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Abstract12

We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge13

weight function in logarithmic space, with respect to which the minimum weight perfect matching14

in the graph is unique, if one exists.15

As a consequence, we obtain that deciding whether the graph has a perfect matching or not is16

in SPL. In 1999, Reinhardt, Allender and Zhou proved that if one can construct a polynomially17

bounded weight function for a graph in logspace such that it isolates a minimum weight perfect18

matching in the graph, then the perfect matching problem can be solved in SPL. In this paper, we19

give a deterministic logspace construction of such a weight function.20
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1 Introduction24

Given a graph G(V,E), a perfect matching is defined as a set of disjoint edges which covers25

all the vertices in the graph. The perfect matching problem asks whether a graph has a26

perfect matching or not. The first polynomial time sequential algorithm to solve this problem27

was given by Edmonds [6]. Since then, there has been a lot of effort to solve this problem28

efficiently in a parallel computation model. NC is a class of problem which can be solved29

efficiently in parallel computation model. Lovász gave the first randomized NC algorithm to30

solve the perfect matching problem [13]. However, the question whether the problem can be31

solved in NC or not is still open.32

Mulmuley et al. made significant progress in answering this question and gave the famous33

isolating lemma [14].34

I Lemma 1. (Isolating Lemma [14]) For a set S = {x1, x2, . . . xn}, let F be family of35

subsets of S. If the elements in the set S are assigned integer weights chosen uniformly36

and independently from the set {1, 2, . . . 2n} then with probability greater than half there is a37

unique minimum weight set in F .38

Mulmuley et al. used this lemma to get a randomized NC algorithm for finding a perfect39

matching in graphs. They also showed that if one can construct an isolating weight function40

in NC (derandomizing the isolating lemma), then a perfect matching can be found in NC.41

Allender et al. further improved this result and proved that if one can construct an isolating42

weight function in logspace then the problem can be solved in SPL, which is a subset of NC2
43
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32:2 Efficient Isolation of Perfect Matching in O(logn) Genus Bipartite Graphs

[2]. In a recent result, a quasi-polynomial (O(log2 n)-bit) size isolating weight function was44

constructed for bipartite graphs which implies that the perfect matching problem can be45

solved in quasi-NC [7]. This result was subsequently extended to general graphs as well [17].46

However, constructing polynomially bounded isolating weight function for general graphs47

has been elusive so far. Constructing isolating weight function also has ramification in the48

directed graph reachability problem. A logspace construction of a polynomially bounded path49

isolating weight function will imply that reachability problem in directed graphs can be50

solved in UL, which will solve the NL vs. UL question, which has been open for a very long51

time[16]. Also, a logspace construction of a polynomially bounded perfect matching isolating52

weight function even for bipartite graphs will prove that NL ⊆ SPL [4].53

Although constructing polynomially bounded isolating weight function seems to be hard54

for general graphs, but such weight functions have been constructed for various subclasses of55

graphs such as planar graphs [18], bounded genus graphs [5], K3,3 and K5-free graphs [3],56

graph with small number of matchings [9, 1] and graph with small number of nice cycles57

[11]. The weight function constructed in [5] is a O(g · logn)-bit weight function for g-genus58

graphs. Thus their result does not yield a polynomial size weight function for the graphs of59

genus more than constant. The question whether one can construct a polynomially bounded60

isolating weight function efficiently for graphs of genus beyond constant or not has been open61

since then. In this work, we settle this question by constructing a O(g + logn) bit isolating62

weight function for g-genus graphs. Thus our result gives a polynomial size isolating weight63

function for O(logn) genus bipartite graphs.64

For a class of bipartite graphs, one way to obtain an isolating weight function is, to65

construct a skew-symmetric weight function for the same class of directed graphs such that66

every cycle in the graph gets a nonzero weight. This is the common technique in most of67

the above mentioned results. Having a skew-symmetric weight function such that it gives68

nonzero weights to every cycle in the graph, is sufficient for both path and matching isolation69

but is not necessary. Also, a weight function which isolates a path in the graph may not70

isolate a matching and vice-versa. That is why the weight functions constructed in [12], [19]71

and [10] are path isolating but do not isolate perfect matching. In this result, we construct a72

weight function which isolates a perfect matching in g-genus graphs even though it does not73

give nonzero weight to every cycle in the graphs.74

1.1 Our Result75

In this paper, we extend the above line of work and prove the following theorem.76

I Theorem 2. Given an undirected O(logn) genus bipartite graph along with its polygonal77

schema, the problem of deciding whether the graph has a perfect matching or not is in SPL.78

Given a g-genus bipartite graph G we construct O(g + logn)-bit weight functions79

w1, w2, . . . wk, where k = O(nc + 2g), such that there exists a unique minimum weight80

perfect matching in the G with respect to some wi, if G has a perfect matching. To achieve81

this, we first construct a directed graph ~G which is same as G, but its edges are assigned82

direction as follows. Let L and R be the two sets of the bipartition of G. We assign a83

direction to all the edges in ~G from L to R. Then we divide the perfect matchings of ~G84

into different classes according to their signatures. Matchings in one class are said to be85

topologically equivalent to each other in a sense. For a g-genus graph, there are 22g many86

classes. We construct our isolating weight function in two steps. In the first step, we construct87

a weight function which is a linear combination of the weight function constructed in [18]88

and another weight function defined later in this paper and show that there is at most one89
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minimum weight perfect matching in each class with respect to this weight function. In90

the second step, we use the hashing scheme of Fredman, Komlós and Szemerédi [8] to get91

k many weight functions w1, w2, . . . , wk such that for some i ≤ k, wi isolates a minimum92

weight perfect matching in ~G. A matching in ~G corresponds to a unique matching G and93

vice-versa. Therefore we get a unique minimum weight perfect matching in G with respect94

to wi.95

For g = O(logn) we get k = O(nc′), for some constant c′ > 0. That means we get96

polynomially many weight functions such that there is at most one minimum weight perfect97

matching in the graph with respect to at least one of the weight function. Then we apply98

the result of [2] to get an SPL algorithm for perfect matching problem in O(logn) genus99

bipartite graphs.100

Comparison with the path isolating weight function for O(logn) genus graphs101

[10]: Note that the weight function constructed in [10] is also a linear combination of two102

weight functions, one of which gives nonzero weights to all surface separating cycles in the103

graph. Therefore, when we divide the paths between a pair of vertices into classes and104

take any two minimum weight non-intersecting paths with respect to this weight function105

from the same class, we know that the cycle formed by reversing one of the paths is surface106

separating. Since every surface separating cycle has nonzero weight, and the weight function107

is skew-symmetric, this implies that these paths can not be of equal weights. Which means108

there is at most one minimum weight path in each class with respect to that weight function.109

Similarly, we handle the case when the paths are intersecting. However, that same weight110

function does not work here in matching isolation. Here also we first divide the matchings111

into classes according to their signatures. Now if we consider two minimum weight perfect112

matchings within a class, all the cycles formed by taking their disjoint union can be surface113

non-separating. Since the weight of a surface non-separating cycle can be zero with respect114

to that weight function, this does not give any contradiction to the fact that there can be two115

minimum weight perfect matchings within a class. In this paper, we overcome this hurdle116

by constructing a new weight function which isolates a matching within a class. Then we117

isolate a matching across the classes by the technique mentioned above.118

1.2 Organization of the Paper119

Rest of the paper is organized as follows. In Section 2, we define the necessary notations120

and a suitable representation of high genus graphs which we use in this paper. In Section 3,121

we define the first part of our weight function, which is a linear combination of two weight122

functions defined in that section. In Section 4, we prove that the number of minimum weight123

perfect matchings with respect to this weight function is very small. Then we use the hashing124

scheme of [8] to obtain our final weight function, which isolates a minimum weight perfect125

matching in the graph.126

2 Preliminaries and Notations127

A g-genus surface is a sphere with g-many handles on it. A g-genus graph is a graph which128

can be embedded on a g-genus surface without intersecting its edges. A g-genus surface can129

be represented by a polygon called polygonal schema(see Figure 1). The polygonal schema130

of a g-genus surface has 4g-sides T1, T2, T
′
1, T

′
2, . . . , T

′
2g−1, T

′
2g identified in pairs. The sides131

Ti and T ′i form a pair together. An embedding of a graph G on a g-genus surface can be132

represented by an embedding of G inside this polygon. In such an embedding an edge {u, v}133

of a graph G is said to cross a side S of the polygonal schema, if u or v is incident on the side134

STACS 2019
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a b

cd

e
T1 T ′1

T2

T ′2

Figure 1 Polygonal schema of K5, embedded on a surface of genus 1. Edges {a, c} and {b, d} are
crossing the sides T1 and T2 respectively. Vertices a and c are said to be incident on the sides T1

and T ′
1 respectively.

S (for example in Figure 1, the edge {a, c} is crossing the sides T1 and T ′1). We assume that135

we are given the combinatorial embedding of the graph G inside this polygon together with136

the ordered set of edges crossing each side of the polygon. We also assume that no vertex137

of G lies on the sides of the polygonal schema. Such an embedding is called the polygonal138

schema of the graph G.139

In the polygonal schema of a graph G, the edges which do not cross any side of the140

polygonal schema, we call them planar edges. Note that in the polygonal schema of a graph141

G, the subgraph induced by the planar edges of G, is a planar graph and we call this subgraph142

Gplanar.143

A piecewise straight-line embedding of a planar graph is an embedding where all the144

vertices of the graph have integral coordinates and the edges are piecewise straight line145

segment connecting their two end points. Given a combinatorial embedding of a planar graph,146

a piecewise straight-line embedding of it can be constructed in logspace [18]. Thus given147

a polygonal schema of a g-genus graph G, a piecewise straight-line embedding of Gplanar148

can be constructed in logspace. We will need such an embedding to construct our desirable149

weight function.150

Given the polygonal schema of a g-genus graph G, we define the signature of an edge e in151

G, denoted as sign(e), as a 2g-bit binary string b1b2 . . . b2g, such that bi = 1 if e crosses Ti,152

otherwise 0. Similarly, for any set of edges say E = {e1, e2, . . . , ek}, we define the signature153

of E as, sign(E) = sign(e1) ⊕ sign(e2)⊕ . . . ⊕ sign(ek), where ⊕ represents the bitwise-XOR154

operator. Note that the i-th bit in the signature of a set E represents the parity of the155

number of edges from that set, crossing the side Ti, i.e. if the number of edges in the set E,156

crossing the side Ti are even then i-th bit in the sign(E) will be 0; otherwise it will be 1.157

Without loss of generality assume that each edge crosses at most one side of the polygonal158

schema. If it crosses more than one side of the polygonal schema, we break it into multiple159

edges by inserting dummy vertices. To preserve matching, we always break an edge into160

an odd number of edges. Every term defined till now remains the same in case of directed161

graphs as well.162

Since in this paper we work with both directed and undirected graphs, it is essential163

that we make a demarcation in the notation used for directed and undirected graphs. For a164

directed edge ~e = (u, v), the edge e = {u, v} represents the underlying undirected edge and165
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the edge ~e r represents the directed edge (v, u) that is the edge ~e with its direction reversed.166

Similarly, for any set of directed edges ~E, set E represents the set of underlying undirected167

edges of ~E and set ~E r represents the set where each edge ~e ∈ ~E is replaced with the edge ~e r.168

In a directed graph ~G, we call a set of edges ~C, a directed cycle if (i) edges of C (underlying169

undirected edges of ~C) form a simple cycle and, (ii) for every two adjacent edges of ~C, tail170

of one edge is followed by the head of another edge. When we call ~C just a cycle then (ii)171

may not hold. Similarly we can define directed path and path in ~G.172

(0)k represents the string
k-times︷ ︸︸ ︷
00 . . . 0, where k is an integer. For an integer l > 0, [l] denotes173

the set {1, 2, . . . , l}.174

3 Isolating Weight function175

As discussed in the introduction, our main goal here is to construct a weight function for176

graphs efficiently. Let us first define the weight function formally. A weight function for a177

graph (directed or undirected) G(V,E) is a map w : E → Z which assigns an integer weight178

to every edge in the graph. For any set of edges E′ in the graph, the weight of the set E′ is179

defined as w(E′) =
∑

e∈E′ w(e). A weight function w for a graph G is called min-isolating if180

there exists at most one minimum weight perfect matching in G with respect to the weight181

function w.182

In case of directed graphs, a weight function w is called skew-symmetric if w(~e) = −w(~e r),183

for all ~e ∈ ~E.184

For a g-genus graph ~G, we define a weight function wcomb which is a linear combination185

of the following two weight functions.186

The first weight function we define is the same as the one defined in [18] for directed187

planar graphs. We call it wpl. As we mentioned in Section 2, we can construct a piecewise188

straight-line embedding of ~Gplanar in logspace. For an edge ~e = (u, v), let (xu, yu) and189

(xv, yv) be the coordinates of the vertices u and v respectively, in the piecewise straight-line190

embedding of ~Gplanar.191

wpl(~e) =
{

(yv − yu)(xu + xv), if ~e is a planar edge,
0, otherwise.

192

We state the following theorem regarding the weight function wpl, which gives us a char-193

acterization of the weight of a directed cycle in a directed planar graph, established in [18].194

195

I Theorem 3. [18] Given a piecewise straight-line embedding of a planar graph ~G, there196

exists a logspace computable weight function wpl such that for any directed cycle ~C in ~G, we197

have wpl(~C) = 2 ·Area(~C) if ~C is a counter-clockwise cycle and wpl(~C) = −(2 ·Area(~C))198

if ~C is a clockwise cycle, where Area(~C) is the area of the region enclosed by ~C.199

200

We define another weight function wside as follows. Let σ = (~f1, ~f2, . . . , ~fk) be the ordered201

set of edges crossing the sides of the polygonal schema T1 to T2g, ordered in a clockwise202

manner starting from the tail of T1.203

wside(~fi) =
{
i, if tail(~fi) is incident on some side Tj for j ∈ [2g],
−i, if head(~fi) is incident on some side Tj for j ∈ [2g].

204

STACS 2019
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For all other edges ~e, wside(~e) = 0.205

Our weight function wside is somewhat similar to the weight function defined in Theorem 8206

of [5]. However, the main difference is that they define 2g many weight functions (one for207

each pair of side of the polygonal schema) similar to wside and their final weight function208

is a linear combination of those 2g weight functions, making it an O(g · logn)-bit size209

weight function for g-genus graphs. Whereas in this paper wside is a single O(logn)-bit210

weight function for a g-genus graph.211

Since each of these two weight functions are polynomially bounded and are computable212

in logspace, the overall computation remains in logspace as well. We combine these two213

weight functions into a single weight function and call it wcomb, defined as follow:214

wcomb = wpl · n10 + wside. (1)215

Since for any two subsets of edges ~E′1 and ~E′2 of the graph, both weight functions wpl and216

wside are bounded by n10, hence wcomb( ~E′1) = wcomb( ~E′2) if and only if wpl( ~E′1) = wpl( ~E′2)217

and wside( ~E′1) = wside( ~E′2).218

219

Note that in the perfect matching problem, we are given an undirected graph and asked220

to find if the graph has a perfect matching or not. However, we have defined the weight221

function wcomb for directed graphs. In order to give weights to an undirected bipartite graph222

G, we first obtain a directed graph ~G and construct a weight function for ~G. Then we use223

that weight function to build a weight function for G.224

Let G be an undirected bipartite graph and (L,R) be its bipartition. We construct a225

directed graph ~G as follow. For an edge {u, v} in G such that u ∈ L and v ∈ R, we replace226

it with a directed edge (u, v) in ~G. We use Reingold’s algorithm [15] to find out whether a227

vertex belongs to L or R. Let w be a weight function for ~G. We define corresponding weight228

function wund for G as follow. For an edge {u, v} ∈ G such that u ∈ L and v ∈ R,229

wund
(
{u, v}

)
= w(u, v), where (u, v) ∈ ~G (2)230

Note that if ~M is a matching of weight t in ~G then M will be a matching of weight t in G.231

Thus, if w is a min-isolating weight function for ~G then wund will be min-isolating for G.232

In the next section, we will construct a min-isolating weight function for directed g-genus233

bipartite graphs. Then ultimately we will use that weight function to obtain a min-isolating234

weight function for undirected g-genus bipartite graphs.235

4 Isolating a Minimum Weight Perfect Matching236

Let ~G be a g-genus bipartite graph and (L,R) be its bipartition. Let us assume that all the237

edges in ~G have direction from L to R. We will prove that there are at most 22g minimum238

weight perfect matchings in ~G with respect to the weight function wcomb, if ~G has a perfect239

matching.240

Let ~M be a perfect matching in ~G. As we defined in Section 2, signature of ~M is,241

sign( ~M) = sign(~e1) ⊕ sign(~e2) ⊕ . . .⊕ sign(~ej), where ~ei ∈ ~M for i ∈ [j].242

Note that for a g-genus graph each matching has a 2g-bit signature. Thus there are 22g
243

many possible signatures. For each 0 ≤ i ≤ 22g − 1, let bin(i) represent the 2g-bit binary244

number(with possible leading 0’s) equivalent to an integer i. We define a class Ai of perfect245

matchings in ~G with respect to the signature bin(i) for all 0 ≤ i ≤ 22g − 1, as246

Ai = { ~M | ~M is a perfect matching in ~G and sign( ~M) = bin(i)}247
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We will prove that there exists at most one minimum weight perfect matching in each248

class with respect to the weight function wcomb.249

I Lemma 4. For a g-genus bipartite graph ~G, there exists at most one minimum weight250

perfect matching in the class Ai for all i ∈ [22g], with respect to the weight function wcomb.251

For two matchings ~M1 and ~M2 in ~G, we define ~E ~M1∆ ~M2
= ( ~M1 ∪ ~M2) \ ( ~M1 ∩ ~M2). Let252

us first prove the following lemma about the characterization of the edges in the set ~E ~M1∆ ~M2
,253

when ~M1 and ~M2 are two perfect matchings from the same class.254

I Lemma 5. If ~M1 and ~M2 are the two perfect matchings in the class Ai then sign( ~E ~M1∆ ~M2
) =255

(0)2g that is, the edges in the set ~E ~M1∆ ~M2
collectively cross each side of the polygonal schema256

an even number of times.257

Proof. Since ~M1 and ~M2 are the matchings from the same class, we have258

sign( ~M1) = sign( ~M2)259

sign( ~M1) ⊕ sign( ~M2) = (0)2g
260 (

sign( ~M1 ∩ ~M2)⊕ sign( ~E ~M1∆ ~M2
\ ~M2)

)
⊕

(
sign( ~M1 ∩ ~M2)⊕ sign( ~E ~M1∆ ~M2

\ ~M1)
)

= (0)2g
261 (

sign( ~E ~M1∆ ~M2
\ ~M2)

)
⊕

(
sign( ~E ~M1∆ ~M2

\ ~M1)
)

= (0)2g
262

sign( ~E ~M1∆ ~M2
) = (0)2g.263

J264

We will now show that there is at most one minimum weight perfect matching in each265

class. Assume that ~M1 and ~M2 are the two minimum weight perfect matchings in the class266

Ai with respect to the weight function wcomb. We know that the edges in the set ~E ~M1∆ ~M2
267

form vertex disjoint cycles. Let ~C1, ~C2, . . . , ~Ck be those cycles. Notice that all the edges in268

the cycle ~Ci are directed from L to R therefore ~Ci is not a directed cycle, for all i. Also,269

note that each ~Ci consists of even number of edges and contain alternating edges from ~M1270

and ~M2. Hence we can claim the following.271

B Claim 6. Let ~E1i and ~E2i be the set of edges of ~M1 and ~M2 respectively in ~Ci then272

wcomb( ~E1i) = wcomb( ~E2i), for all i ∈ [k].273

Proof. Let us assume that there exists some j ∈ [k] such that wcomb( ~E1j) 6= wcomb( ~E2j).274

Without loss of generality assume that wcomb( ~E1j) > wcomb( ~E2j). Now consider a new275

perfect matching
(
( ~M1 \ ~E1j) ∪ ~E2j

)
. This matching has strictly lesser weight than ~M1,276

which is a contradiction because we have assumed that ~M1 is a minimum weight perfect277

matching. J278

Now consider another graph ~G′ which is same as ~G but direction of the edges belonging to279

~M2 is reversed in ~G′. Let ~M ′1 and ~M ′2 be the matchings in ~G′ corresponding to the matchings280

~M1 and ~M2 in ~G, where ~M ′1 is same as ~M1, but ~M ′2 = ~M r
2 . We know that the edges in the281

set ~E ~M ′
1∆ ~M ′

2
will form vertex disjoint cycles. Let ~C ′1,

~C ′2, . . . ,
~C ′k be those cycles and ~E′1i and282

~E′2i be the edges of matching ~M ′1 and ~M ′2 respectively, in the cycle ~C ′i. By claim 6 we know283

that284

wcomb( ~E1i) = wcomb( ~E2i), for all i ∈ [k].285
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Also ~E1i = ~E′1i and ~E2i = ~E′ r2i , therefore286

wcomb( ~E′1i) = wcomb( ~E′ r2i ), for all i ∈ [k].287

Since wcomb is skew-symmetric, we have288

wcomb( ~E′1i) = −wcomb( ~E′2i),289

wcomb( ~E′1i) + wcomb( ~E′2i) = 0,290

wcomb( ~C ′i) = 0, for all i ∈ [k]. (3)291

Note that the edges in the set ~E′1i have direction from L to R and the edges in set ~E′2i292

have direction from R to L therefore the cycles ~C ′1,
~C ′2, . . . ,

~C ′k are the directed cycles in ~G′.293

We will now prove that wcomb( ~C ′i) 6= 0 for some i ∈ [k], which will be a contradiction with294

Equation 3.295

Since changing the direction of an edge does not change its signature, by Lemma 5 we296

know that sign( ~C ′1)⊕ sign( ~C ′2)⊕ . . .⊕ sign( ~C ′k) = (0)2g.297

I Lemma 7. Let ~G′ be a g-genus graph which contains directed cycles { ~C ′1, ~C ′2, . . . , ~C ′k}298

such that sign ( ~C ′1)⊕ sign ( ~C ′2)⊕ . . .⊕ sign ( ~C ′k) = (0)2g. Then there exists i ∈ [k], such that299

wcomb( ~C ′i) 6= 0.300

Proof. First consider the case, when no edge of the cycles { ~C ′1, ~C ′2, . . . , ~C ′k} crosses any side301

of the polygonal schema. In that case each cycle ~C ′i is a planar cycle i.e. consists of only302

planar edges. By Theorem 3 we know that wpl( ~Ci) 6= 0, which implies that wcomb( ~Ci) 6= 0303

for all i ∈ [k]. Hence the lemma holds in this case.304

We will now prove the lemma for the case when some edges of the cycles { ~C ′1, ~C ′2, . . . , ~C ′k}305

cross some sides of the polygonal schema.306

Let us consider a graph G′′ such that edges of G′′ are the underlying undirected edges of307

the cycles ( ~C ′1, ~C ′2, . . . , ~C ′k). Let C = (C ′′1 , C ′′2 , . . . , C ′′k ) be the cycles in G′′ corresponding to308

cycles ( ~C ′1, ~C ′2, . . . , ~C ′k). We will construct another directed graph ~G′′ from G′′(by assigning309

direction to the edges of G′′) such that either ~C ′′i = ~C ′i or ~C ′′i = ~C ′ri , for all i ∈ [k]. Let EC310

be the set of edges of the cycles in C. We assign direction to the edges of EC in two steps.311

In the first step, we assign direction to only those edges of EC which are crossing some side312

of the polygonal schema. In the second step, we assign direction to the planar egdes of EC ,313

based on the direction of the edges which were assigned direction in the first step.314

We know that all the cycles in C collectively cross each side of the polygonal schema an315

even number of times. Let E = (e1, e2, . . . e2l) for some integer l > 0, be the edges in the set316

EC , which cross some of the sides of the polygonal schema, indexed in clockwise order from317

T1 to T2g, starting from the tail of T1. Without loss of generality assume that no two edges318

in E share a vertex because if they do, we insert dummy vertices in the edge so that our319

assumption holds. We will need this assumption to simplify our analysis.320

Step 1: In this step, we assign direction to the edges in the set E. Let ei = {u, v} be an321

edge in E such that u and v are incident on sides Tj and T ′j respectively, of the polygonal322

schema. We assign direction to ei ∈ E as follows:323

Assign direction to ei from u to v, if i is odd, i.e. assign direction to ei in such a way324

that u becomes the tail of ~ei and v becomes the head of ~ei in ~G′′.325

Similarly, assign direction to ei from v to u, if i is even.326

327
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v1

v2

v3 v4

v5

v6

v7v8

T1

T2

T ′1

T ′2

a

Figure 2 (v1, v2, v3, v4, v5, v6, v7, v8) are the vertices of the edges which are crossing sides of the
polygonal schema. Path v8av5 is a planar path.

Before going to Step 2, let us make the following observations. Let ~E = (~e1, ~e2 . . . ~e2l) are328

the edges in ~G′′ corresponding to edges in E after Step 1. Let X = {v1, v2, . . . v4l} be the329

vertices of the edges of ~E ordered in a clockwise manner, according to their incidence on330

the side of the polygonal schema, starting from the tail of T1(see Figure 2). Note that,331

~ei = (vd1 , vd2), where d1 is odd and d2 is even, for all i ∈ [2l]. (4)332

We define a function τ : X → X. τ(vi) = vj if there is a simple path P from vi to vj333

which consists of only planar edges of EC, for i, j ∈ [4l]. We call such paths as planar334

paths (see Figure 2). Since vertices in X are the part of simple cycles, the function τ is a335

bijective function.336

I Lemma 8. If τ(vi) = vj, then |i− j| is odd.337

Proof. Assume that both i and j are odd. Without loss of generality assume that j > i.338

This implies that there are an odd number of vertices in the set X, between vi and vj339

namely, X ′ = (vi+1, vi+2, . . . vj−1). Note that vertices in X ′ are part of non-intersecting340

simple cycles therefore they must be connected to each other through a simple planar341

path. Since τ is a bijective function we know that there is some vertex v′ ∈ X ′ such that342

T (v′) = vt where t ∈ [4l] and, t > j or t < i. This is not possible because it will imply that343

planar paths say from v′ to vt and from vi to vj say P1 and P2 respectively, must intersect344

each other. This is a contradiction since P1 and P2 are the parts of non-intersecting345

cycles. J346

I Lemma 9. Let P be a planar path between vertices vi and vj , i, j ∈ [4l]. If vi is the347

head of some edge then vj will be the tail of some edge, in ~E and vice versa.348

Proof. Let vi and vj both the vertices are the heads of the edges ec1 and ec2 , where349

c1, c2 ∈ [k]. We know that if i is even then j is odd and if i is odd then j is even. Without350

loss of generality assume that i is even and j is odd. However, from Equation 4 we know351

that j must be even. Hence we get a contradiction to Lemma 8.352

Similarly, we can handle the case when vi and vj are the tail of some edges. J353

STACS 2019
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Step 2: Now we will assign the direction to the planar edges of ~G′′. This step is pretty354

straight forward. Take a planar path P of ~G′′. Let v′ and v′′ be its end vertices such355

that v′ is the head of an edge ~e′ and v′′ is the tail of some edge ~e′′, where ~e′, ~e′′ ∈ ~E.356

Assign direction to all the edges in P in such a way that the path ~P ′ = ~e′ ~P ~e′′ becomes a357

directed path in ~G′′.358

Let ~C ′′1 ,
~C ′′2 , . . . ,

~C ′′k be the cycles in ~G′′ after assigning direction to the underlying undir-359

ected cycles C ′′1 , C ′′2 , . . . , C ′′k . After assigning direction using the above procedure, we can360

ensure that no two adjacent edges in the cycle ~C ′′i for all i ∈ [k] get opposite direction i.e. if361

~e and ~e′ are two adjacent edges in the cycle ~C ′′i then the tail of e will be followed by the head362

of ~e′ or vice-versa (because of Step 2). This implies that ~C ′′1 ,
~C ′′2 , . . . ,

~C ′′k are the directed363

cycles in ~G′′. Note that the way we have defined weight function wside, we know that364

wside(~ei) < −
(
wside(~ei + 1)

)
, for all 1 ≤ i < 2l365

=⇒ wside(~e1) + wside(~e3) + . . .+ wside(~e2l−1) < −
(
wside(~e2) + wside(~e4) + . . .+ wside(~e2l)

)
366

=⇒ wside(~e1) + wside(~e3) + . . .+ wside(~e2l−1) + wside(~e2) + wside(~e4) + . . .+ wside(~e2l) 6= 0.367

368

Since for all planar edges ~e, wside(~e) = 0,369

k∑
i=1

wside( ~C ′′i ) 6= 0.370

371

Thus there exist some i ∈ [k] such that372

wside( ~C ′′i ) 6= 0 =⇒ wcomb( ~C ′′i ) 6= 0, (5)373

Note that ~C ′i and ~C ′′i for all i ∈ [k], are the directed cycles such that their underlying374

undirected cycle is same. In a directed cycle there are only two directions possible. Therefore,375

we can say that376

~C ′i = ~C ′′i or ~C ′′ ri ,377

⇒ wcomb( ~C ′i) = wcomb( ~C ′′i ) or wcomb( ~C ′′ ri ),378

⇒ wcomb( ~C ′i) = wcomb( ~C ′′i ) or − wcomb( ~C ′′i ), for all i ∈ [k], since wcomb is (6)379

skew-symmetric.380

From Equation 5 and 6 we can conclude that there exists some i ∈ [k] such that381

wcomb( ~C ′i) 6= 0, which is a contradiction with Equation 3. Thus we can conclude that there382

can not exist two minimum weight perfect matchings in a class Ai for all i ∈ [22g]. This383

finishes the proof of Lemma 4. J384

Note that we have proved that there is at most one minimum weight perfect matching385

in each class and there are total 22g many classes. Therefore, we can say that there are at386

most 22g minimum weight matchings in ~G with respect to the weight function wcomb. As we387

mentioned in Section 3 that given a weight function wcomb for a directed bipartite graph388

~G such that edges of ~G are directed from L to R, we can get a weight function wund
comb for389

underlying undirected graph G such that if ~M is a matching of weight t in ~G then M will be390

a matching of weight t in G.391

I Lemma 10. Given a g-genus graph G along with its polygonal schema we can construct392

a weight function wund
comb for G in logspace such that there are at most 22g minimum weight393

perfect matchings in G with respect to wund
comb.394
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Now that given an undirected graph G we have obtained at most 22g many minimum395

weight perfect matchings in G, we will use the following hashing scheme by Fredman, Komlós396

and Szemerédi [8] to isolate a minimum weight perfect matching among them. Let us first397

state their result in a form suitable to our purpose.398

I Theorem 11. [8] Let S = {x1, x2, . . . , xk} be a set of n-bit integers. Then there exists a399

O(logn+ log k)-bit prime number p so that for all xi 6= xj ∈ S, xi mod p 6= xj mod p.400

Let M be the set of minimum weight perfect matchings in G with respect to wund
comb.401

Assume edges of the graph G are indexed as e1, e2, . . . , em. Let wb be a weight function402

that assigns weight 2i to the edge ei. This is an m-bit weight function, where m ≤ n2. All403

matchings in G get different weight with respect to this weight function therefore, any two404

matchings M1,M2 ∈M, wb(M1) 6= wb(M2). Also, note that |M| ≤ 22g, because each class405

has at most one minimum weight perfect matching. Thus by Theorem 11 there exists an406

O(logn+ g)-bit prime p such that with respect to weight function wfks := wb mod p, every407

matching inM gets a different weight. Hence our final min-isolating weight function for G408

will be,409

wp := wund
comb · n10 + wfks,410

Note that for every O(logn + g)-bit prime p we get a corresponding weight function411

wp and by Theorem 11 we know that there will be at least one O(logn + g)-bit prime p1412

such that wp1 isolates a minimum weight perfect matching in G. Thus we can conclude the413

following.414

I Theorem 12. Given a g-genus graph along with its polygonal schema, we can construct415

weight functions w1, w2, . . . , wk in O(logn+g) space such that if graph has a perfect matching416

then for some i ∈ [k] and, G has a unique perfect matching M of weight j with respect to417

weight function wi, where j, k = O(nc + 2g) for some constant c > 0.418

For a graph of genus g = O(logn) we get polynomially many weight function w1, w2, . . . wt419

where t = O(nc) for some constant c, such that each wi is polynomially bounded and there420

is a unique minimum weight perfect matching in graph with respect to at least one wi if G421

has a perfect matching. Then we apply the algorithm given in [2] to get an SPL algorithm422

for perfect matching in O(logn) genus bipartite graphs.423
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