
Interactive Error Resilience Beyond 2
7

Klim Efremenko∗

Ben-Gurion University

Gillat Kol†

Princeton University

Raghuvansh R. Saxena‡

Princeton University

Abstract

Interactive error correcting codes can protect interactive communication protocols

against a constant fraction of adversarial errors, while incurring only a constant

multiplicative overhead in the total communication. What is the maximum fraction of

errors that such codes can protect against?

For the non-adaptive channel, where the parties must agree in advance on the

order in which they communicate, Braverman and Rao prove that the maximum error

resilience is 1
4 (STOC, 2011). Ghaffari, Haeupler, and Sudan (STOC, 2014) consider

the adaptive channel, where the order in which the parties communicate may not be

fixed, and give a clever protocol that is resilient to a 2
7 fraction of errors. This was

believed to be optimal.

We revisit this result, and show how to overcome the 2
7 barrier. Specifically, we

show that, over the adaptive channel, every two-party communication protocol can

be converted to a protocol that is resilient to 7
24 > 2

7 fraction of errors with only a

constant multiplicative overhead to the total communication. The protocol is obtained

by a novel implementation of a feedback mechanism over the adaptive channel.

∗klimefrem@gmail.com
†gillat.kol@gmail.com
‡rrsaxena@princeton.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 22 (2020)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:rrsaxena@princeton.edu

1 Introduction

We study the error resilience of interactive coding schemes [Sch96]: what is the maximum1

θ > 0, such that every two-party communication protocol can be simulated over a channel

that corrupts θ fraction of the communicated symbols adversarially, and the simulation

blows-up the communication by only a constant multiplicative factor?

One answer is that this maximum θ is 1
4
. It was observed in [BR11] that even the simple

exchange task, where the communicating parties wish to exchange their inputs, cannot be

performed when θ ≥ 1
4
. The reason is that there is a party, say Alice, that ‘speaks’ in no

more than half of the rounds. Let Alice’s input be x. The adversary can corrupt the first half

of the messages sent by Alice to make it look like her input is some x′ 6= x. If this happens,

Bob cannot tell whether Alice has input x or x′. To prove that any task can be performed

even when the noise rate approaches 1
4
, [BR11] constructed a beautiful simulation protocol,

building on the groundbreaking work of [Sch96].

The impossibility result described above assumes the ‘standard’ communication

complexity model, where parties take turns communicating. Thus, the order of

communication in the protocol is determined in advance, and is independent of the parties’

inputs and randomness, and of the messages they received previously2. Since the order

of turns cannot be adapted after an execution commences, these protocols are called non-

adaptive (a.k.a. oblivious or static).

A surprising result by Ghaffari, Haeupler, and Sudan [GHS14], shows that this

assumption is not a mere technicality3. Specifically, they give an insightful scheme for

encoding any (noiseless) protocol into a protocol resilient to 2
7

fraction of adversarial

corruptions, in the model where the order of transmissions is not predetermined. This

model is a realistic generalization of the standard model, and is inspired by popular models

in distributed computing abstracting wireless communication systems (e.g., radio networks).

One key idea behind their error resilient protocol, is that it “dynamically” allocates more

resources to the party that was corrupted more, thus circumventing the above lower bound.

This scheme was believed to be tight. In fact, [GHS14] contains a proof of optimality that

was later found to contain a vulnerability.

1.1 Our Results

In this work, we show that the maximum error resilience of adaptive interactive coding

protocols is strictly greater than 2
7
.

1Actually, supremum.
2Indeed, the above impossibility result assumed that the identity of the party that communicates less is

known is advance.
3We mention that [BR11] raise this question in their paper.

2

Theorem 1.1. Let P be a two-party communication protocol4. For every θ < 7
24

, there exists

an adaptive protocol P ′ that simulates P and is resilient to θ fraction of adversarial noise.

Moreover, the length of P ′ is linear in the length of P , and its alphabet set is of constant size

(that depends on θ).

Prior to our work, it was not even known if the 2
7

barrier can be crossed with a protocol P ′

of arbitrary length. It can be shown that 2
7

is the optimal error resilience that can be obtained

by some “natural” families of interactive coding protocols (i.e., symmetric or alternating

protocols), even when waiving the constraint on the encoding length. Indeed, the protocol

we design has a unique structure (see subsection 1.2 and section 2).

We mention that the best known upper bound on the error resilience of adaptive

interactive coding schemes is 1
3

= 8
24

[GHS14]. Pinning down the optimal value is an

extremely intriguing question, and we conjecture that this value is strictly between 7
24

and 8
24

.

1.2 Techniques

As a starting point, we observe that, had the adaptive channel been equipped with a feedback

mechanism, its error resilience could have been improved (cf. [EGH16]). Inspired by

this observation, we design a novel, error resilient, online, feedback mechanism over the

(standard) adaptive channel, called the tagging mechanism. While not providing full fledged

feedback, this tagging mechanism does allow us to send enough feedback to break the 2
7

barrier. To make the mechanism work, we develop tools allowing the parties to estimate the

number of corruptions injected at any given point in the execution of the protocol.

As explained in section 2, the tagging mechanism requires the simulation protocol to

exhibit some ‘non-standard’ features: one inherent property is that Alice’s and Bob’s sides

of the protocol are different – Bob is sending the feedback and Alice is receiving it. Another,

perhaps surprising, source of asymmetry between the parties is that they transmit at different

rates: Alice is transmitting at a higher rate at the beginning of the protocol, while Bob

is transmitting at a higher rate later in the protocol. It can be shown that this kind of

asymmetry between the rates is required in order to break the 2
7

error resilience barrier,

and symmetric schemes à la [GHS14] cannot be used. Our protocol also differs from other

simulation protocols in the interactive coding literature in its decoding function, as in some

cases, the parties’ output is not the one that was seen most often.

We believe that our approach of implementing feedback over channels with no feedback

via tagging, as well as our error measuring tools, can be adapted to study related problems.

1.3 Additional Related Works

The works most related to our paper are [BR11] and [GHS14] mentioned above.

4We assume, without loss of generality, that P is deterministic and non-adaptive, as every randomized
protocol is a distribution over deterministic protocols, and as every adaptive protocol can be converted into
a non-adaptive protocol by doubling the length of the protocol.

3

Since the study of coding for interactive communication was initiated by Schulman

[Sch92, Sch93, Sch96], numerous works have been published in this area [GMS11, BR11,

Bra12, KR13, BE17, BKN14, GMS14, GHK+18, EGH16, BGMO17, e.g.]. For a great survey

of this field, see [Gel17]. It is, by now, well known that adaptive models can be much more

powerful than non-adaptive models [Hae14, GH14, GHS14, AGS16, HV17, EKS18].

The question of maximum error resilience was also studied for feedback and erasure

channels [EGH16, FGOS15, SW17, HSV18], and for a different adaptive model (interesting in

its own right) where collisions do not occur [AGS16]. The works of [HKV15, WQC17, Ber64]

show that the maximal error rate of the message transfer problem (one-way communication)

can be improved in the presence of (even partial and noisy) feedback. Feedback was shown

to also allow the construction of interactive codes with better rates [Pan13, GH17].

2 Overview of Our Error Resilient Protocol

In this section, we give an overview of our interactive coding scheme, highlighting our main

ideas. Recall that our scheme takes a protocol P and converts it to a protocol P ′ that is

resilient to 7/24 fraction of adversarial errors, while only incurring constant multiplicative

overhead.

2.1 The Adaptive Model

The (noisy) adaptive model, suggested by [GHS14], assumes that each party is equipped

with a device that can either receive or transmit in every communication round, and that

an adversary can corrupt some fraction of the rounds, called the ‘corruption budget’.

If, in some round, exactly one party transmits, and the adversary decides not to corrupt

the transmission, then the other party receives the transmitted message. In the case where

both parties decide to transmit, neither gets a message, as neither was listening for one.

Finally, if both parties decide to receive, then since there is no one transmitting, nothing can

be assumed about the received messages. This means that these messages are controlled by

the adversary, and are not ‘charged’ to its ‘corruption budget’.

While it seems pessimistic to assume that the messages received by the parties when they

are both receiving are determined by the adversary, this is crucial in order to avoid ‘signaling’.

For example, if we were to assume that such simultaneous receives can be detected, then

each party can use this to signal their input to the other party. For a formal definition of

this model, see section subsection 3.2, and for additional motivation for the definition, see

[Hae14, GHS14].

2.2 The [GHS14] Protocol

In their paper, [GHS14] show that the adaptive model can be used to get improved error

resilience. Specifically, they show that for every communication task, there is a non-adaptive

4

protocol performing the task in the presence of any adversary whose corruption budget is less

than 2
7
. For simplicity, we next describe the [GHS14] protocol for the restricted bit exchange

task, where each party has a private input bit and both parties wish to know both bits.

The protocol consists of 7N rounds, for some N > 0. In the first 6N rounds, the parties

take turns (alternate) in sending their bits to each other. We call these 6N rounds the

‘non-adaptive part’ of the protocol, as the order of transmissions is known in advance.

The reason for a non-adaptive part of length 6N , is that after 6N rounds, at least one of

the parties is sure about the bit of the other party. This is because the adversary corrupts

< 2
7
· 7N = 2N messages, thus if a party receives the same value 2N times, it must be the

correct value. Since one of the parties receives < 2N/2 = N corrupted messages out of a

total of 6N/2 = 3N , this party receives the correct message > 2N times and is thus sure

about the value of the other party’s bit.

The last N rounds of the [GHS14] protocol form its adaptive part, and in these rounds

only the sure party transmits, while the other party listens. It can be shown that this

suffices to make the unsure party sure. Note that since it is not known in advance which of

the parties will be sure at the beginning of the adaptive part, these rounds are adaptive.

We mention that having at least one of the parties sure at the end of the non-adaptive

part helps synchronize the parties and prevents the case where both parties listen in the same

round in the adaptive part. Such rounds are particularly harmful as the received messages

are adversarial. Furthermore, this property was believed to be necessary. Our proof shows

otherwise.

2.3 The Power of Feedback

Our simulation protocol is quite involved, but as a starting point we observe that even a

small amount of feedback can substantially improve error resilience in the adaptive setting.

The following numerical toy example illustrates how.

Example. Let us shorten the non-adaptive part of the [GHS14] bit exchange protocol to 16
3
N

instead of 6N rounds, but also assume that at the end of this part Alice ‘magically’ knows if

Bob is sure5. We claim that this extra information allows the parties to finish the protocol

with only 4
3
N additional rounds, yielding a protocol with 16

3
N + 4

3
N = 62

3
N rounds, thereby

getting a higher error resilience (as the corruption budget is still 2N).

First, suppose that Bob is not sure after 16
3
N rounds and Alice knows this. Then, no

value was received by Bob ≥ 2N times, implying that ≥ 8
3
N − 2N = 2

3
N messages from

Alice to Bob were corrupted. Since the adversary corrupts a total of < 2N messages,

< 2N − 2
3
N = 4

3
N messages from Bob to Alice, out of 8

3
N , were corrupted. This means that

the majority value received by Alice is correct and she can be sure of that.

We have thus shown that at least one of the parties is sure after the non-adaptive part.

If this party transmits their input 4
3
N additional times, the unsure party receives a total of

5Note that if the communication is over the adaptive channel with feedback, Alice can easily know if Bob
is sure by checking if he received ≥ 2N uncorrupted messages.

5

8
3
N + 4

3
N = 4N messages, and the majority value must be correct as the total number of

corruptions is < 2N .

2.4 Implementing the Feedback

The example shows that if Bob can send some feedback information about how sure he is

along with his input, then Alice can use this information to be sure faster, improving the error

resilience. Can we implement feedback in channels with no “built-in” feedback mechanism,

like the adaptive channel? Our work gives an affirmative answer, at least to some extent.

The first challenge that one encounters when sending feedback over our channel, is that,

like all the other messages in the channel, this feedback can also be corrupted by the

adversary. This can be extremely harmful, as it may create rounds where both parties listen

and thus receive adversarially chosen messages that do not count towards the adversary’s

corruption budget. This will be the case, if for instance, in the above example, Bob is unsure

after the non-adaptive part, but Alice thinks that he is sure.

One way of making the feedback reliable is to send it in multiple rounds so that even if

some of these rounds are corrupted, Alice can still decode some meaningful information out

of the remaining rounds. It can be shown that waiting until the end of the non-adaptive

part and then repeating the feedback either results in an insufficient number of repetitions

or in wasted rounds, hurting the error resilience. This poses the following challenge: how

can Bob start giving feedback about his sureness level at the end of the non-adaptive part,

way before the execution reaches the end of the non-adaptive part?

Our online feedback mechanism. Our solution to this challenge is an ‘online’ feedback

mechanism, implemented through the addition of ‘tags’. At a high level, if Bob ‘believes’

that the last message he received from Alice was corrupted, he will ‘tag’6 his next message

to Alice to reflect that.

In more detail, to decide whether to tag, Bob maintains a lower bound, α, on the number

of errors from Alice to Bob in the non-adaptive part. For the case of bit exchange, α would

be the minimum between the number of times Bob receives 0 and the number of times Bob

receives 1. This is a lower bound on the number of corruptions from Alice to Bob, as either

Alice has the input 1 and all the 0s are due to corruptions or Alice has the input 0, and all

the 1s are due to corruptions. Bob tags the next message he sends if the number of messages

he already tagged is smaller than his current α.

Owing to the (non-trivial) fact that α is a good lower bound on the number of corruptions

from Alice to Bob, tagging α messages is a way of communicating to Alice whether Bob is

sure at the end of the non-adaptive part. Furthermore, it is a resilient way, as Bob basically

transmits α in unary, thus to make Alice believe in a very different value of α, the adversary

will need to spend many corruptions tagging (or removing tags from) many of Bob’s messages.

6Tagging is implemented by simply adding a Boolean value to the message, indicating whether the message
is meant to be tagged.

6

Alice’s weighted decoding procedure. With the tagging procedure described above,

Alice may receive two types of messages throughout the protocol, namely, those that are

tagged and those that are not. If Alice receives many tags, she assumes that the value α for

Bob was large, and therefore, that many of her messages were corrupted. Consequently, she

will try to transmit more often to make Bob sure of her input.

What if the adversary corrupts Bob’s messages and creates ‘fake’ tags? This scenario is

especially problematic as the adversary can change the content of an untagged message sent

by Bob, as well as tag it, with a single corruption. This fake tag may cause Alice to transmit

an unneeded extra message during the adaptive part. Thus, one corruption effectively causes

two different rounds to be useless.

To negate the adversary’s desire of adding tags to effectively enlarge his corruption

budget, in our protocol, Alice discounts tagged messages. This is done by assigning tagged

messages a ‘weight’ that is lower than the weight of untagged messages. Specifically, two

tagged messages counts as one untagged message. Alice then outputs the message with the

highest weight, instead of the message that was received the most frequently. In particular,

perhaps surprisingly, in some cases Alice does not output the most common message she

received. Deciding what weight a tagged message should have requires careful consideration,

as it needs to discourage the adversary from adding fake tags while still giving sufficient

weight to messages that were legitimately tagged.

2.5 Different Rates for Alice and Bob

Above, we claimed that the tagging mechanism allows for reliable feedback as it spreads

Bob’s error count α across many rounds. We next show that α is still not spread enough:

consider the implementation of the protocol in the example in subsection 2.3 using our

tagging mechanism, and suppose that Bob is unsure at the end of the non-adaptive part.

As explained in the example, this implies that ≥ 8
3
N − 2N = 2

3
N messages from Alice to

Bob were corrupted. Assume that our mechanism works well and Bob indeed detects the

corruptions and tags 2
3
N of his messages. By investing another 2

3
N corruptions (for a total

of 4
3
N < 2N corruptions), the adversary can remove these tags, making Alice believe that

Bob is sure and thus listen instead of transmit.

A simple solution to the above problem is to spread α across even more rounds, e.g.,

have Bob tag 2α messages. However, what if the adversary chooses to corrupt, say, the last t

messages transmitted by Alice in the non-adaptive part? In this case, even if Bob detects

those errors, he can only tag his last t messages in the non-adaptive part.

Asymmetric rates. To cope with this problem, we unveil another key idea in our

construction: asymmetric rates. We have Bob transmit more towards the end of the non-

adaptive part. Specifically, Bob transmits two messages for every message sent by Alice, and

7

thus can tag two messages for every corruption he detects7.

A consequence of having Bob send more messages towards the end of the non-adaptive

part, is that he will be transmitting fewer messages near the beginning of the non-adaptive

part. This is because the total number of messages sent by the parties should be roughly the

same, otherwise the adversary will target the messages sent by the party that sends fewer

messages. Indeed, we divide the non-adaptive part of our protocol into two “stages”, and

have Alice transmit at a higher rate in the first stage (stageNA-1), and Bob transmit at a

higher rate in stageNA-2.

We mention that asymmetry in rate can be shown to be necessary: if the parties alternate

for long enough near the beginning of the protocol, then 2
7

is the maximum error resilience

achievable for general interactive tasks.

2.6 Our Protocol’s Structure

Recall that our simulation scheme takes a protocol P and converts it to a protocol P ′ that

is resilient to 7
24

fraction of adversarial errors. Let x, y be inputs for the parties in P . The

protocol P ′ consists of 24CM communication rounds, where C is constant and M is roughly

the length of an execution of P with inputs x, y.

At an extremely high level, the non-adaptive part of P ′ simulates the execution of P with

inputs x, y, a total of 20C times using an interactive list-decodable code that tolerates a very

high error rate. Each such execution is called an ‘iteration’ and consists of M communication

rounds. Let π∗ be the correct transcript of P when it is run with inputs x, y. In iteration

i, each party obtains a (possibly different) candidate8 for π∗: Alice obtains πAi and Bob

obtains πBi . In addition to executing P , in every iteration the parties also exchange the sets

of all candidates they obtained so far.

The first 14C iterations in the non-adaptive part are called ‘stageNA-1’, and in these

iterations Alice transmits 4 messages for every 3 messages transmitted by Bob. The next 6C

iterations in the non-adaptive part are called ‘stageNA-2’, and in these iterations Bob

transmits 2 messages for every message transmitted by Alice. See Figure 1.

On the other hand, the adaptive part (stageA) consists of the communication of 4CM

messages, where Alice transmits in the first a rounds, for some a, and listens in the rest.

Bob, in stageA, listens for ≤ a rounds and transmits in the rest. The party that transmits,

sends their current list of candidates for π∗. The number a is calculated by Alice using the

number of tagged messages she received, and Bob calculates a lower bound on a using the

number of tagged messages he sent. Like the [GHS14] protocol, P ′ is designed to prevent

rounds where both parties listen simultaneously.

7Note that since P may be highly interactive, we cannot afford to have only one of the parties speak for
a long period of time. In particular, we cannot have only Bob speaking towards the end of the non-adaptive
part and have to maintain a sufficient level of alternations.

8Since we use an interactive list-decodable code, the parties actually obtain a set of candidates in every
iteration. We ignore this point in this sketch.

8

2.7 New Attack: Preying On the Weak

While asymmetric rates are necessary, they are a necessary evil (at least when it comes to

highly interactive communication tasks), as they allow for new attacks: near the beginning

of the simulation, when Bob is speaking less often, the adversary can corrupt all of Bob’s

messages to Alice using a small number of corruptions. If the task requires interaction

between Alice and Bob, then all of Alice’s messages sent in this part are now irrelevant.

Thus, the adversary is able to effectively corrupt more messages than the number of errors

it invests.

To deal with this problem, Bob maintains a variable k that captures the number of times

that the adversary corrupted the communication from him to Alice when he was the quieter

party. This is done as follows: recall that our resilient protocol P ′ simulates the execution

of the original protocol P many times. The adversary may corrupt the communication from

Bob to Alice in iteration i to make πAi incorrect, but πAi will always be consistent with Alice’s

input (meaning that if Bob’s messages are as in πAi , Alice’s messages will also be as in πAi).

Observe that π∗ is the only transcript that is consistent with both parties’ inputs. Thus,

since πAi 6= π∗, then in iteration i+ 1, when Bob receives πAi , he can tell that the adversary

corrupted his communication to Alice in round i.

Recall that α is Bob’s estimate of the number of corrupted messages he received from

Alice and that k is his estimate of the number of corrupted messages that Alice received. In

our protocol, Bob’s actions depend on both α and k. Generally, if k is large, then Bob tends

to be unsure, even if α is slightly smaller. Capturing the correct relation between these two

error measures is another challenge.

3 Notation and Formal Problem Definition

3.1 Notation

We use ‘◦’ to denote string concatenation. We use ‘ε’ to denote the empty string (string

consisting of zero symbols).

For a, b ∈ Z, we define the sets [a] = {1, 2, . . . , a}, [a : b] = {a, a + 1, . . . , b},
(a : b] = {a+ 1, a+ 2, . . . , b}. Similarly, we define the sets (a : b) and [a : b).

Let s be a string. We denote by si the ith symbol in s. We denote by s≤i the string

consisting of the first i symbols in s. Similarly, we define s<i, s≥i, s>i.

Ties are broken lexicographically in all arg max. For simplicity of notation, we sometimes

omit floor and ceiling signs, e.g., write a/b instead of ba/bc.
We use small letters as names for numerical variables. We use capital letters as names

for sets and string variables. We use small Greek letters to denote protocol transcripts,

where π is typically a transcript for the original protocol P and τ is a transcript for the

simulation protocol. We use capital Greek letters to denote sets of transcripts, e.g., Π is a

set of transcripts π for the original protocol P . For an (adaptive or non-adaptive) protocol P ,

9

8 6

2 4

4

stageNA-1 stageNA-1

stageNA-2 stageNA-2

stageA

In stageA, transmit
until Bob sure.

Receive afterwards.

In stageA, receive
until sure. Transmit

afterwards.

ALICE BOB

0

14

20

24

Figure 1: The 3 stages in our 7
24

error resilient protocol with their relative lengths and rates.

10

we denote by PA and PB Alice’s and Bob’s sides of the protocol.

3.2 The Adaptive Model

Adaptive protocols. We describe the adaptive model used in the paper. The model was

suggested and studied by [GHS14].

Let Γ be a set that does not contain the special symbol λ. A (deterministic) adaptive

protocol, P , over Γ, is defined by an integer T ∈ N corresponding to length, inputs sets X ,Y ,

output sets X ′,Y ′, message computing functions fA, fB, and output functions outA, outB.

These functions are of the types

fA : X × (Γ ∪ {λ})∗ → Γ ∪ {λ}, fB : Y × (Γ ∪ {λ})∗ → Γ ∪ {λ},

outA : X × (Γ ∪ {λ})T → X ′, outB : Y × (Γ ∪ {λ})T → Y ′.

The protocol P is viewed as a communication protocol between two parties, Alice and

Bob. We describe an execution of this protocol from Alice’s perspective. Bob’s protocol is

analogous. Alice is assumed to be holding an input x ∈ X . At any point in the execution of

the protocol, Alice has a partial received transcript πA. At the beginning of the execution, πA

is set to ε, the empty string. The execution proceeds in rounds. In round i, Alice computes

fA(x, πA). If fA(x, πA) = λ, we say that Alice receives (or listens) in round i. Otherwise,

we say that Alice transmits (or talks). If Alice is receiving in round i, she gets a symbol

πAi ∈ Γ. She appends this to the transcript πA and continues executing the protocol. If Alice

is transmitting in round i, she sends a symbol ai ∈ Γ, appends λ to the transcript πA and

continues executing the protocol. At the end of the protocol, Alice outputs outA(x, πA).

Transcripts. Let Γ be a set and let P be an adaptive protocol over Γ. Let x ∈ X , y ∈ Y ,

and πA, πB ∈ (Γ ∪ {λ})T . We say that πA, πB are legal received transcripts for P on inputs

x, y, if for every i ∈ [T], πAi = λ if and only if fA(x, πA<i) 6= λ, and, similarly, πBi = λ if and

only if fB(y, πB<i) 6= λ. Observe that the tuple (x, y, πA, πB) describes an execution of P , in

the sense that given this tuple, one can generate the view of both parties (or, more generally,

compute any value known to the parties) at every point in the execution.

For all that follows, let x ∈ X , y ∈ Y , πA, πB ∈ (Γ ∪ {λ})T be such that πA, πB are legal

received transcripts for P on x, y.

Types of rounds. We define the set TR(x, y, πA, πB) ⊆ [T] to be the set of all rounds i

such that Alice transmitted and Bob chose to receive in round i of the execution of P

described by (x, y, πA, πB). Formally, i ∈ TR(x, y, πA, πB) if πAi = λ and πBi 6= λ. The sets

RT and RR are defined analogously.

Corruptions. Let i ∈ RT(x, y, πA, πB). We say that the adversary corrupted Alice (or,

corrupted the message from Bob to Alice) in round i of the execution of P described

11

by (x, y, πA, πB), if the symbol sent by Bob in round i is different than the symbol received

by Alice in round i. Formally, if fB(y, πB<i) 6= πAi . We define the corruption of Bob similarly.

For θ ≥ 0, we say that πA, πB contain θ fraction of corruptions (with respect to the

protocol P and inputs x, y), if the total fraction of rounds in which the adversary corrupted

either Alice or Bob is θ.

3.3 The Protocol Simulation Problem

Let P and P ′ be adaptive protocols, and let the output functions of P ′ be outA and outB. We

say that P ′ simulates P and is resilient to θ fraction of adversarial noise, if for any inputs x, y

for P and every legal received transcripts τA, τB for P ′ on inputs x, y that contain at most θ

fraction of corruptions, it holds that outA(x, τA), outB(y, τB) are legal transcripts for P

on x, y that contain 0 fraction of corruptions.

4 Protocol Preliminaries

4.1 Transcripts

For all that follows, fix θ < 7
24

and let ε = 10−5
(

7
24
− θ
)
. Fix a (non-adaptive) deterministic

two-party communication protocol P to be simulated, and fix the inputs x and y for Alice

and Bob.

The correct transcript π∗. Let P be the set of all possible transcripts of P . For inputs

x′, y′, let π∗(x′, y′) ∈ P be the transcript of P when it is run on x′ and y′ and there are no

corruptions (the “correct” transcript). We omit the inputs (x′, y′) when they are equal to

(x, y).

Consistent transcripts. We say that π ∈ P is consistent with Bob’s input y if,

conditioned on Alice’s messages being as they are in π, Bob’s messages are also as they

are in π. Similarly, we define consistency with Alice’s input x.

Let Π ⊆ P . Define consistB(Π) ⊆ Π to be the set of all π ∈ Π that are consistent with

Bob’s input. Define consistA(Π) analogously. Observe that if Π ⊆ consistB(P) is a set of

transcripts that are consistent with Bob’s input, and π∗ ∈ Π, then consistA(Π) = {π∗},
else, consistA(Π) = ∅. If the value of consistA(Π) or consistB(Π) is singleton, say

consistA(Π) = {π}, we sometimes shorten this to consistA(Π) = π.

4.2 Distance Functions

Let n ∈ N and let Σ be a non-empty set. Let C,W ∈ Σn and let T ∈ {true, false}n. Let

agree(C,W) = |{j ∈ [n] : Cj = Wj}|,

12

agreeT (C,W) = |{j ∈ [n] : (Tj = true) ∧ (Cj = Wj)}|.

Observe that for every T,C,W , it holds that agreeT (C,W) ≤ agree(C,W). For a boolean

vector T , let T be a vector of the same length as T defined by T j = true ⇐⇒ Tj = false.

4.3 List-Decodable Error Correcting Codes

Our simulation protocol uses the following interactive and non-interactive (standard) list-

decodable error correcting codes.

4.3.1 (Standard) List-Decodable Codes

We use the following result about standard list-decodable codes (see [GI03, Gur06]).

Lemma 4.1. There exists a constant c and a set Σ such that for all n > 0 if n′ = bn/cc,
there exists an encoding function Cn : {0, 1}≤n′ → Σn and a decoding function listdecn(·)
such that the following hold:

1. For every U 6= U ′ ∈ {0, 1}≤n′ it holds that agree(Cn(U), Cn(U ′)) ≤ εn.

2. For every W ∈ Σn, it holds that listdecn(W) ⊆ {0, 1}≤n′ and |listdecn(W)| = O(1/ε3).

Furthermore, if agree(Cn(U),W) ≥ εn for some U ∈ {0, 1}≤n′, then U ∈ listdecn(W).

We note that, in fact, there are functions Cn and listdecn that can be computed efficiently.

Nonetheless, as we will not need these functions to be efficient, for us, the codes in the lemma

can be obtained from any standard error correcting code.

4.3.2 Interactive List-Decodable Codes

Let c and Σ be as promised by Lemma 4.1. We show the following result about interactive

list-decodable codes.

Lemma 4.2. There exists a constant c′ = 200! · c
ε6

and a set Σ′ ⊇ Σ such that for all

rA, rB ∈ [10], there exists a (non-adaptive) protocol PrA:rB and a functions listdecArA:rB(·),

listdecBrA:rB(·) such that:

1. The protocol PrA:rB has alphabet Σ′ and satisfies CC(PrA:rB) = c′ · CC(P).

2. In the protocol PrA:rB , Alice sends rA messages for every rB messages sent by Bob, i.e.,

the fraction of messages sent by Alice is rA

rA+rB
.

3. Let x′, y′ be inputs to Alice and Bob and α, β ∈ [0, 1) be such that α + β < 1 − ε.

Let τA, τB be such that, after an execution of PrA:rB with inputs x′, y′ in which the

adversary corrupts at most α fraction of Alice’s transmissions and at most β fraction

of Bob’s transmissions, Alice has the transcript τA and Bob has the transcript τB.

13

Then, we have listdecArA:rB(τA) ⊆ consistA(P), listdecBrA:rB(τB) ⊆ consistB(P) are sets

of size at most O(1/ε) such that listdecArA:rB(τA) ∩ listdecBrA:rB(τB) = π∗(x′, y′).

We note that τA (resp. τB) above has both, the symbols sent by Alice (resp. Bob) and

the symbols received by Alice (resp. Bob).

Proof. Let c′′ < 105 be the constant in Theorem 1 of [BE17]. Let Ppad be the protocol

obtained by padding P to length 2c′

c′′(rA+rB)
·CC(P). Let Q be the list decoding protocol with

alphabet Σ′ for Ppad promised by Theorem 1 of [BE17]. Observe that CC(Q) = 2c′

rA+rB
·CC(P).

We note that the scheme in [BE17] also works with “soft symbols”, that is, in the case where

the parties receive a distribution over symbols in each round (as opposed to a “regular”

symbol), see Section 12 in their paper.

Alice’s side of the protocol PrA:rB is given in Algorithm 1. Bob’s side of the protocol is

similar. Observe that for every 2 symbols exchanged in Q, the parties exchange rA + rB

symbols in PrA:rB . Thus, CC(PrA:rB) = c′ · CC(P) and part one and part two hold. In the

protocol, we denote by QA(x, τ) the symbol sent by Alice when running Q, given input x

and prior (distributional) received transcript τ (assuming that it is Alice’s turn to transmit).

The decoding functions listdecArA:rB(·), listdecBrA:rB(·) for PrA:rB is obtained from the decoding

functions of [BE17] and removing the padding.

Algorithm 1 The protocol PA
rA:rB

1: τ ← ε.

2: for j ∈ [CC(Q)] do

3: If Alice transmits in round j of Q: Transmit QA(x, τ), rA times.

4: If Bob transmits in round j of Q: If rB 6= 0, receive rB symbols a1, . . . , arB . Set

τ = τ ◦ DA, where DA is the distribution over symbols induced by the messages

received by Alice in this round. That is, for all a, DA(a) = |{i ∈ [rB] : ai = a}|/rB ∈
{0/rB, 1/rB, . . . , rB/rB} is the fraction of messages received by Alice that were equal

to a.
5: end for

5 The 7
24 Error Resilient Protocol

5.1 Definitions

Length. Our simulation protocol consists of 24/ε executions of a subroutine called Chunk

(referred to as “iterations”), such that CC(Chunk) = c′ · CC(P) = M , say, where c′ is the

constant from Lemma 4.2. Thus, the number of messages exchanged during our simulation

protocol is 24N , where N = M
ε

.

14

Functions. The protocol uses the following simple functions:

AliceSure(k) = 7N − k − 11εN,

StartTag1(k) =
28

3ε
+

14k

9εN
,

StartTag2(k) =
11

ε
+

k

εN
,

BobReceives(k, i) = 3N − k

3
+ (i− 20/ε) · εN.

Variables. For simplicity, we use the same variable names in the protocols for Alice and

Bob, if the variables have similar roles. Some of the variables are ‘global’ variables, shared

by the simulation protocol and the subroutine Chunk, and are updated by Chunk.

Next, we give a short description of each of the variables used by the protocol. When we

use the notation varAi , we describe the value of the variable var in Alice’s protocol at the

end of iteration i. If there is a variable in Bob’s protocol with a similar role, we list varAi
and varBi together. We omit the superscript A when var is not present in Bob’s protocol

(and vice versa). The notation varAi , var
B
i is also used in the analysis.

ΠA
i (ΠB

i): The list of all candidates for the correct transcript π∗, obtained by Alice by the

end of iteration i.

`Ai (`Bi): The number of rounds in iteration i in which Alice listens.

τA
i (τB

i): The transcript received by Alice for the ith execution of the interactive list-

decodable code simulating P .

WA
i (WB

i): The encoding of ΠB
i−1 received by Alice in iteration i.

TA
i : A boolean vector of length `Ai . For every round in iteration i in which Alice listens,

the vector indicates whether the received message is tagged (messages in the adaptive

part are assumed to not be tagged).

tBi : The total number of tagged messages transmitted by Bob by the end of iteration i.

αi: A lower bound on the total number of errors from Alice to Bob by the end of iteration i,

maintained only by Bob.

kA
i (kB

i): An estimate of the total number of corruptions from Alice to Bob by the end of

iteration i, maintained by Alice.

∆i: k
B
i − kBi−1.

mA
i (mB

i): The number of rounds in iteration i in which Alice listens and gets ‘meaningful’

information.

15

Agreements. The protocol and analysis use the following abbreviated notation for

agreement functions: Let π ∈ P . We define:

AgreeBi (π) = max
Π:consistB(Π)=π
|Π|≤O(1/ε6)

{agree(C`Bi (Π),WB
i)},

UntagAgreei(π) = max
Π:consistA(Π)=π
|Π|≤O(1/ε6)

{agreeTi(C`Ai (Π),WA
i)},

TagAgreei(π) = max
Π:consistA(Π)=π
|Π|≤O(1/ε6)

{agreeTi(C`Ai (Π),WA
i)},

AgreeAi (π) = UntagAgreei(π) + TagAgreei(π).

We define AgreeB≤i(π) =
∑

i′∈[i] Agree
B
i′ (π), and similarly also UntagAgree≤i(π),

TagAgree≤i(π), AgreeA≤i(π), etc.. We define AgreeAi (∅) and AgreeBi (∅) by replacing π by ∅
in the terms for AgreeAi (π) and AgreeBi (π).

When we write ‘AgreeA(π)’, ‘AgreeB(π)’, and ‘TagAgree(π)’ in the protocol, we mean

AgreeA≤i(π), AgreeB≤i(π), and TagAgree≤i(π), where i is the current iteration of the protocol.

When we write ‘AgreeA(∅)’ and ‘AgreeB(∅)’, we mean AgreeAi (∅) and AgreeBi (∅), where i is

the current iteration of the protocol.

5.2 The Protocol Chunk

Let rA, rB ∈ [0 : 10]. The protocol ChunkrA:rB simulates one execution of the original

protocol P when the inputs are x, y. When running ChunkrA:rB , Alice transmits rA messages

for every rB messages transmitted by Bob. When rB = 0, Alice is the only one to transmit.

Similarly, when rA = 0, Bob is the only one to transmit.

When rA, rB > 0, the protocol ChunkrA:rB performs one execution of the protocol PrA:rB

of Lemma 4.2 besides updating some global variables. When rA · rB = 0, we ensure that

(rA, rB) ∈ {(0, 1), (1, 0)}. In this case, the protocol ChunkrA:rB simply works on and updates

the global variables.

We make statements like ‘If Alice transmits in round j of PrA:rB ’ with the understanding

that if rA · rB = 0 and PrA:rB is not defined, then, if (rA, rB) = (0, 1), Alice never transmits

and if (rA, rB) = (1, 0), then Alice always transmits (vice versa for Bob). Furthermore, in

case rA · rB = 0, the functions PA
rA:rB are defined to always be ⊥.

The protocol ChunkrA:rB is given in Algorithm 2 (Alice’s side) and Algorithm 3 (Bob’s

side). We note that the protocols are not entirely symmetric. Also, note that the sets

ΠA,ΠB maintained by Alice and Bob are of size at most O(1/ε6). Since M was chosen to

be sufficiently larger that O(1/ε6) in Lemma 4.2, the parties can always encode ΠA and ΠB

using the codes C`∗ for all `∗ = Θ(M) used in the protocols.

16

Algorithm 2 The protocol ChunkArA:rB(tag)

6: τ,W, T ← ε.

7: `← rB

rA+rB
· εN .

8: for j ∈ [M] do

9: If Alice transmits in round j of PrA:rB : Let a = PA
rA:rB(x, τ), b = CεN−`(Π)j−|W |.

Transmit (a, b). Set τ ← τ ◦ a.

10: If Bob transmits in round j of PrA:rB : Receive (ã, b̃, c̃). Set τ ← τ ◦ ã, W ← W ◦ b̃,
T ← T ◦ (c̃ ∧ tag).

11: end for

12: Π← Π ∪ listdecArA:rB(τ).

13: k ← k + min
{

1, max{1,rA}
max{1,rB}

}
· AgreeA(∅).

14: m← m+ `− AgreeA(∅).

Algorithm 3 Bob’s side of the protocol ChunkBrA:rB(tag)

15: τ,W ← ε.

16: `← rA

rA+rB
εN .

17: for j ∈ [M] do

18: If Bob transmits in round j of PrA:rB : Let a = PB
rA:rB(y, τ), b = CεN−`(Π)j−|W |,

c = tag∧True(j−|W | > 2
3
∆). Transmit (a, b, c). Set τ ← τ ◦a, t← t+1(c = true).

19: If Alice transmits in round j of PrA:rB : Receive (ã, b̃). Set τ ← τ ◦ ã, W ← w ◦ b̃.
20: end for

21: Π← Π ∪ listdecBrA:rB(τ) ∪

(⋃
Π̃∈listdec`(W)

|Π̃|≤O(1/ε2)

consistB(Π̃)

)
.

22: ∆← min
{

1, max{1,rB}
max{1,rA}

}
· AgreeB(∅).

23: k ← k + ∆.

24: m← m+ `− AgreeB(∅).
25: α← m−maxπ{AgreeB(π)}.

17

5.3 The Simulation Protocol

Our simulation protocol, with error resilience 7
24

, is described in Algorithm 4 (Alice’s side)

and Algorithm 5 (Bob’s side).

Algorithm 4 Alice’s side of the simulation protocol

26: k,m← 0, Π← ∅.
. stageNA-1 (non-adaptive):

27: Run ChunkA4:3(true) 14/ε times.

. stageNA-2 (non-adaptive):

28: Run ChunkA1:2(true) 6/ε times.

. stageA (adaptive):

29: if maxπ{AgreeA(π)} ≥ AliceSure(k) then

30: Run ChunkA1:0(false) 4/ε times.

31: else

32: a← 1
εN
·min {2N,maxπ{TagAgree(π)} − 2N}.

33: Run ChunkA1:0(false) a times.

34: Run ChunkA0:1(false) 4/ε− a times.

35: end if

. Compute output:

36: if maxπ{AgreeA(π)} ≥ AliceSure(k) then

37: Output arg maxπ{AgreeA(π)}.
38: else

39: Output arg maxπ

{
AgreeA(π)− TagAgree(π)

2
· 1 (π = arg maxπ′ {TagAgree(π′)})

}
.

40: end if

18

Algorithm 5 Bob’s side of the simulation protocol

41: k,m, α, t← 0, Π← ∅, tStart, tEnd← false.

. stageNA-1 (non-adaptive):

42: for i ∈ [1 : 14/ε] do

43: tStart← tStart ∨ True(i > StartTag1(k)).

44: Run ChunkB4:3(tStart).

45: end for

. stageNA-2 (non-adaptive):

46: for i ∈ (14/ε : 20/ε] do

47: tStart← tStart ∨ True(i > StartTag2(k)).

48: tEnd← tEnd ∨ True(t > 2α + 15εN).

49: Run ChunkB1:2(tStart ∧ ¬tEnd).

50: end for

. stageA (adaptive):

51: for i ∈ (20/ε : 24/ε] do

52: if α > BobReceives(k, i) then

53: Run ChunkB1:0(false).

54: else

55: Run ChunkB0:1(false).

56: end if

57: end for

. Compute output:

58: Output π ← arg maxπ{AgreeB(π)}.

6 Protocol Analysis

Recall that we denote by π∗ the transcript of the original protocol P when it is run on inputs

x, y and there are no corruptions. For all that follows, fix an execution of our simulation

protocol (Algorithm 4 and Algorithm 5) on inputs x, y, where the adversary corrupts at most

budget = 7N − 1000εN rounds of communication. It is clear from the way our protocols

are defined that they use an alphabet of constant size and their communication is only a

constant factor more than the communication of the noiseless protocol P . Our goal is to

prove that the output of both parties for this execution is π∗ and Theorem 1.1 follows.

6.1 Definitions

Variables. Recall that we use the notation varAi to indicate the value of the variable var

in Alice’s protocol at the end of iteration i. The notation varBi is similar. When i = 0, we

19

mean the value at the beginning of the protocol. We omit the subscript i when i = 24/ε.

RR rounds. Recall that we define RR to be the set of all iterations i such that there is a

round in iteration i where both Alice and Bob are listening. The way our protocol is defined,

it holds that RR∩ [20/ε] = ∅. Furthermore, if i ∈ RR, then Alice and Bob are both receiving

in all rounds in iteration i.

In Lemma 6.15, we show that RR = ∅.

Indices. The analysis uses the following iteration indices in [24/ε]:

iA: The first iteration i such that π∗ ∈ ΠA
i . If no such i exists, set iA = 24/ε+ 1.

iB: The first iteration i such that π∗ ∈ ΠB
i . If no such i exists, set iB = 24/ε+ 1.

iRR: The smallest i ∈ RR. If RR = ∅, set iRR = 24/ε+ 1.

is: The last iteration i ≤ 20/ε such that tStarti = false.

ie: The last iteration i ≤ 20/ε such that tEndi = false.

Errors. The analysis uses the following notation to count the number of corruptions

inserted by the adversary:

eA→B
S : The total number of corruptions from Alice to Bob in the iterations in the set

S ⊆ [24/ε]. When S is singleton, say S = {i}, then we simply write eA→Bi . When

S = [i], (i : 24/ε], [i : 24/ε], we write eA→B≤i , eA→B>i , eA→B≥i respectively. When S = [24/ε],

we omit S altogether.

eB→A
S : The total number of corruptions from Bob to Alice in the iterations in the set

S ⊆ [24/ε]. We use the same abbreviations as above.

The analysis also uses the notation tAi as short for maxπ{TagAgreeA≤i(π)}.

6.2 Lemmas Concerning List-Decodable Codes

Claim 6.1. For all s > 0, i ∈ [24/ε], sets Π′1, . . . ,Π
′
s ⊆ P that are all different and satisfy

|Π′r| ≤ O(1/ε6) for all r ∈ [s] and all T ′ ∈ {true, false}`Ai , it holds that∑
r∈[s]

agreeT ′(C`Ai (Π′r),W
A
i) ≤

∑
j∈[`Ai]

1(T ′j = true) +

(
s

2

)
ε · `Ai .

The assertion also holds with A replaced by B everywhere.

20

Proof. We have:∑
r∈[s]

agreeT (C`Ai (Π′r),W
A
i) =

∑
r∈[s]

∑
j∈[`Ai]

1(T ′j = true) · 1(C`Ai (Π′r)j = WA
i,j)

=
∑
j∈[`Ai]

∑
r∈[s]

1(T ′j = true) · 1(C`Ai (Π′r)j = WA
i,j)

=
∑
j∈[`Ai]

1(T ′j = true) ·

∑
r∈[s]

1(C`Ai (Π′r)j = WA
i,j)


≤
∑
j∈[`Ai]

1(T ′j = true) ·

1 +
∑

r<r′∈[s]

1(C`Ai (Π′r)j = C`Ai (Π′r′)j)


≤
∑
j∈[`Ai]

1(T ′j = true) +
∑
j∈[`Ai]

∑
r<r′∈[s]

1(C`Ai (Π′r)j = C`Ai (Π′r′)j)

≤
∑
j∈[`Ai]

1(T ′j = true) +
∑

r<r′∈[s]

agree(C`Ai (Π′r), C`Ai (Π′r′))

≤
∑
j∈[`Ai]

1(T ′j = true) +

(
s

2

)
ε · `Ai ,

by the first property of the code C`Ai in Lemma 4.1.

Claim 6.2. Let i < max{iA, iB}. It holds that:

1. If i ≤ 14/ε, then 3
4
eA→Bi + eB→Ai ≥ 3εN

7
(1− ε) .

2. If i ∈ (14/ε : 20/ε], then eA→Bi + 1
2
eB→Ai ≥ εN

3
(1− ε) .

Proof. Since i < max{iA, iB}, the interactive list decoding code was not decoded correctly till

iteration i. Formally, we have that π∗ /∈ ΠA
i ∩ΠB

i =⇒ π∗ /∈ listdecArAi :rBi
(τAi)∩listdecBrAi :rBi

(τBi).

As τAi and τBi are the transcripts PrAi :rBi
with the same corruptions, we have by Lemma 4.2,

eA→Bi

`Bi
+
eB→Ai

`Ai
≥ 1− ε. (1)

1. Since i ≤ 14/ε, it holds that `Ai = 3
7
εN and `Bi = 4

7
εN , and the assertion follows from

Equation 1.

2. Since i ≤ (14/ε : 20/ε], it holds that `Ai = 2
3
εN and `Bi = 1

3
εN , and the assertion

follows from Equation 1.

Corollary 6.3. We have max{iA, iB} ≤ 17
ε
< 20

ε
< iRR.

21

Proof. We have 20
ε
< iRR by definition. Suppose max{iA, iB} > 17

ε
. Applying the first part

of Claim 6.2 to the iterations i ∈ [14/ε] and the second part of Claim 6.2 to the iterations

i ∈ (14/ε : 17/ε], we get

eA→Bi + eB→Ai > 7N(1− ε) > budget,

a contradiction.

Claim 6.4. Let i ∈ (iA : iB). We have:

eA→Bi ≥ `Bi · (1− ε) .

Proof. In iteration i, for i ∈ (iA : iB), Alice sends C`Bi (ΠA
i−1). As i > iA and the set

ΠA only grows, we have that π∗ ∈ ΠA
i−1 =⇒ consistB(ΠA

i−1) = {π∗} while Bob receives

WB
i . Now, if ΠA

i−1 ∈ listdec`Bi (WB
i), then, ΠB

i 3 {π∗} =⇒ i ≥ iB, a contradiction.

Therefore, ΠA
i−1 /∈ listdec`Bi (WB

i). However, due to part 2 of Lemma 4.1, this means that

agree(C`Bi (ΠA
i−1),WB

i) < ε`Bi implying the result.

6.3 Properties of AgreeA and AgreeB

We start with the following corollaries of Claim 6.1. The reason we have separate claims for

AgreeA and AgreeB is that their definitions are not symmetric.

Corollary 6.5. For all s > 0, i ∈ [24/ε], if π1, . . . , πs ∈ consistA(P) ∪ {∅} are all different,

it holds that ∑
r∈[s]

AgreeAi (πr) ≤
(

1 + 2 ·
(
s

2

)
ε

)
`Ai .

Proof. We have∑
r∈[s]

AgreeAi (πr) =
∑
r∈[s]

TagAgreei(πr) +
∑
r∈[s]

UntagAgreei(πr)

=
∑
r∈[s]

max
Π′r:consistA(Π′r)=πr
|Π′r|≤O(1/ε6)

{agreeTi(C`Ai (Π′r),W
A
i)}

+
∑
r∈[s]

max
Π′′r :consistA(Π′′r)=πr
|Π′′r |≤O(1/ε6)

{agreeTi(C`Ai (Π′′r),W
A
i)}

=
∑
r∈[s]

agreeTi(C`Ai (Π′r),W
A
i) +

∑
r∈[s]

agreeTi(C`Ai (Π′′r),W
A
i).

where we use Π′r to denote arg maxΠ′r:consistA(Π′r)=πr
|Π′r|≤O(1/ε6)

{agreeTi(C`Ai (Π′r),W
A
i)} and similarly, Π′′r

denotes arg maxΠ′′r :consistA(Π′′r)=πr
|Π′′r |≤O(1/ε6)

{agreeTi(C`Ai (Π′′r),W
A
i)}. Observe that Π′r, for r ∈ [s] are all

22

different as the values of consistA(Π′r) = πr are all different. Similarly, the sets Π′′r are all

different. Thus, Claim 6.1 says∑
r∈[s]

AgreeAi (πr) =
∑
r∈[s]

agreeTi(C`Ai (Π′r),W
A
i) +

∑
r∈[s]

agreeTi(C`Ai (Π′′r),W
A
i)

≤
(

1 + 2 ·
(
s

2

)
ε

)
`Bi .

Corollary 6.6. For all s > 0, i ∈ [24/ε], if π1, . . . , πs ∈ consistB(P) ∪ {∅} are all different,

it holds that ∑
r∈[s]

AgreeBi (πr) ≤
(

1 +

(
s

2

)
ε

)
`Bi .

Proof. Similar to the proof of Corollary 6.5 above.

Claim 6.7. Let i /∈ RR. If i ≤ iA, we have eA→Bi ≥ `Bi − AgreeBi (∅).

If i > iA, we have eA→Bi ≥ `Bi − AgreeBi (π∗).

The assertion also holds with the roles of A and B switched.

Proof. The set ΠA
i only contains transcripts that are consistent with Alice’s inputs, and the

only transcript that is consistent with both Alice’s and Bob’s inputs is π∗. Consider an

iteration i ≤ iA. In iteration i, Alice sends C`Bi (ΠA
i−1) while Bob receives WB

i . Furthermore,

as i− 1 < iA, we have π∗ /∈ ΠA
i−1 =⇒ consistB(ΠA

i−1) = ∅. We also have |ΠA
i−1| ≤ O(1/ε6).

As i /∈ RR,

eA→Bi = `Bi − agree(C`Bi (ΠA
i−1),WB

i) ≥ `Bi − AgreeBi (∅).

Similarly, for an iteration i > iA. In iteration i, we have π∗ /∈ ΠA
i−1 =⇒ consistB(ΠA

i−1) =

{π∗}. We also have |ΠA
i−1| ≤ O(1/ε6). As i /∈ RR,

eA→Bi = `Bi − agree(C`Bi (ΠA
i−1),WB

i) ≥ `Bi − AgreeBi (π∗).

Claim 6.8. For i < iA and all π,

eA→Bi + eB→Ai ≥ (kBi − kBi−1) + `Bi − AgreeBi (∅)− ε`Bi .

This assertion also holds with the roles of A and B switched.

Proof. By Corollary 6.3, we have i < 20
ε
< iRR. For i ≤ 14/ε, we use the first part of

Claim 6.2 to get

eA→Bi + eB→Ai ≥ 3

4
· `Bi · (1− ε) +

1

4
eA→Bi .

Next, we use the first part of Claim 6.7 to get,

eA→Bi + eB→Ai ≥ `Bi −
1

4
AgreeBi (∅)− ε`Bi ≥ `Bi − AgreeBi (∅) + (kBi − kBi−1)− ε`Bi .

23

For i > 14/ε, we use the second part of Claim 6.2 to get

eA→Bi + eB→Ai ≥ `Bi · (1− ε) ≥ `Bi − AgreeBi (∅) + (kBi − kBi−1)− ε`Bi .

Claim 6.9. Let i /∈ RR. If i > iB, we have the following

1. eB→Ai ≥ (tBi − tBi−1)− TagAgreei(π
∗).

2. eB→Ai ≥ `Ai − AgreeAi (π∗) + max{TagAgreei(π∗)− (tBi − tBi−1), 0}.

Proof. Consider an iteration i > iB. In iteration i, Bob sends C`Ai (ΠB
i−1) in `Ai messages. As

i > iB and the set ΠB only grows, we have that π∗ ∈ ΠB
i−1 =⇒ consistA(ΠB

i−1) = {π∗}. We

also have |ΠB
i−1| ≤ O(1/ε6). A total tBi − tBi−1 of these `Ai messages are tagged. Alice receives

WA
i in `Ai messages.

The first part follows by only considering the tBi − tBi−1 messages that were tagged by

Bob. For these messages, we have,

eB→Ai ≥ (tBi − tBi−1)− TagAgreei(π
∗).

Note that if TagAgreei(π
∗) ≤ tBi − tBi−1, then the second part follows from Claim 6.7. It is

therefore sufficient to show that eB→Ai ≥ `Ai − (tBi − tBi−1)−UntagAgreei(π
∗). This follows by

considering the `Ai − (tBi − tBi−1) messages by Bob that we not tagged. For these messages,

we get:

eB→Ai ≥ `Ai − (tBi − tBi−1)− UntagAgreei(π
∗).

6.4 Errors From Alice to Bob

Lemma 6.10. For all i ∈ [24/ε], it holds that

αi−1 − ε`Bi ≤ αi ≤ αi−1 + `Bi −∆i.

Proof. Let i ∈ [24/ε]. In Algorithm 3, if rAi = 0, then αi = αi−1 and ∆i = 0. In this case,

the assertion reduces to αi−1− ε`Bi ≤ αi−1 ≤ αi−1 + `Bi , which clearly holds. We thus assume

that rAi 6= 0.

We first show the upper bound on αi. Since rAi 6= 0, we have ∆i = min
{

1,
max{1,rBi }

rAi

}
·

AgreeBi (∅) ≤ AgreeBi (∅). Therefore,

αi = mB
i −max

π
{AgreeB≤i(π)} ≤ mB

i−1 + `Bi − AgreeBi (∅)−max
π
{AgreeB≤i−1(π)}

= αi−1 + `Bi − AgreeBi (∅) ≤ αi−1 + `Bi −∆i.

We turn to show the lower bound on αi: It holds that

αi−1 = mB
i−1 −max

π
{AgreeB≤i−1(π)} = mB

i − `Bi + AgreeBi (∅)−max
π
{AgreeB≤i−1(π)}

24

≤ mB
i + ε`Bi −max

π
{AgreeBi (π)} −max

π
{AgreeB≤i−1(π)} (by Corollary 6.6)

≤ mB
i + ε`Bi −max

π
{AgreeB≤i(π)} = αi + ε`Bi .

Lemma 6.11. It holds that:

1. eA→B<iRR
≥ αiRR−1.

2. eA→B<iRR
+ eB→A≤iA ≥ αiRR−1 + kBiRR−1 − 100εN .

3. For all i ≤ min{max{iA, iB}, 14/ε}, it holds that eA→B≤i ≥ 4εN
7
i− 4

3
· kBi − 25εN .

4. For all π 6= π∗, it holds that AgreeB<iRR(π) ≤ budget− kBiRR−1 + 400εN.

Proof. Note that Corollary 6.3 implies iA < iRR. We prove each part separately, and use the

following equations in our proofs. Firstly, note that, for i ∈ [24/ε],

`Bi = (mB
i −mB

i−1) + AgreeBi (∅) ≥ (mB
i −mB

i−1) + (kBi − kBi−1).

The foregoing equation implies:∑
i≤iA

`Bi − AgreeBi (∅) +
∑

i∈(iA:iRR)

`Bi − AgreeBi (π∗)

≥
∑
i≤iA

mB
i −mB

i−1 +
∑

i∈(iA:iRR)

(mB
i −mB

i−1) + (kBi − kBi−1)− AgreeBi (π∗)

≥ mB
iRR−1 + (kBiRR−1 − kBiA)−max

π
{AgreeB<iRR(π)}

≥ αiRR−1 + (kBiRR−1 − kBiA).

(2)

We now prove the claims in the lemma statement.

1. Adding Claim 6.7 for all i < iRR, we get

eA→B<iRR
≥
∑
i≤iA

`Bi − AgreeBi (∅) +
∑

i∈(iA:iRR)

`Bi − AgreeBi (π∗) ≥ αiRR−1,

by Equation 2.

2. Adding Claim 6.8 for i < iA and Claim 6.7 for all iA < i < iRR, we get (using

kiA − kiA−1, `
B
i ≤ εN)

eA→B<iRR
+ eB→A≤iA ≥ kBiA − 100εN +

∑
i≤iA

`Bi − AgreeBi (∅) +
∑

i∈(iA:iRR)

`Bi − AgreeBi (π∗)

≥ αiRR−1 + kBiRR−1 − 100εN. (Equation 2)

25

3. Fix i ≤ min{max{iA, iB}, 14/ε}. Adding Claim 6.7 for all i′ ≤ min{i, iA}, we get

eA→B≤min{i,iA} ≥
4εN

7
·min{i, iA} − AgreeB≤min{i,iA}(∅) ≥

4εN

7
·min{i, iA} − 4

3
· kBmin{i,iA}.

Adding Claim 6.4 for all min{i, iA} < i′ < i, we get

eA→B≤i −eA→B≤min{i,iA} ≥
4εN

7
·(1−ε)·

(
i− 1−min{i, iA}

)
≥ 4εN

7
·
(
i−min{i, iA}

)
−25εN.

Combining, we get the result.

4. Fix π 6= π∗. Adding Claim 6.8 for i < iA and Claim 6.7 for all iA < i < iRR, we get

budget ≥ eA→B<iRR
+ eB→A≤iA

≥ kBiA − 100εN +
∑
i≤iA

`Bi − AgreeBi (∅) +
∑

i∈(iA:iRR)

`Bi − AgreeBi (π∗)

≥ kBiA − 395εN +
∑
i≤iA

AgreeBi (π) +
∑

i∈(iA:iRR)

AgreeBi (∅) + AgreeBi (π)

(Corollary 6.6)

≥ kBiA − 395εN + AgreeB<iRR(π) +
∑

i∈(iA:iRR)

(kBi − kBi−1)

≥ kBiRR−1 − 400εN + AgreeB<iRR(π).

The result then follows.

6.5 Errors from Bob to Alice

In the following lemma, we denote ψ = arg maxπ{TagAgree(π)} and define

util(π) = AgreeA(π)− tA

2
· 1(π = ψ).

Recall that tA = maxπ{TagAgree(π)}.

Lemma 6.12. We have

1. If iB ≤ is, then eB→A>is ≥ max{tB − tA, 0}.

2. If eB→A≤20/ε ≤ 3N , then AgreeA≤20/ε(π
∗) ≥ AliceSure(kA20/ε).

3. For all π 6= π∗, it holds that,

AgreeA<iRR(π) ≤ budget− kAiRR−1 + 700εN < AliceSure(kAiRR−1).

Furthermore, if RR = ∅, we also have

26

1. If ψ = π∗ and iB ≤ is, then

eB→A ≥
∑

i∈[24/ε]

`Ai − kA −max{iB − 14/ε, 0} · εN
3

+ max{tA − tB, 0} − Agree(π∗).

2. If ψ 6= π∗, then for all π′ 6= π∗, we have eB→A ≥ util(π′)− 200εN + tA/2.

Proof. We prove each part separately.

1. Clearly eB→A>is ≥ 0. Adding Claim 6.9 for all 20/ε ≥ i > is ≥ iB, we get

eB→A>is ≥
∑

is<i≤20/ε

((tBi − tBi−1)− TagAgreeAi (π∗)) ≥ tB − tA,

as Bob does not tag messages in iterations i ∈ [is] ∪ (20/ε : 24/ε].

2. We first show that iB ≤ 14/ε. Suppose not. Then, Claim 6.2 says

3

4
· eA→B≤14/ε + eB→A≤14/ε ≥ 6N(1− ε) =⇒ eA→B≤14/ε + eB→A≤14/ε ≥ budget,

due to our assumption that eB→A≤20/ε ≤ 3N . This is a contradiction, and therefore, we

have iB ≤ 14/ε. Adding Claim 6.7 for all i ∈ [20/ε], we get

3N ≥ eB→A≤20/ε ≥
∑
i≤20/ε

`Ai −
∑
i≤iB

AgreeAi (∅)−
∑

iB<i≤20/ε

AgreeAi (π∗)

≥ 10N − kAiB − AgreeA≤20/ε(π
∗).

where the second step uses iB ≤ 14/ε. Rearranging gives the result.

3. By Corollary 6.3, we have iB < iRR. Adding Claim 6.8 for i < iB and Claim 6.7 for all

iB < i < iRR, we get

budget ≥ eA→B≤iB + eB→A<iRR

≥ kAiB − 100εN +
∑
i≤iB

`Ai − AgreeAi (∅) +
∑

i∈(iB :iRR)

`Ai − AgreeAi (π∗)

≥ kAiB − 695εN +
∑
i≤iB

AgreeAi (π) +
∑

i∈(iB :iRR)

AgreeAi (∅) + AgreeAi (π)

(Corollary 6.5)

≥ kAiB − 695εN + AgreeA<iRR(π) +
∑

i∈(iA:iRR)

kAi − kAi−1

≥ kAiRR−1 − 700εN + AgreeA<iRR(π).

The result then follows.

For the furthermore part, we have

27

1. Adding Claim 6.7 for i ≤ iB and part two of Claim 6.9 for i > iB, we get:

eB→A ≥
∑

i∈[24/ε]

`Ai −
∑
i≤iB

AgreeAi (∅)+
∑
i>iB

(
max{TagAgreei(π∗)− (tBi − tBi−1), 0} − AgreeAi (π∗)

)
.

Using the fact that 0 ≤ TagAgreei(π
∗) ≤ AgreeAi (π∗) for all i, we get

eB→A ≥
∑

i∈[24/ε]

`Ai −
∑
i≤iB

AgreeAi (∅) + max{TagAgree≤iB(π∗), 0}

+
∑
i>iB

max{TagAgreei(π∗)− (tBi − tBi−1), 0} − AgreeA(π∗).

We next use iB ≤ is =⇒ tBiB = 0 and the fact that
∑

i max{ci, 0} ≥ max{
∑

i ci, 0} to

get

eB→A ≥
∑

i∈[24/ε]

`Ai −
∑
i≤iB

AgreeAi (∅) + max{TagAgree(π∗)− tB, 0} − AgreeA(π∗)

≥
∑

i∈[24/ε]

`Ai −
∑
i≤iB

AgreeAi (∅) + max{tA − tB, 0} − AgreeA(π∗).

Next, observe that, for i ≤ 14/ε, we have AgreeAi (∅) = kAi −kAi−1. For i ∈ (14/ε : iB], we

have 1
2
AgreeAi (∅) = (kAi −kAi−1) =⇒ AgreeAi (∅) ≤ (kAi −kAi−1)+`Ai /2 = (kAi −kAi−1)+ εN

3

as iB ≤ 20/ε by Corollary 6.3. We get

eB→A ≥
∑

i∈[24/ε]

`Ai − kA −max{iB − 14/ε, 0} · εN
3

+ max{tA − tB, 0} − AgreeA(π∗).

2. If π′ = ψ, we use Claim 6.7 to get

eB→A ≥
∑
i≤iB

`Ai − AgreeAi (∅) +
∑
i>iB

`Ai − AgreeAi (π∗)

≥ AgreeAi (ψ)− 100εN (Corollary 6.5)

≥ util(ψ) +
tA

2
− 100εN.

If π′ 6= ψ, we again Claim 6.7 to get

eB→A ≥
∑
i≤iB

`Ai − AgreeAi (∅) +
∑
i>iB

`Ai − AgreeAi (π∗)

≥ AgreeA(π′) + AgreeA(ψ)− 200εN (Corollary 6.5)

≥ util(π′) + TagAgree(ψ)− 200εN ≥ util(π′) + tA − 200εN.

28

6.6 Lemmas Concerning Tags

In this section, we give useful bounds on the number of messages tagged by Bob. Recall that

is (resp. ie) is the last iteration i ≤ 20/ε such that tStarti = false (resp. tEndi = false).

We claim that is < 20/ε. Indeed, as if not, then 20
ε
≤ 11

ε
+
kB
20/ε−1

εN
=⇒ kBiRR−1 ≥ kB20/ε−1 ≥ 9N ,

contradicting part two of Lemma 6.11.

Lemma 6.13. We have that

1. tB ≤ max{2α, 2N}+ 50εN . If ie > 14/ε, we also have tB ≤ 2α + 50εN .

2. tB ≤ 2εN
3

(20/ε− is).

3. If α20/ε > 3N + εN − 1
3
· kB20/ε, then tB20/ε ≥ 6N − 2kB20/ε/3.

Proof. We prove each part separately.

1. If ie > 14/ε, then since also ie ≤ 20/ε (by the definition of ie), it holds that

tB = tBie ≤ tBie−1 + εN ≤ 2αie−1 + 16εN . Now, by Lemma 6.10, tB ≤ 2α + 50εN .

If ie = 14/ε, then no messages are tagged past stageNA-1. The total number of

messages transmitted by Bob during stageNA-1 is (14/ε) · εN · (3/7) = 6N . However,

since StartTag1 ≥ 28
3ε

, the first (28/3ε) · εN · (3/7) = 4N messages transmitted by Bob

were not tagged. Conclude that at most 2N messages were tagged by Bob in this case

and tB ≤ 2N .

2. Bob starts tagging after iteration is, and only tags the non-adaptive part, which consists

of 20/ε executions of Chunk. Every execution of Chunk in the non-adaptive part consists

of εN rounds, and Bob transmits in at most 2/3 fraction of these rounds.

3. Observe that tB = tB20/ε as Bob does not tag messages after iteration 20/ε. We divide

this part into two cases, based on whether or not is < 14/ε. We first consider the case

is < 14/ε.

If is < 14/ε, then, in the iterations i ∈ (is : 14/ε] Bob tags 3εN
7
− 2

3
· ∆i−1 messages.

Similarly, in the iterations i ∈ (14/ε : ie], Bob tags 2εN
3
− 2

3
· ∆i−1 messages. As Bob

does not tag messages in iterations i /∈ (is : ie], the total number of messages tagged

by Bob is,

tB =
3εN

7
·
(

14

ε
− is

)
+

2εN

3
·
(
ie −

14

ε

)
−
∑

i∈(is:ie]

2

3
·∆i−1

=
3εN

7
·
(

14

ε
− is

)
+

2εN

3
·
(
ie −

14

ε

)
− 2

3
·
(
kBie−1 − kBis−1

)
.

(3)

using the definition of ∆i−1 = kBi−1 − kBi−2. Next, we claim that ie = 20/ε. Suppose

not, then, we have tBie > 2αie + 15εN , and, by definition of is that is + 1 >

29

StartTag1(kBis) =⇒ is >
28
3ε

+
14kBis
9εN
− 1. We get:

α20/ε ≤ αie +
∑

i∈(ie:20/ε]

(
`Bi −∆i

)
(by Lemma 6.10)

≤ αie +
εN

3

(
20

ε
− ie

)
−

∑
i∈(ie:20/ε]

(kBi − kBi−1) (Definition of ∆)

≤ 1

2
· tBie +

εN

3

(
20

ε
− ie

)
− (kB20/ε − kBie)

≤ 3N − 1

3
· kBis +

3εN

14
− 1

3
·
(
kBie−1 − kBis−1

)
− 1

3
· (kB20/ε − kBie) (Equation 3)

≤ 3N + εN − 1

3
· kB20/ε,

a contradiction. But, if ie = 20/ε, then using is ≤ StartTag1(kBis−1) =⇒ is ≤
28
3ε

+
14kBis−1

9εN
, we get using Equation 3 that

tB ≥ 6N − 2

3
· kBis−1 −

2

3
·
(
kBie−1 − kBis−1

)
≥ 6N − 2

3
· kB20/ε,

as desired. In the other case where is ≥ 14/ε, we proceed using the same arguments.

Instead of Equation 3, we now have

tB =
2εN

3
· (ie − is)−

2

3
·
(
kBie−1 − kBis−1

)
. (4)

We again claim that ie = 20/ε. Suppose not, then, we have tBie > 2αie + 15εN , and,

by definition of is that is + 1 > StartTag2(kBis) =⇒ is >
11
ε

+
kBis
εN
− 1. Similar to the

above, we get:

α20/ε ≤
1

2
· tBie +

εN

3

(
20

ε
− ie

)
− (kB20/ε − kBie)

≤ 3N − 1

3
· kBis +

εN

3
− 1

3
·
(
kBie−1 − kBis−1

)
− 1

3
· (kB20/ε − kBie) (Equation 4)

≤ 3N + εN − 1

3
· kB20/ε,

a contradiction. But, if ie = 20/ε, then using is ≤ StartTag2(kBis−1) =⇒ is ≤
11
ε

+
kBis−1

εN
, we get

tB ≥ 6N − 2

3
· kBis−1 −

2

3
·
(
kBie−1 − kBis−1

)
≥ 6N − 2

3
· kB20/ε,

as desired.

Lemma 6.14. If maxπ{AgreeA≤20/ε(π)} < AliceSure(kA20/ε) then max{iA, iB} ≤ is.

30

Proof. Suppose for contradiction that maxπ{AgreeA≤20/ε(π)} < AliceSure(kA20/ε) and

max{iA, iB} > is. Then, we have min{14/ε, is} ≤ min{max{iA, iB}, 14/ε} and the third

part of Lemma 6.11 gives:

eA→B≤min{14/ε,is} ≥
4εN

7
·min{14/ε, is} −

4

3
kBmin{14/ε,is} − 25εN. (5)

We consider the following cases:

Case 14/ε ≤ is: By adding Claim 6.2 for all i ∈ [is],(
4N

3
+
εN

3
is

)
(1− ε) =

(
3εN

7
· 14

ε
+
εN

3

(
is −

14

ε

))
(1− ε)

≤ 3

4
eA→B≤14/ε + eB→A≤14/ε + eA→B(14/ε:is] +

1

2
eB→A(14/ε:is]

≤ eA→B≤is + eB→A≤is −
1

4
eA→B≤14/ε

≤ eA→B≤is + eB→A≤is − 2N +
1

3
kB14/ε + 10εN. (Equation 5)

We next use the definition of is to get is >
11
ε

+
kBis
εN
− 1. This allows us to continue as:

eA→B≤is + eB→A≤is − 2N +
1

3
kB14/ε + 10εN ≥

(
4N

3
+
εN

3
is

)
(1− ε)

≥ 5N +
1

3
· kBis − 50εN.

Rearranging gives eA→B≤is + eB→A≤is ≥ 7N − 60εN ≥ budget, a contradiction.

Case is < 14/ε: In this case, we use the definition of is to get is >
28
3ε

+
14kBis
9εN
− 1 to get

from Equation 5 that

eA→B≤is ≥ 4εN

7
is −

4

3
kBis − 25εN

≥ 4εN

7
is + 8N − 6εN

7
− 6εN

7
is − 25εN

= 4N − 30εN.

This means that eB→A≤20/ε ≤ budget− eA→B≤is < 3N . contradicting, by part two of Lemma 6.12,

that maxπ{AgreeA≤20/ε(π)} < AliceSure(kA20/ε).

6.7 No RR Rounds

Lemma 6.15. RR = ∅.

31

Proof. Assume for contradiction that RR 6= ∅. Then iRR > 20/ε ∈ [24/ε]. Since Alice receives

in iteration iRR, we get

max
π
{AgreeA≤20/ε(π)} < AliceSure(kA20/ε) (6)

Equation 6 with part two of Lemma 6.12 implies

eB→A > 3N. (7)

We also get that

iRR >
1

εN
·min

{
2N, tAiRR−1 − 2N

}
+ 20/ε =

1

εN
·min

{
2N, tA − 2N

}
+ 20/ε, (8)

as iRR > 20/ε and Alice does not change tA after iteration 20/ε. Since Bob receives in

iteration iRR, we get (using Equation 8)

αiRR−1 > 3N − 1

3
· kBiRR−1 + (iRR − 20/ε) εN

> 3N − 1

3
· kBiRR−1 + min

{
2N, tA − 2N

}
.

(9)

Additionally, we get that Bob does not execute Line 55 in iteration 20/ε + 1. Otherwise, if

Bob transmits in iteration 20/ε + 1, then kB and α will not be updated and the condition

in Line 52 will never be satisfied. This implies α20/ε > 3N − 1
3
· kB20/ε + εN . By Lemma 6.13,

it holds that

tB ≥ 6N − 2kB20/ε/3 ≥ 6N − 2kBiRR−1/3. (10)

Define δ = eA→B<iRR
− αiRR−1 ≥ 0 by the first part of Lemma 6.11. By the second part of

Lemma 6.11, we get eB→A≤iA ≥ kBiRR−1 − δ − 100εN . By Equation 7, we get that

eA→B + eB→A ≥ eA→B<iRR
+ eB→A≤iA + eB→A>iA

≥ αiRR−1 + δ + max
{

3N, kBiRR−1 − δ − 100εN + eB→A>iA

}
≥ αiRR−1 + max

{
3N, kBiRR−1 + eB→A>iA

}
− 100εN. (as δ ≥ 0)

Next, we use Equation 6 with Lemma 6.14 to claim that max{iA, iB} ≤ is and eB→A>iA ≥ eB→A>is .

Adding part one of Claim 6.9 for all is < i ≤ 20/ε < iRR, we get eB→A>is ≥ max{tB − tA, 0}.
Together with Equation 10, we get

eA→B + eB→A ≥ αiRR−1 + max

{
3N, kBiRR−1, 6N +

1

3
· kBiRR−1 − tA

}
− 100εN

≥ αiRR−1 + max

{
2N +

1

3
· kBiRR−1, 6N +

1

3
· kBiRR − t

A

}
− 100εN

(as max{a, b} ≥ 2
3
a+ 1

3
b)

≥ αiRR−1 + 4N +
1

3
· kBiRR−1 + max

{
−2N, 2N − tA

}
− 100εN

32

≥ 7N + min{2N, tA − 2N}+ max
{
−2N, 2N − tA

}
− 100εN (Equation 9)

≥ 7N − 100εN ≥ budget,

a contradiction.

6.8 Bob’s Output is Correct

Henceforth, we sometimes use Lemma 6.15 without stating it explicitly.

Lemma 6.16. Bob outputs π∗.

Proof. Let j ∈ [0 : 4/ε] be the number of times Bob executes Line 53. We first claim that

α ≤ 3N − kB/3 + (j + 1)εN. (11)

For j < 4/ε, this directly follows from the fact the condition in Line 52 in iteration j + 1

and, as α and kB are not updated in this iteration, they will no longer get updated, and the

condition will never be satisfied.

For j = 4/ε, we use part two of Lemma 6.11 to get

budget = 7N − 1000εN ≥ eA→B + eB→A ≥ α + kB − 100εN,

and Equation 11 follows.

Observe that in all iterations i ∈ [24/ε], it holds that ∆i ≥ 3
4
AgreeBi (∅), and therefore∑

i∈[24/ε] Agree
B
i (∅) ≤ 4

3

∑
i∈[24/ε] ∆i = 4

3
kB. Equation 11 implies

3N − kB

3
+ (j + 1)εN ≥ α = mB −max

π
{AgreeB(π)}

=
∑

i∈[24/ε]

`Bi −
∑

i∈[24/ε]

AgreeBi (∅)−max
π
{AgreeB(π)}

≥
∑

i∈[24/ε]

`Bi −
4

3
kB −max

π
{AgreeB(π)}

= (10N + jεN)− 4

3
kB −max

π
{AgreeB(π)}.

Rearranging gives maxπ{AgreeB(π)} ≥ 7N−kB−εN . In particular, Bob outputs a transcript

π such that AgreeB(π) ≥ 7N−kB−εN > budget−kB+400εN . This π must be π∗, otherwise

we derive a contradiction to the last part of Lemma 6.11 (in combination with Lemma 6.15).

6.9 Alice’s Output is Correct

By part three of Lemma 6.12, we conclude that in case Alice outputs in Line 37, then Alice

outputs π∗. Since maxπ{AgreeA≤20/ε(π)} ≥ AliceSure(kA20/ε) implies that Alice outputs in

33

Line 37, we henceforth assume that Alice outputs in Line 39 and maxπ{AgreeA≤20/ε(π)} <
AliceSure(kA20/ε). Due to Lemma 6.14, this means that

max{iA, iB} ≤ is. (12)

Recall the definitions of ψ and util from subsection 6.5 above. Finally, note that, as tA

does not change after iteration 20/ε, we have that∑
i∈[24/ε]

`Ai = 14N −min{2N, tA − 2N}. (13)

Lemma 6.17. If ψ = π∗, then Alice outputs π∗.

Proof. By Equation 12 and part one of the “furthermore” part of Lemma 6.12, we get that

eB→A ≥
∑

i∈[24/ε]

`Ai − kA −max
{
iB − 14/ε, 0

}
· εN

3
+ max{tA − tB, 0} − AgreeA(π∗). (14)

We now split the proof into various cases and show that in all cases

eB→A ≥ 14N − kA − AgreeA(π∗)− eA→B − 50εN.

This, together with eA→B + eB→A ≤ budget implies that eB→A ≥ 7N − kA − AgreeA(π∗) +

eB→A, which rearranges to AgreeA(π∗) ≥ 7N − kA ≥ AliceSure(kA), and we are done by

part three of Lemma 6.12.

The analysis of the cases uses the following inequality obtained by combining the first

part of Lemma 6.13 and the first part of Lemma 6.11

tB ≤ max{2α, 2N}+ 50εN ≤ max{2eA→B, 2N}+ 50εN. (15)

Note that in the case ie > 14/ε we get the stronger inequality

tB ≤ 2α + 50εN ≤ 2eA→B + 50εN. (16)

• iB ≤ 14/ε and eA→B ≥ N : Using Equation 15, tB ≤ max{2eA→B, 2N} + 50εN =

2eA→B+50εN . By plugging the last inequality in Equation 14 and using
∑

i∈[24/ε] `
A
i =

14N −min{2N, tA − 2N} ≥ 14N − tA/2 (Equation 13),

eB→A ≥ 14N − tA/2− kA − AgreeA(π∗) + max{tA − 2eA→B − 50εN, 0}
≥ 14N − kA − AgreeA(π∗)− eA→B − 25εN. (as max{a, b} ≥ (a+ b)/2)

• iB ≤ 14/ε and eA→B < N : Using Equation 15, tB ≤ max{2eA→B, 2N} + 50εN =

2N + 50εN . By plugging the last inequality in Equation 14 and using
∑

i∈[24/ε] `
A
i =

14N −min{2N, tA − 2N} ≥ 16N − tA (Equation 13),

eB→A ≥ 16N − tA − kA + max{tA − 2N − 50εN, 0} − AgreeA(π∗)

≥ 14N − kA − AgreeA(π∗)− 50εN.

34

• iB > 14/ε: By Equation 12, 14/ε < iB ≤ is. Also, as αi ≥ −14εN for

all i (Lemma 6.10), we have is < ie =⇒ 14/ε < ie. Using Equation 16,

tB ≤ 2eA→B + 50εN ≡ a. By the second part of Lemma 6.13 it holds that

tB ≤ 2εN
3

(20/ε − is) ≤ 2εN
3

(20/ε − iB) ≡ b. Since we have seen that tB ≤ a, b it

is also the case that tB ≤ (a + b)/2 = eA→B + 25εN + εN
3

(20/ε − iB). Using the last

inequality in step (a) below and
∑

i∈[24/ε] `
A
i = 14N −min{2N, tA − 2N} ≥ 16N − tA

in Equation 14 (Equation 13), we get

eB→A ≥ 16N − tA − kA −
(
iB − 14/ε

)
· εN

3
+ max{tA − tB, 0} − AgreeA(π∗)

≥ 16N − kA −
(
iB − 14/ε

)
· εN

3
− tB − AgreeA(π∗)

(a)

≥ 14N − kA − eA→B − AgreeA(π∗)− 25εN.

Lemma 6.18. If ψ 6= π∗, then Alice outputs π∗.

Proof. Recall our assumption that Alice outputs in Line 39. To show that Alice outputs

π∗, we show that util(π∗) > util(π′), for all π′ 6= π∗. By part two of the “furthermore” part

of Lemma 6.12, it is sufficient to show that util(π∗) > eB→A + 200εN − tA/2. Summing

Claim 6.7 for i > iB, we get

util(π∗) ≥
∑
i>iB

lAi − eB→A>iB ≥ 14N − tA/2−
∑
i≤iB

lAi − eB→A>iB , (17)

using
∑

i∈[24/ε] `
A
i = 14N−min{2N, tA−2N} ≥ 14N−tA/2 (Equation 13). In case iB ≤ 14/ε,

we continue Equation 17 as:

util(π∗) ≥ 14N − tA/2− 3εN

7
iB − eB→A>iB

> 7N − tA/2− 3εN

7
iB + eB→A≤iB + eA→B≤iB + 500εN

≥ 7N − tA/2 ≥ eB→A + 200εN − tA/2. (Claim 6.2)

On the other hand, if iB > 14/ε, we continue Equation 17 as:

util(π∗) ≥ 8N − tA/2− 2εN

3

(
iB − 14/ε

)
− eB→A>iB

> N − tA/2− 2εN

3

(
iB − 14/ε

)
+ eA→B≤iB + eB→A≤iB + 500εN

≥ −tA/2− 2εN

3

(
iB − 14/ε

)
+ eA→B≤iB + eB→A≤iB + eA→B>14ε + eB→A>14/ε + 500εN

(by Claim 6.2, eA→B≤14ε + eB→A≤14/ε ≥ 6N − 300εN)

≥ −tA/2− 2εN

3

(
iB − 14/ε

)
+ eB→A(14/ε:iB] + 2eA→B(14/ε:iB] + eB→A + 500εN

35

≥ eB→A + 200εN − tA/2. (Claim 6.2)

References

[AGS16] Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive

communication. In Information Theory (ISIT), pages 595–599. IEEE, 2016. 4

[BE17] Mark Braverman and Klim Efremenko. List and unique coding for interactive

communication in the presence of adversarial noise. SIAM Journal on

Computing, 46(1):388–428, 2017. 4, 14

[Ber64] Elwyn R. Berlekamp. Block Coding with Noiseless Feedback. PhD thesis,

Massachusetts Institute of Technology (MIT), 1964. 4

[BGMO17] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding

for interactive communication correcting insertions and deletions. IEEE

Transactions on Information Theory, 63(10):6256–6270, 2017. 4

[BKN14] Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast interactive coding

against adversarial noise. Journal of the ACM (JACM), 61(6):35, 2014. 4

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in

interactive communication. In Symposium on Theory of computing (STOC),

pages 159–166. ACM, 2011. 2, 3, 4

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Innovations

in Theoretical Computer Science (ITCS), pages 161–167. ACM, 2012. 4

[EGH16] Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in

interactive communication over erasure channels and channels with feedback.

IEEE Transactions on Information Theory, 62(8):4575–4588, 2016. 3, 4

[EKS18] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over

the noisy broadcast channel. In Symposium on Theory of Computing (STOC),

pages 507–520. ACM, 2018. 4

[FGOS15] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman.

Optimal coding for streaming authentication and interactive communication.

IEEE Transactions on Information Theory, 61(1):133–145, 2015. 4

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and

Trends R© in Theoretical Computer Science, 13(1–2):1–157, 2017. 4

36

[GH14] Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for Interactive

Coding II: Efficiency and List Decoding. In Foundations of Computer Science

(FOCS), FOCS, pages 394–403, 2014. 4

[GH17] Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over

erasure channels and channels with feedback. SIAM Journal on Computing,

46(4):1449–1472, 2017. 4

[GHK+18] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.

Explicit capacity approaching coding for interactive communication. IEEE

Transactions on Information Theory, 64(10):6546–6560, 2018. 4

[GHS14] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates

for interactive coding i: Adaptivity and other settings. In Symposium on Theory

of computing (STOC), pages 794–803, 2014. 2, 3, 4, 5, 8, 11

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list

decodable codes. In Symposium on Theory of computing (STOC), pages 126–135.

ACM, 2003. 13

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for

interactive communication. In Foundations of Computer Science (FOCS), pages

768–777. IEEE, 2011. 4

[GMS14] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive

communication. IEEE Transactions on Information Theory, 60(3):1899–1913,

2014. 4

[Gur06] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and

Trends in Theoretical Computer Science, 2(2), 2006. 13

[Hae14] Bernhard Haeupler. Interactive channel capacity revisited. In Foundations of

Computer Science (FOCS), pages 226–235. IEEE, 2014. 4

[HKV15] Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication

with partial noiseless feedback. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM), 2015. 4

[HSV18] Bernhard Haeupler, Amirbehshad Shahrasbi, and

Ellen Vitercik. Synchronization strings: Channel simulations and interactive

coding for insertions and deletions. In International Colloquium on Automata,

Languages, and Programming (ICALP), pages 75:1–75:14, 2018. 4

37

[HV17] Bernhard Haeupler and Ameya Velingker. Bridging the capacity gap between

interactive and one-way communication. In Symposium on Discrete Algorithms

(SODA), pages 2123–2142, 2017. 4

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In Symposium on Theory

of computing (STOC), pages 715–724, 2013. 4

[Pan13] Denis Pankratov. On the power of feedback in interactive channels. Manuscript,

2013. 4

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem

for computation. In Foundations of Computer Science (FOCS), pages 724–733.

IEEE, 1992. 4

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756. ACM, 1993. 4

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 2, 4

[SW17] Alexander A. Sherstov and Pei Wu. Optimal interactive coding for insertions,

deletions, and substitutions. In Foundations of Computer Science (FOCS), pages

240–251, 2017. 4

[WQC17] Gang Wang, Yanyuan Qin, and Chengjuan Chang. Communication with

partial noisy feedback. In IEEE Symposium on Computers and Communications

(ISCC), pages 602–607, 2017. 4

38
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

