
Randomized and Symmetric Catalytic
Computation?

Samir Datta1, Chetan Gupta2, Rahul Jain2, Vimal Raj Sharma2, and
Raghunath Tewari2

1 Chennai Mathematical Institute and UMI ReLaX, Chennai
sdatta@cmi.ac.in

2 Indian Institute of Technology, Kanpur
{gchetan,jain,vimalraj,rtewari}@cse.iitk.ac.in

Abstract. A catalytic Turing machine is a model of computation that
is created by equipping a Turing machine with an additional auxiliary
tape which is initially filled with arbitrary content; the machine can read
or write on auxiliary tape during the computation but when it halts
auxiliary tape’s initial content must be restored. In this paper, we study
the power of catalytic Turing machines with O(logn)-sized clean tape
and a polynomial-sized auxiliary tape.
We introduce the notion of randomized catalytic Turing machine and
show that the resulting complexity class CBPL is contained in the class
ZPP. We also introduce the notion of symmetricity in the context of
catalytic computation and prove that, under a widely believed assump-
tion, in the logspace setting the power of a randomized catalytic Turing
machine and a symmetric catalytic Turing machine is equal to a deter-
ministic catalytic Turing machine which runs in polynomial time.

Keywords: Catalytic Computation · Logspace · Randomized Compu-
tation

1 Introduction

Buhrman et al. [1] first introduced the catalytic computational model. This
model of computation has an auxiliary tape filled with arbitrary content in
addition to the clean tape of a standard Turing machine. The machine during
the computation can use this auxiliary tape to read or write, but at the end
of the computation, it is constrained to have the same content in the auxiliary
tape as initial. The central question here is, whether catalytic computational
model is more powerful than the traditional Turing machine model or not. It
seems intuitive that the content of auxiliary tape must be stored in one form
or another at each step of the computation, making the auxiliary tape useless
if the original auxiliary tape content is incompressible. However, Buhrman et

? The first author was partially funded by a grant from Infosys foundation and SERB-
MATRICS grant MTR/2017/000480. The second and fourth author were supported
by Visvesvaraya PhD Scheme.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 24 (2020)

2 Datta et al.

al. [1] showed that problems that are not known to be solvable by a standard
Turing machine using O(log n) space (Logspace, L) can be solved by a catalytic
Turing machine with O(log n) clean space and nO(1) auxiliary space (Catalytic
logspace, CL). Specifically, they showed that the circuit class uniform TC1, which
contains L is contained in CL. This result gives evidence that the auxiliary tape
might not be useless.

Since its introduction, researchers have tried to understand the power and
limitation of catalytic Turing machine. Buhrman et al. [2] also introduced a
nondeterministic version of the catalytic Turing machine and proved that non-
deterministic catalytic logspace class CNL is closed under complement. They
also showed that CNL is contained in ZPP. Girard et al. [9] studied catalytic
computation in a nonuniform setting. More recently, Gupta et al. [3] studied
the notion of unambiguity in catalytic logspace and proved that unambiguous
catalytic Turing machines are as powerful as nondeterministic catalytic Turing
machines in the logspace setting.

In this paper, we study the notion of randomized computation and symmetric
computation in the context of catalytic Turing machines. Following the earlier
results in the field of catalytic computation, we define the classes of problems
by limiting the catalytic Turing machine to O(log n)-size clean tape and nO(1)-
sized auxiliary tape. We thus get the classes CBPL and CSL for randomized
and symmetric logspace catalytic Turing machine respectively (see Section 2 for
complete definitions). We show that CBPL ⊆ ZPP. We also prove that under a
widely believed assumption, not only CBPL is equal to CSL, but they are also
equal to the class of problems that can be solved by a deterministic catalytic
Turing machine running in polynomial time with O(log n)-size clean (or work)
tape and nO(1)-sized auxiliary tape (CSC1). Formally, we prove the following.

Theorem 1 (Main Theorem). If there exists a constant ε > 0 such that DSPACE(n)
6⊆ SIZE(2εn), then CBPL = CL = CSL = CSC1.

Our result requires (i) a pseudorandom generator to get a small size con-
figuration graph of a catalytic machine, and (ii) universal exploration sequence
to traverse those small size configuration graphs. The required pseudorandom
generator was used in [2] and [3] as well. Universal exploration sequence was first
introduced by Koucky [6]. Reingold [8] presented a logspace algorithm to con-
struct a polynomially-long universal exploration sequence for undirected graphs.
Since the catalytic Turing machines we study have O(log n) size clean space, we
can use Reingold’s algorithm to construct those sequences in catalytic machines
as well.

1.1 Outline of the Paper

In Section 2, we give preliminary definitions of various catalytic classes and state
the lemmas on the pseudorandom generator and universal exploration sequences
used by us. In Section 3, we prove CBPL ⊆ ZPP. In Section 4, we prove our main
result Theorem 1. Finally, in Section 5, without using the class CSL we give an
alternative proof of CL = CSC1 under the same assumption as in Theorem 1.

Randomized and Symmetric Catalytic Computation 3

2 Preliminaries

We start with the brief definitions of a few well-known complexity classes.
ZPP, DSPACE(n), SIZE(k): ZPP denotes the set of the languages which are

decidable in expected polynomial time. DSPACE(n) denotes the set of the lan-
guages which are decidable in linear space. SIZE(k) denotes the set of the lan-
guages which are decidable by circuits of size k.

The deterministic catalytic Turing machine was formally defined by Buhrman
et al. [2] in the following way.

Definition 2. Let M be a deterministic Turing machine with four tapes: one
input and one output tape, one work-tape, and one auxiliary tape (or aux-tape).
M is said to be a deterministic catalytic Turing machine using workspace

s(n) and auxiliary space sa(n) if for all inputs x ∈ {0, 1}n and auxiliary tape
contents w ∈ {0, 1}sa(n), the following three properties hold.

1. Space bound. The machineM(x,w) uses space s(n) on its work tape and
space sa(n) on its auxiliary tape.

2. Catalytic condition. M(x,w) halts with w on its auxiliary tape.
3. Consistency. M(x,w) either accepts x for all choices of w or it rejects for

all choices of w.

Definition 3. CSPACE(s(n)) is the set of languages that can be solved by a
deterministic catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CL denotes the class
CSPACE(O(log n)).

Definition 4. CTISP(t(n), s(n)) is the set of languages that can be solved by
a deterministic catalytic Turing machine that halts in at most t(n) steps and
uses at most s(n) size workspace and 2s(n) size auxiliary space on all inputs
x ∈ {0, 1}n. CSC1 denotes the class CTISP(poly(n), O(log n)).

A configuration of a catalytic machine M with s(n) workspace and sa(n)
auxiliary space consists of the state, at most s(n) size work tape content, at most
sa(n) size auxiliary tape content, and the head positions of all the three tapes.
We will use the notion of configuration graph in our results, which is often used
in proving space-bounded computation results for traditional Turing machines.
In the context of catalytic Turing machines, the configuration graph was defined
in [1, 2] in a slightly different manner than traditional Turing machines.

Definition 5. For a deterministic catalytic Turing machine M, input x, and
initial auxiliary content w, the configuration graph denoted by GM,x,w is a di-
rected acyclic graph in which every vertex is a configuration which is reachable
when M runs on (x,w). GM,x,w has a directed edge from a vertex u to a vertex
v if M in one step can move to v from u.

|GM,x,w| denotes the number of the vertices in GM,x,w. We call a config-
uration in which a machine accepts(rejects) the input an accepting(rejecting)
configuration.

4 Datta et al.

Motivated by the symmetric Turing machines defined in [7], we study the no-
tion of symmetricity in catalytic computation. We define the symmetric catalytic
Turing machine below.

Definition 6. A symmetric catalytic Turing machine is a catalytic Turing ma-
chine with two sets of transitions δ0 and δ1. At each step, the machine uses either
δ0 or δ1 arbitrarily. δ0 and δ1 are the finite set of transitions of the following form.
(For simplicity, we have described these transitions for a single tape machine.)

– (p, a, 0, b, q): If machine’s current state is p, the head is on a cell containing
a, then in one step machine changes the state to q, a is changed to b, and
the head doesn’t move.

– (p, ab, L, cd, q): If machine’s current state is p, the head is on a cell containing
b and the cell left to it contains a, then in one step machine changes the state
to q, the head moves to the left, and both a and b are changed to c and d
respectively.

– (p, ab,R, cd, q): If machine’s current state is p, the head is on a cell containing
a and the cell right to it contains b, then in one step machine changes the
state to q, the head moves to the right, and both a and b are changed to c
and d respectively.

Every transition has its inverse i.e. each of δ0 and δ1 has (p, ab, L, cd, q) if and
only if it has (q, cd,R, ab, p) and (p, a, 0, b, q) if and only if it has (q, b, 0, a, p). The
machine has two special states qstart and qaccept. The machine in the beginning
is in the state qstart. During the run, at every configuration where the state is
qstart or qaccept, the machine is constrained to have the same auxiliary content
as initial.

The notion of the configuration graph extends to symmetric catalytic ma-
chines as well. Due to inverse transitions, configuration graphs of a symmetric
catalytic machine are bidirectional, i.e. for any two vertices in a configuration
graph, say u and v, an edge goes from u to v if and only if an edge goes from v
to u.

We say a symmetric catalytic Turing machineM decides or solves a language
L if on every input x and every initial auxiliary content w, an accepting config-
uration (i.e., configuration with qaccept) is reachable when M runs on (x,w) if
and only if x ∈ L.

Definition 7. CSSPACE(s(n)) is the set of languages that can be solved by
a symmetric catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CSL denotes the class
CSSPACE(O(log n)).

The following lemma follows from Theorem 1 of [7].

Lemma 8. CL ⊆ CSL.

In this paper, we also study randomized catalytic computation. We define
the randomized catalytic Turing machine as follows.

Randomized and Symmetric Catalytic Computation 5

Definition 9. A randomized catalytic Turing machine is a catalytic Turing
machine with two transition functions δ0 and δ1. At each step the machine
applies δ0 with 1

2 probability and δ1 with 1
2 probability, independent of the

previous choices. On all possible choices of transition functions δ0 and δ1, the
machine is constrained to have the same auxiliary content as initial when it
halts.

We say a randomized catalytic Turing machine M decides or solves a lan-
guage L if for every input x and initial auxiliary content w, M accepts x with
probability at least 2

3 if x ∈ L and rejects x with probability at least 2
3 if x /∈ L.

Definition 10. CBPSPACE(s(n)) is the set of languages that can be solved by
a randomized catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CBPL denotes the class
CBPSPACE(O(log n)).

Configuration graph for a randomized catalytic Turing machine is defined
in the same way it was defined for a deterministic catalytic Turing machine.
Although note here that non-halting configurations have out-degree two in a
configuration graph of a randomized catalytic machine.

For a deterministic catalytic machine M with c log n size workspace and
nc size auxiliary space, an input x and initial auxiliary content w, |GM,x,w|
can be as large as exponential in |x|. But in [1, 2], authors showed that the
average size of the configuration graphs over all possible initial auxiliary contents
for a particular x and M is only polynomial in |x|. This observation holds for
symmetric and randomized catalytic Turing machines as well. The following
lemma is a direct adaption of Lemma 8 from [2] for symmetric and randomized
catalytic machines.

Lemma 11. Let M be a symmetric or randomized catalytic Turing machine
with c log n size workspace and nc size auxiliary space. Then for all x,

E
w∈R{0,1}nc

[|GM,x,w|] ≤ O(n2c+2).

In Section 4, we will prove CBPL = CL = CSL = CSC1 under the same
assumption the following standard derandomization result holds.

Lemma 12. [4, 5] If there exists a constant ε > 0 such that DSPACE(n) *
SIZE(2εn) then for all constants c there exists a constant c′ and a function G :
{0, 1}c′ logn → {0, 1}n computable in O(log n) space, such that for any circuit C
of size nc ∣∣∣ Pr

r∈{0,1}n
[C(r) = 1]− Pr

s∈{0,1}c′ log n
[C(G(s)) = 1]

∣∣∣ < 1

n
.

We will use a pseudorandom generator to produce small size configuration
graphs of symmetric and randomized catalytic machines. From [2] we know that
such a pseudorandom generator exists for nondeterministic catalytic Turing ma-
chines under the same assumption as that of Lemma 12. Their result trivially
implies the following lemma.

6 Datta et al.

Lemma 13. Let M be a symmetric or randomized catalytic Turing machine
using c log n size workspace and nc size auxiliary space. If there exists a con-
stant ε > 0 such that DSPACE(n) * SIZE(2εn), then there exists a function
G : {0, 1}O(logn) → {0, 1}nc

, such that on every input x and initial auxiliary con-
tent w, for more than half of the seeds s ∈ {0, 1}O(logn), |GM,x,w⊕G(s)| ≤ n2c+3.
Moreover, G is logspace computable. (w ⊕ G(s) denotes the bitwise XOR of w
and G(s).)

We will also need universal exploration sequences. Let G be an undirected
graph, then labelling is a function where every edge uv leaving a vertex u is
mapped to an integer {0, 1, . . . , degree(u)−1} in such a way that any two distinct
edges leaving a common vertex get different labels. Note that, in such a labelling
an undirected edge, say uv, gets two labels, one with respect to u and another
with respect to v.

An (n, d)-universal exploration sequence is a sequence of integers (s1, s2, . . . ,
sm) where each si ∈ {0, 1, . . . , d− 1}, which can be used to visit all the vertices
of any connected undirected graph G of n vertices and maximum degree d in
the following way. Let G has a labelling l, in the first step we pick a vertex u
and take an edge e leaving u labeled by s1 mod degree(u) to move to the next
vertex, after this, in the ith step if we arrived at a vertex, say v, through an edge
labeled with p with respect to v then we take an edge with label (p + si) mod
degree(v) with respect to v to move to the next vertex. Reingold [8] proved that
an (n, d)-universal exploration sequence can be constructed in O(log n) space.

An essential property of universal exploration sequences that we will use in
our result is that at any point during the traversal using a universal exploration
sequence we can stop and traverse back the vertices visited so far in the exact
reverse order that they were visited.

3 CBPL ⊆ ZPP

In this section, we will prove that CBPL is contained in ZPP. Our proof, sim-
ilar to the proof of CNL ⊆ ZPP, uses the observation that the average size of
the configuration graphs over all possible auxiliary content is polynomial in the
length of the input.

Theorem 14. CBPL ⊆ ZPP.

Proof. Let M be a CBPL machine with c log n size workspace and nc size aux-
iliary space. We construct a ZPP machine M′ such that L(M) = L(M′). On
input x, M′ first randomly generates a string w of size |x|c and construct the
configuration graph GM,x,w.

For every v ∈ GM,x,w, let prob(v) denote the probability of reaching an
accepting configuration from v.M′ computes the prob(v) for every vertex in the
following way.

1. Set prob(v) = 1 if v is an accepting configuration and prob(v) = 0 if v is a
rejecting configuration.

Randomized and Symmetric Catalytic Computation 7

2. For every vertex v whose prob(v) is still not computed, set prob(v) = 1
2 .prob(v1)+

1
2 .prob(v2), if prob(v1) and prob(v2) are already computed and there is an
edge from v to both v1 and v2.

3. Repeat 2 until prob(v) is not computed for all v ∈ GM,x,w.

In the end, M′ accepts x if and only if prob(vinit) ≥ 2
3 , where vinit is

the initial configuration. The procedure to compute prob(v) can easily be done
by M′ in time polynomial in |GM,x,w|. Since from Lemma 11 we know that

Ew∈R{0,1}nc [|GM,x,w|] ≤ O(n2c+2), the machine runs in expected polytime.

4 Proof of Main Theorem

Since we know CL ⊆ CSL from Lemma 8 and CSC1 ⊆ CBPL follows from the
definition, it is enough to prove CBPL ⊆ CL and CSL ⊆ CSC1.

Proof of CBPL ⊆ CL:

Let M be a CBPL machine with c log n size workspace and nc size auxiliary
space. We will construct a CL machine M′ such that L(M) = L(M′).

From Lemma 13, we know that there exists a logspace computable function
G : {0, 1}O(logn) → {0, 1}nc

, such that on every input x and initial auxiliary
content w, for more than half of the seeds s ∈ {0, 1}O(logn), |GM,x,w⊕G(s)| ≤
n2c+3. We call a seed s good, if |GM,x,w⊕G(s)| ≤ n2c+3.

We first prove the existence of another pseudorandom generator which M′
will use to deterministically find M’s output in case of a good seed. Let s̃ be a
good seed and Cx,w⊕G(s̃) be a polynomial size boolean circuit which on input

r ∈ {0, 1}n2c+3

traverses GM,x,w⊕G(s̃) using r in the following way. Assume a
label on every edge of GM,x,w⊕G(s̃), such that an edge uv is labeled by 0 if u
changes to v using δ0 or 1 if u changes to v using δ1. Cx,w⊕G(s̃) starts from the
initial vertex and in the ith step moves to the next vertex using the outgoing
edge with label same as the ith bit of r. Cx,w⊕G(s̃) outputs 1 if it reaches an
accepting vertex while traversing GM,x,w⊕G(s̃), else it outputs 0.

From Lemma 12, we know that there exists a logspace computable function
F : {0, 1}(O logn) → {0, 1}n2c+3

such that,∣∣∣ Pr
r∈{0,1}n2c+3

[Cx,w⊕G(s̃)(r) = 0]− Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 0]
∣∣∣ < 1

n
.

For suffciently large n, if x ∈ L(M), then

Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 0]
∣∣∣ < 1

3
+

1

n
<

1

2
(1)

Similarly, we can prove that, if x /∈ L(M), then

Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 1]
∣∣∣ < 1

3
+

1

n
<

1

2
(2)

8 Datta et al.

(1) and (2) together proves that on less than half of the seeds s′ ∈ {0, 1}O(logn),
simulation of M on (x,w ⊕ G(s̃)) by picking δ0 or δ1 according to F (s′) gives
the wrong answer.

We now present the algorithm of M′.

Algorithm 1 Algorithm of M′

G and F are the above described pseudorandom generators. S and S′ are the set of
seeds for G and F respectively.

1: procedure deterministicSimulation(Input x, Auxiliary Content w)
2: cntfinal = 0
3: for s ∈ S do
4: w ← w ⊕G(s)
5: cntacc = 0
6: for s′ ∈ S′ do
7: Simulate M on (x,w) by picking δ0 and δ1 according to F (s′).
8: if M halts with an accepting state during the simulation then
9: cntacc = cntacc + 1

10: end if
11: if M doesn’t halt during the simulation using F (s′) then
12: Continue the simulation using either δ0 or δ1 until M halts
13: end if
14: end for
15: if cntacc >

|S′|
2

then
16: cntfinal = cntfinal + 1
17: end if
18: w ← w ⊕G(s)
19: end for
20: if cntfinal >

|S|
2

then
21: Accept
22: else
23: Reject
24: end if
25: end procedure

If x ∈ L(M), then on every good seed s of G, cntacc >
|S′|
2 . Since more than

half of G’s seeds are good, cntfinal is incremented in line 16 more than |S|2 times.

Hence, in line 21 M′ will Accept after checking cntfinal >
|S|
2 . On the other

hand, if x /∈ L(M), then on every good seed s, cntacc <
|S′|
2 . So cntfinal is not

incremented in line 16 more than |S|2 times. Hence, M′ will Reject in line 23.

Randomized and Symmetric Catalytic Computation 9

Proof of CSL ⊆ CSC1:

Let M be a CSL machine with c log n size workspace and nc size auxiliary
space. We will construct a CSC1 machine M′ such that L(M) = L(M′).

We will again use the pseudorandom generator G of Lemma 13 with the
property that on every input x and initial auxiliary content w, for more than
half of the seeds s ∈ {0, 1}O(logn), |GM,x,w⊕G(s)| ≤ n2c+3.

We will also use universal exploration sequence to traverse all the vertices of
GM,x,w⊕G(s) on good seeds s. Let seq denote a (1n

2c+3

, 110)-universal exploration
sequence, where 10 is an upper bound on the maximum degree of GM,x,w⊕G(s).

We now present the algorithm of M′.

Algorithm 2 Algorithm of M′

seq is a (1n2c+3

, 110)-universal exploration sequence. G is the above described pseudo-
random generator and S is the set of seeds for G.

1: procedure polytime-deterministicSimulation(Input x, Auxiliary Content w)
2: accept = FALSE
3: for s ∈ S do
4: w ← w ⊕G(s)
5: Traverse GM,x,w by simulating M on (x,w) using seq.
6: Set accept = TRUE if an accepting config. is reached during the simulation.
7: Reverse simulate M on (x,w) using seq. . Restoring the aux. content.
8: w ← w ⊕G(s)
9: if accept = TRUE then

10: Accept
11: end if
12: end for
13: Reject
14: end procedure

M′ uses a flag variable accept which it sets to TRUE when it finds an ac-
cepting configuration while traversing GM,x,w using seq. If x ∈ L(M), then M′
on a good seed s must visit all the vertices of GM,x,w in the simulation of line 5,
and hence also visit an accepting configuration. In which case, it sets accept =
TRUE in line 6 and later Accepts in line 10. If x /∈ L(M), then clearlyM′ can
never reach an accepting configuration during any simulation. Therefore, M′
never sets accept to TRUE and finally, Rejects in line 13.

M′ takes polynomial time because there are only polynomially many seeds
of G, and for every seed of G, it runs two simulations using polynomially-long
seq.

We note here that our proof works even for a relaxed definition of CSL, in
which a CSL machine is constrained to have the original auxiliary content only
when it enters a configuration with qstart, not qaccept.

10 Datta et al.

5 An alternative proof of CL = CSC1

Under the assumption that DSPACE(n) 6⊆ SIZE(2εn), we provide an alternative
proof of CL = CSC1 without using the class CSL. For this we need to define the
notion of undirected configuration graph for the deterministic catalytic machines.

Definition 15. For a deterministic catalytic Turing machine M, input x, and
initial auxiliary content w, the undirected configuration graph denoted by G̃M,x,w

contains the two types of vertices.

– Type 1: A vertex for every configuration which is reachable when M runs
on (x,w).

– Type 2: A vertex for every configuration which is not reachable when M
runs on (x,w) but which can reach some configuration which is reachable
when M runs on (x,w) by applying the transition function of M.

G̃M,x,w has an undirected edge between a vertex v1 and a vertex v2 if M in
one step can move to v2 from v1 or to v1 from v2.

In the following lemma, we prove a result similar to Lemma 11 for undirected
configuration graphs of a CL machine.

Lemma 16. LetM be a deterministic catalytic Turing machine with c log n size
workspace and nc size auxiliary space. Then for all x,

E
w∈R{0,1}nc

[|G̃M,x,w|] ≤ O(n2c+2).

Proof. We first show that for an input x and any two different initial auxiliary
contents w and w′, G̃M,x,w and G̃M,x,w′ cannot have a common vertex (or con-

figuration). Let’s assume for the sake of contradiction that G̃M,x,w and G̃M,x,w′

have a common vertex v. Then, the following two cases are possible for v:

Case 1: v is a Type 1 vertex in both G̃M,x,w and G̃M,x,w′ .

First note that if v is a Type 1 vertex in both G̃M,x,w and G̃M,x,w, then v
is also a common vertex of GM,x,w and GM,x,w′ . Buhrman et al. [1] proved that
two different configuration graphs GM,x,w and GM,x,w′ cannot have a common
vertex. We present their argument here for the sake of completion.

If v is a common vertex of GM,x,w and GM,x,w′ , then v is reachable both
the times when M runs on (x,w) and when M runs on (x,w′). Since M is a
deterministic machine, its run on (x,w) and (x,w′) must go through the same
sequence of configurations after reaching v. This implies that M on (x,w) has
the same halting configuration as M on (x,w′), which is not possible because
in such a halting configuration auxiliary content can either be w or w′ violating
the property that M restores the initial auxiliary content when it halts. This
proves that v cannot be a common vertex of GM,x,w and GM,x,w′ , hence, v can

also not be a Type 1 vertex in both G̃M,x,w and G̃M,x,w′ .

Case 2: v is either a Type 2 vertex in G̃M,x,w or a Type 2 vertex in G̃M,x,w′ .

Randomized and Symmetric Catalytic Computation 11

For simplicity we only consider the case where v is a Type 2 vertex in both
G̃M,x,w and G̃M,x,w′ , the other cases can be analysed similarly.

If v is a Type 2 vertex in G̃M,x,w, then there must be a sequence of config-
urations, say S1 = v → C1 → C2 · · · → Ck1 , where every configuration in the
sequence yields the next configuration in the sequence, and Ck1 is reachable when

M runs on (x,w). Similarly, since v is also a Type 2 vertex in G̃M,x,w′ , there
must also be a sequence of configurations, say S2 = v → C ′1 → C ′2 · · · → Ck2 ,
where every configuration in the sequence yields the next configuration in the
sequence, and Ck2 is reachable when M runs on (x,w′). Existence of S1 and S2

follows from Definition 15.
Without loss of generality, assume that k1 < k2. Since M is a deterministic

machine where a configuration can yield at most one configuration, Ci = C ′i for
i = 1 to k1. This implies that Ck1 is present in S2, and therefore, Ck2 is also
reachable when M runs on (x,w). Therefore, Ck2 must be a common Type 1
vertex of GM,x,w and GM,x,w′ , which is not possible as we proved in Case 1.

A configuration of M can be described with at most c log n + nc + log n +
log(c log n) + log nc + O(1) bits, where we need c log n + nc bits for work and
auxiliary tape content, log n + log(c log n) + log nc bits for the tape heads, and
O(1) bits for the state. Since no two different undirected configuration graphs for
M and x can have a common vertex, the total number of possible configurations
bounds the sum of the size of all the undirected configuration graphs forM and
x. ∑

w∈{0,1}nc

|G̃M,x,w| ≤ O(2c logn.2n
c

.n.c log n.nc).

This implies,

E
w∈R{0,1}nc

[|G̃M,x,w|] ≤ O(n2c+2).

.

Here again, we will use a pseudorandom generator to create an auxiliary
content on which a CL machine produces a small size undirected configuration
graph. Lemma 16 and the assumption of Lemma 12 gives us such a pseudoran-
dom generator. We are omitting the proof here as it is similar to the proof of
Lemma 10 of [2].

Lemma 17. Let M be a deterministic catalytic Turing machine using c log n
size workspace and nc size auxiliary space. If there exists a constant ε > 0 such
that DSPACE(n) * SIZE(2εn), then there exists a function G : {0, 1}O(logn) →
{0, 1}nc

, such that on every input x and initial auxiliary content w, for more
than half of the seeds s ∈ {0, 1}O(logn), |G̃M,x,w⊕G(s)| ≤ n2c+3. Moreover, G is
logspace computable. (w ⊕G(s) represents the bitwise XOR of w and G(s))

Now to complete the proof we will construct a CSC1 machineM′ for a deter-
ministic catalytic machine M with c log n size workspace and nc size auxiliary
space, such that L(M) = L(M′).

12 Datta et al.

On an input x and initial auxiliary content w, M′ uses the pseudorandom
generator G of Lemma 17 and a universal exploration sequence to traverse
the vertices of G̃M,x,w⊕G(s). Let seq denote logspace computable (1n

2c+3

, 110)-
universal exploration sequence, where 10 is a loose upper bound on the degree
of every vertex in G̃M,x,w⊕G(s).

The algorithm of M′ is same as Algorithm 2, except in line 5 instead of
traversing GM,x,w⊕G(s) it traverses the vertices of G̃M,x,w⊕G(s) using seq.

If x ∈ L(M), thenM′ on a good seed s must reach an accepting configuration
while simulating M using seq. In which case it will set accept = TRUE in line
6 and finally Accept in line 10.

If x /∈ L(M), then clearly a Type 1 vertex of G̃M,x,w⊕G(s) cannot be an
accepting configuration for any seed s of G. Observe that a Type 2 vertex of
G̃M,x,w⊕G(s) can also not be an accepting configuration because configurations
corresponding to Type 2 vertices are non-halting by definition. Therefore, M′
cannot reach an accepting configuration during any simulation if x /∈ L(M).
Due to which M′ never sets accept to TRUE and finally Rejects in line 13.

References

1. Buhrman, H., Cleve, R., Koucký, M., Loff, B., Speelman, F.: Computing with a full
memory: Catalytic space. In: Proceedings of the Forty-sixth Annual ACM Sympo-
sium on Theory of Computing. pp. 857–866. STOC ’14, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2591796.2591874

2. Buhrman, H., Koucký, M., Loff, B., Speelman, F.: Catalytic space: Non-
determinism and hierarchy. Theory of Computing Systems 62(1), 116–135 (Jan
2018), https://doi.org/10.1007/s00224-017-9784-7

3. Gupta, C., Jain, R., Sharma, V.R., Tewari, R.: Unambiguous Catalytic Computa-
tion. In: FSTTCS 2019. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 150, pp. 16:1–16:13 (2019). https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16,
https://drops.dagstuhl.de/opus/volltexte/2019/11578

4. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In: Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing. pp. 220–229. STOC ’97, ACM, New York,
NY, USA (1997), http://doi.acm.org/10.1145/258533.258590

5. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5),
1501–1526 (May 2002), https://doi.org/10.1137/S0097539700389652

6. Koucký, M.: Universal traversal sequences with backtracking. Jour-
nal of Computer and System Sciences 65(4), 717 – 726 (2002),
http://www.sciencedirect.com/science/article/pii/S0022000002000235

7. Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded com-
putation. Theoretical Computer Science 19(2), 161 – 187 (1982),
http://www.sciencedirect.com/science/article/pii/0304397582900585

8. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (Sep 2008),
https://doi.org/10.1145/1391289.1391291

9. Vincent Girard, Michal Koucký, P.M.: Nonuniform catalytic space and the direct
sum for space. Electronic Colloquium on Computational Complexity (ECCC) 22,
138 (2015), http://eccc.hpi-web.de/report/2015/138

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

