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Abstract

We present the first explicit construction of a non-malleable code that can handle
tampering functions that are bounded-degree polynomials. Prior to our work, this was
only known for degree-1 polynomials (affine tampering functions), due to Chattopad-
hyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable
code that is secure against tampering by bounded-size arithmetic circuits.

We show applications of our non-malleable code in constructing non-malleable se-
cret sharing schemes that are robust against bounded-degree polynomial tampering.
In fact our result is stronger: we can handle adversaries that can adaptively choose the
polynomial tampering function based on initial leakage of a bounded number of shares.

Our results are derived from explicit constructions of seedless non-malleable ex-
tractors that can handle bounded-degree polynomial tampering functions. Prior to
our work, no such result was known even for degree-2 (quadratic) polynomials.

1 Introduction

1.1 Non-malleable codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [DPW18] as a
natural and useful modification of error correcting codes, which can handle stronger forms of
adversarial tampering attacks (including ones that can change all symbols of the codeword),
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while still providing meaningful guarantees. Informally, a non-malleable code is a pair of
algorithms (Enc,Dec), and it is secure against a tampering function family F if for every
tampering function f ∈ F , the decoding of a tampered codeword, namely Dec(f(Enc(s))) for
an arbitrary message s, will either be the original message s, or a value completely unrelated
to s. (See Section 3.3 for a formal definition.)

As an example of an application of non-malleable codes, one can consider s as being
the signing key of a digital signature scheme, and is stored as Enc(s) in memory. The
non-malleability guarantee ensures that for any tampering attack which turns Enc(s) into
f(Enc(s)), the tampered signature is signed under either s or a completely unrelated key.
In both cases the tampered signature does not help the adversary learn how to forge a valid
signatures on its own.

Non-malleable codes have also found other useful applications in cryptography, such
as in constructing non-malleable commitments [GPR16], public-key encryption systems
[CMTV15], and, as we discuss in Section 1.2, non-malleable secret sharing [GK18a,GK18b,
BS18,ADN+18].

Dziembowski at al. [DPW18] observed that some restrictions on the tampering function
family is necessary. Indeed, it is impossible to achieve non-malleability if the adversary
is able to decode the codeword, tamper the message, and then re-encode the tampered
message. In the last 10 years, non-malleable codes have been shown to exist for numerous
rich tampering function families and in various settings. In this work we focus on explicit,
information-theoretic constructions.

A successful line of work focused on split-state tampering functions, where the codeword
is broken into several disjoint parts and the adversary can tamper each part arbitrarily
but independently [DKO13, CG14, CZ14, ADKO15, CGL16, Li17, KOS17, GMW18, KOS18,
ADL18, Li19, AO19]. This line of work has culminated in the construction of near-optimal
codes in this setting.

Recently there has been significant interest and progress on constructing non-malleable
codes in a more general setting, where the tampering functions are not restricted to fixed
partitions, and can act globally on the codeword. Global tampering classes that have been
studied include permutations and bit flipping [AGM+15], local functions [BDKM16], affine
functions over F2 [CL17], small-depth circuits [CL17, BDSG+18], and small-depth decision
trees [BGW19]. Our work fits into this line of research.

Our Results. We consider the tampering class of bounded-degree polynomials. This is a
natural class of tampering functions, and significantly generalizes the class of affine tampering
functions (i.e. degree-1 polynomials) studied in [CL17]. We define the setting more precisely
as follows. Let q be a prime, and Polyn,q,d denote the family of n-variate polynomials over
Fq of degree at most d. We are interested in the following family of tampering functions:

Fn,q,d := {(p1, . . . , pn) : ∀i ∈ [n], pi ∈ Polyn,q,d}.

For P = (p1, . . . , pn) ∈ Fn,q,d, and x ∈ Fq, define P (x) := (p1(x), . . . , pn(x)).

The following is our main result.

2



Theorem 1.1 (NMCs for bounded-degree polynomials). There exists a constant C > 0 such
that for all integers n, d,m, any ε > 0 and any prime q > (Cn2d4m22m/ε2) · log(nd/ε), there
exists a non-malleable code on alphabet [q], with block length n, message length m, relative
rate Ω(m/n log q) and error ε, with respect to the family Fn,q,d.

Prior to our work, no explicit construction of a non-malleable code was known even for
quadratic polynomials (d = 2).

To prove Theorem 1.1, we construct new explicit seedless non-malleable extractors that
can handle the tampering class Fn,q,d. A similar strategy was adopted in [CL17], where they
constructed seedless non-malleable extractors against affine tampering functions (i.e, Fn,q,1).
However, their construction of such extractors heavily exploit the linearity of the tampering
functions and explicit constructions of extractors that are linear, and their techniques seem to
break down even against quadratic tampering functions. We introduce a completely different
approach to construct seedless non-malleable extractors against higher degree polynomial
tampering. We discuss this in detail in Section 1.3.

We use Theorem 1.1 to derive a non-malleable code that is secure against tampering by
arithmetic circuits. Consider the following family of tampering functions:

En,q,s := {(e1, . . . , en) : ei is an n-variate size-s arithmetic circuit over Fq}.

For E = (e1, . . . , en) ∈ En,q,s and x ∈ Fq, we define E(x) := (e1(x), . . . , en(x)).

Corollary 1.2 (NMCs for arithmetic circuits). There exists a constant C > 0 such that for
all integers n, s,m, any ε > 0 and any prime q > (Cn2sm24s+2m/ε2) · log(n/ε), there exists
a non-malleable code on alphabet [q], with block length n, message length m, relative rate
Ω(m/n log q) and error ε, with respect to the family En,q,s.

To our knowledge, this is the first explicit construction of a non-malleable code that can
handle tampering by arithmetic circuits.

Corollary 1.2 follows as a straightfoward consequence of Theorem 1.1, using the fact that
a size-s arithmetic circuit computes a polynomial of degree at most 2s.

1.2 Non-malleable secret sharing

A t-out-of-n secret sharing scheme [Sha79, Bla79] allows a dealer to share a secret s ∈
{0, 1}m among n parties such that any t parties can collectively recover the secret, and yet
any colluding (t − 1) parties learn nothing about the secret. Recently, Goyal and Kumar
[GK18a] initiated the study of the more robust notion of non-malleable secret sharing. A
non-malleable secret sharing scheme further requires the shares to be non-malleable against
a family of tampering functions F . That is, when the shares are tampered by any function
f ∈ F , for any t parties the reconstructed secret should be either s or a value completely
unrelated to m.

Similar to non-malleable codes, non-malleable secret sharing schemes aim to provide pro-
tection against tampering attacks, and there are strong connections between non-malleable
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secret sharing schemes and non-malleable codes. In fact, it can be shown that non-malleable
codes in the 2-split-state model are 2-out-of-2 secret sharing schemes. In [GK18a], the
authors constructed t-out-of-n non-malleable secret sharing schemes in different tampering
models. A detailed comparison of these models and references to other related work can
be found in [ADN+18]. These models have in common that the tampering functions are
“compartmentalized,” applying the function independently to different disjoint parts.

A natural direction of investigation is to construct non-malleable secret sharing against
tampering functions that are not compartmentalized. Recently, Lin et al. [LCG+19] con-
struct a t-out-of-n secret sharing against affine tampering for every t and large enough n,
and Chattopadhyay and Li [CL19] construct a non-malleable ramp secret sharing against
affine tampering composed with joint tampering.

Our Results. We construct a non-malleable secret sharing scheme that is secure against
the class of polynomial tampering functions. Prior to our work, no such explicit construction
was known even against the tampering class of quadratic polynomials. The following is an
informal version of our result:

Theorem 1.3 (NM secret sharing for polynomial tampering). For all integers n, d, r, any
prime q > poly(2m, n, d) and 1 ≤ r ≤ n, there exists an r-out-of-n non-malleable secret
sharing scheme with respect to polynomial tampering Fn,q,d for m-bit secrets.

In fact our construction is stronger and can handle an adaptive tampering adversary who
chooses the polynomial tampering function f ∈ Fn,q,d depending on any r − 1 of the shares.

As in the case of non-malleable codes, the above theorem directly yields explicit non-
malleable secret sharing schemes that are secure against the tampering class of bounded-size
arithmetic circuits.

1.3 Seedless non-malleable extractors

Informally, a randomness extractor is a deterministic algorithm that produces nearly uni-
form bits of randomness from defective sources of randomness. The study of randomness
extractors is motivated by the fact that many applications in computer science require high-
quality random bits, whereas most naturally occurring sources of randomness are of much
lower quality. Before defining a randomness extractor formally, we first define the notion of
min-entropy that is typically used as a measure of the quality of a source:

Definition 1.4 (Min-entropy and (n, k)-sources). Let X be a distribution on {0, 1}n. The
min-entropy of X, denoted by H∞(X), is defined as minx(log(1/Pr[X = x])).
An (n, k)-source is a distribution on {0, 1}n with min-entropy at least k.

For two distributions D1 and D2 on the same universe Ω, we use |D1−D2| to denote the
statistical distance between them. We are now ready to define a randomness extractor for a
class of sources.
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Definition 1.5 (Extractor). Let X be a family of sources on {0, 1}n. A function Ext :
{0, 1}n → {0, 1}m is called an extractor for the family X with error ε if for any X ∈ X ,

|Ext(X)− Um| ≤ ε.

It turns out that there cannot exist an extractor that works for the family of distri-
butions on {0, 1}n with min-entropy at least n − 1. To circumvent this difficulty, a long
line of work has focused on extracting from a weak source X assuming access to a short
independent seed Y . Such extractors are called seeded extractors [NZ96] and we now have
almost optimal constructions of such extractors [GUV09, DKSS09]. Another successful line
of research focused on extracting random bits assuming more structure on the source X.
Such extractors are called as seedless extractors. Examples include assuming that the weak
source consists of multiple independent sources [CG88,Bou05,BIW06,CZ19], assuming that
the source is supported on an affine subspace [Bou07,GR08] or an algebraic variety [Dvi12],
or even simply assuming that there are some unknown coordinates of the source that are
uniform and independent [CGH+85]. Explicit constructions of seeded and seedless extractors
have found numerous applications in complexity theory [Zuc06], coding theory [TSZ04] and
cryptography [BBR88,Lu02].

Recently, several works studied a a more robust notion of a randomness extractor called
non-malleable extractor. The main motivations for studying this stronger variant is from
applications in cryptography. Surprisingly, explicit constructions of non-malleable extractors
have led to improved constructions of standard extractors. As in the case of standard
extractors, there are seeded non-malleable extractors and seedless non-malleable extractors.
The seeded variant was introduced by Dodis and Wichs [DW09] with applications to the
problem of privacy application [BBR88]. The seedless variant of non-malleable extractors
was introduced by Cheraghchi and Guruswami [CG14] with applications to constructions of
non-malleable codes.

We focus on the seedless variant of non-malleable extractors. For the sake of simplicity,
we define seedless non-malleable extractors in slightly less generality and refer the reader to
Section 3.3 for the more general definition.

Definition 1.6 (Seedless non-malleable extractor). Let X be a family of sources on {0, 1}n
and F be a class of tampering functions acting on {0, 1}n. Further assume that all f ∈ F
does not have any fixed points. A function nmExt : {0, 1}n → {0, 1}m is defined to be a
non-malleable extractor with respect to X and F with error ε if the following hold: for any
X ∈ X and f ∈ F , we have

|(nmExt(X), nmExt(f(X)))− (Um, nmExt(f(X)))| ≤ ε.

An informal way of interpreting the above definition is as follows. Let X be a source
from the family X . The distribution X ′ = f(X) represents the tampered distribution, where
f ∈ F (note that X ′ 6= X). The task of the non-malleable extractor nmExt is to remove the
correlation between the random variables X and X ′ (which are clearly dependent).

Chattopadhyay and Zuckerman [CZ14] gave explicit constructions of seedless non-
malleable extractors assuming X consists of 10 independent sources, and each source is

5



arbitrarily tampered. This was improved by Chattopadhyay, Goyal and Li [CGL16] to
construct seedless non-malleable extractors for 2 independent sources. Chattopadhyay and
Li [CL17] constructed a seedless non-malleable extractor against the class of affine functions.
In another work, Chattopadhyay and Li [CL19] constructed seedless non-malleable extrac-
tors when the source X consists of 2 independent sources that are interleaved in an unknown
way. They also consider some generalizations such as composition of linear tampering and
partitioned tampering.

Our results. We give a seedless non-malleable extractor that can handle polynomial
tampering. Prior to our work, Chattopadhyay and Li [CL17] handled the special case of
affine tampering. Their construction heavily relied on linearity of the tampering functions
and linearity properties of extractors, and their techniques do not seem to extend even to the
case tampering functions that are quadratic polynomials. While a seedless non-malleable
extractor for uniform source is sufficient for the reduction in [CG14], we show that our
non-malleable extractor in fact works for skew affine source defined below. This generality
is useful in our construction of non-malleable secret sharing schemes that are robust to
polynomial tampering.

Definition 1.7. Let Fq be a finite field, and let X = (X1, . . . , Xn) be a distribution on Fnq .
We say X is an affine source if X is uniform over an affine subspace W ⊆ Fnq . We define
the dimension of X to be the dimension of W . We say X is a skew affine source if X is an
affine source and for every i ∈ [n], Xi has support size greater than 1.

We are now ready to state our result on explicit non-malleable extractors against poly-
nomial tampering.

Theorem 1.8. There exists a constant C > 0 such that for all integers n, d,m, any prime
q and any ε > 0 such that q > (Cn2d4m22m/ε2) · log(nd/ε), there exists an explicit function
nmExt : Fnq → {0, 1}m, that is a seedless non-malleable extractor with respect to the family
of sources

X = {X : X is a skew affine source on Fnq of dimension ≥ 1}

and the tampering family Fn,q,d.

Prior to our work, no explicit construction of a seedless non-malleable extractor was
known against even quadratic polynomials (d = 2).

We use the above theorem to derive a non-malleable extractor against arithmetic circuits.

Corollary 1.9. There exists a constant C > 0 such that for all integers n, s,m, any prime
q and any ε > 0 such that q > (Cn2sm24s+2m/ε2) · log(n/ε), there exists an explicit function
nmExt : Fnq → {0, 1}m, that is a seedless non-malleable extractor with respect to the

X = {X : X is a skew affine source on Fnq of dimension ≥ 1}

and the tampering family En,q,s.
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To the best of our knowledge, this is the first explicit construction of a non-malleable
extractor that can handle tampering by arithmetic circuits.

We in fact show that the non-malleable extractors constructed are efficiently invertible,
i.e, given any output z, there exists an efficient sampling algorithm that produces a sample
from a distribution that is close to uniform on the set nmExt−1(z). We discuss the sampling
algorithm in Section 5. We then use the connection established in [CG14] (see Section 3.4)
to derive the explicit non-malleable codes with respect to polynomials (Theorem 1.1) and
arithmetic circuits (Corollary 1.9).

Organization. We give an overview of our techniques in Section 2. We discuss some
preliminaries in Section 3. In Section 4, we explicitly construct a non-malleable extractor
against polynomial tampering functions. In Section 5, we present efficient sampling algo-
rithms necessary to construct efficient non-malleable codes. We use Section 6 to construct a
non-malleable secret sharing scheme that can handle polynomial tampering.

2 Overview of techniques

In this section we discuss the main ideas that are used in our explicit constructions of
non-malleable codes, non-malleable extractors, and non-malleable secret sharing schemes.
We start by discussing the explicit non-malleable extractor against polynomial tampering
(Theorem 1.8). We then discuss ideas that go into using this construction to construct
efficient non-malleable codes and non-malleable secret sharing schemes that are robust to
polynomial tampering.

Seedless non-malleable extractors against polynomials. We discuss the main ideas
that goes into the construction of the non-malleable extractor from Theorem 1.8. We consider
the simpler setting and assume the the source is uniform (instead of being a skew affine source
as in Theorem 1.8). This setting cleanly captures our main ideas. The setup is as follows:

Let n, d be arbitrary integers, and fix any ε > 0. Let q = poly(n, d, 1/ε) be a large
enough prime (for exact details, see the statement of Theorem 1.8). Let X be the uniform
distribution on Fnq . Our goal is to construct a polynomial time function nmExt : Fnq →
{0, 1}m such that for any tampering function P = (p1, . . . , pn) from the class Fn,q,d, such
that there exits i ∈ [n] for which pi(x) 6= xi, we have

|nmExt(X), nmExt(P (X))− Um, nmExt(P (X))| ≤ ε.

The high level idea of our construction is to observe that we can express X as a convex
combination of distributions that are flat on lines in Fnq , and then design a non-malleable
extractor for such line sources. We note that Gabizon and Raz [GR08] used such an approach
for constructing affine extractors on large fields.

We now describe our approach more precisely. Our plan is to construct a low-degree
multivariate polynomial h : Fnq → Fq such that the following hold: for all β ∈ Fq, the
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polynomial
gβ = h(x) + βh(P (x))

is non-constant. (We stress that the choice of h cannot depend on P .) Now, for a suitable
choice of m (we pick m = ν log q for some small enough ν), we claim that for such an h,
defining

nmExt(x) = h(x) (mod 2m)

would satisfy the conclusion of Theorem 1.8.
Before constructing such an h, we first discuss why this is indeed enough. For any a ∈ Fnq ,

b ∈ Fnq \ {0n}, define the line La,b = {(a1 + tb1, . . . , an + tbn) : t ∈ Fq}. We abuse notation,
also use La,b to denote the flat distribution on La,b. Then clearly, X can be sampled by first
uniformly sampling a, b (from their respective domains), and then sampling from La,b.

The first observation is the following: let D = deg(gβ), and let gβ,a,b(t) be the univariate
restriction of g to the line La,b. We note that the coefficient of tD is g(b). Appealing
to the fact that a low degree polynomial has few roots (Lemma 3.5), it follows that with
high probability (over sampling a, b), the univariate polynomial gβ,a,b(t) is a non-constant
polynomial of degree D. Fix such vectors a, b so that gβ,a,b is a non-constant polynomial. We
now use a deep result from algebraic geometry known as the Weil bound (see Theorem 3.1)
to conclude that for any non-trivial character1 χ of Fq, we have

|Et∼Fq [χ(gβ,a,b(t))]| ≤ D/
√
q.

Roughly, this asserts the fact that the non-trivial Fourier coefficients of the distri-
bution gβ,a,b(UFq) are bounded, where UFq denotes the uniform distribution on Fq.
Such a bound can be now be translated into statistical closeness of the distribu-
tion nmExt(La,b), nmExt(P (La,b)) to Um, nmExt(P (La,b)) using known XOR lemmas (see
Lemma 3.2, Lemma 3.3). To conclude that nmExt(X), nmExt(P (X)) is close to
Um, nmExt(P (X)), we combine the fact that X is a convex combination of the flat
sources La,b, and that for most a, b, we have nmExt(La,b), nmExt(P (La,b)) is close to
Um, nmExt(P (La,b)).

Given the above discussion, all that remains to construct the required non-malleable
extractor is to find such an h. We recall the guarantee we need from h for convenience of
the reader:

• for all β ∈ Fq and P = (p1, . . . , pn) ∈ Fn,q,d satisfying that for some i ∈ [n] pi(x) 6= xi,
the polynomial g(x) = h(x) + βh(P (x)) is a non-constant polynomial.

• h must a low degree polynomial. In particular, we require deg(h)� q1/2.

An initial attempt to construct such an h could be to use a polynomial similar to the one
used by Gabizon and Raz [GR08] in their affine extractor construction and define

h(x1, x2, . . . , xn) = xc11 + xc22 + . . .+ xcnn ,

1See Section 3 for a quick recap of characters of finite fields.
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where c1, c2, . . . , cn are arbitrary distinct positive integer. It is not hard to see that this
does not work as follows. It is always possible to find β, γ1, γ2, . . . , γn ∈ F∗q such that
γcii = −β−1, such that at least one γi 6= 1. Now defining P = (γ1x1, . . . , γnxn) gives the
desired counterexample since for this choice of β and P , h(x) + βh(P (x) is identically the
zero polynomial.

We avoid the above counterexample as follows: Pick c1, c2, . . . , c2n from an arithmetic
progression such that the common difference is co-prime with q − 1, and define

h(x1, x2, . . . , xn) =
n∑
i=1

x
c2i−1

i + xc2ii .

For this choice of h, it is not hard to prove that if each pi(x) = γixi (for some γi ∈ Fq),
and g(x) is a constant polynomial, it must be that each γi is 1, and β = −1. However
this contradicts our assumption on P that for some i, pi(x) 6= xi. Thus we avoid the
counterexample discussed above.

We in fact that this choice of h works for all P ∈ Fn,q,d \ {(x1, . . . , xn)}. To prove this,
we rely on a result (Lemma 3.4) which shows that for such a choice of ci’s, for any distinct
i1, i2 ∈ [n], deg(p

ci1
i1

) is well separated from deg(p
ci2
i2

). With a careful case analysis, we use
this to show that some monomial (of degree at least 1) in g(x) survives. We provide the
details in Section 4.

Non-malleable extractors for skew affine sources against polynomial tampering.
In the previous paragraph we sketched how to construct a non-malleable extractor against

polynomial tampering assuming access to a uniform source on Fnq . In Section 4, we actually
show that the non-malleable extractor works for any affine source which is non-constant
on every coordinate. We call such source a skew affine source. In other words, our non-
malleable extractor is resilient to affine leakage which does not reveal any single coordinate
in the source. We will see the application of this property in non-malleable secret sharing.

To prove this stronger property of the non-malleable extractor, recall that in previous
section we defined a polynomial g(x) = h(x) + βh(P (x)), and its restriction to the line La,b,
denoted by gβ,a,b(t). We then sketched a proof that gβ,a,b is non-constant if g(b) 6= 0, which
happens with high probability over b. In Section 4, we actually show the following stronger
result: ∀i, bi 6= 0 is a sufficient condition for gβ,a,b to be non-constant. In fact, it is also a
necessary condition. If there exists i such that bi = 0, the adversary can set pj(x) = xj for
every j 6= i and pi(x) = c for a constant c 6= ai. One can verify that g−1,a,b is a constant in
this case.

The proof idea is that a similar case analysis as sketched in the previous section also
works for gβ,a,b if bi 6= 0 for every i. We then show that every skew affine source is a convex
combination of line source La,b where bi 6= 0 for every i (Lemma 4.1) to finish the proof.

Non-malleable codes against polynomial tampering. We now turn to cryptographic
applications of our non-malleable extractors. To build a non-malleable code against poly-
nomial tampering, we use the connection between non-malleable code and non-malleable
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extractor established in [CG14]. To apply the reduction in [CG14], we need an efficient
algorithm which samples almost uniformly from a pre-image of our non-malleable extractor
on any output.

Recall that our non-malleable extractor is of the form nmExt(x) = σ(h(x)), where σ
is modulo 2m and h is a bounded-degree polynomial. Inverting σ is easy, and there exists
an algorithm by Cheraghchi and Shokrollahi [CS09] which almost-uniformly samples a pre-
image of bounded-degree polynomial (over any large enough prime field). An initial attempt
to sample from nmExt−1(z) would be first sample y ∈ σ−1(z) and then sample from h−1(y).
However this does not work since h−1(y) might have different size for different y ∈ Fq. So
we need to sample y ∈ σ−1(z) with probability proportional to |h−1(y)|. A possible way to
perform such weighted sampling from σ−1(z) is to do a rejection sampling which samples
y ∈ σ−1(z) uniformly in each round and accept with probability proportional to |h−1(y)|.
However, we need to (approximately) count |h−1(y)| in this approach, which is difficult in
general.

Chattopadhyay and Zuckerman [CZ14] handled a similar sampling task while construct-
ing efficient non-malleable codes in the split-state model, with the crucial difference being
that they were dealing with polynomials on a constant number of variables. In [CZ14], they
adopted a similar sampling strategy as the one sketched above, and they count |h−1(y)| with
an algorithm from [HW98], which has running time doubly exponential in the number of
variables (which, in their case, still takes constant time).

To get around this difficulty, we observe that the algorithm in [CS09] is actually a rejection
sampling which has accepting probability proportional to |h−1(y)| in each round. Therefore,
we can embed an uniform sampling of y in each round of [CS09] and bypass the computation
of |h−1(y)|. We provide the details of our sampling algorithm in Section 5.

Non-malleable secret sharing against polynomial tampering. As another applica-
tion of our non-malleable extractor, we build a non-malleable secret sharing that can handle
polynomial tampeering. We obtain this by plugging in our extractor into a scheme by Lin,
Cheraghchi, Guruswami, Safavi-Naini and Wang [LCG+19]. In this scheme, they take an
efficiently invertible non-malleable extractor nmExt and a linear erasure code (Enc,Dec),
then define the sharing function to be Enc ◦ nmExt−1 and the reconstruction function to be
nmExt ◦ Dec. If in the erasure code (Enc,Dec), Dec only needs r symbols in the codeword
to reconstruct the original message, then so does nmExt ◦Dec in the secret sharing scheme.
Therefore the correctness holds as long as there is an efficient inverter for nmExt which
succeeds with high probability.

To prove privacy and non-malleability we need the following guarantee on nmExt. To
guarantee non-malleability, for every tampering function f , nmExt should be non-malleable
against the composed tampering function Dec ◦ f ◦ Enc. For polynomial tampering, taking
the erasure code to be a linear code over Fq naturally satisfies this requirement. To guarantee
privacy, given a uniform source X, nmExt(X) should be uniform conditioned on that some
symbols of Enc(X) is leaked to the adversary. When (Enc,Dec) is a linear code, this means
nmExt should be an affine extractor. This is also true for our extractor (see Appendix A).
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We in fact achieve a stronger result and construct a non-malleable secret sharing scheme
where the adversary can choose the polynomial tampering function based on some of the
shares. If given a secret the adversary can learn a symbol of nmExt−1(s) from their shares,
the secret sharing scheme sketched above will become malleable. We show that we can avoid
this problem by taking Enc to be a “truncated systematic MDS code”. That is, we take
a MDS code for which the encoding is in the form f(x) = (x, f ′(x)), then we discard x
and only keep f ′(x). For x ∈ Frq, we can prove that given any r − 1 symbols in f ′(x), it
is not possible to recover any symbol in x. Roughly speaking, if given r − 1 symbols in
f ′(x) it is possible to recover xi, then these symbols together with xi contain “redundant
information”, which violates the MDS property. This is in fact very similar to Shamir’s
secret sharing scheme, and the only difference is we want to hide every single symbol in the
message while Shamir’s secret sharing is only hiding the first symbol because the others are
random. Because our extractor is non-malleable given any other form of affine leakage (using
the fact that our non-malleable extractor works for any skew affine source of dimension at
least 1), we can conclude that the corresponding r-out-of-n secret sharing is non-malleable
even if the adversary choose their tampering function based on r − 1 shares. We provide
more details of our non-malleable secret sharing scheme in Section 6.

3 Preliminaries

Define e(x) = e2πix, where i =
√
−1.

For any distribution D, let D(x) denote Pr[D = x], and let Supp(D) denote the support of
D.
Let Um denote the uniform distribution over m bits. Let UΣ denote the uniform distribution
over the finite set Σ.
For two distributions D1 and D2 on the same universe, we use |D1 − D2| to denote the
statistical distance. We use D1 ≈ε D2 to denote the fact that D1 and D2 are ε-close in
statistical distance.
For non-negative integers λ1, . . . , λn that sum to 1, and arbitrary distributions D1, . . . , Dn,
we use

∑
i λiDi to denote the distribution that places weight

∑
i λiDi(x) at the point x.

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. For non-negative integer k, we use(
[n]
k

)
denote the set of all subsets of [n] of size k. Let Σ be a set of symbol. For sequence

X = (x1, . . . , xn) ∈ Σk and S = {i1, . . . , ik} ⊆ [n] such that i1 < i2 < . . . < ik, we use XS to
denote the sequence (xi1 , xi2 , . . . , xik).

3.1 Characters sums over finite fields

Let q be a prime. The additive characters of Fq are of the form χj(x) = e(xj/q), for
j = 0, 1, . . . , q − 1. χ0 is called the trivial character, and the others are called as non-trivial
characters of Fq. We now recall a deep result from algebraic geometry that has found various
applications in pseudorandomness.

11



Theorem 3.1 (Weil bound [Wei48]). Let p be a non-constant univariate polynomial of degree
d < q over Fq. For any non-trivial additive character χ of Fq, we have∣∣∣∣∣∣

∑
y∈Fq

χ(p(y))

∣∣∣∣∣∣ ≤ d
√
q.

We record a couple of XOR lemmas that lets us translate bounds on expectations of
characters under a distribution D, to the closeness of D in statistical distance to the uniform
distribution.

Lemma 3.2 ( [Rao07]). For every prime q, there exists an efficiently computable map σ :
Fq → {0, 1}m such that if Y is a distribution on Fq such that for every non-trivial additive
character χ of Fq,

E[χ(Y )] ≤ δ,

then it is the case that
|σ(Y )− Um| ≤ ε,

where ε = δ2m/2 +O(2m/q).

Lemma 3.3 ( [Rao07,DLWZ14]). For every prime q, there exists an efficiently computable
map σ : Fq → {0, 1}m such that if (Y, Y ′) is a distribution on Fq × Fq where for all additive
characters χ, φ of Fq, where χ is non-trivial,

E[χ(Y )φ(Y ′)] ≤ δ,

then it is the case that
|σ(Y ), σ(Y ′)− Um, σ(Y ′)| ≤ ε,

where ε = δ2m +O(2m/q).

3.2 Useful lemmas about polynomials

We recall a useful result from [DGW09] (Lemma 4.2).

Lemma 3.4. Let n, r, d, λ be arbitrary positive integers, and q be a prime. Let
p1(x), . . . , pr(x) ∈ Polyn,d,q be non-constant polynomials. Suppose that di = deg(pi). De-
fine ci = λ(2dr + 1) + λi. Then, for all 1 ≤ i < j ≤ r, we have

|deg(pcii )− deg(p
cj
j )| = |ci · di − cj · dj| ≥ λ.

We also record the Schwartz-Zippel Lemma.

Lemma 3.5 ( [Zip79,Sch79]). Let p(x) ∈ Polyn,d,q be a non-zero polynomial. Then,

Pr
x∈Fn

q

[p(x) = 0] ≤ d/q.

12



3.3 Non-malleable codes and seedless non-malleable extractors

Definition 3.6 (Coding schemes). Let Σ be a finite alphabet set. A pair of functions
(Enc,Dec), where Enc : {0, 1}k → Σn is a randomized function and Dec : Σ→ {0, 1}k ∪{⊥}
is a deterministic function, is defined to be a coding scheme with block length n and message
length k if for all z ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1.

Definition 3.7 (Tampering functions). Let Σ be a finite alphabet set. For any n > 0, let
HΣ,n denote the set of all functions h : Σn → Σn. Any subset G ⊆ HΣ,n is a family of
tampering functions.

For simplicity, we sometimes do not specify the domain of tampering functions when it
is clear from the context. We define a function that will be useful in defining non-malleable
codes:

copy(x, y) =

{
x if x 6= same

y if x = same.

Definition 3.8 (Non-malleable codes). Let Σ be a finite alphabet set. A coding scheme
(Enc,Dec) on alphabet Σ with block length n and message length k is a non-malleable code
with respect to a tampering family G ⊂ HΣ,n and error ε if for every g ∈ HΣ,n there is a
random variable Dg supported on {0, 1}k ∪ {same} that is independent of the randomness in
Enc, and any message z ∈ {0, 1}k, we have

|Dec(f(Enc(z)))− copy(Dg, z)| ≤ ε

We define the rate of a non-malleable code C to be the quantity k
n log(|Σ|) .

Definition 3.9 (Seedless non-malleable extractors). Let Σ be a finite alphabet set, G be a
class of tampering functions Σn → Σn and X be a class of distribution over Σn. A function
nmExt : Σn → {0, 1}m is called a seedless non-malleable extractor that works for X with
respect to G with error ε if for every distribution X ∈ X and every tampering function
g ∈ G, there exists a random variable Dg on {0, 1}m∪{same} that is independent of X, such
that

|(nmExt(X), nmExt(g(X)))− (Um, copy(Dg,Um))| ≤ ε.

3.4 Non-malleable codes via seedless non-malleable extractors

Cheraghchi and Guruswami [CG14] established the following connection between non-
malleable codes and seedless non-malleable extractors.

Theorem 3.10. Let Σ be some finite alphabet set. Let nmExt : Σn → {0, 1}m be a poly-
nomial time computable seedless non-malleable extractor that works for uniform distribution
with respect to a class of tampering functions G acting on Σn. Suppose there is a sampling
algorithm Samp that on any input z ∈ {0, 1}m runs in time poly(n, log |Σ|) and samples
from a distribution that is δ-close to uniform on the pre-image set nmExt−1(s).
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Then there exists an efficient construction of a non-malleable code on alphabet Σ with
block length n, relative rate m

n
, error 2mε+ δ with respect to the tampering family G.

Given such an invertible non-malleable extractor, the non-malleable code for G is defined
as follows: Any message v ∈ {0, 1}m is encoded as Samp(v). The decoding of a codeword
c ∈ Σn is nmExt(c) ∈ {0, 1}m.

3.5 MDS code

Definition 3.11. Let C ⊆ Fnq be a linear subspace of dimension k where Fq is the finite
field with q elements. We say C is a [n, k, d]q code if every two distinct codewords c1, c2 ∈ C
coincide in at most n − d coordinates. We say C is a [n, k]q MDS (maximum distance
separable) code if C is a [n, k, n− k + 1] code, i.e. C matches Singleton bound [Sin64].

Definition 3.12. Let C be a [n, k, d]q code and Enc be a bijective linear mapping from Fkq
to C. We say Enc is systematic encoding of C if there exists a function Enc′ : Fkq → Fn−kq

such that for every x ∈ Fkq , Enc(x) = (x,Enc′(x)).

The distance property of a [n, k]q MDS code guarantees that the codewords remain dis-
tinct even when restricted to only k out of n symbols. Moreover, it is well-known that
Reed-Solomon code [RS60] is a MDS code, and every linear code has a systematic encoding.
(For example, see [LF04] for a systematic encoding of Reed-Solomon code.) Therefore we
have the following lemma.

Lemma 3.13. For every finite field Fq of q element, and every integer k, n such that k ≤ n ≤
q, there exists a [n, k]q MDS code C ⊆ Fnq and an efficient systematic encoding Enc : Fkq → C.
Moreover, for every R ⊆ [n] of size |R| = k, there exists an efficient decoding algorithm
DecR : Fkq → Fkq such that for every x ∈ Fkq , DecR(Enc(x)R) = x, where Enc(x)R denote the
restriction of Enc(x) on the coordinates specified by R.

3.6 Other useful lemmas

We will also use the following lemma for statistical distance in [LCG+19] (Lemma 13).

Lemma 3.14. Let V ,W be finite sets, and let (V,W ), (V ′,W ′) be joint distribution on
V ×W. Let ε > 0 be real number such that

(V,W ) ≈ε (V ′,W ′).

Then for every event E ⊆ Supp(W ) ∩ Supp(W ′),

|(V | W ∈ E)− (V ′ | W ′ ∈ E)| ≤ ε

Pr[W ∈ E ]
.
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4 Non-malleable extractors against polynomials

We present the proof of Theorem 1.8 in this section. On a high level, our idea is to express
X as a convex combination of sources on lines in Fnq , and design a non-malleable extractor
for such line sources. We note that Gabizon and Raz [GR08] adopted such an approach for
constructing affine extractors over large fields. First we show that a skew affine source is a
convex combination of skew line source.

Lemma 4.1. Let q be a prime, n < q be a integer and X ∈ Fnq be a skew affine source of
dimension k. Then there exists a distribution A ∈ Fnq and a vector b ∈ (Fq\{0})n such that
X ≡ A+ Tb, where T is uniform over Fq.

Proof. Suppose X is uniform over the affine subspace W + z where W is a linear subspace
of Fnq and z ∈ Fnq is a fixed vector. Our goal is to find a vector b ∈ W s.t. bi 6= 0 for every
i ∈ [n]. Given such b we can set A ≡ X, and the lemma holds because X +w ≡ X for every
w ∈ W and tw ∈ W for every w ∈ W and t ∈ Fq.

Fix a basis {w1, . . . , wk} of W . For every i ∈ [k], define Si = {j ∈ [n] : wj 6= 0} and
Si =

⋃i
j=1 Sj. Note that Sk = [n] because W + z does not have any constant coordi-

nate. we will prove by induction that for every i ∈ [k] there exists vi ∈ span(w1, . . . , wi)
s.t. (vi)j 6= 0 for every j ∈ Si. Assume that there exists vi−1 which satisfies the
induction hypothesis. (Note that v0 = 0.) Consider the set of q distinct vectors
Li = {vi−1 + twi : t ∈ Fq} ⊆ span(w1, . . . , wi). Observe that for every j ∈ Si, there exists
at most one vector uj ∈ Li satisfying that (uj)j = 0. Since n < q, there must exist u∗ ∈ Li
s.t. (u∗)j 6= 0 for every j ∈ Si. Moreover, for every j ∈ Si\Si, (u∗)j = (vi−1)j 6= 0. Therefore
(u∗)j 6= 0 for every j ∈ Si. Finally observe that vk is a valid choice of b because Sk = [n]
and span(w1, . . . , wk) = W .

Next we present the extractor construction and prove correctness. Let B be the smallest
integer greater than 3 such that gcd(B, q − 1) = 1. Note that B must be a prime. We can
deduce an upper bound on B as follows. Define the primorial function ν(`) as the product
of the first ` primes. It is known that ν(`) = e(1+o(1))` log(`) [Dus10]. Further, it is known that
the `’th smallest prime number is at most O(` log(`)) [Ros39,Rob88]. Hence, it must be that
B ≤ µ log q, for some large enough constant µ. We can thus find such a B efficiently.

For i ∈ [2n], define ci = B(4dn+ 1) +Bi. Define the function h : Fnq → Fq as

h(x1, . . . , xn) =
n∑
i=1

(x
c2i−1

i + xc2ii ).

Let σ : Fq → {0, 1}m be the mapping from Lemma 3.3. We now define the non-malleable
extractor:

nmExt(x) = σ(h(x)).

For any a ∈ Fnq and b ∈ Fnq \ {0n}, define the line La,b = {a + tb : t ∈ Fq}. We overload
notation, and also use La,b to denote the flat source on this line. We will show that nmExt
is a non-malleable extractor against Polyn,d,q for every skew line source. Theorem 1.8 then
follows using Lemma 4.1.

15



Lemma 4.2. Let a ∈ Fnq , b ∈ (Fq\{0})n. For every tampering function P ∈ Polyn,d,q which
is not identity on La,b,

nmExt(La,b), nmExt(P (La,b)) ≈ε Um, nmExt(P (La,b)),

where ε = O
(

2md2n log q√
q

)
The following bound is the key ingredient. Indeed, Lemma 4.2 then follows using

Lemma 3.3.

Lemma 4.3. Let χ, φ be additive characters of Fq such that χ is non-trivial. Then,

|E[χ(h(La,b))φ(h(P (La,b)))]| ≤ O((d2n log q)/
√
q).

Let χ(y) = e2παy/q and φ(y) = e2πα′y/q. Since χ is non-trivial, we know that α 6= 0. Let
β = α′/α. Define the polynomial

g(x) = h(x) + βh(P (x)).

We note that

|E[χ(h(X))φ(h(P (X)))]| ≤
∣∣∣∣E [e(αg(X)

q

)]∣∣∣∣ .
Let ga,b(t) be the univariate polynomial obtained by restricting g(x) to the line La,b. The

following two claims directly yields Lemma 4.3.

Lemma 4.4. Suppose for some a, b ∈ Fnq , ga,b is a non-constant polynomial. Then,∣∣∣∣Et∼Fq

[
e

(
α · ga,b(t)

q

)]∣∣∣∣ ≤ O((d2n log q)/
√
q).

Lemma 4.5. For every a ∈ Fnq , b ∈ (Fq\{0})n, ga,b is a constant polynomial only if P is
identity on La,b.

Lemma 4.4 is indeed simple to obtain using the Weil bound.

Proof of Lemma 4.4. Follows directly from Theorem 3.1 using the fact that deg(ga,b(t)) ≤
O(d2n log q).

Now we prove Lemma 4.5.

Proof of Lemma 4.5. For every i ∈ [n], define the polynomial qi(t) = pi(a+ tb). Since a+ tb
is an affine function, deg(qi) ≤ deg(pi) ≤ d. Let di = deg(qi). For every i ∈ [n], define

wi(t) = (ai + tbi)
c2i−1 + (ai + tbi)

c2i + βqi(t)
c2i−1 + βqi(t)

c2i .

Recall that
ga,b(t) =

∑
i

wi(t).
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First we prove that deg(wi) ∈ {0, c2idi, c2i, c2i−1, c2i − 1}. Moreover, deg(wi) = 0 if and
only if β = −1 and qi(t) = ai + tbi. To prove this statement, first we consider the case
deg(qi) ≥ 2. Suppose that the leading coefficient in qi is si 6= 0. If β 6= 0, the coefficient of
tc2idi in wi is βsc2ii 6= 0. Therefore deg(wi) = c2idi. If β = 0, the coefficient of tc2i in wi is
βbc2ii 6= 0. Therefore deg(wi) = c2i. Next consider the case deg(qi) = 0. With an argument
similar to the case β = 0, we also have deg(wi) = c2i. Finally consider the case deg(qi) = 1.
Suppose qi(t) = ri + tsi. Observe that the coefficient of tc2i in wi is bc2ii + βsc2ii and the
coefficient of tc2i−1 in wi is c2i(aib

c2i−1
i +βris

c2i−1
i ). In this case either deg(wi) ∈ {c2i, c2i− 1}

or
bc2ii = −βsc2ii and aib

c2i−1
i = −βrisc2i−1

i .

The equations hold only when there exists k ∈ Fq s.t.

ri = kai, si = kbi and kc2i = −β−1.

If such k exists, we can write wi(t) = (1 − k−B(ai + tbi)
c2i−1 . If β = −1, we have k = 1,

wi(t) = 0 and qi(t) = ai + tbi. If β 6= −1, then k 6= 1, which implies (1 − k−B) 6= 0
because (B, q − 1) = 1. Therefore wi contains a monomial of degree c2i−1 with coefficient
(1− k−B)b

c2i−1

i 6= 0, and hence deg(wi) = c2i−1.
Now we show that ga,b(t) is a constant polynomial only if β = −1 and qi(t) = ai + tbi for

every i ∈ [n]. Consider the set of index I = {i ∈ [n] : deg(wi) > 0}. Then for every i ∈ I,
deg(wi) ∈ {dic2i, c2i, c2i−1, c2i − 1} if di > 0, or deg(wi) ∈ {c2i, c2i−1, c2i − 1} if di = 0. By
Lemma 3.4, for every pair i, j ∈ I, i ∈ j, deg(wi) 6= deg(wj). Therefore deg(ga,b) > 0 if I is
non-empty. If ga,b is a constant polynomial, it must be the case that deg(wi) = 0 for every
i ∈ [n]. This only happens when β = −1 and qi(t) = ai + tbi for every i ∈ [n].

Finally we prove Theorem 1.8 formally.

Theorem 4.6 (Theorem 1.8, restated). There exists a constant C > 0 such that for every
integers n,m, d, any ε > 0, any prime q such that q > Cn2d4m22m · log(nd/ε), any skew
affine source X ∈ Fnq of dimension ≥ 1 and any tampering function f ∈ Polyn,d,q, there
exists a distribution Df on {0, 1}m ∪ {same} that is independent of X, such that

|nmExt(X), nmExt(f(X))− Um, copy(Df ,Um)| ≤ ε.

Proof. By Lemma 4.1, there exists a distribution A on Fnq and vector b such that X =∑
a Pr[A = a] · La,b. Define I = {a ∈ Fnq : f is identity on La,b}. For every a ∈ I, define

(Df )a = same. For every a 6∈ I define (Df )a = nmExt(f(La,b)). Then we claim that
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Df =
∑

a Pr[A = a] · (Df )a satisfies the requirement:

|nmExt(X), nmExt(f(X))− Um, copy(Df ,Um)|

≤
∑
a

Pr[A = a] · |nmExt(La,b), nmExt(f(La,b))− Um, copy((Df )a,Um)|

=
∑
a∈I

Pr[A = a] · |nmExt(La,b), nmExt(La,b)− Um,Um|

+
∑
a6∈I

Pr[A = a] · |nmExt(La,b), nmExt(f(La,b))− Um, nmExt(f(La,b))|

≤
∑
a∈I

Pr[A = a] · ε+
∑
a∈I

Pr[A = a] · ε

= ε

The first inequality is by the convexity of statistical distance, and the second inequality is
by Lemma 4.2.

5 Efficient sampling

Recall that to construct efficient non-malleable codes using the connection established in
[CG14], we need to efficiently sample from the pre-image of any given output of the non-
malleable extractor constructed in the previous section. (We discuss this connection in
Section 3.4.) In this section we show how to construct such a sampler for the non-malleable
extractor constructed in Theorem 1.8. Note that Corollary 1.9 use the same non-malleable
extractors.

Theorem 5.1. Let nmExt : Fnq → {0, 1}m be the non-malleable extractor against Fn,q,d
tampering in Theorem 1.8. Then there exists a randomized algorithm nmExt−1 such that

for every z ∈ {0, 1}m the distribution of nmExt−1(z) is ε-close to uniform distribution on

nmExt−1(z). The running time of nmExt−1 is bounded by poly(n, d, log q, log(1/ε)).

Our starting point to prove Theorem 5.1 is a sampling algorithm from [CZ14], which has

running time O(dn
O(n)

(log q)O(1)) and error O(dO(nn)/
√
q). We will show how to modify this

algorithm and get an improved running time of poly(n, d, log q, log(1/ε)) for arbitrarily small
error ε.

Let nmExt be the non-malleable extractor from Theorem 1.8. Recall that nmExt = σ ◦h
where σ : Fq → {0, 1}m is defined as σ(x) = x (mod 2m) and h : Fnq → Fq is a multivariate
polynomial of degree d over Fq. Given z ∈ {0, 1}m, the pre-image of z under nmExt is

nmExt−1(z) =
⋃

y∈σ−1(z)

h−1(y),

and our goal is to sample from nmExt−1(z) almost uniformly. The sampling algorithm
in [CZ14] is based on the following rejection sampling strategy.
Let M ≥ maxy |h−1(y)|.
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1. Sample y ∈ σ−1(z) uniformly at random.

2. Compute |h−1(y)| (approximately), and accept y with probability |h−1(y)|/M . If y is
rejected, go back to step 1.

3. Output an (almost) uniform sample from h−1(y).

In [CZ14], the second step is achieved by an algorithm from [HW98] that has running time

O(dn
O(n)

(k log q)O(1)).
The third step is based on the following algorithm in [CS09].

Lemma 5.2 ( [CS09]). Let q be a sufficiently large prime, f ∈ Fq[x1, . . . , xn] be polynomials
of total degree bounded by d, and each polynomial has at most ` monomials. Let S ⊆ Fnq be
the set of common zeroes of f . There exists a randomized algorithm which takes f as input
(as a list of monomials) and outputs a random value X ∈ Fnq such that the distribution of

X is O(dO(1)/q)-close to uniform distribution on S. The worst-case running time of this
algorithm is poly(log q, d, n, `).

Thus the bottleneck in achieving a polynomial time sampling algorithm is Step (2) which
takes time that is doubly exponential in n. We get around this difficulty as follows: first
note that the rejection sampling in Step (2) is to ensure that the subset h−1(y) is selected
with probability proportional to |h−1(y)|. Our crucial observation is that the algorithm
in Lemma 5.2 is actually a rejection sampling which accepts an output with probability
proportional to |h−1(y)| in each round. Therefore we can actually combine the rejection
sampling in step 2 and 3, and bypass the computation of |h−1(y)|.

First we explain the relation between the algorithm in Lemma 5.2 and rejection sampling.
A naive way to sample from the variety h−1(y) is to repeatedly sample a point x ∈ Fnq and
verify if h(x) = y. However, the success probability of the naive rejection sampling is only
|h−1(y)|/qn, which is too small. The idea in [CS09] is that the space Fnq can be split into lines,
and the variety S is split into many “slices” by these lines. The naive rejection sampling is
equivalent to first sampling a line and then sampling a point from this line. Since each line
has q points, the probability of a certain point in the variety being chosen is still 1/qn−1 ·1/q.
However, if we choose a good direction to split the space, each slice of the variety only has
at most d points where d � q, and these points can be enumerated efficiently. Therefore
instead of sampling every point in this subspace with equal probability we can sample only
from the slice of variety instead. This allows us to increase the accepting probability in each
round to |h−1(y)|/dqn−1, which is high enough and still proportional to |h−1(y)|. With the
ideas above we get the following theorem.

Lemma 5.3. Let h : Fnq → Fq be a n-variate polynomial of degree d < q/2 with ` monomials,
and σ : Fq → {0, 1}m be any function. Suppose we have access to an oracle Sampσ which
takes input z and outputs a sample from σ−1(z) uniformly at random. Then for every ε > 0,
there exists a randomized algorithm A such that for every z ∈ {0, 1}m, the algorithm either
outputs a uniformly random sample from (σ ◦ h)−1(z) or output ⊥. The probability that the
algorithm outputs ⊥ is at most ε.
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Moreover, the expected running time of A on z is T ·poly(log q, n, d, `) plus T oracle calls
to Sampσ, where

T = O

(
qn−1 · d · |σ−1(z)|
|(σ ◦ h)−1(z)|

log(1/ε)

)
.

Before we formally prove Lemma 5.3, first we show how to prove Theorem 5.1 based on
Lemma 5.3. The following corollary shows that the algorithm in Lemma 5.3 is efficient when
σ◦h is an “extractor for uniform distribution” and σ does not concentrate on certain output.

Corollary 5.4. Suppose that σ(h(UFn
q
)) ≈1/2m+1 Um, and |σ−1(z)| ≤ Cq/2m for every z.

Then the running time of the algorithm in Lemma 5.3 is C log(1/ε)poly(n, `, log q, d).

Proof. The number of rounds of rejection sampling in the algorithm from Lemma 5.3 is

T = O

(
qn−1·d·|σ−1(z)|
|(σ◦h)−1(z)| log(1/ε)

)
.

Observe that∣∣(σ ◦ h)−1(z)
∣∣ = qn · Pr[σ(h(UFn

q
)) = z] ≥ qn · (1/2m − 1/2m+1) = qn/2m+1.

Plugging this in, and the upper on σ−1(z), we have T = O(d log(1/ε)). The corollary
now follows directly from Lemma 5.3.

Proof of Theorem 5.1. To prove Theorem 5.1 we only need to show that our non-malleable
extractor satisfies the condition in Corollary 5.4. The fact that σ(h(UFn

q
)) is close to Um

follows Theorem 1.8, and the second condition is also true because σ(x) = x mod 2m, which
satisfies |σ−1(z)| ≤ dq/2me for every z ∈ {0, 1}m.

We now prove Lemma 5.3. First we need the following lemma which is analogous to
Proposition 4.3 in [CS09]. Note that we slightly tweak the lemma to make the sampling
algorithm able to handle arbitrarily small error. The lemma says a random direction is a
good direction to split the space with high probability.

Lemma 5.5. Let h : Fnq → Fq be a n-variate polynomial of degree at most d, and let
b = (b1, . . . , bn) be uniformly random samples from Fq. Then with probability at least 1−d/q,
ha,b(t) = h(a1+b1t, . . . , an+bnt) is a non-constant polynomial of t for every a = (a1, . . . , an) ∈
Fnq .

Proof. Let g be the highest-degree homogeneous part of h. Then observe that ha,b(t) has
degree at most d, and its coefficient of td equals to g(b1, . . . , bn). By Lemma 3.5, the prob-
ability that g(b1, . . . , bn) is non-zero is at least 1 − d/q. Therefore with probability 1 − d/q
over b, ha,b(t) has degree exactly D for every a ∈ Fnq .

Proof of Lemma 5.3. In algorithm A, first we repeatedly sample b ∈ Fnq uniformly at random
until we find b which satisfies the condition in Lemma 5.5. If we fail to find such b in
log(1/ε) + 1 rounds, abort and output ⊥. Then repeat the following steps for at most T
rounds:
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Sample y ∈ σ−1(z) with oracle Sampσ, and sample a = (a1, . . . , an) uniformly at random.
Compute the restriction of h(x) = y on the line La,b = {(a1 + b1t, . . . , an + bnt) : b ∈
Fq}, i.e. ha,b(t) = y where ha,b(t) = h(a1 + b1t, . . . , an + bnt). Note that ha,b is a non-
constant polynomial of degree at most d. Then we run Berlekamp-Rabin algorithm [Rab80]
to enumerate all the roots of ha,b in Fq, denoted by t1, . . . , tk where k ≤ d. Now pick a
number i ∈ [d] uniformly at random. If i ≤ k, the algorithm succeeds, and we will return
(a1 + b1ti, . . . , an + bnti). Otherwise sample y and a again and repeat. If no value is returned
after all T rounds, return ⊥.
To prove the correctness of A, first we compute the distribution A(z) conditioned on that the
algorithm succeeds. Observe that A(z) never returns an element which is not in (σ ◦h)−1(z).
Moreover, for every v ∈ (σ ◦ h)−1(z), in each round the probability that A(z) outputs v is

1

|σ−1(z)|
· 1

qn−1
· 1

d
.

The first factor is the probability that y = h(v), the second factor is the probability that
La,b 3 v, and the third factor is the probability that v is chosen from the list of roots of ha,b.
Since this formula does not depend on v, we can conclude that A(z) is a uniform distribution
on (σ ◦ h)−1(z), conditioned on A(z) 6= ⊥.

Now we compute the probability that A fails. Assuming q ≥ 2d, the probability that
we fail to find a b satisfying the condition in Lemma 5.5 in log(1/ε) + 1 rounds is at most
(d/q)log(1/ε)+1 ≤ ε/2. If we find such b successfully, observe that A successfully returns a
sample with probability

p =
|(σ ◦ h)−1(z)|
|σ−1(z)| · qn−1 · d

in one round. Now define

T =
C log(1/ε)

p
,

for a large enough constant C. Then the probability that A does not output any element
after T rounds is at most (1− p)T < ε/2. Therefore PrA[A(z) = ⊥] ≤ ε.

Finally we analyze the running time of A. Finding a vector b which satisfies Lemma 5.5
(or abort and output ⊥) takes at most log(1/ε)poly(n, `, log q, d) steps. After finding b, we
run at most T rounds of rejection sampling, where in each round we first make an oracle call
to Sampσ, sample a and compute the polynomial ha,b which takes poly(n, `, log q, d) steps,
and run Berlekamp-Rabin which takes expected poly(n, `, log q, d) steps. Therefore the total
expected running time is as claimed.

Remark 5.6. While we only show the expected running time in Lemma 5.3, it is possible to
bound the worst-case running time by introducing a small error to the output distribution as
follows. In each of the T rounds, we are running Berlekamp-Rabin algorithm to factorize a
polynomial of degree at most d. Recall that in Berlekamp-Rabin algorithm, we are repeatedly
trying to factorize a polynomial into two non-trivial factors. Moreover, each attempt of
factoring succeeds with probability at least 1/2. To factorize T polynomials of degree d,
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we need at most Td successful attempts. Note that the probability that there are less than
Td success in the first 7Td attempts are at most (1/2)T < ε. Therefore, we can force the
algorithm to terminate and output ⊥ after 6Td unsuccessful attempts of Berlekamp-Rabin.
This ensures that the worst-case running time is still T · poly(n, `, log q, d). Besides, since
the time-out event happens with probability at most ε, the output distribution is still ε-close
to uniform distribution on (σ ◦ h)−1(z).

6 Non-malleable secret sharing

In this section we construct a non-malleable secret sharing scheme that is non-malleable
against polynomial tampering. This extends a recent work of Lin et al. [LCG+19] where
they could handle affine tampering functions. We use the framework that was introduced
in [LCG+19] to derive our secret sharing scheme. In short, the framework in [LCG+19]
takes a linear erasure code (Enc,Dec) and an invertible affine extractor Ext, and define
the share function to be Enc(Ext−1). If Ext is non-malleable against a class of tampering
function F which is closed under composition with linear function, the non-malleability will
be inherited by the secret sharing scheme. We show that the non-malleable extractor in
Theorem 1.8 is also an extractor for arbitrary affine source (see Appendix A). Thus the
framework in [LCG+19] directly gives a non-malleable secret sharing against polynomial
tampering.

Besides the direct application, we further show how to construct a r-out-of-n secret
sharing which is non-malleable against adversaries who can (adaptively) corrupt (r− 1)
shares and choose the polynomial tampering functions based on the corrupted shares. To
handle such adaptive adversary, we cannot directly plug our extractor into the framework
in [LCG+19] because our extractor is non-malleable only for skew affine source. Nevertheless,
we will show that non-malleablility for skew affine source is sufficient if we choose a proper
erasure code in the [LCG+19] scheme.

First we formally define the non-malleable secret sharing.

Definition 6.1 (Adaptive adversary). Let Σ denote a set of symbols. We say A : Σn → Σk

is a (n, k)-adaptive adversary if A(x1, . . . , xn) = (xs1 , . . . , xsk) for indices s1, . . . , sk defined
as follows.

• s1 is fixed.

• For every i, there exists a function fi : Σi → [n] such that si+1 = fi(xs1 , . . . , xsi).

Definition 6.2 (Non-malleable secret sharing). Let Σ be a finite alphabet set. Let Share :
{0, 1}m → Σn be a randomized algorithm mapping m bits to into n shares, each being an
alphabet from Σ. Let F : Σn → Σn be a family of tampering function. We say Share is a
r-out-of-n ε-non-malleable secret sharing with respect to F if the following properties hold.

• Correctness. For every authorized set R ⊆ [n] of size |R| = r, there exists a deter-
ministic algorithm RecR : Σr → {0, 1}m such that for every secret s ∈ {0, 1}m,

Pr[RecR(Share(s)R) = s] ≥ 1− ε,
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where Share(s)R denotes the r shares in Share(s) identified by the set R.

• Privacy. For every (n, r−1)-adaptive adversary A and every pair of secret a, b ∈
{0, 1}m,

A (Share(a)) ≈ε A (Share(b)) .

• Non-malleability. For every (n, r−1)-adaptive adversary A, every reconstruction
strategy R : Σr−1 →

(
[n]
r

)
, every secret s ∈ {0, 1}m and every tampering strategy

µ : Σr−1 → F , define the tampering experiment

S̃ =



share← Share(s)
v ← A(share)
f ← µ(v)
R← R(v)

s̃hare← f(share)

Output : RecR(s̃hareR)


which is a random variable over the randomness of Share. Then there exists a distri-
bution DA,R,µ on {0, 1}m ∪ {same} which does not depend on s such that

S̃ ≈ε copy(DA,R,µ, s).

As observed in [LCG+19], since the tampering function f can be based on the view of
adversary, the adversary can jointly tamper (r−1) adaptively chosen shares arbitrarily. The
tampering on shares which the adversary cannot see depends on how strong F is. In our
construction F would be bounded-degree polynomials. With the non-malleable extractor in
Theorem 1.8, we show the following.

Theorem 6.3. There exists a constant C > 0 such that for all integers n, d, r, any prime
q and any ε > 0 such that q > (C2mn2d4/ε2) · log(nd/ε) and 1 ≤ r ≤ n, there exists a
r-out-of-n ε-non-malleable secret sharing scheme with respect to polynomial tampering Fn,q,d
for m-bit secret.

Proof. First we specify the construction. Let nmExt : Frq → {0, 1}m be the non-malleable
extractor with respect to Fr,q,d with error ε/2m+2 in Theorem 1.8. Let Enc(x) = (x,Enc′(x))

be the systematic encoding of a [n + r, r]q MDS code in Lemma 3.13. Let nmExt−1 be the
sampling algorithm in Theorem 5.1 with error ε/2m+2. Then we define

Share(s) = Enc′(nmExt−1(m)),

where nmExt−1 is the almost-uniform inverter of nmExt in Section 4. Next we prove the
three properties in Definition 6.2. The proof basically follows [LCG+19], but additionally we
need to show that the decoded shares is a skew affine source conditioned on adversary view.
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• Correctness. For every authorized set R ⊆ [n] of size |R| = r, let DecR denote the
decoding function of Enc′ specified by R in Lemma 3.13. Then we define

RecR(v) = nmExt(DecR(v)).

Rec is a correct reconstruction because for every secret s,

Pr[RecR(Share(s)R) = s] = Pr[nmExt
(

DecR

(
Enc(nmExt−1(s))R

))
= s] ≥ 1− ε.

Note that the correctness is not perfect because nmExt−1(x) does not always output
a pre-image of x.

• Privacy. Let S = nmExt(UFr
q
), and define X = nmExt−1(S). Fix any (n, r−1)-

adaptive adversary A : Fnq → Fr−1
q . Since nmExt−1 is an inverter of nmExt with error

ε/2m+2, we have (X,S) ≈ε/2m+2 (UFn
q
, S), which implies

(A (Enc′(X)) , S) ≈ε/2m+2

(
A
(
Enc′(UFr

q
)
)
, nmExt(UFr

q
)
)
.

Define V = A
(
Enc′(UFr

q
)
)
. We claim that for every v ∈ Fr−1

q , Yv = (UFr
q
| V = v)

is a skew affine source with positive min-entropy. Observe that there exists a set
Tv ∈

(
[n]
r−1

)
uniquely determined by v such that A

(
Enc′(UFr

q
)
)

= Enc′(UFr
q
)Tv . Since

Enc′ is a linear mapping, V = v corresponds to r−1 linear constraints for Yv. Therefore
Yv is an affine source with positive min-entropy. Now assume for contradiction that
Yv is not skew. Then there exists i ∈ [r] such that (Yv)i is a constant. Since Yv
is not a constant, there exist two distinct value y1, y2 ∈ Supp(Yv). Observe that
Enc′(y1)Tv = v = Enc′(y2)Tv and (y1)i = (y2)i. Then Enc(y1) := (y1,Enc′(y1)) and
Enc(y2) := (y2,Enc′(y2)) coincide on (r−1) + 1 coordinates, which contradicts to the
fact that Enc is a MDS code. Therefore Yv is skew. By Theorem 1.8,(

A
(
Enc′(UFr

q
)
)
, nmExt(UFr

q
)
)
≈ε/2m+2

(
A
(
Enc′(UFr

q
)
)
,Um

)
.

By triangle inequality we have

(A (Enc′(X)) , S) ≈ε/2m+1

(
A
(
Enc′(UFr

q
)
)
,Um

)
,

which by Lemma 3.14 implies

(A (Enc′(X)) | S = a) ≈ε/2
(
A
(
Enc′(UFr

q

))
≈ε/2 (A (Enc′(X)) | S = b)

for every a, b ∈ Supp(S). Finally, observe that Supp(S) = {0, 1}m because S is
ε/2m+2 < 1/2m close to uniform. Therefore for every a, b ∈ {0, 1}m,

A
(

Enc′
(

nmExt−1(a)
))
≈ε A

(
Enc′

(
nmExt−1(b)

))
.
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• Non-malleability. Let S = nmExt(UFr
q
), and define X = nmExt−1 (S). Fix any

(n, r−1)-adaptive adversary A : Fnq → Fr−1
q , any reconstruction strategy R : Fr−1

q →(
[n]
r

)
and any tampering strategy µ : Fr−1

q → Fn,q,d. Recall the tampering experiment

S̃ =



share← Enc′(X)
V ← A(share)
f ← µ(V )
R← R(V )

s̃hare← f(share)

Output : RecR(s̃hareR)


Note that this tampering experiment is equivalent to applying the tampering experi-
ment in Definition 6.2 on S. Now define

S̃ ′ =



share′ ← Enc(UFn
q
)

V ′ ← A(share′)
f ← µ(V ′)
R← R(V ′)

s̃hare′ ← f(share′)

Output : RecR(s̃hareR)


Since nmExt−1 is an inverter of nmExt with error ε/2m+2, we have (S,X) ≈ε/2m+2

(S,UFn
q
) which implies

(S, S̃) ≈ε/2m+2 (S, S̃ ′).

For every v ∈ Fr−1
q , define Yv = (UFr

q
| V ′ = v). With the same proof in the privacy

part, we can show that Yv is a skew affine source with positive min-entropy. Now define
fv = µ(v), Rv = R(v) and gv : Frq → Frq to be gv(x) := DecRv(fv(Enc′(x))Rv). Since
both Enc′ and DecRv are linear and fv ∈ Fn,q,d, we have gv ∈ Fr,q,d. By Theorem 1.8,
there exists a distribution Dgv on {0, 1}m ∪ {same} such that

(nmExt(UFr
q
), nmExt(gv(UFr

q
)) | V ′ = v) ≈ε/2m+2 (Um, copy(Dgv ,Um)).

Define DA,R,µ =
∑

v Pr[V ′ = v] ·Dgv . By convexity of statistical distance,

(S, S̃ ′) = (nmExt(UFr
q
), S̃ ′) ≈ε/2m+2 (Um, copy(DA,R,µ,Um)),

which by triangle inequality implies

(S, S̃) ≈ε/2m+1 (Um, copy(DA,R,µ,Um))).

Finally by Lemma 3.14 and the fact that Supp(S) = {0, 1}m we can conclude that for
every s ∈ {0, 1}m,

(S̃ | S = s) ≈ε copy(DA,R,µ, s).

25



7 Open Questions

Obvious questions that arise from our work include improving the parameters (such as rate
and error) of our non-malleable code against polynomials, and similarly obtaining seedless
non-malleable extractors against polynomials with smaller error.

Another interesting direction is to construct such non-malleable codes and extractors
against polynomials over smaller fields. In particular, over F2 would be the most interesting.
We expect this to require significantly different ideas from our construction: we crucially
rely on exponential sum estimates for our non-malleable extractor construction, and such
estimates are not available over smaller fields.

More broadly, we believe it to be a very interesting question to construct non-malleable
codes against other natural complexity classes (e.g., small-width branching programs, AC0

with PARITY gates, etc.).
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A Extraction from arbitrary affine source

To get a non-malleable secret sharing scheme against polynomial tampering in the non-
adaptive setting (i.e., the choice of the tampering function does not depend on the shares),
the original scheme in [LCG+19] (where they use an arbitrary erasure code instead of the
truncated MDS code that we use in Section 6) suffices. This follows directly from [LCG+19]
relying on the additional fact that the non-malleable extractor constructed in Theorem 1.8
(see Section 4) is also an extractor for affine sources. In this section we include a proof that
our non-malleable extractor is indeed a (standard) extractor for affine sources. This is stated
below as Lemma A.1.

For convenience of the reader, we first recall the setup and construction of the non-
malleable extractor from Section 4:

For any integers n, d and any ε > 0, let q > Cn2d4ε2 log(nd/ε) be a prime, for some large
enough constant C. Now define the function h : Fnq → Fq as

h(x1, . . . , xn) =
n∑
i=1

(x
c2i−1

i + xc2ii ),

where the ci = B(dn + 1) + Bi, B ≤ O(log q). Let σ : Fq → {0, 1}m be the mapping from
Lemma 3.3. We define the non-malleable extractor: nmExt(x) = σ(h(x)).

Lemma A.1. For any affine source Y on Fnq of dimension ≥ 1, we have

|nmExt(Y )− Um| ≤ ε.

Proof. Since any affine source can be written as a convex combination of sources that are
flat on lines (i.e, affine source of dimension 1), without loss of generality suppose the source
Y is a flat source of dimension 1. Thus, assume Y is flat on some line La,b = {a+tb : t ∈ Fq},
where a, b ∈ Fnq and b is not the all 0’s vector.

31



We first claim that the polynomial the univariate polynomial ha,b(t) = h(a + tb) is a
non-constant polynomial (over Fq) of degree at most O(n log q). The upper bound on the
degree is direct from the fact that c2n ≤ O(n log q). Next note that

ha,b(t) =
∑
j∈[n]

((aj + tbj)
c2j−1 + (aj + tbj)

c2j) .

since b 6= 0n, the set S = {j ∈ [n] : bj 6= 0} is non-empty and let i be the largest integer in S.
It is now easy to see that deg(ha,b) = c2i. Indeed the coefficient of tc2i in the polynomial ha,b
is bc2ii which by assumption is non-zero. This completes the proof that ha,b is non-constant
polynomial of degree at most O(n log q).

It now follows by Theorem 3.1, that for any non-trivial additve character χ of Fq, we
have ∣∣Et∈Fq [χ(ha,b(t)]

∣∣ ≤ O(n log q)/
√
q.

Thus, by Lemma 3.2, it follows that

|σ(h(Y ))− Um| ≤ 2m/2 · O(n log q)
√
q

+ 2m · 1

q
.

The bound now follows using the fact that q > Cn2d4ε2 log(nd/ε) and m = ν · log q for some
small enough constant ν.
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