
Multiparty Karchmer – Wigderson Games and
Threshold Circuits

Alexander Kozachinskiy∗ 1 and Vladimir Podolskii†2,3
1University of Warwick, Coventry, UK

2Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
3National Research University Higher School of Economics, Moscow, Russia

Abstract

We suggest a generalization of Karchmer – Wigderson communication games
to the multiparty setting. Our generalization turns out to be tightly connected
to circuits consisting of threshold gates. This allows us to obtain new explicit
constructions of such circuits for several functions. In particular, we provide an
explicit (polynomial-time computable) log-depth monotone formula for Majority
function, consisting only of 3-bit majority gates and variables. This resolves a
conjecture of Cohen et al. (CRYPTO 2013).

Contents
1 Introduction 2

1.1 Applications to circuits . 2
1.2 Applications to Multiparty Secure Computations 4
1.3 Multiparty Karchmer – Wigderson games 4
1.4 Connection to threshold gates and the main result 5
1.5 Our techniques: Qk(Rk)-hypotheses games 6
1.6 Organization of the paper . 8

2 Preliminaries 9
2.1 Dags and dag-like communication protocols 9

3 Formal treatment of Qk(Rk)-hypotheses games 11

4 Results for Majority 13
∗Alexander.Kozachinskiy@warwick.ac.uk. Supported by the EPSRC grant EP/P020992/1 (Solving

Parity Games in Theory and Practice).
†podolskii@mi-ras.ru

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 17 (2020)

5 Proof of the main theorem 17
5.1 From circuits to protocols . 17
5.2 From protocols to circuits . 18

6 Effective version 21

7 Derivation of Theorems 1 and 3 25

8 Open problems 27

1 Introduction
Karchmer and Wigderson established tight connection between circuit depth and com-
munication complexity [11] (see also [12, Chapter 9]). Namely, they showed that for
each Boolean function f one can define a communication game which communication
complexity exactly equals the depth of f in the standard De Morgan basis. This discov-
ery turned out to be very influential in Complexity Theory. A lot of circuit depth lower
bounds as well as formula size lower bounds rely on this discovery [10, 13, 5, 7, 4]. Karch-
mer – Wigderson games have been used also in adjacent areas like Proof Complexity (see,
e.g., [14]).

Karchmer – Wigderson games represent a deep connection of two-party communica-
tion protocols with De Morgan circuits. Loosely speaking, in this connection one party
is responsible for ∧ gates and the other party is responsible for ∨ gates. In this paper we
address the question of what would be a natural generalization of Karchmer – Wigderson
games to the multiparty setting. Is it possible to obtain in this way a connection with
other types of circuits?

We answer positively to this question: we suggest such a generalization and show
its connection to circuits consisting of threshold gates. To motivate our results we first
present applications we get from this new connection.

1.1 Applications to circuits
There are two classical constructions of O(log n)-depth monotone formulas for the Ma-
jority function, MAJ2n+1. The one was given by Valiant [15]. Valiant used probabilistic
method which does not give an explicit construction. The other construction is the
AKS sorting network [1]. This construction actually gives polynomial-time computable
O(log n)-depth O(n log n)-size monotone circuit for MAJn.

Several authors (see, e.g., [6, 3]) noticed that the Valiant’s probabilistic argument
actually gives a O(log n)-depth formula for MAJn, consisting only of MAJ3 gates and
variables. Is it possible to construct a O(log n)-depth circuit for MAJ2n+1, consisting
only of MAJ3 gates and variables, deterministically in polynomial time?1

1Note that AKS sorting network does not provide a solution because it consists of ∧ and ∨ gates.

2

This question was stated as a conjecture by Cohen et al. in [3]. First, they showed
that the answer is positive under some cryptographic assumptions. Secondly, they con-
structed (unconditionally) a polynomial-time computable O(log n)-depth circuit, con-
sisting only of MAJ3 gates and variables, which coincides with MAJn for all inputs in
which the fraction of ones is bounded away from 1/2 by 2−Θ(

√
log n).

We show that the conjecture of Cohen et al. is true (unconditionally).
Theorem 1. There exists polynomial-time computable O(log n)-depth formula for
MAJ2n+1, consisting only of MAJ3 gates and variables.

In the proof we use the AKS sorting network. In fact, one can use any construction
of polynomial-time computable O(log n)-depth monotone circuit for MAJ2n+1. We also
obtain the following general result:
Theorem 2. If there is a monotone formula (i.e., formula, consisting of ∧,∨ gates
and variables) for MAJ2n+1 of size s, then there is a formula for MAJ2n+1 of size O(s ·
nlog2(3)) = O(s · n1.58...), consisting only of MAJ3 gates and variables.

Transformation from the last theorem, however, is not efficient. We can make this
transformation polynomial-time computable, provided log2(3) is replaced by 1/(1 −
log3(2)) ≈ 2.71. In turn, we view Theorem 2 as a potential approach to obtain super-
quadratic lower bounds on monotone formula size for MAJ2n+1. However, this approach
requires better than n2+log2(3) lower bound on formula size of MAJ2n+1 in the {MAJ3}
basis. Arguably, this basis may be easier to analyze than the standard monotone basis.
The best known size upper bounds in the {∧,∨} basis and the {MAJ3} basis are, re-
spectively, O(n5.3) and O(n4.29) [8]. Both bounds are due to Valiant’s method (see [8]
also for the limitations of Valiant’s method).

We also study a generalization of the conjecture of Cohen et al. to threshold functions.
By THRb

a we denote the following Boolean function:

THRb
a : {0, 1}b → {0, 1}, THRb

a(x) =

1 x contains at least a ones,
0 otherwise.

For some reasons (to be discussed below) a natural generalization would be a question
of whether THRkn+1

n+1 can by computed by a O(log n)-depth circuit, consisting only of
THRk+1

2 gates and variables (initial conjecture can be obtained by setting k = 2). This
question was also addressed by Cohen et al. in [3]. First, they observed that there is
a construction of depth O(n) (and exponential size). Secondly, they gave an explicit
construction of depth O(log n), which coincides with THRkn+1

n+1 for all inputs in which
the fraction of ones is bounded away from 1/k by Θ(1/

√
log n).

However, no exact (even non-explicit) construction with sub-linear depth or sub-
exponential size was known. In particular, Valiant’s probabilistic construction does not
work for k > 3. Nevertheless, in this paper we improve depth O(n) to O(log2 n) and size
from exp{O(n)} to nO(1) for this problem:
Theorem 3. For any constant k > 3 there exists polynomial-time computable O(log2 n)-
depth polynomial-size circuit for THRkn+1

n+1 , consisting only of THRk+1
2 gates and vari-

ables.

3

1.2 Applications to Multiparty Secure Computations
The conjecture stated in [3] was motivated by applications to Secure Multiparty Compu-
tations. The paper [3] establishes an approach to construct efficient multiparty protocols
based on protocols for small number of players. More specifically, in their framework one
starts with a protocol for small number of players and a formula F computing certain
boolean function. Then one combines a protocol for a small number of players with itself
recursively, where the recursion mimics the formula F .

It is shown in [3] that from our result it follows that for any n there is an explicit
polynomial size protocol for n players secure against a passive adversary that controls
any t < n

2 players. It is also implicit in [3] that from Theorem 3 for k = 3 it follows
that for any n there is a protocol of size 2O(log2 n) for n players secure against an active
adversary that controls any t < n

3 players. An improvement of the depth of the formula
in Theorem 3 to O(log n) would result in a polynomial size protocol. We refer to [3] for
more details on the secure multiparty computations.

1.3 Multiparty Karchmer – Wigderson games
We now reveal a bigger picture to which the above results belong to. Namely, they can
be put into framework of multiparty Karchmer – Wigderson games.

Before specifying how we define these games let us give an instructive example.
Consider ordinary monotone Karchmer – Wigderson game for MAJ2n+1. In this game
Alice receives a string x ∈ MAJ−1

2n+1(0) and Bob receives a string y ∈ MAJ−1
2n+1(1). In

other words, the number of ones in x is at most n and the number of ones in y is at
least n+ 1. The goal of Alice and Bob is to find some coordinate i such that xi = 0 and
yi = 1. Next, imagine that Bob flips each of his input bits. After that parties have two
vectors in both of which the number of ones is at most n. Now Alice and Bob have to
find any coordinate in which both vectors are 0.

In this form this problem can be naturally generalized to the multiparty setting.
Namely, assume that there are k parties, and each receives a Boolean vector of length
kn+ 1 with at most n ones. Let the task of parties be to find a coordinate in which all
k input vectors are 0. How many bits of communication are needed for that?

For k = 2 the answer is O(log n), because there exists a O(log n)-depth monotone
circuit for MAJ2n+1 and hence the monotone Karchmer – Wigderson game for MAJ2n+1
can be solved in O(log n) bits of communication. For k > 3 we are only aware of a simple
O(log2 n)-bit solution based on the binary search.

Now, let us look at the case k > 3 from another perspective and introduce multiparty
Karchmer – Wigderson games. Note that each party receives a vector on which THRkn+1

n+1
equals 0. The goal is to find a common zero. Note that we can consider a similar problem
for any function f satisfying so-called Qk-property: any k vectors from f−1(0) have a
common zero. In the next definition we define Qk-property formally and also introduce
related Rk-property.

Definition 1. Let Qk be the set of all Boolean functions f satisfying the following

4

property: for all x1, x2, . . . , xk ∈ f−1(0) there is a coordinate i such that x1
i = x2

i = . . . =
xk

i = 0.
Further, let Rk be the set of all Boolean functions f satisfying the following property:

for all x1, x2, . . . , xk ∈ f−1(0) there is a coordinate i such that x1
i = x2

i = . . . = xk
i .

For f ∈ Qk let Qk-communication game for f be the following communication prob-
lem. In this problem there are k parties. The jth party receives a Boolean vector xj ∈
f−1(0). The goal of players is to find any coordinate i such that x1

i = x2
i = . . . = xk

i = 0.
Similarly we can define Rk-communication games for functions from Rk. In the Rk-

communication games the objective of parties is slightly different: their goal is to find
any coordinate i and a bit b such that x1

i = x2
i = . . . = xk

i = b.
Self-dual functions belong to R2 and monotone self-dual functions belong to Q2. It

is easy to see that R2-communication games are equivalent to Karchmer – Wigderson
games for self-dual functions (one party should flip all the input bits). Moreover, Q2-
communication games are equivalent to monotone Karchmer – Widgerson games for
monotone self-dual functions.

In this paper we consider Rk-communication games as a multiparty generalization
of Karchmer – Wigderson games. In turn, Qk-communication games are considered as
a generalization of monotone Karchmer – Wigderson games. To justify this choice one
should relate them to some type of circuit complexity.

1.4 Connection to threshold gates and the main result
Every function from Qk can be lower bounded by a circuit, consisting only of THRk+1

2
gates and variables. More precisely, let us write C 6 f for a Boolean circuit C and
a Boolean function f if for all x ∈ f−1(0) we have C(x) = 0. Then the following
proposition holds:

Proposition 4 ([3]). The set Qk is equal to the set of all Boolean functions f for which
there exists a circuit C 6 f , consisting only of THRk+1

2 gates and variables.

There is a similar characterization of the set Rk.

Proposition 5. The set Rk is equal to the set of all Boolean functions f for which there
exists a circuit C 6 f , consisting only of THRk+1

2 gates and literals2.

The proof from [3] of Proposition 4 with obvious modifications also works for Propo-
sition 5.

Given f ∈ Qk, what is the minimal depth of a circuit C 6 f , consisting only of
THRk+1

2 gates and variables? We show that this quantity is equal (up to constant
factors) the communication complexity of Qk-communication game for f .

Theorem 6. Let k > 2 be any constant. Then for any f ∈ Qk the following two
quantities are equal up to constant factors:

2We stress that negations can only be applied to variables but not to THRk+1
2 gates.

5

• the communication complexity of Qk-communication game for f ;

• minimal d for which there exists a d-depth circuit C 6 f , consisting only of THRk+1
2

gates and variables.

Similar result can be obtained for Rk-communication games.

Theorem 7. Let k > 2 be any constant. Then for any f ∈ Rk the following two
quantities are equal up to constant factors:

• the communication complexity of Rk-communication game for f ;

• minimal d for which there exists a d-depth circuit C 6 f , consisting only of THRk+1
2

gates and literals.

Proofs of both theorems are divided into two parts:

(a) transformation of a d-depth circuit C 6 f , consisting only of THRk+1
2 gates and

variables (literals), into a O(d)-bit protocol computing Qk(Rk)-communication
game for f ;

(b) transformation of a d-bit protocol computing Qk(Rk)-communication game for f
into a d-depth circuit C 6 f , consisting only of THRk+1

2 gates and variables (liter-
als).

The first part is simple and the main challenge is the second part. Later in this
paper (Section 6) we also formulate refined versions of Theorems 6 and 7. Namely, we
refine these theorems in the following two directions. Firstly, we take into account circuit
size and for this we consider dag-like communication protocols. Secondly, we show that
transformations (a-b) can be done in polynomial time (under some mild assumptions).

We derive our upper bounds on the depth of MAJ2n+1 and THRkn+1
n+1 (Theorems 1

and 3) from Theorem 6. We first solve the corresponding Qk-communication games with
small number of bits of communication. Namely, for the case of MAJ2n+1 we use AKS
sorting network to solve the corresponding Q2-communication game with O(log n) bits
of communication. For the case of THRkn+1

n+1 with k > 3 we solve the corresponding
Qk-communication game by a simple binary search protocol with O(log2 n) bits of com-
munication. This is where we get depth O(log n) for Theorem 1 and depth O(log2 n) for
Theorem 3. Again, some special measures should be taken to make the resulting circuits
polynomial-time computable and to control their size3.

1.5 Our techniques: Qk(Rk)-hypotheses games
As we already mentioned, the hard part of our main result is to transform a protocol
into a circuit.

3We should only care about the size in case of Theorem 3, because depth O(log n) immediately gives
polynomial size.

6

For this we develop a new language to describe circuits, consisting of threshold gates.
Namely, for every f in Qk (Rk) we introduce the corresponding Qk(Rk)-hypotheses game
for f . We show that strategies in these games exactly capture depth and size of circuits,
consisting only of THRk+1

2 gates and variables (literals). It turns out that strategies
are more convenient than circuits to simulate protocols, since they operate in the same
top-bottom manner.

Once we establish the equivalence of circuits and hypotheses games, it remains for
us to transform a communication protocol into a strategy in a hypotheses games. This
is an elaborate construction that is presented in Propositions 16 and 19. Below in this
section we introduce hypotheses games and as an illustration sketch the construction of
a strategy in a hypothesis game that is used in the proof of Theorem 1.

Here is how we define these games. Fix f : {0, 1}n → {0, 1}. There are two players,
Nature and Learner. Before the game starts, Nature privately chooses z ∈ f−1(0),
which is then can not be changed. The goal of Learner is to find some i ∈ [n] such
that zi = 0. The game proceeds in rounds. At each round Learner specifies k + 1
families H0,H1, . . . ,Hk ⊂ f−1(0) to Nature. We understand this as if Learner makes
the following k + 1 hypotheses about z:

“z ∈ H0”,
“z ∈ H1”,
...

“z ∈ Hk”.
Learner looses immediately if less than k hypotheses are true, i.e., if the number of
j ∈ {0, 1, . . . , k} satisfying z ∈ Hj is less than k. Otherwise Nature points out to
some hypothesis which is true. In other words, Nature specifies to Learner some j ∈
{0, 1, . . . , k} such that z ∈ Hj. The game then proceeds in the same manner for some
finite number of rounds. At the end Learner outputs an integer i ∈ [n]. We say that
Learner wins if zi = 0.

It is not hard to show that Learner has a winning strategy in Qk-hypotheses game
for f if and only if f ∈ Qk. Since we will use similar arguments in the paper, let us go
through the “if” part: if f ∈ Qk, then Learner has a winning strategy. Denote by Z be
the set of all z’s which are compatible with Nature’s answers so far. At the beginning
Z = f−1(0). If |Z| > k + 1, Learner takes any distinct z1, z2, . . . , zk+1 ∈ Z and makes
the following hypotheses:

“z 6= z1”,
“z 6= z2”,
...

“z 6= zk+1”.
At least k hypotheses are true, and the Nature’s response strictly reduces the size of Z.
When the size of Z becomes k, Learner is ready to give an answer due to Qk-property
of f .

7

This strategy requires exponential in n number of rounds. This can be easily improved
to O(n) rounds. Indeed, instead of choosing k + 1 distinct elements of Z split Z into
k + 1 disjoint almost equal parts. Then let the ith hypotheses be “z is not in the ith
part”. Nature’s response to this reduces the size of Z by a constant factor, until the size
of Z is k.

For f ∈ Qk we can now ask what is the minimal number of rounds on in a Learner’s
winning strategy. The following proposition gives an exact answer:

Proposition 8. For any f ∈ Qk the following holds. Learner has a d-round winning
strategy in Qk-hypotheses game for f if and only if there exists a d-depth circuit C 6 f ,
consisting only of THRk+1

2 gates and variables.

Proposition 8 is the core result for our applications. For instance, we prove Theorem
1 by giving an explicit O(log n)-round winning strategy of Learner in Q2-hypotheses
game for MAJ2n+1. Let us now sketch our argument (the complete proof can be found
in Section 4).

Assume that Nature’s input vector is z. We notice that in O(log n) rounds one can
easily find two integers i, j ∈ [2n + 1] such that either zi = 0 or zj = 0. However, we
need to know for sure. For that we take any polynomial time computable O(log n)-depth
monotone formula F for MAJ2n+1 (for instance one that can be obtained from the AKS
sorting network). We start to descend from the output gate of F to one of F ’s inputs.
Throughout this descending we maintain the following invariant. If g is the current gate,
then either g(z) = 0 ∧ zi = 0 or g(¬z) = 1 ∧ zj = 0 (here ¬ denotes bit-wise negation).
It can be shown that in one round one can either exclude i or j (which will already give
us an answer) or replace g by some gate which is fed to g. If we reach an input to F , we
output the index of the corresponding variable.

Similarly one can define Rk-hypotheses game for any f : {0, 1}n → {0, 1}. In Rk-
hypotheses game Nature and Learner play in the same way except that now Learner’s
objective is to find some pair (i, b) ∈ [n]× {0, 1} such that zi = b. The following analog
of Proposition 8 holds:

Proposition 9. For any f ∈ Rk the following holds. Learner has a d-round winning
strategy in Rk-hypotheses game for f if and only if there exists a d-depth circuit C 6 f ,
consisting only of THRk+1

2 gates and literals.

1.6 Organization of the paper
In Section 2 we give Preliminaries. In Section 3 we define Qk(Rk)-hypotheses games
formally and derive Proposition 8 and 9. In Section 4 we obtain our results for Majority
function (Theorems 1 and 2) using simpler arguments than in our general results. Then
in Section 5 we prove these general results (Theorems 6 and 7). In Section 6 we refine
Theorems 6 and 7 in order to take into account the circuit size and computational aspects
(Theorems 21 and 23 below). In Section 7 we derive Theorem 3 and provide another
proof for Theorem 1. Finally, in Section 8 we formulate some open problems.

8

2 Preliminaries
Let [n] denote the set {1, 2, . . . , n} for n ∈ N. For a set W we denote the set of all
subsets of W by 2W . For two sets A and B by AB we mean the set of all functions of
the form f : B → A.

We usually use subscripts to denote coordinates of vectors. In turn, we usually use
superscripts to numerate vectors.

We use standard terminology for Boolean formulas and circuits [9]. We denote the size
of a circuit C by size(C) and the depth by depth(C). By De Morgan formulas/circuits
we mean formulas/circuits consisting of ∧,∨ gates of fan-in 2 and literals (i.e., we assume
that negations are applied only to variables). By monotone formulas/circuits we mean
formulas/circuits consisting of ∧,∨ gates of fan-in 2 and variables. We also consider
formulas/circuits consisting only of THRk+1

2 gates and variables (literals). We stress
that in such circuits we do not use constants. Allowing literals as inputs we allow to
apply negations only to variables. We also assume that negations in literals do not
contribute to the depth of a circuit.

We use the notion of deterministic communication protocols in the multiparty
number-in-hand model. However, to capture the circuit size in our results we consider
not only standard tree-like protocols, but also dag-like protocols. This notion was con-
sidered by Sokolov in [14]. We use slightly different variant of this notion, arguably more
intuitive one. In the next subsection we provide all necessary definitions. To obtain a
definition of a standard protocol one should replace dags by binary trees.

2.1 Dags and dag-like communication protocols
We use the following terminology for directed acyclic graphs (dags). Firstly, we allow
more than one directed edge from one node to another. A terminal node of a dag G is
a node with no out-going edges. Given a dag G, let

• V (G) denote the set of nodes of G;

• T (G) denote the set of terminal nodes of G.

For v ∈ V (G) let OutG(v) be the set of all edges of G that start at v. A dag G is called
t-ary if every non-terminal node v of G we have |OutG(v)| = t. An ordered t-ary dag is
a t-ary dag G equipped with a mapping from the set of edges of G to {0, 1, . . . , t − 1}.
This mapping restricted to OutG(v) should be injective for every v ∈ V (G) \ T (G). The
value of this mapping on an edge e will be called the label of e. In terms of labels we
require for ordered t-ary dags that any t edges, starting at the same node, have different
labels.

By a path in G we mean a sequence of edges 〈e1, e2, . . . , em〉 such that for every
j ∈ [m − 1] edge ei ends in the same node in which ej+1 starts. Note that there may
be two distinct paths visiting same nodes (for instance, there may be two parallel edges
from one node to another).

9

We say that a node w is a descendant of a node v if there is a path from v to w. We
call w a successor of v if there is an edge from v to w. A node s is called starting node if
any other node is a descendant of s. Note that any dag has at most one starting node.

If a dag G has the starting node s, then by depth of v ∈ V (G) we mean the maximal
length of a path from s to v. The depth of G then is the maximal depth of its nodes.

Assume that X1,X2, . . . ,Xk,Y are some finite sets.

Definition 2. A k-party dag-like communication protocol π with inputs from X1×X2×
. . .Xk and with outputs from Y is a tuple 〈G,P1, P2, . . . , Pk, φ1, φ2, . . . , φk, l〉, where

• G is an ordered 2-ary dag with the starting node s;

• P1, P2, . . . , Pk is a partition of V (G) \ T (G) into k disjoint subsets;

• φi is a function from Pi ×Xi to {0, 1};

• l is a function from T (G) to Y.

The depth of π (denoted by depth(π)) is the depth of G. The size of π (denoted by
size(π)) is |V (G)|.

The underlying mechanics of the protocol is as follows. Parties descend from s to
one of the terminals of G. If the current node v is not a terminal and v ∈ Pi, then
at v the ith party communicates a bit to all the other parties. Namely, the ith party
communicates the bit b = φi(v, x), where x ∈ Xi is the input of the ith party. Among
the two edges, starting at v, parties choose one labeled by b and descend to one of the
successors of v along this edge. Finally, when parties reach a terminal t, they output
l(t).

We say that x ∈ Xi is i-compatible with an edge e from v to w if one of the following
two condition holds:

• v /∈ Pi;

• v ∈ Pi and e is labeled by φi(v, x).

We say that x ∈ Xi is i-compatible with a path p = (e1, e2, . . . , em) of G if for every
j ∈ [m] it holds that x is i-compatible with ej. Finally, we say that x ∈ Xi is i-compatible
with a node v ∈ V (G) if there is a path p from s to v such that x is i-compatible with v.

We say that an input (x1, x2, . . . , xk) ∈ X1 × X2 × . . .Xk visits a node v ∈ V (G) if
there is a path p from s to v such that for every i ∈ [k] it holds that xi is i-compatible
with p. Note that there is unique t ∈ T (G) such that (x1, x2, . . . , xk) visits t.

To formulate an effective version of Theorems 6 and Theorem 7 we need the following
definition.

Definition 3. The light form of a k-party dag-like communication protocol π =
〈G,P1, P2, . . . , Pk, φ1, φ2, . . . , φk, l〉 is a tuple 〈G,P1, P2, . . . , Pk, l〉.

10

I.e., to obtain the light form of π we just forget about φ1, φ2, . . . , φk. In other words,
the light form only contains the underlying graph of π, the partition of non-terminal
nodes between parties and the labels of terminals. On the other hand, in the light form
there is no information at all how parties communicate at the non-terminal nodes.

Protocol π computes a relation S ⊂ X1 × X2 × . . . × Xk × Y if the following holds.
For every (x1, x2, . . . , xk) ∈ X1×X2× . . .×Xk there exist y ∈ Y and t ∈ T (G) such that
(x1, . . . , xk) visits t, l(t) = y and (x1, x2, . . . , xk, y) ∈ S.

Using language of relations, we can formally defineQk- andRk-communication games.
Namely, given f : {0, 1}n → {0, 1}, f ∈ Qk, we define Qk-communication game for f as
the following relation:

S ⊂ f−1(0)× . . .× f−1(0)︸ ︷︷ ︸
k

×[n],

S =
{

(x1, . . . , xk, j) | x1
j = . . . = xk

j = 0
}
.

Similarly, given f : {0, 1}n → {0, 1}, f ∈ Rk, we define Rk-communication game for f as
the following relation:

S ⊂ f−1(0)× . . .× f−1(0)︸ ︷︷ ︸
k

×([n]× {0, 1}),

S =
{

(x1, . . . , xk, (j, b)) | x1
j = . . . = xk

j = b
}
.

It is easy to see that a dag-like protocol for S can be transformed into a tree-like
protocol of the same depth, but this transformation can drastically increase the size.

3 Formal treatment of Qk(Rk)-hypotheses games
Fix f ∈ Qk, f : {0, 1}n → {0, 1}. Here we define Learner’s strategies in Qk-hypotheses
game for f formally. We consider not only tree-like strategies but also dag-like. To
specify a Learner’s strategy S in Qk-hypotheses game we have to specify:

• An ordered (k + 1)-ary dag G with the starting node s;

• a subset Hj(p) for every j ∈ {0, 1, . . . , k} and for every path p in G from s to some
node in V (G) \ T (G);

• a number it ∈ [n] for every terminal t.

The underlying mechanics of the game is as follows. Let Nature’s vector be z ∈ f−1(0).
Learner and Nature descend from s to one of the terminals of G. More precisely, a
position in the game is determined by a path p, starting at s. If the endpoint of p is not
a terminal, then Learner specifies some sets H0(p),H1(p), . . . ,Hk(p) as his hypotheses.
If less than k of these sets contain z, then Nature wins. Otherwise Nature specifies some
j ∈ {0, 1, . . . , k} such that z ∈ Hj(p). Among k + 1 edges that start at the endpoint of

11

p players choose one which is labeled by j. After that they extend p by this edge. At
some point parties reach some terminal t (i.e., the endpoint of p becomes equal t). Then
the game ends and Learner output it.

We stress that Learner’s output depends only on t but not on a path to t (unlike
Learner’s hypotheses). This property will be crucial in establishing connection of Qk-
hypotheses games to circuits.

We now proceed to a formal definition of what does it mean that S is winning for
Learner.

We say that z ∈ f−1(0) is compatible with a path p = 〈e1, . . . , em〉, starting in s,
if the following holds. If p is of length 0, then every z ∈ f−1(0) is compatible with p.
Otherwise for every i ∈ {1, . . . , em} it should hold that z ∈ Hj(〈e1, . . . , ei−1〉), where j
is the label of edge ei. Informally this means that Nature, having z on input, can reach
a position in the game which corresponds to a path p.

We say that strategy S is winning for Learner in Qk-hypotheses game for f if for
every path p, starting at s, and for every z ∈ f−1(0), compatible with p, the following
holds:

• if the endpoint of p is not a terminal, then the number of j ∈ {0, 1, . . . , k} such
that z ∈ Hj(p) is at least k;

• if the endpoint of p is t ∈ T (G), then zit = 0.

We will formulate a stronger version of Proposition 8. For that we need the notion of
the light form of the strategy S. Namely, the light form of S is its underlying dag G
equipped with a mapping which to every t ∈ T (G) assigns it. In other words, the light
form contains a “skeleton” of S and Learner’s outputs in terminals (and no information
about Learner’s hypotheses).

We can identify the light form of any strategy S with a circuit, consisting only of
THRk+1

2 gates and variables. Namely, place THRk+1
2 gate in every v ∈ V (G) \T (G) and

for every t ∈ T (G) place a variable xit in t. Set s to be the output gate.

Proposition 10. For all f ∈ Qk, f : {0, 1}n → {0, 1} the following holds:

(a) if S if a Learner’s winning strategy in Qk-hypotheses game for f , then its light
form, considered as a circuit C consisting only of THRk+1

2 gates and variables,
satisfies C 6 f .

(b) Assume that C 6 f is a circuit, consisting only of THRk+1
2 gates and variables.

Then there exists a Learner’s winning strategy S in Qk-hypotheses game for f such
that the light form of S coincides with C.

We omit the proof of (b) as in the paper we only use (a).

Proof of (a) of Proposition 10. For a node v ∈ V (G) let fv : {0, 1}n → {0, 1} be the
function, computed by the circuit C at the gate, corresponding to v.

We shall prove the following statement. For any path p, starting in s, and for any
z which is compatible with p it holds that fv(z) = 0, where v is the endpoint of p. To

12

see why this implies C 6 f take any z ∈ f−1(0) and note that z is compatible with the
path of length 0. The endpoint of such path is s and hence 0 = fs(z) = C(z).

We will prove the above statement by the backward induction on the length of p.
The longest path p ends in some t ∈ T (G). By definition ft = xit . On the other hand,
since S is winning, zit = 0 for any z compatible with p. In other words, ft(z) = 0 for
any z compatible with p. The base is proved.

Induction step is the same if p ends in some other terminal. Now assume that p ends
in v ∈ V (G) \ T (G). Take any z ∈ f−1(0) compatible with p. Let pj be the extension of
p by the edge which starts at v and is labeled by j ∈ {0, 1, . . . , k}. Next, let vj be the
endpoint of pj (nodes v0, v1, . . . , vk are successors of v). Since S is winning, the number
of j ∈ {0, 1, . . . , k} such that z ∈ Hj(p) is at least k. Hence by definition the number of
j ∈ {0, 1, . . . , k} such that z is compatible with pj is at least k. Finally, by the induction
hypothesis this means that the number of j ∈ {0, 1, . . . , k} such that fvj

(z) = 0 is at
least k. On the other hand:

fv = THRk+1
2 (fv0 , fv1 , . . . , fvk

).

Therefore fv(z) = 0, as required.

One can formally define analogues notions for Rk-hypotheses games. We skip this as
modifications are straightforwards and only formulate an analog of Proposition 10.

Proposition 11. For all f ∈ Rk, f : {0, 1}n → {0, 1} the following holds:

(a) if S if a Learner’s winning strategy in Rk-hypotheses game for f , then its light form,
considered as a circuit C consisting only of THRk+1

2 gates and literals, satisfies
C 6 f .

(b) Assume that C 6 f is a circuit, consisting only of THRk+1
2 gates and literals. Then

there exists a Learner’s winning strategy S in Rk-hypotheses game for f such that
the light form of S coincides with C.

Remark. It might be unclear why we prefer to construct strategies instead of constructing
circuits directly, because beside the circuit itself we should also specify Learner’s hypothe-
ses. The reason is that strategies can be seen as proofs that the circuit we construct is
correct.

4 Results for Majority
Proof of Theorem 1. There exists an algorithm which in nO(1)-time produces a monotone
formula F of depth d = O(log n) computing MAJ2n+1. Below we will define a strategy
SF in the Q2-hypotheses game for MAJ2n+1. Strategy SF will be winning for Learner.
Moreover, its depth will be d + O(log n). In the end of the proof we will refer to
Proposition 10 to show that SF yields a O(log n)-depth polynomial-time computable
formula for MAJ2n+1, consisting only of MAJ3 gates and variables.

13

Strategy SF has two phases. The first phase does not uses F at all, only the second
phase does. The objective of the first phase is to find some distinct i, j ∈ [2n + 1] such
that either zi = 0 ∧ zj = 1 or zi = 1 ∧ zj = 0, where z is the Nature’s vector. This can
be done as follows.
Lemma 12. One can compute in polynomial time a 3-ary tree T of depth O(log n) with
the set of nodes v(T) and a mapping w : v(T)→ 2[2n+1] such that the following holds:

• if r is the root of T , then w(r) = [2n+ 1];

• if v is not a leaf of T and v1, v2, v3 are 3 children of v, then every element of w(v)
is covered at least twice by w(v1), w(v2), w(v3);

• if l is a leaf of T , then w(r) is of size 2.

Proof. We start with a trivial tree, consisting only of the root, to which we assign [2n+1].
Then at each iteration we do the following. We have a 3-ary tree in which nodes are
assigned to some subsets of [2n + 1]. If every leaf is assigned to a set of size 2, we
terminate. Otherwise we pick any leaf l of the current tree which is assigned to a subset
A ⊂ [2n + 1] of size at least 3. We split A into 3 disjoint subsets A1, A2, A3 of sizes
b|A|/3c, b|A|/3c and |A| − 2b|A|/3c. We add 3 children to l (which become new leafs)
and assign A1 ∪ A2, A1 ∪ A3, A2 ∪ A3 to them.

It is easy to verify that the sizes of A1∪A2, A1∪A3, A2∪A3 are at least 2 and at most
4
5 · |A|. Hence the size of the set assigned to a node of depth h is at most

(
4
5

)h
· (2n+ 1).

This means that the depth of the tree is at any moment at most log5/4(2n+1) = O(log n).
Therefore we terminate in 3O(log n) = nO(1) iterations, as at each iterations we add 3 new
nodes. Each iteration obviously takes polynomial time.

We use T to find two i, j ∈ [2n + 1] such that either zi = 0 or zj = 0. Namely, we
descend from the root of T to one of its leafs. Learner maintains an invariant that the
leftmost 0-coordinate of z is in w(v), where v is the current node of T . Let v1, v2, v3 be 3
children of v. Learner for every i ∈ [3] makes a hypothesis that the leftmost 0-coordinate
of z is in w(vi). Due to the properties of w at least two hypotheses are true. Nature
indicates some vi for which this is true, and Learner descends to vi. When Learner
reaches a leaf, he knows a set of size two containing the leftmost 0-coordinate of z. Let
this set be {i, j}.

We know that either zi or zj is 0. Thus zizj ∈ {00, 01, 10}. At the cost of one round
we can ask Nature to identify an element of {00, 01, 10} which differs from zizj. If 10 is
identified, then zizj ∈ {00, 01}, and hence zi = 0, i.e., we can already output i. Similar
thing happens when 01 is identified. Finally, if 00 is identified, then the objective of the
first phase is fulfilled and we can proceed to the second phase.

The second phase takes at most d rounds. In this phase Learner produces a sequence
g0, g1, . . . , gd′ , d′ 6 d of gates of F , where the depth of gi is i, the last gate gd′ is an input
variable (i.e., a leaf of F) and each g ∈ {g0, g1, . . . , gd′} satisfies:

(g(z) = 0 ∧ zizj = 01) ∨ (g(¬z) = 1 ∧ zizj = 10) . (1)

14

Here ¬z denotes the bit-wise negation of z.
At the beginning Learner sets g0 = gout to be the output gate of F . Let us explain

why (1) holds for gout. Nature’s vector is an element of MAJ−1
2n+1(0). I.e., the number of

ones in z is at most n. In turn, in ¬z there are at least n+ 1 ones. Since gout computes
MAJ2n+1, we have that gout(z) = 0 and gout(¬z) = 1. In turn, by the first phase it is
guarantied that zizj = 01 ∨ zizj = 10.

Assume now that the second phase is finished, i.e., Learner has produced some gd′ =
xk satisfying (1). Then by (1) either gd′(z) = zk = 0 or gd′(¬z) = (¬z)k = 1. In both
cases zk = 0, i.e., Learner can output k.

It remains to explain how to fulfill the second phase. It is enough to show the
following. Assume that Learner knows a gate gl of F of depth l satisfying (1) and that
gl is not an input variable. Then in one round he can either find a gate gl+1 of depth
l + 1 satisfying (1) or give a correct answer to the game.

The gate gl+1 will be one of the two gates which are fed to gl. Assume first that gl

is an ∧-gate and gl = u ∧ v. From (1) we conclude that from the following 3 statements
exactly 1 is true for z:

u(z) = 0 and zizj = 01, (2)
u(z) = 1, v(z) = 0 and zizj = 01, (3)

u(¬z) = v(¬z) = 1 and zizj = 10. (4)

At the cost of one round Learner can ask Nature to indicate one statement which is false
for x. If Nature says that (2) is false for z, then (1) holds for gl+1 = v. Next, if Nature
says that (3) is false for z, then (1) holds for gl+1 = u. Finally, if Nature says that (4)
is false for z, then we know that zizj = 01, i.e., Learner can already output i.

In the same way we can deal with the case when gl is an ∨-gate and gl = u ∨ v. By
(1) exactly 1 of the following 3 statements is true for z:

u(z) = v(z) = 0 and zizj = 01, (5)
u(¬z) = 1 and zizj = 10, (6)
u(¬z) = 0, v(¬z) = 1 and zizj = 10. (7)

Similarly, Learner asks Nature to indicate one statement which is false for z. If Nature
says that (5) is false for z, then zizj = 10, i.e., Learner can output j. Next, if Nature
says that (6) is false for z, then (1) holds for gl+1 = v. Finally, if Nature says that (7) is
false for z, then (1) holds for gl+1 = u.

Thus SF is a O(log n)-depth winning strategy of Learner. Apply Proposition 10 to
SF . We get a O(log n)-depth formula F ′ 6 MAJ2n+1, consisting only of MAJ3 gates
and variables. From the self-duality of MAJ2n+1 and MAJ3 it follows that F ′ computes
MAJ2n+1. Finally, let us explain how to compute F ′ in polynomial time. To do so we
have to compute in polynomial time the light form of SF , i.e., the underlying tree of SF

and the outputs of Learner in the leafs. It is easy to see that one can do this as follows.
First, compute F and compute T from Lemma 12. For each leaf l of T do the

following. Let w(l) = {i, j}. Add 3 children to l. Two of them will be leafs of SF , in one

15

Learner outputs i and in the other Learner outputs j. Attach a tree of F to the third
child. Then add to each non-leaf node of F one more child so that now the tree of F is
3-ary. Each added child is a leaf of SF . If a child was added to an ∧-gate, then Learner
outputs i in this child. In turn, if a child was added to an ∨ gate, then Learner outputs j
in it. Finally, there are leafs that were in F initially, each labeled by some input variable.
In these nodes Learner outputs the index of the corresponding input variable.

Proof of Theorem 2. How many rounds takes the first phase of the strategy SF from the
previous proof? Initially the left-most 0-coordinate of z takes O(n) values. At the cost
of one round we can shrink the number of possible values almost by a factor of 3/2.
Thus the first phase corresponds to a ternary tree of depth log3/2(n) +O(1). The size of
that tree is hence 3log3/2(n)+O(1) = O(n1/(1−log3(2))) = O(n2.70951...). To some of its leafs we
attach a tree of the same size as the initial formula F . As a result we obtain a formula
F ′ of size O(n2.70951... · s) for MAJ2n+1, consisting of MAJ3 gates and variables (here s is
the size of the initial formula F).

Let us show that we can perform the first phase in log2(n) + O(1) rounds. This
will improve the size of the previous construction to O(3log2(n)+O(1) · s) = O(nlog2(3) · s).
However, the construction with log2(n) +O(1) rounds will not be explicit. We need the
following Lemma:
Lemma 13. There exists a formula D with the following properties:

• formula D is a complete ternary tree of depth dlog2(n)e+ 10;

• every non-leaf node of D contains a MAJ3 gate and every leaf of D contains a
conjunction of 2 variables;

• D(x) = 0 for every x ∈ {0, 1}2n+1 with at most n ones.

Let us at first explain how to use formula D from Lemma 13 to fulfill the first phase.
Recall that our goal is to find two indices i, j ∈ [2n+1] such that either zi = 0 or zj = 0.
To do so Learner descends from the output gate of D to some of its leafs. He maintains
an invariant that for his current gate g of D it holds that g(z) = 0. For the output gate
the invariant is true because by Lemma 13 D is 0 on all Nature’s possible vectors. If we
reached a leaf so that g is a conjuction of two variables zi and zj, then the first phase is
fulfilled (by the invariant zi ∧ zj = 0). Finally, if g is a non-leaf node of D, i.e., a MAJ3
gate, then we can descend to one of the children of g at the cost of one round without
violating the invariant. Indeed, as g(z) = 0, then the same is true for at least 2 children
of g. For each child gi of g Learner makes a hypotheses that gi(z) = 0. Any Nature’s
response allows us to replace g by some gi.

Proof of Lemma 13. We will show existence of suchD via probabilistic method. Namely,
independently for each leaf l of D choose (i, j) ∈ [2n+ 1]2 uniformly at random and put
the conjuction zi ∧ zj into l. It is enough to demonstrate that for any x ∈ {0, 1}2n+1

with at most n ones it hols that Pr[D(x) = 1] < 2−2n−1.

16

To do so we use the modification of the standard Valiant’s argument. For any fixed x
let p be the probability that a leaf l of D equals 1 on x. This probability is the same for
all the leafs and is at most 1/4. Now, Pr[D(x) = 1] can be expressed exactly in terms
of p as follows:

Pr[D(x) = 1] = f(f(f(. . . f︸ ︷︷ ︸
dlog2(n)e+ 10

(p))) . . .),

where f(t) = t3 + 3t2(1− t) = 3t2 − 2t3. Observe that 3f(t) 6 (3t)2. Hence

3 Pr[D(x) = 1] 6 (3p)2dlog2(n)e+10
6 (3/4)1000n < (1/2)−2n−1.

5 Proof of the main theorem
Theorem 6 follows from Proposition 14 (Subsection 5.1) and Proposition 16 (Subsec-
tion 5.2). In turn, Theorem 7 follows from Proposition 15 (Subsection 5.1) and Propo-
sition 19 (Subsection 5.2).

5.1 From circuits to protocols
Proposition 14. For any constant k > 2 the following holds. Assume that f ∈ Qk and
C 6 f is a circuit, consisting only of THRk+1

2 gates and variables. Then there is a pro-
tocol π, computing Qk-communication game for f , such that depth(π) = O(depth(C)).

Proof. Let the inputs to parties be z1, . . . , zk ∈ f−1(0). Parties descend from the output
gate of C to one of the inputs. They maintain the invariant that for the current gate
g of C it holds that g(z1) = g(z2) = . . . = g(zk) = 0. If g is not yet an input, then g
is a THRk+1

2 gate and g = THRk+1
2 (g1, . . . , gk+1) for some gates g1, . . . , gk+1. For each

zi we have g(zi) = THRk+1
2 (g1(zi), . . . , gk+1(zi)) = 0. Hence for each zi there is at most

one gate out of g1, . . . , gk+1 satisfying gj(zi) = 0. Hence in O(1) bits of communication
parties can agree on the index j ∈ [k + 1] satisfying gj(z1) = gj(z2) = . . . gj(zk) = 0.

Thus in O(depth(π)) bits of communication they reach some input of C. If this input
contains the variable xl, then by the invariant z1

l = z2
l = . . . = zk

l = 0, as required.

Exactly the same argument can be applied to the following proposition.

Proposition 15. For any constant k > 2 the following holds. Assume that f ∈ Rk and
C 6 f is a circuit, consisting only of THRk+1

2 gates and literals. Then there is a protocol
π, computing Rk-communication game for f , such that depth(π) = O(depth(C)).

17

5.2 From protocols to circuits
Proposition 16. For every constant k > 2 the following holds. Let f ∈ Qk. Assume
that π is a communication protocol computing Qk-communication game for f . Then
there is a circuit C 6 f , consisting of THRk+1

2 gates and variables, such that depth(C) =
O(depth(π)).

Proof. In the proof we will use the following terminology for strategies in Qk-hypotheses
game. Fix some strategy S. A current play is a finite sequence r1, r2, r3, . . . rj of integers
from 0 to k. By ri we mean Nature’s response in the ith round. Given a current play, let
Hi

0, . . . ,Hi
k ⊂ f−1(0) be k + 1 hypotheses Learner makes in the ith round according to

S if Nature’s responses in the first i− 1 rounds were r1, . . . , ri−1. If after that Nature’s
response is ri, then Nature’s input vector z satisfies z ∈ H i

ri
. We say that z ∈ f−1(0)

is compatible with the current play r1, . . . , rj if z ∈ H1
r1 , . . . , z ∈ Hj

rj
. Informally, this

means that Nature, having z on input, can produce responses r1, . . . , rj by playing against
strategy S.

Set d = depth(π). By Proposition 10 it is enough to give a O(d)-round winning
strategy of Learner in the Qk-hypotheses game for f . Strategy proceeds in d iterations,
each iteration takes O(1) rounds.

As the game goes on, a sequence of Nature’s responses r1, r2, r3 . . . is produced.
Assume that r1, . . . , rh′ are Nature’s responses in the first h iteration (here h′ is the
number of rounds in the first h iterations). Given any r1, r2, r3 . . ., by Zh we denote the
set of all z ∈ f−1(0) which are compatible with r1, . . . rh′ , . We also say that elements of
Zh are compatible with the current play after h iterations.

Let V be the set of all nodes of the protocol π and let T be the set of all terminals
of the protocol π.

Consider a set Z ⊂ f−1(0), a set of nodes U ⊂ V and a function g : Z → C, where
|C| = k. A g-profile of a tuple (z1, . . . , zk) ∈ Z is a vector (g(z1), . . . , g(zk)) ∈ Ck.

We say that g : Z → C is complete for Z with respect to the set of nodes U if the
following holds. For every vector c̄ ∈ Ck there exists a node v ∈ U such that all tuples
from Zk with g-profile c̄ visit v in the protocol π.

We say that a set of nodes U ⊂ T is complete for Z if there exists g : Z → C, |C| = k
which is complete for Z with respect to U .

Note that we can consider only complete sets of size at most kk. Formally, if U is
complete for Z, then there is a subset U ′ ⊂ U of size at most kk which is also complete
for Z. Indeed, there are kk possible g-profiles and for each we need only one node in U .
Lemma 17. Assume that U ⊂ T is complete for Z ⊂ f−1(0). Then there exists i ∈ [n]
such that zi = 0 for every z ∈ Z.

Proof. If Z is empty, then there is nothing to prove. Otherwise let g : Z → C, |C| = k
be complete for Z with respect to U . Take any vector c̄ = (c1, . . . , ck) ∈ Ck such that
{ci | i ∈ [k]} = g(Z). There exists a node v ∈ U such that any tuple from Zk with
g-profile c̄ visits v. Note that v is a terminal of π and let i be the output of π in g.
Let us show that for any z ∈ Z it holds that zi = 0. Indeed, note that there exists a

18

tuple z̄ ∈ Zk which includes z and which has g-profile c̄. This tuple visits v. Since π
computes Qk-communication game for f , every element of the tuple z̄ should have 0 at
the ith coordinate. In particular, this holds for z.

After d iterations Learner should be able to produce an output. For that there should
exist i ∈ [n] such that for any z ∈ Zd it holds that zi = 0. We will use Lemma 17 to
ensure that. Namely, we will ensure that there exists U ⊂ T which is complete for Zd.
Learner achieves this by maintaining the following invariant.

Let us say that a set of nodes U is h-low if every element of U is either a terminal or
a node of depth at least h.

Invariant 1
There is a h-low set U which is complete for Zh.

This invariant implies that Learner wins in the end, as any d-low set consists only of
terminals.

A 0-low set which is complete for Z0 = f−1(0) is a set consisting only of the starting
node of π.

Assume that Invariant 1 holds after h iteration. Let us show how to perform the
next iteration to maintain the invariant. For that we need a notion of communication
profile.

A communication profile of z ∈ f−1(0) with respect to a set of nodes U ⊂ V is a
function pz : U → {0, 1}. For v ∈ U the value of pz(v) is defined as follows. If v is a
terminal, set pz(v) = 0. Otherwise let i ∈ [k] be the index of the party communicating
at v. Set pz(v) to be the bit transmitted by the ith party at v on input z. I.e., pz for
every v ∈ U contains information where the protocol goes from the node v if the party,
communicating at v, has z on input.

We also define a communication profile of the tuple (z1, . . . , zk) ∈ (f−1(0))k as
(pz1 , . . . , pzk).
Lemma 18. Let (z1, . . . , zk), (y1, . . . , yk) ∈ (f−1(0))k be two inputs visiting the same
node v ∈ V \ T . Assume that their communication profiles with respect to {v} coincide.
Then these two inputs visit the same successor of v.

Proof. Let their common communication profile with respect to {v} be (p1, . . . , pk).
Next, assume that i is the index of the party communicating at v. Then the information
where these inputs descend from v is contained in pi.

Here is what Learner does during the (h+1)st iteration. He takes any h-low U of size
at most kk which is complete for Zh. Then he takes any g : Zh → C, |C| = k which is
complete for Zh with respect to U . He now devises a new function g′ taking elements of
the set Zh on input. The value of g′(z) is a pair (pz, g(z)), where pz is a communication
profile of z with respect to U . There are at most 2|U | 6 2kk different communication
profiles with respect to U . Hence g′(z) takes at most 2kk · k = O(1) values.

19

At each round of the (h + 1)st iteration Learner asks Nature to identify some pair
(p, c), where p : U → {0, 1} and c ∈ C, such that g′(z) 6= (p, c) for the Nature’s vector
z. Namely, we take any k + 1 values of g′ which are not yet rejected by Nature and
ask Nature to reject one of them. We do so until there are only k possible values
(p1, c1), . . . (pk, ck) left. This takes O(1) rounds and the (h + 1)st iteration is finished.
Any z ∈ f−1(0) which is compatible with the responses Nature’ gave during the (h+1)st
iteration in the current play satisfies g′(z) ∈ C ′ = {(p1, c1), . . . (pk, ck)}. In particular,
any z ∈ Zh+1 satisfies g′(z) ∈ C ′. I.e., the restriction of g′ to Zh+1 is a function of the
form g′ : Zh+1 → C ′. Let us show that g′ : Zh+1 → C ′ is complete for Zh+1 with respect
to some (h+ 1)-low set U ′. This will ensure that Invariant 1 is maintained after h+ 1
iterations.

We define U ′ is follows. Take any vector c̄ ∈ (C ′)k. It is enough to show that all the
inputs from (Zh+1)k with g′-profile c̄ visit the same node v′ which is either a terminal
or of depth at least h + 1. Then we just set U ′ to be the union of all such v′ over all
possible g′-profiles.

All the tuples from (Zh+1)k with the same g′-profile visit the same node v ∈ U . This
is because g′-profile of a tuple determines its g-profile (the value of g′ determines the
value of g) , and hence we can use Invariant 1 for Zh−1 here. If v is a terminal, there
is nothing left to prove. Otherwise, note that g′-profile of a tuple also determines its
communication profile with respect to U and hence with respect to {v} ⊂ U . Therefore
all the tuples with the same g′-profile by Lemma 18 visit the same successor of v.

With straightforward modifications one can obtain a proof of the following:

Proposition 19. For every constant k > 2 the following holds. Let f ∈ Rk. Assume that
π is a dag-like protocol computing Rk-communication game for f . Then there is a circuit
C 6 f , consisting of THRk+1

2 gates and literals, satisfying depth(C) = O(depth(π)).

Corollary 20 (Weak version of Theorem 3). For any constant k > 2 there exists
O(log2 n)-depth formula for THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables.

Proof. We will show that there exists O(log2 n)-depth protocol π computing Qk-
communication game for THRkn+1

n+1 . By Proposition 16 this means that there is a
O(log2 n)-depth formula F 6 THRkn+1

n+1 , consisting only of THRk+1
2 gates and variables.

It is easy to see that F actually coincides with THRkn+1
n+1 . Indeed, assume that F (x) = 0

for some x with at least n+ 1 ones. Then it is easy to construct x2, . . . , xk, each with n
ones, such that there is no common 0-coordinate for x, x2, . . . , xk. On all of these vectors
F takes value 0. However, the function computed by F should belong to Qk (Proposition
4).

Let π be the following protocol. Assume that the inputs to parties are x1, x2, . . . , xk ∈
{0, 1}kn+1, without loss of generality we can assume that in each xr there are exactly n
ones. For x ∈ {0, 1}kn+1 define supp(x) = {i ∈ [kn + 1] | xi = 1}. Let T be a binary
rooted tree of depth d = log2(n) + O(1) with kn + 1 leafs. Identify leafs of T with
elements of [kn + 1]. For a node v of T let Tv be the set of all leafs of T which are
descendants of v. Once again, we view Tv as a subset of [kn+ 1].

20

The protocol proceeds in at most d iterations. After i iterations, i = 0, 1, 2, . . . , d,
parties agree on a node v of T of depth i, satisfying the following invariant:

k∑
r=1
|supp(xr) ∩ Tv| < |Tv|. (8)

At the beginning Invariant (8) holds just because v is the root, Tv = [kn + 1] and each
supp(xr) is of size n.

After d iterations v = l is a leaf of T . Parties output l. This is correct because by
(8) we have |Tl| = 1 =⇒ |supp(xr) ∩ Tl| = 0 =⇒ xl = 0 for every r ∈ [k].

Let us now explain what parties do at each iteration. If the current v is not a leaf,
let v0, v1 be two children of v. Each party sends |supp(xr) ∩ Tv0| and |supp(xr) ∩ Tv1|,
using O(log n) bits. Since Tv0 and Tv1 is a partition of Tv, we have:

1∑
b=0

k∑
r=1
|supp(xr) ∩ Tvb

| =
k∑

r=1
|supp(xr) ∩ Tv| < |Tv| =

1∑
b=0
|Tvb
|.

Thus the inequality:
k∑

r=1
|supp(xr) ∩ Tvb

| < |Tvb
| (9)

is true either for b = 0 or for b = 1. Let b∗ be the smallest b ∈ {0, 1} for which (9) is
true. Parties proceed to the next iteration with v being replaced by vb∗ .

There are d = O(log n) iterations, at each parties communicate O(log n) bits. Hence
π is O(log2 n)-depth, as required.
Remark. Strategy from the proof of Proposition 16 is efficient only in terms of the
number of rounds. In the next section we give another version of this strategy. This
version will ensure that circuits we obtain from protocols for Qk-communication games
are not only low-depth, but also polynomial-size and explicit. For that, however, we
require a bit more from the protocol π.

6 Effective version
Fix f ∈ Qk. We say that a dag-like communication protocol π strongly computes Qk-
communication game for f if for every terminal t of π, for every x ∈ f−1(0) and for every
i ∈ [k] the following holds. If x is i-compatible with t, then xj = 0, where j = l(t) is the
label of terminal t in the protocol π.

Similarly, fix f ∈ Rk. We say that a dag-like communication protocol π strongly
computes Rk-communication game for f if for every terminal t of π, for every x ∈ f−1(0)
and for every i ∈ [k] the following holds. If x is i-compatible with t, then xj = b, where
(j, b) = l(t) is the label of terminal t in the protocol π.

Strong computability essentially (but not completely) coincides with the notion of
computability that Sokolov gave in [14] for general relations. Strong computability im-
plies more intuitive notion of computability that we gave in the Preliminaries. The
opposite direction is false in general.

21

Next we prove an effective version of Proposition 16.

Theorem 21. For every constant k > 2 there exists a polynomial-time algorithm A such
that the following holds. Assume that f ∈ Qk and π is a dag-like protocol which strongly
computes Qk-communication game for f . Then, given the light form of π, the algorithm
A outputs a circuit C 6 f , consisting only of THRk+1

2 gates and variables, such that
depth(C) = O(depth(π)), size(C) = O

(
size(π)O(1)

)
.

Proof. We will again give a O(d)-round winning strategy of Learner in the Qk-hypotheses
game for f . Now, however, we should ensure that the light form of our strategy is of
size O

(
size(π)O(1)

)
and can be computed in time O

(
size(π)O(1)

)
from the light form of

π. Instead of specifying the light form of our strategy directly we will use the following
trick. Assume that Learner has a working tape consisting of O(log size(π)) cells, where
each cell can store one bit. Learner memorizes all the Nature’s responses so that he
knows the current position of the game. But he does not store the sequence of Nature’s
responses on the working tape (there is no space for it). Instead, he first makes his
hypotheses which depend on the current position. Then he receives a Nature’s response
r ∈ {0, 1, . . . , k}. And then he modifies the working tape, but the result should depend
only on the current content of the working tape and on r (and not on the current
position in a game). Moreover, we will ensure that modifying the working tape takes
O
(
size(π)O(1)

)
time, given the light form of π.

The main purpose of the working tape manifests itself in the end. Namely, at some
point Learner decides to stop making hypotheses. This should be indicated on the
working tape. More importantly, Learner’s output should depend only on the content
of working tape in the end (and not on the whole sequence of Nature’s responses).
Moreover, this should take O

(
size(π)O(1)

)
time to compute that output, given the light

form of π.
If a strategy satisfies these restrictions, then its light form is computable in

O
(
size(π)O(1)

)
time given the light form of π. Indeed, the underlying dag will con-

sist of all possible configurations of the working tape. There are O
(
size(π)O(1)

)
of them,

as working tape uses O(log size(π)) bits. For all non-terminal configurations c we go
through all r ∈ {0, 1, . . . , k}. We compute what would be a configuration cr of the
working tape if the current configuration is c and Nature’s response is r. After that we
connect c to c0, c1, . . . , ck. Finally, in all terminal configurations we compute the outputs
of Learner. This gives a light form of our strategy in O

(
size(π)O(1)

)
time.

Let V be the set of nodes of π and T be the set of terminals of π. Strategy proceeds
in d iterations, each taking O(1) rounds. We define sets Zh exactly as in the proof
of Proposition 16. We also use the same notion of communication profile. However,
we define completeness in a different way. First of all, instead of working with sets of
nodes with no additional structure we will work with multidimensional arrays of nodes.
Namely, we will consider k-dimensional arrays in which every dimension is indexed by
integers from [k]. Formally, such arrays are functions of the form M : [k]k → V . We will
use notation M [c1, . . . , ck] for the value of M on (c1, . . . , ck) ∈ [k]k.

22

Consider any Z ⊂ f−1(0). We say that g : Z → [k] is complete for Z with respect to
a multidimensional array M : [k]k → V if for every (c1, . . . , ck) ∈ [k]k, for every i ∈ [k]
and for every z ∈ Z the following holds. If ci = g(z), then z is i-compatible with
M [c1, . . . , ck].

We say that a multidimensional array M : [k]k → V is complete for Z if there exists
g : Z → [k] which is complete with respect to M .

To digest the notion of completeness it is instructive to consider the case k = 2. In
this case M is a 2 × 2 table containing four nodes of π. The function g : Z → [2] is
complete for Z with respect to M if the following holds. First, for every z ∈ Z two
nodes in the g(z)th row of M should be 1-compatible with z. Second, for every z ∈ Z
two nodes in the g(z)th column of M should be 2-compatible with z.

Let us now establish an analog of Lemma 17.
Lemma 22. Assume that M : [k]k → T is complete for Z ⊂ f−1(0). Let l be the output
of π in the terminal M [1, 2, . . . , k]. Then zl = 0 for every Z.

Proof. Since π strongly computes Qk-communication game for f , it is enough to show
that every z ∈ Z is i-compatible with M [1, 2, . . . , k] for some i. Take g : Z → [k]
which is complete for Z with respect to M . By definition z is g(z)-compatible with
M [1, 2, . . . , k].

We now proceed to the description of the Learner’s strategy. The working tape of
Learner consists of:

• an integer iter;

• a multidimensional array M : [k]k → V ;

• O(1) additional bits of memory.

Integer iter will be at most d 6 size(π) so to store all this information we need
O(log(size(π))) bits, as required. Integer iter always equals the number of iterations
performed so far (at the beginning iter = 0). The arrayM changes only at the moments
when iter is incremented by 1. So let Mh denote the content of the array M when
iter = h.

We call an array of nodes h-low if every node in it is either terminal or of depth at
least h. Learner maintains the following invariant.

Invariant 2
Mh is h-low and Mh is complete for Zh.

At the beginning Learner sets every element of M0 to be the starting node of π so
that Invariant 2 trivially holds.

Note that every node in Md is a terminal of π. After d iterations Learner outputs
the label of terminal Md[1, 2, . . . , k] in the protocol π. As Md is complete for Zd due to
Invariant 2, this by Lemma 22 will be a correct output in the Qk-hypotheses game for

23

f . Obviously producing the output takes polynomial time given the light form of π and
the content of Learner’s working tape in the end.

Now we need to perform an iteration. Assume that h iterations passed and Invariant
2 still holds. Let Uh be the set of all nodes appearing in Mh. Take any function
g : Zh → [k] which is complete for Zh with respect to Mh.

At each round of the (h + 1)st iteration Learner asks Nature to specify some pair
(p, c) ∈ {0, 1}Uh × [k] such that (pz, g(z)) 6= (p, c), where z is the Nature’s vector and
pz is a communication profile of z with respect to Uh. Learner stores each (p, c) using
his O(1) additional bits on the working tape. Learner can do this until there are only
k pairs from (p1, c1), . . . , (pk, ck) ∈ {0, 1}Uh × [k] left which are not rejected by Nature.
When this moment is reached, the (h + 1)st iteration is finished. The iteration takes
2|Uh| ·k−k = O(1) rounds, as required. For any z compatible with the current play after
h+ 1 iterations we know that (pz, g(z)) is among (p1, c1), . . . , (pk, ck), i.e,

(pz, g(z)) ∈ {(p1, c1), . . . , (pk, ck)} for all z ∈ Zh+1. (10)

Learner writes (p1, c1), . . . , (pk, ck) on the working tape (all the pairs that were ex-
cluded are on the working tape and hence he can compute the remaining ones). Learner
then computes a (h + 1)-low array Mh+1 which will be complete for Zh+1. To compute
Mh+1 he will only need to know Mh, (p1, c1), . . . , (pk, ck) (this information is on the
working tape) and the light form of π.

Namely, Learner determines Mh+1[d1, . . . , dk] for (d1, . . . , dk) ∈ [k]k as follows. Con-
sider the node v = Mh[cd1 , . . . , cdk

]. If v is a terminal, then set Mh+1[d1, . . . , dk] = v.
Otherwise let i ∈ [k] be the index of the party communicating at v. Look at pdi

, which
can be considered as a function of the form pdi

: Uh → {0, 1}. Define r = pdi
(v). Among

two edges, starting at v, choose one which is labeled by r. Descend along this edge from
v and let the resulting successor of v be Mh+1[d1, . . . , dk].

Obviously, computing Mh+1 takes O
(
size(π)O(1)

)
. To show that Invariant 2 is

maintained we have to show that (a) Mh+1 is (h+ 1)-low and (b) Mh+1 is complete for
Zh+1.

The first part, (a), holds because each Mh+1[d1, . . . , dk] is either a terminal or a
successor of a node of depth at least h. For (b) we define the following function:

g′ : Zh+1 → [k], g′(z) = i, where i is such that (pz, g(z)) = (pi, ci).

By (10) this definition is correct. We will show that g′ is complete for Zh+1 with respect
to Mh+1.

For that take any (d1, . . . , dk) ∈ [k]k, z ∈ Zh+1 and i ∈ [k] such that di = g′(z). We
shall show that z is i-compatible with a node Mh+1[d1, . . . , dk]. By definition of g′ we
have that g(z) = cdi

. As by Invariant 2 function g is complete for Zh with respect to
Mh, this means that z is i-compatible with v = M [cd1 , . . . , cdk

]. If v is a terminal, then
Mh+1[d1, . . . , dk] = v and there is nothing left to proof.

Otherwise v ∈ V \ T . Let j be the index of the party communicating at v. By
definition Mh+1[d1, . . . , dk] is a successor of v. If j 6= i, i.e., not the ith party communi-
cates at v, then any successor of v is i-compatible with z. Finally, assume that j = i.

24

Node Mh+1[d1, . . . , dk] is obtained from v by descending along the edge which is labeled
by r = pdi

(v). Hence to show that z is i-compatible with Mh+1[d1, . . . , dk] we should
verify that at v on input z the ith party transmits the bit r. For that again recall that
g′(z) = di, which means by definition of g′ that pz = pdi

. I.e., pdi
is the communication

profile of z with respect to Uh. In particular, the value r = pdi
(v) is the bit transmitted

by the ith party on input z at v, as required.

In the same way one can obtain an analog of the previous theorem for the Rk-case.

Theorem 23. For every constant k > 2 there exists a polynomial-time algorithm A
such that the following holds. Assume that f ∈ Rk and π is a dag-like protocol which
strongly computes Rk-communication game for f . Then, given the light form of π, the
algorithm A outputs a circuit C 6 f , consisting only of THRk+1

2 gates and literals, such
that depth(C) = O(depth(π)), size(C) = O

(
size(π)O(1)

)
.

7 Derivation of Theorems 1 and 3
In this section we obtain Theorems 1 and 3 by devising protocols strongly computing
the corresponding Qk-communication games. Unfortunately, establishing strong com-
putability requires diving into straightforward but tedious technical details, even for
simple protocols.

Alternative proof of Theorem 1. We will show that there exists O(log n)-depth protocol
π with polynomial-time computable light form, strongly computing Q2-communication
game for MAJ2n+1. By Theorem 21 this means that there is a polynomial-time com-
putable O(log n)-depth formula F 6 MAJ2n+1, consisting only of MAJ3 gates and vari-
ables. From self-duality of MAJ2n+1 and MAJ3 it follows that F computes MAJ2n+1.

Take a polynomial-time computable O(log n)-depth monotone formula F ′ for
MAJ2n+1. Consider the following communication protocol π. The tree of π coincides
with the tree of F ′. Inputs to F ′ will be leafs of π. In a leaf containing input variable
xi the output of the protocol π is i. Remaining nodes of π are ∧ and ∨ gates. In the ∧
gates communicates the first party, while in the ∨ gates communicates the second party.

Fix an ∧ gate g (which belongs to the first party). Let g0, g1 be gates which are fed
to g, i.e., g = g0 ∧ g1. There are two edges, starting at g, one leads to g0 (and is labeled
by 0) and the other leads to g1 (and is labeled by 1). Take an input a ∈ MAJ−1

2n+1(0) to
the first party. On input a at the gate g the first party transmits the bit r = min{c ∈
{0, 1} | gc(a) = 0}. If the minimum is over the empty set, then we set r = 0.

Take now an ∨ gate h belonging to the second party. Similarly, there are two edges,
starting at h, one leads to h0 (and is labeled by 0) and the other leads to h1 (and is
labeled by 1). Here h0, h1 are two gates which are fed to h, i.e., h = h0 ∨ h1. Take an
input b ∈ MAJ−1

2n+1(0) to the second party. On input b at the gate h the second party
transmits the bit r = min{c ∈ {0, 1} | hc(¬b) = 1}. If the minimum is over the empty
set, then we set r = 0. Here ¬ denotes the bit-wise negation. Description of the protocol
π is finished.

25

Clearly, the protocol π is of depth O(log n) and its light form is polynomial-time
computable. It remains to argue that the protocol strongly computes Q2-communication
game for MAJ2n+1. Nodes of the protocol may be identified with the gates of F ′. Con-
sider any path p = 〈e1, . . . , em〉 in the protocol π. Assume that ej is an edge from gj−1 to
gj and g0 is the output gate of F ′. We shall show that the following: if a ∈ MAJ−1

2n+1(0)
is 1-compatible with p, then g0(a) = g1(a) = . . . = gm(a) = 0. Indeed, g0(a) = 0 holds
because F ′ computes MAJ2n+1. Now, assume that gj(a) = 0 is already proved. If gj is
an ∨ gate, then gj+1(a) = 0 just because gj+1 feds to gj. Otherwise gj is an ∧ gate which
therefore belongs to the first party. Let r ∈ {0, 1} is the label of the edge ej+1. Note
that gj+1 = gj

r , where g
j
0, g

j
1 are two gates which are fed to gj. . Since a is 1-compatible

with p, it holds that r coincides with the bit that the first party transmits at gj on input
a, i.e., with min{c ∈ {0, 1} | gj

c(a) = 0}. The set over which the minimum is taken
is non-empty because gj(a) = 0. In particular r belongs to this set, which means that
gj+1(a) = gj

r(a) = 0, as required.
Similarly one can verify that if b ∈ MAJ−1

2n+1(0) is 2-compatible with p, then g0(¬b) =
g1(¬b) = . . . = gm(¬b) = 0. Hence we get that if a leaf l is 1-compatible (2-compatible)
with a (b) and l contains a variable xi, then ai = 0 (¬bi = 1). Hence the protocol
strongly computes the Q2-communication game for MAJ2n+1.

Proof of Theorem 3. We will realize the protocol from the proof of Corollary 20 in
such a way that it will give us O(log2 n)-depth polynomial-size dag-like protocol with
polynomial-time computable light form, strongly computing Qk-communication game
for THRkn+1

n+1 . By Theorem 21 this means that there is a polynomial-time computable
O(log2 n)-depth polynomial-size circuit C 6 THRkn+1

n+1 , consisting only of THRk+1
2 gates

and variables. With the same argument as in Corollary 20 one can show that C coincides
with THRkn+1

n+1 .
We will use the same tree T as in the proof of Corollary 20. Let us specify the

underlying dag G of our protocol π. For a node v of T let Sv be the set of all tuples
(s1, s2, . . . , sk) ∈ {0, 1, . . . , kn + 1}k such that s1 + s2 + . . . + sk < |Tv|. For every node
v of T and for every (s1, s2, . . . , sk) ∈ Sv the dag G will contain a node identified with
a tuple (v, s1, s2, . . . , sk). These nodes of G will be called the main nodes (there will be
some other nodes too). The starting node of G will be (r, n, . . . , n), where r is the root
of T . Note that if l is a leaf of T , then |Tl| = 1. Hence the only main node having l
as the first coordinate is (l, 0, . . . , 0). The set of terminals of π will coincide with the
set of all main nodes of the form (l, 0, . . . , 0), where l is a leaf of T . The output of π in
(l, 0, . . . , 0) is l.

For an integer s 6 kn + 1 let W (s) be a binary tree of depth O(log n) with
|{(a, b) | a, b ∈ {0, 1, . . . , s}, a+ b = s}| leaves. We assume that leaves of W (s) are iden-
tified with elements of {(a, b) | a, b ∈ {0, 1, . . . , s}, a + b = s}. We use W (s) in the
construction of G. Namely, take any main node (v, s1, s2, . . . , sk) with a non-leaf v.
Attach W (s1) to it. Then attach to every leaf of W (s1) a copy of W (s2). Next, to
every leaf of the resulting tree attach a copy of W (s3) and so on. In this way we ob-
tain a binary tree W (v, s1, . . . , sk) of depth O(log n) growing at (v, s1, . . . , sk). Its leaves
can be identified with tuples of integers (a1, b1, . . . , ak, bk) satisfying a1, b1, . . . , ak, bk >

26

0, a1 + b1 = s1, . . . , ak + bk = sk. We will merge every leaf of W (v, s1, . . . , sk) with some
main node. Namely, take a leaf (a1, b1, . . . , ak, bk). If a1 + . . . + ak < |Tv0 |, then we
merge (a1, b1, . . . , ak, bk) with the main node (v0, a1, . . . , ak). Otherwise it should hold
that b1 + . . . + bk < |Tv1|. In this case we merge (a1, b1, . . . , ak, bk) with the main node
(v1, b1, . . . , bk).

Description of the dag of π is finished. Since k is constant, there are nO(1) main
nodes and to each we attach a tree of depth O(log n). Hence π is O(log2 n)-depth and
nO(1)-size. Let us define a partition of non-terminal nodes between parties. Take a main
node (v, s1, . . . , sk), where v is not a leaf of T . The tree W (v, s1, . . . , sk), growing from
(v, s1, . . . , sk) consists of copies of W (s1), . . . ,W (sk). We simply say that the ith party
communicates in copies of W (si). After that we conclude that the light form of π is
polynomial-time computable.

Now let us specify how the ith party communicates inside W (si). Assume that
x ∈ {0, 1}kn+1 is the input to the ith party. If |Tv ∩ supp(x)| 6= si, then the ith party
communicates arbitrarily. Now, assume that |Tv ∩ supp(x)| = si. Then the ith party
communicates in such a way that the resulting path descends from the root of W (si) to
the leaf identified with a pair of integers (|Tv0 ∩ supp(x)|, |Tv1 ∩ supp(x)|).

From this we immediately get the following observation. Let p be a path from the root
of W (v, s1, . . . , sk) to a leaf identified with a tuple (a1, b1, . . . , ak, bk). Further, assume
that x ∈ (THRkn+1

n+1)−1(0), satisfying |Tv ∩ supp(x)| = si, is i-compatible with p. Then
ai = |Tv0 ∩ supp(x)| and bi = |Tv1 ∩ supp(x)|. Indeed, any such p passes though a copy
W (si) and leaves W (si) in a leaf identified with (|Tv0 ∩ supp(x)|, |Tv1 ∩ supp(x)|).

From this observation one can easily deduce that if x ∈ (THRkn+1
n+1)−1(0) is i-

compatible with a main node (v, s1, . . . , sk), then |Tv ∩ supp(x)| = si. Indeed, we can
obtain this by induction on the depth of v. Induction step easily follows from the pre-
vious paragraph. As for induction base we notice that |Tr ∩ supp(x)| = n for the root r
of T (as in the proof of Corollary 20 we assume that |supp(x)| = n as party can always
add missing 1’s).

In particular, this means that π strongly computes Qk-communication game for
THRkn+1

n+1 . Indeed, any terminal of π is of the form (l, 0, . . . , 0), where l is a leaf of
T . If x ∈ (THRkn+1

n+1)−1(0) is i-compatible with (l, 0, . . . , 0), then, as shown in the previ-
ous paragraph, |Tl ∩ supp(x)| = |{l} ∩ supp(x)| = 0. This means that xl = 0 and hence
the output of the protocol is correct.

8 Open problems
• Can Qk-communication game for THRkn+1

n+1 be solved in O(log n) bits of commu-
nication for k > 3? Equivalently, can THRkn+1

n+1 be computed by O(log n)-depth
circuit, consisting only of THRk+1

2 and variables? Can a deeper look into the con-
struction of AKS sorting network help here (note that we only use this sorting
network as a black-box)?

27

• Can at least Rk-communication game for THRkn+1
n+1 be solved in O(log n) bits of

communication for k > 3? Again, this is equivalent to asking whether THRkn+1
n+1

can be computed by O(log n)-depth circuit, consisting only of THRk+1
2 and lit-

erals. Note that if we allow literals (along with ∧ and ∨ gates), then there are
much simpler constructions of a O(log n)-depth formula for MAJn and, in fact, for
every symmetric Boolean function [16]. Moreover, this can be done in terms of
communication complexity [2]. A natural approach would be to apply ideas of [2]
to Rk-communication games.

• Are there any other interesting functions in Qk and Rk which can be analyzed with
our technique?

Acknowledgments. The authors are grateful to Alexander Shen for suggesting to
generalize our initial results.

References
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An 0 (n log n) sorting network. In Proceedings of

the fifteenth annual ACM symposium on Theory of computing, pages 1–9, 1983. https:
//doi.org/10.1145/800061.808726.

[2] G. S. Brodal and T. Husfeldt. A communication complexity proof that symmetric functions
have logarithmic depth. BRICS, Department of Computer Science, Univ., 1996.

[3] G. Cohen, I. B. Damgård, Y. Ishai, J. Kölker, P. B. Miltersen, R. Raz, and R. D.
Rothblum. Efficient multiparty protocols via log-depth threshold formulae. In An-
nual Cryptology Conference, pages 185–202. Springer, 2013. https://doi.org/10.1007/
978-3-642-40084-1_11.

[4] I. Dinur and O. Meir. Toward the krw composition conjecture: Cubic formula lower
bounds via communication complexity. computational complexity, 27(3):375–462, 2018.
https://doi.org/10.1007/s00037-017-0159-x.

[5] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson. Toward better formula lower
bounds: an information complexity approach to the krw composition conjecture. In Pro-
ceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 213–222,
2014. https://doi.org/10.1145/2591796.2591856.

[6] O. Goldreich. Valiant’s polynomial-size monotone formula for majority, 2011. http:
//www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf.

[7] M. Göös and T. Pitassi. Communication lower bounds via critical block sensitivity. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages
847–856, 2014. https://doi.org/10.1145/2591796.2591838.

[8] A. Gupta and S. Mahajan. Using amplification to compute majority with small ma-
jority gates. Computational Complexity, 6(1):46–63, 1996. https://doi.org/10.1007/
BF01202041.

28

https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/800061.808726
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/s00037-017-0159-x
https://doi.org/10.1145/2591796.2591856
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf
https://doi.org/10.1145/2591796.2591838
https://doi.org/10.1007/BF01202041
https://doi.org/10.1007/BF01202041

[9] S. Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012. https://doi.org/10.1007/978-3-642-24508-4.

[10] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3-4):191–204,
1995. https://doi.org/10.1007/BF01206317.

[11] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990. https:
//doi.org/10.1137/0403021.

[12] A. Rao and A. Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

[13] R. Raz and P. McKenzie. Separation of the monotone nc hierarchy. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 234–243. IEEE, 1997.
https://doi.org/10.1109/SFCS.1997.646112.

[14] D. Sokolov. Dag-like communication and its applications. In International Computer
Science Symposium in Russia, pages 294–307. Springer, 2017. https://doi.org/10.
1007/978-3-319-58747-9_26.

[15] L. G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms,
5(3):363–366, 1984. https://doi.org/10.1016/0196-6774(84)90016-6.

[16] I. Wegener. The complexity of Boolean functions. BG Teubner, 1987.

29 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/BF01206317
https://doi.org/10.1137/0403021
https://doi.org/10.1137/0403021
https://doi.org/10.1109/SFCS.1997.646112
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1016/0196-6774(84)90016-6

