for all v, then Test(x) = 1, otherwise it is 0.

Finally we find an x ∈ H that passes Test, and output p̂→vacc(x) as the approximation of E[f ].

3.2 Analysis

We now define the “sample verification” function f ′ of f . For each x ∈ {0, 1}n′ , we set f ′(x) = 1 if
and only if for every vertex v in f ,

|p̂→v − p→v| ≤ ε′. (2)

Lemma 3.2. f ′ can be computed by a width-w′ length-n′ ROBP.

Proof. For each vertex v of f , we construct an ROBP f ′v which simulates f on each sample string and
counts how many lead to v. It stores a state of f and a counter value, for a total width of w · (t+ 1)
and a total length i · t. f ′v accepts if and only if the counter value is in [p→vt− ε

2wn t, p→vt+ ε
2wn t].

To construct f ′, we take the conjunction of f ′v, over all v in f . Note that this is a conjunction of
ROBPs over disjoint variables. So we can easily see that f ′ can be computed by an ROBP with

width at most w(t+ 1) + 1 ≤
⌈
9w

3n2 log(wn)
ε2

⌉
, length at most tw

∑n
i=1 i ≤

⌈
5w

3n4 log(wn)
ε2

⌉
.
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Lemma 3.3. The acceptance probability of f ′ is at least 1
2 .

Proof. By the construction of f ′, for each v of f , there are t uniform random samples. For each
sample string, the probability that it leads to v from vstart in f is p→v. Hence the expected number
of samples leading to v from vstart is p→vt. So by Hoeffding’s inequality, Pr[|p̂→vt− p→vt| ≥ ε

2wn t] ≤
2 · 2−2 log(wn) ≤ 2

(wn)2
. There are wn vertices that need to be tested in f . (For v ∈ V0, the estimate

p̂→v is always exactly correct.) Thus by a union bound,

Pr
[
∀v, |p̂→v − p→v| ≤

ε

2wn

]
≥ 1− 2

wn
.

This is at least 1
2 when considering n to be at least some large enough constant. So by the definition

of f ′, its acceptance probability is at least 1
2 .

Lemma 3.4. For every x ∈ {0, 1}n′, if f ′(x) = 1 then Test(x) = 1.

Proof. For every i ∈ [n], every v ∈ Vi,

p→v =
∑

u∈Vi−1

p→upu→v, (3)

by the structure of ROBP. So

∣∣∣∣∣∣p̂→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣ =

∣∣∣∣∣∣p̂→v − p→v + p→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣
=

∣∣∣∣∣∣p̂→v − p→v +
∑

u∈Vi−1

p→upu→v −
∑

u∈Vi−1

p̂→upu→v

∣∣∣∣∣∣ (Equation (3))

≤ |p̂→v − p→v|+
∑

u∈Vi−1

|p→u − p̂→u| pu→v (Triangle Inequality)

≤

1 +
∑

u∈Vi−1

pu→v

 ε′. (Equation (2))

Lemma 3.5. For every x ∈ {0, 1}n′, if Test(x) = 1 then |p̂→vacc − p→vacc | ≤ ε.

Proof. We use induction to show that for the i-th layer of f ,∑
v∈Vi

|p̂→v − p→v| ≤ 2wiε′.

For the base case, when i = 0, it’s trivially true since we set p̂→v = p→v for each v ∈ V0. For the

10



induction case, assume the hypothesis is true for layer i. Consider layer i+ 1.∑
v∈Vi+1

|p̂→v − p→v|

=
∑

v∈Vi+1

∣∣∣∣∣∣p̂→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣∣ (Equation (3))

=
∑

v∈Vi+1

∣∣∣∣∣∣p̂→v −
∑
u∈Vi

p̂→upu→v +
∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣∣
≤
∑

v∈Vi+1

∣∣∣∣∣∣p̂→v −
∑
u∈Vi

p̂→upu→v

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
u∈Vi

p̂→upu→v −
∑
u∈Vi

p→upu→v

∣∣∣∣∣∣
 (Triangle Inequality)

≤
∑

v∈Vi+1

∣∣∣∣∣∣p̂→v −
∑
u∈Vi

p̂→upu→v

∣∣∣∣∣∣+
∑

v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u| (Triangle Inequality)

≤
∑

v∈Vi+1

1 +
∑
u∈Vi

pu→v

 ε′ +
∑

v∈Vi+1

∑
u∈Vi

pu→v |p̂→u − p→u| (Test(x) = 1)

=2wε′ +
∑
u∈Vi

|p̂→u − p→u| (4)

≤2wε′ + 2wiε′ (Induction hypothesis)

=2w · (i+ 1) · ε′.

Here Equation (4) is due to structures of ROBPs. Note that∑
v∈Vi+1

∑
u∈Vi

pu→v =
∑
u∈Vi

∑
v∈Vi+1

pu→v = w,

since for every pair (u, v), pu→v appears and only appears once in the summation. Also due to the
same reasoning,∑

v∈Vi+1

∑
u∈Vi

pu→v|p̂→u − p→u| =
∑
u∈Vi

∑
v∈Vi+1

pu→v|p̂→u − p→u| =
∑
u∈Vi

|p̂→u − p→u|.

As a result, for the last layer,

|p̂→vacc − p→vacc | ≤
∑
v∈Vn

|p̂→v − p→v| ≤ 2wnε′ = ε.

Lemma 3.6. The derandomization is in space O(s+ log wn
ε ).

Proof. Since H is computable in space s, for every x ∈ H we can output any specified bit of it in
space O(s+ log n′). So when considering the space for computing Test(x) and p̂→v(x), we can just
regard x as an input string and only consider working space.

Given vertex v in f , we first consider the space for computing p̂→v. By the definition of p̂→v,
we can locate the starting position of the t samples for v, taking space O(log wn

ε ). From there, we
read the t samples one by one. For each sample, we run f from vstart to the layer of v to test if the

11



sample leads to v. We use a counter c to record the number of samples leading to v. Then compute
p̂→v as c/t. Since t is a power of two, we can store this number exactly, with no rounding errors. So
this step takes space O(log(wn)) +O(log t) = O(log wn

ε ). Thus the whole computation is in space
O(log wn

ε ).
Next we consider Test. By the definition of Test, for every i ∈ [n], for each vertex v ∈ Vi, we

only need to compute p̂→v,
∑

u∈Vi−1
p̂→u · pu→v and then test the inequality (1). This again takes

space O(log wn
ε ). Note that computing Test(x) requires two-way access to x.

So the overall space of the derandomization is O(s+ log wn
ε ).

Proof of Theorem 3.1. Given a width-w length-n ROBP f , by Lemma 3.2, the function f ′ can be
computed by a width-w′ length-n′ ROBP. By Lemma 3.3, the acceptance probability of f ′ is at least
1/2. Since H is a 1

2 -hitting set for width-w′ length-n′ ROBPs, there exists x ∈ H s.t. f ′(x) = 1. So
by Lemma 3.4, there is an x ∈ H s.t. Test(x) = 1. Hence we can exhaustively search though H to
find an x which passes Test. Further, by Lemma 3.5, for this x, | p̂→vacc − p→vacc | ≤ ε. This shows
the derandomization outputs the desired approximation for p→vacc .

By Lemma 3.6, the derandomization can be done in space O(s+ log wn
ε ).

Theorem 1.3 is directly implied from Theorem 3.1. The proof is straightforward by applying the
well known transformation between logspace computations and ROBPs.

4 Deterministic samplers for constant-width ROBPs

In this section, we will show how to use hitting sets to construct deterministic samplers for constant-
width ROBPs, thereby proving Theorem 1.7. Most of the work will go toward establishing the
following reduction, which is meaningful even for slightly super-constant width.

Theorem 4.1. Let w, n ∈ N and let ε > 0. Assume there is an ( ε
2n)-hitting set H for width-(

(
w
2

)
+1)

length-n ROBPs computable in space s. Then there is a deterministic ε-sampler for width-w length-n
ROBPs that runs in space O(s+ w log(n/ε)).

Like Theorem 3.1, Theorem 4.1 technically ought to be phrased in terms of families of ROBPs.
We should also clarify the model of space-bounded oracle algorithm. We assume that the sampler
has write-only access to a “query tape” where it can write down an n-bit query string (the query
string does not count against the sampler’s space complexity). The sampler can then enter a special
“query” state, which returns the result of the query into the algorithm’s state and clears the query
tape. This simple model was perhaps first studied by Ladner and Lynch [LL76].

4.1 Setting up the reduction

Toward proving Theorem 4.1, we begin by setting up some notation. For any ROBP f and a string
x ∈ {0, 1}≤n, let vf (x) be the vertex reached when f reads x. Furthermore, define

pf (x) = E[f(x ◦ Un−|x|)],

i.e., pf (x) = pvf (x)→.

Now, let H ⊆ {0, 1}n be an εH -hitting set for width-(
(
w
2

)
+ 1) ROBPs. For i ≤ n, let Hi be the

set of i-bit prefixes of strings in H, i.e., Hi = {x1x2 . . . xi : x ∈ H}. One can verify that Hi is an
εH -hitting set for width-(

(
w
2

)
+ 1) length-i ROBPs.
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Let f be the width-w ROBP to which we have oracle access. Let λ denote the empty string.
Our goal is to estimate pf (λ). For each i ≤ n, define an equivalence relation ∼ on {0, 1}i by the rule

x ∼ y ⇐⇒ ∀z ∈ Hn−i, f(x ◦ z) = f(y ◦ z).

Lemma 4.2. If x ∼ y, then |pf (x)− pf (y)| < εH .

Proof. Let i = |x| = |y|. Define g : {0, 1}n−i → {0, 1} by

g(z) = f(x ◦ z)⊕ f(y ◦ z).

The function g(z) can be computed by an ROBP of width
(
w
2

)
+ 1: we have one state in g for

each unordered pair of states in f to run the computations f(x ◦ z), f(y ◦ z) in parallel, along with
one additional ⊥ state in g to indicate that the two computations converged to the same state. If
|pf (x)− pf (y)| ≥ εH , then Hn−i hits g, hence x 6∼ y.

Let [x] denote the equivalence class of x, so [x] ⊆ {0, 1}|x|. Our deterministic sampler will be
based on numbers p̃f ([x]) ∈ [0, 1] for each equivalence class [x]. The definition of p̃f will ensure that
p̃f ([x]) ≈ pf (x) for typical values of x, although there might be some anomalous values of x where
p̃f ([x]) 6≈ pf (x).

The definition of p̃f ([x]) is inductive. For the base case, when x ∈ {0, 1}n, define p̃f ([x]) = f(x).
This is well-defined, because x ∼ y =⇒ f(x) = f(y). For the inductive step, suppose x ∈ {0, 1}i
with i < n. Define

p̃f ([x]) = max
x′∈Hi∩[x]

(
1

2
p̃f ([x′ ◦ 0]) +

1

2
p̃f ([x′ ◦ 1])

)
, (5)

with the convention that p̃f ([x]) = 0 if Hi ∩ [x] = ∅. Our sampler will output3 p̃f ([λ]). (In
Section 4.3, we will explain in more detail how to efficiently compute p̃f ([λ]).)

4.2 Correctness

The upper bound on p̃f ([x]) is straightforward:

Claim 4.3. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≤ pf (x) + iεH .

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) = pf (x). For the
inductive step i > 0, we consider two cases. If Hi ∩ [x] = ∅, then p̃f ([x]) = 0 and the claim is trivial.
Otherwise, there is some x′ ∈ Hi ∩ [x] such that

p̃f ([x]) =
1

2
p̃f ([x′ ◦ 0]) +

1

2
p̃f ([x′ ◦ 1]) (Equation (5))

≤ 1

2
pf (x′ ◦ 0) +

1

2
pf (x′ ◦ 1) + (i− 1)εH (Induction)

= pf (x′) + (i− 1)εH

< pf (x) + iεH (Lemma 4.2.)

3Actually the sampler’s output differs slightly from p̃f ([λ]) due to rounding errors.
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The lower bound is a little more subtle. If u is a vertex in layer i of f , we say that u is
H-reachable if there is some x ∈ Hi with vf (x) = u. Otherwise, we say that u is H-unreachable.

Let f̃ be a width-(w + 1) ROBP obtained from f by replacing all H-unreachable nodes with reject
nodes.4

Claim 4.4. For every i, for every x ∈ {0, 1}n−i,

p̃f ([x]) ≥ p
f̃
(x).

Proof. We proceed by induction on i. In the base case i = 0, p̃f ([x]) = f(x) ≥ f̃(x) = p
f̃
(x). For

the inductive step i > 0, we consider two cases. If f visits some H-unreachable node when it reads
x, then p

f̃
(x) = 0 and the claim is trivial. Therefore, assume that when f reads x, every node

visited is H-reachable. Then there is some x′ ∈ Hn−i such that vf (x) = vf (x′). Of course when f
reads x′, every node visited is H-reachable, so

v
f̃
(x′) = vf (x′) = vf (x) = v

f̃
(x).

Therefore,

p
f̃
(x) = p

f̃
(x′)

=
1

2
p
f̃
(x′ ◦ 0) +

1

2
p
f̃
(x′ ◦ 1)

≤ 1

2
p̃f ([x′ ◦ 0]) +

1

2
p̃f ([x′ ◦ 1]) (Induction)

≤ p̃f (x) (Equation (5)).

(The last inequality uses the fact that vf (x) = vf (x′) and hence x ∼ x′.)

Corollary 4.5. |p̃f ([λ])− E[f ]| ≤ n · εH .

Proof. By Claim 4.3,
p̃f ([λ]) ≤ pf (λ) + n · εH = E[f ] + n · εH .

In the other direction, by Claim 4.4,

p̃f ([λ]) ≥ p
f̃
(λ) = E[f̃ ].

Define g : {0, 1}n → {0, 1} by

g(x) = 1 ⇐⇒ when f reads x, an H-unreachable node is visited.

Then g can be computed by a width-(w + 1) ROBP by a construction very similar to that of f̃ . By
construction, g rejects every string in H. Therefore, E[g] < εH . Furthermore, g(x) = 0 =⇒ f(x) =
f̃(x). Therefore, |E[f̃ ]− E[f ]| < εH , so p̃f ([λ]) > E[f ]− εH .

4More precisely, add an extra node to each layer labeled ⊥. In layers prior to the final layer, both outgoing edges
from ⊥ lead to ⊥, and both outgoing edges from H-unreachable nodes lead to ⊥. In the final layer, H-unreachable
nodes and ⊥ are reject nodes.
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4.3 Efficiently computing p̃f ([λ])

To complete the proof of Theorem 4.1, we just need to show how to efficiently compute p̃f ([λ]).
This is fairly straightforward from the definitions; the details follow.

Proof of Theorem 4.1. Say a string x ∈ Hi is a representative if it is the lexicographically first
element of [x]∩Hi. Let x(i,1), x(i,2), . . . be an enumeration of the representatives in Hi in lexicographic
order. Given i, j, and oracle access to f , one can compute x(i,j) in space O(s).

Our sampler works its way backward through the branching program, starting at layer n and
ending with layer 0. The sampler stores data about layer i and uses it when processing layer i− 1.
Specifically, the data stored regarding layer i consists of a list of numbers pi,1, pi,2, . . . , with the
interpretation pi,j = p̃f ([x(i,j)]), or rather pi,j ≈ p̃f ([x(i,j)]) due to rounding error.

For layer n, we can compute this value exactly by setting pi,j = f(x(i,j)). Given these values for
layer i+ 1, we compute pi,j by the rule

pi,j := max
x′∈Hi∩[x(i,j)]

x(i+1,j0)∼x′◦0
x(i+1,j1)∼x′◦1

(
1

2
pi+1,j0 +

1

2
pi+1,j1

)
, (6)

with the convention pi,j = 0 if there is no suitable triple (x′, j0, j1).
The sampler performs the arithmetic in Equation (6) to within dlog(2n/ε)e bits of precision. This

ensures that the rounding error is not too large in each step; by induction, |pi,j− p̃f ([x(i,j)])| ≤ ε(n−i)
2n .

The sampler outputs p0,1, which is within ε of E[f ] by Corollary 4.5, since εH = ε
2n .

The number of vertices in each layer of f is at most w, so the number of equivalence classes in
{0, 1}i is also at most w. Therefore, there are at most w representatives in Hi, and hence there are
only w numbers pi,j being stored for each layer. Storing those numbers for the layer currently being
processed and the layer most recently processed takes O(w log(n/ε)) bits of space, so overall, the
space complexity of the sampler is O(s+ w log(n/ε)) as claimed.

Interestingly, the sampler of Theorem 4.1 can be implemented to be non-adaptive, because it
only queries f at strings of the form x ◦ y or x ◦ b ◦ z, where x ∈ Hi, y ∈ Hn−i, b ∈ {0, 1}, and
z ∈ Hn−i−1.

4.4 Applying the reduction

Proof of Theorem 1.8. Hoza and Zuckerman constructed an
(
ε

2n

)
-hitting set H even for polynomial -

width ROBPs that can be computed in space O(log2 n+ log(1/ε)) [HZ18]. Combining this result
with Theorem 4.1 immediately proves Theorem 1.8.

To prove Theorem 1.7, we must first amplify the assumed 1
2 -hitting set to get an

(
ε

2n

)
-hitting

set. This is straightforward, although we must pay a small penalty in terms of width, length, and
cardinality.

Lemma 4.6. Suppose H is a 1
2 -hitting set for width-(w + 1) length-(nm) ROBPs. Divide each

string x ∈ H into blocks of length n, x = x(1) ◦ x(2) ◦ · · · ◦ x(m). Let H ′ = {x(i) : x ∈ H, i ∈ [m]}.
Then H ′ is a ( 1

m)-hitting set for width-w length-n ROBPs.

Proof. Let f be a width-w length-n ROBP with E[f ] ≥ 1/m. Define g : ({0, 1}n)m → {0, 1} by

g(x(1) ◦ · · · ◦ x(m)) =
∨
i∈[m]

f(x(i)).
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Then g can be computed by a width-(w + 1) ROBP. Furthermore,

E[g] = 1− (1− E[f ])m ≥ 1−
(

1− 1

m

)m
>

1

2
.

Therefore, H hits g, hence H ′ hits f .

Proof of Theorem 1.7. Combine Lemma 4.6 with Theorem 4.1.

5 Negative result: A barrier for upgrading hitting sets to PRGs

To directly compare hitting sets and PRGs, it is convenient to address the strings in the hitting set
using a hitting set generator (HSG).

Definition 5.1. An ε-HSG for F is a function G : {0, 1}s → {0, 1}n such that G({0, 1}s) is an
ε-hitting set for F .

In our theorem statements so far, we have been somewhat informal with the distinction between
an individual generator vs. a family of generators. Since our negative result is more “meta” than
our other results, we will make a precise definition for clarity’s sake.

Definition 5.2. Let s(n, t, ε) be a space-constructible5 function. An explicit PRG (HSG) family
for width-w large-alphabet ROBPs with seed length s is a uniform algorithm G that takes as input
the parameters n, t, ε and a string y ∈ {0, 1}s(n,t,ε) and outputs a string Gn,t,ε(y) ∈ {0, 1}tn. The
algorithm runs in space O(s(n, t, ε)), and for each fixed n, t, ε, we require that Gn,t,ε is an ε-PRG
(ε-HSG) for width-w length-n ROBPs over the alphabet {0, 1}t.

The assumption of Theorem 5.3 says that hitting sets can be upgraded into PRGs with essentially
no loss: the width parameter remains the same, and the seed length only increases by a constant
factor, for any arbitrary setting of n, t, ε. This is only for simplicity’s sake. The proof would still go
through even if the parameters deteriorated a little when moving from hitting sets to PRGs.

Theorem 5.3. Let w be a constant. Assume that for every s(n, t, ε), if there exists an explicit
HSG family for width-w large-alphabet ROBPs with seed length s, then there exists an explicit PRG
family for width-w large-alphabet ROBPs with seed length O(s). Then for every constant α > 0,
there exists an explicit PRG family for width-w ROBPs with seed length

O(t+ log(n/ε) logα n).

5.1 From PRGs with moderate error to HSGs with tiny threshold

As outlined in Section 1.5.3, the proof of Theorem 5.3 is based on two reductions. For the first
reduction, we show how to convert any PRG with inverse polynomial error into an ε-HSG for any ε.
In the regime n ≥ w, our reduction is a generalization of Hoza and Zuckerman’s reduction [HZ18]
to the large-alphabet case t� 1.

Theorem 5.4. Let w, n, t ∈ N and let ε > 0. Assume there is a ( 1
2w3n2 )-PRG G for width-w

length-n ROBPs over the alphabet {0, 1}t, with seed length and space complexity bounded by s. Then
there is an ε-hitting set H for width-w length-n ROBPs over the alphabet {0, 1}t, computable in
space O(s+ t+ log(wn/ε)).

(Just like Theorems 3.1 and 4.1, Theorem 5.4 technically ought to be phrased in terms of families
of ROBPs.)

5I.e., given n, t, ε, the value s(n, t, ε) can be computed in space O(s(n, t, ε)).
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5.1.1 Construction of the hitting set H

Our hitting set H relies on a hitting set Hrect for combinatorial rectangles [LLSZ97]. Recall that a
combinatorial rectangle over alphabet Γ of dimension r is a function g : Γr → {0, 1} of the form
g(x1, . . . , xr) = g1(x1) ∧ · · · ∧ gr(xr). Without loss of generality, assume ε < 1

w2n2 and s ≥ t. The
algorithm to enumerate H is as follows.

1. For all r ∈
{

1, 2, . . . ,
⌊

log(1/ε)
log(wn)

⌋}
:

(a) Let Hrect ⊆ ({0, 1}s)2r−1 be an ε4-hitting set for combinatorial rectangles over alphabet
{0, 1}s of dimension 2r − 1.

(b) For all sequences (x1, y1, x2, y2, . . . , xr−1, yr−1, xr) ∈ Hrect and for all sequences of non-
negative integers (n1, . . . , nr) satisfying n1 + n2 + · · ·+ nr = n− r, output the (nt)-bit
string

(G(x1)|n1t) ◦ (y1|t) ◦ (G(x2)|n2t) ◦ (y2|t) ◦ · · · ◦ (yr−1|t) ◦ (G(xr)|nrt). (7)

In Equation (7), the notation y|t denotes the t-bit prefix of the bitstring y. The key difference
between our construction and Hoza and Zuckerman’s original hitting set construction [HZ18] is the
presence of the strings yi, which do not pass through the PRG G.

5.1.2 Proof of correctness

Hoza and Zuckerman’s reduction was based on a simple structural lemma for ROBPs [HZ18, Lemma
1]. Toward proving the correctness of H, we will now prove a new variant of that lemma, applicable
to ROBPs over a large alphabet. For two vertices u, v in an ROBP f , write u v if there is an
edge from u to v. Let  ∗ be the reflexive transitive closure of  , i.e., u ∗ v if u = v or there is a
path from u to v.

The way to think about Lemma 5.5 is to suppose that one is choosing a route from u to vacc.
Lemma 5.5 suggests two vertices v  u′ that one could visit on the way. Item 2 says that it is not
difficult to find v. Item 3 says that if one can make it to u′, it will be quite a bit easier to find vacc

from there. Item 4 says that overall, visiting v and u′ is only a mild detour.
In general, in any ROBP over the alphabet Σ, if v  u′, then pv→u′ ≥ 1/|Σ|. In Hoza and

Zuckerman’s lemma [HZ18, Lemma 1], they assume Σ = {0, 1}, and they use the fact that therefore
pv→u′ ≥ Ω(1). At a high level, the reason we need a new structural lemma is that if Σ is large, pv→u′

might be small. Indeed, observe that Lemma 5.5 does not guarantee any lower bound on pv→u′ .

Lemma 5.5. Let f be a width-w, length-n ROBP over any alphabet. Let u be a vertex in f , and
assume 0 < pu→ ≤ 1

wn . Then there is a pair of vertices (v, u′) in f such that:

1. u ∗ v  u′.

2. pu→v ≥ 1
w3n2 .

3. pu′→ ≥ wn · pu→.

4. pu→v · pv→u′ · pu′→ ≥ pu→
w2n

.

Proof. Suppose some pair (v, u′) satisfies Item 1, but it violates Item 4. For such a pair, if we take
a random walk from u, the probability that we visit v, u′, and vacc is less than pu→

w2n
. The number of

such pairs is at most w2n, so by the union bound, when we start at u and read random bits, the
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probability that we visit any such pair and vacc is less than pu→. Therefore, there is some path from
u to vacc that never visits such a pair.

Let u′ be the first vertex along that path that satisfies Item 3. (Such a u′ exists, because if
nothing else we can let u′ = vacc.) Let v be the vertex immediately preceding u′ in the path. (This
makes sense, because pu→ < wn · pu→, so u′ 6= u.) This pair clearly satisfies Items 1, 3 and 4; all
that remains is to verify Item 2. Indeed,

pu→
pu→v

≤ w2n · pv→u′ · pu′→ (Item 4)

≤ w2n · pv→
< w2n · wn · pu→,

where the last inequality holds because u′ is the first vertex in the path satisfying Item 3, and v
precedes u′, so v must not satisfy Item 3. Rearranging completes the proof.

Corollary 5.6. Let 0 < ε ≤ 1
wn . Let f be a width-w, length-n ROBP over any alphabet with

E[f ] ≥ ε. Then there is a sequence of vertices

vstart = u1  
∗ v1  u2  

∗ v2  · · · ur  
∗ vr = vacc

such that:

1. For every i, pui→vi ≥ 1
w3n2 .

2. r ≤ log(1/ε)
log(wn) .

3. pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥ ε3.

Proof. We define the sequence inductively, starting with u1 = vstart. Assume we’ve defined
u1, v1, u2, v2, . . . , ui. If pui→ ≥ 1

w3n2 , then set r = i, set vi = vacc, and terminate the sequence.
Otherwise, let (vi, ui+1) be the vertices provided by plugging u = ui into Lemma 5.5.

Item 1 of Lemma 5.5 implies that ui  ∗ vi and vi  ui+1. Item 1 is guaranteed by Item 2 of
Lemma 5.5 and the termination condition. By Item 3 of Lemma 5.5, pui+1→ ≥ wn · pui→, which
implies Item 2. Finally, iteratively applying Item 4 of Lemma 5.5 shows that

pu1→v1 · pv1→u2 · pu2→v2 · · · pvr−1→ur · pur→vr ≥
pu1→

(w2n)r
≥ ε3,

i.e., Item 3 holds.

We are now ready to complete the proof of correctness of our hitting set H.

Claim 5.7. If f is a width-w length-n ROBP over the alphabet {0, 1}t with E[f ] ≥ ε, then
f−1(1) ∩H 6= ∅.

Proof. Let u1  ∗ v1  · · ·  ur  ∗ vr be the sequence of vertices guaranteed by Corollary 5.6.
Let ni be the distance from ui to vi. Let g : ({0, 1}s)2r−1 → {0, 1} be the following combinatorial
rectangle:

g(x1, y1, x2, y2, . . . , xr−1, yr−1, xr) = 1 ⇐⇒
∀i ∈ [r], G(xi)|nit leads from ui to vi and ∀i ∈ [r − 1], yi|t leads from vi to ui+1.
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By Item 1 of Corollary 5.6, pui→vi ≥ 1
w3n2 . Since G has error 1

2w3n2 ,

Pr[G(U) leads from ui to vi] ≥
1

2
pui→vi .

Therefore, by Item 3 of Corollary 5.6, E[g] ≥ ε3 · 2−r ≥ ε4. Therefore, there is some sequence
(x1, y1, . . . , yr−1, xr) ∈ Hrect that hits g. By construction, the corresponding element of H is accepted
by f .

5.1.3 Efficiency

Proof of Theorem 5.4. To complete the proof of Theorem 5.4, let us analyze the space complexity
of H. The number r can be stored using O(log log(1/ε)) bits of space. Using a construction by
Linial, Luby, Saks, and Zuckerman [LLSZ97], because of our chosen value of r, we can enumerate
Hrect in space O(s + log(1/ε)). The integers n1, . . . , nr can be straightforwardly stored using
O(r log n) = O(log(1/ε)) bits of space. Thus, overall, the space complexity is O(s + log(1/ε)).
(Recall that we assumed without loss of generality that ε < 1

w2n2 and s ≥ t.)

5.2 Application: Unconditional improved hitting sets for large-alphabet ROBPs

As outlined in Section 1.5.3, plugging the class INW generator [INW94] into the reduction of
Theorem 5.4 already gives something interesting: an improved hitting set for large-alphabet ROBPs,
even of polynomial width.

Corollary 5.8. Let w, n, t ∈ N and let ε > 0. There is an ε-hitting set H for width-w length-n
ROBPs over the alphabet {0, 1}t, computable in space O(t+ log(wn) log n+ log(1/ε)).

5.3 Trading a good dependence on ε for a good dependence on n

Recall that to prove Theorem 5.3, we must (conditionally) construct a PRG with a good dependence
on n. So far, unconditionally, Theorem 5.4 has provided us with an HSG with a good dependence
on ε. The assumption of Theorem 5.3 allows us to convert that HSG into a PRG with the same seed
length, O(t+ log2 n+ log(1/ε)) (for width w, a constant). In this section, we show how to convert
that PRG into another PRG with seed length O(t+ log3/2 n+ log(1/ε)

√
log n), i.e., we improve the

dependence on n at the expense of a worse dependence on ε. That follows from setting α = 1/2 in
the following more general reduction.

Lemma 5.9. Let α ∈ (0, 1) be a constant. Let w, n, t ∈ N and ε > 0. Define m =
⌈
2(logn)1−α

⌉
and

d = dC log(n/ε)e, where C is an appropriate constant. Assume there is an ( ε
4n)-PRG G for width-w

length-m ROBPs over the alphabet {0, 1}d with seed length and space complexity bounded by s. Then
there is an ε-PRG G′ for width-w length-n ROBPs over the alphabet {0, 1}t with seed length and
space complexity O(t+ s · logα n+ log(wn/ε)).

As usual, Lemma 5.9 should technically be phrased in terms of families of ROBPs. As suggested
in Section 1.5.3, the proof of Lemma 5.9 is not particularly novel. It is an application of traditional
seed-recycling techniques, similar to classic constructions of PRGs for space-bounded computation
[Nis92, INW94, NZ96]. Our construction and analysis are especially similar to Armoni’s work
[Arm98].

One difference is that we use randomized samplers rather than extractors for convenience; in
this respect, our construction is similar to a variant of the INW generator [INW94] described by
Braverman, Cohen, and Garg [BCG18] as a warm-up to their main construction. In particular, we
rely on the following randomized sampler by Goldreich and Wigderson [GW97].
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Theorem 5.10 ([GW97, Lemma 6.6]). For all t ∈ N, δ > 0, there exists a function Samp : {0, 1}t×
{0, 1}O(log(1/δ)) → {0, 1}t such that for any6 function f : {0, 1}t → [0, 1],

Pr
x

[∣∣∣∣Ey [f(Samp(x, y))]− E[f ]

∣∣∣∣ ≤ δ] ≥ 1− δ.

Furthermore, given t, δ, x, y as inputs, Samp(x, y) can be computed in space O(t).

We will recursively use the following basic PRG, which stretches t+ dn bits to tn bits. It might
be helpful to think of the case t = 100d.

Lemma 5.11. Let t, δ be arbitrary, and let Samp : {0, 1}t × {0, 1}d → {0, 1}t be the randomized
sampler of Theorem 5.10. Define G0 : {0, 1}t × ({0, 1}d)n → ({0, 1}t)n by

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

Then G0 fools width-w length-n ROBPs over the alphabet {0, 1}t with error δw2n.

The proof of Lemma 5.11 is straightforward, and we omit it. When reading the proof of
Lemma 5.9, it might be helpful to keep in mind that all “x” variables are strings of length t, all “y”
variables are strings of length s, and all “z” variables are strings of length d.

Proof of Lemma 5.9. Define ni = n/mi. For simplicity, we ignore rounding issues, i.e., we assume
that ni is an integer and that m = 2(logn)1−α exactly. Let δ = ε

4w2n
, and let d = O(log(wn/ε)) be

the length of the second input to the function Samp of Theorem 5.10. We will recursively define a
sequence of PRGs

Gi : {0, 1}t × ({0, 1}s)i × ({0, 1}d)ni → ({0, 1}t)n.

The base case i = 0 is the basic PRG of Lemma 5.11:

G0(x, z1 ◦ · · · ◦ zn) = Samp(x, z1) ◦ · · · ◦ Samp(x, zn).

For the inductive step i > 0, we define7

Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni) = Gi−1(x, y1 ◦ · · · ◦ yi−1, G(Samp(yi, z1)) ◦ · · · ◦G(Samp(yi, zni))),

where G is the given PRG. To analyze these generators, let f be a width-w length-n ROBP over
the alphabet {0, 1}t. For each i and each fixing of x, y1, . . . , yi, define

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))
h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1

) = f(Gi(x, y1 ◦ · · · ◦ yi, G(y′1) ◦ · · · ◦G(y′ni+1
)).

These functions are related to one another by the rules

h(x,y1,...,yi)(y′1 ◦ · · · ◦ y′ni+1
) = g(x,y1,...,yi)(G(y′1) ◦ · · · ◦G(y′ni+1

)) (8)

g(x,y1,...,yi)(z1 ◦ · · · ◦ zni) = hx,y1,...,yi−1(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni)). (9)

6Goldreich and Wigderson analyze the case that f is {0, 1}-valued, but the [0, 1]-valued case automatically follows
with only a quadratic loss in δ.

7Note that strictly speaking, we are using two instantiations of Samp. In the base case, Samp has output length t,
whereas in the inductive step, Samp has output length s. Hopefully, using the same name Samp for both samplers will
not cause confusion.
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This shows by induction on i that each g function can be computed by a width-w ROBP over
the alphabet {0, 1}d and each h function can be computed by a width-w ROBP over the alphabet
{0, 1}s.

Let us now show by induction on i that Gi fools f with error (δw2 + εG) ·
∑i

j=0 nj , where εG is
the error of G. The base case i = 0 is already established by Lemma 5.11. For the inductive step,
we have

E
x

y1,...,yi
z1,...,zni

[f(Gi(x, y1 ◦ · · · ◦ yi, z1 ◦ · · · ◦ zni))]

= E
x

y1,...,yi
z1,...,zni

[g(x,y1,...,yi)(z1 ◦ · · · ◦ zni)]

= E
x

y1,...,yi
z1,...,zni

[h(x,y1,...,yi−1)(Samp(yi, z1) ◦ · · · ◦ Samp(yi, zni))] (Equation (9))

≤ E
x

y1,...,yi−1

y′1,...,y
′
ni

[h(x,y1,...,yi−1)(y′1 ◦ · · · ◦ y′ni)] + δw2ni (Lemma 5.11)

= E
x

y1,...,yi−1

y′1,...,y
′
ni

[g(x,y1,...,yi−1)(G(y′1) ◦ · · · ◦G(y′ni))] + δw2ni (Equation (8))

≤ E
x

y1,...,yi−1
z1,...,zni−1

[g(x,y1,...,yi−1)(z1 ◦ · · · ◦ zni−1)] + (δw2 + εG) · ni

= E
x

y1,...,yi−1
z1,...,zni−1

[f(Gi−1(x, y1 ◦ · · · ◦ yi−1, z1 ◦ · · · ◦ zni−1))] + (δw2 + εG) · ni.

The lower bound follows the same argument. Let r = logα n and G′ = Gr. Then G′ fools f with
error

(δw2 + εG) ·
r∑
i=0

ni ≤ (δw2 + εG) · n ·
∞∑
i=0

m−i ≤ 2n · (δw2 + εG) ≤ ε.

Furthermore, the seed length of G′ is t+ rs+ d as claimed, and the space complexity of G′ is clearly
also O(t+ rs+ d).

5.4 Putting things together to prove Theorem 5.3

Proof of Theorem 5.3. We will show by induction on a that for each constant a ∈ N, there is an
explicit PRG family for width-w ROBPs with seed length O(t+ log(n/ε) log1/a n). The base case
a = 1 holds unconditionally – this is the seed length of the classic INW generator [INW94].

For the inductive step, suppose a > 1. Let t, n, ε be arbitrary; we will construct an ε-PRG
for width-w length-n ROBPs over the alphabet {0, 1}t. Define α = 1/a. Let m = 2(logn)1−α and
d = C log(n/ε), as in Lemma 5.9.

By induction, there is a ( 1
2w3m2 )-PRG G for width-w length-m ROBPs over the alphabet {0, 1}d,

with seed length and space complexity bounded by O(d+ log1+ 1
a−1 m). Now,

log1+ 1
a−1 m = (log n)(1− 1

a)·(1+ 1
a−1) = log n,

so G has seed length and space complexity bounded by O(log(n/ε)). Plugging G into Theorem 5.4,
we get an ( ε

4n)-hitting set H for width-w length-m ROBPs over the alphabet {0, 1}d, computable in
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space O(log(n/ε)). Now we use our assumption to convert H into a PRG G′ with exactly the same
parameters. Finally, plugging G′ into Lemma 5.9 gives the desired PRG.

6 Directions for further research

In this paper, we have shown that hitting sets for RL would derandomize BPL. Constructing
a hitting set is the most natural way to prove L = RL, but there are also other approaches. In
general, does L = RL imply L = BPL? In the polynomial-time setting, the “promise” variant
of this question has been answered in the affirmative, i.e., prP = prRP =⇒ P = BPP [BF99].
Does prL = prRL imply L = BPL? Or relaxing the challenge even further, does L = NL imply
L = BPL?

We gave two different algorithms for estimating the expectation of an ROBP given a hitting
set, one suited for w = poly(n) (Theorem 3.1) and one suited for w = O(1) (Theorem 4.1). What
about the case n = polylogw? Unconditionally, there are optimal hitting sets known in this regime
[AKS87, NZ96, HZ18]. Given such an ROBP f as input, is it possible to compute E[f ] ± 1

w in
space O(logw)? An affirmative answer would imply that any space-s decision algorithm that uses n
random bits could be simulated by another space-O(s) algorithm using only O(n/sc) random bits,
where c is an arbitrarily large constant.

Recently, Meka, Reingold, and Tal constructed a PRG for width-3 ROBPs with seed length
Õ(log n log(1/ε)) [MRT19]. This is near-optimal when ε is not too small, but for ε = 1/n it is
worse than Nisan’s PRG [Nis92]. On the other hand, there is an explicit hitting set for width-3
ROBPs with near-optimal seed length Õ(log(n/ε)) [GMR+12]. Can one construct an explicit
deterministic sampler for width-3 ROBPs with near-optimal seed length? Unfortunately, to produce
a deterministic sampler for width-3 ROBPs, Theorem 4.1 would require a hitting set for width-4
ROBPs.

Assuming the existence of a log-space hitting set for polynomial-width ROBPs, is it possible to
construct a log-space deterministic sampler for polynomial-width ROBPs?

Recall that PRPDs are superior to deterministic samplers (see Figure 1). Is it possible to improve
Theorem 1.7 so that it concludes with a PRPD rather than a mere deterministic sampler?
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A Derandomizing BPP given a hitting set

Theorem A.1 ([ACR96]). Assume that for every s, n ∈ N, there is a 1
2 -hitting set Hs,n for size-s

circuits on n input bits that can be computed in time poly(s, n). Then P = BPP.

Proof. By näıve amplification, we may assume that the randomized algorithm has failure probability
2−N , where N is the input length. Let C be a size-n circuit on n input bits describing the action
of this algorithm on its random bits, so n = poly(N) and we are trying to distinguish the cases
E[C] ≤ 2−N vs. E[C] ≥ 1− 2−N . Our algorithm accepts if and only if there exists x ∈ Hnc,n such
that for all y ∈ H3n,n, C(x⊕ y) = 1. Here, c is a suitable constant that will become clear later. The
runtime is clearly poly(N).

For the correctness proof, first suppose E[C] ≤ 2−N . For any fixed x, the function y 7→ ¬C(x⊕y)
has expectation at least 1 − 2−N and can be computed by a circuit of size 3n. Therefore, there
is some y ∈ H3n,n such that C(x⊕ y) = 0, and hence our algorithm rejects. Conversely, suppose
E[C] ≥ 1 − 2−N . Consider sampling x ∈ {0, 1}n and y ∈ H3n,n uniformly at random. Since x is
uniform, Ex,y[¬C(x⊕ y)] ≤ 2−N . By Markov’s inequality,

Pr
x∈{0,1}n

[
E

y∈H3n,n

[¬C(x⊕ y)] < 2 · 2−N
]
> 1/2.

Since H3n,n can be computed in polynomial time, |H3n,n| ≤ poly(N). Therefore, if Ey[¬C(x⊕ y)] <
2 · 2−N , then in fact Ey[¬C(x⊕ y)] = 0, provided N is sufficiently large. Therefore,

Pr
x∈{0,1}n

[∀y ∈ H3n,n, C(x⊕ y) = 1] > 1/2.

Given input x, the predicate ∀y ∈ H3n,n, C(x⊕ y) = 1 can be computed by a circuit of size nc for
some suitable constant c. Therefore, there is some x ∈ Hnc,n that hits that circuit.
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